1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <linux/err.h> 12 #include <linux/btf.h> 13 #include <gelf.h> 14 #include "btf.h" 15 #include "bpf.h" 16 #include "libbpf.h" 17 #include "libbpf_internal.h" 18 #include "hashmap.h" 19 20 #define BTF_MAX_NR_TYPES 0x7fffffff 21 #define BTF_MAX_STR_OFFSET 0x7fffffff 22 23 static struct btf_type btf_void; 24 25 struct btf { 26 union { 27 struct btf_header *hdr; 28 void *data; 29 }; 30 struct btf_type **types; 31 const char *strings; 32 void *nohdr_data; 33 __u32 nr_types; 34 __u32 types_size; 35 __u32 data_size; 36 int fd; 37 }; 38 39 static inline __u64 ptr_to_u64(const void *ptr) 40 { 41 return (__u64) (unsigned long) ptr; 42 } 43 44 static int btf_add_type(struct btf *btf, struct btf_type *t) 45 { 46 if (btf->types_size - btf->nr_types < 2) { 47 struct btf_type **new_types; 48 __u32 expand_by, new_size; 49 50 if (btf->types_size == BTF_MAX_NR_TYPES) 51 return -E2BIG; 52 53 expand_by = max(btf->types_size >> 2, 16); 54 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 55 56 new_types = realloc(btf->types, sizeof(*new_types) * new_size); 57 if (!new_types) 58 return -ENOMEM; 59 60 if (btf->nr_types == 0) 61 new_types[0] = &btf_void; 62 63 btf->types = new_types; 64 btf->types_size = new_size; 65 } 66 67 btf->types[++(btf->nr_types)] = t; 68 69 return 0; 70 } 71 72 static int btf_parse_hdr(struct btf *btf) 73 { 74 const struct btf_header *hdr = btf->hdr; 75 __u32 meta_left; 76 77 if (btf->data_size < sizeof(struct btf_header)) { 78 pr_debug("BTF header not found\n"); 79 return -EINVAL; 80 } 81 82 if (hdr->magic != BTF_MAGIC) { 83 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 84 return -EINVAL; 85 } 86 87 if (hdr->version != BTF_VERSION) { 88 pr_debug("Unsupported BTF version:%u\n", hdr->version); 89 return -ENOTSUP; 90 } 91 92 if (hdr->flags) { 93 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 94 return -ENOTSUP; 95 } 96 97 meta_left = btf->data_size - sizeof(*hdr); 98 if (!meta_left) { 99 pr_debug("BTF has no data\n"); 100 return -EINVAL; 101 } 102 103 if (meta_left < hdr->type_off) { 104 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 105 return -EINVAL; 106 } 107 108 if (meta_left < hdr->str_off) { 109 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 110 return -EINVAL; 111 } 112 113 if (hdr->type_off >= hdr->str_off) { 114 pr_debug("BTF type section offset >= string section offset. No type?\n"); 115 return -EINVAL; 116 } 117 118 if (hdr->type_off & 0x02) { 119 pr_debug("BTF type section is not aligned to 4 bytes\n"); 120 return -EINVAL; 121 } 122 123 btf->nohdr_data = btf->hdr + 1; 124 125 return 0; 126 } 127 128 static int btf_parse_str_sec(struct btf *btf) 129 { 130 const struct btf_header *hdr = btf->hdr; 131 const char *start = btf->nohdr_data + hdr->str_off; 132 const char *end = start + btf->hdr->str_len; 133 134 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 135 start[0] || end[-1]) { 136 pr_debug("Invalid BTF string section\n"); 137 return -EINVAL; 138 } 139 140 btf->strings = start; 141 142 return 0; 143 } 144 145 static int btf_type_size(struct btf_type *t) 146 { 147 int base_size = sizeof(struct btf_type); 148 __u16 vlen = btf_vlen(t); 149 150 switch (btf_kind(t)) { 151 case BTF_KIND_FWD: 152 case BTF_KIND_CONST: 153 case BTF_KIND_VOLATILE: 154 case BTF_KIND_RESTRICT: 155 case BTF_KIND_PTR: 156 case BTF_KIND_TYPEDEF: 157 case BTF_KIND_FUNC: 158 return base_size; 159 case BTF_KIND_INT: 160 return base_size + sizeof(__u32); 161 case BTF_KIND_ENUM: 162 return base_size + vlen * sizeof(struct btf_enum); 163 case BTF_KIND_ARRAY: 164 return base_size + sizeof(struct btf_array); 165 case BTF_KIND_STRUCT: 166 case BTF_KIND_UNION: 167 return base_size + vlen * sizeof(struct btf_member); 168 case BTF_KIND_FUNC_PROTO: 169 return base_size + vlen * sizeof(struct btf_param); 170 case BTF_KIND_VAR: 171 return base_size + sizeof(struct btf_var); 172 case BTF_KIND_DATASEC: 173 return base_size + vlen * sizeof(struct btf_var_secinfo); 174 default: 175 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 176 return -EINVAL; 177 } 178 } 179 180 static int btf_parse_type_sec(struct btf *btf) 181 { 182 struct btf_header *hdr = btf->hdr; 183 void *nohdr_data = btf->nohdr_data; 184 void *next_type = nohdr_data + hdr->type_off; 185 void *end_type = nohdr_data + hdr->str_off; 186 187 while (next_type < end_type) { 188 struct btf_type *t = next_type; 189 int type_size; 190 int err; 191 192 type_size = btf_type_size(t); 193 if (type_size < 0) 194 return type_size; 195 next_type += type_size; 196 err = btf_add_type(btf, t); 197 if (err) 198 return err; 199 } 200 201 return 0; 202 } 203 204 __u32 btf__get_nr_types(const struct btf *btf) 205 { 206 return btf->nr_types; 207 } 208 209 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 210 { 211 if (type_id > btf->nr_types) 212 return NULL; 213 214 return btf->types[type_id]; 215 } 216 217 static bool btf_type_is_void(const struct btf_type *t) 218 { 219 return t == &btf_void || btf_is_fwd(t); 220 } 221 222 static bool btf_type_is_void_or_null(const struct btf_type *t) 223 { 224 return !t || btf_type_is_void(t); 225 } 226 227 #define MAX_RESOLVE_DEPTH 32 228 229 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 230 { 231 const struct btf_array *array; 232 const struct btf_type *t; 233 __u32 nelems = 1; 234 __s64 size = -1; 235 int i; 236 237 t = btf__type_by_id(btf, type_id); 238 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 239 i++) { 240 switch (btf_kind(t)) { 241 case BTF_KIND_INT: 242 case BTF_KIND_STRUCT: 243 case BTF_KIND_UNION: 244 case BTF_KIND_ENUM: 245 case BTF_KIND_DATASEC: 246 size = t->size; 247 goto done; 248 case BTF_KIND_PTR: 249 size = sizeof(void *); 250 goto done; 251 case BTF_KIND_TYPEDEF: 252 case BTF_KIND_VOLATILE: 253 case BTF_KIND_CONST: 254 case BTF_KIND_RESTRICT: 255 case BTF_KIND_VAR: 256 type_id = t->type; 257 break; 258 case BTF_KIND_ARRAY: 259 array = btf_array(t); 260 if (nelems && array->nelems > UINT32_MAX / nelems) 261 return -E2BIG; 262 nelems *= array->nelems; 263 type_id = array->type; 264 break; 265 default: 266 return -EINVAL; 267 } 268 269 t = btf__type_by_id(btf, type_id); 270 } 271 272 done: 273 if (size < 0) 274 return -EINVAL; 275 if (nelems && size > UINT32_MAX / nelems) 276 return -E2BIG; 277 278 return nelems * size; 279 } 280 281 int btf__align_of(const struct btf *btf, __u32 id) 282 { 283 const struct btf_type *t = btf__type_by_id(btf, id); 284 __u16 kind = btf_kind(t); 285 286 switch (kind) { 287 case BTF_KIND_INT: 288 case BTF_KIND_ENUM: 289 return min(sizeof(void *), t->size); 290 case BTF_KIND_PTR: 291 return sizeof(void *); 292 case BTF_KIND_TYPEDEF: 293 case BTF_KIND_VOLATILE: 294 case BTF_KIND_CONST: 295 case BTF_KIND_RESTRICT: 296 return btf__align_of(btf, t->type); 297 case BTF_KIND_ARRAY: 298 return btf__align_of(btf, btf_array(t)->type); 299 case BTF_KIND_STRUCT: 300 case BTF_KIND_UNION: { 301 const struct btf_member *m = btf_members(t); 302 __u16 vlen = btf_vlen(t); 303 int i, align = 1, t; 304 305 for (i = 0; i < vlen; i++, m++) { 306 t = btf__align_of(btf, m->type); 307 if (t <= 0) 308 return t; 309 align = max(align, t); 310 } 311 312 return align; 313 } 314 default: 315 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 316 return 0; 317 } 318 } 319 320 int btf__resolve_type(const struct btf *btf, __u32 type_id) 321 { 322 const struct btf_type *t; 323 int depth = 0; 324 325 t = btf__type_by_id(btf, type_id); 326 while (depth < MAX_RESOLVE_DEPTH && 327 !btf_type_is_void_or_null(t) && 328 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 329 type_id = t->type; 330 t = btf__type_by_id(btf, type_id); 331 depth++; 332 } 333 334 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 335 return -EINVAL; 336 337 return type_id; 338 } 339 340 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 341 { 342 __u32 i; 343 344 if (!strcmp(type_name, "void")) 345 return 0; 346 347 for (i = 1; i <= btf->nr_types; i++) { 348 const struct btf_type *t = btf->types[i]; 349 const char *name = btf__name_by_offset(btf, t->name_off); 350 351 if (name && !strcmp(type_name, name)) 352 return i; 353 } 354 355 return -ENOENT; 356 } 357 358 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 359 __u32 kind) 360 { 361 __u32 i; 362 363 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 364 return 0; 365 366 for (i = 1; i <= btf->nr_types; i++) { 367 const struct btf_type *t = btf->types[i]; 368 const char *name; 369 370 if (btf_kind(t) != kind) 371 continue; 372 name = btf__name_by_offset(btf, t->name_off); 373 if (name && !strcmp(type_name, name)) 374 return i; 375 } 376 377 return -ENOENT; 378 } 379 380 void btf__free(struct btf *btf) 381 { 382 if (!btf) 383 return; 384 385 if (btf->fd != -1) 386 close(btf->fd); 387 388 free(btf->data); 389 free(btf->types); 390 free(btf); 391 } 392 393 struct btf *btf__new(__u8 *data, __u32 size) 394 { 395 struct btf *btf; 396 int err; 397 398 btf = calloc(1, sizeof(struct btf)); 399 if (!btf) 400 return ERR_PTR(-ENOMEM); 401 402 btf->fd = -1; 403 404 btf->data = malloc(size); 405 if (!btf->data) { 406 err = -ENOMEM; 407 goto done; 408 } 409 410 memcpy(btf->data, data, size); 411 btf->data_size = size; 412 413 err = btf_parse_hdr(btf); 414 if (err) 415 goto done; 416 417 err = btf_parse_str_sec(btf); 418 if (err) 419 goto done; 420 421 err = btf_parse_type_sec(btf); 422 423 done: 424 if (err) { 425 btf__free(btf); 426 return ERR_PTR(err); 427 } 428 429 return btf; 430 } 431 432 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 433 { 434 #if __BYTE_ORDER == __LITTLE_ENDIAN 435 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 436 #elif __BYTE_ORDER == __BIG_ENDIAN 437 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 438 #else 439 # error "Unrecognized __BYTE_ORDER__" 440 #endif 441 } 442 443 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 444 { 445 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 446 int err = 0, fd = -1, idx = 0; 447 struct btf *btf = NULL; 448 Elf_Scn *scn = NULL; 449 Elf *elf = NULL; 450 GElf_Ehdr ehdr; 451 452 if (elf_version(EV_CURRENT) == EV_NONE) { 453 pr_warn("failed to init libelf for %s\n", path); 454 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 455 } 456 457 fd = open(path, O_RDONLY); 458 if (fd < 0) { 459 err = -errno; 460 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 461 return ERR_PTR(err); 462 } 463 464 err = -LIBBPF_ERRNO__FORMAT; 465 466 elf = elf_begin(fd, ELF_C_READ, NULL); 