1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) 452 { 453 const char *s; 454 455 s = btf__str_by_offset(btf, str_off); 456 if (!s) { 457 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); 458 return -EINVAL; 459 } 460 461 return 0; 462 } 463 464 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) 465 { 466 const struct btf_type *t; 467 468 t = btf__type_by_id(btf, id); 469 if (!t) { 470 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); 471 return -EINVAL; 472 } 473 474 return 0; 475 } 476 477 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) 478 { 479 __u32 kind = btf_kind(t); 480 int err, i, n; 481 482 err = btf_validate_str(btf, t->name_off, "type name", id); 483 if (err) 484 return err; 485 486 switch (kind) { 487 case BTF_KIND_UNKN: 488 case BTF_KIND_INT: 489 case BTF_KIND_FWD: 490 case BTF_KIND_FLOAT: 491 break; 492 case BTF_KIND_PTR: 493 case BTF_KIND_TYPEDEF: 494 case BTF_KIND_VOLATILE: 495 case BTF_KIND_CONST: 496 case BTF_KIND_RESTRICT: 497 case BTF_KIND_VAR: 498 case BTF_KIND_DECL_TAG: 499 case BTF_KIND_TYPE_TAG: 500 err = btf_validate_id(btf, t->type, id); 501 if (err) 502 return err; 503 break; 504 case BTF_KIND_ARRAY: { 505 const struct btf_array *a = btf_array(t); 506 507 err = btf_validate_id(btf, a->type, id); 508 err = err ?: btf_validate_id(btf, a->index_type, id); 509 if (err) 510 return err; 511 break; 512 } 513 case BTF_KIND_STRUCT: 514 case BTF_KIND_UNION: { 515 const struct btf_member *m = btf_members(t); 516 517 n = btf_vlen(t); 518 for (i = 0; i < n; i++, m++) { 519 err = btf_validate_str(btf, m->name_off, "field name", id); 520 err = err ?: btf_validate_id(btf, m->type, id); 521 if (err) 522 return err; 523 } 524 break; 525 } 526 case BTF_KIND_ENUM: { 527 const struct btf_enum *m = btf_enum(t); 528 529 n = btf_vlen(t); 530 for (i = 0; i < n; i++, m++) { 531 err = btf_validate_str(btf, m->name_off, "enum name", id); 532 if (err) 533 return err; 534 } 535 break; 536 } 537 case BTF_KIND_ENUM64: { 538 const struct btf_enum64 *m = btf_enum64(t); 539 540 n = btf_vlen(t); 541 for (i = 0; i < n; i++, m++) { 542 err = btf_validate_str(btf, m->name_off, "enum name", id); 543 if (err) 544 return err; 545 } 546 break; 547 } 548 case BTF_KIND_FUNC: { 549 const struct btf_type *ft; 550 551 err = btf_validate_id(btf, t->type, id); 552 if (err) 553 return err; 554 ft = btf__type_by_id(btf, t->type); 555 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { 556 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); 557 return -EINVAL; 558 } 559 break; 560 } 561 case BTF_KIND_FUNC_PROTO: { 562 const struct btf_param *m = btf_params(t); 563 564 n = btf_vlen(t); 565 for (i = 0; i < n; i++, m++) { 566 err = btf_validate_str(btf, m->name_off, "param name", id); 567 err = err ?: btf_validate_id(btf, m->type, id); 568 if (err) 569 return err; 570 } 571 break; 572 } 573 case BTF_KIND_DATASEC: { 574 const struct btf_var_secinfo *m = btf_var_secinfos(t); 575 576 n = btf_vlen(t); 577 for (i = 0; i < n; i++, m++) { 578 err = btf_validate_id(btf, m->type, id); 579 if (err) 580 return err; 581 } 582 break; 583 } 584 default: 585 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); 586 return -EINVAL; 587 } 588 return 0; 589 } 590 591 /* Validate basic sanity of BTF. It's intentionally less thorough than 592 * kernel's validation and validates only properties of BTF that libbpf relies 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc) 594 */ 595 static int btf_sanity_check(const struct btf *btf) 596 { 597 const struct btf_type *t; 598 __u32 i, n = btf__type_cnt(btf); 599 int err; 600 601 for (i = 1; i < n; i++) { 602 t = btf_type_by_id(btf, i); 603 err = btf_validate_type(btf, t, i); 604 if (err) 605 return err; 606 } 607 return 0; 608 } 609 610 __u32 btf__type_cnt(const struct btf *btf) 611 { 612 return btf->start_id + btf->nr_types; 613 } 614 615 const struct btf *btf__base_btf(const struct btf *btf) 616 { 617 return btf->base_btf; 618 } 619 620 /* internal helper returning non-const pointer to a type */ 621 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 622 { 623 if (type_id == 0) 624 return &btf_void; 625 if (type_id < btf->start_id) 626 return btf_type_by_id(btf->base_btf, type_id); 627 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 628 } 629 630 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 631 { 632 if (type_id >= btf->start_id + btf->nr_types) 633 return errno = EINVAL, NULL; 634 return btf_type_by_id((struct btf *)btf, type_id); 635 } 636 637 static int determine_ptr_size(const struct btf *btf) 638 { 639 static const char * const long_aliases[] = { 640 "long", 641 "long int", 642 "int long", 643 "unsigned long", 644 "long unsigned", 645 "unsigned long int", 646 "unsigned int long", 647 "long unsigned int", 648 "long int unsigned", 649 "int unsigned long", 650 "int long unsigned", 651 }; 652 const struct btf_type *t; 653 const char *name; 654 int i, j, n; 655 656 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 657 return btf->base_btf->ptr_sz; 658 659 n = btf__type_cnt(btf); 660 for (i = 1; i < n; i++) { 661 t = btf__type_by_id(btf, i); 662 if (!btf_is_int(t)) 663 continue; 664 665 if (t->size != 4 && t->size != 8) 666 continue; 667 668 name = btf__name_by_offset(btf, t->name_off); 669 if (!name) 670 continue; 671 672 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 673 if (strcmp(name, long_aliases[j]) == 0) 674 return t->size; 675 } 676 } 677 678 return -1; 679 } 680 681 static size_t btf_ptr_sz(const struct btf *btf) 682 { 683 if (!btf->ptr_sz) 684 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 685 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 686 } 687 688 /* Return pointer size this BTF instance assumes. The size is heuristically 689 * determined by looking for 'long' or 'unsigned long' integer type and 690 * recording its size in bytes. If BTF type information doesn't have any such 691 * type, this function returns 0. In the latter case, native architecture's 692 * pointer size is assumed, so will be either 4 or 8, depending on 693 * architecture that libbpf was compiled for. It's possible to override 694 * guessed value by using btf__set_pointer_size() API. 695 */ 696 size_t btf__pointer_size(const struct btf *btf) 697 { 698 if (!btf->ptr_sz) 699 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 700 701 if (btf->ptr_sz < 0) 702 /* not enough BTF type info to guess */ 703 return 0; 704 705 return btf->ptr_sz; 706 } 707 708 /* Override or set pointer size in bytes. Only values of 4 and 8 are 709 * supported. 710 */ 711 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 712 { 713 if (ptr_sz != 4 && ptr_sz != 8) 714 return libbpf_err(-EINVAL); 715 btf->ptr_sz = ptr_sz; 716 return 0; 717 } 718 719 static bool is_host_big_endian(void) 720 { 721 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 722 return false; 723 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 724 return true; 725 #else 726 # error "Unrecognized __BYTE_ORDER__" 727 #endif 728 } 729 730 enum btf_endianness btf__endianness(const struct btf *btf) 731 { 732 if (is_host_big_endian()) 733 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 734 else 735 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 736 } 737 738 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 739 { 740 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 741 return libbpf_err(-EINVAL); 742 743 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 744 if (!btf->swapped_endian) { 745 free(btf->raw_data_swapped); 746 btf->raw_data_swapped = NULL; 747 } 748 return 0; 749 } 750 751 static bool btf_type_is_void(const struct btf_type *t) 752 { 753 return t == &btf_void || btf_is_fwd(t); 754 } 755 756 static bool btf_type_is_void_or_null(const struct btf_type *t) 757 { 758 return !t || btf_type_is_void(t); 759 } 760 761 #define MAX_RESOLVE_DEPTH 32 762 763 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 764 { 765 const struct btf_array *array; 766 const struct btf_type *t; 767 __u32 nelems = 1; 768 __s64 size = -1; 769 int i; 770 771 t = btf__type_by_id(btf, type_id); 772 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 773 switch (btf_kind(t)) { 774 case BTF_KIND_INT: 775 case BTF_KIND_STRUCT: 776 case BTF_KIND_UNION: 777 case BTF_KIND_ENUM: 778 case BTF_KIND_ENUM64: 779 case BTF_KIND_DATASEC: 780 case BTF_KIND_FLOAT: 781 size = t->size; 782 goto done; 783 case BTF_KIND_PTR: 784 size = btf_ptr_sz(btf); 785 goto done; 786 case BTF_KIND_TYPEDEF: 787 case BTF_KIND_VOLATILE: 788 case BTF_KIND_CONST: 789 case BTF_KIND_RESTRICT: 790 case BTF_KIND_VAR: 791 case BTF_KIND_DECL_TAG: 792 case BTF_KIND_TYPE_TAG: 793 type_id = t->type; 794 break; 795 case BTF_KIND_ARRAY: 796 array = btf_array(t); 797 if (nelems && array->nelems > UINT32_MAX / nelems) 798 return libbpf_err(-E2BIG); 799 nelems *= array->nelems; 800 type_id = array->type; 801 break; 802 default: 803 return libbpf_err(-EINVAL); 804 } 805 806 t = btf__type_by_id(btf, type_id); 807 } 808 809 done: 810 if (size < 0) 811 return libbpf_err(-EINVAL); 812 if (nelems && size > UINT32_MAX / nelems) 813 return libbpf_err(-E2BIG); 814 815 return nelems * size; 816 } 817 818 int btf__align_of(const struct btf *btf, __u32 id) 819 { 820 const struct btf_type *t = btf__type_by_id(btf, id); 821 __u16 kind = btf_kind(t); 822 823 switch (kind) { 824 case BTF_KIND_INT: 825 case BTF_KIND_ENUM: 826 case BTF_KIND_ENUM64: 827 case BTF_KIND_FLOAT: 828 return min(btf_ptr_sz(btf), (size_t)t->size); 829 case BTF_KIND_PTR: 830 return btf_ptr_sz(btf); 831 case BTF_KIND_TYPEDEF: 832 case BTF_KIND_VOLATILE: 833 case BTF_KIND_CONST: 834 case BTF_KIND_RESTRICT: 835 case BTF_KIND_TYPE_TAG: 836 return btf__align_of(btf, t->type); 837 case BTF_KIND_ARRAY: 838 return btf__align_of(btf, btf_array(t)->type); 839 case BTF_KIND_STRUCT: 840 case BTF_KIND_UNION: { 841 const struct btf_member *m = btf_members(t); 842 __u16 vlen = btf_vlen(t); 843 int i, max_align = 1, align; 844 845 for (i = 0; i < vlen; i++, m++) { 846 align = btf__align_of(btf, m->type); 847 if (align <= 0) 848 return libbpf_err(align); 849 max_align = max(max_align, align); 850 851 /* if field offset isn't aligned according to field 852 * type's alignment, then struct must be packed 853 */ 854 if (btf_member_bitfield_size(t, i) == 0 && 855 (m->offset % (8 * align)) != 0) 856 return 1; 857 } 858 859 /* if struct/union size isn't a multiple of its alignment, 860 * then struct must be packed 861 */ 862 if ((t->size % max_align) != 0) 863 return 1; 864 865 return max_align; 866 } 867 default: 868 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 869 return errno = EINVAL, 0; 870 } 871 } 872 873 int btf__resolve_type(const struct btf *btf, __u32 type_id) 874 { 875 const struct btf_type *t; 876 int depth = 0; 877 878 t = btf__type_by_id(btf, type_id); 879 while (depth < MAX_RESOLVE_DEPTH && 880 !btf_type_is_void_or_null(t) && 881 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 882 type_id = t->type; 883 t = btf__type_by_id(btf, type_id); 884 depth++; 885 } 886 887 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 888 return libbpf_err(-EINVAL); 889 890 return type_id; 891 } 892 893 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 894 { 895 __u32 i, nr_types = btf__type_cnt(btf); 896 897 if (!strcmp(type_name, "void")) 898 return 0; 899 900 for (i = 1; i < nr_types; i++) { 901 const struct btf_type *t = btf__type_by_id(btf, i); 902 const char *name = btf__name_by_offset(btf, t->name_off); 903 904 if (name && !strcmp(type_name, name)) 905 return i; 906 } 907 908 return libbpf_err(-ENOENT); 909 } 910 911 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 912 const char *type_name, __u32 kind) 913 { 914 __u32 i, nr_types = btf__type_cnt(btf); 915 916 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 917 return 0; 918 919 for (i = start_id; i < nr_types; i++) { 920 const struct btf_type *t = btf__type_by_id(btf, i); 921 const char *name; 922 923 if (btf_kind(t) != kind) 924 continue; 925 name = btf__name_by_offset(btf, t->name_off); 926 if (name && !strcmp(type_name, name)) 927 return i; 928 } 929 930 return libbpf_err(-ENOENT); 931 } 932 933 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 934 __u32 kind) 935 { 936 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 937 } 938 939 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 940 __u32 kind) 941 { 942 return btf_find_by_name_kind(btf, 1, type_name, kind); 943 } 944 945 static bool btf_is_modifiable(const struct btf *btf) 946 { 947 return (void *)btf->hdr != btf->raw_data; 948 } 949 950 void btf__free(struct btf *btf) 951 { 952 if (IS_ERR_OR_NULL(btf)) 953 return; 954 955 if (btf->fd >= 0) 956 close(btf->fd); 957 958 if (btf_is_modifiable(btf)) { 959 /* if BTF was modified after loading, it will have a split 960 * in-memory representation for header, types, and strings 961 * sections, so we need to free all of them individually. It 962 * might still have a cached contiguous raw data present, 963 * which will be unconditionally freed below. 964 */ 965 free(btf->hdr); 966 free(btf->types_data); 967 strset__free(btf->strs_set); 968 } 969 free(btf->raw_data); 970 free(btf->raw_data_swapped); 971 free(btf->type_offs); 972 free(btf); 973 } 974 975 static struct btf *btf_new_empty(struct btf *base_btf) 976 { 977 struct btf *btf; 978 979 btf = calloc(1, sizeof(*btf)); 980 if (!btf) 981 return ERR_PTR(-ENOMEM); 982 983 btf->nr_types = 0; 984 btf->start_id = 1; 985 btf->start_str_off = 0; 986 btf->fd = -1; 987 btf->ptr_sz = sizeof(void *); 988 btf->swapped_endian = false; 989 990 if (base_btf) { 991 btf->base_btf = base_btf; 992 btf->start_id = btf__type_cnt(base_btf); 993 btf->start_str_off = base_btf->hdr->str_len; 994 } 995 996 /* +1 for empty string at offset 0 */ 997 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 998 btf->raw_data = calloc(1, btf->raw_size); 999 if (!btf->raw_data) { 1000 free(btf); 1001 return ERR_PTR(-ENOMEM); 1002 } 1003 1004 btf->hdr = btf->raw_data; 1005 btf->hdr->hdr_len = sizeof(struct btf_header); 1006 btf->hdr->magic = BTF_MAGIC; 1007 btf->hdr->version = BTF_VERSION; 1008 1009 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 1010 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 1011 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 1012 1013 return btf; 1014 } 1015 1016 struct btf *btf__new_empty(void) 1017 { 1018 return libbpf_ptr(btf_new_empty(NULL)); 1019 } 1020 1021 struct btf *btf__new_empty_split(struct btf *base_btf) 1022 { 1023 return libbpf_ptr(btf_new_empty(base_btf)); 1024 } 1025 1026 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 1027 { 1028 struct btf *btf; 1029 int err; 1030 1031 btf = calloc(1, sizeof(struct btf)); 1032 if (!btf) 1033 return ERR_PTR(-ENOMEM); 1034 1035 btf->nr_types = 0; 1036 btf->start_id = 1; 1037 btf->start_str_off = 0; 1038 btf->fd = -1; 1039 1040 if (base_btf) { 1041 btf->base_btf = base_btf; 1042 btf->start_id = btf__type_cnt(base_btf); 1043 btf->start_str_off = base_btf->hdr->str_len; 1044 } 1045 1046 btf->raw_data = malloc(size); 1047 if (!btf->raw_data) { 1048 err = -ENOMEM; 1049 goto done; 1050 } 1051 memcpy(btf->raw_data, data, size); 1052 btf->raw_size = size; 1053 1054 btf->hdr = btf->raw_data; 1055 err = btf_parse_hdr(btf); 1056 if (err) 1057 goto done; 1058 1059 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 1060 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 1061 1062 err = btf_parse_str_sec(btf); 1063 err = err ?: btf_parse_type_sec(btf); 1064 err = err ?: btf_sanity_check(btf); 1065 if (err) 1066 goto done; 1067 1068 done: 1069 if (err) { 1070 btf__free(btf); 1071 return ERR_PTR(err); 1072 } 1073 1074 return btf; 1075 } 1076 1077 struct btf *btf__new(const void *data, __u32 size) 1078 { 1079 return libbpf_ptr(btf_new(data, size, NULL)); 1080 } 1081 1082 struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf) 1083 { 1084 return libbpf_ptr(btf_new(data, size, base_btf)); 1085 } 1086 1087 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 1088 struct btf_ext **btf_ext) 1089 { 1090 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 1091 int err = 0, fd = -1, idx = 0; 1092 struct btf *btf = NULL; 1093 Elf_Scn *scn = NULL; 1094 Elf *elf = NULL; 1095 GElf_Ehdr ehdr; 1096 size_t shstrndx; 1097 1098 if (elf_version(EV_CURRENT) == EV_NONE) { 1099 pr_warn("failed to init libelf for %s\n", path); 1100 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 1101 } 1102 1103 fd = open(path, O_RDONLY | O_CLOEXEC); 1104 if (fd < 0) { 1105 err = -errno; 1106 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 1107 return ERR_PTR(err); 1108 } 1109 1110 err = -LIBBPF_ERRNO__FORMAT; 1111 1112 elf = elf_begin(fd, ELF_C_READ, NULL); 1113 if (!elf) { 1114 pr_warn("failed to open %s as ELF file\n", path); 1115 goto done; 1116 } 1117 if (!gelf_getehdr(elf, &ehdr)) { 1118 pr_warn("failed to get EHDR from %s\n", path); 1119 goto done; 1120 } 1121 1122 if (elf_getshdrstrndx(elf, &shstrndx)) { 1123 pr_warn("failed to get section names section index for %s\n", 1124 path); 1125 goto done; 1126 } 1127 1128 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 1129 pr_warn("failed to get e_shstrndx from %s\n", path); 