xref: /linux/tools/lib/bpf/btf.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return errno = EINVAL, NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return libbpf_err(-EINVAL);
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return libbpf_err(-EINVAL);
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 		switch (btf_kind(t)) {
573 		case BTF_KIND_INT:
574 		case BTF_KIND_STRUCT:
575 		case BTF_KIND_UNION:
576 		case BTF_KIND_ENUM:
577 		case BTF_KIND_DATASEC:
578 		case BTF_KIND_FLOAT:
579 			size = t->size;
580 			goto done;
581 		case BTF_KIND_PTR:
582 			size = btf_ptr_sz(btf);
583 			goto done;
584 		case BTF_KIND_TYPEDEF:
585 		case BTF_KIND_VOLATILE:
586 		case BTF_KIND_CONST:
587 		case BTF_KIND_RESTRICT:
588 		case BTF_KIND_VAR:
589 			type_id = t->type;
590 			break;
591 		case BTF_KIND_ARRAY:
592 			array = btf_array(t);
593 			if (nelems && array->nelems > UINT32_MAX / nelems)
594 				return libbpf_err(-E2BIG);
595 			nelems *= array->nelems;
596 			type_id = array->type;
597 			break;
598 		default:
599 			return libbpf_err(-EINVAL);
600 		}
601 
602 		t = btf__type_by_id(btf, type_id);
603 	}
604 
605 done:
606 	if (size < 0)
607 		return libbpf_err(-EINVAL);
608 	if (nelems && size > UINT32_MAX / nelems)
609 		return libbpf_err(-E2BIG);
610 
611 	return nelems * size;
612 }
613 
614 int btf__align_of(const struct btf *btf, __u32 id)
615 {
616 	const struct btf_type *t = btf__type_by_id(btf, id);
617 	__u16 kind = btf_kind(t);
618 
619 	switch (kind) {
620 	case BTF_KIND_INT:
621 	case BTF_KIND_ENUM:
622 	case BTF_KIND_FLOAT:
623 		return min(btf_ptr_sz(btf), (size_t)t->size);
624 	case BTF_KIND_PTR:
625 		return btf_ptr_sz(btf);
626 	case BTF_KIND_TYPEDEF:
627 	case BTF_KIND_VOLATILE:
628 	case BTF_KIND_CONST:
629 	case BTF_KIND_RESTRICT:
630 		return btf__align_of(btf, t->type);
631 	case BTF_KIND_ARRAY:
632 		return btf__align_of(btf, btf_array(t)->type);
633 	case BTF_KIND_STRUCT:
634 	case BTF_KIND_UNION: {
635 		const struct btf_member *m = btf_members(t);
636 		__u16 vlen = btf_vlen(t);
637 		int i, max_align = 1, align;
638 
639 		for (i = 0; i < vlen; i++, m++) {
640 			align = btf__align_of(btf, m->type);
641 			if (align <= 0)
642 				return libbpf_err(align);
643 			max_align = max(max_align, align);
644 		}
645 
646 		return max_align;
647 	}
648 	default:
649 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 		return errno = EINVAL, 0;
651 	}
652 }
653 
654 int btf__resolve_type(const struct btf *btf, __u32 type_id)
655 {
656 	const struct btf_type *t;
657 	int depth = 0;
658 
659 	t = btf__type_by_id(btf, type_id);
660 	while (depth < MAX_RESOLVE_DEPTH &&
661 	       !btf_type_is_void_or_null(t) &&
662 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 		type_id = t->type;
664 		t = btf__type_by_id(btf, type_id);
665 		depth++;
666 	}
667 
668 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 		return libbpf_err(-EINVAL);
670 
671 	return type_id;
672 }
673 
674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675 {
676 	__u32 i, nr_types = btf__get_nr_types(btf);
677 
678 	if (!strcmp(type_name, "void"))
679 		return 0;
680 
681 	for (i = 1; i <= nr_types; i++) {
682 		const struct btf_type *t = btf__type_by_id(btf, i);
683 		const char *name = btf__name_by_offset(btf, t->name_off);
684 
685 		if (name && !strcmp(type_name, name))
686 			return i;
687 	}
688 
689 	return libbpf_err(-ENOENT);
690 }
691 
692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 			     __u32 kind)
694 {
695 	__u32 i, nr_types = btf__get_nr_types(btf);
696 
697 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 		return 0;
699 
700 	for (i = 1; i <= nr_types; i++) {
701 		const struct btf_type *t = btf__type_by_id(btf, i);
702 		const char *name;
703 
704 		if (btf_kind(t) != kind)
705 			continue;
706 		name = btf__name_by_offset(btf, t->name_off);
707 		if (name && !strcmp(type_name, name))
708 			return i;
709 	}
710 
711 	return libbpf_err(-ENOENT);
712 }
713 
714 static bool btf_is_modifiable(const struct btf *btf)
715 {
716 	return (void *)btf->hdr != btf->raw_data;
717 }
718 
719 void btf__free(struct btf *btf)
720 {
721 	if (IS_ERR_OR_NULL(btf))
722 		return;
723 
724 	if (btf->fd >= 0)
725 		close(btf->fd);
726 
727 	if (btf_is_modifiable(btf)) {
728 		/* if BTF was modified after loading, it will have a split
729 		 * in-memory representation for header, types, and strings
730 		 * sections, so we need to free all of them individually. It
731 		 * might still have a cached contiguous raw data present,
732 		 * which will be unconditionally freed below.
733 		 */
734 		free(btf->hdr);
735 		free(btf->types_data);
736 		strset__free(btf->strs_set);
737 	}
738 	free(btf->raw_data);
739 	free(btf->raw_data_swapped);
740 	free(btf->type_offs);
741 	free(btf);
742 }
743 
744 static struct btf *btf_new_empty(struct btf *base_btf)
745 {
746 	struct btf *btf;
747 
748 	btf = calloc(1, sizeof(*btf));
749 	if (!btf)
750 		return ERR_PTR(-ENOMEM);
751 
752 	btf->nr_types = 0;
753 	btf->start_id = 1;
754 	btf->start_str_off = 0;
755 	btf->fd = -1;
756 	btf->ptr_sz = sizeof(void *);
757 	btf->swapped_endian = false;
758 
759 	if (base_btf) {
760 		btf->base_btf = base_btf;
761 		btf->start_id = btf__get_nr_types(base_btf) + 1;
762 		btf->start_str_off = base_btf->hdr->str_len;
763 	}
764 
765 	/* +1 for empty string at offset 0 */
766 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 	btf->raw_data = calloc(1, btf->raw_size);
768 	if (!btf->raw_data) {
769 		free(btf);
770 		return ERR_PTR(-ENOMEM);
771 	}
772 
773 	btf->hdr = btf->raw_data;
774 	btf->hdr->hdr_len = sizeof(struct btf_header);
775 	btf->hdr->magic = BTF_MAGIC;
776 	btf->hdr->version = BTF_VERSION;
777 
778 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781 
782 	return btf;
783 }
784 
785 struct btf *btf__new_empty(void)
786 {
787 	return libbpf_ptr(btf_new_empty(NULL));
788 }
789 
790 struct btf *btf__new_empty_split(struct btf *base_btf)
791 {
792 	return libbpf_ptr(btf_new_empty(base_btf));
793 }
794 
795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796 {
797 	struct btf *btf;
798 	int err;
799 
800 	btf = calloc(1, sizeof(struct btf));
801 	if (!btf)
802 		return ERR_PTR(-ENOMEM);
803 
804 	btf->nr_types = 0;
805 	btf->start_id = 1;
806 	btf->start_str_off = 0;
807 
808 	if (base_btf) {
809 		btf->base_btf = base_btf;
810 		btf->start_id = btf__get_nr_types(base_btf) + 1;
811 		btf->start_str_off = base_btf->hdr->str_len;
812 	}
813 
814 	btf->raw_data = malloc(size);
815 	if (!btf->raw_data) {
816 		err = -ENOMEM;
817 		goto done;
818 	}
819 	memcpy(btf->raw_data, data, size);
820 	btf->raw_size = size;
821 
822 	btf->hdr = btf->raw_data;
823 	err = btf_parse_hdr(btf);
824 	if (err)
825 		goto done;
826 
827 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
828 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
829 
830 	err = btf_parse_str_sec(btf);
831 	err = err ?: btf_parse_type_sec(btf);
832 	if (err)
833 		goto done;
834 
835 	btf->fd = -1;
836 
837 done:
838 	if (err) {
839 		btf__free(btf);
840 		return ERR_PTR(err);
841 	}
842 
843 	return btf;
844 }
845 
846 struct btf *btf__new(const void *data, __u32 size)
847 {
848 	return libbpf_ptr(btf_new(data, size, NULL));
849 }
850 
851 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
852 				 struct btf_ext **btf_ext)
853 {
854 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
855 	int err = 0, fd = -1, idx = 0;
856 	struct btf *btf = NULL;
857 	Elf_Scn *scn = NULL;
858 	Elf *elf = NULL;
859 	GElf_Ehdr ehdr;
860 	size_t shstrndx;
861 
862 	if (elf_version(EV_CURRENT) == EV_NONE) {
863 		pr_warn("failed to init libelf for %s\n", path);
864 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
865 	}
866 
867 	fd = open(path, O_RDONLY);
868 	if (fd < 0) {
869 		err = -errno;
870 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
871 		return ERR_PTR(err);
872 	}
873 
874 	err = -LIBBPF_ERRNO__FORMAT;
875 
876 	elf = elf_begin(fd, ELF_C_READ, NULL);
877 	if (!elf) {
878 		pr_warn("failed to open %s as ELF file\n", path);
879 		goto done;
880 	}
881 	if (!gelf_getehdr(elf, &ehdr)) {
882 		pr_warn("failed to get EHDR from %s\n", path);
883 		goto done;
884 	}
885 
886 	if (elf_getshdrstrndx(elf, &shstrndx)) {
887 		pr_warn("failed to get section names section index for %s\n",
888 			path);
889 		goto done;
890 	}
891 
892 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
893 		pr_warn("failed to get e_shstrndx from %s\n", path);
894 		goto done;
895 	}
896 
897 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
898 		GElf_Shdr sh;
899 		char *name;
900 
901 		idx++;
902 		if (gelf_getshdr(scn, &sh) != &sh) {
903 			pr_warn("failed to get section(%d) header from %s\n",
904 				idx, path);
905 			goto done;
906 		}
907 		name = elf_strptr(elf, shstrndx, sh.sh_name);
908 		if (!name) {
909 			pr_warn("failed to get section(%d) name from %s\n",
910 				idx, path);
911 			goto done;
912 		}
913 		if (strcmp(name, BTF_ELF_SEC) == 0) {
914 			btf_data = elf_getdata(scn, 0);
915 			if (!btf_data) {
916 				pr_warn("failed to get section(%d, %s) data from %s\n",
917 					idx, name, path);
918 				goto done;
919 			}
920 			continue;
921 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
922 			btf_ext_data = elf_getdata(scn, 0);
923 			if (!btf_ext_data) {
924 				pr_warn("failed to get section(%d, %s) data from %s\n",
925 					idx, name, path);
926 				goto done;
927 			}
928 			continue;
929 		}
930 	}
931 
932 	err = 0;
933 
934 	if (!btf_data) {
935 		err = -ENOENT;
936 		goto done;
937 	}
938 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
939 	err = libbpf_get_error(btf);
940 	if (err)
941 		goto done;
942 
943 	switch (gelf_getclass(elf)) {
944 	case ELFCLASS32:
945 		btf__set_pointer_size(btf, 4);
946 		break;
947 	case ELFCLASS64:
948 		btf__set_pointer_size(btf, 8);
949 		break;
950 	default:
951 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
952 		break;
953 	}
954 
955 	if (btf_ext && btf_ext_data) {
956 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
957 		err = libbpf_get_error(*btf_ext);
958 		if (err)
959 			goto done;
960 	} else if (btf_ext) {
961 		*btf_ext = NULL;
962 	}
963 done:
964 	if (elf)
965 		elf_end(elf);
966 	close(fd);
967 
968 	if (!err)
969 		return btf;
970 
971 	if (btf_ext)
972 		btf_ext__free(*btf_ext);
973 	btf__free(btf);
974 
975 	return ERR_PTR(err);
976 }
977 
978 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
979 {
980 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
981 }
982 
983 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
984 {
985 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
986 }
987 
988 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
989 {
990 	struct btf *btf = NULL;
991 	void *data = NULL;
992 	FILE *f = NULL;
993 	__u16 magic;
994 	int err = 0;
995 	long sz;
996 
997 	f = fopen(path, "rb");
998 	if (!f) {
999 		err = -errno;
1000 		goto err_out;
1001 	}
1002 
1003 	/* check BTF magic */
1004 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1005 		err = -EIO;
1006 		goto err_out;
1007 	}
1008 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1009 		/* definitely not a raw BTF */
1010 		err = -EPROTO;
1011 		goto err_out;
1012 	}
1013 
1014 	/* get file size */
1015 	if (fseek(f, 0, SEEK_END)) {
1016 		err = -errno;
1017 		goto err_out;
1018 	}
1019 	sz = ftell(f);
1020 	if (sz < 0) {
1021 		err = -errno;
1022 		goto err_out;
1023 	}
1024 	/* rewind to the start */
1025 	if (fseek(f, 0, SEEK_SET)) {
1026 		err = -errno;
1027 		goto err_out;
1028 	}
1029 
1030 	/* pre-alloc memory and read all of BTF data */
1031 	data = malloc(sz);
1032 	if (!data) {
1033 		err = -ENOMEM;
1034 		goto err_out;
1035 	}
1036 	if (fread(data, 1, sz, f) < sz) {
1037 		err = -EIO;
1038 		goto err_out;
1039 	}
1040 
1041 	/* finally parse BTF data */
1042 	btf = btf_new(data, sz, base_btf);
1043 
1044 err_out:
1045 	free(data);
1046 	if (f)
1047 		fclose(f);
1048 	return err ? ERR_PTR(err) : btf;
1049 }
1050 
1051 struct btf *btf__parse_raw(const char *path)
1052 {
1053 	return libbpf_ptr(btf_parse_raw(path, NULL));
1054 }
1055 
1056 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1057 {
1058 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1059 }
1060 
1061 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1062 {
1063 	struct btf *btf;
1064 	int err;
1065 
1066 	if (btf_ext)
1067 		*btf_ext = NULL;
1068 
1069 	btf = btf_parse_raw(path, base_btf);
1070 	err = libbpf_get_error(btf);
1071 	if (!err)
1072 		return btf;
1073 	if (err != -EPROTO)
1074 		return ERR_PTR(err);
1075 	return btf_parse_elf(path, base_btf, btf_ext);
1076 }
1077 
1078 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1079 {
1080 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1081 }
1082 
1083 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1084 {
1085 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1086 }
1087 
1088 static int compare_vsi_off(const void *_a, const void *_b)
1089 {
1090 	const struct btf_var_secinfo *a = _a;
1091 	const struct btf_var_secinfo *b = _b;
1092 
1093 	return a->offset - b->offset;
1094 }
1095 
1096 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1097 			     struct btf_type *t)
1098 {
1099 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1100 	const char *name = btf__name_by_offset(btf, t->name_off);
1101 	const struct btf_type *t_var;
1102 	struct btf_var_secinfo *vsi;
1103 	const struct btf_var *var;
1104 	int ret;
1105 
1106 	if (!name) {
1107 		pr_debug("No name found in string section for DATASEC kind.\n");
1108 		return -ENOENT;
1109 	}
1110 
1111 	/* .extern datasec size and var offsets were set correctly during
1112 	 * extern collection step, so just skip straight to sorting variables
1113 	 */
1114 	if (t->size)
1115 		goto sort_vars;
1116 
1117 	ret = bpf_object__section_size(obj, name, &size);
1118 	if (ret || !size || (t->size && t->size != size)) {
1119 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1120 		return -ENOENT;
1121 	}
1122 
1123 	t->size = size;
1124 
1125 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1126 		t_var = btf__type_by_id(btf, vsi->type);
1127 		var = btf_var(t_var);
1128 
1129 		if (!btf_is_var(t_var)) {
1130 			pr_debug("Non-VAR type seen in section %s\n", name);
1131 			return -EINVAL;
1132 		}
1133 
1134 		if (var->linkage == BTF_VAR_STATIC)
1135 			continue;
1136 
1137 		name = btf__name_by_offset(btf, t_var->name_off);
1138 		if (!name) {
1139 			pr_debug("No name found in string section for VAR kind\n");
1140 			return -ENOENT;
1141 		}
1142 
1143 		ret = bpf_object__variable_offset(obj, name, &off);
1144 		if (ret) {
1145 			pr_debug("No offset found in symbol table for VAR %s\n",
1146 				 name);
1147 			return -ENOENT;
1148 		}
1149 
1150 		vsi->offset = off;
1151 	}
1152 
1153 sort_vars:
1154 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1155 	return 0;
1156 }
1157 
1158 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1159 {
1160 	int err = 0;
1161 	__u32 i;
1162 
1163 	for (i = 1; i <= btf->nr_types; i++) {
1164 		struct btf_type *t = btf_type_by_id(btf, i);
1165 
1166 		/* Loader needs to fix up some of the things compiler
1167 		 * couldn't get its hands on while emitting BTF. This
1168 		 * is section size and global variable offset. We use
1169 		 * the info from the ELF itself for this purpose.