467 if (!elf) { 468 pr_warn("failed to open %s as ELF file\n", path); 469 goto done; 470 } 471 if (!gelf_getehdr(elf, &ehdr)) { 472 pr_warn("failed to get EHDR from %s\n", path); 473 goto done; 474 } 475 if (!btf_check_endianness(&ehdr)) { 476 pr_warn("non-native ELF endianness is not supported\n"); 477 goto done; 478 } 479 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 480 pr_warn("failed to get e_shstrndx from %s\n", path); 481 goto done; 482 } 483 484 while ((scn = elf_nextscn(elf, scn)) != NULL) { 485 GElf_Shdr sh; 486 char *name; 487 488 idx++; 489 if (gelf_getshdr(scn, &sh) != &sh) { 490 pr_warn("failed to get section(%d) header from %s\n", 491 idx, path); 492 goto done; 493 } 494 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 495 if (!name) { 496 pr_warn("failed to get section(%d) name from %s\n", 497 idx, path); 498 goto done; 499 } 500 if (strcmp(name, BTF_ELF_SEC) == 0) { 501 btf_data = elf_getdata(scn, 0); 502 if (!btf_data) { 503 pr_warn("failed to get section(%d, %s) data from %s\n", 504 idx, name, path); 505 goto done; 506 } 507 continue; 508 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 509 btf_ext_data = elf_getdata(scn, 0); 510 if (!btf_ext_data) { 511 pr_warn("failed to get section(%d, %s) data from %s\n", 512 idx, name, path); 513 goto done; 514 } 515 continue; 516 } 517 } 518 519 err = 0; 520 521 if (!btf_data) { 522 err = -ENOENT; 523 goto done; 524 } 525 btf = btf__new(btf_data->d_buf, btf_data->d_size); 526 if (IS_ERR(btf)) 527 goto done; 528 529 if (btf_ext && btf_ext_data) { 530 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 531 btf_ext_data->d_size); 532 if (IS_ERR(*btf_ext)) 533 goto done; 534 } else if (btf_ext) { 535 *btf_ext = NULL; 536 } 537 done: 538 if (elf) 539 elf_end(elf); 540 close(fd); 541 542 if (err) 543 return ERR_PTR(err); 544 /* 545 * btf is always parsed before btf_ext, so no need to clean up 546 * btf_ext, if btf loading failed 547 */ 548 if (IS_ERR(btf)) 549 return btf; 550 if (btf_ext && IS_ERR(*btf_ext)) { 551 btf__free(btf); 552 err = PTR_ERR(*btf_ext); 553 return ERR_PTR(err); 554 } 555 return btf; 556 } 557 558 static int compare_vsi_off(const void *_a, const void *_b) 559 { 560 const struct btf_var_secinfo *a = _a; 561 const struct btf_var_secinfo *b = _b; 562 563 return a->offset - b->offset; 564 } 565 566 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 567 struct btf_type *t) 568 { 569 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 570 const char *name = btf__name_by_offset(btf, t->name_off); 571 const struct btf_type *t_var; 572 struct btf_var_secinfo *vsi; 573 const struct btf_var *var; 574 int ret; 575 576 if (!name) { 577 pr_debug("No name found in string section for DATASEC kind.\n"); 578 return -ENOENT; 579 } 580 581 ret = bpf_object__section_size(obj, name, &size); 582 if (ret || !size || (t->size && t->size != size)) { 583 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 584 return -ENOENT; 585 } 586 587 t->size = size; 588 589 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 590 t_var = btf__type_by_id(btf, vsi->type); 591 var = btf_var(t_var); 592 593 if (!btf_is_var(t_var)) { 594 pr_debug("Non-VAR type seen in section %s\n", name); 595 return -EINVAL; 596 } 597 598 if (var->linkage == BTF_VAR_STATIC) 599 continue; 600 601 name = btf__name_by_offset(btf, t_var->name_off); 602 if (!name) { 603 pr_debug("No name found in string section for VAR kind\n"); 604 return -ENOENT; 605 } 606 607 ret = bpf_object__variable_offset(obj, name, &off); 608 if (ret) { 609 pr_debug("No offset found in symbol table for VAR %s\n", 610 name); 611 return -ENOENT; 612 } 613 614 vsi->offset = off; 615 } 616 617 qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off); 618 return 0; 619 } 620 621 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 622 { 623 int err = 0; 624 __u32 i; 625 626 for (i = 1; i <= btf->nr_types; i++) { 627 struct btf_type *t = btf->types[i]; 628 629 /* Loader needs to fix up some of the things compiler 630 * couldn't get its hands on while emitting BTF. This 631 * is section size and global variable offset. We use 632 * the info from the ELF itself for this purpose. 633 */ 634 if (btf_is_datasec(t)) { 635 err = btf_fixup_datasec(obj, btf, t); 636 if (err) 637 break; 638 } 639 } 640 641 return err; 642 } 643 644 int btf__load(struct btf *btf) 645 { 646 __u32 log_buf_size = BPF_LOG_BUF_SIZE; 647 char *log_buf = NULL; 648 int err = 0; 649 650 if (btf->fd >= 0) 651 return -EEXIST; 652 653 log_buf = malloc(log_buf_size); 654 if (!log_buf) 655 return -ENOMEM; 656 657 *log_buf = 0; 658 659 btf->fd = bpf_load_btf(btf->data, btf->data_size, 660 log_buf, log_buf_size, false); 661 if (btf->fd < 0) { 662 err = -errno; 663 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 664 if (*log_buf) 665 pr_warn("%s\n", log_buf); 666 goto done; 667 } 668 669 done: 670 free(log_buf); 671 return err; 672 } 673 674 int btf__fd(const struct btf *btf) 675 { 676 return btf->fd; 677 } 678 679 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 680 { 681 *size = btf->data_size; 682 return btf->data; 683 } 684 685 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 686 { 687 if (offset < btf->hdr->str_len) 688 return &btf->strings[offset]; 689 else 690 return NULL; 691 } 692 693 int btf__get_from_id(__u32 id, struct btf **btf) 694 { 695 struct bpf_btf_info btf_info = { 0 }; 696 __u32 len = sizeof(btf_info); 697 __u32 last_size; 698 int btf_fd; 699 void *ptr; 700 int err; 701 702 err = 0; 703 *btf = NULL; 704 btf_fd = bpf_btf_get_fd_by_id(id); 705 if (btf_fd < 0) 706 return 0; 707 708 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 709 * let's start with a sane default - 4KiB here - and resize it only if 710 * bpf_obj_get_info_by_fd() needs a bigger buffer. 711 */ 712 btf_info.btf_size = 4096; 713 last_size = btf_info.btf_size; 714 ptr = malloc(last_size); 715 if (!ptr) { 716 err = -ENOMEM; 717 goto exit_free; 718 } 719 720 memset(ptr, 0, last_size); 721 btf_info.btf = ptr_to_u64(ptr); 722 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 723 724 if (!err && btf_info.btf_size > last_size) { 725 void *temp_ptr; 726 727 last_size = btf_info.btf_size; 728 temp_ptr = realloc(ptr, last_size); 729 if (!temp_ptr) { 730 err = -ENOMEM; 731 goto exit_free; 732 } 733 ptr = temp_ptr; 734 memset(ptr, 0, last_size); 735 btf_info.btf = ptr_to_u64(ptr); 736 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 737 } 738 739 if (err || btf_info.btf_size > last_size) { 740 err = errno; 741 goto exit_free; 742 } 743 744 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 745 if (IS_ERR(*btf)) { 746 err = PTR_ERR(*btf); 747 *btf = NULL; 748 } 749 750 exit_free: 751 close(btf_fd); 752 free(ptr); 753 754 return err; 755 } 756 757 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 758 __u32 expected_key_size, __u32 expected_value_size, 759 __u32 *key_type_id, __u32 *value_type_id) 760 { 761 const struct btf_type *container_type; 762 const struct btf_member *key, *value; 763 const size_t max_name = 256; 764 char container_name[max_name]; 765 __s64 key_size, value_size; 766 __s32 container_id; 767 768 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 769 max_name) { 770 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 771 map_name, map_name); 772 return -EINVAL; 773 } 774 775 container_id = btf__find_by_name(btf, container_name); 776 if (container_id < 0) { 777 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 778 map_name, container_name); 779 return container_id; 780 } 781 782 container_type = btf__type_by_id(btf, container_id); 783 if (!container_type) { 784 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 785 map_name, container_id); 786 return -EINVAL; 787 } 788 789 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 790 pr_warn("map:%s container_name:%s is an invalid container struct\n", 791 map_name, container_name); 792 return -EINVAL; 793 } 794 795 key = btf_members(container_type); 796 value = key + 1; 797 798 key_size = btf__resolve_size(btf, key->type); 799 if (key_size < 0) { 800 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 801 return key_size; 802 } 803 804 if (expected_key_size != key_size) { 805 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 806 map_name, (__u32)key_size, expected_key_size); 807 return -EINVAL; 808 } 809 810 value_size = btf__resolve_size(btf, value->type); 811 if (value_size < 0) { 812 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 813 return value_size; 814 } 815 816 if (expected_value_size != value_size) { 817 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 818 map_name, (__u32)value_size, expected_value_size); 819 return -EINVAL; 820 } 821 822 *key_type_id = key->type; 823 *value_type_id = value->type; 824 825 return 0; 826 } 827 828 struct btf_ext_sec_setup_param { 829 __u32 off; 830 __u32 len; 831 __u32 min_rec_size; 832 struct btf_ext_info *ext_info; 833 const char *desc; 834 }; 835 836 static int btf_ext_setup_info(struct btf_ext *btf_ext, 837 struct btf_ext_sec_setup_param *ext_sec) 838 { 839 const struct btf_ext_info_sec *sinfo; 840 struct btf_ext_info *ext_info; 841 __u32 info_left, record_size; 842 /* The start of the info sec (including the __u32 record_size). */ 843 void *info; 844 845 if (ext_sec->len == 0) 846 return 0; 847 848 if (ext_sec->off & 0x03) { 849 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 850 ext_sec->desc); 851 return -EINVAL; 852 } 853 854 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 855 info_left = ext_sec->len; 856 857 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 858 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 859 ext_sec->desc, ext_sec->off, ext_sec->len); 860 return -EINVAL; 861 } 862 863 /* At least a record size */ 864 if (info_left < sizeof(__u32)) { 865 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 866 return -EINVAL; 867 } 868 869 /* The record size needs to meet the minimum standard */ 870 record_size = *(__u32 *)info; 871 if (record_size < ext_sec->min_rec_size || 872 record_size & 0x03) { 873 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 874 ext_sec->desc, record_size); 875 return -EINVAL; 876 } 877 878 sinfo = info + sizeof(__u32); 879 info_left -= sizeof(__u32); 880 881 /* If no records, return failure now so .BTF.ext won't be used. */ 882 if (!info_left) { 883 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 884 return -EINVAL; 885 } 886 887 while (info_left) { 888 