1130 goto done; 1131 } 1132 1133 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1134 GElf_Shdr sh; 1135 char *name; 1136 1137 idx++; 1138 if (gelf_getshdr(scn, &sh) != &sh) { 1139 pr_warn("failed to get section(%d) header from %s\n", 1140 idx, path); 1141 goto done; 1142 } 1143 name = elf_strptr(elf, shstrndx, sh.sh_name); 1144 if (!name) { 1145 pr_warn("failed to get section(%d) name from %s\n", 1146 idx, path); 1147 goto done; 1148 } 1149 if (strcmp(name, BTF_ELF_SEC) == 0) { 1150 btf_data = elf_getdata(scn, 0); 1151 if (!btf_data) { 1152 pr_warn("failed to get section(%d, %s) data from %s\n", 1153 idx, name, path); 1154 goto done; 1155 } 1156 continue; 1157 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 1158 btf_ext_data = elf_getdata(scn, 0); 1159 if (!btf_ext_data) { 1160 pr_warn("failed to get section(%d, %s) data from %s\n", 1161 idx, name, path); 1162 goto done; 1163 } 1164 continue; 1165 } 1166 } 1167 1168 if (!btf_data) { 1169 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1170 err = -ENODATA; 1171 goto done; 1172 } 1173 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 1174 err = libbpf_get_error(btf); 1175 if (err) 1176 goto done; 1177 1178 switch (gelf_getclass(elf)) { 1179 case ELFCLASS32: 1180 btf__set_pointer_size(btf, 4); 1181 break; 1182 case ELFCLASS64: 1183 btf__set_pointer_size(btf, 8); 1184 break; 1185 default: 1186 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1187 break; 1188 } 1189 1190 if (btf_ext && btf_ext_data) { 1191 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1192 err = libbpf_get_error(*btf_ext); 1193 if (err) 1194 goto done; 1195 } else if (btf_ext) { 1196 *btf_ext = NULL; 1197 } 1198 done: 1199 if (elf) 1200 elf_end(elf); 1201 close(fd); 1202 1203 if (!err) 1204 return btf; 1205 1206 if (btf_ext) 1207 btf_ext__free(*btf_ext); 1208 btf__free(btf); 1209 1210 return ERR_PTR(err); 1211 } 1212 1213 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1214 { 1215 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1216 } 1217 1218 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1219 { 1220 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1221 } 1222 1223 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1224 { 1225 struct btf *btf = NULL; 1226 void *data = NULL; 1227 FILE *f = NULL; 1228 __u16 magic; 1229 int err = 0; 1230 long sz; 1231 1232 f = fopen(path, "rbe"); 1233 if (!f) { 1234 err = -errno; 1235 goto err_out; 1236 } 1237 1238 /* check BTF magic */ 1239 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1240 err = -EIO; 1241 goto err_out; 1242 } 1243 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1244 /* definitely not a raw BTF */ 1245 err = -EPROTO; 1246 goto err_out; 1247 } 1248 1249 /* get file size */ 1250 if (fseek(f, 0, SEEK_END)) { 1251 err = -errno; 1252 goto err_out; 1253 } 1254 sz = ftell(f); 1255 if (sz < 0) { 1256 err = -errno; 1257 goto err_out; 1258 } 1259 /* rewind to the start */ 1260 if (fseek(f, 0, SEEK_SET)) { 1261 err = -errno; 1262 goto err_out; 1263 } 1264 1265 /* pre-alloc memory and read all of BTF data */ 1266 data = malloc(sz); 1267 if (!data) { 1268 err = -ENOMEM; 1269 goto err_out; 1270 } 1271 if (fread(data, 1, sz, f) < sz) { 1272 err = -EIO; 1273 goto err_out; 1274 } 1275 1276 /* finally parse BTF data */ 1277 btf = btf_new(data, sz, base_btf); 1278 1279 err_out: 1280 free(data); 1281 if (f) 1282 fclose(f); 1283 return err ? ERR_PTR(err) : btf; 1284 } 1285 1286 struct btf *btf__parse_raw(const char *path) 1287 { 1288 return libbpf_ptr(btf_parse_raw(path, NULL)); 1289 } 1290 1291 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1292 { 1293 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1294 } 1295 1296 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1297 { 1298 struct btf *btf; 1299 int err; 1300 1301 if (btf_ext) 1302 *btf_ext = NULL; 1303 1304 btf = btf_parse_raw(path, base_btf); 1305 err = libbpf_get_error(btf); 1306 if (!err) 1307 return btf; 1308 if (err != -EPROTO) 1309 return ERR_PTR(err); 1310 return btf_parse_elf(path, base_btf, btf_ext); 1311 } 1312 1313 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1314 { 1315 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1316 } 1317 1318 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1319 { 1320 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1321 } 1322 1323 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1324 1325 int btf_load_into_kernel(struct btf *btf, 1326 char *log_buf, size_t log_sz, __u32 log_level, 1327 int token_fd) 1328 { 1329 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1330 __u32 buf_sz = 0, raw_size; 1331 char *buf = NULL, *tmp; 1332 void *raw_data; 1333 int err = 0; 1334 1335 if (btf->fd >= 0) 1336 return libbpf_err(-EEXIST); 1337 if (log_sz && !log_buf) 1338 return libbpf_err(-EINVAL); 1339 1340 /* cache native raw data representation */ 1341 raw_data = btf_get_raw_data(btf, &raw_size, false); 1342 if (!raw_data) { 1343 err = -ENOMEM; 1344 goto done; 1345 } 1346 btf->raw_size = raw_size; 1347 btf->raw_data = raw_data; 1348 1349 retry_load: 1350 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1351 * initially. Only if BTF loading fails, we bump log_level to 1 and 1352 * retry, using either auto-allocated or custom log_buf. This way 1353 * non-NULL custom log_buf provides a buffer just in case, but hopes 1354 * for successful load and no need for log_buf. 1355 */ 1356 if (log_level) { 1357 /* if caller didn't provide custom log_buf, we'll keep 1358 * allocating our own progressively bigger buffers for BTF 1359 * verification log 1360 */ 1361 if (!log_buf) { 1362 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1363 tmp = realloc(buf, buf_sz); 1364 if (!tmp) { 1365 err = -ENOMEM; 1366 goto done; 1367 } 1368 buf = tmp; 1369 buf[0] = '\0'; 1370 } 1371 1372 opts.log_buf = log_buf ? log_buf : buf; 1373 opts.log_size = log_buf ? log_sz : buf_sz; 1374 opts.log_level = log_level; 1375 } 1376 1377 opts.token_fd = token_fd; 1378 if (token_fd) 1379 opts.btf_flags |= BPF_F_TOKEN_FD; 1380 1381 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1382 if (btf->fd < 0) { 1383 /* time to turn on verbose mode and try again */ 1384 if (log_level == 0) { 1385 log_level = 1; 1386 goto retry_load; 1387 } 1388 /* only retry if caller didn't provide custom log_buf, but 1389 * make sure we can never overflow buf_sz 1390 */ 1391 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1392 goto retry_load; 1393 1394 err = -errno; 1395 pr_warn("BTF loading error: %d\n", err); 1396 /* don't print out contents of custom log_buf */ 1397 if (!log_buf && buf[0]) 1398 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1399 } 1400 1401 done: 1402 free(buf); 1403 return libbpf_err(err); 1404 } 1405 1406 int btf__load_into_kernel(struct btf *btf) 1407 { 1408 return btf_load_into_kernel(btf, NULL, 0, 0, 0); 1409 } 1410 1411 int btf__fd(const struct btf *btf) 1412 { 1413 return btf->fd; 1414 } 1415 1416 void btf__set_fd(struct btf *btf, int fd) 1417 { 1418 btf->fd = fd; 1419 } 1420 1421 static const void *btf_strs_data(const struct btf *btf) 1422 { 1423 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1424 } 1425 1426 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1427 { 1428 struct btf_header *hdr = btf->hdr; 1429 struct btf_type *t; 1430 void *data, *p; 1431 __u32 data_sz; 1432 int i; 1433 1434 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1435 if (data) { 1436 *size = btf->raw_size; 1437 return data; 1438 } 1439 1440 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1441 data = calloc(1, data_sz); 1442 if (!data) 1443 return NULL; 1444 p = data; 1445 1446 memcpy(p, hdr, hdr->hdr_len); 1447 if (swap_endian) 1448 btf_bswap_hdr(p); 1449 p += hdr->hdr_len; 1450 1451 memcpy(p, btf->types_data, hdr->type_len); 1452 if (swap_endian) { 1453 for (i = 0; i < btf->nr_types; i++) { 1454 t = p + btf->type_offs[i]; 1455 /* btf_bswap_type_rest() relies on native t->info, so 1456 * we swap base type info after we swapped all the 1457 * additional information 1458 */ 1459 if (btf_bswap_type_rest(t)) 1460 goto err_out; 1461 btf_bswap_type_base(t); 1462 } 1463 } 1464 p += hdr->type_len; 1465 1466 memcpy(p, btf_strs_data(btf), hdr->str_len); 1467 p += hdr->str_len; 1468 1469 *size = data_sz; 1470 return data; 1471 err_out: 1472 free(data); 1473 return NULL; 1474 } 1475 1476 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1477 { 1478 struct btf *btf = (struct btf *)btf_ro; 1479 __u32 data_sz; 1480 void *data; 1481 1482 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1483 if (!data) 1484 return errno = ENOMEM, NULL; 1485 1486 btf->raw_size = data_sz; 1487 if (btf->swapped_endian) 1488 btf->raw_data_swapped = data; 1489 else 1490 btf->raw_data = data; 1491 *size = data_sz; 1492 return data; 1493 } 1494 1495 __attribute__((alias("btf__raw_data"))) 1496 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1497 1498 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1499 { 1500 if (offset < btf->start_str_off) 1501 return btf__str_by_offset(btf->base_btf, offset); 1502 else if (offset - btf->start_str_off < btf->hdr->str_len) 1503 return btf_strs_data(btf) + (offset - btf->start_str_off); 1504 else 1505 return errno = EINVAL, NULL; 1506 } 1507 1508 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1509 { 1510 return btf__str_by_offset(btf, offset); 1511 } 1512 1513 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1514 { 1515 struct bpf_btf_info btf_info; 1516 __u32 len = sizeof(btf_info); 1517 __u32 last_size; 1518 struct btf *btf; 1519 void *ptr; 1520 int err; 1521 1522 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1523 * let's start with a sane default - 4KiB here - and resize it only if 1524 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1525 */ 1526 last_size = 4096; 1527 ptr = malloc(last_size); 1528 if (!ptr) 1529 return ERR_PTR(-ENOMEM); 1530 1531 memset(&btf_info, 0, sizeof(btf_info)); 1532 btf_info.btf = ptr_to_u64(ptr); 1533 btf_info.btf_size = last_size; 1534 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1535 1536 if (!err && btf_info.btf_size > last_size) { 1537 void *temp_ptr; 1538 1539 last_size = btf_info.btf_size; 1540 temp_ptr = realloc(ptr, last_size); 1541 if (!temp_ptr) { 1542 btf = ERR_PTR(-ENOMEM); 1543 goto exit_free; 1544 } 1545 ptr = temp_ptr; 1546 1547 len = sizeof(btf_info); 1548 memset(&btf_info, 0, sizeof(btf_info)); 1549 btf_info.btf = ptr_to_u64(ptr); 1550 btf_info.btf_size = last_size; 1551 1552 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1553 } 1554 1555 if (err || btf_info.btf_size > last_size) { 1556 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1557 goto exit_free; 1558 } 1559 1560 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1561 1562 exit_free: 1563 free(ptr); 1564 return btf; 1565 } 1566 1567 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1568 { 1569 struct btf *btf; 1570 int btf_fd; 1571 1572 btf_fd = bpf_btf_get_fd_by_id(id); 1573 if (btf_fd < 0) 1574 return libbpf_err_ptr(-errno); 1575 1576 btf = btf_get_from_fd(btf_fd, base_btf); 1577 close(btf_fd); 1578 1579 return libbpf_ptr(btf); 1580 } 1581 1582 struct btf *btf__load_from_kernel_by_id(__u32 id) 1583 { 1584 return btf__load_from_kernel_by_id_split(id, NULL); 1585 } 1586 1587 static void btf_invalidate_raw_data(struct btf *btf) 1588 { 1589 if (btf->raw_data) { 1590 free(btf->raw_data); 1591 btf->raw_data = NULL; 1592 } 1593 if (btf->raw_data_swapped) { 1594 free(btf->raw_data_swapped); 1595 btf->raw_data_swapped = NULL; 1596 } 1597 } 1598 1599 /* Ensure BTF is ready to be modified (by splitting into a three memory 1600 * regions for header, types, and strings). Also invalidate cached 1601 * raw_data, if any. 1602 */ 1603 static int btf_ensure_modifiable(struct btf *btf) 1604 { 1605 void *hdr, *types; 1606 struct strset *set = NULL; 1607 int err = -ENOMEM; 1608 1609 if (btf_is_modifiable(btf)) { 1610 /* any BTF modification invalidates raw_data */ 1611 btf_invalidate_raw_data(btf); 1612 return 0; 1613 } 1614 1615 /* split raw data into three memory regions */ 1616 hdr = malloc(btf->hdr->hdr_len); 1617 types = malloc(btf->hdr->type_len); 1618 if (!hdr || !types) 1619 goto err_out; 1620 1621 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1622 memcpy(types, btf->types_data, btf->hdr->type_len); 1623 1624 /* build lookup index for all strings */ 1625 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1626 if (IS_ERR(set)) { 1627 err = PTR_ERR(set); 1628 goto err_out; 1629 } 1630 1631 /* only when everything was successful, update internal state */ 1632 btf->hdr = hdr; 1633 btf->types_data = types; 1634 btf->types_data_cap = btf->hdr->type_len; 1635 btf->strs_data = NULL; 1636 btf->strs_set = set; 1637 /* if BTF was created from scratch, all strings are guaranteed to be 1638 * unique and deduplicated 1639 */ 1640 if (btf->hdr->str_len == 0) 1641 btf->strs_deduped = true; 1642 if (!btf->base_btf && btf->hdr->str_len == 1) 1643 btf->strs_deduped = true; 1644 1645 /* invalidate raw_data representation */ 1646 btf_invalidate_raw_data(btf); 1647 1648 return 0; 1649 1650 err_out: 1651 strset__free(set); 1652 free(hdr); 1653 free(types); 1654 return err; 1655 } 1656 1657 /* Find an offset in BTF string section that corresponds to a given string *s*. 1658 * Returns: 1659 * - >0 offset into string section, if string is found; 1660 * - -ENOENT, if string is not in the string section; 1661 * - <0, on any other error. 1662 */ 1663 int btf__find_str(struct btf *btf, const char *s) 1664 { 1665 int off; 1666 1667 if (btf->base_btf) { 1668 off = btf__find_str(btf->base_btf, s); 1669 if (off != -ENOENT) 1670 return off; 1671 } 1672 1673 /* BTF needs to be in a modifiable state to build string lookup index */ 1674 if (btf_ensure_modifiable(btf)) 1675 return libbpf_err(-ENOMEM); 1676 1677 off = strset__find_str(btf->strs_set, s); 1678 if (off < 0) 1679 return libbpf_err(off); 1680 1681 return btf->start_str_off + off; 1682 } 1683 1684 /* Add a string s to the BTF string section. 1685 * Returns: 1686 * - > 0 offset into string section, on success; 1687 * - < 0, on error. 1688 */ 1689 int btf__add_str(struct btf *btf, const char *s) 1690 { 1691 int off; 1692 1693 if (btf->base_btf) { 1694 off = btf__find_str(btf->base_btf, s); 1695 if (off != -ENOENT) 1696 return off; 1697 } 1698 1699 if (btf_ensure_modifiable(btf)) 1700 return libbpf_err(-ENOMEM); 1701 1702 off = strset__add_str(btf->strs_set, s); 1703 if (off < 0) 1704 return libbpf_err(off); 1705 1706 btf->hdr->str_len = strset__data_size(btf->strs_set); 1707 1708 return btf->start_str_off + off; 1709 } 1710 1711 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1712 { 1713 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1714 btf->hdr->type_len, UINT_MAX, add_sz); 1715 } 1716 1717 static void btf_type_inc_vlen(struct btf_type *t) 1718 { 1719 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1720 } 1721 1722 static int btf_commit_type(struct btf *btf, int data_sz) 1723 { 1724 int err; 1725 1726 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1727 if (err) 1728 return libbpf_err(err); 1729 1730 btf->hdr->type_len += data_sz; 1731 btf->hdr->str_off += data_sz; 1732 btf->nr_types++; 1733 return btf->start_id + btf->nr_types - 1; 1734 } 1735 1736 struct btf_pipe { 1737 const struct btf *src; 1738 struct btf *dst; 1739 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1740 }; 1741 1742 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1743 { 1744 struct btf_pipe *p = ctx; 1745 long mapped_off; 1746 int off, err; 1747 1748 if (!*str_off) /* nothing to do for empty strings */ 1749 return 0; 1750 1751 if (p->str_off_map && 1752 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1753 *str_off = mapped_off; 1754 return 0; 1755 } 1756 1757 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1758 if (off < 0) 1759 return off; 1760 1761 /* Remember string mapping from src to dst. It avoids 1762 * performing expensive string comparisons. 1763 */ 1764 if (p->str_off_map) { 1765 err = hashmap__append(p->str_off_map, *str_off, off); 1766 if (err) 1767 return err; 1768 } 1769 1770 *str_off = off; 1771 return 0; 1772 } 1773 1774 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1775 { 1776 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1777 struct btf_type *t; 1778 int sz, err; 1779 1780 sz = btf_type_size(src_type); 1781 if (sz < 0) 1782 return libbpf_err(sz); 1783 1784 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1785 if (btf_ensure_modifiable(btf)) 1786 return libbpf_err(-ENOMEM); 1787 1788 t = btf_add_type_mem(btf, sz); 1789 if (!t) 1790 return libbpf_err(-ENOMEM); 1791 1792 memcpy(t, src_type, sz); 1793 1794 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1795 if (err) 1796 return libbpf_err(err); 1797 1798 return btf_commit_type(btf, sz); 1799 } 1800 1801 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1802 { 1803 struct btf *btf = ctx; 1804 1805 if (!