1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) 452 { 453 const char *s; 454 455 s = btf__str_by_offset(btf, str_off); 456 if (!s) { 457 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); 458 return -EINVAL; 459 } 460 461 return 0; 462 } 463 464 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) 465 { 466 const struct btf_type *t; 467 468 t = btf__type_by_id(btf, id); 469 if (!t) { 470 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); 471 return -EINVAL; 472 } 473 474 return 0; 475 } 476 477 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) 478 { 479 __u32 kind = btf_kind(t); 480 int err, i, n; 481 482 err = btf_validate_str(btf, t->name_off, "type name", id); 483 if (err) 484 return err; 485 486 switch (kind) { 487 case BTF_KIND_UNKN: 488 case BTF_KIND_INT: 489 case BTF_KIND_FWD: 490 case BTF_KIND_FLOAT: 491 break; 492 case BTF_KIND_PTR: 493 case BTF_KIND_TYPEDEF: 494 case BTF_KIND_VOLATILE: 495 case BTF_KIND_CONST: 496 case BTF_KIND_RESTRICT: 497 case BTF_KIND_VAR: 498 case BTF_KIND_DECL_TAG: 499 case BTF_KIND_TYPE_TAG: 500 err = btf_validate_id(btf, t->type, id); 501 if (err) 502 return err; 503 break; 504 case BTF_KIND_ARRAY: { 505 const struct btf_array *a = btf_array(t); 506 507 err = btf_validate_id(btf, a->type, id); 508 err = err ?: btf_validate_id(btf, a->index_type, id); 509 if (err) 510 return err; 511 break; 512 } 513 case BTF_KIND_STRUCT: 514 case BTF_KIND_UNION: { 515 const struct btf_member *m = btf_members(t); 516 517 n = btf_vlen(t); 518 for (i = 0; i < n; i++, m++) { 519 err = btf_validate_str(btf, m->name_off, "field name", id); 520 err = err ?: btf_validate_id(btf, m->type, id); 521 if (err) 522 return err; 523 } 524 break; 525 } 526 case BTF_KIND_ENUM: { 527 const struct btf_enum *m = btf_enum(t); 528 529 n = btf_vlen(t); 530 for (i = 0; i < n; i++, m++) { 531 err = btf_validate_str(btf, m->name_off, "enum name", id); 532 if (err) 533 return err; 534 } 535 break; 536 } 537 case BTF_KIND_ENUM64: { 538 const struct btf_enum64 *m = btf_enum64(t); 539 540 n = btf_vlen(t); 541 for (i = 0; i < n; i++, m++) { 542 err = btf_validate_str(btf, m->name_off, "enum name", id); 543 if (err) 544 return err; 545 } 546 break; 547 } 548 case BTF_KIND_FUNC: { 549 const struct btf_type *ft; 550 551 err = btf_validate_id(btf, t->type, id); 552 if (err) 553 return err; 554 ft = btf__type_by_id(btf, t->type); 555 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { 556 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); 557 return -EINVAL; 558 } 559 break; 560 } 561 case BTF_KIND_FUNC_PROTO: { 562 const struct btf_param *m = btf_params(t); 563 564 n = btf_vlen(t); 565 for (i = 0; i < n; i++, m++) { 566 err = btf_validate_str(btf, m->name_off, "param name", id); 567 err = err ?: btf_validate_id(btf, m->type, id); 568 if (err) 569 return err; 570 } 571 break; 572 } 573 case BTF_KIND_DATASEC: { 574 const struct btf_var_secinfo *m = btf_var_secinfos(t); 575 576 n = btf_vlen(t); 577 for (i = 0; i < n; i++, m++) { 578 err = btf_validate_id(btf, m->type, id); 579 if (err) 580 return err; 581 } 582 break; 583 } 584 default: 585 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); 586 return -EINVAL; 587 } 588 return 0; 589 } 590 591 /* Validate basic sanity of BTF. It's intentionally less thorough than 592 * kernel's validation and validates only properties of BTF that libbpf relies 593 * on to be correct (e.g., valid type IDs, valid string offsets, etc) 594 */ 595 static int btf_sanity_check(const struct btf *btf) 596 { 597 const struct btf_type *t; 598 __u32 i, n = btf__type_cnt(btf); 599 int err; 600 601 for (i = 1; i < n; i++) { 602 t = btf_type_by_id(btf, i); 603 err = btf_validate_type(btf, t, i); 604 if (err) 605 return err; 606 } 607 return 0; 608 } 609 610 __u32 btf__type_cnt(const struct btf *btf) 611 { 612 return btf->start_id + btf->nr_types; 613 } 614 615 const struct btf *btf__base_btf(const struct btf *btf) 616 { 617 return btf->base_btf; 618 } 619 620 /* internal helper returning non-const pointer to a type */ 621 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 622 { 623 if (type_id == 0) 624 return &btf_void; 625 if (type_id < btf->start_id) 626 return btf_type_by_id(btf->base_btf, type_id); 627 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 628 } 629 630 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 631 { 632 if (type_id >= btf->start_id + btf->nr_types) 633 return errno = EINVAL, NULL; 634 return btf_type_by_id((struct btf *)btf, type_id); 635 } 636 637 static int determine_ptr_size(const struct btf *btf) 638 { 639 static const char * const long_aliases[] = { 640 "long", 641 "long int", 642 "int long", 643 "unsigned long", 644 "long unsigned", 645 "unsigned long int", 646 "unsigned int long", 647 "long unsigned int", 648 "long int unsigned", 649 "int unsigned long", 650 "int long unsigned", 651 }; 652 const struct btf_type *t; 653 const char *name; 654 int i, j, n; 655 656 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 657 return btf->base_btf->ptr_sz; 658 659 n = btf__type_cnt(btf); 660 for (i = 1; i < n; i++) { 661 t = btf__type_by_id(btf, i); 662 if (!btf_is_int(t)) 663 continue; 664 665 if (t->size != 4 && t->size != 8) 666 continue; 667 668 name = btf__name_by_offset(btf, t->name_off); 669 if (!name) 670 continue; 671 672 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 673 if (strcmp(name, long_aliases[j]) == 0) 674 return t->size; 675 } 676 } 677 678 return -1; 679 } 680 681 static size_t btf_ptr_sz(const struct btf *btf) 682 { 683 if (!btf->ptr_sz) 684 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 685 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 686 } 687 688 /* Return pointer size this BTF instance assumes. The size is heuristically 689 * determined by looking for 'long' or 'unsigned long' integer type and 690 * recording its size in bytes. If BTF type information doesn't have any such 691 * type, this function returns 0. In the latter case, native architecture's 692 * pointer size is assumed, so will be either 4 or 8, depending on 693 * architecture that libbpf was compiled for. It's possible to override 694 * guessed value by using btf__set_pointer_size() API. 695 */ 696 size_t btf__pointer_size(const struct btf *btf) 697 { 698 if (!btf->ptr_sz) 699 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 700 701 if (btf->ptr_sz < 0) 702 /* not enough BTF type info to guess */ 703 return 0; 704 705 return btf->ptr_sz; 706 } 707 708 /* Override or set pointer size in bytes. Only values of 4 and 8 are 709 * supported. 710 */ 711 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 712 { 713 if (ptr_sz != 4 && ptr_sz != 8) 714 return libbpf_err(-EINVAL); 715 btf->ptr_sz = ptr_sz; 716 return 0; 717 } 718 719 static bool is_host_big_endian(void) 720 { 721 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 722 return false; 723 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 724 return true; 725 #else 726 # error "Unrecognized __BYTE_ORDER__" 727 #endif 728 } 729 730 enum btf_endianness btf__endianness(const struct btf *btf) 731 { 732 if (is_host_big_endian()) 733 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 734 else 735 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 736 } 737 738 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 739 { 740 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 741 return libbpf_err(-EINVAL); 742 743 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 744 if (!btf->swapped_endian) { 745 free(btf->raw_data_swapped); 746 btf->raw_data_swapped = NULL; 747 } 748 return 0; 749 } 750 751 static bool btf_type_is_void(const struct btf_type *t) 752 { 753 return t == &btf_void || btf_is_fwd(t); 754 } 755 756 static bool btf_type_is_void_or_null(const struct btf_type *t) 757 { 758 return !t || btf_type_is_void(t); 759 } 760 761 #define MAX_RESOLVE_DEPTH 32 762 763 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 764 { 765 const struct btf_array *array; 766 const struct btf_type *t; 767 __u32 nelems = 1; 768 __s64 size = -1; 769 int i; 770 771 t = btf__type_by_id(btf, type_id); 772 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 773 switch (btf_kind(t)) { 774 case BTF_KIND_INT: 775 case BTF_KIND_STRUCT: 776 case BTF_KIND_UNION: 777 case BTF_KIND_ENUM: 778 case BTF_KIND_ENUM64: 779 case BTF_KIND_DATASEC: 780 case BTF_KIND_FLOAT: 781 size = t->size; 782 goto done; 783 case BTF_KIND_PTR: 784 size = btf_ptr_sz(btf); 785 goto done; 786 case BTF_KIND_TYPEDEF: 787 case BTF_KIND_VOLATILE: 788 case BTF_KIND_CONST: 789 case BTF_KIND_RESTRICT: 790 case BTF_KIND_VAR: 791 case BTF_KIND_DECL_TAG: 792 case BTF_KIND_TYPE_TAG: 793 type_id = t->type; 794 break; 795 case BTF_KIND_ARRAY: 796 array = btf_array(t); 797 if (nelems && array->nelems > UINT32_MAX / nelems) 798 return libbpf_err(-E2BIG); 799 nelems *= array->nelems; 800 type_id = array->type; 801 break; 802 default: 803 return libbpf_err(-EINVAL); 804 } 805 806 t = btf__type_by_id(btf, type_id); 807 } 808 809 done: 810 if (size < 0) 811 return libbpf_err(-EINVAL); 812 if (nelems && size > UINT32_MAX / nelems) 813 return libbpf_err(-E2BIG); 814 815 return nelems * size; 816 } 817 818 int btf__align_of(const struct btf *btf, __u32 id) 819 { 820 const struct btf_type *t = btf__type_by_id(btf, id); 821 __u16 kind = btf_kind(t); 822 823 switch (kind) { 824 case BTF_KIND_INT: 825 case BTF_KIND_ENUM: 826 case BTF_KIND_ENUM64: 827 case BTF_KIND_FLOAT: 828 return min(btf_ptr_sz(btf), (size_t)t->size); 829 case BTF_KIND_PTR: 830 return btf_ptr_sz(btf); 831 case BTF_KIND_TYPEDEF: 832 case BTF_KIND_VOLATILE: 833 case BTF_KIND_CONST: 834 case BTF_KIND_RESTRICT: 835 case BTF_KIND_TYPE_TAG: 836 return btf__align_of(btf, t->type); 837 case BTF_KIND_ARRAY: 838 return btf__align_of(btf, btf_array(t)->type); 839 case BTF_KIND_STRUCT: 840 case BTF_KIND_UNION: { 841 const struct btf_member *m = btf_members(t); 842 __u16 vlen = btf_vlen(t); 843 int i, max_align = 1, align; 844 845 for (i = 0; i < vlen; i++, m++) { 846 align = btf__align_of(btf, m->type); 847 if (align <= 0) 848 return libbpf_err(align); 849 max_align = max(max_align, align); 850 851 /* if field offset isn't aligned according to field 852 * type's alignment, then struct must be packed 853 */ 854 if (btf_member_bitfield_size(t, i) == 0 && 855 (m->offset % (8 * align)) != 0) 856 return 1; 857 } 858 859 /* if struct/union size isn't a multiple of its alignment, 860 * then struct must be packed 861 */ 862 if ((t->size % max_align) != 0) 863 return 1; 864 865 return max_align; 866 } 867 default: 868 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 869 return errno = EINVAL, 0; 870 } 871 } 872 873 int btf__resolve_type(const struct btf *btf, __u32 type_id) 874 { 875 const struct btf_type *t; 876 int depth = 0; 877 878 t = btf__type_by_id(btf, type_id); 879 while (depth < MAX_RESOLVE_DEPTH && 880 !btf_type_is_void_or_null(t) && 881 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 882 type_id = t->type; 883 t = btf__type_by_id(btf, type_id); 884 depth++; 885 } 886 887 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 888 return libbpf_err(-EINVAL); 889 890 return type_id; 891 } 892 893 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 894 { 895 __u32 i, nr_types = btf__type_cnt(btf); 896 897 if (!strcmp(type_name, "void")) 898 return 0; 899 900 for (i = 1; i < nr_types; i++) { 901 const struct btf_type *t = btf__type_by_id(btf, i); 902 const char *name = btf__name_by_offset(btf, t->name_off); 903 904 if (name && !strcmp(type_name, name)) 905 return i; 906 } 907 908 return libbpf_err(-ENOENT); 909 } 910 911 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 912 const char *type_name, __u32 kind) 913 { 914 __u32 i, nr_types = btf__type_cnt(btf); 915 916 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 917 return 0; 918 919 for (i = start_id; i < nr_types; i++) { 920 const struct btf_type *t = btf__type_by_id(btf, i); 921 const char *name; 922 923 if (btf_kind(t) != kind) 924 continue; 925 name = btf__name_by_offset(btf, t->name_off); 926 if (name && !strcmp(type_name, name)) 927 return i; 928 } 929 930 return libbpf_err(-ENOENT); 931 } 932 933 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 934 __u32 kind) 935 { 936 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 937 } 938 939 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 940 __u32 kind) 941 { 942 return btf_find_by_name_kind(btf, 1, type_name, kind); 943 } 944 945 static bool btf_is_modifiable(const struct btf *btf) 946 { 947 return (void *)btf->hdr != btf->raw_data; 948 } 949 950 void btf__free(struct btf *btf) 951 { 952 if (IS_ERR_OR_NULL(btf)) 953 return; 954 955 if (btf->fd >= 0) 956 close(btf->fd); 957 958 if (btf_is_modifiable(btf)) { 959 /* if BTF was modified after loading, it will have a split 960 * in-memory representation for header, types, and strings 961 * sections, so we need to free all of them individually. It 962 * might still have a cached contiguous raw data present, 963 * which will be unconditionally freed below. 964 */ 965 free(btf->hdr); 966 free(btf->types_data); 967 strset__free(btf->strs_set); 968 } 969 free(btf->raw_data); 970 free(btf->raw_data_swapped); 971 free(btf->type_offs); 972 free(btf); 973 } 974 975 static struct btf *btf_new_empty(struct btf *base_btf) 976 { 977 struct btf *btf; 978 979 btf = calloc(1, sizeof(*btf)); 980 if (!btf) 981 return ERR_PTR(-ENOMEM); 982 983 btf->nr_types = 0; 984 btf->start_id = 1; 985 btf->start_str_off = 0; 986 btf->fd = -1; 987 btf->ptr_sz = sizeof(void *); 988 btf->swapped_endian = false; 989 990 if (base_btf) { 991 btf->base_btf = base_btf; 992 btf->start_id = btf__type_cnt(base_btf); 993 btf->start_str_off = base_btf->hdr->str_len; 994 } 995 996 /* +1 for empty string at offset 0 */ 997 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 998 btf->raw_data = calloc(1, btf->raw_size); 999 if (!btf->raw_data) { 1000 free(btf); 1001 return ERR_PTR(-ENOMEM); 1002 } 1003 1004 btf->hdr = btf->raw_data; 1005 btf->hdr->hdr_len = sizeof(struct btf_header); 1006 btf->hdr->magic = BTF_MAGIC; 1007 btf->hdr->version = BTF_VERSION; 1008 1009 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 1010 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 1011 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 1012 1013 return btf; 1014 } 1015 1016 struct btf *btf__new_empty(void) 1017 { 1018 return libbpf_ptr(btf_new_empty(NULL)); 1019 } 1020 1021 struct btf *btf__new_empty_split(struct btf *base_btf) 1022 { 1023 return libbpf_ptr(btf_new_empty(base_btf)); 1024 } 1025 1026 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 1027 { 1028 struct btf *btf; 1029 int err; 1030 1031 btf = calloc(1, sizeof(struct btf)); 1032 if (!btf) 1033 return ERR_PTR(-ENOMEM); 1034 1035 btf->nr_types = 0; 1036 btf->start_id = 1; 1037 btf->start_str_off = 0; 1038 btf->fd = -1; 1039 1040 if (base_btf) { 1041 btf->base_btf = base_btf; 1042 btf->start_id = btf__type_cnt(base_btf); 1043 btf->start_str_off = base_btf->hdr->str_len; 1044 } 1045 1046 btf->raw_data = malloc(size); 1047 if (!btf->raw_data) { 1048 err = -ENOMEM; 1049 goto done; 1050 } 1051 memcpy(btf->raw_data, data, size); 1052 btf->raw_size = size; 1053 1054 btf->hdr = btf->raw_data; 1055 err = btf_parse_hdr(btf); 1056 if (err) 1057 goto done; 1058 1059 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 1060 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 1061 1062 err = btf_parse_str_sec(btf); 1063 err = err ?: btf_parse_type_sec(btf); 1064 err = err ?: btf_sanity_check(btf); 1065 if (err) 1066 goto done; 1067 1068 done: 1069 if (err) { 1070 btf__free(btf); 1071 return ERR_PTR(err); 1072 } 1073 1074 return btf; 1075 } 1076 1077 struct btf *btf__new(const void *data, __u32 size) 1078 { 1079 return libbpf_ptr(btf_new(data, size, NULL)); 1080 } 1081 1082 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 1083 struct btf_ext **btf_ext) 1084 { 1085 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 1086 int err = 0, fd = -1, idx = 0; 1087 struct btf *btf = NULL; 1088 Elf_Scn *scn = NULL; 1089 Elf *elf = NULL; 1090 GElf_Ehdr ehdr; 1091 size_t shstrndx; 1092 1093 if (elf_version(EV_CURRENT) == EV_NONE) { 1094 pr_warn("failed to init libelf for %s\n", path); 1095 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 1096 } 1097 1098 fd = open(path, O_RDONLY | O_CLOEXEC); 1099 if (fd < 0) { 1100 err = -errno; 1101 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 1102 return ERR_PTR(err); 1103 } 1104 1105 err = -LIBBPF_ERRNO__FORMAT; 1106 1107 elf = elf_begin(fd, ELF_C_READ, NULL); 1108 if (!elf) { 1109 pr_warn("failed to open %s as ELF file\n", path); 1110 goto done; 1111 } 1112 if (!gelf_getehdr(elf, &ehdr)) { 1113 pr_warn("failed to get EHDR from %s\n", path); 1114 goto done; 1115 } 1116 1117 if (elf_getshdrstrndx(elf, &shstrndx)) { 1118 pr_warn("failed to get section names section index for %s\n", 1119 path); 1120 goto done; 1121 } 1122 1123 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 1124 pr_warn("failed to get e_shstrndx from %s\n", path); 1125 goto done; 1126 } 1127 1128 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1129 GElf_Shdr sh; 1130 char *name; 1131 1132 idx++; 1133 if (gelf_getshdr(scn, &sh) != &sh) { 1134 pr_warn("failed to get section(%d) header from %s\n", 1135 idx, path); 1136 goto done; 1137 } 1138 name = elf_strptr(elf, shstrndx, sh.sh_name); 1139 if (!name) { 1140 pr_warn("failed to get section(%d) name from %s\n", 1141 idx, path); 1142 goto done; 1143 } 1144 if (strcmp(name, BTF_ELF_SEC) == 0) { 1145 btf_data = elf_getdata(scn, 0); 1146 if (!btf_data) { 1147 pr_warn("failed to get section(%d, %s) data from %s\n", 1148 idx, name, path); 1149 goto done; 1150 } 1151 continue; 1152 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 1153 btf_ext_data = elf_getdata(scn, 0); 1154 if (!btf_ext_data) { 1155 pr_warn("failed to get section(%d, %s) data from %s\n", 1156 idx, name, path); 1157 goto done; 1158 } 1159 continue; 1160 } 1161 } 1162 1163 if (!btf_data) { 1164 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1165 err = -ENODATA; 1166 goto done; 1167 } 1168 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 1169 err = libbpf_get_error(btf); 1170 if (err) 1171 goto done; 1172 1173 switch (gelf_getclass(elf)) { 1174 case ELFCLASS32: 1175 btf__set_pointer_size(btf, 4); 1176 break; 1177 case ELFCLASS64: 1178 btf__set_pointer_size(btf, 8); 1179 break; 1180 default: 1181 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1182 break; 1183 } 1184 1185 if (btf_ext && btf_ext_data) { 1186 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1187 err = libbpf_get_error(*btf_ext); 1188 if (err) 1189 goto done; 1190 } else if (btf_ext) { 1191 *btf_ext = NULL; 1192 } 1193 done: 1194 if (elf) 1195 elf_end(elf); 1196 close(fd); 1197 1198 if (!err) 1199 return btf; 1200 1201 if (btf_ext) 1202 btf_ext__free(*btf_ext); 1203 btf__free(btf); 1204 1205 return ERR_PTR(err); 1206 } 1207 1208 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1209 { 1210 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1211 } 1212 1213 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1214 { 1215 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1216 } 1217 1218 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1219 { 1220 struct btf *btf = NULL; 1221 void *data = NULL; 1222 FILE *f = NULL; 1223 __u16 magic; 1224 int err = 0; 1225 long sz; 1226 1227 f = fopen(path, "rbe"); 1228 if (!f) { 1229 err = -errno; 1230 goto err_out; 1231 } 1232 1233 /* check BTF magic */ 1234 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1235 err = -EIO; 1236 goto err_out; 1237 } 1238 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1239 /* definitely not a raw BTF */ 1240 err = -EPROTO; 1241 goto err_out; 1242 } 1243 1244 /* get file size */ 1245 if (fseek(f, 0, SEEK_END)) { 1246 err = -errno; 1247 goto err_out; 1248 } 1249 sz = ftell(f); 1250 if (sz < 0) { 1251 err = -errno; 1252 goto err_out; 1253 } 1254 /* rewind to the start */ 1255 if (fseek(f, 0, SEEK_SET)) { 1256 err = -errno; 1257 goto err_out; 1258 } 1259 1260 /* pre-alloc memory and read all of BTF data */ 1261 data = malloc(sz); 1262 if (!data) { 1263 err = -ENOMEM; 1264 goto err_out; 1265 } 1266 if (fread(data, 1, sz, f) < sz) { 1267 err = -EIO; 1268 goto err_out; 1269 } 1270 1271 /* finally parse BTF data */ 1272 btf = btf_new(data, sz, base_btf); 1273 1274 err_out: 1275 free(data); 1276 if (f) 1277 fclose(f); 1278 return err ? ERR_PTR(err) : btf; 1279 } 1280 1281 struct btf *btf__parse_raw(const char *path) 1282 { 1283 return libbpf_ptr(btf_parse_raw(path, NULL)); 1284 } 1285 1286 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1287 { 1288 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1289 } 1290 1291 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1292 { 1293 struct btf *btf; 1294 int err; 1295 1296 if (btf_ext) 1297 *btf_ext = NULL; 1298 1299 btf = btf_parse_raw(path, base_btf); 1300 err = libbpf_get_error(btf); 1301 if (!err) 1302 return btf; 1303 if (err != -EPROTO) 1304 return ERR_PTR(err); 1305 return btf_parse_elf(path, base_btf, btf_ext); 1306 } 1307 1308 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1309 { 1310 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1311 } 1312 1313 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1314 { 1315 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1316 } 1317 1318 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1319 1320 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1321 { 1322 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1323 __u32 buf_sz = 0, raw_size; 1324 char *buf = NULL, *tmp; 1325 void *raw_data; 1326 int err = 0; 1327 1328 if (btf->fd >= 0) 1329 return libbpf_err(-EEXIST); 1330 if (log_sz && !log_buf) 1331 return libbpf_err(-EINVAL); 1332 1333 /* cache native raw data representation */ 1334 raw_data = btf_get_raw_data(btf, &raw_size, false); 1335 if (!raw_data) { 1336 err = -ENOMEM; 1337 goto done; 1338 } 1339 btf->raw_size = raw_size; 1340 btf->raw_data = raw_data; 1341 1342 retry_load: 1343 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1344 * initially. Only if BTF loading fails, we bump log_level to 1 and 1345 * retry, using either auto-allocated or custom log_buf. This way 1346 * non-NULL custom log_buf provides a buffer just in case, but hopes 1347 * for successful load and no need for log_buf. 1348 */ 1349 if (log_level) { 1350 /* if caller didn't provide custom log_buf, we'll keep 1351 * allocating our own progressively bigger buffers for BTF 1352 * verification log 1353 */ 1354 if (!log_buf) { 1355 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1356 tmp = realloc(buf, buf_sz); 1357 if (!tmp) { 1358 err = -ENOMEM; 1359 goto done; 1360 } 1361 buf = tmp; 1362 buf[0] = '\0'; 1363 } 1364 1365 opts.log_buf = log_buf ? log_buf : buf; 1366 opts.log_size = log_buf ? log_sz : buf_sz; 1367 opts.log_level = log_level; 1368 } 1369 1370 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1371 if (btf->fd < 0) { 1372 /* time to turn on verbose mode and try again */ 1373 if (log_level == 0) { 1374 log_level = 1; 1375 goto retry_load; 1376 } 1377 /* only retry if caller didn't provide custom log_buf, but 1378 * make sure we can never overflow buf_sz 1379 */ 1380 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1381 goto retry_load; 1382 1383 err = -errno; 1384 pr_warn("BTF loading error: %d\n", err); 1385 /* don't print out contents of custom log_buf */ 1386 if (!log_buf && buf[0]) 1387 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1388 } 1389 1390 done: 1391 free(buf); 1392 return libbpf_err(err); 1393 } 1394 1395 int btf__load_into_kernel(struct btf *btf) 1396 { 1397 return btf_load_into_kernel(btf, NULL, 0, 0); 1398 } 1399 1400 int btf__fd(const struct btf *btf) 1401 { 1402 return btf->fd; 1403 } 1404 1405 void btf__set_fd(struct btf *btf, int fd) 1406 { 1407 btf->fd = fd; 1408 } 1409 1410 static const void *btf_strs_data(const struct btf *btf) 1411 { 1412 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1413 } 1414 1415 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1416 { 1417 struct btf_header *hdr = btf->hdr; 1418 struct btf_type *t; 1419 void *data, *p; 1420 __u32 data_sz; 1421 int i; 1422 1423 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1424 if (data) { 1425 *size = btf->raw_size; 1426 return data; 1427 } 1428 1429 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1430 data = calloc(1, data_sz); 1431 if (!data) 1432 return NULL; 1433 p = data; 1434 1435 memcpy(p, hdr, hdr->hdr_len); 1436 if (swap_endian) 1437 btf_bswap_hdr(p); 1438 p += hdr->hdr_len; 1439 1440 memcpy(p, btf->types_data, hdr->type_len); 1441 if (swap_endian) { 1442 for (i = 0; i < btf->nr_types; i++) { 1443 t = p + btf->type_offs[i]; 1444 /* btf_bswap_type_rest() relies on native t->info, so 1445 * we swap base type info after we swapped all the 1446 * additional information 1447 */ 1448 if (btf_bswap_type_rest(t)) 1449 goto err_out; 1450 btf_bswap_type_base(t); 1451 } 1452 } 1453 p += hdr->type_len; 1454 1455 memcpy(p, btf_strs_data(btf), hdr->str_len); 1456 p += hdr->str_len; 1457 1458 *size = data_sz; 1459 return data; 1460 err_out: 1461 free(data); 1462 return NULL; 1463 } 1464 1465 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1466 { 1467 struct btf *btf = (struct btf *)btf_ro; 1468 __u32 data_sz; 1469 void *data; 1470 1471 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1472 if (!data) 1473 return errno = ENOMEM, NULL; 1474 1475 btf->raw_size = data_sz; 1476 if (btf->swapped_endian) 1477 btf->raw_data_swapped = data; 1478 else 1479 btf->raw_data = data; 1480 *size = data_sz; 1481 return data; 1482 } 1483 1484 __attribute__((alias("btf__raw_data"))) 1485 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1486 1487 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1488 { 1489 if (offset < btf->start_str_off) 1490 return btf__str_by_offset(btf->base_btf, offset); 1491 else if (offset - btf->start_str_off < btf->hdr->str_len) 1492 return btf_strs_data(btf) + (offset - btf->start_str_off); 1493 else 1494 return errno = EINVAL, NULL; 1495 } 1496 1497 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1498 { 1499 return btf__str_by_offset(btf, offset); 1500 } 1501 1502 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1503 { 1504 struct bpf_btf_info btf_info; 1505 __u32 len = sizeof(btf_info); 1506 __u32 last_size; 1507 struct btf *btf; 1508 void *ptr; 1509 int err; 1510 1511 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1512 * let's start with a sane default - 4KiB here - and resize it only if 1513 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1514 */ 1515 last_size = 4096; 1516 ptr = malloc(last_size); 1517 if (!ptr) 1518 return ERR_PTR(-ENOMEM); 1519 1520 memset(&btf_info, 0, sizeof(btf_info)); 1521 btf_info.btf = ptr_to_u64(ptr); 1522 btf_info.btf_size = last_size; 1523 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1524 1525 if (!err && btf_info.btf_size > last_size) { 1526 void *temp_ptr; 1527 1528 last_size = btf_info.btf_size; 1529 temp_ptr = realloc(ptr, last_size); 1530 if (!temp_ptr) { 1531 btf = ERR_PTR(-ENOMEM); 1532 goto exit_free; 1533 } 1534 ptr = temp_ptr; 1535 1536 len = sizeof(btf_info); 1537 memset(&btf_info, 0, sizeof(btf_info)); 1538 btf_info.btf = ptr_to_u64(ptr); 1539 btf_info.btf_size = last_size; 1540 1541 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1542 } 1543 1544 if (err || btf_info.btf_size > last_size) { 1545 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1546 goto exit_free; 1547 } 1548 1549 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1550 1551 exit_free: 1552 free(ptr); 1553 return btf; 1554 } 1555 1556 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1557 { 1558 struct btf *btf; 1559 int btf_fd; 1560 1561 btf_fd = bpf_btf_get_fd_by_id(id); 1562 if (btf_fd < 0) 1563 return libbpf_err_ptr(-errno); 1564 1565 btf = btf_get_from_fd(btf_fd, base_btf); 1566 close(btf_fd); 1567 1568 return libbpf_ptr(btf); 1569 } 1570 1571 struct btf *btf__load_from_kernel_by_id(__u32 id) 1572 { 1573 return btf__load_from_kernel_by_id_split(id, NULL); 1574 } 1575 1576 static void btf_invalidate_raw_data(struct btf *btf) 1577 { 1578 if (btf->raw_data) { 1579 free(btf->raw_data); 1580 btf->raw_data = NULL; 1581 } 1582 if (btf->raw_data_swapped) { 1583 free(btf->raw_data_swapped); 1584 btf->raw_data_swapped = NULL; 1585 } 1586 } 1587 1588 /* Ensure BTF is ready to be modified (by splitting into a three memory 1589 * regions for header, types, and strings). Also invalidate cached 1590 * raw_data, if any. 1591 */ 1592 static int btf_ensure_modifiable(struct btf *btf) 1593 { 1594 void *hdr, *types; 1595 struct strset *set = NULL; 1596 int err = -ENOMEM; 1597 1598 if (btf_is_modifiable(btf)) { 1599 /* any BTF modification invalidates raw_data */ 1600 btf_invalidate_raw_data(btf); 1601 return 0; 1602 } 1603 1604 /* split raw data into three memory regions */ 1605 hdr = malloc(btf->hdr->hdr_len); 1606 types = malloc(btf->hdr->type_len); 1607 if (!hdr || !types) 1608 goto err_out; 1609 1610 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1611 memcpy(types, btf->types_data, btf->hdr->type_len); 1612 1613 /* build lookup index for all strings */ 1614 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1615 if (IS_ERR(set)) { 1616 err = PTR_ERR(set); 1617 goto err_out; 1618 } 1619 1620 /* only when everything was successful, update internal state */ 1621 btf->hdr = hdr; 1622 btf->types_data = types; 1623 btf->types_data_cap = btf->hdr->type_len; 1624 btf->strs_data = NULL; 1625 btf->strs_set = set; 1626 /* if BTF was created from scratch, all strings are guaranteed to be 1627 * unique and deduplicated 1628 */ 1629 if (btf->hdr->str_len == 0) 1630 btf->strs_deduped = true; 1631 if (!btf->base_btf && btf->hdr->str_len == 1) 1632 btf->strs_deduped = true; 1633 1634 /* invalidate raw_data representation */ 1635 btf_invalidate_raw_data(btf); 1636 1637 return 0; 1638 1639 err_out: 1640 strset__free(set); 1641 free(hdr); 1642 free(types); 1643 return err; 1644 } 1645 1646 /* Find an offset in BTF string section that corresponds to a given string *s*. 1647 * Returns: 1648 * - >0 offset into string section, if string is found; 1649 * - -ENOENT, if string is not in the string section; 1650 * - <0, on any other error. 1651 */ 1652 int btf__find_str(struct btf *btf, const char *s) 1653 { 1654 int off; 1655 1656 if (btf->base_btf) { 1657 off = btf__find_str(btf->base_btf, s); 1658 if (off != -ENOENT) 1659 return off; 1660 } 1661 1662 /* BTF needs to be in a modifiable state to build string lookup index */ 1663 if (btf_ensure_modifiable(btf)) 1664 return libbpf_err(-ENOMEM); 1665 1666 off = strset__find_str(btf->strs_set, s); 1667 if (off < 0) 1668 return libbpf_err(off); 1669 1670 return btf->start_str_off + off; 1671 } 1672 1673 /* Add a string s to the BTF string section. 1674 * Returns: 1675 * - > 0 offset into string section, on success; 1676 * - < 0, on error. 1677 */ 1678 int btf__add_str(struct btf *btf, const char *s) 1679 { 1680 int off; 1681 1682 if (btf->base_btf) { 1683 off = btf__find_str(btf->base_btf, s); 1684 if (off != -ENOENT) 1685 return off; 1686 } 1687 1688 if (btf_ensure_modifiable(btf)) 1689 return libbpf_err(-ENOMEM); 1690 1691 off = strset__add_str(btf->strs_set, s); 1692 if (off < 0) 1693 return libbpf_err(off); 1694 1695 btf->hdr->str_len = strset__data_size(btf->strs_set); 1696 1697 return btf->start_str_off + off; 1698 } 1699 1700 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1701 { 1702 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1703 btf->hdr->type_len, UINT_MAX, add_sz); 1704 } 1705 1706 static void btf_type_inc_vlen(struct btf_type *t) 1707 { 1708 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1709 } 1710 1711 static int btf_commit_type(struct btf *btf, int data_sz) 1712 { 1713 int err; 1714 1715 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1716 if (err) 1717 return libbpf_err(err); 1718 1719 btf->hdr->type_len += data_sz; 1720 btf->hdr->str_off += data_sz; 1721 btf->nr_types++; 1722 return btf->start_id + btf->nr_types - 1; 1723 } 1724 1725 struct btf_pipe { 1726 const struct btf *src; 1727 struct btf *dst; 1728 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1729 }; 1730 1731 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1732 { 1733 struct btf_pipe *p = ctx; 1734 long mapped_off; 1735 int off, err; 1736 1737 if (!