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 889 __u64 total_record_size; 890 __u32 num_records; 891 892 if (info_left < sec_hdrlen) { 893 pr_debug("%s section header is not found in .BTF.ext\n", 894 ext_sec->desc); 895 return -EINVAL; 896 } 897 898 num_records = sinfo->num_info; 899 if (num_records == 0) { 900 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 901 ext_sec->desc); 902 return -EINVAL; 903 } 904 905 total_record_size = sec_hdrlen + 906 (__u64)num_records * record_size; 907 if (info_left < total_record_size) { 908 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 909 ext_sec->desc); 910 return -EINVAL; 911 } 912 913 info_left -= total_record_size; 914 sinfo = (void *)sinfo + total_record_size; 915 } 916 917 ext_info = ext_sec->ext_info; 918 ext_info->len = ext_sec->len - sizeof(__u32); 919 ext_info->rec_size = record_size; 920 ext_info->info = info + sizeof(__u32); 921 922 return 0; 923 } 924 925 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 926 { 927 struct btf_ext_sec_setup_param param = { 928 .off = btf_ext->hdr->func_info_off, 929 .len = btf_ext->hdr->func_info_len, 930 .min_rec_size = sizeof(struct bpf_func_info_min), 931 .ext_info = &btf_ext->func_info, 932 .desc = "func_info" 933 }; 934 935 return btf_ext_setup_info(btf_ext, ¶m); 936 } 937 938 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 939 { 940 struct btf_ext_sec_setup_param param = { 941 .off = btf_ext->hdr->line_info_off, 942 .len = btf_ext->hdr->line_info_len, 943 .min_rec_size = sizeof(struct bpf_line_info_min), 944 .ext_info = &btf_ext->line_info, 945 .desc = "line_info", 946 }; 947 948 return btf_ext_setup_info(btf_ext, ¶m); 949 } 950 951 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext) 952 { 953 struct btf_ext_sec_setup_param param = { 954 .off = btf_ext->hdr->field_reloc_off, 955 .len = btf_ext->hdr->field_reloc_len, 956 .min_rec_size = sizeof(struct bpf_field_reloc), 957 .ext_info = &btf_ext->field_reloc_info, 958 .desc = "field_reloc", 959 }; 960 961 return btf_ext_setup_info(btf_ext, ¶m); 962 } 963 964 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 965 { 966 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 967 968 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 969 data_size < hdr->hdr_len) { 970 pr_debug("BTF.ext header not found"); 971 return -EINVAL; 972 } 973 974 if (hdr->magic != BTF_MAGIC) { 975 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 976 return -EINVAL; 977 } 978 979 if (hdr->version != BTF_VERSION) { 980 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 981 return -ENOTSUP; 982 } 983 984 if (hdr->flags) { 985 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 986 return -ENOTSUP; 987 } 988 989 if (data_size == hdr->hdr_len) { 990 pr_debug("BTF.ext has no data\n"); 991 return -EINVAL; 992 } 993 994 return 0; 995 } 996 997 void btf_ext__free(struct btf_ext *btf_ext) 998 { 999 if (!btf_ext) 1000 return; 1001 free(btf_ext->data); 1002 free(btf_ext); 1003 } 1004 1005 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 1006 { 1007 struct btf_ext *btf_ext; 1008 int err; 1009 1010 err = btf_ext_parse_hdr(data, size); 1011 if (err) 1012 return ERR_PTR(err); 1013 1014 btf_ext = calloc(1, sizeof(struct btf_ext)); 1015 if (!btf_ext) 1016 return ERR_PTR(-ENOMEM); 1017 1018 btf_ext->data_size = size; 1019 btf_ext->data = malloc(size); 1020 if (!btf_ext->data) { 1021 err = -ENOMEM; 1022 goto done; 1023 } 1024 memcpy(btf_ext->data, data, size); 1025 1026 if (btf_ext->hdr->hdr_len < 1027 offsetofend(struct btf_ext_header, line_info_len)) 1028 goto done; 1029 err = btf_ext_setup_func_info(btf_ext); 1030 if (err) 1031 goto done; 1032 1033 err = btf_ext_setup_line_info(btf_ext); 1034 if (err) 1035 goto done; 1036 1037 if (btf_ext->hdr->hdr_len < 1038 offsetofend(struct btf_ext_header, field_reloc_len)) 1039 goto done; 1040 err = btf_ext_setup_field_reloc(btf_ext); 1041 if (err) 1042 goto done; 1043 1044 done: 1045 if (err) { 1046 btf_ext__free(btf_ext); 1047 return ERR_PTR(err); 1048 } 1049 1050 return btf_ext; 1051 } 1052 1053 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1054 { 1055 *size = btf_ext->data_size; 1056 return btf_ext->data; 1057 } 1058 1059 static int btf_ext_reloc_info(const struct btf *btf, 1060 const struct btf_ext_info *ext_info, 1061 const char *sec_name, __u32 insns_cnt, 1062 void **info, __u32 *cnt) 1063 { 1064 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1065 __u32 i, record_size, existing_len, records_len; 1066 struct btf_ext_info_sec *sinfo; 1067 const char *info_sec_name; 1068 __u64 remain_len; 1069 void *data; 1070 1071 record_size = ext_info->rec_size; 1072 sinfo = ext_info->info; 1073 remain_len = ext_info->len; 1074 while (remain_len > 0) { 1075 records_len = sinfo->num_info * record_size; 1076 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1077 if (strcmp(info_sec_name, sec_name)) { 1078 remain_len -= sec_hdrlen + records_len; 1079 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1080 continue; 1081 } 1082 1083 existing_len = (*cnt) * record_size; 1084 data = realloc(*info, existing_len + records_len); 1085 if (!data) 1086 return -ENOMEM; 1087 1088 memcpy(data + existing_len, sinfo->data, records_len); 1089 /* adjust insn_off only, the rest data will be passed 1090 * to the kernel. 1091 */ 1092 for (i = 0; i < sinfo->num_info; i++) { 1093 __u32 *insn_off; 1094 1095 insn_off = data + existing_len + (i * record_size); 1096 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1097 insns_cnt; 1098 } 1099 *info = data; 1100 *cnt += sinfo->num_info; 1101 return 0; 1102 } 1103 1104 return -ENOENT; 1105 } 1106 1107 int btf_ext__reloc_func_info(const struct btf *btf, 1108 const struct btf_ext *btf_ext, 1109 const char *sec_name, __u32 insns_cnt, 1110 void **func_info, __u32 *cnt) 1111 { 1112 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1113 insns_cnt, func_info, cnt); 1114 } 1115 1116 int btf_ext__reloc_line_info(const struct btf *btf, 1117 const struct btf_ext *btf_ext, 1118 const char *sec_name, __u32 insns_cnt, 1119 void **line_info, __u32 *cnt) 1120 { 1121 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1122 insns_cnt, line_info, cnt); 1123 } 1124 1125 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1126 { 1127 return btf_ext->func_info.rec_size; 1128 } 1129 1130 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1131 { 1132 return btf_ext->line_info.rec_size; 1133 } 1134 1135 struct btf_dedup; 1136 1137 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1138 const struct btf_dedup_opts *opts); 1139 static void btf_dedup_free(struct btf_dedup *d); 1140 static int btf_dedup_strings(struct btf_dedup *d); 1141 static int btf_dedup_prim_types(struct btf_dedup *d); 1142 static int btf_dedup_struct_types(struct btf_dedup *d); 1143 static int btf_dedup_ref_types(struct btf_dedup *d); 1144 static int btf_dedup_compact_types(struct btf_dedup *d); 1145 static int btf_dedup_remap_types(struct btf_dedup *d); 1146 1147 /* 1148 * Deduplicate BTF types and strings. 1149 * 1150 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1151 * section with all BTF type descriptors and string data. It overwrites that 1152 * memory in-place with deduplicated types and strings without any loss of 1153 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1154 * is provided, all the strings referenced from .BTF.ext section are honored 1155 * and updated to point to the right offsets after deduplication. 1156 * 1157 * If function returns with error, type/string data might be garbled and should 1158 * be discarded. 1159 * 1160 * More verbose and detailed description of both problem btf_dedup is solving, 1161 * as well as solution could be found at: 1162 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1163 * 1164 * Problem description and justification 1165 * ===================================== 1166 * 1167 * BTF type information is typically emitted either as a result of conversion 1168 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1169 * unit contains information about a subset of all the types that are used 1170 * in an application. These subsets are frequently overlapping and contain a lot 1171 * of duplicated information when later concatenated together into a single 1172 * binary. This algorithm ensures that each unique type is represented by single 1173 * BTF type descriptor, greatly reducing resulting size of BTF data. 1174 * 1175 * Compilation unit isolation and subsequent duplication of data is not the only 1176 * problem. The same type hierarchy (e.g., struct and all the type that struct 1177 * references) in different compilation units can be represented in BTF to 1178 * various degrees of completeness (or, rather, incompleteness) due to 1179 * struct/union forward declarations. 1180 * 1181 * Let's take a look at an example, that we'll use to better understand the 1182 * problem (and solution). Suppose we have two compilation units, each using 1183 * same `struct S`, but each of them having incomplete type information about 1184 * struct's fields: 1185 * 1186 * // CU #1: 1187 * struct S; 1188 * struct A { 1189 * int a; 1190 * struct A* self; 1191 * struct S* parent; 1192 * }; 1193 * struct B; 1194 * struct S { 1195 * struct A* a_ptr; 1196 * struct B* b_ptr; 1197 * }; 1198 * 1199 * // CU #2: 1200 * struct S; 1201 * struct A; 1202 * struct B { 1203 * int b; 1204 * struct B* self; 1205 * struct S* parent; 1206 * }; 1207 * struct S { 1208 * struct A* a_ptr; 1209 * struct B* b_ptr; 1210 * }; 1211 * 1212 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1213 * more), but will know the complete type information about `struct A`. While 1214 * for CU #2, it will know full type information about `struct B`, but will 1215 * only know about forward declaration of `struct A` (in BTF terms, it will 1216 * have `BTF_KIND_FWD` type descriptor with name `B`). 1217 * 1218 * This compilation unit isolation means that it's possible that there is no 1219 * single CU with complete type information describing structs `S`, `A`, and 1220 * `B`. Also, we might get tons of duplicated and redundant type information. 1221 * 1222 * Additional complication we need to keep in mind comes from the fact that 1223 * types, in general, can form graphs containing cycles, not just DAGs. 1224 * 1225 * While algorithm does deduplication, it also merges and resolves type 1226 * information (unless disabled throught `struct btf_opts`), whenever possible. 