1170 		 */
1171 		if (btf_is_datasec(t)) {
1172 			err = btf_fixup_datasec(obj, btf, t);
1173 			if (err)
1174 				break;
1175 		}
1176 	}
1177 
1178 	return libbpf_err(err);
1179 }
1180 
1181 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1182 
1183 int btf__load(struct btf *btf)
1184 {
1185 	__u32 log_buf_size = 0, raw_size;
1186 	char *log_buf = NULL;
1187 	void *raw_data;
1188 	int err = 0;
1189 
1190 	if (btf->fd >= 0)
1191 		return libbpf_err(-EEXIST);
1192 
1193 retry_load:
1194 	if (log_buf_size) {
1195 		log_buf = malloc(log_buf_size);
1196 		if (!log_buf)
1197 			return libbpf_err(-ENOMEM);
1198 
1199 		*log_buf = 0;
1200 	}
1201 
1202 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1203 	if (!raw_data) {
1204 		err = -ENOMEM;
1205 		goto done;
1206 	}
1207 	/* cache native raw data representation */
1208 	btf->raw_size = raw_size;
1209 	btf->raw_data = raw_data;
1210 
1211 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1212 	if (btf->fd < 0) {
1213 		if (!log_buf || errno == ENOSPC) {
1214 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1215 					   log_buf_size << 1);
1216 			free(log_buf);
1217 			goto retry_load;
1218 		}
1219 
1220 		err = -errno;
1221 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1222 		if (*log_buf)
1223 			pr_warn("%s\n", log_buf);
1224 		goto done;
1225 	}
1226 
1227 done:
1228 	free(log_buf);
1229 	return libbpf_err(err);
1230 }
1231 
1232 int btf__fd(const struct btf *btf)
1233 {
1234 	return btf->fd;
1235 }
1236 
1237 void btf__set_fd(struct btf *btf, int fd)
1238 {
1239 	btf->fd = fd;
1240 }
1241 
1242 static const void *btf_strs_data(const struct btf *btf)
1243 {
1244 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1245 }
1246 
1247 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1248 {
1249 	struct btf_header *hdr = btf->hdr;
1250 	struct btf_type *t;
1251 	void *data, *p;
1252 	__u32 data_sz;
1253 	int i;
1254 
1255 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1256 	if (data) {
1257 		*size = btf->raw_size;
1258 		return data;
1259 	}
1260 
1261 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1262 	data = calloc(1, data_sz);
1263 	if (!data)
1264 		return NULL;
1265 	p = data;
1266 
1267 	memcpy(p, hdr, hdr->hdr_len);
1268 	if (swap_endian)
1269 		btf_bswap_hdr(p);
1270 	p += hdr->hdr_len;
1271 
1272 	memcpy(p, btf->types_data, hdr->type_len);
1273 	if (swap_endian) {
1274 		for (i = 0; i < btf->nr_types; i++) {
1275 			t = p + btf->type_offs[i];
1276 			/* btf_bswap_type_rest() relies on native t->info, so
1277 			 * we swap base type info after we swapped all the
1278 			 * additional information
1279 			 */
1280 			if (btf_bswap_type_rest(t))
1281 				goto err_out;
1282 			btf_bswap_type_base(t);
1283 		}
1284 	}
1285 	p += hdr->type_len;
1286 
1287 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1288 	p += hdr->str_len;
1289 
1290 	*size = data_sz;
1291 	return data;
1292 err_out:
1293 	free(data);
1294 	return NULL;
1295 }
1296 
1297 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1298 {
1299 	struct btf *btf = (struct btf *)btf_ro;
1300 	__u32 data_sz;
1301 	void *data;
1302 
1303 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1304 	if (!data)
1305 		return errno = -ENOMEM, NULL;
1306 
1307 	btf->raw_size = data_sz;
1308 	if (btf->swapped_endian)
1309 		btf->raw_data_swapped = data;
1310 	else
1311 		btf->raw_data = data;
1312 	*size = data_sz;
1313 	return data;
1314 }
1315 
1316 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1317 {
1318 	if (offset < btf->start_str_off)
1319 		return btf__str_by_offset(btf->base_btf, offset);
1320 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1321 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1322 	else
1323 		return errno = EINVAL, NULL;
1324 }
1325 
1326 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1327 {
1328 	return btf__str_by_offset(btf, offset);
1329 }
1330 
1331 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1332 {
1333 	struct bpf_btf_info btf_info;
1334 	__u32 len = sizeof(btf_info);
1335 	__u32 last_size;
1336 	struct btf *btf;
1337 	void *ptr;
1338 	int err;
1339 
1340 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1341 	 * let's start with a sane default - 4KiB here - and resize it only if
1342 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1343 	 */
1344 	last_size = 4096;
1345 	ptr = malloc(last_size);
1346 	if (!ptr)
1347 		return ERR_PTR(-ENOMEM);
1348 
1349 	memset(&btf_info, 0, sizeof(btf_info));
1350 	btf_info.btf = ptr_to_u64(ptr);
1351 	btf_info.btf_size = last_size;
1352 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1353 
1354 	if (!err && btf_info.btf_size > last_size) {
1355 		void *temp_ptr;
1356 
1357 		last_size = btf_info.btf_size;
1358 		temp_ptr = realloc(ptr, last_size);
1359 		if (!temp_ptr) {
1360 			btf = ERR_PTR(-ENOMEM);
1361 			goto exit_free;
1362 		}
1363 		ptr = temp_ptr;
1364 
1365 		len = sizeof(btf_info);
1366 		memset(&btf_info, 0, sizeof(btf_info));
1367 		btf_info.btf = ptr_to_u64(ptr);
1368 		btf_info.btf_size = last_size;
1369 
1370 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1371 	}
1372 
1373 	if (err || btf_info.btf_size > last_size) {
1374 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1375 		goto exit_free;
1376 	}
1377 
1378 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1379 
1380 exit_free:
1381 	free(ptr);
1382 	return btf;
1383 }
1384 
1385 int btf__get_from_id(__u32 id, struct btf **btf)
1386 {
1387 	struct btf *res;
1388 	int err, btf_fd;
1389 
1390 	*btf = NULL;
1391 	btf_fd = bpf_btf_get_fd_by_id(id);
1392 	if (btf_fd < 0)
1393 		return libbpf_err(-errno);
1394 
1395 	res = btf_get_from_fd(btf_fd, NULL);
1396 	err = libbpf_get_error(res);
1397 
1398 	close(btf_fd);
1399 
1400 	if (err)
1401 		return libbpf_err(err);
1402 
1403 	*btf = res;
1404 	return 0;
1405 }
1406 
1407 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1408 			 __u32 expected_key_size, __u32 expected_value_size,
1409 			 __u32 *key_type_id, __u32 *value_type_id)
1410 {
1411 	const struct btf_type *container_type;
1412 	const struct btf_member *key, *value;
1413 	const size_t max_name = 256;
1414 	char container_name[max_name];
1415 	__s64 key_size, value_size;
1416 	__s32 container_id;
1417 
1418 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1419 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1420 			map_name, map_name);
1421 		return libbpf_err(-EINVAL);
1422 	}
1423 
1424 	container_id = btf__find_by_name(btf, container_name);
1425 	if (container_id < 0) {
1426 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1427 			 map_name, container_name);
1428 		return libbpf_err(container_id);
1429 	}
1430 
1431 	container_type = btf__type_by_id(btf, container_id);
1432 	if (!container_type) {
1433 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1434 			map_name, container_id);
1435 		return libbpf_err(-EINVAL);
1436 	}
1437 
1438 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1439 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1440 			map_name, container_name);
1441 		return libbpf_err(-EINVAL);
1442 	}
1443 
1444 	key = btf_members(container_type);
1445 	value = key + 1;
1446 
1447 	key_size = btf__resolve_size(btf, key->type);
1448 	if (key_size < 0) {
1449 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1450 		return libbpf_err(key_size);
1451 	}
1452 
1453 	if (expected_key_size != key_size) {
1454 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1455 			map_name, (__u32)key_size, expected_key_size);
1456 		return libbpf_err(-EINVAL);
1457 	}
1458 
1459 	value_size = btf__resolve_size(btf, value->type);
1460 	if (value_size < 0) {
1461 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1462 		return libbpf_err(value_size);
1463 	}
1464 
1465 	if (expected_value_size != value_size) {
1466 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1467 			map_name, (__u32)value_size, expected_value_size);
1468 		return libbpf_err(-EINVAL);
1469 	}
1470 
1471 	*key_type_id = key->type;
1472 	*value_type_id = value->type;
1473 
1474 	return 0;
1475 }
1476 
1477 static void btf_invalidate_raw_data(struct btf *btf)
1478 {
1479 	if (btf->raw_data) {
1480 		free(btf->raw_data);
1481 		btf->raw_data = NULL;
1482 	}
1483 	if (btf->raw_data_swapped) {
1484 		free(btf->raw_data_swapped);
1485 		btf->raw_data_swapped = NULL;
1486 	}
1487 }
1488 
1489 /* Ensure BTF is ready to be modified (by splitting into a three memory
1490  * regions for header, types, and strings). Also invalidate cached
1491  * raw_data, if any.
1492  */
1493 static int btf_ensure_modifiable(struct btf *btf)
1494 {
1495 	void *hdr, *types;
1496 	struct strset *set = NULL;
1497 	int err = -ENOMEM;
1498 
1499 	if (btf_is_modifiable(btf)) {
1500 		/* any BTF modification invalidates raw_data */
1501 		btf_invalidate_raw_data(btf);
1502 		return 0;
1503 	}
1504 
1505 	/* split raw data into three memory regions */
1506 	hdr = malloc(btf->hdr->hdr_len);
1507 	types = malloc(btf->hdr->type_len);
1508 	if (!hdr || !types)
1509 		goto err_out;
1510 
1511 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1512 	memcpy(types, btf->types_data, btf->hdr->type_len);
1513 
1514 	/* build lookup index for all strings */
1515 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1516 	if (IS_ERR(set)) {
1517 		err = PTR_ERR(set);
1518 		goto err_out;
1519 	}
1520 
1521 	/* only when everything was successful, update internal state */
1522 	btf->hdr = hdr;
1523 	btf->types_data = types;
1524 	btf->types_data_cap = btf->hdr->type_len;
1525 	btf->strs_data = NULL;
1526 	btf->strs_set = set;
1527 	/* if BTF was created from scratch, all strings are guaranteed to be
1528 	 * unique and deduplicated
1529 	 */
1530 	if (btf->hdr->str_len == 0)
1531 		btf->strs_deduped = true;
1532 	if (!btf->base_btf && btf->hdr->str_len == 1)
1533 		btf->strs_deduped = true;
1534 
1535 	/* invalidate raw_data representation */
1536 	btf_invalidate_raw_data(btf);
1537 
1538 	return 0;
1539 
1540 err_out:
1541 	strset__free(set);
1542 	free(hdr);
1543 	free(types);
1544 	return err;
1545 }
1546 
1547 /* Find an offset in BTF string section that corresponds to a given string *s*.
1548  * Returns:
1549  *   - >0 offset into string section, if string is found;
1550  *   - -ENOENT, if string is not in the string section;
1551  *   - <0, on any other error.
1552  */
1553 int btf__find_str(struct btf *btf, const char *s)
1554 {
1555 	int off;
1556 
1557 	if (btf->base_btf) {
1558 		off = btf__find_str(btf->base_btf, s);
1559 		if (off != -ENOENT)
1560 			return off;
1561 	}
1562 
1563 	/* BTF needs to be in a modifiable state to build string lookup index */
1564 	if (btf_ensure_modifiable(btf))
1565 		return libbpf_err(-ENOMEM);
1566 
1567 	off = strset__find_str(btf->strs_set, s);
1568 	if (off < 0)
1569 		return libbpf_err(off);
1570 
1571 	return btf->start_str_off + off;
1572 }
1573 
1574 /* Add a string s to the BTF string section.
1575  * Returns:
1576  *   - > 0 offset into string section, on success;
1577  *   - < 0, on error.
1578  */
1579 int btf__add_str(struct btf *btf, const char *s)
1580 {
1581 	int off;
1582 
1583 	if (btf->base_btf) {
1584 		off = btf__find_str(btf->base_btf, s);
1585 		if (off != -ENOENT)
1586 			return off;
1587 	}
1588 
1589 	if (btf_ensure_modifiable(btf))
1590 		return libbpf_err(-ENOMEM);
1591 
1592 	off = strset__add_str(btf->strs_set, s);
1593 	if (off < 0)
1594 		return libbpf_err(off);
1595 
1596 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1597 
1598 	return btf->start_str_off + off;
1599 }
1600 
1601 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1602 {
1603 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1604 			      btf->hdr->type_len, UINT_MAX, add_sz);
1605 }
1606 
1607 static void btf_type_inc_vlen(struct btf_type *t)
1608 {
1609 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1610 }
1611 
1612 static int btf_commit_type(struct btf *btf, int data_sz)
1613 {
1614 	int err;
1615 
1616 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1617 	if (err)
1618 		return libbpf_err(err);
1619 
1620 	btf->hdr->type_len += data_sz;
1621 	btf->hdr->str_off += data_sz;
1622 	btf->nr_types++;
1623 	return btf->start_id + btf->nr_types - 1;
1624 }
1625 
1626 struct btf_pipe {
1627 	const struct btf *src;
1628 	struct btf *dst;
1629 };
1630 
1631 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1632 {
1633 	struct btf_pipe *p = ctx;
1634 	int off;
1635 
1636 	if (!*str_off) /* nothing to do for empty strings */
1637 		return 0;
1638 
1639 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1640 	if (off < 0)
1641 		return off;
1642 
1643 	*str_off = off;
1644 	return 0;
1645 }
1646 
1647 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1648 {
1649 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1650 	struct btf_type *t;
1651 	int sz, err;
1652 
1653 	sz = btf_type_size(src_type);
1654 	if (sz < 0)
1655 		return libbpf_err(sz);
1656 
1657 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1658 	if (btf_ensure_modifiable(btf))
1659 		return libbpf_err(-ENOMEM);
1660 
1661 	t = btf_add_type_mem(btf, sz);
1662 	if (!t)
1663 		return libbpf_err(-ENOMEM);
1664 
1665 	memcpy(t, src_type, sz);
1666 
1667 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1668 	if (err)
1669 		return libbpf_err(err);
1670 
1671 	return btf_commit_type(btf, sz);
1672 }
1673 
1674 /*
1675  * Append new BTF_KIND_INT type with:
1676  *   - *name* - non-empty, non-NULL type name;
1677  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1678  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1679  * Returns:
1680  *   - >0, type ID of newly added BTF type;
1681  *   - <0, on error.