*type_id) /* nothing to do for VOID references */ 1806 return 0; 1807 1808 /* we haven't updated btf's type count yet, so 1809 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1810 * add to all newly added BTF types 1811 */ 1812 *type_id += btf->start_id + btf->nr_types - 1; 1813 return 0; 1814 } 1815 1816 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1817 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1818 1819 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1820 { 1821 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1822 int data_sz, sz, cnt, i, err, old_strs_len; 1823 __u32 *off; 1824 void *t; 1825 1826 /* appending split BTF isn't supported yet */ 1827 if (src_btf->base_btf) 1828 return libbpf_err(-ENOTSUP); 1829 1830 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1831 if (btf_ensure_modifiable(btf)) 1832 return libbpf_err(-ENOMEM); 1833 1834 /* remember original strings section size if we have to roll back 1835 * partial strings section changes 1836 */ 1837 old_strs_len = btf->hdr->str_len; 1838 1839 data_sz = src_btf->hdr->type_len; 1840 cnt = btf__type_cnt(src_btf) - 1; 1841 1842 /* pre-allocate enough memory for new types */ 1843 t = btf_add_type_mem(btf, data_sz); 1844 if (!t) 1845 return libbpf_err(-ENOMEM); 1846 1847 /* pre-allocate enough memory for type offset index for new types */ 1848 off = btf_add_type_offs_mem(btf, cnt); 1849 if (!off) 1850 return libbpf_err(-ENOMEM); 1851 1852 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1853 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1854 if (IS_ERR(p.str_off_map)) 1855 return libbpf_err(-ENOMEM); 1856 1857 /* bulk copy types data for all types from src_btf */ 1858 memcpy(t, src_btf->types_data, data_sz); 1859 1860 for (i = 0; i < cnt; i++) { 1861 sz = btf_type_size(t); 1862 if (sz < 0) { 1863 /* unlikely, has to be corrupted src_btf */ 1864 err = sz; 1865 goto err_out; 1866 } 1867 1868 /* fill out type ID to type offset mapping for lookups by type ID */ 1869 *off = t - btf->types_data; 1870 1871 /* add, dedup, and remap strings referenced by this BTF type */ 1872 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1873 if (err) 1874 goto err_out; 1875 1876 /* remap all type IDs referenced from this BTF type */ 1877 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1878 if (err) 1879 goto err_out; 1880 1881 /* go to next type data and type offset index entry */ 1882 t += sz; 1883 off++; 1884 } 1885 1886 /* Up until now any of the copied type data was effectively invisible, 1887 * so if we exited early before this point due to error, BTF would be 1888 * effectively unmodified. There would be extra internal memory 1889 * pre-allocated, but it would not be available for querying. But now 1890 * that we've copied and rewritten all the data successfully, we can 1891 * update type count and various internal offsets and sizes to 1892 * "commit" the changes and made them visible to the outside world. 1893 */ 1894 btf->hdr->type_len += data_sz; 1895 btf->hdr->str_off += data_sz; 1896 btf->nr_types += cnt; 1897 1898 hashmap__free(p.str_off_map); 1899 1900 /* return type ID of the first added BTF type */ 1901 return btf->start_id + btf->nr_types - cnt; 1902 err_out: 1903 /* zero out preallocated memory as if it was just allocated with 1904 * libbpf_add_mem() 1905 */ 1906 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1907 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1908 1909 /* and now restore original strings section size; types data size 1910 * wasn't modified, so doesn't need restoring, see big comment above 1911 */ 1912 btf->hdr->str_len = old_strs_len; 1913 1914 hashmap__free(p.str_off_map); 1915 1916 return libbpf_err(err); 1917 } 1918 1919 /* 1920 * Append new BTF_KIND_INT type with: 1921 * - *name* - non-empty, non-NULL type name; 1922 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1923 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1924 * Returns: 1925 * - >0, type ID of newly added BTF type; 1926 * - <0, on error. 1927 */ 1928 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1929 { 1930 struct btf_type *t; 1931 int sz, name_off; 1932 1933 /* non-empty name */ 1934 if (!name || !name[0]) 1935 return libbpf_err(-EINVAL); 1936 /* byte_sz must be power of 2 */ 1937 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1938 return libbpf_err(-EINVAL); 1939 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1940 return libbpf_err(-EINVAL); 1941 1942 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1943 if (btf_ensure_modifiable(btf)) 1944 return libbpf_err(-ENOMEM); 1945 1946 sz = sizeof(struct btf_type) + sizeof(int); 1947 t = btf_add_type_mem(btf, sz); 1948 if (!t) 1949 return libbpf_err(-ENOMEM); 1950 1951 /* if something goes wrong later, we might end up with an extra string, 1952 * but that shouldn't be a problem, because BTF can't be constructed 1953 * completely anyway and will most probably be just discarded 1954 */ 1955 name_off = btf__add_str(btf, name); 1956 if (name_off < 0) 1957 return name_off; 1958 1959 t->name_off = name_off; 1960 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1961 t->size = byte_sz; 1962 /* set INT info, we don't allow setting legacy bit offset/size */ 1963 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1964 1965 return btf_commit_type(btf, sz); 1966 } 1967 1968 /* 1969 * Append new BTF_KIND_FLOAT type with: 1970 * - *name* - non-empty, non-NULL type name; 1971 * - *sz* - size of the type, in bytes; 1972 * Returns: 1973 * - >0, type ID of newly added BTF type; 1974 * - <0, on error. 1975 */ 1976 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1977 { 1978 struct btf_type *t; 1979 int sz, name_off; 1980 1981 /* non-empty name */ 1982 if (!name || !name[0]) 1983 return libbpf_err(-EINVAL); 1984 1985 /* byte_sz must be one of the explicitly allowed values */ 1986 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1987 byte_sz != 16) 1988 return libbpf_err(-EINVAL); 1989 1990 if (btf_ensure_modifiable(btf)) 1991 return libbpf_err(-ENOMEM); 1992 1993 sz = sizeof(struct btf_type); 1994 t = btf_add_type_mem(btf, sz); 1995 if (!t) 1996 return libbpf_err(-ENOMEM); 1997 1998 name_off = btf__add_str(btf, name); 1999 if (name_off < 0) 2000 return name_off; 2001 2002 t->name_off = name_off; 2003 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 2004 t->size = byte_sz; 2005 2006 return btf_commit_type(btf, sz); 2007 } 2008 2009 /* it's completely legal to append BTF types with type IDs pointing forward to 2010 * types that haven't been appended yet, so we only make sure that id looks 2011 * sane, we can't guarantee that ID will always be valid 2012 */ 2013 static int validate_type_id(int id) 2014 { 2015 if (id < 0 || id > BTF_MAX_NR_TYPES) 2016 return -EINVAL; 2017 return 0; 2018 } 2019 2020 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 2021 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 2022 { 2023 struct btf_type *t; 2024 int sz, name_off = 0; 2025 2026 if (validate_type_id(ref_type_id)) 2027 return libbpf_err(-EINVAL); 2028 2029 if (btf_ensure_modifiable(btf)) 2030 return libbpf_err(-ENOMEM); 2031 2032 sz = sizeof(struct btf_type); 2033 t = btf_add_type_mem(btf, sz); 2034 if (!t) 2035 return libbpf_err(-ENOMEM); 2036 2037 if (name && name[0]) { 2038 name_off = btf__add_str(btf, name); 2039 if (name_off < 0) 2040 return name_off; 2041 } 2042 2043 t->name_off = name_off; 2044 t->info = btf_type_info(kind, 0, 0); 2045 t->type = ref_type_id; 2046 2047 return btf_commit_type(btf, sz); 2048 } 2049 2050 /* 2051 * Append new BTF_KIND_PTR type with: 2052 * - *ref_type_id* - referenced type ID, it might not exist yet; 2053 * Returns: 2054 * - >0, type ID of newly added BTF type; 2055 * - <0, on error. 2056 */ 2057 int btf__add_ptr(struct btf *btf, int ref_type_id) 2058 { 2059 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 2060 } 2061 2062 /* 2063 * Append new BTF_KIND_ARRAY type with: 2064 * - *index_type_id* - type ID of the type describing array index; 2065 * - *elem_type_id* - type ID of the type describing array element; 2066 * - *nr_elems* - the size of the array; 2067 * Returns: 2068 * - >0, type ID of newly added BTF type; 2069 * - <0, on error. 2070 */ 2071 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 2072 { 2073 struct btf_type *t; 2074 struct btf_array *a; 2075 int sz; 2076 2077 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 2078 return libbpf_err(-EINVAL); 2079 2080 if (btf_ensure_modifiable(btf)) 2081 return libbpf_err(-ENOMEM); 2082 2083 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 2084 t = btf_add_type_mem(btf, sz); 2085 if (!t) 2086 return libbpf_err(-ENOMEM); 2087 2088 t->name_off = 0; 2089 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 2090 t->size = 0; 2091 2092 a = btf_array(t); 2093 a->type = elem_type_id; 2094 a->index_type = index_type_id; 2095 a->nelems = nr_elems; 2096 2097 return btf_commit_type(btf, sz); 2098 } 2099 2100 /* generic STRUCT/UNION append function */ 2101 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 2102 { 2103 struct btf_type *t; 2104 int sz, name_off = 0; 2105 2106 if (btf_ensure_modifiable(btf)) 2107 return libbpf_err(-ENOMEM); 2108 2109 sz = sizeof(struct btf_type); 2110 t = btf_add_type_mem(btf, sz); 2111 if (!t) 2112 return libbpf_err(-ENOMEM); 2113 2114 if (name && name[0]) { 2115 name_off = btf__add_str(btf, name); 2116 if (name_off < 0) 2117 return name_off; 2118 } 2119 2120 /* start out with vlen=0 and no kflag; this will be adjusted when 2121 * adding each member 2122 */ 2123 t->name_off = name_off; 2124 t->info = btf_type_info(kind, 0, 0); 2125 t->size = bytes_sz; 2126 2127 return btf_commit_type(btf, sz); 2128 } 2129 2130 /* 2131 * Append new BTF_KIND_STRUCT type with: 2132 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2133 * - *byte_sz* - size of the struct, in bytes; 2134 * 2135 * Struct initially has no fields in it. Fields can be added by 2136 * btf__add_field() right after btf__add_struct() succeeds. 2137 * 2138 * Returns: 2139 * - >0, type ID of newly added BTF type; 2140 * - <0, on error. 2141 */ 2142 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2143 { 2144 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2145 } 2146 2147 /* 2148 * Append new BTF_KIND_UNION type with: 2149 * - *name* - name of the union, can be NULL or empty for anonymous union; 2150 * - *byte_sz* - size of the union, in bytes; 2151 * 2152 * Union initially has no fields in it. Fields can be added by 2153 * btf__add_field() right after btf__add_union() succeeds. All fields 2154 * should have *bit_offset* of 0. 2155 * 2156 * Returns: 2157 * - >0, type ID of newly added BTF type; 2158 * - <0, on error. 2159 */ 2160 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2161 { 2162 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2163 } 2164 2165 static struct btf_type *btf_last_type(struct btf *btf) 2166 { 2167 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2168 } 2169 2170 /* 2171 * Append new field for the current STRUCT/UNION type with: 2172 * - *name* - name of the field, can be NULL or empty for anonymous field; 2173 * - *type_id* - type ID for the type describing field type; 2174 * - *bit_offset* - bit offset of the start of the field within struct/union; 2175 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2176 * Returns: 2177 * - 0, on success; 2178 * - <0, on error. 2179 */ 2180 int btf__add_field(struct btf *btf, const char *name, int type_id, 2181 __u32 bit_offset, __u32 bit_size) 2182 { 2183 struct btf_type *t; 2184 struct btf_member *m; 2185 bool is_bitfield; 2186 int sz, name_off = 0; 2187 2188 /* last type should be union/struct */ 2189 if (btf->nr_types == 0) 2190 return libbpf_err(-EINVAL); 2191 t = btf_last_type(btf); 2192 if (!btf_is_composite(t)) 2193 return libbpf_err(-EINVAL); 2194 2195 if (validate_type_id(type_id)) 2196 return libbpf_err(-EINVAL); 2197 /* best-effort bit field offset/size enforcement */ 2198 is_bitfield = bit_size || (bit_offset % 8 != 0); 2199 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2200 return libbpf_err(-EINVAL); 2201 2202 /* only offset 0 is allowed for unions */ 2203 if (btf_is_union(t) && bit_offset) 2204 return libbpf_err(-EINVAL); 2205 2206 /* decompose and invalidate raw data */ 2207 if (btf_ensure_modifiable(btf)) 2208 return libbpf_err(-ENOMEM); 2209 2210 sz = sizeof(struct btf_member); 2211 m = btf_add_type_mem(btf, sz); 2212 if (!m) 2213 return libbpf_err(-ENOMEM); 2214 2215 if (name && name[0]) { 2216 name_off = btf__add_str(btf, name); 2217 if (name_off < 0) 2218 return name_off; 2219 } 2220 2221 m->name_off = name_off; 2222 m->type = type_id; 2223 m->offset = bit_offset | (bit_size << 24); 2224 2225 /* btf_add_type_mem can invalidate t pointer */ 2226 t = btf_last_type(btf); 2227 /* update parent type's vlen and kflag */ 2228 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2229 2230 btf->hdr->type_len += sz; 2231 btf->hdr->str_off += sz; 2232 return 0; 2233 } 2234 2235 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2236 bool is_signed, __u8 kind) 2237 { 2238 struct btf_type *t; 2239 int sz, name_off = 0; 2240 2241 /* byte_sz must be power of 2 */ 2242 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2243 return libbpf_err(-EINVAL); 2244 2245 if (btf_ensure_modifiable(btf)) 2246 return libbpf_err(-ENOMEM); 2247 2248 sz = sizeof(struct btf_type); 2249 t = btf_add_type_mem(btf, sz); 2250 if (!t) 2251 return libbpf_err(-ENOMEM); 2252 2253 if (name && name[0]) { 2254 name_off = btf__add_str(btf, name); 2255 if (name_off < 0) 2256 return name_off; 2257 } 2258 2259 /* start out with vlen=0; it will be adjusted when adding enum values */ 2260 t->name_off = name_off; 2261 t->info = btf_type_info(kind, 0, is_signed); 2262 t->size = byte_sz; 2263 2264 return btf_commit_type(btf, sz); 2265 } 2266 2267 /* 2268 * Append new BTF_KIND_ENUM type with: 2269 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2270 * - *byte_sz* - size of the enum, in bytes. 2271 * 2272 * Enum initially has no enum values in it (and corresponds to enum forward 2273 * declaration). Enumerator values can be added by btf__add_enum_value() 2274 * immediately after btf__add_enum() succeeds. 2275 * 2276 * Returns: 2277 * - >0, type ID of newly added BTF type; 2278 * - <0, on error. 2279 */ 2280 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2281 { 2282 /* 2283 * set the signedness to be unsigned, it will change to signed 2284 * if any later enumerator is negative. 2285 */ 2286 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2287 } 2288 2289 /* 2290 * Append new enum value for the current ENUM type with: 2291 * - *name* - name of the enumerator value, can't be NULL or empty; 2292 * - *value* - integer value corresponding to enum value *name*; 2293 * Returns: 2294 * - 0, on success; 2295 * - <0, on error. 2296 */ 2297 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2298 { 2299 struct btf_type *t; 2300 struct btf_enum *v; 2301 int sz, name_off; 2302 2303 /* last type should be BTF_KIND_ENUM */ 2304 if (btf->nr_types == 0) 2305 return libbpf_err(-EINVAL); 2306 t = btf_last_type(btf); 2307 if (!btf_is_enum(t)) 2308 return libbpf_err(-EINVAL); 2309 2310 /* non-empty name */ 2311 if (!name || !name[0]) 2312 return libbpf_err(-EINVAL); 2313 if (value < INT_MIN || value > UINT_MAX) 2314 return libbpf_err(-E2BIG); 2315 2316 /* decompose and invalidate raw data */ 2317 if (btf_ensure_modifiable(btf)) 2318 return libbpf_err(-ENOMEM); 2319 2320 sz = sizeof(struct btf_enum); 2321 v = btf_add_type_mem(btf, sz); 2322 if (!v) 2323 return libbpf_err(-ENOMEM); 2324 2325 name_off = btf__add_str(btf, name); 2326 if (name_off < 0) 2327 return name_off; 2328 2329 v->name_off = name_off; 2330 v->val = value; 2331 2332 /* update parent type's vlen */ 2333 t = btf_last_type(btf); 2334 btf_type_inc_vlen(t); 2335 2336 /* if negative value, set signedness to signed */ 2337 if (value < 0) 2338 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2339 2340 btf->hdr->type_len += sz; 2341 btf->hdr->str_off += sz; 2342 return 0; 2343 } 2344 2345 /* 2346 * Append new BTF_KIND_ENUM64 type with: 2347 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2348 * - *byte_sz* - size of the enum, in bytes. 2349 * - *is_signed* - whether the enum values are signed or not; 2350 * 2351 * Enum initially has no enum values in it (and corresponds to enum forward 2352 * declaration). Enumerator values can be added by btf__add_enum64_value() 2353 * immediately after btf__add_enum64() succeeds. 2354 * 2355 * Returns: 2356 * - >0, type ID of newly added BTF type; 2357 * - <0, on error. 2358 */ 2359 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2360 bool is_signed) 2361 { 2362 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2363 BTF_KIND_ENUM64); 2364 } 2365 2366 /* 2367 * Append new enum value for the current ENUM64 type with: 2368 * - *name* - name of the enumerator value, can't be NULL or empty; 2369 * - *value* - integer value corresponding to enum value *name*; 2370 * Returns: 2371 * - 0, on success; 2372 * - <0, on error. 