*str_off) /* nothing to do for empty strings */ 1738 return 0; 1739 1740 if (p->str_off_map && 1741 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1742 *str_off = mapped_off; 1743 return 0; 1744 } 1745 1746 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1747 if (off < 0) 1748 return off; 1749 1750 /* Remember string mapping from src to dst. It avoids 1751 * performing expensive string comparisons. 1752 */ 1753 if (p->str_off_map) { 1754 err = hashmap__append(p->str_off_map, *str_off, off); 1755 if (err) 1756 return err; 1757 } 1758 1759 *str_off = off; 1760 return 0; 1761 } 1762 1763 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1764 { 1765 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1766 struct btf_type *t; 1767 int sz, err; 1768 1769 sz = btf_type_size(src_type); 1770 if (sz < 0) 1771 return libbpf_err(sz); 1772 1773 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1774 if (btf_ensure_modifiable(btf)) 1775 return libbpf_err(-ENOMEM); 1776 1777 t = btf_add_type_mem(btf, sz); 1778 if (!t) 1779 return libbpf_err(-ENOMEM); 1780 1781 memcpy(t, src_type, sz); 1782 1783 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1784 if (err) 1785 return libbpf_err(err); 1786 1787 return btf_commit_type(btf, sz); 1788 } 1789 1790 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1791 { 1792 struct btf *btf = ctx; 1793 1794 if (!*type_id) /* nothing to do for VOID references */ 1795 return 0; 1796 1797 /* we haven't updated btf's type count yet, so 1798 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1799 * add to all newly added BTF types 1800 */ 1801 *type_id += btf->start_id + btf->nr_types - 1; 1802 return 0; 1803 } 1804 1805 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1806 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1807 1808 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1809 { 1810 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1811 int data_sz, sz, cnt, i, err, old_strs_len; 1812 __u32 *off; 1813 void *t; 1814 1815 /* appending split BTF isn't supported yet */ 1816 if (src_btf->base_btf) 1817 return libbpf_err(-ENOTSUP); 1818 1819 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1820 if (btf_ensure_modifiable(btf)) 1821 return libbpf_err(-ENOMEM); 1822 1823 /* remember original strings section size if we have to roll back 1824 * partial strings section changes 1825 */ 1826 old_strs_len = btf->hdr->str_len; 1827 1828 data_sz = src_btf->hdr->type_len; 1829 cnt = btf__type_cnt(src_btf) - 1; 1830 1831 /* pre-allocate enough memory for new types */ 1832 t = btf_add_type_mem(btf, data_sz); 1833 if (!t) 1834 return libbpf_err(-ENOMEM); 1835 1836 /* pre-allocate enough memory for type offset index for new types */ 1837 off = btf_add_type_offs_mem(btf, cnt); 1838 if (!off) 1839 return libbpf_err(-ENOMEM); 1840 1841 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1842 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1843 if (IS_ERR(p.str_off_map)) 1844 return libbpf_err(-ENOMEM); 1845 1846 /* bulk copy types data for all types from src_btf */ 1847 memcpy(t, src_btf->types_data, data_sz); 1848 1849 for (i = 0; i < cnt; i++) { 1850 sz = btf_type_size(t); 1851 if (sz < 0) { 1852 /* unlikely, has to be corrupted src_btf */ 1853 err = sz; 1854 goto err_out; 1855 } 1856 1857 /* fill out type ID to type offset mapping for lookups by type ID */ 1858 *off = t - btf->types_data; 1859 1860 /* add, dedup, and remap strings referenced by this BTF type */ 1861 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1862 if (err) 1863 goto err_out; 1864 1865 /* remap all type IDs referenced from this BTF type */ 1866 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1867 if (err) 1868 goto err_out; 1869 1870 /* go to next type data and type offset index entry */ 1871 t += sz; 1872 off++; 1873 } 1874 1875 /* Up until now any of the copied type data was effectively invisible, 1876 * so if we exited early before this point due to error, BTF would be 1877 * effectively unmodified. There would be extra internal memory 1878 * pre-allocated, but it would not be available for querying. But now 1879 * that we've copied and rewritten all the data successfully, we can 1880 * update type count and various internal offsets and sizes to 1881 * "commit" the changes and made them visible to the outside world. 1882 */ 1883 btf->hdr->type_len += data_sz; 1884 btf->hdr->str_off += data_sz; 1885 btf->nr_types += cnt; 1886 1887 hashmap__free(p.str_off_map); 1888 1889 /* return type ID of the first added BTF type */ 1890 return btf->start_id + btf->nr_types - cnt; 1891 err_out: 1892 /* zero out preallocated memory as if it was just allocated with 1893 * libbpf_add_mem() 1894 */ 1895 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1896 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1897 1898 /* and now restore original strings section size; types data size 1899 * wasn't modified, so doesn't need restoring, see big comment above 1900 */ 1901 btf->hdr->str_len = old_strs_len; 1902 1903 hashmap__free(p.str_off_map); 1904 1905 return libbpf_err(err); 1906 } 1907 1908 /* 1909 * Append new BTF_KIND_INT type with: 1910 * - *name* - non-empty, non-NULL type name; 1911 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1912 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1913 * Returns: 1914 * - >0, type ID of newly added BTF type; 1915 * - <0, on error. 1916 */ 1917 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1918 { 1919 struct btf_type *t; 1920 int sz, name_off; 1921 1922 /* non-empty name */ 1923 if (!name || !name[0]) 1924 return libbpf_err(-EINVAL); 1925 /* byte_sz must be power of 2 */ 1926 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1927 return libbpf_err(-EINVAL); 1928 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1929 return libbpf_err(-EINVAL); 1930 1931 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1932 if (btf_ensure_modifiable(btf)) 1933 return libbpf_err(-ENOMEM); 1934 1935 sz = sizeof(struct btf_type) + sizeof(int); 1936 t = btf_add_type_mem(btf, sz); 1937 if (!t) 1938 return libbpf_err(-ENOMEM); 1939 1940 /* if something goes wrong later, we might end up with an extra string, 1941 * but that shouldn't be a problem, because BTF can't be constructed 1942 * completely anyway and will most probably be just discarded 1943 */ 1944 name_off = btf__add_str(btf, name); 1945 if (name_off < 0) 1946 return name_off; 1947 1948 t->name_off = name_off; 1949 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1950 t->size = byte_sz; 1951 /* set INT info, we don't allow setting legacy bit offset/size */ 1952 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1953 1954 return btf_commit_type(btf, sz); 1955 } 1956 1957 /* 1958 * Append new BTF_KIND_FLOAT type with: 1959 * - *name* - non-empty, non-NULL type name; 1960 * - *sz* - size of the type, in bytes; 1961 * Returns: 1962 * - >0, type ID of newly added BTF type; 1963 * - <0, on error. 1964 */ 1965 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1966 { 1967 struct btf_type *t; 1968 int sz, name_off; 1969 1970 /* non-empty name */ 1971 if (!name || !name[0]) 1972 return libbpf_err(-EINVAL); 1973 1974 /* byte_sz must be one of the explicitly allowed values */ 1975 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1976 byte_sz != 16) 1977 return libbpf_err(-EINVAL); 1978 1979 if (btf_ensure_modifiable(btf)) 1980 return libbpf_err(-ENOMEM); 1981 1982 sz = sizeof(struct btf_type); 1983 t = btf_add_type_mem(btf, sz); 1984 if (!t) 1985 return libbpf_err(-ENOMEM); 1986 1987 name_off = btf__add_str(btf, name); 1988 if (name_off < 0) 1989 return name_off; 1990 1991 t->name_off = name_off; 1992 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1993 t->size = byte_sz; 1994 1995 return btf_commit_type(btf, sz); 1996 } 1997 1998 /* it's completely legal to append BTF types with type IDs pointing forward to 1999 * types that haven't been appended yet, so we only make sure that id looks 2000 * sane, we can't guarantee that ID will always be valid 2001 */ 2002 static int validate_type_id(int id) 2003 { 2004 if (id < 0 || id > BTF_MAX_NR_TYPES) 2005 return -EINVAL; 2006 return 0; 2007 } 2008 2009 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 2010 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 2011 { 2012 struct btf_type *t; 2013 int sz, name_off = 0; 2014 2015 if (validate_type_id(ref_type_id)) 2016 return libbpf_err(-EINVAL); 2017 2018 if (btf_ensure_modifiable(btf)) 2019 return libbpf_err(-ENOMEM); 2020 2021 sz = sizeof(struct btf_type); 2022 t = btf_add_type_mem(btf, sz); 2023 if (!t) 2024 return libbpf_err(-ENOMEM); 2025 2026 if (name && name[0]) { 2027 name_off = btf__add_str(btf, name); 2028 if (name_off < 0) 2029 return name_off; 2030 } 2031 2032 t->name_off = name_off; 2033 t->info = btf_type_info(kind, 0, 0); 2034 t->type = ref_type_id; 2035 2036 return btf_commit_type(btf, sz); 2037 } 2038 2039 /* 2040 * Append new BTF_KIND_PTR type with: 2041 * - *ref_type_id* - referenced type ID, it might not exist yet; 2042 * Returns: 2043 * - >0, type ID of newly added BTF type; 2044 * - <0, on error. 2045 */ 2046 int btf__add_ptr(struct btf *btf, int ref_type_id) 2047 { 2048 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 2049 } 2050 2051 /* 2052 * Append new BTF_KIND_ARRAY type with: 2053 * - *index_type_id* - type ID of the type describing array index; 2054 * - *elem_type_id* - type ID of the type describing array element; 2055 * - *nr_elems* - the size of the array; 2056 * Returns: 2057 * - >0, type ID of newly added BTF type; 2058 * - <0, on error. 2059 */ 2060 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 2061 { 2062 struct btf_type *t; 2063 struct btf_array *a; 2064 int sz; 2065 2066 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 2067 return libbpf_err(-EINVAL); 2068 2069 if (btf_ensure_modifiable(btf)) 2070 return libbpf_err(-ENOMEM); 2071 2072 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 2073 t = btf_add_type_mem(btf, sz); 2074 if (!t) 2075 return libbpf_err(-ENOMEM); 2076 2077 t->name_off = 0; 2078 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 2079 t->size = 0; 2080 2081 a = btf_array(t); 2082 a->type = elem_type_id; 2083 a->index_type = index_type_id; 2084 a->nelems = nr_elems; 2085 2086 return btf_commit_type(btf, sz); 2087 } 2088 2089 /* generic STRUCT/UNION append function */ 2090 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 2091 { 2092 struct btf_type *t; 2093 int sz, name_off = 0; 2094 2095 if (btf_ensure_modifiable(btf)) 2096 return libbpf_err(-ENOMEM); 2097 2098 sz = sizeof(struct btf_type); 2099 t = btf_add_type_mem(btf, sz); 2100 if (!t) 2101 return libbpf_err(-ENOMEM); 2102 2103 if (name && name[0]) { 2104 name_off = btf__add_str(btf, name); 2105 if (name_off < 0) 2106 return name_off; 2107 } 2108 2109 /* start out with vlen=0 and no kflag; this will be adjusted when 2110 * adding each member 2111 */ 2112 t->name_off = name_off; 2113 t->info = btf_type_info(kind, 0, 0); 2114 t->size = bytes_sz; 2115 2116 return btf_commit_type(btf, sz); 2117 } 2118 2119 /* 2120 * Append new BTF_KIND_STRUCT type with: 2121 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2122 * - *byte_sz* - size of the struct, in bytes; 2123 * 2124 * Struct initially has no fields in it. Fields can be added by 2125 * btf__add_field() right after btf__add_struct() succeeds. 2126 * 2127 * Returns: 2128 * - >0, type ID of newly added BTF type; 2129 * - <0, on error. 2130 */ 2131 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2132 { 2133 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2134 } 2135 2136 /* 2137 * Append new BTF_KIND_UNION type with: 2138 * - *name* - name of the union, can be NULL or empty for anonymous union; 2139 * - *byte_sz* - size of the union, in bytes; 2140 * 2141 * Union initially has no fields in it. Fields can be added by 2142 * btf__add_field() right after btf__add_union() succeeds. All fields 2143 * should have *bit_offset* of 0. 2144 * 2145 * Returns: 2146 * - >0, type ID of newly added BTF type; 2147 * - <0, on error. 2148 */ 2149 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2150 { 2151 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2152 } 2153 2154 static struct btf_type *btf_last_type(struct btf *btf) 2155 { 2156 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2157 } 2158 2159 /* 2160 * Append new field for the current STRUCT/UNION type with: 2161 * - *name* - name of the field, can be NULL or empty for anonymous field; 2162 * - *type_id* - type ID for the type describing field type; 2163 * - *bit_offset* - bit offset of the start of the field within struct/union; 2164 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2165 * Returns: 2166 * - 0, on success; 2167 * - <0, on error. 2168 */ 2169 int btf__add_field(struct btf *btf, const char *name, int type_id, 2170 __u32 bit_offset, __u32 bit_size) 2171 { 2172 struct btf_type *t; 2173 struct btf_member *m; 2174 bool is_bitfield; 2175 int sz, name_off = 0; 2176 2177 /* last type should be union/struct */ 2178 if (btf->nr_types == 0) 2179 return libbpf_err(-EINVAL); 2180 t = btf_last_type(btf); 2181 if (!btf_is_composite(t)) 2182 return libbpf_err(-EINVAL); 2183 2184 if (validate_type_id(type_id)) 2185 return libbpf_err(-EINVAL); 2186 /* best-effort bit field offset/size enforcement */ 2187 is_bitfield = bit_size || (bit_offset % 8 != 0); 2188 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2189 return libbpf_err(-EINVAL); 2190 2191 /* only offset 0 is allowed for unions */ 2192 if (btf_is_union(t) && bit_offset) 2193 return libbpf_err(-EINVAL); 2194 2195 /* decompose and invalidate raw data */ 2196 if (btf_ensure_modifiable(btf)) 2197 return libbpf_err(-ENOMEM); 2198 2199 sz = sizeof(struct btf_member); 2200 m = btf_add_type_mem(btf, sz); 2201 if (!m) 2202 return libbpf_err(-ENOMEM); 2203 2204 if (name && name[0]) { 2205 name_off = btf__add_str(btf, name); 2206 if (name_off < 0) 2207 return name_off; 2208 } 2209 2210 m->name_off = name_off; 2211 m->type = type_id; 2212 m->offset = bit_offset | (bit_size << 24); 2213 2214 /* btf_add_type_mem can invalidate t pointer */ 2215 t = btf_last_type(btf); 2216 /* update parent type's vlen and kflag */ 2217 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2218 2219 btf->hdr->type_len += sz; 2220 btf->hdr->str_off += sz; 2221 return 0; 2222 } 2223 2224 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2225 bool is_signed, __u8 kind) 2226 { 2227 struct btf_type *t; 2228 int sz, name_off = 0; 2229 2230 /* byte_sz must be power of 2 */ 2231 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2232 return libbpf_err(-EINVAL); 2233 2234 if (btf_ensure_modifiable(btf)) 2235 return libbpf_err(-ENOMEM); 2236 2237 sz = sizeof(struct btf_type); 2238 t = btf_add_type_mem(btf, sz); 2239 if (!t) 2240 return libbpf_err(-ENOMEM); 2241 2242 if (name && name[0]) { 2243 name_off = btf__add_str(btf, name); 2244 if (name_off < 0) 2245 return name_off; 2246 } 2247 2248 /* start out with vlen=0; it will be adjusted when adding enum values */ 2249 t->name_off = name_off; 2250 t->info = btf_type_info(kind, 0, is_signed); 2251 t->size = byte_sz; 2252 2253 return btf_commit_type(btf, sz); 2254 } 2255 2256 /* 2257 * Append new BTF_KIND_ENUM type with: 2258 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2259 * - *byte_sz* - size of the enum, in bytes. 2260 * 2261 * Enum initially has no enum values in it (and corresponds to enum forward 2262 * declaration). Enumerator values can be added by btf__add_enum_value() 2263 * immediately after btf__add_enum() succeeds. 2264 * 2265 * Returns: 2266 * - >0, type ID of newly added BTF type; 2267 * - <0, on error. 