1682  */
1683 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1684 {
1685 	struct btf_type *t;
1686 	int sz, name_off;
1687 
1688 	/* non-empty name */
1689 	if (!name || !name[0])
1690 		return libbpf_err(-EINVAL);
1691 	/* byte_sz must be power of 2 */
1692 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1693 		return libbpf_err(-EINVAL);
1694 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1695 		return libbpf_err(-EINVAL);
1696 
1697 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1698 	if (btf_ensure_modifiable(btf))
1699 		return libbpf_err(-ENOMEM);
1700 
1701 	sz = sizeof(struct btf_type) + sizeof(int);
1702 	t = btf_add_type_mem(btf, sz);
1703 	if (!t)
1704 		return libbpf_err(-ENOMEM);
1705 
1706 	/* if something goes wrong later, we might end up with an extra string,
1707 	 * but that shouldn't be a problem, because BTF can't be constructed
1708 	 * completely anyway and will most probably be just discarded
1709 	 */
1710 	name_off = btf__add_str(btf, name);
1711 	if (name_off < 0)
1712 		return name_off;
1713 
1714 	t->name_off = name_off;
1715 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1716 	t->size = byte_sz;
1717 	/* set INT info, we don't allow setting legacy bit offset/size */
1718 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1719 
1720 	return btf_commit_type(btf, sz);
1721 }
1722 
1723 /*
1724  * Append new BTF_KIND_FLOAT type with:
1725  *   - *name* - non-empty, non-NULL type name;
1726  *   - *sz* - size of the type, in bytes;
1727  * Returns:
1728  *   - >0, type ID of newly added BTF type;
1729  *   - <0, on error.
1730  */
1731 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1732 {
1733 	struct btf_type *t;
1734 	int sz, name_off;
1735 
1736 	/* non-empty name */
1737 	if (!name || !name[0])
1738 		return libbpf_err(-EINVAL);
1739 
1740 	/* byte_sz must be one of the explicitly allowed values */
1741 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1742 	    byte_sz != 16)
1743 		return libbpf_err(-EINVAL);
1744 
1745 	if (btf_ensure_modifiable(btf))
1746 		return libbpf_err(-ENOMEM);
1747 
1748 	sz = sizeof(struct btf_type);
1749 	t = btf_add_type_mem(btf, sz);
1750 	if (!t)
1751 		return libbpf_err(-ENOMEM);
1752 
1753 	name_off = btf__add_str(btf, name);
1754 	if (name_off < 0)
1755 		return name_off;
1756 
1757 	t->name_off = name_off;
1758 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1759 	t->size = byte_sz;
1760 
1761 	return btf_commit_type(btf, sz);
1762 }
1763 
1764 /* it's completely legal to append BTF types with type IDs pointing forward to
1765  * types that haven't been appended yet, so we only make sure that id looks
1766  * sane, we can't guarantee that ID will always be valid
1767  */
1768 static int validate_type_id(int id)
1769 {
1770 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1771 		return -EINVAL;
1772 	return 0;
1773 }
1774 
1775 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1776 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1777 {
1778 	struct btf_type *t;
1779 	int sz, name_off = 0;
1780 
1781 	if (validate_type_id(ref_type_id))
1782 		return libbpf_err(-EINVAL);
1783 
1784 	if (btf_ensure_modifiable(btf))
1785 		return libbpf_err(-ENOMEM);
1786 
1787 	sz = sizeof(struct btf_type);
1788 	t = btf_add_type_mem(btf, sz);
1789 	if (!t)
1790 		return libbpf_err(-ENOMEM);
1791 
1792 	if (name && name[0]) {
1793 		name_off = btf__add_str(btf, name);
1794 		if (name_off < 0)
1795 			return name_off;
1796 	}
1797 
1798 	t->name_off = name_off;
1799 	t->info = btf_type_info(kind, 0, 0);
1800 	t->type = ref_type_id;
1801 
1802 	return btf_commit_type(btf, sz);
1803 }
1804 
1805 /*
1806  * Append new BTF_KIND_PTR type with:
1807  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1808  * Returns:
1809  *   - >0, type ID of newly added BTF type;
1810  *   - <0, on error.
1811  */
1812 int btf__add_ptr(struct btf *btf, int ref_type_id)
1813 {
1814 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1815 }
1816 
1817 /*
1818  * Append new BTF_KIND_ARRAY type with:
1819  *   - *index_type_id* - type ID of the type describing array index;
1820  *   - *elem_type_id* - type ID of the type describing array element;
1821  *   - *nr_elems* - the size of the array;
1822  * Returns:
1823  *   - >0, type ID of newly added BTF type;
1824  *   - <0, on error.
1825  */
1826 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1827 {
1828 	struct btf_type *t;
1829 	struct btf_array *a;
1830 	int sz;
1831 
1832 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1833 		return libbpf_err(-EINVAL);
1834 
1835 	if (btf_ensure_modifiable(btf))
1836 		return libbpf_err(-ENOMEM);
1837 
1838 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1839 	t = btf_add_type_mem(btf, sz);
1840 	if (!t)
1841 		return libbpf_err(-ENOMEM);
1842 
1843 	t->name_off = 0;
1844 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1845 	t->size = 0;
1846 
1847 	a = btf_array(t);
1848 	a->type = elem_type_id;
1849 	a->index_type = index_type_id;
1850 	a->nelems = nr_elems;
1851 
1852 	return btf_commit_type(btf, sz);
1853 }
1854 
1855 /* generic STRUCT/UNION append function */
1856 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1857 {
1858 	struct btf_type *t;
1859 	int sz, name_off = 0;
1860 
1861 	if (btf_ensure_modifiable(btf))
1862 		return libbpf_err(-ENOMEM);
1863 
1864 	sz = sizeof(struct btf_type);
1865 	t = btf_add_type_mem(btf, sz);
1866 	if (!t)
1867 		return libbpf_err(-ENOMEM);
1868 
1869 	if (name && name[0]) {
1870 		name_off = btf__add_str(btf, name);
1871 		if (name_off < 0)
1872 			return name_off;
1873 	}
1874 
1875 	/* start out with vlen=0 and no kflag; this will be adjusted when
1876 	 * adding each member
1877 	 */
1878 	t->name_off = name_off;
1879 	t->info = btf_type_info(kind, 0, 0);
1880 	t->size = bytes_sz;
1881 
1882 	return btf_commit_type(btf, sz);
1883 }
1884 
1885 /*
1886  * Append new BTF_KIND_STRUCT type with:
1887  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1888  *   - *byte_sz* - size of the struct, in bytes;
1889  *
1890  * Struct initially has no fields in it. Fields can be added by
1891  * btf__add_field() right after btf__add_struct() succeeds.
1892  *
1893  * Returns:
1894  *   - >0, type ID of newly added BTF type;
1895  *   - <0, on error.
1896  */
1897 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1898 {
1899 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1900 }
1901 
1902 /*
1903  * Append new BTF_KIND_UNION type with:
1904  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1905  *   - *byte_sz* - size of the union, in bytes;
1906  *
1907  * Union initially has no fields in it. Fields can be added by
1908  * btf__add_field() right after btf__add_union() succeeds. All fields
1909  * should have *bit_offset* of 0.
1910  *
1911  * Returns:
1912  *   - >0, type ID of newly added BTF type;
1913  *   - <0, on error.
1914  */
1915 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1916 {
1917 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1918 }
1919 
1920 static struct btf_type *btf_last_type(struct btf *btf)
1921 {
1922 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1923 }
1924 
1925 /*
1926  * Append new field for the current STRUCT/UNION type with:
1927  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1928  *   - *type_id* - type ID for the type describing field type;
1929  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1930  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1931  * Returns:
1932  *   -  0, on success;
1933  *   - <0, on error.
1934  */
1935 int btf__add_field(struct btf *btf, const char *name, int type_id,
1936 		   __u32 bit_offset, __u32 bit_size)
1937 {
1938 	struct btf_type *t;
1939 	struct btf_member *m;
1940 	bool is_bitfield;
1941 	int sz, name_off = 0;
1942 
1943 	/* last type should be union/struct */
1944 	if (btf->nr_types == 0)
1945 		return libbpf_err(-EINVAL);
1946 	t = btf_last_type(btf);
1947 	if (!btf_is_composite(t))
1948 		return libbpf_err(-EINVAL);
1949 
1950 	if (validate_type_id(type_id))
1951 		return libbpf_err(-EINVAL);
1952 	/* best-effort bit field offset/size enforcement */
1953 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1954 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1955 		return libbpf_err(-EINVAL);
1956 
1957 	/* only offset 0 is allowed for unions */
1958 	if (btf_is_union(t) && bit_offset)
1959 		return libbpf_err(-EINVAL);
1960 
1961 	/* decompose and invalidate raw data */
1962 	if (btf_ensure_modifiable(btf))
1963 		return libbpf_err(-ENOMEM);
1964 
1965 	sz = sizeof(struct btf_member);
1966 	m = btf_add_type_mem(btf, sz);
1967 	if (!m)
1968 		return libbpf_err(-ENOMEM);
1969 
1970 	if (name && name[0]) {
1971 		name_off = btf__add_str(btf, name);
1972 		if (name_off < 0)
1973 			return name_off;
1974 	}
1975 
1976 	m->name_off = name_off;
1977 	m->type = type_id;
1978 	m->offset = bit_offset | (bit_size << 24);
1979 
1980 	/* btf_add_type_mem can invalidate t pointer */
1981 	t = btf_last_type(btf);
1982 	/* update parent type's vlen and kflag */
1983 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1984 
1985 	btf->hdr->type_len += sz;
1986 	btf->hdr->str_off += sz;
1987 	return 0;
1988 }
1989 
1990 /*
1991  * Append new BTF_KIND_ENUM type with:
1992  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1993  *   - *byte_sz* - size of the enum, in bytes.
1994  *
1995  * Enum initially has no enum values in it (and corresponds to enum forward
1996  * declaration). Enumerator values can be added by btf__add_enum_value()
1997  * immediately after btf__add_enum() succeeds.
1998  *
1999  * Returns:
2000  *   - >0, type ID of newly added BTF type;
2001  *   - <0, on error.
2002  */
2003 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2004 {
2005 	struct btf_type *t;
2006 	int sz, name_off = 0;
2007 
2008 	/* byte_sz must be power of 2 */
2009 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2010 		return libbpf_err(-EINVAL);
2011 
2012 	if (btf_ensure_modifiable(btf))
2013 		return libbpf_err(-ENOMEM);
2014 
2015 	sz = sizeof(struct btf_type);
2016 	t = btf_add_type_mem(btf, sz);
2017 	if (!t)
2018 		return libbpf_err(-ENOMEM);
2019 
2020 	if (name && name[0]) {
2021 		name_off = btf__add_str(btf, name);
2022 		if (name_off < 0)
2023 			return name_off;
2024 	}
2025 
2026 	/* start out with vlen=0; it will be adjusted when adding enum values */
2027 	t->name_off = name_off;
2028 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2029 	t->size = byte_sz;
2030 
2031 	return btf_commit_type(btf, sz);
2032 }
2033 
2034 /*
2035  * Append new enum value for the current ENUM type with:
2036  *   - *name* - name of the enumerator value, can't be NULL or empty;
2037  *   - *value* - integer value corresponding to enum value *name*;
2038  * Returns:
2039  *   -  0, on success;
2040  *   - <0, on error.
2041  */
2042 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2043 {
2044 	struct btf_type *t;
2045 	struct btf_enum *v;
2046 	int sz, name_off;
2047 
2048 	/* last type should be BTF_KIND_ENUM */
2049 	if (btf->nr_types == 0)
2050 		return libbpf_err(-EINVAL);
2051 	t = btf_last_type(btf);
2052 	if (!btf_is_enum(t))
2053 		return libbpf_err(-EINVAL);
2054 
2055 	/* non-empty name */
2056 	if (!name || !name[0])
2057 		return libbpf_err(-EINVAL);
2058 	if (value < INT_MIN || value > UINT_MAX)
2059 		return libbpf_err(-E2BIG);
2060 
2061 	/* decompose and invalidate raw data */
2062 	if (btf_ensure_modifiable(btf))
2063 		return libbpf_err(-ENOMEM);
2064 
2065 	sz = sizeof(struct btf_enum);
2066 	v = btf_add_type_mem(btf, sz);
2067 	if (!v)
2068 		return libbpf_err(-ENOMEM);
2069 
2070 	name_off = btf__add_str(btf, name);
2071 	if (name_off < 0)
2072 		return name_off;
2073 
2074 	v->name_off = name_off;
2075 	v->val = value;
2076 
2077 	/* update parent type's vlen */
2078 	t = btf_last_type(btf);
2079 	btf_type_inc_vlen(t);
2080 
2081 	btf->hdr->type_len += sz;
2082 	btf->hdr->str_off += sz;
2083 	return 0;
2084 }
2085 
2086 /*
2087  * Append new BTF_KIND_FWD type with:
2088  *   - *name*, non-empty/non-NULL name;
2089  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2090  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2091  * Returns:
2092  *   - >0, type ID of newly added BTF type;
2093  *   - <0, on error.
2094  */
2095 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2096 {
2097 	if (!name || !name[0])
2098 		return libbpf_err(-EINVAL);
2099 
2100 	switch (fwd_kind) {
2101 	case BTF_FWD_STRUCT:
2102 	case BTF_FWD_UNION: {
2103 		struct btf_type *t;
2104 		int id;
2105 
2106 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2107 		if (id <= 0)
2108 			return id;
2109 		t = btf_type_by_id(btf, id);
2110 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2111 		return id;
2112 	}
2113 	case BTF_FWD_ENUM:
2114 		/* enum forward in BTF currently is just an enum with no enum
2115 		 * values; we also assume a standard 4-byte size for it
2116 		 */
2117 		return btf__add_enum(btf, name, sizeof(int));
2118 	default:
2119 		return libbpf_err(-EINVAL);
2120 	}
2121 }
2122 
2123 /*
2124  * Append new BTF_KING_TYPEDEF type with:
2125  *   - *name*, non-empty/non-NULL name;
2126  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2127  * Returns:
2128  *   - >0, type ID of newly added BTF type;
2129  *   - <0, on error.
2130  */
2131 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2132 {
2133 	if (!name || !name[0])
2134 		return libbpf_err(-EINVAL);
2135 
2136 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2137 }
2138 
2139 /*
2140  * Append new BTF_KIND_VOLATILE type with:
2141  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2142  * Returns:
2143  *   - >0, type ID of newly added BTF type;
2144  *   - <0, on error.
2145  */
2146 int btf__add_volatile(struct btf *btf, int ref_type_id)
2147 {
2148 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2149 }
2150 
2151 /*
2152  * Append new BTF_KIND_CONST type with:
2153  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2154  * Returns:
2155  *   - >0, type ID of newly added BTF type;
2156  *   - <0, on error.
2157  */
2158 int btf__add_const(struct btf *btf, int ref_type_id)
2159 {
2160 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2161 }
2162 
2163 /*
2164  * Append new BTF_KIND_RESTRICT type with:
2165  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2166  * Returns:
2167  *   - >0, type ID of newly added BTF type;
2168  *   - <0, on error.