2373 */ 2374 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2375 { 2376 struct btf_enum64 *v; 2377 struct btf_type *t; 2378 int sz, name_off; 2379 2380 /* last type should be BTF_KIND_ENUM64 */ 2381 if (btf->nr_types == 0) 2382 return libbpf_err(-EINVAL); 2383 t = btf_last_type(btf); 2384 if (!btf_is_enum64(t)) 2385 return libbpf_err(-EINVAL); 2386 2387 /* non-empty name */ 2388 if (!name || !name[0]) 2389 return libbpf_err(-EINVAL); 2390 2391 /* decompose and invalidate raw data */ 2392 if (btf_ensure_modifiable(btf)) 2393 return libbpf_err(-ENOMEM); 2394 2395 sz = sizeof(struct btf_enum64); 2396 v = btf_add_type_mem(btf, sz); 2397 if (!v) 2398 return libbpf_err(-ENOMEM); 2399 2400 name_off = btf__add_str(btf, name); 2401 if (name_off < 0) 2402 return name_off; 2403 2404 v->name_off = name_off; 2405 v->val_lo32 = (__u32)value; 2406 v->val_hi32 = value >> 32; 2407 2408 /* update parent type's vlen */ 2409 t = btf_last_type(btf); 2410 btf_type_inc_vlen(t); 2411 2412 btf->hdr->type_len += sz; 2413 btf->hdr->str_off += sz; 2414 return 0; 2415 } 2416 2417 /* 2418 * Append new BTF_KIND_FWD type with: 2419 * - *name*, non-empty/non-NULL name; 2420 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2421 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2422 * Returns: 2423 * - >0, type ID of newly added BTF type; 2424 * - <0, on error. 2425 */ 2426 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2427 { 2428 if (!name || !name[0]) 2429 return libbpf_err(-EINVAL); 2430 2431 switch (fwd_kind) { 2432 case BTF_FWD_STRUCT: 2433 case BTF_FWD_UNION: { 2434 struct btf_type *t; 2435 int id; 2436 2437 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2438 if (id <= 0) 2439 return id; 2440 t = btf_type_by_id(btf, id); 2441 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2442 return id; 2443 } 2444 case BTF_FWD_ENUM: 2445 /* enum forward in BTF currently is just an enum with no enum 2446 * values; we also assume a standard 4-byte size for it 2447 */ 2448 return btf__add_enum(btf, name, sizeof(int)); 2449 default: 2450 return libbpf_err(-EINVAL); 2451 } 2452 } 2453 2454 /* 2455 * Append new BTF_KING_TYPEDEF type with: 2456 * - *name*, non-empty/non-NULL name; 2457 * - *ref_type_id* - referenced type ID, it might not exist yet; 2458 * Returns: 2459 * - >0, type ID of newly added BTF type; 2460 * - <0, on error. 2461 */ 2462 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2463 { 2464 if (!name || !name[0]) 2465 return libbpf_err(-EINVAL); 2466 2467 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2468 } 2469 2470 /* 2471 * Append new BTF_KIND_VOLATILE type with: 2472 * - *ref_type_id* - referenced type ID, it might not exist yet; 2473 * Returns: 2474 * - >0, type ID of newly added BTF type; 2475 * - <0, on error. 2476 */ 2477 int btf__add_volatile(struct btf *btf, int ref_type_id) 2478 { 2479 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2480 } 2481 2482 /* 2483 * Append new BTF_KIND_CONST type with: 2484 * - *ref_type_id* - referenced type ID, it might not exist yet; 2485 * Returns: 2486 * - >0, type ID of newly added BTF type; 2487 * - <0, on error. 2488 */ 2489 int btf__add_const(struct btf *btf, int ref_type_id) 2490 { 2491 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2492 } 2493 2494 /* 2495 * Append new BTF_KIND_RESTRICT type with: 2496 * - *ref_type_id* - referenced type ID, it might not exist yet; 2497 * Returns: 2498 * - >0, type ID of newly added BTF type; 2499 * - <0, on error. 2500 */ 2501 int btf__add_restrict(struct btf *btf, int ref_type_id) 2502 { 2503 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2504 } 2505 2506 /* 2507 * Append new BTF_KIND_TYPE_TAG type with: 2508 * - *value*, non-empty/non-NULL tag value; 2509 * - *ref_type_id* - referenced type ID, it might not exist yet; 2510 * Returns: 2511 * - >0, type ID of newly added BTF type; 2512 * - <0, on error. 2513 */ 2514 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2515 { 2516 if (!value || !value[0]) 2517 return libbpf_err(-EINVAL); 2518 2519 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2520 } 2521 2522 /* 2523 * Append new BTF_KIND_FUNC type with: 2524 * - *name*, non-empty/non-NULL name; 2525 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2526 * Returns: 2527 * - >0, type ID of newly added BTF type; 2528 * - <0, on error. 2529 */ 2530 int btf__add_func(struct btf *btf, const char *name, 2531 enum btf_func_linkage linkage, int proto_type_id) 2532 { 2533 int id; 2534 2535 if (!name || !name[0]) 2536 return libbpf_err(-EINVAL); 2537 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2538 linkage != BTF_FUNC_EXTERN) 2539 return libbpf_err(-EINVAL); 2540 2541 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2542 if (id > 0) { 2543 struct btf_type *t = btf_type_by_id(btf, id); 2544 2545 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2546 } 2547 return libbpf_err(id); 2548 } 2549 2550 /* 2551 * Append new BTF_KIND_FUNC_PROTO with: 2552 * - *ret_type_id* - type ID for return result of a function. 2553 * 2554 * Function prototype initially has no arguments, but they can be added by 2555 * btf__add_func_param() one by one, immediately after 2556 * btf__add_func_proto() succeeded. 2557 * 2558 * Returns: 2559 * - >0, type ID of newly added BTF type; 2560 * - <0, on error. 2561 */ 2562 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2563 { 2564 struct btf_type *t; 2565 int sz; 2566 2567 if (validate_type_id(ret_type_id)) 2568 return libbpf_err(-EINVAL); 2569 2570 if (btf_ensure_modifiable(btf)) 2571 return libbpf_err(-ENOMEM); 2572 2573 sz = sizeof(struct btf_type); 2574 t = btf_add_type_mem(btf, sz); 2575 if (!t) 2576 return libbpf_err(-ENOMEM); 2577 2578 /* start out with vlen=0; this will be adjusted when adding enum 2579 * values, if necessary 2580 */ 2581 t->name_off = 0; 2582 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2583 t->type = ret_type_id; 2584 2585 return btf_commit_type(btf, sz); 2586 } 2587 2588 /* 2589 * Append new function parameter for current FUNC_PROTO type with: 2590 * - *name* - parameter name, can be NULL or empty; 2591 * - *type_id* - type ID describing the type of the parameter. 2592 * Returns: 2593 * - 0, on success; 2594 * - <0, on error. 2595 */ 2596 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2597 { 2598 struct btf_type *t; 2599 struct btf_param *p; 2600 int sz, name_off = 0; 2601 2602 if (validate_type_id(type_id)) 2603 return libbpf_err(-EINVAL); 2604 2605 /* last type should be BTF_KIND_FUNC_PROTO */ 2606 if (btf->nr_types == 0) 2607 return libbpf_err(-EINVAL); 2608 t = btf_last_type(btf); 2609 if (!btf_is_func_proto(t)) 2610 return libbpf_err(-EINVAL); 2611 2612 /* decompose and invalidate raw data */ 2613 if (btf_ensure_modifiable(btf)) 2614 return libbpf_err(-ENOMEM); 2615 2616 sz = sizeof(struct btf_param); 2617 p = btf_add_type_mem(btf, sz); 2618 if (!p) 2619 return libbpf_err(-ENOMEM); 2620 2621 if (name && name[0]) { 2622 name_off = btf__add_str(btf, name); 2623 if (name_off < 0) 2624 return name_off; 2625 } 2626 2627 p->name_off = name_off; 2628 p->type = type_id; 2629 2630 /* update parent type's vlen */ 2631 t = btf_last_type(btf); 2632 btf_type_inc_vlen(t); 2633 2634 btf->hdr->type_len += sz; 2635 btf->hdr->str_off += sz; 2636 return 0; 2637 } 2638 2639 /* 2640 * Append new BTF_KIND_VAR type with: 2641 * - *name* - non-empty/non-NULL name; 2642 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2643 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2644 * - *type_id* - type ID of the type describing the type of the variable. 2645 * Returns: 2646 * - >0, type ID of newly added BTF type; 2647 * - <0, on error. 2648 */ 2649 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2650 { 2651 struct btf_type *t; 2652 struct btf_var *v; 2653 int sz, name_off; 2654 2655 /* non-empty name */ 2656 if (!name || !name[0]) 2657 return libbpf_err(-EINVAL); 2658 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2659 linkage != BTF_VAR_GLOBAL_EXTERN) 2660 return libbpf_err(-EINVAL); 2661 if (validate_type_id(type_id)) 2662 return libbpf_err(-EINVAL); 2663 2664 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2665 if (btf_ensure_modifiable(btf)) 2666 return libbpf_err(-ENOMEM); 2667 2668 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2669 t = btf_add_type_mem(btf, sz); 2670 if (!t) 2671 return libbpf_err(-ENOMEM); 2672 2673 name_off = btf__add_str(btf, name); 2674 if (name_off < 0) 2675 return name_off; 2676 2677 t->name_off = name_off; 2678 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2679 t->type = type_id; 2680 2681 v = btf_var(t); 2682 v->linkage = linkage; 2683 2684 return btf_commit_type(btf, sz); 2685 } 2686 2687 /* 2688 * Append new BTF_KIND_DATASEC type with: 2689 * - *name* - non-empty/non-NULL name; 2690 * - *byte_sz* - data section size, in bytes. 2691 * 2692 * Data section is initially empty. Variables info can be added with 2693 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2694 * 2695 * Returns: 2696 * - >0, type ID of newly added BTF type; 2697 * - <0, on error. 2698 */ 2699 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2700 { 2701 struct btf_type *t; 2702 int sz, name_off; 2703 2704 /* non-empty name */ 2705 if (!name || !name[0]) 2706 return libbpf_err(-EINVAL); 2707 2708 if (btf_ensure_modifiable(btf)) 2709 return libbpf_err(-ENOMEM); 2710 2711 sz = sizeof(struct btf_type); 2712 t = btf_add_type_mem(btf, sz); 2713 if (!t) 2714 return libbpf_err(-ENOMEM); 2715 2716 name_off = btf__add_str(btf, name); 2717 if (name_off < 0) 2718 return name_off; 2719 2720 /* start with vlen=0, which will be update as var_secinfos are added */ 2721 t->name_off = name_off; 2722 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2723 t->size = byte_sz; 2724 2725 return btf_commit_type(btf, sz); 2726 } 2727 2728 /* 2729 * Append new data section variable information entry for current DATASEC type: 2730 * - *var_type_id* - type ID, describing type of the variable; 2731 * - *offset* - variable offset within data section, in bytes; 2732 * - *byte_sz* - variable size, in bytes. 2733 * 2734 * Returns: 2735 * - 0, on success; 2736 * - <0, on error. 2737 */ 2738 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2739 { 2740 struct btf_type *t; 2741 struct btf_var_secinfo *v; 2742 int sz; 2743 2744 /* last type should be BTF_KIND_DATASEC */ 2745 if (btf->nr_types == 0) 2746 return libbpf_err(-EINVAL); 2747 t = btf_last_type(btf); 2748 if (!btf_is_datasec(t)) 2749 return libbpf_err(-EINVAL); 2750 2751 if (validate_type_id(var_type_id)) 2752 return libbpf_err(-EINVAL); 2753 2754 /* decompose and invalidate raw data */ 2755 if (btf_ensure_modifiable(btf)) 2756 return libbpf_err(-ENOMEM); 2757 2758 sz = sizeof(struct btf_var_secinfo); 2759 v = btf_add_type_mem(btf, sz); 2760 if (!v) 2761 return libbpf_err(-ENOMEM); 2762 2763 v->type = var_type_id; 2764 v->offset = offset; 2765 v->size = byte_sz; 2766 2767 /* update parent type's vlen */ 2768 t = btf_last_type(btf); 2769 btf_type_inc_vlen(t); 2770 2771 btf->hdr->type_len += sz; 2772 btf->hdr->str_off += sz; 2773 return 0; 2774 } 2775 2776 /* 2777 * Append new BTF_KIND_DECL_TAG type with: 2778 * - *value* - non-empty/non-NULL string; 2779 * - *ref_type_id* - referenced type ID, it might not exist yet; 2780 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2781 * member or function argument index; 2782 * Returns: 2783 * - >0, type ID of newly added BTF type; 2784 * - <0, on error. 2785 */ 2786 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2787 int component_idx) 2788 { 2789 struct btf_type *t; 2790 int sz, value_off; 2791 2792 if (!value || !value[0] || component_idx < -1) 2793 return libbpf_err(-EINVAL); 2794 2795 if (validate_type_id(ref_type_id)) 2796 return libbpf_err(-EINVAL); 2797 2798 if (btf_ensure_modifiable(btf)) 2799 return libbpf_err(-ENOMEM); 2800 2801 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2802 t = btf_add_type_mem(btf, sz); 2803 if (!t) 2804 return libbpf_err(-ENOMEM); 2805 2806 value_off = btf__add_str(btf, value); 2807 if (value_off < 0) 2808 return value_off; 2809 2810 t->name_off = value_off; 2811 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2812 t->type = ref_type_id; 2813 btf_decl_tag(t)->component_idx = component_idx; 2814 2815 return btf_commit_type(btf, sz); 2816 } 2817 2818 struct btf_ext_sec_setup_param { 2819 __u32 off; 2820 __u32 len; 2821 __u32 min_rec_size; 2822 struct btf_ext_info *ext_info; 2823 const char *desc; 2824 }; 2825 2826 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2827 struct btf_ext_sec_setup_param *ext_sec) 2828 { 2829 const struct btf_ext_info_sec *sinfo; 2830 struct btf_ext_info *ext_info; 2831 __u32 info_left, record_size; 2832 size_t sec_cnt = 0; 2833 /* The start of the info sec (including the __u32 record_size). */ 2834 void *info; 2835 2836 if (ext_sec->len == 0) 2837 return 0; 2838 2839 if (ext_sec->off & 0x03) { 2840 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2841 ext_sec->desc); 2842 return -EINVAL; 2843 } 2844 2845 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2846 info_left = ext_sec->len; 2847 2848 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2849 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2850 ext_sec->desc, ext_sec->off, ext_sec->len); 2851 return -EINVAL; 2852 } 2853 2854 /* At least a record size */ 2855 if (info_left < sizeof(__u32)) { 2856 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2857 return -EINVAL; 2858 } 2859 2860 /* The record size needs to meet the minimum standard */ 2861 record_size = *(__u32 *)info; 2862 if (record_size < ext_sec->min_rec_size || 2863 record_size & 0x03) { 2864 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2865 ext_sec->desc, record_size); 2866 return -EINVAL; 2867 } 2868 2869 sinfo = info + sizeof(__u32); 2870 info_left -= sizeof(__u32); 2871 2872 /* If no records, return failure now so .BTF.ext won't be used. */ 2873 if (!info_left) { 2874 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2875 return -EINVAL; 2876 } 2877 2878 while (info_left) { 2879 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2880 __u64 total_record_size; 2881 __u32 num_records; 2882 2883 if (info_left < sec_hdrlen) { 2884 pr_debug("%s section header is not found in .BTF.ext\n", 2885 ext_sec->desc); 2886 return -EINVAL; 2887 } 2888 2889 num_records = sinfo->num_info; 2890 if (num_records == 0) { 2891 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2892 ext_sec->desc); 2893 return -EINVAL; 2894 } 2895 2896 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2897 if (info_left < total_record_size) { 2898 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2899 ext_sec->desc); 2900 return -EINVAL; 2901 } 2902 2903 info_left -= total_record_size; 2904 sinfo = (void *)sinfo + total_record_size; 2905 sec_cnt++; 2906 } 2907 2908 ext_info = ext_sec->ext_info; 2909 ext_info->len = ext_sec->len - sizeof(__u32); 2910 ext_info->rec_size = record_size; 2911 ext_info->info = info + sizeof(__u32); 2912 ext_info->sec_cnt = sec_cnt; 2913 2914 return 0; 2915 } 2916 2917 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2918 { 2919 struct btf_ext_sec_setup_param param = { 2920 .off = btf_ext->hdr->func_info_off, 2921 .len = btf_ext->hdr->func_info_len, 2922 .min_rec_size = sizeof(struct bpf_func_info_min), 2923 .ext_info = &btf_ext->func_info, 2924 .desc = "func_info" 2925 }; 2926 2927 return btf_ext_setup_info(btf_ext, ¶m); 2928 } 2929 2930 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2931 { 2932 struct btf_ext_sec_setup_param param = { 2933 .off = btf_ext->hdr->line_info_off, 2934 .len = btf_ext->hdr->line_info_len, 2935 .min_rec_size = sizeof(struct bpf_line_info_min), 2936 .ext_info = &btf_ext->line_info, 2937 .desc = "line_info", 2938 }; 2939 2940 return btf_ext_setup_info(btf_ext, ¶m); 2941 } 2942 2943 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2944 { 2945 struct btf_ext_sec_setup_param param = { 2946 .off = btf_ext->hdr->core_relo_off, 2947 .len = btf_ext->hdr->core_relo_len, 2948 .min_rec_size = sizeof(struct bpf_core_relo), 2949 .ext_info = &btf_ext->core_relo_info, 2950 .desc = "core_relo", 2951 }; 2952 2953 return btf_ext_setup_info(btf_ext, ¶m); 2954 } 2955 2956 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2957 { 2958 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2959 2960 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2961 data_size < hdr->hdr_len) { 2962 pr_debug("BTF.ext header not found"); 2963 return -EINVAL; 2964 } 2965 2966 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2967 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2968 return -ENOTSUP; 2969 } else if (hdr->magic != BTF_MAGIC) { 2970 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2971 return -EINVAL; 2972 } 2973 2974 if (hdr->version != BTF_VERSION) { 2975 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2976 return -ENOTSUP; 2977 } 2978 2979 if (hdr->flags) { 2980 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2981 return -ENOTSUP; 2982 } 2983 2984 if (data_size == hdr->hdr_len) { 2985 pr_debug("BTF.ext has no data\n"); 2986 return -EINVAL; 2987 } 2988 2989 return 0; 2990 } 2991 2992 void btf_ext__free(struct btf_ext *btf_ext) 2993 { 2994 if (IS_ERR_OR_NULL(btf_ext)) 2995 return; 2996 free(btf_ext->func_info.sec_idxs); 2997 free(btf_ext->line_info.sec_idxs); 2998 free(btf_ext->core_relo_info.sec_idxs); 2999 free(btf_ext->data); 3000 free(btf_ext); 3001 } 3002 3003 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 3004 { 3005 struct btf_ext *btf_ext; 3006 int err; 3007 3008 btf_ext = calloc(1, sizeof(struct btf_ext)); 3009 if (!btf_ext) 3010 return libbpf_err_ptr(-ENOMEM); 3011 3012 btf_ext->data_size = size; 3013 btf_ext->data = malloc(size); 3014 if (!btf_ext->data) { 3015 err = -ENOMEM; 3016 goto done; 3017 } 3018 memcpy(btf_ext->data, data, size); 3019 3020 err = btf_ext_parse_hdr(btf_ext->data, size); 3021 if (err) 3022 goto done; 3023 3024 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 3025 err = -EINVAL; 3026 goto done; 3027 } 3028 3029 err = btf_ext_setup_func_info(btf_ext); 3030 if (err) 3031 goto done; 3032 3033 err = btf_ext_setup_line_info(btf_ext); 3034 if (err) 3035 goto done; 3036 3037 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3038 goto done; /* skip core relos parsing */ 3039 3040 err = btf_ext_setup_core_relos(btf_ext); 3041 if (err) 3042 goto done; 3043 3044 done: 3045 if (err) { 3046 btf_ext__free(btf_ext); 3047 return libbpf_err_ptr(err); 3048 } 3049 3050 return btf_ext; 3051 } 3052 3053 const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size) 3054 { 3055 *size = btf_ext->data_size; 3056 return btf_ext->data; 3057 } 3058 3059 __attribute__((alias("btf_ext__raw_data"))) 3060 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size); 3061 3062 3063 struct btf_dedup; 3064 3065 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 3066 static void btf_dedup_free(struct btf_dedup *d); 3067 static int btf_dedup_prep(struct btf_dedup *d); 3068 static int btf_dedup_strings(struct btf_dedup *d); 3069 static int btf_dedup_prim_types(struct btf_dedup *d); 3070 static int btf_dedup_struct_types(struct btf_dedup *d); 3071 static int btf_dedup_ref_types(struct btf_dedup *d); 3072 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 3073 static int btf_dedup_compact_types(struct btf_dedup *d); 3074 static int btf_dedup_remap_types(struct btf_dedup *d); 3075 3076 /* 3077 * Deduplicate BTF types and strings. 