2268 */ 2269 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2270 { 2271 /* 2272 * set the signedness to be unsigned, it will change to signed 2273 * if any later enumerator is negative. 2274 */ 2275 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2276 } 2277 2278 /* 2279 * Append new enum value for the current ENUM type with: 2280 * - *name* - name of the enumerator value, can't be NULL or empty; 2281 * - *value* - integer value corresponding to enum value *name*; 2282 * Returns: 2283 * - 0, on success; 2284 * - <0, on error. 2285 */ 2286 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2287 { 2288 struct btf_type *t; 2289 struct btf_enum *v; 2290 int sz, name_off; 2291 2292 /* last type should be BTF_KIND_ENUM */ 2293 if (btf->nr_types == 0) 2294 return libbpf_err(-EINVAL); 2295 t = btf_last_type(btf); 2296 if (!btf_is_enum(t)) 2297 return libbpf_err(-EINVAL); 2298 2299 /* non-empty name */ 2300 if (!name || !name[0]) 2301 return libbpf_err(-EINVAL); 2302 if (value < INT_MIN || value > UINT_MAX) 2303 return libbpf_err(-E2BIG); 2304 2305 /* decompose and invalidate raw data */ 2306 if (btf_ensure_modifiable(btf)) 2307 return libbpf_err(-ENOMEM); 2308 2309 sz = sizeof(struct btf_enum); 2310 v = btf_add_type_mem(btf, sz); 2311 if (!v) 2312 return libbpf_err(-ENOMEM); 2313 2314 name_off = btf__add_str(btf, name); 2315 if (name_off < 0) 2316 return name_off; 2317 2318 v->name_off = name_off; 2319 v->val = value; 2320 2321 /* update parent type's vlen */ 2322 t = btf_last_type(btf); 2323 btf_type_inc_vlen(t); 2324 2325 /* if negative value, set signedness to signed */ 2326 if (value < 0) 2327 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2328 2329 btf->hdr->type_len += sz; 2330 btf->hdr->str_off += sz; 2331 return 0; 2332 } 2333 2334 /* 2335 * Append new BTF_KIND_ENUM64 type with: 2336 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2337 * - *byte_sz* - size of the enum, in bytes. 2338 * - *is_signed* - whether the enum values are signed or not; 2339 * 2340 * Enum initially has no enum values in it (and corresponds to enum forward 2341 * declaration). Enumerator values can be added by btf__add_enum64_value() 2342 * immediately after btf__add_enum64() succeeds. 2343 * 2344 * Returns: 2345 * - >0, type ID of newly added BTF type; 2346 * - <0, on error. 2347 */ 2348 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2349 bool is_signed) 2350 { 2351 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2352 BTF_KIND_ENUM64); 2353 } 2354 2355 /* 2356 * Append new enum value for the current ENUM64 type with: 2357 * - *name* - name of the enumerator value, can't be NULL or empty; 2358 * - *value* - integer value corresponding to enum value *name*; 2359 * Returns: 2360 * - 0, on success; 2361 * - <0, on error. 2362 */ 2363 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2364 { 2365 struct btf_enum64 *v; 2366 struct btf_type *t; 2367 int sz, name_off; 2368 2369 /* last type should be BTF_KIND_ENUM64 */ 2370 if (btf->nr_types == 0) 2371 return libbpf_err(-EINVAL); 2372 t = btf_last_type(btf); 2373 if (!btf_is_enum64(t)) 2374 return libbpf_err(-EINVAL); 2375 2376 /* non-empty name */ 2377 if (!name || !name[0]) 2378 return libbpf_err(-EINVAL); 2379 2380 /* decompose and invalidate raw data */ 2381 if (btf_ensure_modifiable(btf)) 2382 return libbpf_err(-ENOMEM); 2383 2384 sz = sizeof(struct btf_enum64); 2385 v = btf_add_type_mem(btf, sz); 2386 if (!v) 2387 return libbpf_err(-ENOMEM); 2388 2389 name_off = btf__add_str(btf, name); 2390 if (name_off < 0) 2391 return name_off; 2392 2393 v->name_off = name_off; 2394 v->val_lo32 = (__u32)value; 2395 v->val_hi32 = value >> 32; 2396 2397 /* update parent type's vlen */ 2398 t = btf_last_type(btf); 2399 btf_type_inc_vlen(t); 2400 2401 btf->hdr->type_len += sz; 2402 btf->hdr->str_off += sz; 2403 return 0; 2404 } 2405 2406 /* 2407 * Append new BTF_KIND_FWD type with: 2408 * - *name*, non-empty/non-NULL name; 2409 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2410 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2411 * Returns: 2412 * - >0, type ID of newly added BTF type; 2413 * - <0, on error. 2414 */ 2415 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2416 { 2417 if (!name || !name[0]) 2418 return libbpf_err(-EINVAL); 2419 2420 switch (fwd_kind) { 2421 case BTF_FWD_STRUCT: 2422 case BTF_FWD_UNION: { 2423 struct btf_type *t; 2424 int id; 2425 2426 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2427 if (id <= 0) 2428 return id; 2429 t = btf_type_by_id(btf, id); 2430 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2431 return id; 2432 } 2433 case BTF_FWD_ENUM: 2434 /* enum forward in BTF currently is just an enum with no enum 2435 * values; we also assume a standard 4-byte size for it 2436 */ 2437 return btf__add_enum(btf, name, sizeof(int)); 2438 default: 2439 return libbpf_err(-EINVAL); 2440 } 2441 } 2442 2443 /* 2444 * Append new BTF_KING_TYPEDEF type with: 2445 * - *name*, non-empty/non-NULL name; 2446 * - *ref_type_id* - referenced type ID, it might not exist yet; 2447 * Returns: 2448 * - >0, type ID of newly added BTF type; 2449 * - <0, on error. 2450 */ 2451 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2452 { 2453 if (!name || !name[0]) 2454 return libbpf_err(-EINVAL); 2455 2456 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2457 } 2458 2459 /* 2460 * Append new BTF_KIND_VOLATILE type with: 2461 * - *ref_type_id* - referenced type ID, it might not exist yet; 2462 * Returns: 2463 * - >0, type ID of newly added BTF type; 2464 * - <0, on error. 2465 */ 2466 int btf__add_volatile(struct btf *btf, int ref_type_id) 2467 { 2468 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2469 } 2470 2471 /* 2472 * Append new BTF_KIND_CONST type with: 2473 * - *ref_type_id* - referenced type ID, it might not exist yet; 2474 * Returns: 2475 * - >0, type ID of newly added BTF type; 2476 * - <0, on error. 2477 */ 2478 int btf__add_const(struct btf *btf, int ref_type_id) 2479 { 2480 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2481 } 2482 2483 /* 2484 * Append new BTF_KIND_RESTRICT type with: 2485 * - *ref_type_id* - referenced type ID, it might not exist yet; 2486 * Returns: 2487 * - >0, type ID of newly added BTF type; 2488 * - <0, on error. 2489 */ 2490 int btf__add_restrict(struct btf *btf, int ref_type_id) 2491 { 2492 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2493 } 2494 2495 /* 2496 * Append new BTF_KIND_TYPE_TAG type with: 2497 * - *value*, non-empty/non-NULL tag value; 2498 * - *ref_type_id* - referenced type ID, it might not exist yet; 2499 * Returns: 2500 * - >0, type ID of newly added BTF type; 2501 * - <0, on error. 2502 */ 2503 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2504 { 2505 if (!value || !value[0]) 2506 return libbpf_err(-EINVAL); 2507 2508 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2509 } 2510 2511 /* 2512 * Append new BTF_KIND_FUNC type with: 2513 * - *name*, non-empty/non-NULL name; 2514 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2515 * Returns: 2516 * - >0, type ID of newly added BTF type; 2517 * - <0, on error. 2518 */ 2519 int btf__add_func(struct btf *btf, const char *name, 2520 enum btf_func_linkage linkage, int proto_type_id) 2521 { 2522 int id; 2523 2524 if (!name || !name[0]) 2525 return libbpf_err(-EINVAL); 2526 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2527 linkage != BTF_FUNC_EXTERN) 2528 return libbpf_err(-EINVAL); 2529 2530 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2531 if (id > 0) { 2532 struct btf_type *t = btf_type_by_id(btf, id); 2533 2534 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2535 } 2536 return libbpf_err(id); 2537 } 2538 2539 /* 2540 * Append new BTF_KIND_FUNC_PROTO with: 2541 * - *ret_type_id* - type ID for return result of a function. 2542 * 2543 * Function prototype initially has no arguments, but they can be added by 2544 * btf__add_func_param() one by one, immediately after 2545 * btf__add_func_proto() succeeded. 2546 * 2547 * Returns: 2548 * - >0, type ID of newly added BTF type; 2549 * - <0, on error. 2550 */ 2551 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2552 { 2553 struct btf_type *t; 2554 int sz; 2555 2556 if (validate_type_id(ret_type_id)) 2557 return libbpf_err(-EINVAL); 2558 2559 if (btf_ensure_modifiable(btf)) 2560 return libbpf_err(-ENOMEM); 2561 2562 sz = sizeof(struct btf_type); 2563 t = btf_add_type_mem(btf, sz); 2564 if (!t) 2565 return libbpf_err(-ENOMEM); 2566 2567 /* start out with vlen=0; this will be adjusted when adding enum 2568 * values, if necessary 2569 */ 2570 t->name_off = 0; 2571 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2572 t->type = ret_type_id; 2573 2574 return btf_commit_type(btf, sz); 2575 } 2576 2577 /* 2578 * Append new function parameter for current FUNC_PROTO type with: 2579 * - *name* - parameter name, can be NULL or empty; 2580 * - *type_id* - type ID describing the type of the parameter. 2581 * Returns: 2582 * - 0, on success; 2583 * - <0, on error. 2584 */ 2585 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2586 { 2587 struct btf_type *t; 2588 struct btf_param *p; 2589 int sz, name_off = 0; 2590 2591 if (validate_type_id(type_id)) 2592 return libbpf_err(-EINVAL); 2593 2594 /* last type should be BTF_KIND_FUNC_PROTO */ 2595 if (btf->nr_types == 0) 2596 return libbpf_err(-EINVAL); 2597 t = btf_last_type(btf); 2598 if (!btf_is_func_proto(t)) 2599 return libbpf_err(-EINVAL); 2600 2601 /* decompose and invalidate raw data */ 2602 if (btf_ensure_modifiable(btf)) 2603 return libbpf_err(-ENOMEM); 2604 2605 sz = sizeof(struct btf_param); 2606 p = btf_add_type_mem(btf, sz); 2607 if (!p) 2608 return libbpf_err(-ENOMEM); 2609 2610 if (name && name[0]) { 2611 name_off = btf__add_str(btf, name); 2612 if (name_off < 0) 2613 return name_off; 2614 } 2615 2616 p->name_off = name_off; 2617 p->type = type_id; 2618 2619 /* update parent type's vlen */ 2620 t = btf_last_type(btf); 2621 btf_type_inc_vlen(t); 2622 2623 btf->hdr->type_len += sz; 2624 btf->hdr->str_off += sz; 2625 return 0; 2626 } 2627 2628 /* 2629 * Append new BTF_KIND_VAR type with: 2630 * - *name* - non-empty/non-NULL name; 2631 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2632 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2633 * - *type_id* - type ID of the type describing the type of the variable. 2634 * Returns: 2635 * - >0, type ID of newly added BTF type; 2636 * - <0, on error. 2637 */ 2638 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2639 { 2640 struct btf_type *t; 2641 struct btf_var *v; 2642 int sz, name_off; 2643 2644 /* non-empty name */ 2645 if (!name || !name[0]) 2646 return libbpf_err(-EINVAL); 2647 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2648 linkage != BTF_VAR_GLOBAL_EXTERN) 2649 return libbpf_err(-EINVAL); 2650 if (validate_type_id(type_id)) 2651 return libbpf_err(-EINVAL); 2652 2653 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2654 if (btf_ensure_modifiable(btf)) 2655 return libbpf_err(-ENOMEM); 2656 2657 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2658 t = btf_add_type_mem(btf, sz); 2659 if (!t) 2660 return libbpf_err(-ENOMEM); 2661 2662 name_off = btf__add_str(btf, name); 2663 if (name_off < 0) 2664 return name_off; 2665 2666 t->name_off = name_off; 2667 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2668 t->type = type_id; 2669 2670 v = btf_var(t); 2671 v->linkage = linkage; 2672 2673 return btf_commit_type(btf, sz); 2674 } 2675 2676 /* 2677 * Append new BTF_KIND_DATASEC type with: 2678 * - *name* - non-empty/non-NULL name; 2679 * - *byte_sz* - data section size, in bytes. 2680 * 2681 * Data section is initially empty. Variables info can be added with 2682 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2683 * 2684 * Returns: 2685 * - >0, type ID of newly added BTF type; 2686 * - <0, on error. 2687 */ 2688 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2689 { 2690 struct btf_type *t; 2691 int sz, name_off; 2692 2693 /* non-empty name */ 2694 if (!name || !name[0]) 2695 return libbpf_err(-EINVAL); 2696 2697 if (btf_ensure_modifiable(btf)) 2698 return libbpf_err(-ENOMEM); 2699 2700 sz = sizeof(struct btf_type); 2701 t = btf_add_type_mem(btf, sz); 2702 if (!t) 2703 return libbpf_err(-ENOMEM); 2704 2705 name_off = btf__add_str(btf, name); 2706 if (name_off < 0) 2707 return name_off; 2708 2709 /* start with vlen=0, which will be update as var_secinfos are added */ 2710 t->name_off = name_off; 2711 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2712 t->size = byte_sz; 2713 2714 return btf_commit_type(btf, sz); 2715 } 2716 2717 /* 2718 * Append new data section variable information entry for current DATASEC type: 2719 * - *var_type_id* - type ID, describing type of the variable; 2720 * - *offset* - variable offset within data section, in bytes; 2721 * - *byte_sz* - variable size, in bytes. 2722 * 2723 * Returns: 2724 * - 0, on success; 2725 * - <0, on error. 2726 */ 2727 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2728 { 2729 struct btf_type *t; 2730 struct btf_var_secinfo *v; 2731 int sz; 2732 2733 /* last type should be BTF_KIND_DATASEC */ 2734 if (btf->nr_types == 0) 2735 return libbpf_err(-EINVAL); 2736 t = btf_last_type(btf); 2737 if (!btf_is_datasec(t)) 2738 return libbpf_err(-EINVAL); 2739 2740 if (validate_type_id(var_type_id)) 2741 return libbpf_err(-EINVAL); 2742 2743 /* decompose and invalidate raw data */ 2744 if (btf_ensure_modifiable(btf)) 2745 return libbpf_err(-ENOMEM); 2746 2747 sz = sizeof(struct btf_var_secinfo); 2748 v = btf_add_type_mem(btf, sz); 2749 if (!v) 2750 return libbpf_err(-ENOMEM); 2751 2752 v->type = var_type_id; 2753 v->offset = offset; 2754 v->size = byte_sz; 2755 2756 /* update parent type's vlen */ 2757 t = btf_last_type(btf); 2758 btf_type_inc_vlen(t); 2759 2760 btf->hdr->type_len += sz; 2761 btf->hdr->str_off += sz; 2762 return 0; 2763 } 2764 2765 /* 2766 * Append new BTF_KIND_DECL_TAG type with: 2767 * - *value* - non-empty/non-NULL string; 2768 * - *ref_type_id* - referenced type ID, it might not exist yet; 2769 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2770 * member or function argument index; 2771 * Returns: 2772 * - >0, type ID of newly added BTF type; 2773 * - <0, on error. 