2169  */
2170 int btf__add_restrict(struct btf *btf, int ref_type_id)
2171 {
2172 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2173 }
2174 
2175 /*
2176  * Append new BTF_KIND_FUNC type with:
2177  *   - *name*, non-empty/non-NULL name;
2178  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2179  * Returns:
2180  *   - >0, type ID of newly added BTF type;
2181  *   - <0, on error.
2182  */
2183 int btf__add_func(struct btf *btf, const char *name,
2184 		  enum btf_func_linkage linkage, int proto_type_id)
2185 {
2186 	int id;
2187 
2188 	if (!name || !name[0])
2189 		return libbpf_err(-EINVAL);
2190 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2191 	    linkage != BTF_FUNC_EXTERN)
2192 		return libbpf_err(-EINVAL);
2193 
2194 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2195 	if (id > 0) {
2196 		struct btf_type *t = btf_type_by_id(btf, id);
2197 
2198 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2199 	}
2200 	return libbpf_err(id);
2201 }
2202 
2203 /*
2204  * Append new BTF_KIND_FUNC_PROTO with:
2205  *   - *ret_type_id* - type ID for return result of a function.
2206  *
2207  * Function prototype initially has no arguments, but they can be added by
2208  * btf__add_func_param() one by one, immediately after
2209  * btf__add_func_proto() succeeded.
2210  *
2211  * Returns:
2212  *   - >0, type ID of newly added BTF type;
2213  *   - <0, on error.
2214  */
2215 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2216 {
2217 	struct btf_type *t;
2218 	int sz;
2219 
2220 	if (validate_type_id(ret_type_id))
2221 		return libbpf_err(-EINVAL);
2222 
2223 	if (btf_ensure_modifiable(btf))
2224 		return libbpf_err(-ENOMEM);
2225 
2226 	sz = sizeof(struct btf_type);
2227 	t = btf_add_type_mem(btf, sz);
2228 	if (!t)
2229 		return libbpf_err(-ENOMEM);
2230 
2231 	/* start out with vlen=0; this will be adjusted when adding enum
2232 	 * values, if necessary
2233 	 */
2234 	t->name_off = 0;
2235 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2236 	t->type = ret_type_id;
2237 
2238 	return btf_commit_type(btf, sz);
2239 }
2240 
2241 /*
2242  * Append new function parameter for current FUNC_PROTO type with:
2243  *   - *name* - parameter name, can be NULL or empty;
2244  *   - *type_id* - type ID describing the type of the parameter.
2245  * Returns:
2246  *   -  0, on success;
2247  *   - <0, on error.
2248  */
2249 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2250 {
2251 	struct btf_type *t;
2252 	struct btf_param *p;
2253 	int sz, name_off = 0;
2254 
2255 	if (validate_type_id(type_id))
2256 		return libbpf_err(-EINVAL);
2257 
2258 	/* last type should be BTF_KIND_FUNC_PROTO */
2259 	if (btf->nr_types == 0)
2260 		return libbpf_err(-EINVAL);
2261 	t = btf_last_type(btf);
2262 	if (!btf_is_func_proto(t))
2263 		return libbpf_err(-EINVAL);
2264 
2265 	/* decompose and invalidate raw data */
2266 	if (btf_ensure_modifiable(btf))
2267 		return libbpf_err(-ENOMEM);
2268 
2269 	sz = sizeof(struct btf_param);
2270 	p = btf_add_type_mem(btf, sz);
2271 	if (!p)
2272 		return libbpf_err(-ENOMEM);
2273 
2274 	if (name && name[0]) {
2275 		name_off = btf__add_str(btf, name);
2276 		if (name_off < 0)
2277 			return name_off;
2278 	}
2279 
2280 	p->name_off = name_off;
2281 	p->type = type_id;
2282 
2283 	/* update parent type's vlen */
2284 	t = btf_last_type(btf);
2285 	btf_type_inc_vlen(t);
2286 
2287 	btf->hdr->type_len += sz;
2288 	btf->hdr->str_off += sz;
2289 	return 0;
2290 }
2291 
2292 /*
2293  * Append new BTF_KIND_VAR type with:
2294  *   - *name* - non-empty/non-NULL name;
2295  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2296  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2297  *   - *type_id* - type ID of the type describing the type of the variable.
2298  * Returns:
2299  *   - >0, type ID of newly added BTF type;
2300  *   - <0, on error.
2301  */
2302 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2303 {
2304 	struct btf_type *t;
2305 	struct btf_var *v;
2306 	int sz, name_off;
2307 
2308 	/* non-empty name */
2309 	if (!name || !name[0])
2310 		return libbpf_err(-EINVAL);
2311 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2312 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2313 		return libbpf_err(-EINVAL);
2314 	if (validate_type_id(type_id))
2315 		return libbpf_err(-EINVAL);
2316 
2317 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2318 	if (btf_ensure_modifiable(btf))
2319 		return libbpf_err(-ENOMEM);
2320 
2321 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2322 	t = btf_add_type_mem(btf, sz);
2323 	if (!t)
2324 		return libbpf_err(-ENOMEM);
2325 
2326 	name_off = btf__add_str(btf, name);
2327 	if (name_off < 0)
2328 		return name_off;
2329 
2330 	t->name_off = name_off;
2331 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2332 	t->type = type_id;
2333 
2334 	v = btf_var(t);
2335 	v->linkage = linkage;
2336 
2337 	return btf_commit_type(btf, sz);
2338 }
2339 
2340 /*
2341  * Append new BTF_KIND_DATASEC type with:
2342  *   - *name* - non-empty/non-NULL name;
2343  *   - *byte_sz* - data section size, in bytes.
2344  *
2345  * Data section is initially empty. Variables info can be added with
2346  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2347  *
2348  * Returns:
2349  *   - >0, type ID of newly added BTF type;
2350  *   - <0, on error.
2351  */
2352 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2353 {
2354 	struct btf_type *t;
2355 	int sz, name_off;
2356 
2357 	/* non-empty name */
2358 	if (!name || !name[0])
2359 		return libbpf_err(-EINVAL);
2360 
2361 	if (btf_ensure_modifiable(btf))
2362 		return libbpf_err(-ENOMEM);
2363 
2364 	sz = sizeof(struct btf_type);
2365 	t = btf_add_type_mem(btf, sz);
2366 	if (!t)
2367 		return libbpf_err(-ENOMEM);
2368 
2369 	name_off = btf__add_str(btf, name);
2370 	if (name_off < 0)
2371 		return name_off;
2372 
2373 	/* start with vlen=0, which will be update as var_secinfos are added */
2374 	t->name_off = name_off;
2375 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2376 	t->size = byte_sz;
2377 
2378 	return btf_commit_type(btf, sz);
2379 }
2380 
2381 /*
2382  * Append new data section variable information entry for current DATASEC type:
2383  *   - *var_type_id* - type ID, describing type of the variable;
2384  *   - *offset* - variable offset within data section, in bytes;
2385  *   - *byte_sz* - variable size, in bytes.
2386  *
2387  * Returns:
2388  *   -  0, on success;
2389  *   - <0, on error.
2390  */
2391 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2392 {
2393 	struct btf_type *t;
2394 	struct btf_var_secinfo *v;
2395 	int sz;
2396 
2397 	/* last type should be BTF_KIND_DATASEC */
2398 	if (btf->nr_types == 0)
2399 		return libbpf_err(-EINVAL);
2400 	t = btf_last_type(btf);
2401 	if (!btf_is_datasec(t))
2402 		return libbpf_err(-EINVAL);
2403 
2404 	if (validate_type_id(var_type_id))
2405 		return libbpf_err(-EINVAL);
2406 
2407 	/* decompose and invalidate raw data */
2408 	if (btf_ensure_modifiable(btf))
2409 		return libbpf_err(-ENOMEM);
2410 
2411 	sz = sizeof(struct btf_var_secinfo);
2412 	v = btf_add_type_mem(btf, sz);
2413 	if (!v)
2414 		return libbpf_err(-ENOMEM);
2415 
2416 	v->type = var_type_id;
2417 	v->offset = offset;
2418 	v->size = byte_sz;
2419 
2420 	/* update parent type's vlen */
2421 	t = btf_last_type(btf);
2422 	btf_type_inc_vlen(t);
2423 
2424 	btf->hdr->type_len += sz;
2425 	btf->hdr->str_off += sz;
2426 	return 0;
2427 }
2428 
2429 struct btf_ext_sec_setup_param {
2430 	__u32 off;
2431 	__u32 len;
2432 	__u32 min_rec_size;
2433 	struct btf_ext_info *ext_info;
2434 	const char *desc;
2435 };
2436 
2437 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2438 			      struct btf_ext_sec_setup_param *ext_sec)
2439 {
2440 	const struct btf_ext_info_sec *sinfo;
2441 	struct btf_ext_info *ext_info;
2442 	__u32 info_left, record_size;
2443 	/* The start of the info sec (including the __u32 record_size). */
2444 	void *info;
2445 
2446 	if (ext_sec->len == 0)
2447 		return 0;
2448 
2449 	if (ext_sec->off & 0x03) {
2450 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2451 		     ext_sec->desc);
2452 		return -EINVAL;
2453 	}
2454 
2455 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2456 	info_left = ext_sec->len;
2457 
2458 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2459 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2460 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2461 		return -EINVAL;
2462 	}
2463 
2464 	/* At least a record size */
2465 	if (info_left < sizeof(__u32)) {
2466 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2467 		return -EINVAL;
2468 	}
2469 
2470 	/* The record size needs to meet the minimum standard */
2471 	record_size = *(__u32 *)info;
2472 	if (record_size < ext_sec->min_rec_size ||
2473 	    record_size & 0x03) {
2474 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2475 			 ext_sec->desc, record_size);
2476 		return -EINVAL;
2477 	}
2478 
2479 	sinfo = info + sizeof(__u32);
2480 	info_left -= sizeof(__u32);
2481 
2482 	/* If no records, return failure now so .BTF.ext won't be used. */
2483 	if (!info_left) {
2484 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2485 		return -EINVAL;
2486 	}
2487 
2488 	while (info_left) {
2489 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2490 		__u64 total_record_size;
2491 		__u32 num_records;
2492 
2493 		if (info_left < sec_hdrlen) {
2494 			pr_debug("%s section header is not found in .BTF.ext\n",
2495 			     ext_sec->desc);
2496 			return -EINVAL;
2497 		}
2498 
2499 		num_records = sinfo->num_info;
2500 		if (num_records == 0) {
2501 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2502 			     ext_sec->desc);
2503 			return -EINVAL;
2504 		}
2505 
2506 		total_record_size = sec_hdrlen +
2507 				    (__u64)num_records * record_size;
2508 		if (info_left < total_record_size) {
2509 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2510 			     ext_sec->desc);
2511 			return -EINVAL;
2512 		}
2513 
2514 		info_left -= total_record_size;
2515 		sinfo = (void *)sinfo + total_record_size;
2516 	}
2517 
2518 	ext_info = ext_sec->ext_info;
2519 	ext_info->len = ext_sec->len - sizeof(__u32);
2520 	ext_info->rec_size = record_size;
2521 	ext_info->info = info + sizeof(__u32);
2522 
2523 	return 0;
2524 }
2525 
2526 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2527 {
2528 	struct btf_ext_sec_setup_param param = {
2529 		.off = btf_ext->hdr->func_info_off,
2530 		.len = btf_ext->hdr->func_info_len,
2531 		.min_rec_size = sizeof(struct bpf_func_info_min),
2532 		.ext_info = &btf_ext->func_info,
2533 		.desc = "func_info"
2534 	};
2535 
2536 	return btf_ext_setup_info(btf_ext, &param);
2537 }
2538 
2539 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2540 {
2541 	struct btf_ext_sec_setup_param param = {
2542 		.off = btf_ext->hdr->line_info_off,
2543 		.len = btf_ext->hdr->line_info_len,
2544 		.min_rec_size = sizeof(struct bpf_line_info_min),
2545 		.ext_info = &btf_ext->line_info,
2546 		.desc = "line_info",
2547 	};
2548 
2549 	return btf_ext_setup_info(btf_ext, &param);
2550 }
2551 
2552 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2553 {
2554 	struct btf_ext_sec_setup_param param = {
2555 		.off = btf_ext->hdr->core_relo_off,
2556 		.len = btf_ext->hdr->core_relo_len,
2557 		.min_rec_size = sizeof(struct bpf_core_relo),
2558 		.ext_info = &btf_ext->core_relo_info,
2559 		.desc = "core_relo",
2560 	};
2561 
2562 	return btf_ext_setup_info(btf_ext, &param);
2563 }
2564 
2565 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2566 {
2567 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2568 
2569 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2570 	    data_size < hdr->hdr_len) {
2571 		pr_debug("BTF.ext header not found");
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2576 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2577 		return -ENOTSUP;
2578 	} else if (hdr->magic != BTF_MAGIC) {
2579 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (hdr->version != BTF_VERSION) {
2584 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2585 		return -ENOTSUP;
2586 	}
2587 
2588 	if (hdr->flags) {
2589 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2590 		return -ENOTSUP;
2591 	}
2592 
2593 	if (data_size == hdr->hdr_len) {
2594 		pr_debug("BTF.ext has no data\n");
2595 		return -EINVAL;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 void btf_ext__free(struct btf_ext *btf_ext)
2602 {
2603 	if (IS_ERR_OR_NULL(btf_ext))
2604 		return;
2605 	free(btf_ext->data);
2606 	free(btf_ext);
2607 }
2608 
2609 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2610 {
2611 	struct btf_ext *btf_ext;
2612 	int err;
2613 
2614 	err = btf_ext_parse_hdr(data, size);
2615 	if (err)
2616 		return libbpf_err_ptr(err);
2617 
2618 	btf_ext = calloc(1, sizeof(struct btf_ext));
2619 	if (!btf_ext)
2620 		return libbpf_err_ptr(-ENOMEM);
2621 
2622 	btf_ext->data_size = size;
2623 	btf_ext->data = malloc(size);
2624 	if (!btf_ext->data) {
2625 		err = -ENOMEM;
2626 		goto done;
2627 	}
2628 	memcpy(btf_ext->data, data, size);
2629 
2630 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2631 		err = -EINVAL;
2632 		goto done;
2633 	}
2634 
2635 	err = btf_ext_setup_func_info(btf_ext);
2636 	if (err)
2637 		goto done;
2638 
2639 	err = btf_ext_setup_line_info(btf_ext);
2640 	if (err)
2641 		goto done;
2642 
2643 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2644 		err = -EINVAL;
2645 		goto done;
2646 	}
2647 
2648 	err = btf_ext_setup_core_relos(btf_ext);
2649 	if (err)
2650 		goto done;
2651 
2652 done:
2653 	if (err) {
2654 		btf_ext__free(btf_ext);
2655 		return libbpf_err_ptr(err);
2656 	}
2657 
2658 	return btf_ext;
2659 }
2660 
2661 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2662 {
2663 	*size = btf_ext->data_size;
2664 	return btf_ext->data;
2665 }
2666 
2667 static int btf_ext_reloc_info(const struct btf *btf,
2668 			      const struct btf_ext_info *ext_info,
2669 			      const char *sec_name, __u32 insns_cnt,
2670 			      void **info, __u32 *cnt)
2671 {
2672 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2673 	__u32 i, record_size, existing_len, records_len;
2674 	struct btf_ext_info_sec *sinfo;
2675 	const char *info_sec_name;
2676 	__u64 remain_len;
2677 	void *data;
2678 
2679 	record_size = ext_info->rec_size;
2680 	sinfo = ext_info->info;
2681 	remain_len = ext_info->len;
2682 	while (remain_len > 0) {
2683 		records_len = sinfo->num_info * record_size;
2684 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2685 		if (strcmp(info_sec_name, sec_name)) {
2686 			remain_len -= sec_hdrlen + records_len;
2687 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2688 			continue;
2689 		}
2690 
2691 		existing_len = (*cnt) * record_size;
2692 		data = realloc(*info, existing_len + records_len);
2693 		if (!data)
2694 			return libbpf_err(-ENOMEM);
2695 
2696 		memcpy(data + existing_len, sinfo->data, records_len);
2697 		/* adjust insn_off only, the rest data will be passed
2698 		 * to the kernel.