3078 * 3079 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 3080 * section with all BTF type descriptors and string data. It overwrites that 3081 * memory in-place with deduplicated types and strings without any loss of 3082 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 3083 * is provided, all the strings referenced from .BTF.ext section are honored 3084 * and updated to point to the right offsets after deduplication. 3085 * 3086 * If function returns with error, type/string data might be garbled and should 3087 * be discarded. 3088 * 3089 * More verbose and detailed description of both problem btf_dedup is solving, 3090 * as well as solution could be found at: 3091 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 3092 * 3093 * Problem description and justification 3094 * ===================================== 3095 * 3096 * BTF type information is typically emitted either as a result of conversion 3097 * from DWARF to BTF or directly by compiler. In both cases, each compilation 3098 * unit contains information about a subset of all the types that are used 3099 * in an application. These subsets are frequently overlapping and contain a lot 3100 * of duplicated information when later concatenated together into a single 3101 * binary. This algorithm ensures that each unique type is represented by single 3102 * BTF type descriptor, greatly reducing resulting size of BTF data. 3103 * 3104 * Compilation unit isolation and subsequent duplication of data is not the only 3105 * problem. The same type hierarchy (e.g., struct and all the type that struct 3106 * references) in different compilation units can be represented in BTF to 3107 * various degrees of completeness (or, rather, incompleteness) due to 3108 * struct/union forward declarations. 3109 * 3110 * Let's take a look at an example, that we'll use to better understand the 3111 * problem (and solution). Suppose we have two compilation units, each using 3112 * same `struct S`, but each of them having incomplete type information about 3113 * struct's fields: 3114 * 3115 * // CU #1: 3116 * struct S; 3117 * struct A { 3118 * int a; 3119 * struct A* self; 3120 * struct S* parent; 3121 * }; 3122 * struct B; 3123 * struct S { 3124 * struct A* a_ptr; 3125 * struct B* b_ptr; 3126 * }; 3127 * 3128 * // CU #2: 3129 * struct S; 3130 * struct A; 3131 * struct B { 3132 * int b; 3133 * struct B* self; 3134 * struct S* parent; 3135 * }; 3136 * struct S { 3137 * struct A* a_ptr; 3138 * struct B* b_ptr; 3139 * }; 3140 * 3141 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3142 * more), but will know the complete type information about `struct A`. While 3143 * for CU #2, it will know full type information about `struct B`, but will 3144 * only know about forward declaration of `struct A` (in BTF terms, it will 3145 * have `BTF_KIND_FWD` type descriptor with name `B`). 3146 * 3147 * This compilation unit isolation means that it's possible that there is no 3148 * single CU with complete type information describing structs `S`, `A`, and 3149 * `B`. Also, we might get tons of duplicated and redundant type information. 3150 * 3151 * Additional complication we need to keep in mind comes from the fact that 3152 * types, in general, can form graphs containing cycles, not just DAGs. 3153 * 3154 * While algorithm does deduplication, it also merges and resolves type 3155 * information (unless disabled throught `struct btf_opts`), whenever possible. 3156 * E.g., in the example above with two compilation units having partial type 3157 * information for structs `A` and `B`, the output of algorithm will emit 3158 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3159 * (as well as type information for `int` and pointers), as if they were defined 3160 * in a single compilation unit as: 3161 * 3162 * struct A { 3163 * int a; 3164 * struct A* self; 3165 * struct S* parent; 3166 * }; 3167 * struct B { 3168 * int b; 3169 * struct B* self; 3170 * struct S* parent; 3171 * }; 3172 * struct S { 3173 * struct A* a_ptr; 3174 * struct B* b_ptr; 3175 * }; 3176 * 3177 * Algorithm summary 3178 * ================= 3179 * 3180 * Algorithm completes its work in 7 separate passes: 3181 * 3182 * 1. Strings deduplication. 3183 * 2. Primitive types deduplication (int, enum, fwd). 3184 * 3. Struct/union types deduplication. 3185 * 4. Resolve unambiguous forward declarations. 3186 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3187 * protos, and const/volatile/restrict modifiers). 3188 * 6. Types compaction. 3189 * 7. Types remapping. 3190 * 3191 * Algorithm determines canonical type descriptor, which is a single 3192 * representative type for each truly unique type. This canonical type is the 3193 * one that will go into final deduplicated BTF type information. For 3194 * struct/unions, it is also the type that algorithm will merge additional type 3195 * information into (while resolving FWDs), as it discovers it from data in 3196 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3197 * that type is canonical, or to some other type, if that type is equivalent 3198 * and was chosen as canonical representative. This mapping is stored in 3199 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3200 * FWD type got resolved to. 3201 * 3202 * To facilitate fast discovery of canonical types, we also maintain canonical 3203 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3204 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3205 * that match that signature. With sufficiently good choice of type signature 3206 * hashing function, we can limit number of canonical types for each unique type 3207 * signature to a very small number, allowing to find canonical type for any 3208 * duplicated type very quickly. 3209 * 3210 * Struct/union deduplication is the most critical part and algorithm for 3211 * deduplicating structs/unions is described in greater details in comments for 3212 * `btf_dedup_is_equiv` function. 3213 */ 3214 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3215 { 3216 struct btf_dedup *d; 3217 int err; 3218 3219 if (!OPTS_VALID(opts, btf_dedup_opts)) 3220 return libbpf_err(-EINVAL); 3221 3222 d = btf_dedup_new(btf, opts); 3223 if (IS_ERR(d)) { 3224 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3225 return libbpf_err(-EINVAL); 3226 } 3227 3228 if (btf_ensure_modifiable(btf)) { 3229 err = -ENOMEM; 3230 goto done; 3231 } 3232 3233 err = btf_dedup_prep(d); 3234 if (err) { 3235 pr_debug("btf_dedup_prep failed:%d\n", err); 3236 goto done; 3237 } 3238 err = btf_dedup_strings(d); 3239 if (err < 0) { 3240 pr_debug("btf_dedup_strings failed:%d\n", err); 3241 goto done; 3242 } 3243 err = btf_dedup_prim_types(d); 3244 if (err < 0) { 3245 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3246 goto done; 3247 } 3248 err = btf_dedup_struct_types(d); 3249 if (err < 0) { 3250 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3251 goto done; 3252 } 3253 err = btf_dedup_resolve_fwds(d); 3254 if (err < 0) { 3255 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3256 goto done; 3257 } 3258 err = btf_dedup_ref_types(d); 3259 if (err < 0) { 3260 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3261 goto done; 3262 } 3263 err = btf_dedup_compact_types(d); 3264 if (err < 0) { 3265 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3266 goto done; 3267 } 3268 err = btf_dedup_remap_types(d); 3269 if (err < 0) { 3270 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3271 goto done; 3272 } 3273 3274 done: 3275 btf_dedup_free(d); 3276 return libbpf_err(err); 3277 } 3278 3279 #define BTF_UNPROCESSED_ID ((__u32)-1) 3280 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3281 3282 struct btf_dedup { 3283 /* .BTF section to be deduped in-place */ 3284 struct btf *btf; 3285 /* 3286 * Optional .BTF.ext section. When provided, any strings referenced 3287 * from it will be taken into account when deduping strings 3288 */ 3289 struct btf_ext *btf_ext; 3290 /* 3291 * This is a map from any type's signature hash to a list of possible 3292 * canonical representative type candidates. Hash collisions are 3293 * ignored, so even types of various kinds can share same list of 3294 * candidates, which is fine because we rely on subsequent 3295 * btf_xxx_equal() checks to authoritatively verify type equality. 3296 */ 3297 struct hashmap *dedup_table; 3298 /* Canonical types map */ 3299 __u32 *map; 3300 /* Hypothetical mapping, used during type graph equivalence checks */ 3301 __u32 *hypot_map; 3302 __u32 *hypot_list; 3303 size_t hypot_cnt; 3304 size_t hypot_cap; 3305 /* Whether hypothetical mapping, if successful, would need to adjust 3306 * already canonicalized types (due to a new forward declaration to 3307 * concrete type resolution). In such case, during split BTF dedup 3308 * candidate type would still be considered as different, because base 3309 * BTF is considered to be immutable. 3310 */ 3311 bool hypot_adjust_canon; 3312 /* Various option modifying behavior of algorithm */ 3313 struct btf_dedup_opts opts; 3314 /* temporary strings deduplication state */ 3315 struct strset *strs_set; 3316 }; 3317 3318 static long hash_combine(long h, long value) 3319 { 3320 return h * 31 + value; 3321 } 3322 3323 #define for_each_dedup_cand(d, node, hash) \ 3324 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3325 3326 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3327 { 3328 return hashmap__append(d->dedup_table, hash, type_id); 3329 } 3330 3331 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3332 __u32 from_id, __u32 to_id) 3333 { 3334 if (d->hypot_cnt == d->hypot_cap) { 3335 __u32 *new_list; 3336 3337 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3338 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3339 if (!new_list) 3340 return -ENOMEM; 3341 d->hypot_list = new_list; 3342 } 3343 d->hypot_list[d->hypot_cnt++] = from_id; 3344 d->hypot_map[from_id] = to_id; 3345 return 0; 3346 } 3347 3348 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3349 { 3350 int i; 3351 3352 for (i = 0; i < d->hypot_cnt; i++) 3353 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3354 d->hypot_cnt = 0; 3355 d->hypot_adjust_canon = false; 3356 } 3357 3358 static void btf_dedup_free(struct btf_dedup *d) 3359 { 3360 hashmap__free(d->dedup_table); 3361 d->dedup_table = NULL; 3362 3363 free(d->map); 3364 d->map = NULL; 3365 3366 free(d->hypot_map); 3367 d->hypot_map = NULL; 3368 3369 free(d->hypot_list); 3370 d->hypot_list = NULL; 3371 3372 free(d); 3373 } 3374 3375 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3376 { 3377 return key; 3378 } 3379 3380 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3381 { 3382 return 0; 3383 } 3384 3385 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3386 { 3387 return k1 == k2; 3388 } 3389 3390 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3391 { 3392 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3393 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3394 int i, err = 0, type_cnt; 3395 3396 if (!d) 3397 return ERR_PTR(-ENOMEM); 3398 3399 if (OPTS_GET(opts, force_collisions, false)) 3400 hash_fn = btf_dedup_collision_hash_fn; 3401 3402 d->btf = btf; 3403 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3404 3405 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3406 if (IS_ERR(d->dedup_table)) { 3407 err = PTR_ERR(d->dedup_table); 3408 d->dedup_table = NULL; 3409 goto done; 3410 } 3411 3412 type_cnt = btf__type_cnt(btf); 3413 d->map = malloc(sizeof(__u32) * type_cnt); 3414 if (!d->map) { 3415 err = -ENOMEM; 3416 goto done; 3417 } 3418 /* special BTF "void" type is made canonical immediately */ 3419 d->map[0] = 0; 3420 for (i = 1; i < type_cnt; i++) { 3421 struct btf_type *t = btf_type_by_id(d->btf, i); 3422 3423 /* VAR and DATASEC are never deduped and are self-canonical */ 3424 if (btf_is_var(t) || btf_is_datasec(t)) 3425 d->map[i] = i; 3426 else 3427 d->map[i] = BTF_UNPROCESSED_ID; 3428 } 3429 3430 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3431 if (!d->hypot_map) { 3432 err = -ENOMEM; 3433 goto done; 3434 } 3435 for (i = 0; i < type_cnt; i++) 3436 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3437 3438 done: 3439 if (err) { 3440 btf_dedup_free(d); 3441 return ERR_PTR(err); 3442 } 3443 3444 return d; 3445 } 3446 3447 /* 3448 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3449 * string and pass pointer to it to a provided callback `fn`. 3450 */ 3451 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3452 { 3453 int i, r; 3454 3455 for (i = 0; i < d->btf->nr_types; i++) { 3456 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3457 3458 r = btf_type_visit_str_offs(t, fn, ctx); 3459 if (r) 3460 return r; 3461 } 3462 3463 if (!d->btf_ext) 3464 return 0; 3465 3466 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3467 if (r) 3468 return r; 3469 3470 return 0; 3471 } 3472 3473 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3474 { 3475 struct btf_dedup *d = ctx; 3476 __u32 str_off = *str_off_ptr; 3477 const char *s; 3478 int off, err; 3479 3480 /* don't touch empty string or string in main BTF */ 3481 if (str_off == 0 || str_off < d->btf->start_str_off) 3482 return 0; 3483 3484 s = btf__str_by_offset(d->btf, str_off); 3485 if (d->btf->base_btf) { 3486 err = btf__find_str(d->btf->base_btf, s); 3487 if (err >= 0) { 3488 *str_off_ptr = err; 3489 return 0; 3490 } 3491 if (err != -ENOENT) 3492 return err; 3493 } 3494 3495 off = strset__add_str(d->strs_set, s); 3496 if (off < 0) 3497 return off; 3498 3499 *str_off_ptr = d->btf->start_str_off + off; 3500 return 0; 3501 } 3502 3503 /* 3504 * Dedup string and filter out those that are not referenced from either .BTF 3505 * or .BTF.ext (if provided) sections. 3506 * 3507 * This is done by building index of all strings in BTF's string section, 3508 * then iterating over all entities that can reference strings (e.g., type 3509 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3510 * strings as used. After that all used strings are deduped and compacted into 3511 * sequential blob of memory and new offsets are calculated. Then all the string 3512 * references are iterated again and rewritten using new offsets. 