2774 */ 2775 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2776 int component_idx) 2777 { 2778 struct btf_type *t; 2779 int sz, value_off; 2780 2781 if (!value || !value[0] || component_idx < -1) 2782 return libbpf_err(-EINVAL); 2783 2784 if (validate_type_id(ref_type_id)) 2785 return libbpf_err(-EINVAL); 2786 2787 if (btf_ensure_modifiable(btf)) 2788 return libbpf_err(-ENOMEM); 2789 2790 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2791 t = btf_add_type_mem(btf, sz); 2792 if (!t) 2793 return libbpf_err(-ENOMEM); 2794 2795 value_off = btf__add_str(btf, value); 2796 if (value_off < 0) 2797 return value_off; 2798 2799 t->name_off = value_off; 2800 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2801 t->type = ref_type_id; 2802 btf_decl_tag(t)->component_idx = component_idx; 2803 2804 return btf_commit_type(btf, sz); 2805 } 2806 2807 struct btf_ext_sec_setup_param { 2808 __u32 off; 2809 __u32 len; 2810 __u32 min_rec_size; 2811 struct btf_ext_info *ext_info; 2812 const char *desc; 2813 }; 2814 2815 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2816 struct btf_ext_sec_setup_param *ext_sec) 2817 { 2818 const struct btf_ext_info_sec *sinfo; 2819 struct btf_ext_info *ext_info; 2820 __u32 info_left, record_size; 2821 size_t sec_cnt = 0; 2822 /* The start of the info sec (including the __u32 record_size). */ 2823 void *info; 2824 2825 if (ext_sec->len == 0) 2826 return 0; 2827 2828 if (ext_sec->off & 0x03) { 2829 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2830 ext_sec->desc); 2831 return -EINVAL; 2832 } 2833 2834 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2835 info_left = ext_sec->len; 2836 2837 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2838 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2839 ext_sec->desc, ext_sec->off, ext_sec->len); 2840 return -EINVAL; 2841 } 2842 2843 /* At least a record size */ 2844 if (info_left < sizeof(__u32)) { 2845 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2846 return -EINVAL; 2847 } 2848 2849 /* The record size needs to meet the minimum standard */ 2850 record_size = *(__u32 *)info; 2851 if (record_size < ext_sec->min_rec_size || 2852 record_size & 0x03) { 2853 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2854 ext_sec->desc, record_size); 2855 return -EINVAL; 2856 } 2857 2858 sinfo = info + sizeof(__u32); 2859 info_left -= sizeof(__u32); 2860 2861 /* If no records, return failure now so .BTF.ext won't be used. */ 2862 if (!info_left) { 2863 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2864 return -EINVAL; 2865 } 2866 2867 while (info_left) { 2868 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2869 __u64 total_record_size; 2870 __u32 num_records; 2871 2872 if (info_left < sec_hdrlen) { 2873 pr_debug("%s section header is not found in .BTF.ext\n", 2874 ext_sec->desc); 2875 return -EINVAL; 2876 } 2877 2878 num_records = sinfo->num_info; 2879 if (num_records == 0) { 2880 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2881 ext_sec->desc); 2882 return -EINVAL; 2883 } 2884 2885 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2886 if (info_left < total_record_size) { 2887 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2888 ext_sec->desc); 2889 return -EINVAL; 2890 } 2891 2892 info_left -= total_record_size; 2893 sinfo = (void *)sinfo + total_record_size; 2894 sec_cnt++; 2895 } 2896 2897 ext_info = ext_sec->ext_info; 2898 ext_info->len = ext_sec->len - sizeof(__u32); 2899 ext_info->rec_size = record_size; 2900 ext_info->info = info + sizeof(__u32); 2901 ext_info->sec_cnt = sec_cnt; 2902 2903 return 0; 2904 } 2905 2906 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2907 { 2908 struct btf_ext_sec_setup_param param = { 2909 .off = btf_ext->hdr->func_info_off, 2910 .len = btf_ext->hdr->func_info_len, 2911 .min_rec_size = sizeof(struct bpf_func_info_min), 2912 .ext_info = &btf_ext->func_info, 2913 .desc = "func_info" 2914 }; 2915 2916 return btf_ext_setup_info(btf_ext, ¶m); 2917 } 2918 2919 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2920 { 2921 struct btf_ext_sec_setup_param param = { 2922 .off = btf_ext->hdr->line_info_off, 2923 .len = btf_ext->hdr->line_info_len, 2924 .min_rec_size = sizeof(struct bpf_line_info_min), 2925 .ext_info = &btf_ext->line_info, 2926 .desc = "line_info", 2927 }; 2928 2929 return btf_ext_setup_info(btf_ext, ¶m); 2930 } 2931 2932 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2933 { 2934 struct btf_ext_sec_setup_param param = { 2935 .off = btf_ext->hdr->core_relo_off, 2936 .len = btf_ext->hdr->core_relo_len, 2937 .min_rec_size = sizeof(struct bpf_core_relo), 2938 .ext_info = &btf_ext->core_relo_info, 2939 .desc = "core_relo", 2940 }; 2941 2942 return btf_ext_setup_info(btf_ext, ¶m); 2943 } 2944 2945 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2946 { 2947 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2948 2949 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2950 data_size < hdr->hdr_len) { 2951 pr_debug("BTF.ext header not found"); 2952 return -EINVAL; 2953 } 2954 2955 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2956 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2957 return -ENOTSUP; 2958 } else if (hdr->magic != BTF_MAGIC) { 2959 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2960 return -EINVAL; 2961 } 2962 2963 if (hdr->version != BTF_VERSION) { 2964 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2965 return -ENOTSUP; 2966 } 2967 2968 if (hdr->flags) { 2969 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2970 return -ENOTSUP; 2971 } 2972 2973 if (data_size == hdr->hdr_len) { 2974 pr_debug("BTF.ext has no data\n"); 2975 return -EINVAL; 2976 } 2977 2978 return 0; 2979 } 2980 2981 void btf_ext__free(struct btf_ext *btf_ext) 2982 { 2983 if (IS_ERR_OR_NULL(btf_ext)) 2984 return; 2985 free(btf_ext->func_info.sec_idxs); 2986 free(btf_ext->line_info.sec_idxs); 2987 free(btf_ext->core_relo_info.sec_idxs); 2988 free(btf_ext->data); 2989 free(btf_ext); 2990 } 2991 2992 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2993 { 2994 struct btf_ext *btf_ext; 2995 int err; 2996 2997 btf_ext = calloc(1, sizeof(struct btf_ext)); 2998 if (!btf_ext) 2999 return libbpf_err_ptr(-ENOMEM); 3000 3001 btf_ext->data_size = size; 3002 btf_ext->data = malloc(size); 3003 if (!btf_ext->data) { 3004 err = -ENOMEM; 3005 goto done; 3006 } 3007 memcpy(btf_ext->data, data, size); 3008 3009 err = btf_ext_parse_hdr(btf_ext->data, size); 3010 if (err) 3011 goto done; 3012 3013 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 3014 err = -EINVAL; 3015 goto done; 3016 } 3017 3018 err = btf_ext_setup_func_info(btf_ext); 3019 if (err) 3020 goto done; 3021 3022 err = btf_ext_setup_line_info(btf_ext); 3023 if (err) 3024 goto done; 3025 3026 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3027 goto done; /* skip core relos parsing */ 3028 3029 err = btf_ext_setup_core_relos(btf_ext); 3030 if (err) 3031 goto done; 3032 3033 done: 3034 if (err) { 3035 btf_ext__free(btf_ext); 3036 return libbpf_err_ptr(err); 3037 } 3038 3039 return btf_ext; 3040 } 3041 3042 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 3043 { 3044 *size = btf_ext->data_size; 3045 return btf_ext->data; 3046 } 3047 3048 struct btf_dedup; 3049 3050 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 3051 static void btf_dedup_free(struct btf_dedup *d); 3052 static int btf_dedup_prep(struct btf_dedup *d); 3053 static int btf_dedup_strings(struct btf_dedup *d); 3054 static int btf_dedup_prim_types(struct btf_dedup *d); 3055 static int btf_dedup_struct_types(struct btf_dedup *d); 3056 static int btf_dedup_ref_types(struct btf_dedup *d); 3057 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 3058 static int btf_dedup_compact_types(struct btf_dedup *d); 3059 static int btf_dedup_remap_types(struct btf_dedup *d); 3060 3061 /* 3062 * Deduplicate BTF types and strings. 3063 * 3064 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 3065 * section with all BTF type descriptors and string data. It overwrites that 3066 * memory in-place with deduplicated types and strings without any loss of 3067 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 3068 * is provided, all the strings referenced from .BTF.ext section are honored 3069 * and updated to point to the right offsets after deduplication. 3070 * 3071 * If function returns with error, type/string data might be garbled and should 3072 * be discarded. 3073 * 3074 * More verbose and detailed description of both problem btf_dedup is solving, 3075 * as well as solution could be found at: 3076 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 3077 * 3078 * Problem description and justification 3079 * ===================================== 3080 * 3081 * BTF type information is typically emitted either as a result of conversion 3082 * from DWARF to BTF or directly by compiler. In both cases, each compilation 3083 * unit contains information about a subset of all the types that are used 3084 * in an application. These subsets are frequently overlapping and contain a lot 3085 * of duplicated information when later concatenated together into a single 3086 * binary. This algorithm ensures that each unique type is represented by single 3087 * BTF type descriptor, greatly reducing resulting size of BTF data. 3088 * 3089 * Compilation unit isolation and subsequent duplication of data is not the only 3090 * problem. The same type hierarchy (e.g., struct and all the type that struct 3091 * references) in different compilation units can be represented in BTF to 3092 * various degrees of completeness (or, rather, incompleteness) due to 3093 * struct/union forward declarations. 3094 * 3095 * Let's take a look at an example, that we'll use to better understand the 3096 * problem (and solution). Suppose we have two compilation units, each using 3097 * same `struct S`, but each of them having incomplete type information about 3098 * struct's fields: 3099 * 3100 * // CU #1: 3101 * struct S; 3102 * struct A { 3103 * int a; 3104 * struct A* self; 3105 * struct S* parent; 3106 * }; 3107 * struct B; 3108 * struct S { 3109 * struct A* a_ptr; 3110 * struct B* b_ptr; 3111 * }; 3112 * 3113 * // CU #2: 3114 * struct S; 3115 * struct A; 3116 * struct B { 3117 * int b; 3118 * struct B* self; 3119 * struct S* parent; 3120 * }; 3121 * struct S { 3122 * struct A* a_ptr; 3123 * struct B* b_ptr; 3124 * }; 3125 * 3126 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3127 * more), but will know the complete type information about `struct A`. While 3128 * for CU #2, it will know full type information about `struct B`, but will 3129 * only know about forward declaration of `struct A` (in BTF terms, it will 3130 * have `BTF_KIND_FWD` type descriptor with name `B`). 3131 * 3132 * This compilation unit isolation means that it's possible that there is no 3133 * single CU with complete type information describing structs `S`, `A`, and 3134 * `B`. Also, we might get tons of duplicated and redundant type information. 3135 * 3136 * Additional complication we need to keep in mind comes from the fact that 3137 * types, in general, can form graphs containing cycles, not just DAGs. 3138 * 3139 * While algorithm does deduplication, it also merges and resolves type 3140 * information (unless disabled throught `struct btf_opts`), whenever possible. 3141 * E.g., in the example above with two compilation units having partial type 3142 * information for structs `A` and `B`, the output of algorithm will emit 3143 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3144 * (as well as type information for `int` and pointers), as if they were defined 3145 * in a single compilation unit as: 3146 * 3147 * struct A { 3148 * int a; 3149 * struct A* self; 3150 * struct S* parent; 3151 * }; 3152 * struct B { 3153 * int b; 3154 * struct B* self; 3155 * struct S* parent; 3156 * }; 3157 * struct S { 3158 * struct A* a_ptr; 3159 * struct B* b_ptr; 3160 * }; 3161 * 3162 * Algorithm summary 3163 * ================= 3164 * 3165 * Algorithm completes its work in 7 separate passes: 3166 * 3167 * 1. Strings deduplication. 3168 * 2. Primitive types deduplication (int, enum, fwd). 3169 * 3. Struct/union types deduplication. 3170 * 4. Resolve unambiguous forward declarations. 3171 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3172 * protos, and const/volatile/restrict modifiers). 3173 * 6. Types compaction. 3174 * 7. Types remapping. 3175 * 3176 * Algorithm determines canonical type descriptor, which is a single 3177 * representative type for each truly unique type. This canonical type is the 3178 * one that will go into final deduplicated BTF type information. For 3179 * struct/unions, it is also the type that algorithm will merge additional type 3180 * information into (while resolving FWDs), as it discovers it from data in 3181 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3182 * that type is canonical, or to some other type, if that type is equivalent 3183 * and was chosen as canonical representative. This mapping is stored in 3184 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3185 * FWD type got resolved to. 3186 * 3187 * To facilitate fast discovery of canonical types, we also maintain canonical 3188 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3189 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3190 * that match that signature. With sufficiently good choice of type signature 3191 * hashing function, we can limit number of canonical types for each unique type 3192 * signature to a very small number, allowing to find canonical type for any 3193 * duplicated type very quickly. 3194 * 3195 * Struct/union deduplication is the most critical part and algorithm for 3196 * deduplicating structs/unions is described in greater details in comments for 3197 * `btf_dedup_is_equiv` function. 3198 */ 3199 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3200 { 3201 struct btf_dedup *d; 3202 int err; 3203 3204 if (!OPTS_VALID(opts, btf_dedup_opts)) 3205 return libbpf_err(-EINVAL); 3206 3207 d = btf_dedup_new(btf, opts); 3208 if (IS_ERR(d)) { 3209 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3210 return libbpf_err(-EINVAL); 3211 } 3212 3213 if (btf_ensure_modifiable(btf)) { 3214 err = -ENOMEM; 3215 goto done; 3216 } 3217 3218 err = btf_dedup_prep(d); 3219 if (err) { 3220 pr_debug("btf_dedup_prep failed:%d\n", err); 3221 goto done; 3222 } 3223 err = btf_dedup_strings(d); 3224 if (err < 0) { 3225 pr_debug("btf_dedup_strings failed:%d\n", err); 3226 goto done; 3227 } 3228 err = btf_dedup_prim_types(d); 3229 if (err < 0) { 3230 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3231 goto done; 3232 } 3233 err = btf_dedup_struct_types(d); 3234 if (err < 0) { 3235 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3236 goto done; 3237 } 3238 err = btf_dedup_resolve_fwds(d); 3239 if (err < 0) { 3240 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3241 goto done; 3242 } 3243 err = btf_dedup_ref_types(d); 3244 if (err < 0) { 3245 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3246 goto done; 3247 } 3248 err = btf_dedup_compact_types(d); 3249 if (err < 0) { 3250 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3251 goto done; 3252 } 3253 err = btf_dedup_remap_types(d); 3254 if (err < 0) { 3255 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3256 goto done; 3257 } 3258 3259 done: 3260 btf_dedup_free(d); 3261 return libbpf_err(err); 3262 } 3263 3264 #define BTF_UNPROCESSED_ID ((__u32)-1) 3265 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3266 3267 struct btf_dedup { 3268 /* .BTF section to be deduped in-place */ 3269 struct btf *btf; 3270 /* 3271 * Optional .BTF.ext section. When provided, any strings referenced 3272 * from it will be taken into account when deduping strings 3273 */ 3274 struct btf_ext *btf_ext; 3275 /* 3276 * This is a map from any type's signature hash to a list of possible 3277 * canonical representative type candidates. Hash collisions are 3278 * ignored, so even types of various kinds can share same list of 3279 * candidates, which is fine because we rely on subsequent 3280 * btf_xxx_equal() checks to authoritatively verify type equality. 3281 */ 3282 struct hashmap *dedup_table; 3283 /* Canonical types map */ 3284 __u32 *map; 3285 /* Hypothetical mapping, used during type graph equivalence checks */ 3286 __u32 *hypot_map; 3287 __u32 *hypot_list; 3288 size_t hypot_cnt; 3289 size_t hypot_cap; 3290 /* Whether hypothetical mapping, if successful, would need to adjust 3291 * already canonicalized types (due to a new forward declaration to 3292 * concrete type resolution). In such case, during split BTF dedup 3293 * candidate type would still be considered as different, because base 3294 * BTF is considered to be immutable. 