1227 * E.g., in the example above with two compilation units having partial type 1228 * information for structs `A` and `B`, the output of algorithm will emit 1229 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1230 * (as well as type information for `int` and pointers), as if they were defined 1231 * in a single compilation unit as: 1232 * 1233 * struct A { 1234 * int a; 1235 * struct A* self; 1236 * struct S* parent; 1237 * }; 1238 * struct B { 1239 * int b; 1240 * struct B* self; 1241 * struct S* parent; 1242 * }; 1243 * struct S { 1244 * struct A* a_ptr; 1245 * struct B* b_ptr; 1246 * }; 1247 * 1248 * Algorithm summary 1249 * ================= 1250 * 1251 * Algorithm completes its work in 6 separate passes: 1252 * 1253 * 1. Strings deduplication. 1254 * 2. Primitive types deduplication (int, enum, fwd). 1255 * 3. Struct/union types deduplication. 1256 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1257 * protos, and const/volatile/restrict modifiers). 1258 * 5. Types compaction. 1259 * 6. Types remapping. 1260 * 1261 * Algorithm determines canonical type descriptor, which is a single 1262 * representative type for each truly unique type. This canonical type is the 1263 * one that will go into final deduplicated BTF type information. For 1264 * struct/unions, it is also the type that algorithm will merge additional type 1265 * information into (while resolving FWDs), as it discovers it from data in 1266 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1267 * that type is canonical, or to some other type, if that type is equivalent 1268 * and was chosen as canonical representative. This mapping is stored in 1269 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1270 * FWD type got resolved to. 1271 * 1272 * To facilitate fast discovery of canonical types, we also maintain canonical 1273 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1274 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1275 * that match that signature. With sufficiently good choice of type signature 1276 * hashing function, we can limit number of canonical types for each unique type 1277 * signature to a very small number, allowing to find canonical type for any 1278 * duplicated type very quickly. 1279 * 1280 * Struct/union deduplication is the most critical part and algorithm for 1281 * deduplicating structs/unions is described in greater details in comments for 1282 * `btf_dedup_is_equiv` function. 1283 */ 1284 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1285 const struct btf_dedup_opts *opts) 1286 { 1287 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1288 int err; 1289 1290 if (IS_ERR(d)) { 1291 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1292 return -EINVAL; 1293 } 1294 1295 err = btf_dedup_strings(d); 1296 if (err < 0) { 1297 pr_debug("btf_dedup_strings failed:%d\n", err); 1298 goto done; 1299 } 1300 err = btf_dedup_prim_types(d); 1301 if (err < 0) { 1302 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1303 goto done; 1304 } 1305 err = btf_dedup_struct_types(d); 1306 if (err < 0) { 1307 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1308 goto done; 1309 } 1310 err = btf_dedup_ref_types(d); 1311 if (err < 0) { 1312 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1313 goto done; 1314 } 1315 err = btf_dedup_compact_types(d); 1316 if (err < 0) { 1317 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1318 goto done; 1319 } 1320 err = btf_dedup_remap_types(d); 1321 if (err < 0) { 1322 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1323 goto done; 1324 } 1325 1326 done: 1327 btf_dedup_free(d); 1328 return err; 1329 } 1330 1331 #define BTF_UNPROCESSED_ID ((__u32)-1) 1332 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1333 1334 struct btf_dedup { 1335 /* .BTF section to be deduped in-place */ 1336 struct btf *btf; 1337 /* 1338 * Optional .BTF.ext section. When provided, any strings referenced 1339 * from it will be taken into account when deduping strings 1340 */ 1341 struct btf_ext *btf_ext; 1342 /* 1343 * This is a map from any type's signature hash to a list of possible 1344 * canonical representative type candidates. Hash collisions are 1345 * ignored, so even types of various kinds can share same list of 1346 * candidates, which is fine because we rely on subsequent 1347 * btf_xxx_equal() checks to authoritatively verify type equality. 1348 */ 1349 struct hashmap *dedup_table; 1350 /* Canonical types map */ 1351 __u32 *map; 1352 /* Hypothetical mapping, used during type graph equivalence checks */ 1353 __u32 *hypot_map; 1354 __u32 *hypot_list; 1355 size_t hypot_cnt; 1356 size_t hypot_cap; 1357 /* Various option modifying behavior of algorithm */ 1358 struct btf_dedup_opts opts; 1359 }; 1360 1361 struct btf_str_ptr { 1362 const char *str; 1363 __u32 new_off; 1364 bool used; 1365 }; 1366 1367 struct btf_str_ptrs { 1368 struct btf_str_ptr *ptrs; 1369 const char *data; 1370 __u32 cnt; 1371 __u32 cap; 1372 }; 1373 1374 static long hash_combine(long h, long value) 1375 { 1376 return h * 31 + value; 1377 } 1378 1379 #define for_each_dedup_cand(d, node, hash) \ 1380 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1381 1382 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1383 { 1384 return hashmap__append(d->dedup_table, 1385 (void *)hash, (void *)(long)type_id); 1386 } 1387 1388 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1389 __u32 from_id, __u32 to_id) 1390 { 1391 if (d->hypot_cnt == d->hypot_cap) { 1392 __u32 *new_list; 1393 1394 d->hypot_cap += max(16, d->hypot_cap / 2); 1395 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); 1396 if (!new_list) 1397 return -ENOMEM; 1398 d->hypot_list = new_list; 1399 } 1400 d->hypot_list[d->hypot_cnt++] = from_id; 1401 d->hypot_map[from_id] = to_id; 1402 return 0; 1403 } 1404 1405 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1406 { 1407 int i; 1408 1409 for (i = 0; i < d->hypot_cnt; i++) 1410 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1411 d->hypot_cnt = 0; 1412 } 1413 1414 static void btf_dedup_free(struct btf_dedup *d) 1415 { 1416 hashmap__free(d->dedup_table); 1417 d->dedup_table = NULL; 1418 1419 free(d->map); 1420 d->map = NULL; 1421 1422 free(d->hypot_map); 1423 d->hypot_map = NULL; 1424 1425 free(d->hypot_list); 1426 d->hypot_list = NULL; 1427 1428 free(d); 1429 } 1430 1431 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1432 { 1433 return (size_t)key; 1434 } 1435 1436 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1437 { 1438 return 0; 1439 } 1440 1441 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1442 { 1443 return k1 == k2; 1444 } 1445 1446 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1447 const struct btf_dedup_opts *opts) 1448 { 1449 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1450 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1451 int i, err = 0; 1452 1453 if (!d) 1454 return ERR_PTR(-ENOMEM); 1455 1456 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1457 /* dedup_table_size is now used only to force collisions in tests */ 1458 if (opts && opts->dedup_table_size == 1) 1459 hash_fn = btf_dedup_collision_hash_fn; 1460 1461 d->btf = btf; 1462 d->btf_ext = btf_ext; 1463 1464 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1465 if (IS_ERR(d->dedup_table)) { 1466 err = PTR_ERR(d->dedup_table); 1467 d->dedup_table = NULL; 1468 goto done; 1469 } 1470 1471 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1472 if (!d->map) { 1473 err = -ENOMEM; 1474 goto done; 1475 } 1476 /* special BTF "void" type is made canonical immediately */ 1477 d->map[0] = 0; 1478 for (i = 1; i <= btf->nr_types; i++) { 1479 struct btf_type *t = d->btf->types[i]; 1480 1481 /* VAR and DATASEC are never deduped and are self-canonical */ 1482 if (btf_is_var(t) || btf_is_datasec(t)) 1483 d->map[i] = i; 1484 else 1485 d->map[i] = BTF_UNPROCESSED_ID; 1486 } 1487 1488 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1489 if (!d->hypot_map) { 1490 err = -ENOMEM; 1491 goto done; 1492 } 1493 for (i = 0; i <= btf->nr_types; i++) 1494 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1495 1496 done: 1497 if (err) { 1498 btf_dedup_free(d); 1499 return ERR_PTR(err); 1500 } 1501 1502 return d; 1503 } 1504 1505 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1506 1507 /* 1508 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1509 * string and pass pointer to it to a provided callback `fn`. 1510 */ 1511 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1512 { 1513 void *line_data_cur, *line_data_end; 1514 int i, j, r, rec_size; 1515 struct btf_type *t; 1516 1517 for (i = 1; i <= d->btf->nr_types; i++) { 1518 t = d->btf->types[i]; 1519 r = fn(&t->name_off, ctx); 1520 if (r) 1521 return r; 1522 1523 switch (btf_kind(t)) { 1524 case BTF_KIND_STRUCT: 1525 case BTF_KIND_UNION: { 1526 struct btf_member *m = btf_members(t); 1527 __u16 vlen = btf_vlen(t); 1528 1529 for (j = 0; j < vlen; j++) { 1530 r = fn(&m->name_off, ctx); 1531 if (r) 1532 return r; 1533 m++; 1534 } 1535 break; 1536 } 1537 case BTF_KIND_ENUM: { 1538 struct btf_enum *m = btf_enum(t); 1539 __u16 vlen = btf_vlen(t); 1540 1541 for (j = 0; j < vlen; j++) { 1542 r = fn(&m->name_off, ctx); 1543 if (r) 1544 return r; 1545 m++; 1546 } 1547 break; 1548 } 1549 case BTF_KIND_FUNC_PROTO: { 1550 struct btf_param *m = btf_params(t); 1551 __u16 vlen = btf_vlen(t); 1552 1553 for (j = 0; j < vlen; j++) { 1554 r = fn(&m->name_off, ctx); 1555 if (r) 1556 return r; 1557 m++; 1558 } 1559 break; 1560 } 1561 default: 1562 break; 1563 } 1564 } 1565 1566 if (!d->btf_ext) 1567 return 0; 1568 1569 line_data_cur = d->btf_ext->line_info.info; 1570 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1571 rec_size = d->btf_ext->line_info.rec_size; 1572 1573 while (line_data_cur < line_data_end) { 1574 struct btf_ext_info_sec *sec = line_data_cur; 1575 struct bpf_line_info_min *line_info; 1576 __u32 num_info = sec->num_info; 1577 1578 r = fn(&sec->sec_name_off, ctx); 1579 if (r) 1580 return r; 1581 1582 line_data_cur += sizeof(struct btf_ext_info_sec); 1583 for (i = 0; i < num_info; i++) { 1584 line_info = line_data_cur; 1585 r = fn(&line_info->file_name_off, ctx); 1586 if (r) 1587 return r; 1588 r = fn(&line_info->line_off, ctx); 1589 if (r) 1590 return r; 1591 line_data_cur += rec_size; 1592 } 1593 } 1594 1595 return 0; 1596 } 1597 1598 static int str_sort_by_content(const void *a1, const void *a2) 1599 { 1600 const struct btf_str_ptr *p1 = a1; 1601 const struct btf_str_ptr *p2 = a2; 1602 1603 return strcmp(p1->str, p2->str); 1604 } 1605 1606 static int str_sort_by_offset(const void *a1, const void *a2) 1607 { 1608 const struct btf_str_ptr *p1 = a1; 1609 const struct btf_str_ptr *p2 = a2; 1610 1611 if (p1->str != p2->str) 1612 return p1->str < p2->str ? -1 : 1; 1613 return 0; 1614 } 1615 1616 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1617 { 1618 const struct btf_str_ptr *p = pelem; 1619 1620 if (str_ptr != p->str) 1621 return (const char *)str_ptr < p->str ? -1 : 1; 1622 return 0; 1623 } 1624 1625 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1626 { 1627 struct btf_str_ptrs *strs; 1628 struct btf_str_ptr *s; 1629 1630 if (*str_off_ptr == 0) 1631 return 0; 1632 1633 strs = ctx; 1634 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1635 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1636 if (!s) 1637 return -EINVAL; 1638 s->used = true; 1639 return 0; 1640 } 1641 1642 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1643 { 1644 struct btf_str_ptrs *strs; 1645 struct btf_str_ptr *s; 1646 1647 if (*str_off_ptr == 0) 1648 return 0; 1649 1650 strs = ctx; 1651 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1652 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1653 if (!s) 1654 return -EINVAL; 1655 *str_off_ptr = s->new_off; 1656 return 0; 1657 } 1658 1659 /* 1660 * Dedup string and filter out those that are not referenced from either .BTF 1661 * or .BTF.ext (if provided) sections. 