3513 */ 3514 static int btf_dedup_strings(struct btf_dedup *d) 3515 { 3516 int err; 3517 3518 if (d->btf->strs_deduped) 3519 return 0; 3520 3521 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3522 if (IS_ERR(d->strs_set)) { 3523 err = PTR_ERR(d->strs_set); 3524 goto err_out; 3525 } 3526 3527 if (!d->btf->base_btf) { 3528 /* insert empty string; we won't be looking it up during strings 3529 * dedup, but it's good to have it for generic BTF string lookups 3530 */ 3531 err = strset__add_str(d->strs_set, ""); 3532 if (err < 0) 3533 goto err_out; 3534 } 3535 3536 /* remap string offsets */ 3537 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3538 if (err) 3539 goto err_out; 3540 3541 /* replace BTF string data and hash with deduped ones */ 3542 strset__free(d->btf->strs_set); 3543 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3544 d->btf->strs_set = d->strs_set; 3545 d->strs_set = NULL; 3546 d->btf->strs_deduped = true; 3547 return 0; 3548 3549 err_out: 3550 strset__free(d->strs_set); 3551 d->strs_set = NULL; 3552 3553 return err; 3554 } 3555 3556 static long btf_hash_common(struct btf_type *t) 3557 { 3558 long h; 3559 3560 h = hash_combine(0, t->name_off); 3561 h = hash_combine(h, t->info); 3562 h = hash_combine(h, t->size); 3563 return h; 3564 } 3565 3566 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3567 { 3568 return t1->name_off == t2->name_off && 3569 t1->info == t2->info && 3570 t1->size == t2->size; 3571 } 3572 3573 /* Calculate type signature hash of INT or TAG. */ 3574 static long btf_hash_int_decl_tag(struct btf_type *t) 3575 { 3576 __u32 info = *(__u32 *)(t + 1); 3577 long h; 3578 3579 h = btf_hash_common(t); 3580 h = hash_combine(h, info); 3581 return h; 3582 } 3583 3584 /* Check structural equality of two INTs or TAGs. */ 3585 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3586 { 3587 __u32 info1, info2; 3588 3589 if (!btf_equal_common(t1, t2)) 3590 return false; 3591 info1 = *(__u32 *)(t1 + 1); 3592 info2 = *(__u32 *)(t2 + 1); 3593 return info1 == info2; 3594 } 3595 3596 /* Calculate type signature hash of ENUM/ENUM64. */ 3597 static long btf_hash_enum(struct btf_type *t) 3598 { 3599 long h; 3600 3601 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3602 h = hash_combine(0, t->name_off); 3603 return h; 3604 } 3605 3606 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3607 { 3608 const struct btf_enum *m1, *m2; 3609 __u16 vlen; 3610 int i; 3611 3612 vlen = btf_vlen(t1); 3613 m1 = btf_enum(t1); 3614 m2 = btf_enum(t2); 3615 for (i = 0; i < vlen; i++) { 3616 if (m1->name_off != m2->name_off || m1->val != m2->val) 3617 return false; 3618 m1++; 3619 m2++; 3620 } 3621 return true; 3622 } 3623 3624 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3625 { 3626 const struct btf_enum64 *m1, *m2; 3627 __u16 vlen; 3628 int i; 3629 3630 vlen = btf_vlen(t1); 3631 m1 = btf_enum64(t1); 3632 m2 = btf_enum64(t2); 3633 for (i = 0; i < vlen; i++) { 3634 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3635 m1->val_hi32 != m2->val_hi32) 3636 return false; 3637 m1++; 3638 m2++; 3639 } 3640 return true; 3641 } 3642 3643 /* Check structural equality of two ENUMs or ENUM64s. */ 3644 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3645 { 3646 if (!btf_equal_common(t1, t2)) 3647 return false; 3648 3649 /* t1 & t2 kinds are identical because of btf_equal_common */ 3650 if (btf_kind(t1) == BTF_KIND_ENUM) 3651 return btf_equal_enum_members(t1, t2); 3652 else 3653 return btf_equal_enum64_members(t1, t2); 3654 } 3655 3656 static inline bool btf_is_enum_fwd(struct btf_type *t) 3657 { 3658 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3659 } 3660 3661 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3662 { 3663 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3664 return btf_equal_enum(t1, t2); 3665 /* At this point either t1 or t2 or both are forward declarations, thus: 3666 * - skip comparing vlen because it is zero for forward declarations; 3667 * - skip comparing size to allow enum forward declarations 3668 * to be compatible with enum64 full declarations; 3669 * - skip comparing kind for the same reason. 3670 */ 3671 return t1->name_off == t2->name_off && 3672 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3673 } 3674 3675 /* 3676 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3677 * as referenced type IDs equivalence is established separately during type 3678 * graph equivalence check algorithm. 3679 */ 3680 static long btf_hash_struct(struct btf_type *t) 3681 { 3682 const struct btf_member *member = btf_members(t); 3683 __u32 vlen = btf_vlen(t); 3684 long h = btf_hash_common(t); 3685 int i; 3686 3687 for (i = 0; i < vlen; i++) { 3688 h = hash_combine(h, member->name_off); 3689 h = hash_combine(h, member->offset); 3690 /* no hashing of referenced type ID, it can be unresolved yet */ 3691 member++; 3692 } 3693 return h; 3694 } 3695 3696 /* 3697 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3698 * type IDs. This check is performed during type graph equivalence check and 3699 * referenced types equivalence is checked separately. 3700 */ 3701 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3702 { 3703 const struct btf_member *m1, *m2; 3704 __u16 vlen; 3705 int i; 3706 3707 if (!btf_equal_common(t1, t2)) 3708 return false; 3709 3710 vlen = btf_vlen(t1); 3711 m1 = btf_members(t1); 3712 m2 = btf_members(t2); 3713 for (i = 0; i < vlen; i++) { 3714 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3715 return false; 3716 m1++; 3717 m2++; 3718 } 3719 return true; 3720 } 3721 3722 /* 3723 * Calculate type signature hash of ARRAY, including referenced type IDs, 3724 * under assumption that they were already resolved to canonical type IDs and 3725 * are not going to change. 3726 */ 3727 static long btf_hash_array(struct btf_type *t) 3728 { 3729 const struct btf_array *info = btf_array(t); 3730 long h = btf_hash_common(t); 3731 3732 h = hash_combine(h, info->type); 3733 h = hash_combine(h, info->index_type); 3734 h = hash_combine(h, info->nelems); 3735 return h; 3736 } 3737 3738 /* 3739 * Check exact equality of two ARRAYs, taking into account referenced 3740 * type IDs, under assumption that they were already resolved to canonical 3741 * type IDs and are not going to change. 3742 * This function is called during reference types deduplication to compare 3743 * ARRAY to potential canonical representative. 3744 */ 3745 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3746 { 3747 const struct btf_array *info1, *info2; 3748 3749 if (!btf_equal_common(t1, t2)) 3750 return false; 3751 3752 info1 = btf_array(t1); 3753 info2 = btf_array(t2); 3754 return info1->type == info2->type && 3755 info1->index_type == info2->index_type && 3756 info1->nelems == info2->nelems; 3757 } 3758 3759 /* 3760 * Check structural compatibility of two ARRAYs, ignoring referenced type 3761 * IDs. This check is performed during type graph equivalence check and 3762 * referenced types equivalence is checked separately. 3763 */ 3764 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3765 { 3766 if (!btf_equal_common(t1, t2)) 3767 return false; 3768 3769 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3770 } 3771 3772 /* 3773 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3774 * under assumption that they were already resolved to canonical type IDs and 3775 * are not going to change. 3776 */ 3777 static long btf_hash_fnproto(struct btf_type *t) 3778 { 3779 const struct btf_param *member = btf_params(t); 3780 __u16 vlen = btf_vlen(t); 3781 long h = btf_hash_common(t); 3782 int i; 3783 3784 for (i = 0; i < vlen; i++) { 3785 h = hash_combine(h, member->name_off); 3786 h = hash_combine(h, member->type); 3787 member++; 3788 } 3789 return h; 3790 } 3791 3792 /* 3793 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3794 * type IDs, under assumption that they were already resolved to canonical 3795 * type IDs and are not going to change. 3796 * This function is called during reference types deduplication to compare 3797 * FUNC_PROTO to potential canonical representative. 3798 */ 3799 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3800 { 3801 const struct btf_param *m1, *m2; 3802 __u16 vlen; 3803 int i; 3804 3805 if (!btf_equal_common(t1, t2)) 3806 return false; 3807 3808 vlen = btf_vlen(t1); 3809 m1 = btf_params(t1); 3810 m2 = btf_params(t2); 3811 for (i = 0; i < vlen; i++) { 3812 if (m1->name_off != m2->name_off || m1->type != m2->type) 3813 return false; 3814 m1++; 3815 m2++; 3816 } 3817 return true; 3818 } 3819 3820 /* 3821 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3822 * IDs. This check is performed during type graph equivalence check and 3823 * referenced types equivalence is checked separately. 3824 */ 3825 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3826 { 3827 const struct btf_param *m1, *m2; 3828 __u16 vlen; 3829 int i; 3830 3831 /* skip return type ID */ 3832 if (t1->name_off != t2->name_off || t1->info != t2->info) 3833 return false; 3834 3835 vlen = btf_vlen(t1); 3836 m1 = btf_params(t1); 3837 m2 = btf_params(t2); 3838 for (i = 0; i < vlen; i++) { 3839 if (m1->name_off != m2->name_off) 3840 return false; 3841 m1++; 3842 m2++; 3843 } 3844 return true; 3845 } 3846 3847 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3848 * types and initializing the rest of the state (canonical type mapping) for 3849 * the fixed base BTF part. 3850 */ 3851 static int btf_dedup_prep(struct btf_dedup *d) 3852 { 3853 struct btf_type *t; 3854 int type_id; 3855 long h; 3856 3857 if (!d->btf->base_btf) 3858 return 0; 3859 3860 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3861 t = btf_type_by_id(d->btf, type_id); 3862 3863 /* all base BTF types are self-canonical by definition */ 3864 d->map[type_id] = type_id; 3865 3866 switch (btf_kind(t)) { 3867 case BTF_KIND_VAR: 3868 case BTF_KIND_DATASEC: 3869 /* VAR and DATASEC are never hash/deduplicated */ 3870 continue; 3871 case BTF_KIND_CONST: 3872 case BTF_KIND_VOLATILE: 3873 case BTF_KIND_RESTRICT: 3874 case BTF_KIND_PTR: 3875 case BTF_KIND_FWD: 3876 case BTF_KIND_TYPEDEF: 3877 case BTF_KIND_FUNC: 3878 case BTF_KIND_FLOAT: 3879 case BTF_KIND_TYPE_TAG: 3880 h = btf_hash_common(t); 3881 break; 3882 case BTF_KIND_INT: 3883 case BTF_KIND_DECL_TAG: 3884 h = btf_hash_int_decl_tag(t); 3885 break; 3886 case BTF_KIND_ENUM: 3887 case BTF_KIND_ENUM64: 3888 h = btf_hash_enum(t); 3889 break; 3890 case BTF_KIND_STRUCT: 3891 case BTF_KIND_UNION: 3892 h = btf_hash_struct(t); 3893 break; 3894 case BTF_KIND_ARRAY: 3895 h = btf_hash_array(t); 3896 break; 3897 case BTF_KIND_FUNC_PROTO: 3898 h = btf_hash_fnproto(t); 3899 break; 3900 default: 3901 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3902 return -EINVAL; 3903 } 3904 if (btf_dedup_table_add(d, h, type_id)) 3905 return -ENOMEM; 3906 } 3907 3908 return 0; 3909 } 3910 3911 /* 3912 * Deduplicate primitive types, that can't reference other types, by calculating 3913 * their type signature hash and comparing them with any possible canonical 3914 * candidate. If no canonical candidate matches, type itself is marked as 3915 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3916 */ 3917 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3918 { 3919 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3920 struct hashmap_entry *hash_entry; 3921 struct btf_type *cand; 3922 /* if we don't find equivalent type, then we are canonical */ 3923 __u32 new_id = type_id; 3924 __u32 cand_id; 3925 long h; 3926 3927 switch (btf_kind(t)) { 3928 case BTF_KIND_CONST: 3929 case BTF_KIND_VOLATILE: 3930 case BTF_KIND_RESTRICT: 3931 case BTF_KIND_PTR: 3932 case BTF_KIND_TYPEDEF: 3933 case BTF_KIND_ARRAY: 3934 case BTF_KIND_STRUCT: 3935 case BTF_KIND_UNION: 3936 case BTF_KIND_FUNC: 3937 case BTF_KIND_FUNC_PROTO: 3938 case BTF_KIND_VAR: 3939 case BTF_KIND_DATASEC: 3940 case BTF_KIND_DECL_TAG: 3941 case BTF_KIND_TYPE_TAG: 3942 return 0; 3943 3944 case BTF_KIND_INT: 3945 h = btf_hash_int_decl_tag(t); 3946 for_each_dedup_cand(d, hash_entry, h) { 3947 cand_id = hash_entry->value; 3948 cand = btf_type_by_id(d->btf, cand_id); 3949 if (btf_equal_int_tag(t, cand)) { 3950 new_id = cand_id; 3951 break; 3952 } 3953 } 3954 break; 3955 3956 case BTF_KIND_ENUM: 3957 case BTF_KIND_ENUM64: 3958 h = btf_hash_enum(t); 3959 for_each_dedup_cand(d, hash_entry, h) { 3960 cand_id = hash_entry->value; 3961 cand = btf_type_by_id(d->btf, cand_id); 3962 if (btf_equal_enum(t, cand)) { 3963 new_id = cand_id; 3964 break; 3965 } 3966 if (btf_compat_enum(t, cand)) { 3967 if (btf_is_enum_fwd(t)) { 3968 /* resolve fwd to full enum */ 3969 new_id = cand_id; 3970 break; 3971 } 3972 /* resolve canonical enum fwd to full enum */ 3973 d->map[cand_id] = type_id; 3974 } 3975 } 3976 break; 3977 3978 case BTF_KIND_FWD: 3979 case BTF_KIND_FLOAT: 3980 h = btf_hash_common(t); 3981 for_each_dedup_cand(d, hash_entry, h) { 3982 cand_id = hash_entry->value; 3983 cand = btf_type_by_id(d->btf, cand_id); 3984 if (btf_equal_common(t, cand)) { 3985 new_id = cand_id; 3986 break; 3987 } 3988 } 3989 break; 3990 3991 default: 3992 return -EINVAL; 3993 } 3994 3995 d->map[type_id] = new_id; 3996 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3997 return -ENOMEM; 3998 3999 return 0; 4000 } 4001 4002 static int btf_dedup_prim_types(struct btf_dedup *d) 4003 { 4004 int i, err; 4005 4006 for (i = 0; i < d->btf->nr_types; i++) { 4007 err = btf_dedup_prim_type(d, d->btf->start_id + i); 4008 if (err) 4009 return err; 4010 } 4011 return 0; 4012 } 4013 4014 /* 4015 * Check whether type is already mapped into canonical one (could be to itself). 4016 */ 4017 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 4018 { 4019 return d->map[type_id] <= BTF_MAX_NR_TYPES; 4020 } 4021 4022 /* 4023 * Resolve type ID into its canonical type ID, if any; otherwise return original 4024 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 4025 * STRUCT/UNION link and resolve it into canonical type ID as well. 4026 */ 4027 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 4028 { 4029 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4030 type_id = d->map[type_id]; 4031 return type_id; 4032 } 4033 4034 /* 4035 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 4036 * type ID. 4037 */ 4038 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 4039 { 4040 __u32 orig_type_id = type_id; 4041 4042 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4043 return type_id; 4044 4045 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4046 type_id = d->map[type_id]; 4047 4048 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4049 return type_id; 4050 4051 return orig_type_id; 4052 } 4053 4054 4055 static inline __u16 btf_fwd_kind(struct btf_type *t) 4056 { 4057 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 4058 } 4059 4060 /* Check if given two types are identical ARRAY definitions */ 4061 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 4062 { 4063 struct btf_type *t1, *t2; 4064 4065 t1 = btf_type_by_id(d->btf, id1); 4066 t2 = btf_type_by_id(d->btf, id2); 4067 if (!btf_is_array(t1) || !btf_is_array(t2)) 4068 return false; 4069 4070 return btf_equal_array(t1, t2); 4071 } 4072 4073 /* Check if given two types are identical STRUCT/UNION definitions */ 4074 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 4075 { 4076 const struct btf_member *m1, *m2; 4077 struct btf_type *t1, *t2; 4078 int n, i; 4079 4080 t1 = btf_type_by_id(d->btf, id1); 4081 t2 = btf_type_by_id(d->btf, id2); 4082 4083 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 4084 return false; 4085 4086 if (!btf_shallow_equal_struct(t1, t2)) 4087 return false; 4088 4089 m1 = btf_members(t1); 4090 m2 = btf_members(t2); 4091 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 4092 if (m1->type != m2->type && 4093 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 4094 !btf_dedup_identical_structs(d, m1->type, m2->type)) 4095 return false; 4096 } 4097 return true; 4098 } 4099 4100 /* 4101 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 4102 * call it "candidate graph" in this description for brevity) to a type graph 4103 * formed by (potential) canonical struct/union ("canonical graph" for brevity 4104 * here, though keep in mind that not all types in canonical graph are 4105 * necessarily canonical representatives themselves, some of them might be 4106 * duplicates or its uniqueness might not have been established yet). 4107 * Returns: 4108 * - >0, if type graphs are equivalent; 4109 * - 0, if not equivalent; 4110 * - <0, on error. 4111 * 4112 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 4113 * equivalence of BTF types at each step. If at any point BTF types in candidate 4114 * and canonical graphs are not compatible structurally, whole graphs are 4115 * incompatible. If types are structurally equivalent (i.e., all information 4116 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 4117 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 4118 * If a type references other types, then those referenced types are checked 4119 * for equivalence recursively. 4120 * 4121 * During DFS traversal, if we find that for current `canon_id` type we 4122 * already have some mapping in hypothetical map, we check for two possible 4123 * situations: 4124 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 4125 * happen when type graphs have cycles. In this case we assume those two 4126 * types are equivalent. 4127 * - `canon_id` is mapped to different type. This is contradiction in our 4128 * hypothetical mapping, because same graph in canonical graph corresponds 4129 * to two different types in candidate graph, which for equivalent type 4130 * graphs shouldn't happen. This condition terminates equivalence check 4131 * with negative result. 4132 * 4133 * If type graphs traversal exhausts types to check and find no contradiction, 4134 * then type graphs are equivalent. 4135 * 4136 * When checking types for equivalence, there is one special case: FWD types. 