2699 		 */
2700 		for (i = 0; i < sinfo->num_info; i++) {
2701 			__u32 *insn_off;
2702 
2703 			insn_off = data + existing_len + (i * record_size);
2704 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2705 		}
2706 		*info = data;
2707 		*cnt += sinfo->num_info;
2708 		return 0;
2709 	}
2710 
2711 	return libbpf_err(-ENOENT);
2712 }
2713 
2714 int btf_ext__reloc_func_info(const struct btf *btf,
2715 			     const struct btf_ext *btf_ext,
2716 			     const char *sec_name, __u32 insns_cnt,
2717 			     void **func_info, __u32 *cnt)
2718 {
2719 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2720 				  insns_cnt, func_info, cnt);
2721 }
2722 
2723 int btf_ext__reloc_line_info(const struct btf *btf,
2724 			     const struct btf_ext *btf_ext,
2725 			     const char *sec_name, __u32 insns_cnt,
2726 			     void **line_info, __u32 *cnt)
2727 {
2728 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2729 				  insns_cnt, line_info, cnt);
2730 }
2731 
2732 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2733 {
2734 	return btf_ext->func_info.rec_size;
2735 }
2736 
2737 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2738 {
2739 	return btf_ext->line_info.rec_size;
2740 }
2741 
2742 struct btf_dedup;
2743 
2744 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2745 				       const struct btf_dedup_opts *opts);
2746 static void btf_dedup_free(struct btf_dedup *d);
2747 static int btf_dedup_prep(struct btf_dedup *d);
2748 static int btf_dedup_strings(struct btf_dedup *d);
2749 static int btf_dedup_prim_types(struct btf_dedup *d);
2750 static int btf_dedup_struct_types(struct btf_dedup *d);
2751 static int btf_dedup_ref_types(struct btf_dedup *d);
2752 static int btf_dedup_compact_types(struct btf_dedup *d);
2753 static int btf_dedup_remap_types(struct btf_dedup *d);
2754 
2755 /*
2756  * Deduplicate BTF types and strings.
2757  *
2758  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2759  * section with all BTF type descriptors and string data. It overwrites that
2760  * memory in-place with deduplicated types and strings without any loss of
2761  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2762  * is provided, all the strings referenced from .BTF.ext section are honored
2763  * and updated to point to the right offsets after deduplication.
2764  *
2765  * If function returns with error, type/string data might be garbled and should
2766  * be discarded.
2767  *
2768  * More verbose and detailed description of both problem btf_dedup is solving,
2769  * as well as solution could be found at:
2770  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2771  *
2772  * Problem description and justification
2773  * =====================================
2774  *
2775  * BTF type information is typically emitted either as a result of conversion
2776  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2777  * unit contains information about a subset of all the types that are used
2778  * in an application. These subsets are frequently overlapping and contain a lot
2779  * of duplicated information when later concatenated together into a single
2780  * binary. This algorithm ensures that each unique type is represented by single
2781  * BTF type descriptor, greatly reducing resulting size of BTF data.
2782  *
2783  * Compilation unit isolation and subsequent duplication of data is not the only
2784  * problem. The same type hierarchy (e.g., struct and all the type that struct
2785  * references) in different compilation units can be represented in BTF to
2786  * various degrees of completeness (or, rather, incompleteness) due to
2787  * struct/union forward declarations.
2788  *
2789  * Let's take a look at an example, that we'll use to better understand the
2790  * problem (and solution). Suppose we have two compilation units, each using
2791  * same `struct S`, but each of them having incomplete type information about
2792  * struct's fields:
2793  *
2794  * // CU #1:
2795  * struct S;
2796  * struct A {
2797  *	int a;
2798  *	struct A* self;
2799  *	struct S* parent;
2800  * };
2801  * struct B;
2802  * struct S {
2803  *	struct A* a_ptr;
2804  *	struct B* b_ptr;
2805  * };
2806  *
2807  * // CU #2:
2808  * struct S;
2809  * struct A;
2810  * struct B {
2811  *	int b;
2812  *	struct B* self;
2813  *	struct S* parent;
2814  * };
2815  * struct S {
2816  *	struct A* a_ptr;
2817  *	struct B* b_ptr;
2818  * };
2819  *
2820  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2821  * more), but will know the complete type information about `struct A`. While
2822  * for CU #2, it will know full type information about `struct B`, but will
2823  * only know about forward declaration of `struct A` (in BTF terms, it will
2824  * have `BTF_KIND_FWD` type descriptor with name `B`).
2825  *
2826  * This compilation unit isolation means that it's possible that there is no
2827  * single CU with complete type information describing structs `S`, `A`, and
2828  * `B`. Also, we might get tons of duplicated and redundant type information.
2829  *
2830  * Additional complication we need to keep in mind comes from the fact that
2831  * types, in general, can form graphs containing cycles, not just DAGs.
2832  *
2833  * While algorithm does deduplication, it also merges and resolves type
2834  * information (unless disabled throught `struct btf_opts`), whenever possible.
2835  * E.g., in the example above with two compilation units having partial type
2836  * information for structs `A` and `B`, the output of algorithm will emit
2837  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2838  * (as well as type information for `int` and pointers), as if they were defined
2839  * in a single compilation unit as:
2840  *
2841  * struct A {
2842  *	int a;
2843  *	struct A* self;
2844  *	struct S* parent;
2845  * };
2846  * struct B {
2847  *	int b;
2848  *	struct B* self;
2849  *	struct S* parent;
2850  * };
2851  * struct S {
2852  *	struct A* a_ptr;
2853  *	struct B* b_ptr;
2854  * };
2855  *
2856  * Algorithm summary
2857  * =================
2858  *
2859  * Algorithm completes its work in 6 separate passes:
2860  *
2861  * 1. Strings deduplication.
2862  * 2. Primitive types deduplication (int, enum, fwd).
2863  * 3. Struct/union types deduplication.
2864  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2865  *    protos, and const/volatile/restrict modifiers).
2866  * 5. Types compaction.
2867  * 6. Types remapping.
2868  *
2869  * Algorithm determines canonical type descriptor, which is a single
2870  * representative type for each truly unique type. This canonical type is the
2871  * one that will go into final deduplicated BTF type information. For
2872  * struct/unions, it is also the type that algorithm will merge additional type
2873  * information into (while resolving FWDs), as it discovers it from data in
2874  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2875  * that type is canonical, or to some other type, if that type is equivalent
2876  * and was chosen as canonical representative. This mapping is stored in
2877  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2878  * FWD type got resolved to.
2879  *
2880  * To facilitate fast discovery of canonical types, we also maintain canonical
2881  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2882  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2883  * that match that signature. With sufficiently good choice of type signature
2884  * hashing function, we can limit number of canonical types for each unique type
2885  * signature to a very small number, allowing to find canonical type for any
2886  * duplicated type very quickly.
2887  *
2888  * Struct/union deduplication is the most critical part and algorithm for
2889  * deduplicating structs/unions is described in greater details in comments for
2890  * `btf_dedup_is_equiv` function.
2891  */
2892 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2893 	       const struct btf_dedup_opts *opts)
2894 {
2895 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2896 	int err;
2897 
2898 	if (IS_ERR(d)) {
2899 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2900 		return libbpf_err(-EINVAL);
2901 	}
2902 
2903 	if (btf_ensure_modifiable(btf))
2904 		return libbpf_err(-ENOMEM);
2905 
2906 	err = btf_dedup_prep(d);
2907 	if (err) {
2908 		pr_debug("btf_dedup_prep failed:%d\n", err);
2909 		goto done;
2910 	}
2911 	err = btf_dedup_strings(d);
2912 	if (err < 0) {
2913 		pr_debug("btf_dedup_strings failed:%d\n", err);
2914 		goto done;
2915 	}
2916 	err = btf_dedup_prim_types(d);
2917 	if (err < 0) {
2918 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2919 		goto done;
2920 	}
2921 	err = btf_dedup_struct_types(d);
2922 	if (err < 0) {
2923 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2924 		goto done;
2925 	}
2926 	err = btf_dedup_ref_types(d);
2927 	if (err < 0) {
2928 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2929 		goto done;
2930 	}
2931 	err = btf_dedup_compact_types(d);
2932 	if (err < 0) {
2933 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2934 		goto done;
2935 	}
2936 	err = btf_dedup_remap_types(d);
2937 	if (err < 0) {
2938 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2939 		goto done;
2940 	}
2941 
2942 done:
2943 	btf_dedup_free(d);
2944 	return libbpf_err(err);
2945 }
2946 
2947 #define BTF_UNPROCESSED_ID ((__u32)-1)
2948 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2949 
2950 struct btf_dedup {
2951 	/* .BTF section to be deduped in-place */
2952 	struct btf *btf;
2953 	/*
2954 	 * Optional .BTF.ext section. When provided, any strings referenced
2955 	 * from it will be taken into account when deduping strings
2956 	 */
2957 	struct btf_ext *btf_ext;
2958 	/*
2959 	 * This is a map from any type's signature hash to a list of possible
2960 	 * canonical representative type candidates. Hash collisions are
2961 	 * ignored, so even types of various kinds can share same list of
2962 	 * candidates, which is fine because we rely on subsequent
2963 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2964 	 */
2965 	struct hashmap *dedup_table;
2966 	/* Canonical types map */
2967 	__u32 *map;
2968 	/* Hypothetical mapping, used during type graph equivalence checks */
2969 	__u32 *hypot_map;
2970 	__u32 *hypot_list;
2971 	size_t hypot_cnt;
2972 	size_t hypot_cap;
2973 	/* Whether hypothetical mapping, if successful, would need to adjust
2974 	 * already canonicalized types (due to a new forward declaration to
2975 	 * concrete type resolution). In such case, during split BTF dedup
2976 	 * candidate type would still be considered as different, because base
2977 	 * BTF is considered to be immutable.
2978 	 */
2979 	bool hypot_adjust_canon;
2980 	/* Various option modifying behavior of algorithm */
2981 	struct btf_dedup_opts opts;
2982 	/* temporary strings deduplication state */
2983 	struct strset *strs_set;
2984 };
2985 
2986 static long hash_combine(long h, long value)
2987 {
2988 	return h * 31 + value;
2989 }
2990 
2991 #define for_each_dedup_cand(d, node, hash) \
2992 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2993 
2994 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2995 {
2996 	return hashmap__append(d->dedup_table,
2997 			       (void *)hash, (void *)(long)type_id);
2998 }
2999 
3000 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3001 				   __u32 from_id, __u32 to_id)
3002 {
3003 	if (d->hypot_cnt == d->hypot_cap) {
3004 		__u32 *new_list;
3005 
3006 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3007 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3008 		if (!new_list)
3009 			return -ENOMEM;
3010 		d->hypot_list = new_list;
3011 	}
3012 	d->hypot_list[d->hypot_cnt++] = from_id;
3013 	d->hypot_map[from_id] = to_id;
3014 	return 0;
3015 }
3016 
3017 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3018 {
3019 	int i;
3020 
3021 	for (i = 0; i < d->hypot_cnt; i++)
3022 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3023 	d->hypot_cnt = 0;
3024 	d->hypot_adjust_canon = false;
3025 }
3026 
3027 static void btf_dedup_free(struct btf_dedup *d)
3028 {
3029 	hashmap__free(d->dedup_table);
3030 	d->dedup_table = NULL;
3031 
3032 	free(d->map);
3033 	d->map = NULL;
3034 
3035 	free(d->hypot_map);
3036 	d->hypot_map = NULL;
3037 
3038 	free(d->hypot_list);
3039 	d->hypot_list = NULL;
3040 
3041 	free(d);
3042 }
3043 
3044 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3045 {
3046 	return (size_t)key;
3047 }
3048 
3049 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3050 {
3051 	return 0;
3052 }
3053 
3054 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3055 {
3056 	return k1 == k2;
3057 }
3058 
3059 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3060 				       const struct btf_dedup_opts *opts)
3061 {
3062 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3063 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3064 	int i, err = 0, type_cnt;
3065 
3066 	if (!d)
3067 		return ERR_PTR(-ENOMEM);
3068 
3069 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3070 	/* dedup_table_size is now used only to force collisions in tests */
3071 	if (opts && opts->dedup_table_size == 1)
3072 		hash_fn = btf_dedup_collision_hash_fn;
3073 
3074 	d->btf = btf;
3075 	d->btf_ext = btf_ext;
3076 
3077 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3078 	if (IS_ERR(d->dedup_table)) {
3079 		err = PTR_ERR(d->dedup_table);
3080 		d->dedup_table = NULL;
3081 		goto done;
3082 	}
3083 
3084 	type_cnt = btf__get_nr_types(btf) + 1;
3085 	d->map = malloc(sizeof(__u32) * type_cnt);
3086 	if (!d->map) {
3087 		err = -ENOMEM;
3088 		goto done;
3089 	}
3090 	/* special BTF "void" type is made canonical immediately */
3091 	d->map[0] = 0;
3092 	for (i = 1; i < type_cnt; i++) {
3093 		struct btf_type *t = btf_type_by_id(d->btf, i);
3094 
3095 		/* VAR and DATASEC are never deduped and are self-canonical */
3096 		if (btf_is_var(t) || btf_is_datasec(t))
3097 			d->map[i] = i;
3098 		else
3099 			d->map[i] = BTF_UNPROCESSED_ID;
3100 	}
3101 
3102 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3103 	if (!d->hypot_map) {
3104 		err = -ENOMEM;
3105 		goto done;
3106 	}
3107 	for (i = 0; i < type_cnt; i++)
3108 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3109 
3110 done:
3111 	if (err) {
3112 		btf_dedup_free(d);
3113 		return ERR_PTR(err);
3114 	}
3115 
3116 	return d;
3117 }
3118 
3119 /*
3120  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3121  * string and pass pointer to it to a provided callback `fn`.
3122  */
3123 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3124 {
3125 	int i, r;
3126 
3127 	for (i = 0; i < d->btf->nr_types; i++) {
3128 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3129 
3130 		r = btf_type_visit_str_offs(t, fn, ctx);
3131 		if (r)
3132 			return r;
3133 	}
3134 
3135 	if (!d->btf_ext)
3136 		return 0;
3137 
3138 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3139 	if (r)
3140 		return r;
3141 
3142 	return 0;
3143 }
3144 
3145 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3146 {
3147 	struct btf_dedup *d = ctx;
3148 	__u32 str_off = *str_off_ptr;
3149 	const char *s;
3150 	int off, err;
3151 
3152 	/* don't touch empty string or string in main BTF */
3153 	if (str_off == 0 || str_off < d->btf->start_str_off)
3154 		return 0;
3155 
3156 	s = btf__str_by_offset(d->btf, str_off);
3157 	if (d->btf->base_btf) {
3158 		err = btf__find_str(d->btf->base_btf, s);
3159 		if (err >= 0) {
3160 			*str_off_ptr = err;
3161 			return 0;
3162 		}
3163 		if (err != -ENOENT)
3164 			return err;
3165 	}
3166 
3167 	off = strset__add_str(d->strs_set, s);
3168 	if (off < 0)
3169 		return off;
3170 
3171 	*str_off_ptr = d->btf->start_str_off + off;
3172 	return 0;
3173 }
3174 
3175 /*
3176  * Dedup string and filter out those that are not referenced from either .BTF
3177  * or .BTF.ext (if provided) sections.