1662 * 1663 * This is done by building index of all strings in BTF's string section, 1664 * then iterating over all entities that can reference strings (e.g., type 1665 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1666 * strings as used. After that all used strings are deduped and compacted into 1667 * sequential blob of memory and new offsets are calculated. Then all the string 1668 * references are iterated again and rewritten using new offsets. 1669 */ 1670 static int btf_dedup_strings(struct btf_dedup *d) 1671 { 1672 const struct btf_header *hdr = d->btf->hdr; 1673 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1674 char *end = start + d->btf->hdr->str_len; 1675 char *p = start, *tmp_strs = NULL; 1676 struct btf_str_ptrs strs = { 1677 .cnt = 0, 1678 .cap = 0, 1679 .ptrs = NULL, 1680 .data = start, 1681 }; 1682 int i, j, err = 0, grp_idx; 1683 bool grp_used; 1684 1685 /* build index of all strings */ 1686 while (p < end) { 1687 if (strs.cnt + 1 > strs.cap) { 1688 struct btf_str_ptr *new_ptrs; 1689 1690 strs.cap += max(strs.cnt / 2, 16); 1691 new_ptrs = realloc(strs.ptrs, 1692 sizeof(strs.ptrs[0]) * strs.cap); 1693 if (!new_ptrs) { 1694 err = -ENOMEM; 1695 goto done; 1696 } 1697 strs.ptrs = new_ptrs; 1698 } 1699 1700 strs.ptrs[strs.cnt].str = p; 1701 strs.ptrs[strs.cnt].used = false; 1702 1703 p += strlen(p) + 1; 1704 strs.cnt++; 1705 } 1706 1707 /* temporary storage for deduplicated strings */ 1708 tmp_strs = malloc(d->btf->hdr->str_len); 1709 if (!tmp_strs) { 1710 err = -ENOMEM; 1711 goto done; 1712 } 1713 1714 /* mark all used strings */ 1715 strs.ptrs[0].used = true; 1716 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1717 if (err) 1718 goto done; 1719 1720 /* sort strings by context, so that we can identify duplicates */ 1721 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1722 1723 /* 1724 * iterate groups of equal strings and if any instance in a group was 1725 * referenced, emit single instance and remember new offset 1726 */ 1727 p = tmp_strs; 1728 grp_idx = 0; 1729 grp_used = strs.ptrs[0].used; 1730 /* iterate past end to avoid code duplication after loop */ 1731 for (i = 1; i <= strs.cnt; i++) { 1732 /* 1733 * when i == strs.cnt, we want to skip string comparison and go 1734 * straight to handling last group of strings (otherwise we'd 1735 * need to handle last group after the loop w/ duplicated code) 1736 */ 1737 if (i < strs.cnt && 1738 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1739 grp_used = grp_used || strs.ptrs[i].used; 1740 continue; 1741 } 1742 1743 /* 1744 * this check would have been required after the loop to handle 1745 * last group of strings, but due to <= condition in a loop 1746 * we avoid that duplication 1747 */ 1748 if (grp_used) { 1749 int new_off = p - tmp_strs; 1750 __u32 len = strlen(strs.ptrs[grp_idx].str); 1751 1752 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1753 for (j = grp_idx; j < i; j++) 1754 strs.ptrs[j].new_off = new_off; 1755 p += len + 1; 1756 } 1757 1758 if (i < strs.cnt) { 1759 grp_idx = i; 1760 grp_used = strs.ptrs[i].used; 1761 } 1762 } 1763 1764 /* replace original strings with deduped ones */ 1765 d->btf->hdr->str_len = p - tmp_strs; 1766 memmove(start, tmp_strs, d->btf->hdr->str_len); 1767 end = start + d->btf->hdr->str_len; 1768 1769 /* restore original order for further binary search lookups */ 1770 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1771 1772 /* remap string offsets */ 1773 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1774 if (err) 1775 goto done; 1776 1777 d->btf->hdr->str_len = end - start; 1778 1779 done: 1780 free(tmp_strs); 1781 free(strs.ptrs); 1782 return err; 1783 } 1784 1785 static long btf_hash_common(struct btf_type *t) 1786 { 1787 long h; 1788 1789 h = hash_combine(0, t->name_off); 1790 h = hash_combine(h, t->info); 1791 h = hash_combine(h, t->size); 1792 return h; 1793 } 1794 1795 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1796 { 1797 return t1->name_off == t2->name_off && 1798 t1->info == t2->info && 1799 t1->size == t2->size; 1800 } 1801 1802 /* Calculate type signature hash of INT. */ 1803 static long btf_hash_int(struct btf_type *t) 1804 { 1805 __u32 info = *(__u32 *)(t + 1); 1806 long h; 1807 1808 h = btf_hash_common(t); 1809 h = hash_combine(h, info); 1810 return h; 1811 } 1812 1813 /* Check structural equality of two INTs. */ 1814 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1815 { 1816 __u32 info1, info2; 1817 1818 if (!btf_equal_common(t1, t2)) 1819 return false; 1820 info1 = *(__u32 *)(t1 + 1); 1821 info2 = *(__u32 *)(t2 + 1); 1822 return info1 == info2; 1823 } 1824 1825 /* Calculate type signature hash of ENUM. */ 1826 static long btf_hash_enum(struct btf_type *t) 1827 { 1828 long h; 1829 1830 /* don't hash vlen and enum members to support enum fwd resolving */ 1831 h = hash_combine(0, t->name_off); 1832 h = hash_combine(h, t->info & ~0xffff); 1833 h = hash_combine(h, t->size); 1834 return h; 1835 } 1836 1837 /* Check structural equality of two ENUMs. */ 1838 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 1839 { 1840 const struct btf_enum *m1, *m2; 1841 __u16 vlen; 1842 int i; 1843 1844 if (!btf_equal_common(t1, t2)) 1845 return false; 1846 1847 vlen = btf_vlen(t1); 1848 m1 = btf_enum(t1); 1849 m2 = btf_enum(t2); 1850 for (i = 0; i < vlen; i++) { 1851 if (m1->name_off != m2->name_off || m1->val != m2->val) 1852 return false; 1853 m1++; 1854 m2++; 1855 } 1856 return true; 1857 } 1858 1859 static inline bool btf_is_enum_fwd(struct btf_type *t) 1860 { 1861 return btf_is_enum(t) && btf_vlen(t) == 0; 1862 } 1863 1864 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 1865 { 1866 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 1867 return btf_equal_enum(t1, t2); 1868 /* ignore vlen when comparing */ 1869 return t1->name_off == t2->name_off && 1870 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 1871 t1->size == t2->size; 1872 } 1873 1874 /* 1875 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 1876 * as referenced type IDs equivalence is established separately during type 1877 * graph equivalence check algorithm. 1878 */ 1879 static long btf_hash_struct(struct btf_type *t) 1880 { 1881 const struct btf_member *member = btf_members(t); 1882 __u32 vlen = btf_vlen(t); 1883 long h = btf_hash_common(t); 1884 int i; 1885 1886 for (i = 0; i < vlen; i++) { 1887 h = hash_combine(h, member->name_off); 1888 h = hash_combine(h, member->offset); 1889 /* no hashing of referenced type ID, it can be unresolved yet */ 1890 member++; 1891 } 1892 return h; 1893 } 1894 1895 /* 1896 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1897 * IDs. This check is performed during type graph equivalence check and 1898 * referenced types equivalence is checked separately. 1899 */ 1900 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 1901 { 1902 const struct btf_member *m1, *m2; 1903 __u16 vlen; 1904 int i; 1905 1906 if (!btf_equal_common(t1, t2)) 1907 return false; 1908 1909 vlen = btf_vlen(t1); 1910 m1 = btf_members(t1); 1911 m2 = btf_members(t2); 1912 for (i = 0; i < vlen; i++) { 1913 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 1914 return false; 1915 m1++; 1916 m2++; 1917 } 1918 return true; 1919 } 1920 1921 /* 1922 * Calculate type signature hash of ARRAY, including referenced type IDs, 1923 * under assumption that they were already resolved to canonical type IDs and 1924 * are not going to change. 1925 */ 1926 static long btf_hash_array(struct btf_type *t) 1927 { 1928 const struct btf_array *info = btf_array(t); 1929 long h = btf_hash_common(t); 1930 1931 h = hash_combine(h, info->type); 1932 h = hash_combine(h, info->index_type); 1933 h = hash_combine(h, info->nelems); 1934 return h; 1935 } 1936 1937 /* 1938 * Check exact equality of two ARRAYs, taking into account referenced 1939 * type IDs, under assumption that they were already resolved to canonical 1940 * type IDs and are not going to change. 1941 * This function is called during reference types deduplication to compare 1942 * ARRAY to potential canonical representative. 1943 */ 1944 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 1945 { 1946 const struct btf_array *info1, *info2; 1947 1948 if (!btf_equal_common(t1, t2)) 1949 return false; 1950 1951 info1 = btf_array(t1); 1952 info2 = btf_array(t2); 1953 return info1->type == info2->type && 1954 info1->index_type == info2->index_type && 1955 info1->nelems == info2->nelems; 1956 } 1957 1958 /* 1959 * Check structural compatibility of two ARRAYs, ignoring referenced type 1960 * IDs. This check is performed during type graph equivalence check and 1961 * referenced types equivalence is checked separately. 1962 */ 1963 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 1964 { 1965 if (!btf_equal_common(t1, t2)) 1966 return false; 1967 1968 return btf_array(t1)->nelems == btf_array(t2)->nelems; 1969 } 1970 1971 /* 1972 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 1973 * under assumption that they were already resolved to canonical type IDs and 1974 * are not going to change. 