4137 * If FWD type resolution is allowed and one of the types (either from canonical 4138 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 4139 * flag) and their names match, hypothetical mapping is updated to point from 4140 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 4141 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 4142 * 4143 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 4144 * if there are two exactly named (or anonymous) structs/unions that are 4145 * compatible structurally, one of which has FWD field, while other is concrete 4146 * STRUCT/UNION, but according to C sources they are different structs/unions 4147 * that are referencing different types with the same name. This is extremely 4148 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 4149 * this logic is causing problems. 4150 * 4151 * Doing FWD resolution means that both candidate and/or canonical graphs can 4152 * consists of portions of the graph that come from multiple compilation units. 4153 * This is due to the fact that types within single compilation unit are always 4154 * deduplicated and FWDs are already resolved, if referenced struct/union 4155 * definiton is available. So, if we had unresolved FWD and found corresponding 4156 * STRUCT/UNION, they will be from different compilation units. This 4157 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 4158 * type graph will likely have at least two different BTF types that describe 4159 * same type (e.g., most probably there will be two different BTF types for the 4160 * same 'int' primitive type) and could even have "overlapping" parts of type 4161 * graph that describe same subset of types. 4162 * 4163 * This in turn means that our assumption that each type in canonical graph 4164 * must correspond to exactly one type in candidate graph might not hold 4165 * anymore and will make it harder to detect contradictions using hypothetical 4166 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4167 * resolution only in canonical graph. FWDs in candidate graphs are never 4168 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4169 * that can occur: 4170 * - Both types in canonical and candidate graphs are FWDs. If they are 4171 * structurally equivalent, then they can either be both resolved to the 4172 * same STRUCT/UNION or not resolved at all. In both cases they are 4173 * equivalent and there is no need to resolve FWD on candidate side. 4174 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4175 * so nothing to resolve as well, algorithm will check equivalence anyway. 4176 * - Type in canonical graph is FWD, while type in candidate is concrete 4177 * STRUCT/UNION. In this case candidate graph comes from single compilation 4178 * unit, so there is exactly one BTF type for each unique C type. After 4179 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4180 * in canonical graph mapping to single BTF type in candidate graph, but 4181 * because hypothetical mapping maps from canonical to candidate types, it's 4182 * alright, and we still maintain the property of having single `canon_id` 4183 * mapping to single `cand_id` (there could be two different `canon_id` 4184 * mapped to the same `cand_id`, but it's not contradictory). 4185 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4186 * graph is FWD. In this case we are just going to check compatibility of 4187 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4188 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4189 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4190 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4191 * canonical graph. 4192 */ 4193 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4194 __u32 canon_id) 4195 { 4196 struct btf_type *cand_type; 4197 struct btf_type *canon_type; 4198 __u32 hypot_type_id; 4199 __u16 cand_kind; 4200 __u16 canon_kind; 4201 int i, eq; 4202 4203 /* if both resolve to the same canonical, they must be equivalent */ 4204 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4205 return 1; 4206 4207 canon_id = resolve_fwd_id(d, canon_id); 4208 4209 hypot_type_id = d->hypot_map[canon_id]; 4210 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4211 if (hypot_type_id == cand_id) 4212 return 1; 4213 /* In some cases compiler will generate different DWARF types 4214 * for *identical* array type definitions and use them for 4215 * different fields within the *same* struct. This breaks type 4216 * equivalence check, which makes an assumption that candidate 4217 * types sub-graph has a consistent and deduped-by-compiler 4218 * types within a single CU. So work around that by explicitly 4219 * allowing identical array types here. 4220 */ 4221 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4222 return 1; 4223 /* It turns out that similar situation can happen with 4224 * struct/union sometimes, sigh... Handle the case where 4225 * structs/unions are exactly the same, down to the referenced 4226 * type IDs. Anything more complicated (e.g., if referenced 4227 * types are different, but equivalent) is *way more* 4228 * complicated and requires a many-to-many equivalence mapping. 4229 */ 4230 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4231 return 1; 4232 return 0; 4233 } 4234 4235 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4236 return -ENOMEM; 4237 4238 cand_type = btf_type_by_id(d->btf, cand_id); 4239 canon_type = btf_type_by_id(d->btf, canon_id); 4240 cand_kind = btf_kind(cand_type); 4241 canon_kind = btf_kind(canon_type); 4242 4243 if (cand_type->name_off != canon_type->name_off) 4244 return 0; 4245 4246 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4247 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4248 && cand_kind != canon_kind) { 4249 __u16 real_kind; 4250 __u16 fwd_kind; 4251 4252 if (cand_kind == BTF_KIND_FWD) { 4253 real_kind = canon_kind; 4254 fwd_kind = btf_fwd_kind(cand_type); 4255 } else { 4256 real_kind = cand_kind; 4257 fwd_kind = btf_fwd_kind(canon_type); 4258 /* we'd need to resolve base FWD to STRUCT/UNION */ 4259 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4260 d->hypot_adjust_canon = true; 4261 } 4262 return fwd_kind == real_kind; 4263 } 4264 4265 if (cand_kind != canon_kind) 4266 return 0; 4267 4268 switch (cand_kind) { 4269 case BTF_KIND_INT: 4270 return btf_equal_int_tag(cand_type, canon_type); 4271 4272 case BTF_KIND_ENUM: 4273 case BTF_KIND_ENUM64: 4274 return btf_compat_enum(cand_type, canon_type); 4275 4276 case BTF_KIND_FWD: 4277 case BTF_KIND_FLOAT: 4278 return btf_equal_common(cand_type, canon_type); 4279 4280 case BTF_KIND_CONST: 4281 case BTF_KIND_VOLATILE: 4282 case BTF_KIND_RESTRICT: 4283 case BTF_KIND_PTR: 4284 case BTF_KIND_TYPEDEF: 4285 case BTF_KIND_FUNC: 4286 case BTF_KIND_TYPE_TAG: 4287 if (cand_type->info != canon_type->info) 4288 return 0; 4289 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4290 4291 case BTF_KIND_ARRAY: { 4292 const struct btf_array *cand_arr, *canon_arr; 4293 4294 if (!btf_compat_array(cand_type, canon_type)) 4295 return 0; 4296 cand_arr = btf_array(cand_type); 4297 canon_arr = btf_array(canon_type); 4298 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4299 if (eq <= 0) 4300 return eq; 4301 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4302 } 4303 4304 case BTF_KIND_STRUCT: 4305 case BTF_KIND_UNION: { 4306 const struct btf_member *cand_m, *canon_m; 4307 __u16 vlen; 4308 4309 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4310 return 0; 4311 vlen = btf_vlen(cand_type); 4312 cand_m = btf_members(cand_type); 4313 canon_m = btf_members(canon_type); 4314 for (i = 0; i < vlen; i++) { 4315 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4316 if (eq <= 0) 4317 return eq; 4318 cand_m++; 4319 canon_m++; 4320 } 4321 4322 return 1; 4323 } 4324 4325 case BTF_KIND_FUNC_PROTO: { 4326 const struct btf_param *cand_p, *canon_p; 4327 __u16 vlen; 4328 4329 if (!btf_compat_fnproto(cand_type, canon_type)) 4330 return 0; 4331 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4332 if (eq <= 0) 4333 return eq; 4334 vlen = btf_vlen(cand_type); 4335 cand_p = btf_params(cand_type); 4336 canon_p = btf_params(canon_type); 4337 for (i = 0; i < vlen; i++) { 4338 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4339 if (eq <= 0) 4340 return eq; 4341 cand_p++; 4342 canon_p++; 4343 } 4344 return 1; 4345 } 4346 4347 default: 4348 return -EINVAL; 4349 } 4350 return 0; 4351 } 4352 4353 /* 4354 * Use hypothetical mapping, produced by successful type graph equivalence 4355 * check, to augment existing struct/union canonical mapping, where possible. 4356 * 4357 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4358 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4359 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4360 * we are recording the mapping anyway. As opposed to carefulness required 4361 * for struct/union correspondence mapping (described below), for FWD resolution 4362 * it's not important, as by the time that FWD type (reference type) will be 4363 * deduplicated all structs/unions will be deduped already anyway. 4364 * 4365 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4366 * not required for correctness. It needs to be done carefully to ensure that 4367 * struct/union from candidate's type graph is not mapped into corresponding 4368 * struct/union from canonical type graph that itself hasn't been resolved into 4369 * canonical representative. The only guarantee we have is that canonical 4370 * struct/union was determined as canonical and that won't change. But any 4371 * types referenced through that struct/union fields could have been not yet 4372 * resolved, so in case like that it's too early to establish any kind of 4373 * correspondence between structs/unions. 4374 * 4375 * No canonical correspondence is derived for primitive types (they are already 4376 * deduplicated completely already anyway) or reference types (they rely on 4377 * stability of struct/union canonical relationship for equivalence checks). 4378 */ 4379 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4380 { 4381 __u32 canon_type_id, targ_type_id; 4382 __u16 t_kind, c_kind; 4383 __u32 t_id, c_id; 4384 int i; 4385 4386 for (i = 0; i < d->hypot_cnt; i++) { 4387 canon_type_id = d->hypot_list[i]; 4388 targ_type_id = d->hypot_map[canon_type_id]; 4389 t_id = resolve_type_id(d, targ_type_id); 4390 c_id = resolve_type_id(d, canon_type_id); 4391 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4392 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4393 /* 4394 * Resolve FWD into STRUCT/UNION. 4395 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4396 * mapped to canonical representative (as opposed to 4397 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4398 * eventually that struct is going to be mapped and all resolved 4399 * FWDs will automatically resolve to correct canonical 4400 * representative. This will happen before ref type deduping, 4401 * which critically depends on stability of these mapping. This 4402 * stability is not a requirement for STRUCT/UNION equivalence 4403 * checks, though. 4404 */ 4405 4406 /* if it's the split BTF case, we still need to point base FWD 4407 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4408 * will be resolved against base FWD. If we don't point base 4409 * canonical FWD to the resolved STRUCT/UNION, then all the 4410 * FWDs in split BTF won't be correctly resolved to a proper 4411 * STRUCT/UNION. 4412 */ 4413 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4414 d->map[c_id] = t_id; 4415 4416 /* if graph equivalence determined that we'd need to adjust 4417 * base canonical types, then we need to only point base FWDs 4418 * to STRUCTs/UNIONs and do no more modifications. For all 4419 * other purposes the type graphs were not equivalent. 4420 */ 4421 if (d->hypot_adjust_canon) 4422 continue; 4423 4424 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4425 d->map[t_id] = c_id; 4426 4427 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4428 c_kind != BTF_KIND_FWD && 4429 is_type_mapped(d, c_id) && 4430 !is_type_mapped(d, t_id)) { 4431 /* 4432 * as a perf optimization, we can map struct/union 4433 * that's part of type graph we just verified for 4434 * equivalence. We can do that for struct/union that has 4435 * canonical representative only, though. 4436 */ 4437 d->map[t_id] = c_id; 4438 } 4439 } 4440 } 4441 4442 /* 4443 * Deduplicate struct/union types. 4444 * 4445 * For each struct/union type its type signature hash is calculated, taking 4446 * into account type's name, size, number, order and names of fields, but 4447 * ignoring type ID's referenced from fields, because they might not be deduped 4448 * completely until after reference types deduplication phase. This type hash 4449 * is used to iterate over all potential canonical types, sharing same hash. 4450 * For each canonical candidate we check whether type graphs that they form 4451 * (through referenced types in fields and so on) are equivalent using algorithm 4452 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4453 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4454 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4455 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4456 * potentially map other structs/unions to their canonical representatives, 4457 * if such relationship hasn't yet been established. This speeds up algorithm 4458 * by eliminating some of the duplicate work. 4459 * 4460 * If no matching canonical representative was found, struct/union is marked 4461 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4462 * for further look ups. 4463 */ 4464 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4465 { 4466 struct btf_type *cand_type, *t; 4467 struct hashmap_entry *hash_entry; 4468 /* if we don't find equivalent type, then we are canonical */ 4469 __u32 new_id = type_id; 4470 __u16 kind; 4471 long h; 4472 4473 /* already deduped or is in process of deduping (loop detected) */ 4474 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4475 return 0; 4476 4477 t = btf_type_by_id(d->btf, type_id); 4478 kind = btf_kind(t); 4479 4480 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4481 return 0; 4482 4483 h = btf_hash_struct(t); 4484 for_each_dedup_cand(d, hash_entry, h) { 4485 __u32 cand_id = hash_entry->value; 4486 int eq; 4487 4488 /* 4489 * Even though btf_dedup_is_equiv() checks for 4490 * btf_shallow_equal_struct() internally when checking two 4491 * structs (unions) for equivalence, we need to guard here 4492 * from picking matching FWD type as a dedup candidate. 4493 * This can happen due to hash collision. In such case just 4494 * relying on btf_dedup_is_equiv() would lead to potentially 4495 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4496 * FWD and compatible STRUCT/UNION are considered equivalent. 4497 */ 4498 cand_type = btf_type_by_id(d->btf, cand_id); 4499 if (!btf_shallow_equal_struct(t, cand_type)) 4500 continue; 4501 4502 btf_dedup_clear_hypot_map(d); 4503 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4504 if (eq < 0) 4505 return eq; 4506 if (!eq) 4507 continue; 4508 btf_dedup_merge_hypot_map(d); 4509 if (d->hypot_adjust_canon) /* not really equivalent */ 4510 continue; 4511 new_id = cand_id; 4512 break; 4513 } 4514 4515 d->map[type_id] = new_id; 4516 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4517 return -ENOMEM; 4518 4519 return 0; 4520 } 4521 4522 static int btf_dedup_struct_types(struct btf_dedup *d) 4523 { 4524 int i, err; 4525 4526 for (i = 0; i < d->btf->nr_types; i++) { 4527 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4528 if (err) 4529 return err; 4530 } 4531 return 0; 4532 } 4533 4534 /* 4535 * Deduplicate reference type. 4536 * 4537 * Once all primitive and struct/union types got deduplicated, we can easily 4538 * deduplicate all other (reference) BTF types. This is done in two steps: 4539 * 4540 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4541 * resolution can be done either immediately for primitive or struct/union types 4542 * (because they were deduped in previous two phases) or recursively for 4543 * reference types. Recursion will always terminate at either primitive or 4544 * struct/union type, at which point we can "unwind" chain of reference types 4545 * one by one. There is no danger of encountering cycles because in C type 4546 * system the only way to form type cycle is through struct/union, so any chain 4547 * of reference types, even those taking part in a type cycle, will inevitably 4548 * reach struct/union at some point. 4549 * 4550 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4551 * becomes "stable", in the sense that no further deduplication will cause 4552 * any changes to it. With that, it's now possible to calculate type's signature 4553 * hash (this time taking into account referenced type IDs) and loop over all 4554 * potential canonical representatives. If no match was found, current type 4555 * will become canonical representative of itself and will be added into 4556 * btf_dedup->dedup_table as another possible canonical representative. 