3178  *
3179  * This is done by building index of all strings in BTF's string section,
3180  * then iterating over all entities that can reference strings (e.g., type
3181  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3182  * strings as used. After that all used strings are deduped and compacted into
3183  * sequential blob of memory and new offsets are calculated. Then all the string
3184  * references are iterated again and rewritten using new offsets.
3185  */
3186 static int btf_dedup_strings(struct btf_dedup *d)
3187 {
3188 	int err;
3189 
3190 	if (d->btf->strs_deduped)
3191 		return 0;
3192 
3193 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3194 	if (IS_ERR(d->strs_set)) {
3195 		err = PTR_ERR(d->strs_set);
3196 		goto err_out;
3197 	}
3198 
3199 	if (!d->btf->base_btf) {
3200 		/* insert empty string; we won't be looking it up during strings
3201 		 * dedup, but it's good to have it for generic BTF string lookups
3202 		 */
3203 		err = strset__add_str(d->strs_set, "");
3204 		if (err < 0)
3205 			goto err_out;
3206 	}
3207 
3208 	/* remap string offsets */
3209 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3210 	if (err)
3211 		goto err_out;
3212 
3213 	/* replace BTF string data and hash with deduped ones */
3214 	strset__free(d->btf->strs_set);
3215 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3216 	d->btf->strs_set = d->strs_set;
3217 	d->strs_set = NULL;
3218 	d->btf->strs_deduped = true;
3219 	return 0;
3220 
3221 err_out:
3222 	strset__free(d->strs_set);
3223 	d->strs_set = NULL;
3224 
3225 	return err;
3226 }
3227 
3228 static long btf_hash_common(struct btf_type *t)
3229 {
3230 	long h;
3231 
3232 	h = hash_combine(0, t->name_off);
3233 	h = hash_combine(h, t->info);
3234 	h = hash_combine(h, t->size);
3235 	return h;
3236 }
3237 
3238 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3239 {
3240 	return t1->name_off == t2->name_off &&
3241 	       t1->info == t2->info &&
3242 	       t1->size == t2->size;
3243 }
3244 
3245 /* Calculate type signature hash of INT. */
3246 static long btf_hash_int(struct btf_type *t)
3247 {
3248 	__u32 info = *(__u32 *)(t + 1);
3249 	long h;
3250 
3251 	h = btf_hash_common(t);
3252 	h = hash_combine(h, info);
3253 	return h;
3254 }
3255 
3256 /* Check structural equality of two INTs. */
3257 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3258 {
3259 	__u32 info1, info2;
3260 
3261 	if (!btf_equal_common(t1, t2))
3262 		return false;
3263 	info1 = *(__u32 *)(t1 + 1);
3264 	info2 = *(__u32 *)(t2 + 1);
3265 	return info1 == info2;
3266 }
3267 
3268 /* Calculate type signature hash of ENUM. */
3269 static long btf_hash_enum(struct btf_type *t)
3270 {
3271 	long h;
3272 
3273 	/* don't hash vlen and enum members to support enum fwd resolving */
3274 	h = hash_combine(0, t->name_off);
3275 	h = hash_combine(h, t->info & ~0xffff);
3276 	h = hash_combine(h, t->size);
3277 	return h;
3278 }
3279 
3280 /* Check structural equality of two ENUMs. */
3281 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3282 {
3283 	const struct btf_enum *m1, *m2;
3284 	__u16 vlen;
3285 	int i;
3286 
3287 	if (!btf_equal_common(t1, t2))
3288 		return false;
3289 
3290 	vlen = btf_vlen(t1);
3291 	m1 = btf_enum(t1);
3292 	m2 = btf_enum(t2);
3293 	for (i = 0; i < vlen; i++) {
3294 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3295 			return false;
3296 		m1++;
3297 		m2++;
3298 	}
3299 	return true;
3300 }
3301 
3302 static inline bool btf_is_enum_fwd(struct btf_type *t)
3303 {
3304 	return btf_is_enum(t) && btf_vlen(t) == 0;
3305 }
3306 
3307 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3308 {
3309 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3310 		return btf_equal_enum(t1, t2);
3311 	/* ignore vlen when comparing */
3312 	return t1->name_off == t2->name_off &&
3313 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3314 	       t1->size == t2->size;
3315 }
3316 
3317 /*
3318  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3319  * as referenced type IDs equivalence is established separately during type
3320  * graph equivalence check algorithm.
3321  */
3322 static long btf_hash_struct(struct btf_type *t)
3323 {
3324 	const struct btf_member *member = btf_members(t);
3325 	__u32 vlen = btf_vlen(t);
3326 	long h = btf_hash_common(t);
3327 	int i;
3328 
3329 	for (i = 0; i < vlen; i++) {
3330 		h = hash_combine(h, member->name_off);
3331 		h = hash_combine(h, member->offset);
3332 		/* no hashing of referenced type ID, it can be unresolved yet */
3333 		member++;
3334 	}
3335 	return h;
3336 }
3337 
3338 /*
3339  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3340  * IDs. This check is performed during type graph equivalence check and
3341  * referenced types equivalence is checked separately.
3342  */
3343 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3344 {
3345 	const struct btf_member *m1, *m2;
3346 	__u16 vlen;
3347 	int i;
3348 
3349 	if (!btf_equal_common(t1, t2))
3350 		return false;
3351 
3352 	vlen = btf_vlen(t1);
3353 	m1 = btf_members(t1);
3354 	m2 = btf_members(t2);
3355 	for (i = 0; i < vlen; i++) {
3356 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3357 			return false;
3358 		m1++;
3359 		m2++;
3360 	}
3361 	return true;
3362 }
3363 
3364 /*
3365  * Calculate type signature hash of ARRAY, including referenced type IDs,
3366  * under assumption that they were already resolved to canonical type IDs and
3367  * are not going to change.
3368  */
3369 static long btf_hash_array(struct btf_type *t)
3370 {
3371 	const struct btf_array *info = btf_array(t);
3372 	long h = btf_hash_common(t);
3373 
3374 	h = hash_combine(h, info->type);
3375 	h = hash_combine(h, info->index_type);
3376 	h = hash_combine(h, info->nelems);
3377 	return h;
3378 }
3379 
3380 /*
3381  * Check exact equality of two ARRAYs, taking into account referenced
3382  * type IDs, under assumption that they were already resolved to canonical
3383  * type IDs and are not going to change.
3384  * This function is called during reference types deduplication to compare
3385  * ARRAY to potential canonical representative.
3386  */
3387 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3388 {
3389 	const struct btf_array *info1, *info2;
3390 
3391 	if (!btf_equal_common(t1, t2))
3392 		return false;
3393 
3394 	info1 = btf_array(t1);
3395 	info2 = btf_array(t2);
3396 	return info1->type == info2->type &&
3397 	       info1->index_type == info2->index_type &&
3398 	       info1->nelems == info2->nelems;
3399 }
3400 
3401 /*
3402  * Check structural compatibility of two ARRAYs, ignoring referenced type
3403  * IDs. This check is performed during type graph equivalence check and
3404  * referenced types equivalence is checked separately.
3405  */
3406 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3407 {
3408 	if (!btf_equal_common(t1, t2))
3409 		return false;
3410 
3411 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3412 }
3413 
3414 /*
3415  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3416  * under assumption that they were already resolved to canonical type IDs and
3417  * are not going to change.
3418  */
3419 static long btf_hash_fnproto(struct btf_type *t)
3420 {
3421 	const struct btf_param *member = btf_params(t);
3422 	__u16 vlen = btf_vlen(t);
3423 	long h = btf_hash_common(t);
3424 	int i;
3425 
3426 	for (i = 0; i < vlen; i++) {
3427 		h = hash_combine(h, member->name_off);
3428 		h = hash_combine(h, member->type);
3429 		member++;
3430 	}
3431 	return h;
3432 }
3433 
3434 /*
3435  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3436  * type IDs, under assumption that they were already resolved to canonical
3437  * type IDs and are not going to change.
3438  * This function is called during reference types deduplication to compare
3439  * FUNC_PROTO to potential canonical representative.
3440  */
3441 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3442 {
3443 	const struct btf_param *m1, *m2;
3444 	__u16 vlen;
3445 	int i;
3446 
3447 	if (!btf_equal_common(t1, t2))
3448 		return false;
3449 
3450 	vlen = btf_vlen(t1);
3451 	m1 = btf_params(t1);
3452 	m2 = btf_params(t2);
3453 	for (i = 0; i < vlen; i++) {
3454 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3455 			return false;
3456 		m1++;
3457 		m2++;
3458 	}
3459 	return true;
3460 }
3461 
3462 /*
3463  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3464  * IDs. This check is performed during type graph equivalence check and
3465  * referenced types equivalence is checked separately.
3466  */
3467 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3468 {
3469 	const struct btf_param *m1, *m2;
3470 	__u16 vlen;
3471 	int i;
3472 
3473 	/* skip return type ID */
3474 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3475 		return false;
3476 
3477 	vlen = btf_vlen(t1);
3478 	m1 = btf_params(t1);
3479 	m2 = btf_params(t2);
3480 	for (i = 0; i < vlen; i++) {
3481 		if (m1->name_off != m2->name_off)
3482 			return false;
3483 		m1++;
3484 		m2++;
3485 	}
3486 	return true;
3487 }
3488 
3489 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3490  * types and initializing the rest of the state (canonical type mapping) for
3491  * the fixed base BTF part.
3492  */
3493 static int btf_dedup_prep(struct btf_dedup *d)
3494 {
3495 	struct btf_type *t;
3496 	int type_id;
3497 	long h;
3498 
3499 	if (!d->btf->base_btf)
3500 		return 0;
3501 
3502 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3503 		t = btf_type_by_id(d->btf, type_id);
3504 
3505 		/* all base BTF types are self-canonical by definition */
3506 		d->map[type_id] = type_id;
3507 
3508 		switch (btf_kind(t)) {
3509 		case BTF_KIND_VAR:
3510 		case BTF_KIND_DATASEC:
3511 			/* VAR and DATASEC are never hash/deduplicated */
3512 			continue;
3513 		case BTF_KIND_CONST:
3514 		case BTF_KIND_VOLATILE:
3515 		case BTF_KIND_RESTRICT:
3516 		case BTF_KIND_PTR:
3517 		case BTF_KIND_FWD:
3518 		case BTF_KIND_TYPEDEF:
3519 		case BTF_KIND_FUNC:
3520 		case BTF_KIND_FLOAT:
3521 			h = btf_hash_common(t);
3522 			break;
3523 		case BTF_KIND_INT:
3524 			h = btf_hash_int(t);
3525 			break;
3526 		case BTF_KIND_ENUM:
3527 			h = btf_hash_enum(t);
3528 			break;
3529 		case BTF_KIND_STRUCT:
3530 		case BTF_KIND_UNION:
3531 			h = btf_hash_struct(t);
3532 			break;
3533 		case BTF_KIND_ARRAY:
3534 			h = btf_hash_array(t);
3535 			break;
3536 		case BTF_KIND_FUNC_PROTO:
3537 			h = btf_hash_fnproto(t);
3538 			break;
3539 		default:
3540 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3541 			return -EINVAL;
3542 		}
3543 		if (btf_dedup_table_add(d, h, type_id))
3544 			return -ENOMEM;
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 /*
3551  * Deduplicate primitive types, that can't reference other types, by calculating
3552  * their type signature hash and comparing them with any possible canonical
3553  * candidate. If no canonical candidate matches, type itself is marked as
3554  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3555  */
3556 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3557 {
3558 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3559 	struct hashmap_entry *hash_entry;
3560 	struct btf_type *cand;
3561 	/* if we don't find equivalent type, then we are canonical */
3562 	__u32 new_id = type_id;
3563 	__u32 cand_id;
3564 	long h;
3565 
3566 	switch (btf_kind(t)) {
3567 	case BTF_KIND_CONST:
3568 	case BTF_KIND_VOLATILE:
3569 	case BTF_KIND_RESTRICT:
3570 	case BTF_KIND_PTR:
3571 	case BTF_KIND_TYPEDEF:
3572 	case BTF_KIND_ARRAY:
3573 	case BTF_KIND_STRUCT:
3574 	case BTF_KIND_UNION:
3575 	case BTF_KIND_FUNC:
3576 	case BTF_KIND_FUNC_PROTO:
3577 	case BTF_KIND_VAR:
3578 	case BTF_KIND_DATASEC:
3579 		return 0;
3580 
3581 	case BTF_KIND_INT:
3582 		h = btf_hash_int(t);
3583 		for_each_dedup_cand(d, hash_entry, h) {
3584 			cand_id = (__u32)(long)hash_entry->value;
3585 			cand = btf_type_by_id(d->btf, cand_id);
3586 			if (btf_equal_int(t, cand)) {
3587 				new_id = cand_id;
3588 				break;
3589 			}
3590 		}
3591 		break;
3592 
3593 	case BTF_KIND_ENUM:
3594 		h = btf_hash_enum(t);
3595 		for_each_dedup_cand(d, hash_entry, h) {
3596 			cand_id = (__u32)(long)hash_entry->value;
3597 			cand = btf_type_by_id(d->btf, cand_id);
3598 			if (btf_equal_enum(t, cand)) {
3599 				new_id = cand_id;
3600 				break;
3601 			}
3602 			if (d->opts.dont_resolve_fwds)
3603 				continue;
3604 			if (btf_compat_enum(t, cand)) {
3605 				if (btf_is_enum_fwd(t)) {
3606 					/* resolve fwd to full enum */
3607 					new_id = cand_id;
3608 					break;
3609 				}
3610 				/* resolve canonical enum fwd to full enum */
3611 				d->map[cand_id] = type_id;
3612 			}
3613 		}
3614 		break;
3615 
3616 	case BTF_KIND_FWD:
3617 	case BTF_KIND_FLOAT:
3618 		h = btf_hash_common(t);
3619 		for_each_dedup_cand(d, hash_entry, h) {
3620 			cand_id = (__u32)(long)hash_entry->value;
3621 			cand = btf_type_by_id(d->btf, cand_id);
3622 			if (btf_equal_common(t, cand)) {
3623 				new_id = cand_id;
3624 				break;
3625 			}
3626 		}
3627 		break;
3628 
3629 	default:
3630 		return -EINVAL;
3631 	}
3632 
3633 	d->map[type_id] = new_id;
3634 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3635 		return -ENOMEM;
3636 
3637 	return 0;
3638 }
3639 
3640 static int btf_dedup_prim_types(struct btf_dedup *d)
3641 {
3642 	int i, err;
3643 
3644 	for (i = 0; i < d->btf->nr_types; i++) {
3645 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3646 		if (err)
3647 			return err;
3648 	}
3649 	return 0;
3650 }
3651 
3652 /*
3653  * Check whether type is already mapped into canonical one (could be to itself).
3654  */
3655 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3656 {
3657 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3658 }
3659 
3660 /*
3661  * Resolve type ID into its canonical type ID, if any; otherwise return original
3662  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3663  * STRUCT/UNION link and resolve it into canonical type ID as well.
3664  */
3665 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3666 {
3667 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3668 		type_id = d->map[type_id];
3669 	return type_id;
3670 }
3671 
3672 /*
3673  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3674  * type ID.