1975 */ 1976 static long btf_hash_fnproto(struct btf_type *t) 1977 { 1978 const struct btf_param *member = btf_params(t); 1979 __u16 vlen = btf_vlen(t); 1980 long h = btf_hash_common(t); 1981 int i; 1982 1983 for (i = 0; i < vlen; i++) { 1984 h = hash_combine(h, member->name_off); 1985 h = hash_combine(h, member->type); 1986 member++; 1987 } 1988 return h; 1989 } 1990 1991 /* 1992 * Check exact equality of two FUNC_PROTOs, taking into account referenced 1993 * type IDs, under assumption that they were already resolved to canonical 1994 * type IDs and are not going to change. 1995 * This function is called during reference types deduplication to compare 1996 * FUNC_PROTO to potential canonical representative. 1997 */ 1998 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 1999 { 2000 const struct btf_param *m1, *m2; 2001 __u16 vlen; 2002 int i; 2003 2004 if (!btf_equal_common(t1, t2)) 2005 return false; 2006 2007 vlen = btf_vlen(t1); 2008 m1 = btf_params(t1); 2009 m2 = btf_params(t2); 2010 for (i = 0; i < vlen; i++) { 2011 if (m1->name_off != m2->name_off || m1->type != m2->type) 2012 return false; 2013 m1++; 2014 m2++; 2015 } 2016 return true; 2017 } 2018 2019 /* 2020 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2021 * IDs. This check is performed during type graph equivalence check and 2022 * referenced types equivalence is checked separately. 2023 */ 2024 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 2025 { 2026 const struct btf_param *m1, *m2; 2027 __u16 vlen; 2028 int i; 2029 2030 /* skip return type ID */ 2031 if (t1->name_off != t2->name_off || t1->info != t2->info) 2032 return false; 2033 2034 vlen = btf_vlen(t1); 2035 m1 = btf_params(t1); 2036 m2 = btf_params(t2); 2037 for (i = 0; i < vlen; i++) { 2038 if (m1->name_off != m2->name_off) 2039 return false; 2040 m1++; 2041 m2++; 2042 } 2043 return true; 2044 } 2045 2046 /* 2047 * Deduplicate primitive types, that can't reference other types, by calculating 2048 * their type signature hash and comparing them with any possible canonical 2049 * candidate. If no canonical candidate matches, type itself is marked as 2050 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2051 */ 2052 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2053 { 2054 struct btf_type *t = d->btf->types[type_id]; 2055 struct hashmap_entry *hash_entry; 2056 struct btf_type *cand; 2057 /* if we don't find equivalent type, then we are canonical */ 2058 __u32 new_id = type_id; 2059 __u32 cand_id; 2060 long h; 2061 2062 switch (btf_kind(t)) { 2063 case BTF_KIND_CONST: 2064 case BTF_KIND_VOLATILE: 2065 case BTF_KIND_RESTRICT: 2066 case BTF_KIND_PTR: 2067 case BTF_KIND_TYPEDEF: 2068 case BTF_KIND_ARRAY: 2069 case BTF_KIND_STRUCT: 2070 case BTF_KIND_UNION: 2071 case BTF_KIND_FUNC: 2072 case BTF_KIND_FUNC_PROTO: 2073 case BTF_KIND_VAR: 2074 case BTF_KIND_DATASEC: 2075 return 0; 2076 2077 case BTF_KIND_INT: 2078 h = btf_hash_int(t); 2079 for_each_dedup_cand(d, hash_entry, h) { 2080 cand_id = (__u32)(long)hash_entry->value; 2081 cand = d->btf->types[cand_id]; 2082 if (btf_equal_int(t, cand)) { 2083 new_id = cand_id; 2084 break; 2085 } 2086 } 2087 break; 2088 2089 case BTF_KIND_ENUM: 2090 h = btf_hash_enum(t); 2091 for_each_dedup_cand(d, hash_entry, h) { 2092 cand_id = (__u32)(long)hash_entry->value; 2093 cand = d->btf->types[cand_id]; 2094 if (btf_equal_enum(t, cand)) { 2095 new_id = cand_id; 2096 break; 2097 } 2098 if (d->opts.dont_resolve_fwds) 2099 continue; 2100 if (btf_compat_enum(t, cand)) { 2101 if (btf_is_enum_fwd(t)) { 2102 /* resolve fwd to full enum */ 2103 new_id = cand_id; 2104 break; 2105 } 2106 /* resolve canonical enum fwd to full enum */ 2107 d->map[cand_id] = type_id; 2108 } 2109 } 2110 break; 2111 2112 case BTF_KIND_FWD: 2113 h = btf_hash_common(t); 2114 for_each_dedup_cand(d, hash_entry, h) { 2115 cand_id = (__u32)(long)hash_entry->value; 2116 cand = d->btf->types[cand_id]; 2117 if (btf_equal_common(t, cand)) { 2118 new_id = cand_id; 2119 break; 2120 } 2121 } 2122 break; 2123 2124 default: 2125 return -EINVAL; 2126 } 2127 2128 d->map[type_id] = new_id; 2129 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2130 return -ENOMEM; 2131 2132 return 0; 2133 } 2134 2135 static int btf_dedup_prim_types(struct btf_dedup *d) 2136 { 2137 int i, err; 2138 2139 for (i = 1; i <= d->btf->nr_types; i++) { 2140 err = btf_dedup_prim_type(d, i); 2141 if (err) 2142 return err; 2143 } 2144 return 0; 2145 } 2146 2147 /* 2148 * Check whether type is already mapped into canonical one (could be to itself). 2149 */ 2150 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2151 { 2152 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2153 } 2154 2155 /* 2156 * Resolve type ID into its canonical type ID, if any; otherwise return original 2157 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2158 * STRUCT/UNION link and resolve it into canonical type ID as well. 2159 */ 2160 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2161 { 2162 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2163 type_id = d->map[type_id]; 2164 return type_id; 2165 } 2166 2167 /* 2168 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2169 * type ID. 2170 */ 2171 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2172 { 2173 __u32 orig_type_id = type_id; 2174 2175 if (!btf_is_fwd(d->btf->types[type_id])) 2176 return type_id; 2177 2178 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2179 type_id = d->map[type_id]; 2180 2181 if (!btf_is_fwd(d->btf->types[type_id])) 2182 return type_id; 2183 2184 return orig_type_id; 2185 } 2186 2187 2188 static inline __u16 btf_fwd_kind(struct btf_type *t) 2189 { 2190 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2191 } 2192 2193 /* 2194 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2195 * call it "candidate graph" in this description for brevity) to a type graph 2196 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2197 * here, though keep in mind that not all types in canonical graph are 2198 * necessarily canonical representatives themselves, some of them might be 2199 * duplicates or its uniqueness might not have been established yet). 2200 * Returns: 2201 * - >0, if type graphs are equivalent; 2202 * - 0, if not equivalent; 2203 * - <0, on error. 2204 * 2205 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2206 * equivalence of BTF types at each step. If at any point BTF types in candidate 2207 * and canonical graphs are not compatible structurally, whole graphs are 2208 * incompatible. If types are structurally equivalent (i.e., all information 2209 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2210 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2211 * If a type references other types, then those referenced types are checked 2212 * for equivalence recursively. 2213 * 2214 * During DFS traversal, if we find that for current `canon_id` type we 2215 * already have some mapping in hypothetical map, we check for two possible 2216 * situations: 2217 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2218 * happen when type graphs have cycles. In this case we assume those two 2219 * types are equivalent. 2220 * - `canon_id` is mapped to different type. This is contradiction in our 2221 * hypothetical mapping, because same graph in canonical graph corresponds 2222 * to two different types in candidate graph, which for equivalent type 2223 * graphs shouldn't happen. This condition terminates equivalence check 2224 * with negative result. 2225 * 2226 * If type graphs traversal exhausts types to check and find no contradiction, 2227 * then type graphs are equivalent. 2228 * 2229 * When checking types for equivalence, there is one special case: FWD types. 2230 * If FWD type resolution is allowed and one of the types (either from canonical 2231 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2232 * flag) and their names match, hypothetical mapping is updated to point from 2233 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2234 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2235 * 2236 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2237 * if there are two exactly named (or anonymous) structs/unions that are 2238 * compatible structurally, one of which has FWD field, while other is concrete 2239 * STRUCT/UNION, but according to C sources they are different structs/unions 2240 * that are referencing different types with the same name. This is extremely 2241 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2242 * this logic is causing problems. 2243 * 2244 * Doing FWD resolution means that both candidate and/or canonical graphs can 2245 * consists of portions of the graph that come from multiple compilation units. 2246 * This is due to the fact that types within single compilation unit are always 2247 * deduplicated and FWDs are already resolved, if referenced struct/union 2248 * definiton is available. So, if we had unresolved FWD and found corresponding 2249 * STRUCT/UNION, they will be from different compilation units. This 2250 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2251 * type graph will likely have at least two different BTF types that describe 2252 * same type (e.g., most probably there will be two different BTF types for the 2253 * same 'int' primitive type) and could even have "overlapping" parts of type 2254 * graph that describe same subset of types. 2255 * 2256 * This in turn means that our assumption that each type in canonical graph 2257 * must correspond to exactly one type in candidate graph might not hold 2258 * anymore and will make it harder to detect contradictions using hypothetical 2259 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2260 * resolution only in canonical graph. FWDs in candidate graphs are never 2261 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2262 * that can occur: 2263 * - Both types in canonical and candidate graphs are FWDs. If they are 2264 * structurally equivalent, then they can either be both resolved to the 2265 * same STRUCT/UNION or not resolved at all. In both cases they are 2266 * equivalent and there is no need to resolve FWD on candidate side. 2267 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2268 * so nothing to resolve as well, algorithm will check equivalence anyway. 