3295 */ 3296 bool hypot_adjust_canon; 3297 /* Various option modifying behavior of algorithm */ 3298 struct btf_dedup_opts opts; 3299 /* temporary strings deduplication state */ 3300 struct strset *strs_set; 3301 }; 3302 3303 static long hash_combine(long h, long value) 3304 { 3305 return h * 31 + value; 3306 } 3307 3308 #define for_each_dedup_cand(d, node, hash) \ 3309 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3310 3311 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3312 { 3313 return hashmap__append(d->dedup_table, hash, type_id); 3314 } 3315 3316 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3317 __u32 from_id, __u32 to_id) 3318 { 3319 if (d->hypot_cnt == d->hypot_cap) { 3320 __u32 *new_list; 3321 3322 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3323 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3324 if (!new_list) 3325 return -ENOMEM; 3326 d->hypot_list = new_list; 3327 } 3328 d->hypot_list[d->hypot_cnt++] = from_id; 3329 d->hypot_map[from_id] = to_id; 3330 return 0; 3331 } 3332 3333 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3334 { 3335 int i; 3336 3337 for (i = 0; i < d->hypot_cnt; i++) 3338 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3339 d->hypot_cnt = 0; 3340 d->hypot_adjust_canon = false; 3341 } 3342 3343 static void btf_dedup_free(struct btf_dedup *d) 3344 { 3345 hashmap__free(d->dedup_table); 3346 d->dedup_table = NULL; 3347 3348 free(d->map); 3349 d->map = NULL; 3350 3351 free(d->hypot_map); 3352 d->hypot_map = NULL; 3353 3354 free(d->hypot_list); 3355 d->hypot_list = NULL; 3356 3357 free(d); 3358 } 3359 3360 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3361 { 3362 return key; 3363 } 3364 3365 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3366 { 3367 return 0; 3368 } 3369 3370 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3371 { 3372 return k1 == k2; 3373 } 3374 3375 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3376 { 3377 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3378 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3379 int i, err = 0, type_cnt; 3380 3381 if (!d) 3382 return ERR_PTR(-ENOMEM); 3383 3384 if (OPTS_GET(opts, force_collisions, false)) 3385 hash_fn = btf_dedup_collision_hash_fn; 3386 3387 d->btf = btf; 3388 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3389 3390 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3391 if (IS_ERR(d->dedup_table)) { 3392 err = PTR_ERR(d->dedup_table); 3393 d->dedup_table = NULL; 3394 goto done; 3395 } 3396 3397 type_cnt = btf__type_cnt(btf); 3398 d->map = malloc(sizeof(__u32) * type_cnt); 3399 if (!d->map) { 3400 err = -ENOMEM; 3401 goto done; 3402 } 3403 /* special BTF "void" type is made canonical immediately */ 3404 d->map[0] = 0; 3405 for (i = 1; i < type_cnt; i++) { 3406 struct btf_type *t = btf_type_by_id(d->btf, i); 3407 3408 /* VAR and DATASEC are never deduped and are self-canonical */ 3409 if (btf_is_var(t) || btf_is_datasec(t)) 3410 d->map[i] = i; 3411 else 3412 d->map[i] = BTF_UNPROCESSED_ID; 3413 } 3414 3415 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3416 if (!d->hypot_map) { 3417 err = -ENOMEM; 3418 goto done; 3419 } 3420 for (i = 0; i < type_cnt; i++) 3421 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3422 3423 done: 3424 if (err) { 3425 btf_dedup_free(d); 3426 return ERR_PTR(err); 3427 } 3428 3429 return d; 3430 } 3431 3432 /* 3433 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3434 * string and pass pointer to it to a provided callback `fn`. 3435 */ 3436 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3437 { 3438 int i, r; 3439 3440 for (i = 0; i < d->btf->nr_types; i++) { 3441 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3442 3443 r = btf_type_visit_str_offs(t, fn, ctx); 3444 if (r) 3445 return r; 3446 } 3447 3448 if (!d->btf_ext) 3449 return 0; 3450 3451 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3452 if (r) 3453 return r; 3454 3455 return 0; 3456 } 3457 3458 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3459 { 3460 struct btf_dedup *d = ctx; 3461 __u32 str_off = *str_off_ptr; 3462 const char *s; 3463 int off, err; 3464 3465 /* don't touch empty string or string in main BTF */ 3466 if (str_off == 0 || str_off < d->btf->start_str_off) 3467 return 0; 3468 3469 s = btf__str_by_offset(d->btf, str_off); 3470 if (d->btf->base_btf) { 3471 err = btf__find_str(d->btf->base_btf, s); 3472 if (err >= 0) { 3473 *str_off_ptr = err; 3474 return 0; 3475 } 3476 if (err != -ENOENT) 3477 return err; 3478 } 3479 3480 off = strset__add_str(d->strs_set, s); 3481 if (off < 0) 3482 return off; 3483 3484 *str_off_ptr = d->btf->start_str_off + off; 3485 return 0; 3486 } 3487 3488 /* 3489 * Dedup string and filter out those that are not referenced from either .BTF 3490 * or .BTF.ext (if provided) sections. 3491 * 3492 * This is done by building index of all strings in BTF's string section, 3493 * then iterating over all entities that can reference strings (e.g., type 3494 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3495 * strings as used. After that all used strings are deduped and compacted into 3496 * sequential blob of memory and new offsets are calculated. Then all the string 3497 * references are iterated again and rewritten using new offsets. 3498 */ 3499 static int btf_dedup_strings(struct btf_dedup *d) 3500 { 3501 int err; 3502 3503 if (d->btf->strs_deduped) 3504 return 0; 3505 3506 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3507 if (IS_ERR(d->strs_set)) { 3508 err = PTR_ERR(d->strs_set); 3509 goto err_out; 3510 } 3511 3512 if (!d->btf->base_btf) { 3513 /* insert empty string; we won't be looking it up during strings 3514 * dedup, but it's good to have it for generic BTF string lookups 3515 */ 3516 err = strset__add_str(d->strs_set, ""); 3517 if (err < 0) 3518 goto err_out; 3519 } 3520 3521 /* remap string offsets */ 3522 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3523 if (err) 3524 goto err_out; 3525 3526 /* replace BTF string data and hash with deduped ones */ 3527 strset__free(d->btf->strs_set); 3528 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3529 d->btf->strs_set = d->strs_set; 3530 d->strs_set = NULL; 3531 d->btf->strs_deduped = true; 3532 return 0; 3533 3534 err_out: 3535 strset__free(d->strs_set); 3536 d->strs_set = NULL; 3537 3538 return err; 3539 } 3540 3541 static long btf_hash_common(struct btf_type *t) 3542 { 3543 long h; 3544 3545 h = hash_combine(0, t->name_off); 3546 h = hash_combine(h, t->info); 3547 h = hash_combine(h, t->size); 3548 return h; 3549 } 3550 3551 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3552 { 3553 return t1->name_off == t2->name_off && 3554 t1->info == t2->info && 3555 t1->size == t2->size; 3556 } 3557 3558 /* Calculate type signature hash of INT or TAG. */ 3559 static long btf_hash_int_decl_tag(struct btf_type *t) 3560 { 3561 __u32 info = *(__u32 *)(t + 1); 3562 long h; 3563 3564 h = btf_hash_common(t); 3565 h = hash_combine(h, info); 3566 return h; 3567 } 3568 3569 /* Check structural equality of two INTs or TAGs. */ 3570 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3571 { 3572 __u32 info1, info2; 3573 3574 if (!btf_equal_common(t1, t2)) 3575 return false; 3576 info1 = *(__u32 *)(t1 + 1); 3577 info2 = *(__u32 *)(t2 + 1); 3578 return info1 == info2; 3579 } 3580 3581 /* Calculate type signature hash of ENUM/ENUM64. */ 3582 static long btf_hash_enum(struct btf_type *t) 3583 { 3584 long h; 3585 3586 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3587 h = hash_combine(0, t->name_off); 3588 return h; 3589 } 3590 3591 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3592 { 3593 const struct btf_enum *m1, *m2; 3594 __u16 vlen; 3595 int i; 3596 3597 vlen = btf_vlen(t1); 3598 m1 = btf_enum(t1); 3599 m2 = btf_enum(t2); 3600 for (i = 0; i < vlen; i++) { 3601 if (m1->name_off != m2->name_off || m1->val != m2->val) 3602 return false; 3603 m1++; 3604 m2++; 3605 } 3606 return true; 3607 } 3608 3609 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3610 { 3611 const struct btf_enum64 *m1, *m2; 3612 __u16 vlen; 3613 int i; 3614 3615 vlen = btf_vlen(t1); 3616 m1 = btf_enum64(t1); 3617 m2 = btf_enum64(t2); 3618 for (i = 0; i < vlen; i++) { 3619 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3620 m1->val_hi32 != m2->val_hi32) 3621 return false; 3622 m1++; 3623 m2++; 3624 } 3625 return true; 3626 } 3627 3628 /* Check structural equality of two ENUMs or ENUM64s. */ 3629 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3630 { 3631 if (!btf_equal_common(t1, t2)) 3632 return false; 3633 3634 /* t1 & t2 kinds are identical because of btf_equal_common */ 3635 if (btf_kind(t1) == BTF_KIND_ENUM) 3636 return btf_equal_enum_members(t1, t2); 3637 else 3638 return btf_equal_enum64_members(t1, t2); 3639 } 3640 3641 static inline bool btf_is_enum_fwd(struct btf_type *t) 3642 { 3643 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3644 } 3645 3646 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3647 { 3648 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3649 return btf_equal_enum(t1, t2); 3650 /* At this point either t1 or t2 or both are forward declarations, thus: 3651 * - skip comparing vlen because it is zero for forward declarations; 3652 * - skip comparing size to allow enum forward declarations 3653 * to be compatible with enum64 full declarations; 3654 * - skip comparing kind for the same reason. 3655 */ 3656 return t1->name_off == t2->name_off && 3657 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3658 } 3659 3660 /* 3661 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3662 * as referenced type IDs equivalence is established separately during type 3663 * graph equivalence check algorithm. 3664 */ 3665 static long btf_hash_struct(struct btf_type *t) 3666 { 3667 const struct btf_member *member = btf_members(t); 3668 __u32 vlen = btf_vlen(t); 3669 long h = btf_hash_common(t); 3670 int i; 3671 3672 for (i = 0; i < vlen; i++) { 3673 h = hash_combine(h, member->name_off); 3674 h = hash_combine(h, member->offset); 3675 /* no hashing of referenced type ID, it can be unresolved yet */ 3676 member++; 3677 } 3678 return h; 3679 } 3680 3681 /* 3682 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3683 * type IDs. This check is performed during type graph equivalence check and 3684 * referenced types equivalence is checked separately. 3685 */ 3686 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3687 { 3688 const struct btf_member *m1, *m2; 3689 __u16 vlen; 3690 int i; 3691 3692 if (!btf_equal_common(t1, t2)) 3693 return false; 3694 3695 vlen = btf_vlen(t1); 3696 m1 = btf_members(t1); 3697 m2 = btf_members(t2); 3698 for (i = 0; i < vlen; i++) { 3699 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3700 return false; 3701 m1++; 3702 m2++; 3703 } 3704 return true; 3705 } 3706 3707 /* 3708 * Calculate type signature hash of ARRAY, including referenced type IDs, 3709 * under assumption that they were already resolved to canonical type IDs and 3710 * are not going to change. 3711 */ 3712 static long btf_hash_array(struct btf_type *t) 3713 { 3714 const struct btf_array *info = btf_array(t); 3715 long h = btf_hash_common(t); 3716 3717 h = hash_combine(h, info->type); 3718 h = hash_combine(h, info->index_type); 3719 h = hash_combine(h, info->nelems); 3720 return h; 3721 } 3722 3723 /* 3724 * Check exact equality of two ARRAYs, taking into account referenced 3725 * type IDs, under assumption that they were already resolved to canonical 3726 * type IDs and are not going to change. 3727 * This function is called during reference types deduplication to compare 3728 * ARRAY to potential canonical representative. 3729 */ 3730 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3731 { 3732 const struct btf_array *info1, *info2; 3733 3734 if (!btf_equal_common(t1, t2)) 3735 return false; 3736 3737 info1 = btf_array(t1); 3738 info2 = btf_array(t2); 3739 return info1->type == info2->type && 3740 info1->index_type == info2->index_type && 3741 info1->nelems == info2->nelems; 3742 } 3743 3744 /* 3745 * Check structural compatibility of two ARRAYs, ignoring referenced type 3746 * IDs. This check is performed during type graph equivalence check and 3747 * referenced types equivalence is checked separately. 3748 */ 3749 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3750 { 3751 if (!btf_equal_common(t1, t2)) 3752 return false; 3753 3754 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3755 } 3756 3757 /* 3758 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3759 * under assumption that they were already resolved to canonical type IDs and 3760 * are not going to change. 3761 */ 3762 static long btf_hash_fnproto(struct btf_type *t) 3763 { 3764 const struct btf_param *member = btf_params(t); 3765 __u16 vlen = btf_vlen(t); 3766 long h = btf_hash_common(t); 3767 int i; 3768 3769 for (i = 0; i < vlen; i++) { 3770 h = hash_combine(h, member->name_off); 3771 h = hash_combine(h, member->type); 3772 member++; 3773 } 3774 return h; 3775 } 3776 3777 /* 3778 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3779 * type IDs, under assumption that they were already resolved to canonical 3780 * type IDs and are not going to change. 3781 * This function is called during reference types deduplication to compare 3782 * FUNC_PROTO to potential canonical representative. 3783 */ 3784 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3785 { 3786 const struct btf_param *m1, *m2; 3787 __u16 vlen; 3788 int i; 3789 3790 if (!btf_equal_common(t1, t2)) 3791 return false; 3792 3793 vlen = btf_vlen(t1); 3794 m1 = btf_params(t1); 3795 m2 = btf_params(t2); 3796 for (i = 0; i < vlen; i++) { 3797 if (m1->name_off != m2->name_off || m1->type != m2->type) 3798 return false; 3799 m1++; 3800 m2++; 3801 } 3802 return true; 3803 } 3804 3805 /* 3806 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3807 * IDs. This check is performed during type graph equivalence check and 3808 * referenced types equivalence is checked separately. 3809 */ 3810 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3811 { 3812 const struct btf_param *m1, *m2; 3813 __u16 vlen; 3814 int i; 3815 3816 /* skip return type ID */ 3817 if (t1->name_off != t2->name_off || t1->info != t2->info) 3818 return false; 3819 3820 vlen = btf_vlen(t1); 3821 m1 = btf_params(t1); 3822 m2 = btf_params(t2); 3823 for (i = 0; i < vlen; i++) { 3824 if (m1->name_off != m2->name_off) 3825 return false; 3826 m1++; 3827 m2++; 3828 } 3829 return true; 3830 } 3831 3832 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3833 * types and initializing the rest of the state (canonical type mapping) for 3834 * the fixed base BTF part. 3835 */ 3836 static int btf_dedup_prep(struct btf_dedup *d) 3837 { 3838 struct btf_type *t; 3839 int type_id; 3840 long h; 3841 3842 if (!d->btf->base_btf) 3843 return 0; 3844 3845 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3846 t = btf_type_by_id(d->btf, type_id); 3847 3848 /* all base BTF types are self-canonical by definition */ 3849 d->map[type_id] = type_id; 3850 3851 switch (btf_kind(t)) { 3852 case BTF_KIND_VAR: 3853 case BTF_KIND_DATASEC: 3854 /* VAR and DATASEC are never hash/deduplicated */ 3855 continue; 3856 case BTF_KIND_CONST: 3857 case BTF_KIND_VOLATILE: 3858 case BTF_KIND_RESTRICT: 3859 case BTF_KIND_PTR: 3860 case BTF_KIND_FWD: 3861 case BTF_KIND_TYPEDEF: 3862 case BTF_KIND_FUNC: 3863 case BTF_KIND_FLOAT: 3864 case BTF_KIND_TYPE_TAG: 3865 h = btf_hash_common(t); 3866 break; 3867 case BTF_KIND_INT: 3868 case BTF_KIND_DECL_TAG: 3869 h = btf_hash_int_decl_tag(t); 3870 break; 3871 case BTF_KIND_ENUM: 3872 case BTF_KIND_ENUM64: 3873 h = btf_hash_enum(t); 3874 break; 3875 case BTF_KIND_STRUCT: 3876 case BTF_KIND_UNION: 3877 h = btf_hash_struct(t); 3878 break; 3879 case BTF_KIND_ARRAY: 3880 h = btf_hash_array(t); 3881 break; 3882 case BTF_KIND_FUNC_PROTO: 3883 h = btf_hash_fnproto(t); 3884 break; 3885 default: 3886 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3887 return -EINVAL; 3888 } 3889 if (btf_dedup_table_add(d, h, type_id)) 3890 return -ENOMEM; 3891 } 3892 3893 return 0; 3894 } 3895 3896 /* 3897 * Deduplicate primitive types, that can't reference other types, by calculating 3898 * their type signature hash and comparing them with any possible canonical 3899 * candidate. If no canonical candidate matches, type itself is marked as 3900 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3901 */ 3902 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3903 { 3904 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3905 struct hashmap_entry *hash_entry; 3906 struct btf_type *cand; 3907 /* if we don't find equivalent type, then we are canonical */ 3908 __u32 new_id = type_id; 3909 __u32 cand_id; 3910 long h; 3911 3912 switch (btf_kind(t)) { 3913 case BTF_KIND_CONST: 3914 case BTF_KIND_VOLATILE: 3915 case BTF_KIND_RESTRICT: 3916 case BTF_KIND_PTR: 3917 case BTF_KIND_TYPEDEF: 3918 case BTF_KIND_ARRAY: 3919 case BTF_KIND_STRUCT: 3920 case BTF_KIND_UNION: 3921 case BTF_KIND_FUNC: 3922 case BTF_KIND_FUNC_PROTO: 3923 case BTF_KIND_VAR: 3924 case BTF_KIND_DATASEC: 3925 case BTF_KIND_DECL_TAG: 3926 case BTF_KIND_TYPE_TAG: 3927 return 0; 3928 3929 case BTF_KIND_INT: 3930 h = btf_hash_int_decl_tag(t); 3931 for_each_dedup_cand(d, hash_entry, h) { 3932 cand_id = hash_entry->value; 3933 cand = btf_type_by_id(d->btf, cand_id); 3934 if (btf_equal_int_tag(t, cand)) { 3935 new_id = cand_id; 3936 break; 3937 } 3938 } 3939 break; 3940 3941 case BTF_KIND_ENUM: 3942 case BTF_KIND_ENUM64: 3943 h = btf_hash_enum(t); 3944 for_each_dedup_cand(d, hash_entry, h) { 3945 cand_id = hash_entry->value; 3946 cand = btf_type_by_id(d->btf, cand_id); 3947 if (btf_equal_enum(t, cand)) { 3948 new_id = cand_id; 3949 break; 3950 } 3951 if (btf_compat_enum(t, cand)) { 3952 if (btf_is_enum_fwd(t)) { 3953 /* resolve fwd to full enum */ 3954 new_id = cand_id; 3955 break; 3956 } 3957 /* resolve canonical enum fwd to full enum */ 3958 d->map[cand_id] = type_id; 3959 } 3960 } 3961 break; 3962 3963 case BTF_KIND_FWD: 3964 case BTF_KIND_FLOAT: 3965 h = btf_hash_common(t); 3966 for_each_dedup_cand(d, hash_entry, h) { 3967 cand_id = hash_entry->value; 3968 cand = btf_type_by_id(d->btf, cand_id); 3969 if (btf_equal_common(t, cand)) { 3970 new_id = cand_id; 3971 break; 3972 } 3973 } 3974 break; 3975 3976 default: 3977 return -EINVAL; 3978 } 3979 3980 d->map[type_id] = new_id; 3981 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3982 return -ENOMEM; 3983 3984 return 0; 3985 } 3986 3987 static int btf_dedup_prim_types(struct btf_dedup *d) 3988 { 3989 int i, err; 3990 3991 for (i = 0; i < d->btf->nr_types; i++) { 3992 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3993 if (err) 3994 return err; 3995 } 3996 return 0; 3997 } 3998 3999 /* 4000 * Check whether type is already mapped into canonical one (could be to itself). 