3675  */
3676 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3677 {
3678 	__u32 orig_type_id = type_id;
3679 
3680 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3681 		return type_id;
3682 
3683 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3684 		type_id = d->map[type_id];
3685 
3686 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3687 		return type_id;
3688 
3689 	return orig_type_id;
3690 }
3691 
3692 
3693 static inline __u16 btf_fwd_kind(struct btf_type *t)
3694 {
3695 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3696 }
3697 
3698 /* Check if given two types are identical ARRAY definitions */
3699 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3700 {
3701 	struct btf_type *t1, *t2;
3702 
3703 	t1 = btf_type_by_id(d->btf, id1);
3704 	t2 = btf_type_by_id(d->btf, id2);
3705 	if (!btf_is_array(t1) || !btf_is_array(t2))
3706 		return 0;
3707 
3708 	return btf_equal_array(t1, t2);
3709 }
3710 
3711 /*
3712  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3713  * call it "candidate graph" in this description for brevity) to a type graph
3714  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3715  * here, though keep in mind that not all types in canonical graph are
3716  * necessarily canonical representatives themselves, some of them might be
3717  * duplicates or its uniqueness might not have been established yet).
3718  * Returns:
3719  *  - >0, if type graphs are equivalent;
3720  *  -  0, if not equivalent;
3721  *  - <0, on error.
3722  *
3723  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3724  * equivalence of BTF types at each step. If at any point BTF types in candidate
3725  * and canonical graphs are not compatible structurally, whole graphs are
3726  * incompatible. If types are structurally equivalent (i.e., all information
3727  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3728  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3729  * If a type references other types, then those referenced types are checked
3730  * for equivalence recursively.
3731  *
3732  * During DFS traversal, if we find that for current `canon_id` type we
3733  * already have some mapping in hypothetical map, we check for two possible
3734  * situations:
3735  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3736  *     happen when type graphs have cycles. In this case we assume those two
3737  *     types are equivalent.
3738  *   - `canon_id` is mapped to different type. This is contradiction in our
3739  *     hypothetical mapping, because same graph in canonical graph corresponds
3740  *     to two different types in candidate graph, which for equivalent type
3741  *     graphs shouldn't happen. This condition terminates equivalence check
3742  *     with negative result.
3743  *
3744  * If type graphs traversal exhausts types to check and find no contradiction,
3745  * then type graphs are equivalent.
3746  *
3747  * When checking types for equivalence, there is one special case: FWD types.
3748  * If FWD type resolution is allowed and one of the types (either from canonical
3749  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3750  * flag) and their names match, hypothetical mapping is updated to point from
3751  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3752  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3753  *
3754  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3755  * if there are two exactly named (or anonymous) structs/unions that are
3756  * compatible structurally, one of which has FWD field, while other is concrete
3757  * STRUCT/UNION, but according to C sources they are different structs/unions
3758  * that are referencing different types with the same name. This is extremely
3759  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3760  * this logic is causing problems.
3761  *
3762  * Doing FWD resolution means that both candidate and/or canonical graphs can
3763  * consists of portions of the graph that come from multiple compilation units.
3764  * This is due to the fact that types within single compilation unit are always
3765  * deduplicated and FWDs are already resolved, if referenced struct/union
3766  * definiton is available. So, if we had unresolved FWD and found corresponding
3767  * STRUCT/UNION, they will be from different compilation units. This
3768  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3769  * type graph will likely have at least two different BTF types that describe
3770  * same type (e.g., most probably there will be two different BTF types for the
3771  * same 'int' primitive type) and could even have "overlapping" parts of type
3772  * graph that describe same subset of types.
3773  *
3774  * This in turn means that our assumption that each type in canonical graph
3775  * must correspond to exactly one type in candidate graph might not hold
3776  * anymore and will make it harder to detect contradictions using hypothetical
3777  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3778  * resolution only in canonical graph. FWDs in candidate graphs are never
3779  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3780  * that can occur:
3781  *   - Both types in canonical and candidate graphs are FWDs. If they are
3782  *     structurally equivalent, then they can either be both resolved to the
3783  *     same STRUCT/UNION or not resolved at all. In both cases they are
3784  *     equivalent and there is no need to resolve FWD on candidate side.
3785  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3786  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3787  *   - Type in canonical graph is FWD, while type in candidate is concrete
3788  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3789  *     unit, so there is exactly one BTF type for each unique C type. After
3790  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3791  *     in canonical graph mapping to single BTF type in candidate graph, but
3792  *     because hypothetical mapping maps from canonical to candidate types, it's
3793  *     alright, and we still maintain the property of having single `canon_id`
3794  *     mapping to single `cand_id` (there could be two different `canon_id`
3795  *     mapped to the same `cand_id`, but it's not contradictory).
3796  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3797  *     graph is FWD. In this case we are just going to check compatibility of
3798  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3799  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3800  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3801  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3802  *     canonical graph.
3803  */
3804 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3805 			      __u32 canon_id)
3806 {
3807 	struct btf_type *cand_type;
3808 	struct btf_type *canon_type;
3809 	__u32 hypot_type_id;
3810 	__u16 cand_kind;
3811 	__u16 canon_kind;
3812 	int i, eq;
3813 
3814 	/* if both resolve to the same canonical, they must be equivalent */
3815 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3816 		return 1;
3817 
3818 	canon_id = resolve_fwd_id(d, canon_id);
3819 
3820 	hypot_type_id = d->hypot_map[canon_id];
3821 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3822 		/* In some cases compiler will generate different DWARF types
3823 		 * for *identical* array type definitions and use them for
3824 		 * different fields within the *same* struct. This breaks type
3825 		 * equivalence check, which makes an assumption that candidate
3826 		 * types sub-graph has a consistent and deduped-by-compiler
3827 		 * types within a single CU. So work around that by explicitly
3828 		 * allowing identical array types here.
3829 		 */
3830 		return hypot_type_id == cand_id ||
3831 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3832 	}
3833 
3834 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3835 		return -ENOMEM;
3836 
3837 	cand_type = btf_type_by_id(d->btf, cand_id);
3838 	canon_type = btf_type_by_id(d->btf, canon_id);
3839 	cand_kind = btf_kind(cand_type);
3840 	canon_kind = btf_kind(canon_type);
3841 
3842 	if (cand_type->name_off != canon_type->name_off)
3843 		return 0;
3844 
3845 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3846 	if (!d->opts.dont_resolve_fwds
3847 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3848 	    && cand_kind != canon_kind) {
3849 		__u16 real_kind;
3850 		__u16 fwd_kind;
3851 
3852 		if (cand_kind == BTF_KIND_FWD) {
3853 			real_kind = canon_kind;
3854 			fwd_kind = btf_fwd_kind(cand_type);
3855 		} else {
3856 			real_kind = cand_kind;
3857 			fwd_kind = btf_fwd_kind(canon_type);
3858 			/* we'd need to resolve base FWD to STRUCT/UNION */
3859 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3860 				d->hypot_adjust_canon = true;
3861 		}
3862 		return fwd_kind == real_kind;
3863 	}
3864 
3865 	if (cand_kind != canon_kind)
3866 		return 0;
3867 
3868 	switch (cand_kind) {
3869 	case BTF_KIND_INT:
3870 		return btf_equal_int(cand_type, canon_type);
3871 
3872 	case BTF_KIND_ENUM:
3873 		if (d->opts.dont_resolve_fwds)
3874 			return btf_equal_enum(cand_type, canon_type);
3875 		else
3876 			return btf_compat_enum(cand_type, canon_type);
3877 
3878 	case BTF_KIND_FWD:
3879 	case BTF_KIND_FLOAT:
3880 		return btf_equal_common(cand_type, canon_type);
3881 
3882 	case BTF_KIND_CONST:
3883 	case BTF_KIND_VOLATILE:
3884 	case BTF_KIND_RESTRICT:
3885 	case BTF_KIND_PTR:
3886 	case BTF_KIND_TYPEDEF:
3887 	case BTF_KIND_FUNC:
3888 		if (cand_type->info != canon_type->info)
3889 			return 0;
3890 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3891 
3892 	case BTF_KIND_ARRAY: {
3893 		const struct btf_array *cand_arr, *canon_arr;
3894 
3895 		if (!btf_compat_array(cand_type, canon_type))
3896 			return 0;
3897 		cand_arr = btf_array(cand_type);
3898 		canon_arr = btf_array(canon_type);
3899 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3900 		if (eq <= 0)
3901 			return eq;
3902 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3903 	}
3904 
3905 	case BTF_KIND_STRUCT:
3906 	case BTF_KIND_UNION: {
3907 		const struct btf_member *cand_m, *canon_m;
3908 		__u16 vlen;
3909 
3910 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3911 			return 0;
3912 		vlen = btf_vlen(cand_type);
3913 		cand_m = btf_members(cand_type);
3914 		canon_m = btf_members(canon_type);
3915 		for (i = 0; i < vlen; i++) {
3916 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3917 			if (eq <= 0)
3918 				return eq;
3919 			cand_m++;
3920 			canon_m++;
3921 		}
3922 
3923 		return 1;
3924 	}
3925 
3926 	case BTF_KIND_FUNC_PROTO: {
3927 		const struct btf_param *cand_p, *canon_p;
3928 		__u16 vlen;
3929 
3930 		if (!btf_compat_fnproto(cand_type, canon_type))
3931 			return 0;
3932 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3933 		if (eq <= 0)
3934 			return eq;
3935 		vlen = btf_vlen(cand_type);
3936 		cand_p = btf_params(cand_type);
3937 		canon_p = btf_params(canon_type);
3938 		for (i = 0; i < vlen; i++) {
3939 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3940 			if (eq <= 0)
3941 				return eq;
3942 			cand_p++;
3943 			canon_p++;
3944 		}
3945 		return 1;
3946 	}
3947 
3948 	default:
3949 		return -EINVAL;
3950 	}
3951 	return 0;
3952 }
3953 
3954 /*
3955  * Use hypothetical mapping, produced by successful type graph equivalence
3956  * check, to augment existing struct/union canonical mapping, where possible.
3957  *
3958  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3959  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3960  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3961  * we are recording the mapping anyway. As opposed to carefulness required
3962  * for struct/union correspondence mapping (described below), for FWD resolution
3963  * it's not important, as by the time that FWD type (reference type) will be
3964  * deduplicated all structs/unions will be deduped already anyway.
3965  *
3966  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3967  * not required for correctness. It needs to be done carefully to ensure that
3968  * struct/union from candidate's type graph is not mapped into corresponding
3969  * struct/union from canonical type graph that itself hasn't been resolved into
3970  * canonical representative. The only guarantee we have is that canonical
3971  * struct/union was determined as canonical and that won't change. But any
3972  * types referenced through that struct/union fields could have been not yet
3973  * resolved, so in case like that it's too early to establish any kind of
3974  * correspondence between structs/unions.
3975  *
3976  * No canonical correspondence is derived for primitive types (they are already
3977  * deduplicated completely already anyway) or reference types (they rely on
3978  * stability of struct/union canonical relationship for equivalence checks).
3979  */
3980 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3981 {
3982 	__u32 canon_type_id, targ_type_id;
3983 	__u16 t_kind, c_kind;
3984 	__u32 t_id, c_id;
3985 	int i;
3986 
3987 	for (i = 0; i < d->hypot_cnt; i++) {
3988 		canon_type_id = d->hypot_list[i];
3989 		targ_type_id = d->hypot_map[canon_type_id];
3990 		t_id = resolve_type_id(d, targ_type_id);
3991 		c_id = resolve_type_id(d, canon_type_id);
3992 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3993 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3994 		/*
3995 		 * Resolve FWD into STRUCT/UNION.
3996 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3997 		 * mapped to canonical representative (as opposed to
3998 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3999 		 * eventually that struct is going to be mapped and all resolved
4000 		 * FWDs will automatically resolve to correct canonical
4001 		 * representative. This will happen before ref type deduping,
4002 		 * which critically depends on stability of these mapping. This
4003 		 * stability is not a requirement for STRUCT/UNION equivalence
4004 		 * checks, though.
4005 		 */
4006 
4007 		/* if it's the split BTF case, we still need to point base FWD
4008 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4009 		 * will be resolved against base FWD. If we don't point base
4010 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4011 		 * FWDs in split BTF won't be correctly resolved to a proper
4012 		 * STRUCT/UNION.
4013 		 */
4014 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4015 			d->map[c_id] = t_id;
4016 
4017 		/* if graph equivalence determined that we'd need to adjust
4018 		 * base canonical types, then we need to only point base FWDs
4019 		 * to STRUCTs/UNIONs and do no more modifications. For all
4020 		 * other purposes the type graphs were not equivalent.
4021 		 */
4022 		if (d->hypot_adjust_canon)
4023 			continue;
4024 
4025 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4026 			d->map[t_id] = c_id;
4027 
4028 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4029 		    c_kind != BTF_KIND_FWD &&
4030 		    is_type_mapped(d, c_id) &&
4031 		    !is_type_mapped(d, t_id)) {
4032 			/*
4033 			 * as a perf optimization, we can map struct/union
4034 			 * that's part of type graph we just verified for
4035 			 * equivalence. We can do that for struct/union that has
4036 			 * canonical representative only, though.
4037 			 */
4038 			d->map[t_id] = c_id;
4039 		}
4040 	}
4041 }
4042 
4043 /*
4044  * Deduplicate struct/union types.
4045  *
4046  * For each struct/union type its type signature hash is calculated, taking
4047  * into account type's name, size, number, order and names of fields, but
4048  * ignoring type ID's referenced from fields, because they might not be deduped
4049  * completely until after reference types deduplication phase. This type hash
4050  * is used to iterate over all potential canonical types, sharing same hash.
4051  * For each canonical candidate we check whether type graphs that they form
4052  * (through referenced types in fields and so on) are equivalent using algorithm
4053  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4054  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4055  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4056  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4057  * potentially map other structs/unions to their canonical representatives,
4058  * if such relationship hasn't yet been established. This speeds up algorithm
4059  * by eliminating some of the duplicate work.
4060  *
4061  * If no matching canonical representative was found, struct/union is marked
4062  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4063  * for further look ups.
4064  */
4065 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4066 {
4067 	struct btf_type *cand_type, *t;
4068 	struct hashmap_entry *hash_entry;
4069 	/* if we don't find equivalent type, then we are canonical */
4070 	__u32 new_id = type_id;
4071 	__u16 kind;
4072 	long h;
4073 
4074 	/* already deduped or is in process of deduping (loop detected) */
4075 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4076 		return 0;
4077 
4078 	t = btf_type_by_id(d->btf, type_id);
4079 	kind = btf_kind(t);
4080 
4081 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4082 		return 0;
4083 
4084 	h = btf_hash_struct(t);
4085 	for_each_dedup_cand(d, hash_entry, h) {
4086 		__u32 cand_id = (__u32)(long)hash_entry->value;
4087 		int eq;
4088 
4089 		/*
4090 		 * Even though btf_dedup_is_equiv() checks for
4091 		 * btf_shallow_equal_struct() internally when checking two
4092 		 * structs (unions) for equivalence, we need to guard here
4093 		 * from picking matching FWD type as a dedup candidate.
4094 		 * This can happen due to hash collision. In such case just
4095 		 * relying on btf_dedup_is_equiv() would lead to potentially
4096 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4097 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4098 		 */
4099 		cand_type = btf_type_by_id(d->btf, cand_id);
4100 		if (!btf_shallow_equal_struct(t, cand_type))
4101 			continue;
4102 
4103 		btf_dedup_clear_hypot_map(d);
4104 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4105 		if (eq < 0)
4106 			return eq;
4107 		if (!eq)
4108 			continue;
4109 		btf_dedup_merge_hypot_map(d);
4110 		if (d->hypot_adjust_canon) /* not really equivalent */
4111 			continue;
4112 		new_id = cand_id;
4113 		break;
4114 	}
4115 
4116 	d->map[type_id] = new_id;
4117 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4118 		return -ENOMEM;
4119 
4120 	return 0;
4121 }
4122 
4123 static int btf_dedup_struct_types(struct btf_dedup *d)
4124 {
4125 	int i, err;
4126 
4127 	for (i = 0; i < d->btf->nr_types; i++) {
4128 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4129 		if (err)
4130 			return err;
4131 	}
4132 	return 0;
4133 }
4134 
4135 /*
4136  * Deduplicate reference type.