2269 * - Type in canonical graph is FWD, while type in candidate is concrete 2270 * STRUCT/UNION. In this case candidate graph comes from single compilation 2271 * unit, so there is exactly one BTF type for each unique C type. After 2272 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2273 * in canonical graph mapping to single BTF type in candidate graph, but 2274 * because hypothetical mapping maps from canonical to candidate types, it's 2275 * alright, and we still maintain the property of having single `canon_id` 2276 * mapping to single `cand_id` (there could be two different `canon_id` 2277 * mapped to the same `cand_id`, but it's not contradictory). 2278 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2279 * graph is FWD. In this case we are just going to check compatibility of 2280 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2281 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2282 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2283 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2284 * canonical graph. 2285 */ 2286 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2287 __u32 canon_id) 2288 { 2289 struct btf_type *cand_type; 2290 struct btf_type *canon_type; 2291 __u32 hypot_type_id; 2292 __u16 cand_kind; 2293 __u16 canon_kind; 2294 int i, eq; 2295 2296 /* if both resolve to the same canonical, they must be equivalent */ 2297 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2298 return 1; 2299 2300 canon_id = resolve_fwd_id(d, canon_id); 2301 2302 hypot_type_id = d->hypot_map[canon_id]; 2303 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2304 return hypot_type_id == cand_id; 2305 2306 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2307 return -ENOMEM; 2308 2309 cand_type = d->btf->types[cand_id]; 2310 canon_type = d->btf->types[canon_id]; 2311 cand_kind = btf_kind(cand_type); 2312 canon_kind = btf_kind(canon_type); 2313 2314 if (cand_type->name_off != canon_type->name_off) 2315 return 0; 2316 2317 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2318 if (!d->opts.dont_resolve_fwds 2319 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2320 && cand_kind != canon_kind) { 2321 __u16 real_kind; 2322 __u16 fwd_kind; 2323 2324 if (cand_kind == BTF_KIND_FWD) { 2325 real_kind = canon_kind; 2326 fwd_kind = btf_fwd_kind(cand_type); 2327 } else { 2328 real_kind = cand_kind; 2329 fwd_kind = btf_fwd_kind(canon_type); 2330 } 2331 return fwd_kind == real_kind; 2332 } 2333 2334 if (cand_kind != canon_kind) 2335 return 0; 2336 2337 switch (cand_kind) { 2338 case BTF_KIND_INT: 2339 return btf_equal_int(cand_type, canon_type); 2340 2341 case BTF_KIND_ENUM: 2342 if (d->opts.dont_resolve_fwds) 2343 return btf_equal_enum(cand_type, canon_type); 2344 else 2345 return btf_compat_enum(cand_type, canon_type); 2346 2347 case BTF_KIND_FWD: 2348 return btf_equal_common(cand_type, canon_type); 2349 2350 case BTF_KIND_CONST: 2351 case BTF_KIND_VOLATILE: 2352 case BTF_KIND_RESTRICT: 2353 case BTF_KIND_PTR: 2354 case BTF_KIND_TYPEDEF: 2355 case BTF_KIND_FUNC: 2356 if (cand_type->info != canon_type->info) 2357 return 0; 2358 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2359 2360 case BTF_KIND_ARRAY: { 2361 const struct btf_array *cand_arr, *canon_arr; 2362 2363 if (!btf_compat_array(cand_type, canon_type)) 2364 return 0; 2365 cand_arr = btf_array(cand_type); 2366 canon_arr = btf_array(canon_type); 2367 eq = btf_dedup_is_equiv(d, 2368 cand_arr->index_type, canon_arr->index_type); 2369 if (eq <= 0) 2370 return eq; 2371 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2372 } 2373 2374 case BTF_KIND_STRUCT: 2375 case BTF_KIND_UNION: { 2376 const struct btf_member *cand_m, *canon_m; 2377 __u16 vlen; 2378 2379 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2380 return 0; 2381 vlen = btf_vlen(cand_type); 2382 cand_m = btf_members(cand_type); 2383 canon_m = btf_members(canon_type); 2384 for (i = 0; i < vlen; i++) { 2385 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2386 if (eq <= 0) 2387 return eq; 2388 cand_m++; 2389 canon_m++; 2390 } 2391 2392 return 1; 2393 } 2394 2395 case BTF_KIND_FUNC_PROTO: { 2396 const struct btf_param *cand_p, *canon_p; 2397 __u16 vlen; 2398 2399 if (!btf_compat_fnproto(cand_type, canon_type)) 2400 return 0; 2401 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2402 if (eq <= 0) 2403 return eq; 2404 vlen = btf_vlen(cand_type); 2405 cand_p = btf_params(cand_type); 2406 canon_p = btf_params(canon_type); 2407 for (i = 0; i < vlen; i++) { 2408 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2409 if (eq <= 0) 2410 return eq; 2411 cand_p++; 2412 canon_p++; 2413 } 2414 return 1; 2415 } 2416 2417 default: 2418 return -EINVAL; 2419 } 2420 return 0; 2421 } 2422 2423 /* 2424 * Use hypothetical mapping, produced by successful type graph equivalence 2425 * check, to augment existing struct/union canonical mapping, where possible. 2426 * 2427 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2428 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2429 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2430 * we are recording the mapping anyway. As opposed to carefulness required 2431 * for struct/union correspondence mapping (described below), for FWD resolution 2432 * it's not important, as by the time that FWD type (reference type) will be 2433 * deduplicated all structs/unions will be deduped already anyway. 2434 * 2435 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2436 * not required for correctness. It needs to be done carefully to ensure that 2437 * struct/union from candidate's type graph is not mapped into corresponding 2438 * struct/union from canonical type graph that itself hasn't been resolved into 2439 * canonical representative. The only guarantee we have is that canonical 2440 * struct/union was determined as canonical and that won't change. But any 2441 * types referenced through that struct/union fields could have been not yet 2442 * resolved, so in case like that it's too early to establish any kind of 2443 * correspondence between structs/unions. 2444 * 2445 * No canonical correspondence is derived for primitive types (they are already 2446 * deduplicated completely already anyway) or reference types (they rely on 2447 * stability of struct/union canonical relationship for equivalence checks). 2448 */ 2449 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2450 { 2451 __u32 cand_type_id, targ_type_id; 2452 __u16 t_kind, c_kind; 2453 __u32 t_id, c_id; 2454 int i; 2455 2456 for (i = 0; i < d->hypot_cnt; i++) { 2457 cand_type_id = d->hypot_list[i]; 2458 targ_type_id = d->hypot_map[cand_type_id]; 2459 t_id = resolve_type_id(d, targ_type_id); 2460 c_id = resolve_type_id(d, cand_type_id); 2461 t_kind = btf_kind(d->btf->types[t_id]); 2462 c_kind = btf_kind(d->btf->types[c_id]); 2463 /* 2464 * Resolve FWD into STRUCT/UNION. 2465 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2466 * mapped to canonical representative (as opposed to 2467 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2468 * eventually that struct is going to be mapped and all resolved 2469 * FWDs will automatically resolve to correct canonical 2470 * representative. This will happen before ref type deduping, 2471 * which critically depends on stability of these mapping. This 2472 * stability is not a requirement for STRUCT/UNION equivalence 2473 * checks, though. 2474 */ 2475 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2476 d->map[c_id] = t_id; 2477 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2478 d->map[t_id] = c_id; 2479 2480 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2481 c_kind != BTF_KIND_FWD && 2482 is_type_mapped(d, c_id) && 2483 !is_type_mapped(d, t_id)) { 2484 /* 2485 * as a perf optimization, we can map struct/union 2486 * that's part of type graph we just verified for 2487 * equivalence. We can do that for struct/union that has 2488 * canonical representative only, though. 2489 */ 2490 d->map[t_id] = c_id; 2491 } 2492 } 2493 } 2494 2495 /* 2496 * Deduplicate struct/union types. 2497 * 2498 * For each struct/union type its type signature hash is calculated, taking 2499 * into account type's name, size, number, order and names of fields, but 2500 * ignoring type ID's referenced from fields, because they might not be deduped 2501 * completely until after reference types deduplication phase. This type hash 2502 * is used to iterate over all potential canonical types, sharing same hash. 2503 * For each canonical candidate we check whether type graphs that they form 2504 * (through referenced types in fields and so on) are equivalent using algorithm 2505 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2506 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2507 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2508 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2509 * potentially map other structs/unions to their canonical representatives, 2510 * if such relationship hasn't yet been established. This speeds up algorithm 2511 * by eliminating some of the duplicate work. 2512 * 2513 * If no matching canonical representative was found, struct/union is marked 2514 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2515 * for further look ups. 2516 */ 2517 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2518 { 2519 struct btf_type *cand_type, *t; 2520 struct hashmap_entry *hash_entry; 2521 /* if we don't find equivalent type, then we are canonical */ 2522 __u32 new_id = type_id; 2523 __u16 kind; 2524 long h; 2525 2526 /* already deduped or is in process of deduping (loop detected) */ 2527 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2528 return 0; 2529 2530 t = d->btf->types[type_id]; 2531 kind = btf_kind(t); 2532 2533 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2534 return 0; 2535 2536 h = btf_hash_struct(t); 2537 for_each_dedup_cand(d, hash_entry, h) { 2538 __u32 cand_id = (__u32)(long)hash_entry->value; 2539 int eq; 2540 2541 /* 2542 * Even though btf_dedup_is_equiv() checks for 2543 * btf_shallow_equal_struct() internally when checking two 2544 * structs (unions) for equivalence, we need to guard here 2545 * from picking matching FWD type as a dedup candidate. 2546 * This can happen due to hash collision. In such case just 2547 * relying on btf_dedup_is_equiv() would lead to potentially 2548 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2549 * FWD and compatible STRUCT/UNION are considered equivalent. 