4001 */ 4002 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 4003 { 4004 return d->map[type_id] <= BTF_MAX_NR_TYPES; 4005 } 4006 4007 /* 4008 * Resolve type ID into its canonical type ID, if any; otherwise return original 4009 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 4010 * STRUCT/UNION link and resolve it into canonical type ID as well. 4011 */ 4012 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 4013 { 4014 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4015 type_id = d->map[type_id]; 4016 return type_id; 4017 } 4018 4019 /* 4020 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 4021 * type ID. 4022 */ 4023 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 4024 { 4025 __u32 orig_type_id = type_id; 4026 4027 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4028 return type_id; 4029 4030 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4031 type_id = d->map[type_id]; 4032 4033 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4034 return type_id; 4035 4036 return orig_type_id; 4037 } 4038 4039 4040 static inline __u16 btf_fwd_kind(struct btf_type *t) 4041 { 4042 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 4043 } 4044 4045 /* Check if given two types are identical ARRAY definitions */ 4046 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 4047 { 4048 struct btf_type *t1, *t2; 4049 4050 t1 = btf_type_by_id(d->btf, id1); 4051 t2 = btf_type_by_id(d->btf, id2); 4052 if (!btf_is_array(t1) || !btf_is_array(t2)) 4053 return false; 4054 4055 return btf_equal_array(t1, t2); 4056 } 4057 4058 /* Check if given two types are identical STRUCT/UNION definitions */ 4059 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 4060 { 4061 const struct btf_member *m1, *m2; 4062 struct btf_type *t1, *t2; 4063 int n, i; 4064 4065 t1 = btf_type_by_id(d->btf, id1); 4066 t2 = btf_type_by_id(d->btf, id2); 4067 4068 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 4069 return false; 4070 4071 if (!btf_shallow_equal_struct(t1, t2)) 4072 return false; 4073 4074 m1 = btf_members(t1); 4075 m2 = btf_members(t2); 4076 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 4077 if (m1->type != m2->type && 4078 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 4079 !btf_dedup_identical_structs(d, m1->type, m2->type)) 4080 return false; 4081 } 4082 return true; 4083 } 4084 4085 /* 4086 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 4087 * call it "candidate graph" in this description for brevity) to a type graph 4088 * formed by (potential) canonical struct/union ("canonical graph" for brevity 4089 * here, though keep in mind that not all types in canonical graph are 4090 * necessarily canonical representatives themselves, some of them might be 4091 * duplicates or its uniqueness might not have been established yet). 4092 * Returns: 4093 * - >0, if type graphs are equivalent; 4094 * - 0, if not equivalent; 4095 * - <0, on error. 4096 * 4097 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 4098 * equivalence of BTF types at each step. If at any point BTF types in candidate 4099 * and canonical graphs are not compatible structurally, whole graphs are 4100 * incompatible. If types are structurally equivalent (i.e., all information 4101 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 4102 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 4103 * If a type references other types, then those referenced types are checked 4104 * for equivalence recursively. 4105 * 4106 * During DFS traversal, if we find that for current `canon_id` type we 4107 * already have some mapping in hypothetical map, we check for two possible 4108 * situations: 4109 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 4110 * happen when type graphs have cycles. In this case we assume those two 4111 * types are equivalent. 4112 * - `canon_id` is mapped to different type. This is contradiction in our 4113 * hypothetical mapping, because same graph in canonical graph corresponds 4114 * to two different types in candidate graph, which for equivalent type 4115 * graphs shouldn't happen. This condition terminates equivalence check 4116 * with negative result. 4117 * 4118 * If type graphs traversal exhausts types to check and find no contradiction, 4119 * then type graphs are equivalent. 4120 * 4121 * When checking types for equivalence, there is one special case: FWD types. 4122 * If FWD type resolution is allowed and one of the types (either from canonical 4123 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 4124 * flag) and their names match, hypothetical mapping is updated to point from 4125 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 4126 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 4127 * 4128 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 4129 * if there are two exactly named (or anonymous) structs/unions that are 4130 * compatible structurally, one of which has FWD field, while other is concrete 4131 * STRUCT/UNION, but according to C sources they are different structs/unions 4132 * that are referencing different types with the same name. This is extremely 4133 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 4134 * this logic is causing problems. 4135 * 4136 * Doing FWD resolution means that both candidate and/or canonical graphs can 4137 * consists of portions of the graph that come from multiple compilation units. 4138 * This is due to the fact that types within single compilation unit are always 4139 * deduplicated and FWDs are already resolved, if referenced struct/union 4140 * definiton is available. So, if we had unresolved FWD and found corresponding 4141 * STRUCT/UNION, they will be from different compilation units. This 4142 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 4143 * type graph will likely have at least two different BTF types that describe 4144 * same type (e.g., most probably there will be two different BTF types for the 4145 * same 'int' primitive type) and could even have "overlapping" parts of type 4146 * graph that describe same subset of types. 4147 * 4148 * This in turn means that our assumption that each type in canonical graph 4149 * must correspond to exactly one type in candidate graph might not hold 4150 * anymore and will make it harder to detect contradictions using hypothetical 4151 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4152 * resolution only in canonical graph. FWDs in candidate graphs are never 4153 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4154 * that can occur: 4155 * - Both types in canonical and candidate graphs are FWDs. If they are 4156 * structurally equivalent, then they can either be both resolved to the 4157 * same STRUCT/UNION or not resolved at all. In both cases they are 4158 * equivalent and there is no need to resolve FWD on candidate side. 4159 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4160 * so nothing to resolve as well, algorithm will check equivalence anyway. 4161 * - Type in canonical graph is FWD, while type in candidate is concrete 4162 * STRUCT/UNION. In this case candidate graph comes from single compilation 4163 * unit, so there is exactly one BTF type for each unique C type. After 4164 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4165 * in canonical graph mapping to single BTF type in candidate graph, but 4166 * because hypothetical mapping maps from canonical to candidate types, it's 4167 * alright, and we still maintain the property of having single `canon_id` 4168 * mapping to single `cand_id` (there could be two different `canon_id` 4169 * mapped to the same `cand_id`, but it's not contradictory). 4170 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4171 * graph is FWD. In this case we are just going to check compatibility of 4172 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4173 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4174 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4175 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4176 * canonical graph. 4177 */ 4178 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4179 __u32 canon_id) 4180 { 4181 struct btf_type *cand_type; 4182 struct btf_type *canon_type; 4183 __u32 hypot_type_id; 4184 __u16 cand_kind; 4185 __u16 canon_kind; 4186 int i, eq; 4187 4188 /* if both resolve to the same canonical, they must be equivalent */ 4189 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4190 return 1; 4191 4192 canon_id = resolve_fwd_id(d, canon_id); 4193 4194 hypot_type_id = d->hypot_map[canon_id]; 4195 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4196 if (hypot_type_id == cand_id) 4197 return 1; 4198 /* In some cases compiler will generate different DWARF types 4199 * for *identical* array type definitions and use them for 4200 * different fields within the *same* struct. This breaks type 4201 * equivalence check, which makes an assumption that candidate 4202 * types sub-graph has a consistent and deduped-by-compiler 4203 * types within a single CU. So work around that by explicitly 4204 * allowing identical array types here. 4205 */ 4206 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4207 return 1; 4208 /* It turns out that similar situation can happen with 4209 * struct/union sometimes, sigh... Handle the case where 4210 * structs/unions are exactly the same, down to the referenced 4211 * type IDs. Anything more complicated (e.g., if referenced 4212 * types are different, but equivalent) is *way more* 4213 * complicated and requires a many-to-many equivalence mapping. 4214 */ 4215 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4216 return 1; 4217 return 0; 4218 } 4219 4220 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4221 return -ENOMEM; 4222 4223 cand_type = btf_type_by_id(d->btf, cand_id); 4224 canon_type = btf_type_by_id(d->btf, canon_id); 4225 cand_kind = btf_kind(cand_type); 4226 canon_kind = btf_kind(canon_type); 4227 4228 if (cand_type->name_off != canon_type->name_off) 4229 return 0; 4230 4231 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4232 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4233 && cand_kind != canon_kind) { 4234 __u16 real_kind; 4235 __u16 fwd_kind; 4236 4237 if (cand_kind == BTF_KIND_FWD) { 4238 real_kind = canon_kind; 4239 fwd_kind = btf_fwd_kind(cand_type); 4240 } else { 4241 real_kind = cand_kind; 4242 fwd_kind = btf_fwd_kind(canon_type); 4243 /* we'd need to resolve base FWD to STRUCT/UNION */ 4244 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4245 d->hypot_adjust_canon = true; 4246 } 4247 return fwd_kind == real_kind; 4248 } 4249 4250 if (cand_kind != canon_kind) 4251 return 0; 4252 4253 switch (cand_kind) { 4254 case BTF_KIND_INT: 4255 return btf_equal_int_tag(cand_type, canon_type); 4256 4257 case BTF_KIND_ENUM: 4258 case BTF_KIND_ENUM64: 4259 return btf_compat_enum(cand_type, canon_type); 4260 4261 case BTF_KIND_FWD: 4262 case BTF_KIND_FLOAT: 4263 return btf_equal_common(cand_type, canon_type); 4264 4265 case BTF_KIND_CONST: 4266 case BTF_KIND_VOLATILE: 4267 case BTF_KIND_RESTRICT: 4268 case BTF_KIND_PTR: 4269 case BTF_KIND_TYPEDEF: 4270 case BTF_KIND_FUNC: 4271 case BTF_KIND_TYPE_TAG: 4272 if (cand_type->info != canon_type->info) 4273 return 0; 4274 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4275 4276 case BTF_KIND_ARRAY: { 4277 const struct btf_array *cand_arr, *canon_arr; 4278 4279 if (!btf_compat_array(cand_type, canon_type)) 4280 return 0; 4281 cand_arr = btf_array(cand_type); 4282 canon_arr = btf_array(canon_type); 4283 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4284 if (eq <= 0) 4285 return eq; 4286 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4287 } 4288 4289 case BTF_KIND_STRUCT: 4290 case BTF_KIND_UNION: { 4291 const struct btf_member *cand_m, *canon_m; 4292 __u16 vlen; 4293 4294 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4295 return 0; 4296 vlen = btf_vlen(cand_type); 4297 cand_m = btf_members(cand_type); 4298 canon_m = btf_members(canon_type); 4299 for (i = 0; i < vlen; i++) { 4300 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4301 if (eq <= 0) 4302 return eq; 4303 cand_m++; 4304 canon_m++; 4305 } 4306 4307 return 1; 4308 } 4309 4310 case BTF_KIND_FUNC_PROTO: { 4311 const struct btf_param *cand_p, *canon_p; 4312 __u16 vlen; 4313 4314 if (!btf_compat_fnproto(cand_type, canon_type)) 4315 return 0; 4316 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4317 if (eq <= 0) 4318 return eq; 4319 vlen = btf_vlen(cand_type); 4320 cand_p = btf_params(cand_type); 4321 canon_p = btf_params(canon_type); 4322 for (i = 0; i < vlen; i++) { 4323 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4324 if (eq <= 0) 4325 return eq; 4326 cand_p++; 4327 canon_p++; 4328 } 4329 return 1; 4330 } 4331 4332 default: 4333 return -EINVAL; 4334 } 4335 return 0; 4336 } 4337 4338 /* 4339 * Use hypothetical mapping, produced by successful type graph equivalence 4340 * check, to augment existing struct/union canonical mapping, where possible. 4341 * 4342 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4343 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4344 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4345 * we are recording the mapping anyway. As opposed to carefulness required 4346 * for struct/union correspondence mapping (described below), for FWD resolution 4347 * it's not important, as by the time that FWD type (reference type) will be 4348 * deduplicated all structs/unions will be deduped already anyway. 4349 * 4350 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4351 * not required for correctness. It needs to be done carefully to ensure that 4352 * struct/union from candidate's type graph is not mapped into corresponding 4353 * struct/union from canonical type graph that itself hasn't been resolved into 4354 * canonical representative. The only guarantee we have is that canonical 4355 * struct/union was determined as canonical and that won't change. But any 4356 * types referenced through that struct/union fields could have been not yet 4357 * resolved, so in case like that it's too early to establish any kind of 4358 * correspondence between structs/unions. 