4137  *
4138  * Once all primitive and struct/union types got deduplicated, we can easily
4139  * deduplicate all other (reference) BTF types. This is done in two steps:
4140  *
4141  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4142  * resolution can be done either immediately for primitive or struct/union types
4143  * (because they were deduped in previous two phases) or recursively for
4144  * reference types. Recursion will always terminate at either primitive or
4145  * struct/union type, at which point we can "unwind" chain of reference types
4146  * one by one. There is no danger of encountering cycles because in C type
4147  * system the only way to form type cycle is through struct/union, so any chain
4148  * of reference types, even those taking part in a type cycle, will inevitably
4149  * reach struct/union at some point.
4150  *
4151  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4152  * becomes "stable", in the sense that no further deduplication will cause
4153  * any changes to it. With that, it's now possible to calculate type's signature
4154  * hash (this time taking into account referenced type IDs) and loop over all
4155  * potential canonical representatives. If no match was found, current type
4156  * will become canonical representative of itself and will be added into
4157  * btf_dedup->dedup_table as another possible canonical representative.
4158  */
4159 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4160 {
4161 	struct hashmap_entry *hash_entry;
4162 	__u32 new_id = type_id, cand_id;
4163 	struct btf_type *t, *cand;
4164 	/* if we don't find equivalent type, then we are representative type */
4165 	int ref_type_id;
4166 	long h;
4167 
4168 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4169 		return -ELOOP;
4170 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4171 		return resolve_type_id(d, type_id);
4172 
4173 	t = btf_type_by_id(d->btf, type_id);
4174 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4175 
4176 	switch (btf_kind(t)) {
4177 	case BTF_KIND_CONST:
4178 	case BTF_KIND_VOLATILE:
4179 	case BTF_KIND_RESTRICT:
4180 	case BTF_KIND_PTR:
4181 	case BTF_KIND_TYPEDEF:
4182 	case BTF_KIND_FUNC:
4183 		ref_type_id = btf_dedup_ref_type(d, t->type);
4184 		if (ref_type_id < 0)
4185 			return ref_type_id;
4186 		t->type = ref_type_id;
4187 
4188 		h = btf_hash_common(t);
4189 		for_each_dedup_cand(d, hash_entry, h) {
4190 			cand_id = (__u32)(long)hash_entry->value;
4191 			cand = btf_type_by_id(d->btf, cand_id);
4192 			if (btf_equal_common(t, cand)) {
4193 				new_id = cand_id;
4194 				break;
4195 			}
4196 		}
4197 		break;
4198 
4199 	case BTF_KIND_ARRAY: {
4200 		struct btf_array *info = btf_array(t);
4201 
4202 		ref_type_id = btf_dedup_ref_type(d, info->type);
4203 		if (ref_type_id < 0)
4204 			return ref_type_id;
4205 		info->type = ref_type_id;
4206 
4207 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4208 		if (ref_type_id < 0)
4209 			return ref_type_id;
4210 		info->index_type = ref_type_id;
4211 
4212 		h = btf_hash_array(t);
4213 		for_each_dedup_cand(d, hash_entry, h) {
4214 			cand_id = (__u32)(long)hash_entry->value;
4215 			cand = btf_type_by_id(d->btf, cand_id);
4216 			if (btf_equal_array(t, cand)) {
4217 				new_id = cand_id;
4218 				break;
4219 			}
4220 		}
4221 		break;
4222 	}
4223 
4224 	case BTF_KIND_FUNC_PROTO: {
4225 		struct btf_param *param;
4226 		__u16 vlen;
4227 		int i;
4228 
4229 		ref_type_id = btf_dedup_ref_type(d, t->type);
4230 		if (ref_type_id < 0)
4231 			return ref_type_id;
4232 		t->type = ref_type_id;
4233 
4234 		vlen = btf_vlen(t);
4235 		param = btf_params(t);
4236 		for (i = 0; i < vlen; i++) {
4237 			ref_type_id = btf_dedup_ref_type(d, param->type);
4238 			if (ref_type_id < 0)
4239 				return ref_type_id;
4240 			param->type = ref_type_id;
4241 			param++;
4242 		}
4243 
4244 		h = btf_hash_fnproto(t);
4245 		for_each_dedup_cand(d, hash_entry, h) {
4246 			cand_id = (__u32)(long)hash_entry->value;
4247 			cand = btf_type_by_id(d->btf, cand_id);
4248 			if (btf_equal_fnproto(t, cand)) {
4249 				new_id = cand_id;
4250 				break;
4251 			}
4252 		}
4253 		break;
4254 	}
4255 
4256 	default:
4257 		return -EINVAL;
4258 	}
4259 
4260 	d->map[type_id] = new_id;
4261 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4262 		return -ENOMEM;
4263 
4264 	return new_id;
4265 }
4266 
4267 static int btf_dedup_ref_types(struct btf_dedup *d)
4268 {
4269 	int i, err;
4270 
4271 	for (i = 0; i < d->btf->nr_types; i++) {
4272 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4273 		if (err < 0)
4274 			return err;
4275 	}
4276 	/* we won't need d->dedup_table anymore */
4277 	hashmap__free(d->dedup_table);
4278 	d->dedup_table = NULL;
4279 	return 0;
4280 }
4281 
4282 /*
4283  * Compact types.
4284  *
4285  * After we established for each type its corresponding canonical representative
4286  * type, we now can eliminate types that are not canonical and leave only
4287  * canonical ones layed out sequentially in memory by copying them over
4288  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4289  * a map from original type ID to a new compacted type ID, which will be used
4290  * during next phase to "fix up" type IDs, referenced from struct/union and
4291  * reference types.
4292  */
4293 static int btf_dedup_compact_types(struct btf_dedup *d)
4294 {
4295 	__u32 *new_offs;
4296 	__u32 next_type_id = d->btf->start_id;
4297 	const struct btf_type *t;
4298 	void *p;
4299 	int i, id, len;
4300 
4301 	/* we are going to reuse hypot_map to store compaction remapping */
4302 	d->hypot_map[0] = 0;
4303 	/* base BTF types are not renumbered */
4304 	for (id = 1; id < d->btf->start_id; id++)
4305 		d->hypot_map[id] = id;
4306 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4307 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4308 
4309 	p = d->btf->types_data;
4310 
4311 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4312 		if (d->map[id] != id)
4313 			continue;
4314 
4315 		t = btf__type_by_id(d->btf, id);
4316 		len = btf_type_size(t);
4317 		if (len < 0)
4318 			return len;
4319 
4320 		memmove(p, t, len);
4321 		d->hypot_map[id] = next_type_id;
4322 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4323 		p += len;
4324 		next_type_id++;
4325 	}
4326 
4327 	/* shrink struct btf's internal types index and update btf_header */
4328 	d->btf->nr_types = next_type_id - d->btf->start_id;
4329 	d->btf->type_offs_cap = d->btf->nr_types;
4330 	d->btf->hdr->type_len = p - d->btf->types_data;
4331 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4332 				       sizeof(*new_offs));
4333 	if (d->btf->type_offs_cap && !new_offs)
4334 		return -ENOMEM;
4335 	d->btf->type_offs = new_offs;
4336 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4337 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4338 	return 0;
4339 }
4340 
4341 /*
4342  * Figure out final (deduplicated and compacted) type ID for provided original
4343  * `type_id` by first resolving it into corresponding canonical type ID and
4344  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4345  * which is populated during compaction phase.
4346  */
4347 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4348 {
4349 	struct btf_dedup *d = ctx;
4350 	__u32 resolved_type_id, new_type_id;
4351 
4352 	resolved_type_id = resolve_type_id(d, *type_id);
4353 	new_type_id = d->hypot_map[resolved_type_id];
4354 	if (new_type_id > BTF_MAX_NR_TYPES)
4355 		return -EINVAL;
4356 
4357 	*type_id = new_type_id;
4358 	return 0;
4359 }
4360 
4361 /*
4362  * Remap referenced type IDs into deduped type IDs.
4363  *
4364  * After BTF types are deduplicated and compacted, their final type IDs may
4365  * differ from original ones. The map from original to a corresponding
4366  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4367  * compaction phase. During remapping phase we are rewriting all type IDs
4368  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4369  * their final deduped type IDs.
4370  */
4371 static int btf_dedup_remap_types(struct btf_dedup *d)
4372 {
4373 	int i, r;
4374 
4375 	for (i = 0; i < d->btf->nr_types; i++) {
4376 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4377 
4378 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4379 		if (r)
4380 			return r;
4381 	}
4382 
4383 	if (!d->btf_ext)
4384 		return 0;
4385 
4386 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4387 	if (r)
4388 		return r;
4389 
4390 	return 0;
4391 }
4392 
4393 /*
4394  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4395  * data out of it to use for target BTF.
4396  */
4397 struct btf *libbpf_find_kernel_btf(void)
4398 {
4399 	struct {
4400 		const char *path_fmt;
4401 		bool raw_btf;
4402 	} locations[] = {
4403 		/* try canonical vmlinux BTF through sysfs first */
4404 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4405 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4406 		{ "/boot/vmlinux-%1$s" },
4407 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4408 		{ "/lib/modules/%1$s/build/vmlinux" },
4409 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4410 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4411 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4412 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4413 	};
4414 	char path[PATH_MAX + 1];
4415 	struct utsname buf;
4416 	struct btf *btf;
4417 	int i, err;
4418 
4419 	uname(&buf);
4420 
4421 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4422 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4423 
4424 		if (access(path, R_OK))
4425 			continue;
4426 
4427 		if (locations[i].raw_btf)
4428 			btf = btf__parse_raw(path);
4429 		else
4430 			btf = btf__parse_elf(path, NULL);
4431 		err = libbpf_get_error(btf);
4432 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4433 		if (err)
4434 			continue;
4435 
4436 		return btf;
4437 	}
4438 
4439 	pr_warn("failed to find valid kernel BTF\n");
4440 	return libbpf_err_ptr(-ESRCH);
4441 }
4442 
4443 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4444 {
4445 	int i, n, err;
4446 
4447 	switch (btf_kind(t)) {
4448 	case BTF_KIND_INT:
4449 	case BTF_KIND_FLOAT:
4450 	case BTF_KIND_ENUM:
4451 		return 0;
4452 
4453 	case BTF_KIND_FWD:
4454 	case BTF_KIND_CONST:
4455 	case BTF_KIND_VOLATILE:
4456 	case BTF_KIND_RESTRICT:
4457 	case BTF_KIND_PTR:
4458 	case BTF_KIND_TYPEDEF:
4459 	case BTF_KIND_FUNC:
4460 	case BTF_KIND_VAR:
4461 		return visit(&t->type, ctx);
4462 
4463 	case BTF_KIND_ARRAY: {
4464 		struct btf_array *a = btf_array(t);
4465 
4466 		err = visit(&a->type, ctx);
4467 		err = err ?: visit(&a->index_type, ctx);
4468 		return err;
4469 	}
4470 
4471 	case BTF_KIND_STRUCT:
4472 	case BTF_KIND_UNION: {
4473 		struct btf_member *m = btf_members(t);
4474 
4475 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4476 			err = visit(&m->type, ctx);
4477 			if (err)
4478 				return err;
4479 		}
4480 		return 0;
4481 	}
4482 
4483 	case BTF_KIND_FUNC_PROTO: {
4484 		struct btf_param *m = btf_params(t);
4485 
4486 		err = visit(&t->type, ctx);
4487 		if (err)
4488 			return err;
4489 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4490 			err = visit(&m->type, ctx);
4491 			if (err)
4492 				return err;
4493 		}
4494 		return 0;
4495 	}
4496 
4497 	case BTF_KIND_DATASEC: {
4498 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4499 
4500 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4501 			err = visit(&m->type, ctx);
4502 			if (err)
4503 				return err;
4504 		}
4505 		return 0;
4506 	}
4507 
4508 	default:
4509 		return -EINVAL;
4510 	}
4511 }
4512 
4513 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4514 {
4515 	int i, n, err;
4516 
4517 	err = visit(&t->name_off, ctx);
4518 	if (err)
4519 		return err;
4520 
4521 	switch (btf_kind(t)) {
4522 	case BTF_KIND_STRUCT:
4523 	case BTF_KIND_UNION: {
4524 		struct btf_member *m = btf_members(t);
4525 
4526 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4527 			err = visit(&m->name_off, ctx);
4528 			if (err)
4529 				return err;
4530 		}
4531 		break;
4532 	}
4533 	case BTF_KIND_ENUM: {
4534 		struct btf_enum *m = btf_enum(t);
4535 
4536 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4537 			err = visit(&m->name_off, ctx);
4538 			if (err)
4539 				return err;
4540 		}
4541 		break;
4542 	}
4543 	case BTF_KIND_FUNC_PROTO: {
4544 		struct btf_param *m = btf_params(t);
4545 
4546 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4547 			err = visit(&m->name_off, ctx);
4548 			if (err)
4549 				return err;
4550 		}
4551 		break;
4552 	}
4553 	default:
4554 		break;
4555 	}
4556 
4557 	return 0;
4558 }
4559 
4560 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4561 {
4562 	const struct btf_ext_info *seg;
4563 	struct btf_ext_info_sec *sec;
4564 	int i, err;
4565 
4566 	seg = &btf_ext->func_info;
4567 	for_each_btf_ext_sec(seg, sec) {
4568 		struct bpf_func_info_min *rec;
4569 
4570 		for_each_btf_ext_rec(seg, sec, i, rec) {
4571 			err = visit(&rec->type_id, ctx);
4572 			if (err < 0)
4573 				return err;
4574 		}
4575 	}
4576 
4577 	seg = &btf_ext->core_relo_info;
4578 	for_each_btf_ext_sec(seg, sec) {
4579 		struct bpf_core_relo *rec;
4580 
4581 		for_each_btf_ext_rec(seg, sec, i, rec) {
4582 			err = visit(&rec->type_id, ctx);
4583 			if (err < 0)
4584 				return err;
4585 		}
4586 	}
4587 
4588 	return 0;
4589 }
4590 
4591 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4592 {
4593 	const struct btf_ext_info *seg;
4594 	struct btf_ext_info_sec *sec;
4595 	int i, err;
4596 
4597 	seg = &btf_ext->func_info;
4598 	for_each_btf_ext_sec(seg, sec) {
4599 		err = visit(&sec->sec_name_off, ctx);
4600 		if (err)
4601 			return err;
4602 	}
4603 
4604 	seg = &btf_ext->line_info;
4605 	for_each_btf_ext_sec(seg, sec) {
4606 		struct bpf_line_info_min *rec;
4607 
4608 		err = visit(&sec->sec_name_off, ctx);
4609 		if (err)
4610 			return err;
4611 
4612 		for_each_btf_ext_rec(seg, sec, i, rec) {
4613 			err = visit(&rec->file_name_off, ctx);
4614 			if (err)
4615 				return err;
4616 			err = visit(&rec->line_off, ctx);
4617 			if (err)
4618 				return err;
4619 		}
4620 	}
4621 
4622 	seg = &btf_ext->core_relo_info;
4623 	for_each_btf_ext_sec(seg, sec) {
4624 		struct bpf_core_relo *rec;
4625 
4626 		err = visit(&sec->sec_name_off, ctx);
4627 		if (err)
4628 			return err;
4629 
4630 		for_each_btf_ext_rec(seg, sec, i, rec) {
4631 			err = visit(&rec->access_str_off, ctx);
4632 			if (err)
4633 				return err;
4634 		}
4635 	}
4636 
4637 	return 0;
4638 }
4639