2550 */ 2551 cand_type = d->btf->types[cand_id]; 2552 if (!btf_shallow_equal_struct(t, cand_type)) 2553 continue; 2554 2555 btf_dedup_clear_hypot_map(d); 2556 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2557 if (eq < 0) 2558 return eq; 2559 if (!eq) 2560 continue; 2561 new_id = cand_id; 2562 btf_dedup_merge_hypot_map(d); 2563 break; 2564 } 2565 2566 d->map[type_id] = new_id; 2567 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2568 return -ENOMEM; 2569 2570 return 0; 2571 } 2572 2573 static int btf_dedup_struct_types(struct btf_dedup *d) 2574 { 2575 int i, err; 2576 2577 for (i = 1; i <= d->btf->nr_types; i++) { 2578 err = btf_dedup_struct_type(d, i); 2579 if (err) 2580 return err; 2581 } 2582 return 0; 2583 } 2584 2585 /* 2586 * Deduplicate reference type. 2587 * 2588 * Once all primitive and struct/union types got deduplicated, we can easily 2589 * deduplicate all other (reference) BTF types. This is done in two steps: 2590 * 2591 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2592 * resolution can be done either immediately for primitive or struct/union types 2593 * (because they were deduped in previous two phases) or recursively for 2594 * reference types. Recursion will always terminate at either primitive or 2595 * struct/union type, at which point we can "unwind" chain of reference types 2596 * one by one. There is no danger of encountering cycles because in C type 2597 * system the only way to form type cycle is through struct/union, so any chain 2598 * of reference types, even those taking part in a type cycle, will inevitably 2599 * reach struct/union at some point. 2600 * 2601 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2602 * becomes "stable", in the sense that no further deduplication will cause 2603 * any changes to it. With that, it's now possible to calculate type's signature 2604 * hash (this time taking into account referenced type IDs) and loop over all 2605 * potential canonical representatives. If no match was found, current type 2606 * will become canonical representative of itself and will be added into 2607 * btf_dedup->dedup_table as another possible canonical representative. 2608 */ 2609 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2610 { 2611 struct hashmap_entry *hash_entry; 2612 __u32 new_id = type_id, cand_id; 2613 struct btf_type *t, *cand; 2614 /* if we don't find equivalent type, then we are representative type */ 2615 int ref_type_id; 2616 long h; 2617 2618 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2619 return -ELOOP; 2620 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2621 return resolve_type_id(d, type_id); 2622 2623 t = d->btf->types[type_id]; 2624 d->map[type_id] = BTF_IN_PROGRESS_ID; 2625 2626 switch (btf_kind(t)) { 2627 case BTF_KIND_CONST: 2628 case BTF_KIND_VOLATILE: 2629 case BTF_KIND_RESTRICT: 2630 case BTF_KIND_PTR: 2631 case BTF_KIND_TYPEDEF: 2632 case BTF_KIND_FUNC: 2633 ref_type_id = btf_dedup_ref_type(d, t->type); 2634 if (ref_type_id < 0) 2635 return ref_type_id; 2636 t->type = ref_type_id; 2637 2638 h = btf_hash_common(t); 2639 for_each_dedup_cand(d, hash_entry, h) { 2640 cand_id = (__u32)(long)hash_entry->value; 2641 cand = d->btf->types[cand_id]; 2642 if (btf_equal_common(t, cand)) { 2643 new_id = cand_id; 2644 break; 2645 } 2646 } 2647 break; 2648 2649 case BTF_KIND_ARRAY: { 2650 struct btf_array *info = btf_array(t); 2651 2652 ref_type_id = btf_dedup_ref_type(d, info->type); 2653 if (ref_type_id < 0) 2654 return ref_type_id; 2655 info->type = ref_type_id; 2656 2657 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2658 if (ref_type_id < 0) 2659 return ref_type_id; 2660 info->index_type = ref_type_id; 2661 2662 h = btf_hash_array(t); 2663 for_each_dedup_cand(d, hash_entry, h) { 2664 cand_id = (__u32)(long)hash_entry->value; 2665 cand = d->btf->types[cand_id]; 2666 if (btf_equal_array(t, cand)) { 2667 new_id = cand_id; 2668 break; 2669 } 2670 } 2671 break; 2672 } 2673 2674 case BTF_KIND_FUNC_PROTO: { 2675 struct btf_param *param; 2676 __u16 vlen; 2677 int i; 2678 2679 ref_type_id = btf_dedup_ref_type(d, t->type); 2680 if (ref_type_id < 0) 2681 return ref_type_id; 2682 t->type = ref_type_id; 2683 2684 vlen = btf_vlen(t); 2685 param = btf_params(t); 2686 for (i = 0; i < vlen; i++) { 2687 ref_type_id = btf_dedup_ref_type(d, param->type); 2688 if (ref_type_id < 0) 2689 return ref_type_id; 2690 param->type = ref_type_id; 2691 param++; 2692 } 2693 2694 h = btf_hash_fnproto(t); 2695 for_each_dedup_cand(d, hash_entry, h) { 2696 cand_id = (__u32)(long)hash_entry->value; 2697 cand = d->btf->types[cand_id]; 2698 if (btf_equal_fnproto(t, cand)) { 2699 new_id = cand_id; 2700 break; 2701 } 2702 } 2703 break; 2704 } 2705 2706 default: 2707 return -EINVAL; 2708 } 2709 2710 d->map[type_id] = new_id; 2711 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2712 return -ENOMEM; 2713 2714 return new_id; 2715 } 2716 2717 static int btf_dedup_ref_types(struct btf_dedup *d) 2718 { 2719 int i, err; 2720 2721 for (i = 1; i <= d->btf->nr_types; i++) { 2722 err = btf_dedup_ref_type(d, i); 2723 if (err < 0) 2724 return err; 2725 } 2726 /* we won't need d->dedup_table anymore */ 2727 hashmap__free(d->dedup_table); 2728 d->dedup_table = NULL; 2729 return 0; 2730 } 2731 2732 /* 2733 * Compact types. 2734 * 2735 * After we established for each type its corresponding canonical representative 2736 * type, we now can eliminate types that are not canonical and leave only 2737 * canonical ones layed out sequentially in memory by copying them over 2738 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2739 * a map from original type ID to a new compacted type ID, which will be used 2740 * during next phase to "fix up" type IDs, referenced from struct/union and 2741 * reference types. 2742 */ 2743 static int btf_dedup_compact_types(struct btf_dedup *d) 2744 { 2745 struct btf_type **new_types; 2746 __u32 next_type_id = 1; 2747 char *types_start, *p; 2748 int i, len; 2749 2750 /* we are going to reuse hypot_map to store compaction remapping */ 2751 d->hypot_map[0] = 0; 2752 for (i = 1; i <= d->btf->nr_types; i++) 2753 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2754 2755 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2756 p = types_start; 2757 2758 for (i = 1; i <= d->btf->nr_types; i++) { 2759 if (d->map[i] != i) 2760 continue; 2761 2762 len = btf_type_size(d->btf->types[i]); 2763 if (len < 0) 2764 return len; 2765 2766 memmove(p, d->btf->types[i], len); 2767 d->hypot_map[i] = next_type_id; 2768 d->btf->types[next_type_id] = (struct btf_type *)p; 2769 p += len; 2770 next_type_id++; 2771 } 2772 2773 /* shrink struct btf's internal types index and update btf_header */ 2774 d->btf->nr_types = next_type_id - 1; 2775 d->btf->types_size = d->btf->nr_types; 2776 d->btf->hdr->type_len = p - types_start; 2777 new_types = realloc(d->btf->types, 2778 (1 + d->btf->nr_types) * sizeof(struct btf_type *)); 2779 if (!new_types) 2780 return -ENOMEM; 2781 d->btf->types = new_types; 2782 2783 /* make sure string section follows type information without gaps */ 2784 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2785 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2786 d->btf->strings = p; 2787 p += d->btf->hdr->str_len; 2788 2789 d->btf->data_size = p - (char *)d->btf->data; 2790 return 0; 2791 } 2792 2793 /* 2794 * Figure out final (deduplicated and compacted) type ID for provided original 2795 * `type_id` by first resolving it into corresponding canonical type ID and 2796 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2797 * which is populated during compaction phase. 2798 */ 2799 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2800 { 2801 __u32 resolved_type_id, new_type_id; 2802 2803 resolved_type_id = resolve_type_id(d, type_id); 2804 new_type_id = d->hypot_map[resolved_type_id]; 2805 if (new_type_id > BTF_MAX_NR_TYPES) 2806 return -EINVAL; 2807 return new_type_id; 2808 } 2809 2810 /* 2811 * Remap referenced type IDs into deduped type IDs. 2812 * 2813 * After BTF types are deduplicated and compacted, their final type IDs may 2814 * differ from original ones. The map from original to a corresponding 2815 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2816 * compaction phase. During remapping phase we are rewriting all type IDs 2817 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2818 * their final deduped type IDs. 2819 */ 2820 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2821 { 2822 struct btf_type *t = d->btf->types[type_id]; 2823 int i, r; 2824 2825 switch (btf_kind(t)) { 2826 case BTF_KIND_INT: 2827 case BTF_KIND_ENUM: 2828 break; 2829 2830 case BTF_KIND_FWD: 2831 case BTF_KIND_CONST: 2832 case BTF_KIND_VOLATILE: 2833 case BTF_KIND_RESTRICT: 2834 case BTF_KIND_PTR: 2835 case BTF_KIND_TYPEDEF: 2836 case BTF_KIND_FUNC: 2837 case BTF_KIND_VAR: 2838 r = btf_dedup_remap_type_id(d, t->type); 2839 if (r < 0) 2840 return r; 2841 t->type = r; 2842 break; 2843 2844 case BTF_KIND_ARRAY: { 2845 struct btf_array *arr_info = btf_array(t); 2846 2847 r = btf_dedup_remap_type_id(d, arr_info->type); 2848 if (r < 0) 2849 return r; 2850 arr_info->type = r; 2851 r = btf_dedup_remap_type_id(d, arr_info->index_type); 2852 if (r < 0) 2853 return r; 2854 arr_info->index_type = r; 2855 break; 2856 } 2857 2858 case BTF_KIND_STRUCT: 2859 case BTF_KIND_UNION: { 2860 struct btf_member *member = btf_members(t); 2861 __u16 vlen = btf_vlen(t); 2862 2863 for (i = 0; i < vlen; i++) { 2864 r = btf_dedup_remap_type_id(d, member->type); 2865 if (r < 0) 2866 return r; 2867 member->type = r; 2868 member++; 2869 } 2870 break; 2871 } 2872 2873 case BTF_KIND_FUNC_PROTO: { 2874 struct btf_param *param = btf_params(t); 2875 __u16 vlen = btf_vlen(t); 2876 2877 r = btf_dedup_remap_type_id(d, t->type); 2878 if (r < 0) 2879 return r; 2880 t->type = r; 2881 2882 for (i = 0; i < vlen; i++) { 2883 r = btf_dedup_remap_type_id(d, param->type); 2884 if (r < 0) 2885 return r; 2886 param->type = r; 2887 param++; 2888 } 2889 break; 2890 } 2891 2892 case BTF_KIND_DATASEC: { 2893 struct btf_var_secinfo *var = btf_var_secinfos(t); 2894 __u16 vlen = btf_vlen(t); 2895 2896 for (i = 0; i < vlen; i++) { 2897 r = btf_dedup_remap_type_id(d, var->type); 2898 if (r < 0) 2899 return r; 2900 var->type = r; 2901 var++; 2902 } 2903 break; 2904 } 2905 2906 default: 2907 return -EINVAL; 2908 } 2909 2910 return 0; 2911 } 2912 2913 static int btf_dedup_remap_types(struct btf_dedup *d) 2914 { 2915 int i, r; 2916 2917 for (i = 1; i <= d->btf->nr_types; i++) { 2918 r = btf_dedup_remap_type(d, i); 2919 if (r < 0) 2920 return r; 2921 } 2922 return 0; 2923 } 2924