4557 */ 4558 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4559 { 4560 struct hashmap_entry *hash_entry; 4561 __u32 new_id = type_id, cand_id; 4562 struct btf_type *t, *cand; 4563 /* if we don't find equivalent type, then we are representative type */ 4564 int ref_type_id; 4565 long h; 4566 4567 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4568 return -ELOOP; 4569 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4570 return resolve_type_id(d, type_id); 4571 4572 t = btf_type_by_id(d->btf, type_id); 4573 d->map[type_id] = BTF_IN_PROGRESS_ID; 4574 4575 switch (btf_kind(t)) { 4576 case BTF_KIND_CONST: 4577 case BTF_KIND_VOLATILE: 4578 case BTF_KIND_RESTRICT: 4579 case BTF_KIND_PTR: 4580 case BTF_KIND_TYPEDEF: 4581 case BTF_KIND_FUNC: 4582 case BTF_KIND_TYPE_TAG: 4583 ref_type_id = btf_dedup_ref_type(d, t->type); 4584 if (ref_type_id < 0) 4585 return ref_type_id; 4586 t->type = ref_type_id; 4587 4588 h = btf_hash_common(t); 4589 for_each_dedup_cand(d, hash_entry, h) { 4590 cand_id = hash_entry->value; 4591 cand = btf_type_by_id(d->btf, cand_id); 4592 if (btf_equal_common(t, cand)) { 4593 new_id = cand_id; 4594 break; 4595 } 4596 } 4597 break; 4598 4599 case BTF_KIND_DECL_TAG: 4600 ref_type_id = btf_dedup_ref_type(d, t->type); 4601 if (ref_type_id < 0) 4602 return ref_type_id; 4603 t->type = ref_type_id; 4604 4605 h = btf_hash_int_decl_tag(t); 4606 for_each_dedup_cand(d, hash_entry, h) { 4607 cand_id = hash_entry->value; 4608 cand = btf_type_by_id(d->btf, cand_id); 4609 if (btf_equal_int_tag(t, cand)) { 4610 new_id = cand_id; 4611 break; 4612 } 4613 } 4614 break; 4615 4616 case BTF_KIND_ARRAY: { 4617 struct btf_array *info = btf_array(t); 4618 4619 ref_type_id = btf_dedup_ref_type(d, info->type); 4620 if (ref_type_id < 0) 4621 return ref_type_id; 4622 info->type = ref_type_id; 4623 4624 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4625 if (ref_type_id < 0) 4626 return ref_type_id; 4627 info->index_type = ref_type_id; 4628 4629 h = btf_hash_array(t); 4630 for_each_dedup_cand(d, hash_entry, h) { 4631 cand_id = hash_entry->value; 4632 cand = btf_type_by_id(d->btf, cand_id); 4633 if (btf_equal_array(t, cand)) { 4634 new_id = cand_id; 4635 break; 4636 } 4637 } 4638 break; 4639 } 4640 4641 case BTF_KIND_FUNC_PROTO: { 4642 struct btf_param *param; 4643 __u16 vlen; 4644 int i; 4645 4646 ref_type_id = btf_dedup_ref_type(d, t->type); 4647 if (ref_type_id < 0) 4648 return ref_type_id; 4649 t->type = ref_type_id; 4650 4651 vlen = btf_vlen(t); 4652 param = btf_params(t); 4653 for (i = 0; i < vlen; i++) { 4654 ref_type_id = btf_dedup_ref_type(d, param->type); 4655 if (ref_type_id < 0) 4656 return ref_type_id; 4657 param->type = ref_type_id; 4658 param++; 4659 } 4660 4661 h = btf_hash_fnproto(t); 4662 for_each_dedup_cand(d, hash_entry, h) { 4663 cand_id = hash_entry->value; 4664 cand = btf_type_by_id(d->btf, cand_id); 4665 if (btf_equal_fnproto(t, cand)) { 4666 new_id = cand_id; 4667 break; 4668 } 4669 } 4670 break; 4671 } 4672 4673 default: 4674 return -EINVAL; 4675 } 4676 4677 d->map[type_id] = new_id; 4678 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4679 return -ENOMEM; 4680 4681 return new_id; 4682 } 4683 4684 static int btf_dedup_ref_types(struct btf_dedup *d) 4685 { 4686 int i, err; 4687 4688 for (i = 0; i < d->btf->nr_types; i++) { 4689 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4690 if (err < 0) 4691 return err; 4692 } 4693 /* we won't need d->dedup_table anymore */ 4694 hashmap__free(d->dedup_table); 4695 d->dedup_table = NULL; 4696 return 0; 4697 } 4698 4699 /* 4700 * Collect a map from type names to type ids for all canonical structs 4701 * and unions. If the same name is shared by several canonical types 4702 * use a special value 0 to indicate this fact. 4703 */ 4704 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4705 { 4706 __u32 nr_types = btf__type_cnt(d->btf); 4707 struct btf_type *t; 4708 __u32 type_id; 4709 __u16 kind; 4710 int err; 4711 4712 /* 4713 * Iterate over base and split module ids in order to get all 4714 * available structs in the map. 4715 */ 4716 for (type_id = 1; type_id < nr_types; ++type_id) { 4717 t = btf_type_by_id(d->btf, type_id); 4718 kind = btf_kind(t); 4719 4720 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4721 continue; 4722 4723 /* Skip non-canonical types */ 4724 if (type_id != d->map[type_id]) 4725 continue; 4726 4727 err = hashmap__add(names_map, t->name_off, type_id); 4728 if (err == -EEXIST) 4729 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4730 4731 if (err) 4732 return err; 4733 } 4734 4735 return 0; 4736 } 4737 4738 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4739 { 4740 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4741 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4742 __u16 cand_kind, kind = btf_kind(t); 4743 struct btf_type *cand_t; 4744 uintptr_t cand_id; 4745 4746 if (kind != BTF_KIND_FWD) 4747 return 0; 4748 4749 /* Skip if this FWD already has a mapping */ 4750 if (type_id != d->map[type_id]) 4751 return 0; 4752 4753 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4754 return 0; 4755 4756 /* Zero is a special value indicating that name is not unique */ 4757 if (!cand_id) 4758 return 0; 4759 4760 cand_t = btf_type_by_id(d->btf, cand_id); 4761 cand_kind = btf_kind(cand_t); 4762 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4763 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4764 return 0; 4765 4766 d->map[type_id] = cand_id; 4767 4768 return 0; 4769 } 4770 4771 /* 4772 * Resolve unambiguous forward declarations. 4773 * 4774 * The lion's share of all FWD declarations is resolved during 4775 * `btf_dedup_struct_types` phase when different type graphs are 4776 * compared against each other. However, if in some compilation unit a 4777 * FWD declaration is not a part of a type graph compared against 4778 * another type graph that declaration's canonical type would not be 4779 * changed. Example: 4780 * 4781 * CU #1: 4782 * 4783 * struct foo; 4784 * struct foo *some_global; 4785 * 4786 * CU #2: 4787 * 4788 * struct foo { int u; }; 4789 * struct foo *another_global; 4790 * 4791 * After `btf_dedup_struct_types` the BTF looks as follows: 4792 * 4793 * [1] STRUCT 'foo' size=4 vlen=1 ... 4794 * [2] INT 'int' size=4 ... 4795 * [3] PTR '(anon)' type_id=1 4796 * [4] FWD 'foo' fwd_kind=struct 4797 * [5] PTR '(anon)' type_id=4 4798 * 4799 * This pass assumes that such FWD declarations should be mapped to 4800 * structs or unions with identical name in case if the name is not 4801 * ambiguous. 4802 */ 4803 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4804 { 4805 int i, err; 4806 struct hashmap *names_map; 4807 4808 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4809 if (IS_ERR(names_map)) 4810 return PTR_ERR(names_map); 4811 4812 err = btf_dedup_fill_unique_names_map(d, names_map); 4813 if (err < 0) 4814 goto exit; 4815 4816 for (i = 0; i < d->btf->nr_types; i++) { 4817 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4818 if (err < 0) 4819 break; 4820 } 4821 4822 exit: 4823 hashmap__free(names_map); 4824 return err; 4825 } 4826 4827 /* 4828 * Compact types. 4829 * 4830 * After we established for each type its corresponding canonical representative 4831 * type, we now can eliminate types that are not canonical and leave only 4832 * canonical ones layed out sequentially in memory by copying them over 4833 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4834 * a map from original type ID to a new compacted type ID, which will be used 4835 * during next phase to "fix up" type IDs, referenced from struct/union and 4836 * reference types. 4837 */ 4838 static int btf_dedup_compact_types(struct btf_dedup *d) 4839 { 4840 __u32 *new_offs; 4841 __u32 next_type_id = d->btf->start_id; 4842 const struct btf_type *t; 4843 void *p; 4844 int i, id, len; 4845 4846 /* we are going to reuse hypot_map to store compaction remapping */ 4847 d->hypot_map[0] = 0; 4848 /* base BTF types are not renumbered */ 4849 for (id = 1; id < d->btf->start_id; id++) 4850 d->hypot_map[id] = id; 4851 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4852 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4853 4854 p = d->btf->types_data; 4855 4856 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4857 if (d->map[id] != id) 4858 continue; 4859 4860 t = btf__type_by_id(d->btf, id); 4861 len = btf_type_size(t); 4862 if (len < 0) 4863 return len; 4864 4865 memmove(p, t, len); 4866 d->hypot_map[id] = next_type_id; 4867 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4868 p += len; 4869 next_type_id++; 4870 } 4871 4872 /* shrink struct btf's internal types index and update btf_header */ 4873 d->btf->nr_types = next_type_id - d->btf->start_id; 4874 d->btf->type_offs_cap = d->btf->nr_types; 4875 d->btf->hdr->type_len = p - d->btf->types_data; 4876 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4877 sizeof(*new_offs)); 4878 if (d->btf->type_offs_cap && !new_offs) 4879 return -ENOMEM; 4880 d->btf->type_offs = new_offs; 4881 d->btf->hdr->str_off = d->btf->hdr->type_len; 4882 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4883 return 0; 4884 } 4885 4886 /* 4887 * Figure out final (deduplicated and compacted) type ID for provided original 4888 * `type_id` by first resolving it into corresponding canonical type ID and 4889 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4890 * which is populated during compaction phase. 4891 */ 4892 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4893 { 4894 struct btf_dedup *d = ctx; 4895 __u32 resolved_type_id, new_type_id; 4896 4897 resolved_type_id = resolve_type_id(d, *type_id); 4898 new_type_id = d->hypot_map[resolved_type_id]; 4899 if (new_type_id > BTF_MAX_NR_TYPES) 4900 return -EINVAL; 4901 4902 *type_id = new_type_id; 4903 return 0; 4904 } 4905 4906 /* 4907 * Remap referenced type IDs into deduped type IDs. 4908 * 4909 * After BTF types are deduplicated and compacted, their final type IDs may 4910 * differ from original ones. The map from original to a corresponding 4911 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4912 * compaction phase. During remapping phase we are rewriting all type IDs 4913 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4914 * their final deduped type IDs. 4915 */ 4916 static int btf_dedup_remap_types(struct btf_dedup *d) 4917 { 4918 int i, r; 4919 4920 for (i = 0; i < d->btf->nr_types; i++) { 4921 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4922 4923 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4924 if (r) 4925 return r; 4926 } 4927 4928 if (!d->btf_ext) 4929 return 0; 4930 4931 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4932 if (r) 4933 return r; 4934 4935 return 0; 4936 } 4937 4938 /* 4939 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4940 * data out of it to use for target BTF. 4941 */ 4942 struct btf *btf__load_vmlinux_btf(void) 4943 { 4944 const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux"; 4945 /* fall back locations, trying to find vmlinux on disk */ 4946 const char *locations[] = { 4947 "/boot/vmlinux-%1$s", 4948 "/lib/modules/%1$s/vmlinux-%1$s", 4949 "/lib/modules/%1$s/build/vmlinux", 4950 "/usr/lib/modules/%1$s/kernel/vmlinux", 4951 "/usr/lib/debug/boot/vmlinux-%1$s", 4952 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 4953 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 4954 }; 4955 char path[PATH_MAX + 1]; 4956 struct utsname buf; 4957 struct btf *btf; 4958 int i, err; 4959 4960 /* is canonical sysfs location accessible? */ 4961 if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) { 4962 pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n", 4963 sysfs_btf_path); 4964 } else { 4965 btf = btf__parse(sysfs_btf_path, NULL); 4966 if (!btf) { 4967 err = -errno; 4968 pr_warn("failed to read kernel BTF from '%s': %d\n", sysfs_btf_path, err); 4969 return libbpf_err_ptr(err); 4970 } 4971 pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path); 4972 return btf; 4973 } 4974 4975 /* try fallback locations */ 4976 uname(&buf); 4977 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4978 snprintf(path, PATH_MAX, locations[i], buf.release); 4979 4980 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 4981 continue; 4982 4983 btf = btf__parse(path, NULL); 4984 err = libbpf_get_error(btf); 4985 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4986 if (err) 4987 continue; 4988 4989 return btf; 4990 } 4991 4992 pr_warn("failed to find valid kernel BTF\n"); 4993 return libbpf_err_ptr(-ESRCH); 4994 } 4995 4996 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4997 4998 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4999 { 5000 char path[80]; 5001 5002 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 5003 return btf__parse_split(path, vmlinux_btf); 5004 } 5005 5006 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 5007 { 5008 int i, n, err; 5009 5010 switch (btf_kind(t)) { 5011 case BTF_KIND_INT: 5012 case BTF_KIND_FLOAT: 5013 case BTF_KIND_ENUM: 5014 case BTF_KIND_ENUM64: 5015 return 0; 5016 5017 case BTF_KIND_FWD: 5018 case BTF_KIND_CONST: 5019 case BTF_KIND_VOLATILE: 5020 case BTF_KIND_RESTRICT: 5021 case BTF_KIND_PTR: 5022 case BTF_KIND_TYPEDEF: 5023 case BTF_KIND_FUNC: 5024 case BTF_KIND_VAR: 5025 case BTF_KIND_DECL_TAG: 5026 case BTF_KIND_TYPE_TAG: 5027 return visit(&t->type, ctx); 5028 5029 case BTF_KIND_ARRAY: { 5030 struct btf_array *a = btf_array(t); 5031 5032 err = visit(&a->type, ctx); 5033 err = err ?: visit(&a->index_type, ctx); 5034 return err; 5035 } 5036 5037 case BTF_KIND_STRUCT: 5038 case BTF_KIND_UNION: { 5039 struct btf_member *m = btf_members(t); 5040 5041 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5042 err = visit(&m->type, ctx); 5043 if (err) 5044 return err; 5045 } 5046 return 0; 5047 } 5048 5049 case BTF_KIND_FUNC_PROTO: { 5050 struct btf_param *m = btf_params(t); 5051 5052 err = visit(&t->type, ctx); 5053 if (err) 5054 return err; 5055 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5056 err = visit(&m->type, ctx); 5057 if (err) 5058 return err; 5059 } 5060 return 0; 5061 } 5062 5063 case BTF_KIND_DATASEC: { 5064 struct btf_var_secinfo *m = btf_var_secinfos(t); 5065 5066 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5067 err = visit(&m->type, ctx); 5068 if (err) 5069 return err; 5070 } 5071 return 0; 5072 } 5073 5074 default: 5075 return -EINVAL; 5076 } 5077 } 5078 5079 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 5080 { 5081 int i, n, err; 5082 5083 err = visit(&t->name_off, ctx); 5084 if (err) 5085 return err; 5086 5087 switch (btf_kind(t)) { 5088 case BTF_KIND_STRUCT: 5089 case BTF_KIND_UNION: { 5090 struct btf_member *m = btf_members(t); 5091 5092 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5093 err = visit(&m->name_off, ctx); 5094 if (err) 5095 return err; 5096 } 5097 break; 5098 } 5099 case BTF_KIND_ENUM: { 5100 struct btf_enum *m = btf_enum(t); 5101 5102 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5103 err = visit(&m->name_off, ctx); 5104 if (err) 5105 return err; 5106 } 5107 break; 5108 } 5109 case BTF_KIND_ENUM64: { 5110 struct btf_enum64 *m = btf_enum64(t); 5111 5112 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5113 err = visit(&m->name_off, ctx); 5114 if (err) 5115 return err; 5116 } 5117 break; 5118 } 5119 case BTF_KIND_FUNC_PROTO: { 5120 struct btf_param *m = btf_params(t); 5121 5122 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5123 err = visit(&m->name_off, ctx); 5124 if (err) 5125 return err; 5126 } 5127 break; 5128 } 5129 default: 5130 break; 5131 } 5132 5133 return 0; 5134 } 5135 5136 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 5137 { 5138 const struct btf_ext_info *seg; 5139 struct btf_ext_info_sec *sec; 5140 int i, err; 5141 5142 seg = &btf_ext->func_info; 5143 for_each_btf_ext_sec(seg, sec) { 5144 struct bpf_func_info_min *rec; 5145 5146 for_each_btf_ext_rec(seg, sec, i, rec) { 5147 err = visit(&rec->type_id, ctx); 5148 if (err < 0) 5149 return err; 5150 } 5151 } 5152 5153 seg = &btf_ext->core_relo_info; 5154 for_each_btf_ext_sec(seg, sec) { 5155 struct bpf_core_relo *rec; 5156 5157 for_each_btf_ext_rec(seg, sec, i, rec) { 5158 err = visit(&rec->type_id, ctx); 5159 if (err < 0) 5160 return err; 5161 } 5162 } 5163 5164 return 0; 5165 } 5166 5167 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 5168 { 5169 const struct btf_ext_info *seg; 5170 struct btf_ext_info_sec *sec; 5171 int i, err; 5172 5173 seg = &btf_ext->func_info; 5174 for_each_btf_ext_sec(seg, sec) { 5175 err = visit(&sec->sec_name_off, ctx); 5176 if (err) 5177 return err; 5178 } 5179 5180 seg = &btf_ext->line_info; 5181 for_each_btf_ext_sec(seg, sec) { 5182 struct bpf_line_info_min *rec; 5183 5184 err = visit(&sec->sec_name_off, ctx); 5185 if (err) 5186 return err; 5187 5188 for_each_btf_ext_rec(seg, sec, i, rec) { 5189 err = visit(&rec->file_name_off, ctx); 5190 if (err) 5191 return err; 5192 err = visit(&rec->line_off, ctx); 5193 if (err) 5194 return err; 5195 } 5196 } 5197 5198 seg = &btf_ext->core_relo_info; 5199 for_each_btf_ext_sec(seg, sec) { 5200 struct bpf_core_relo *rec; 5201 5202 err = visit(&sec->sec_name_off, ctx); 5203 if (err) 5204 return err; 5205 5206 for_each_btf_ext_rec(seg, sec, i, rec) { 5207 err = visit(&rec->access_str_off, ctx); 5208 if (err) 5209 return err; 5210 } 5211 } 5212 5213 return 0; 5214 } 5215