4359 * 4360 * No canonical correspondence is derived for primitive types (they are already 4361 * deduplicated completely already anyway) or reference types (they rely on 4362 * stability of struct/union canonical relationship for equivalence checks). 4363 */ 4364 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4365 { 4366 __u32 canon_type_id, targ_type_id; 4367 __u16 t_kind, c_kind; 4368 __u32 t_id, c_id; 4369 int i; 4370 4371 for (i = 0; i < d->hypot_cnt; i++) { 4372 canon_type_id = d->hypot_list[i]; 4373 targ_type_id = d->hypot_map[canon_type_id]; 4374 t_id = resolve_type_id(d, targ_type_id); 4375 c_id = resolve_type_id(d, canon_type_id); 4376 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4377 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4378 /* 4379 * Resolve FWD into STRUCT/UNION. 4380 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4381 * mapped to canonical representative (as opposed to 4382 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4383 * eventually that struct is going to be mapped and all resolved 4384 * FWDs will automatically resolve to correct canonical 4385 * representative. This will happen before ref type deduping, 4386 * which critically depends on stability of these mapping. This 4387 * stability is not a requirement for STRUCT/UNION equivalence 4388 * checks, though. 4389 */ 4390 4391 /* if it's the split BTF case, we still need to point base FWD 4392 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4393 * will be resolved against base FWD. If we don't point base 4394 * canonical FWD to the resolved STRUCT/UNION, then all the 4395 * FWDs in split BTF won't be correctly resolved to a proper 4396 * STRUCT/UNION. 4397 */ 4398 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4399 d->map[c_id] = t_id; 4400 4401 /* if graph equivalence determined that we'd need to adjust 4402 * base canonical types, then we need to only point base FWDs 4403 * to STRUCTs/UNIONs and do no more modifications. For all 4404 * other purposes the type graphs were not equivalent. 4405 */ 4406 if (d->hypot_adjust_canon) 4407 continue; 4408 4409 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4410 d->map[t_id] = c_id; 4411 4412 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4413 c_kind != BTF_KIND_FWD && 4414 is_type_mapped(d, c_id) && 4415 !is_type_mapped(d, t_id)) { 4416 /* 4417 * as a perf optimization, we can map struct/union 4418 * that's part of type graph we just verified for 4419 * equivalence. We can do that for struct/union that has 4420 * canonical representative only, though. 4421 */ 4422 d->map[t_id] = c_id; 4423 } 4424 } 4425 } 4426 4427 /* 4428 * Deduplicate struct/union types. 4429 * 4430 * For each struct/union type its type signature hash is calculated, taking 4431 * into account type's name, size, number, order and names of fields, but 4432 * ignoring type ID's referenced from fields, because they might not be deduped 4433 * completely until after reference types deduplication phase. This type hash 4434 * is used to iterate over all potential canonical types, sharing same hash. 4435 * For each canonical candidate we check whether type graphs that they form 4436 * (through referenced types in fields and so on) are equivalent using algorithm 4437 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4438 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4439 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4440 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4441 * potentially map other structs/unions to their canonical representatives, 4442 * if such relationship hasn't yet been established. This speeds up algorithm 4443 * by eliminating some of the duplicate work. 4444 * 4445 * If no matching canonical representative was found, struct/union is marked 4446 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4447 * for further look ups. 4448 */ 4449 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4450 { 4451 struct btf_type *cand_type, *t; 4452 struct hashmap_entry *hash_entry; 4453 /* if we don't find equivalent type, then we are canonical */ 4454 __u32 new_id = type_id; 4455 __u16 kind; 4456 long h; 4457 4458 /* already deduped or is in process of deduping (loop detected) */ 4459 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4460 return 0; 4461 4462 t = btf_type_by_id(d->btf, type_id); 4463 kind = btf_kind(t); 4464 4465 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4466 return 0; 4467 4468 h = btf_hash_struct(t); 4469 for_each_dedup_cand(d, hash_entry, h) { 4470 __u32 cand_id = hash_entry->value; 4471 int eq; 4472 4473 /* 4474 * Even though btf_dedup_is_equiv() checks for 4475 * btf_shallow_equal_struct() internally when checking two 4476 * structs (unions) for equivalence, we need to guard here 4477 * from picking matching FWD type as a dedup candidate. 4478 * This can happen due to hash collision. In such case just 4479 * relying on btf_dedup_is_equiv() would lead to potentially 4480 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4481 * FWD and compatible STRUCT/UNION are considered equivalent. 4482 */ 4483 cand_type = btf_type_by_id(d->btf, cand_id); 4484 if (!btf_shallow_equal_struct(t, cand_type)) 4485 continue; 4486 4487 btf_dedup_clear_hypot_map(d); 4488 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4489 if (eq < 0) 4490 return eq; 4491 if (!eq) 4492 continue; 4493 btf_dedup_merge_hypot_map(d); 4494 if (d->hypot_adjust_canon) /* not really equivalent */ 4495 continue; 4496 new_id = cand_id; 4497 break; 4498 } 4499 4500 d->map[type_id] = new_id; 4501 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4502 return -ENOMEM; 4503 4504 return 0; 4505 } 4506 4507 static int btf_dedup_struct_types(struct btf_dedup *d) 4508 { 4509 int i, err; 4510 4511 for (i = 0; i < d->btf->nr_types; i++) { 4512 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4513 if (err) 4514 return err; 4515 } 4516 return 0; 4517 } 4518 4519 /* 4520 * Deduplicate reference type. 4521 * 4522 * Once all primitive and struct/union types got deduplicated, we can easily 4523 * deduplicate all other (reference) BTF types. This is done in two steps: 4524 * 4525 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4526 * resolution can be done either immediately for primitive or struct/union types 4527 * (because they were deduped in previous two phases) or recursively for 4528 * reference types. Recursion will always terminate at either primitive or 4529 * struct/union type, at which point we can "unwind" chain of reference types 4530 * one by one. There is no danger of encountering cycles because in C type 4531 * system the only way to form type cycle is through struct/union, so any chain 4532 * of reference types, even those taking part in a type cycle, will inevitably 4533 * reach struct/union at some point. 4534 * 4535 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4536 * becomes "stable", in the sense that no further deduplication will cause 4537 * any changes to it. With that, it's now possible to calculate type's signature 4538 * hash (this time taking into account referenced type IDs) and loop over all 4539 * potential canonical representatives. If no match was found, current type 4540 * will become canonical representative of itself and will be added into 4541 * btf_dedup->dedup_table as another possible canonical representative. 4542 */ 4543 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4544 { 4545 struct hashmap_entry *hash_entry; 4546 __u32 new_id = type_id, cand_id; 4547 struct btf_type *t, *cand; 4548 /* if we don't find equivalent type, then we are representative type */ 4549 int ref_type_id; 4550 long h; 4551 4552 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4553 return -ELOOP; 4554 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4555 return resolve_type_id(d, type_id); 4556 4557 t = btf_type_by_id(d->btf, type_id); 4558 d->map[type_id] = BTF_IN_PROGRESS_ID; 4559 4560 switch (btf_kind(t)) { 4561 case BTF_KIND_CONST: 4562 case BTF_KIND_VOLATILE: 4563 case BTF_KIND_RESTRICT: 4564 case BTF_KIND_PTR: 4565 case BTF_KIND_TYPEDEF: 4566 case BTF_KIND_FUNC: 4567 case BTF_KIND_TYPE_TAG: 4568 ref_type_id = btf_dedup_ref_type(d, t->type); 4569 if (ref_type_id < 0) 4570 return ref_type_id; 4571 t->type = ref_type_id; 4572 4573 h = btf_hash_common(t); 4574 for_each_dedup_cand(d, hash_entry, h) { 4575 cand_id = hash_entry->value; 4576 cand = btf_type_by_id(d->btf, cand_id); 4577 if (btf_equal_common(t, cand)) { 4578 new_id = cand_id; 4579 break; 4580 } 4581 } 4582 break; 4583 4584 case BTF_KIND_DECL_TAG: 4585 ref_type_id = btf_dedup_ref_type(d, t->type); 4586 if (ref_type_id < 0) 4587 return ref_type_id; 4588 t->type = ref_type_id; 4589 4590 h = btf_hash_int_decl_tag(t); 4591 for_each_dedup_cand(d, hash_entry, h) { 4592 cand_id = hash_entry->value; 4593 cand = btf_type_by_id(d->btf, cand_id); 4594 if (btf_equal_int_tag(t, cand)) { 4595 new_id = cand_id; 4596 break; 4597 } 4598 } 4599 break; 4600 4601 case BTF_KIND_ARRAY: { 4602 struct btf_array *info = btf_array(t); 4603 4604 ref_type_id = btf_dedup_ref_type(d, info->type); 4605 if (ref_type_id < 0) 4606 return ref_type_id; 4607 info->type = ref_type_id; 4608 4609 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4610 if (ref_type_id < 0) 4611 return ref_type_id; 4612 info->index_type = ref_type_id; 4613 4614 h = btf_hash_array(t); 4615 for_each_dedup_cand(d, hash_entry, h) { 4616 cand_id = hash_entry->value; 4617 cand = btf_type_by_id(d->btf, cand_id); 4618 if (btf_equal_array(t, cand)) { 4619 new_id = cand_id; 4620 break; 4621 } 4622 } 4623 break; 4624 } 4625 4626 case BTF_KIND_FUNC_PROTO: { 4627 struct btf_param *param; 4628 __u16 vlen; 4629 int i; 4630 4631 ref_type_id = btf_dedup_ref_type(d, t->type); 4632 if (ref_type_id < 0) 4633 return ref_type_id; 4634 t->type = ref_type_id; 4635 4636 vlen = btf_vlen(t); 4637 param = btf_params(t); 4638 for (i = 0; i < vlen; i++) { 4639 ref_type_id = btf_dedup_ref_type(d, param->type); 4640 if (ref_type_id < 0) 4641 return ref_type_id; 4642 param->type = ref_type_id; 4643 param++; 4644 } 4645 4646 h = btf_hash_fnproto(t); 4647 for_each_dedup_cand(d, hash_entry, h) { 4648 cand_id = hash_entry->value; 4649 cand = btf_type_by_id(d->btf, cand_id); 4650 if (btf_equal_fnproto(t, cand)) { 4651 new_id = cand_id; 4652 break; 4653 } 4654 } 4655 break; 4656 } 4657 4658 default: 4659 return -EINVAL; 4660 } 4661 4662 d->map[type_id] = new_id; 4663 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4664 return -ENOMEM; 4665 4666 return new_id; 4667 } 4668 4669 static int btf_dedup_ref_types(struct btf_dedup *d) 4670 { 4671 int i, err; 4672 4673 for (i = 0; i < d->btf->nr_types; i++) { 4674 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4675 if (err < 0) 4676 return err; 4677 } 4678 /* we won't need d->dedup_table anymore */ 4679 hashmap__free(d->dedup_table); 4680 d->dedup_table = NULL; 4681 return 0; 4682 } 4683 4684 /* 4685 * Collect a map from type names to type ids for all canonical structs 4686 * and unions. If the same name is shared by several canonical types 4687 * use a special value 0 to indicate this fact. 4688 */ 4689 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4690 { 4691 __u32 nr_types = btf__type_cnt(d->btf); 4692 struct btf_type *t; 4693 __u32 type_id; 4694 __u16 kind; 4695 int err; 4696 4697 /* 4698 * Iterate over base and split module ids in order to get all 4699 * available structs in the map. 4700 */ 4701 for (type_id = 1; type_id < nr_types; ++type_id) { 4702 t = btf_type_by_id(d->btf, type_id); 4703 kind = btf_kind(t); 4704 4705 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4706 continue; 4707 4708 /* Skip non-canonical types */ 4709 if (type_id != d->map[type_id]) 4710 continue; 4711 4712 err = hashmap__add(names_map, t->name_off, type_id); 4713 if (err == -EEXIST) 4714 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4715 4716 if (err) 4717 return err; 4718 } 4719 4720 return 0; 4721 } 4722 4723 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4724 { 4725 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4726 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4727 __u16 cand_kind, kind = btf_kind(t); 4728 struct btf_type *cand_t; 4729 uintptr_t cand_id; 4730 4731 if (kind != BTF_KIND_FWD) 4732 return 0; 4733 4734 /* Skip if this FWD already has a mapping */ 4735 if (type_id != d->map[type_id]) 4736 return 0; 4737 4738 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4739 return 0; 4740 4741 /* Zero is a special value indicating that name is not unique */ 4742 if (!cand_id) 4743 return 0; 4744 4745 cand_t = btf_type_by_id(d->btf, cand_id); 4746 cand_kind = btf_kind(cand_t); 4747 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4748 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4749 return 0; 4750 4751 d->map[type_id] = cand_id; 4752 4753 return 0; 4754 } 4755 4756 /* 4757 * Resolve unambiguous forward declarations. 4758 * 4759 * The lion's share of all FWD declarations is resolved during 4760 * `btf_dedup_struct_types` phase when different type graphs are 4761 * compared against each other. However, if in some compilation unit a 4762 * FWD declaration is not a part of a type graph compared against 4763 * another type graph that declaration's canonical type would not be 4764 * changed. Example: 4765 * 4766 * CU #1: 4767 * 4768 * struct foo; 4769 * struct foo *some_global; 4770 * 4771 * CU #2: 4772 * 4773 * struct foo { int u; }; 4774 * struct foo *another_global; 4775 * 4776 * After `btf_dedup_struct_types` the BTF looks as follows: 4777 * 4778 * [1] STRUCT 'foo' size=4 vlen=1 ... 4779 * [2] INT 'int' size=4 ... 4780 * [3] PTR '(anon)' type_id=1 4781 * [4] FWD 'foo' fwd_kind=struct 4782 * [5] PTR '(anon)' type_id=4 4783 * 4784 * This pass assumes that such FWD declarations should be mapped to 4785 * structs or unions with identical name in case if the name is not 4786 * ambiguous. 4787 */ 4788 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4789 { 4790 int i, err; 4791 struct hashmap *names_map; 4792 4793 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4794 if (IS_ERR(names_map)) 4795 return PTR_ERR(names_map); 4796 4797 err = btf_dedup_fill_unique_names_map(d, names_map); 4798 if (err < 0) 4799 goto exit; 4800 4801 for (i = 0; i < d->btf->nr_types; i++) { 4802 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4803 if (err < 0) 4804 break; 4805 } 4806 4807 exit: 4808 hashmap__free(names_map); 4809 return err; 4810 } 4811 4812 /* 4813 * Compact types. 4814 * 4815 * After we established for each type its corresponding canonical representative 4816 * type, we now can eliminate types that are not canonical and leave only 4817 * canonical ones layed out sequentially in memory by copying them over 4818 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4819 * a map from original type ID to a new compacted type ID, which will be used 4820 * during next phase to "fix up" type IDs, referenced from struct/union and 4821 * reference types. 4822 */ 4823 static int btf_dedup_compact_types(struct btf_dedup *d) 4824 { 4825 __u32 *new_offs; 4826 __u32 next_type_id = d->btf->start_id; 4827 const struct btf_type *t; 4828 void *p; 4829 int i, id, len; 4830 4831 /* we are going to reuse hypot_map to store compaction remapping */ 4832 d->hypot_map[0] = 0; 4833 /* base BTF types are not renumbered */ 4834 for (id = 1; id < d->btf->start_id; id++) 4835 d->hypot_map[id] = id; 4836 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4837 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4838 4839 p = d->btf->types_data; 4840 4841 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4842 if (d->map[id] != id) 4843 continue; 4844 4845 t = btf__type_by_id(d->btf, id); 4846 len = btf_type_size(t); 4847 if (len < 0) 4848 return len; 4849 4850 memmove(p, t, len); 4851 d->hypot_map[id] = next_type_id; 4852 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4853 p += len; 4854 next_type_id++; 4855 } 4856 4857 /* shrink struct btf's internal types index and update btf_header */ 4858 d->btf->nr_types = next_type_id - d->btf->start_id; 4859 d->btf->type_offs_cap = d->btf->nr_types; 4860 d->btf->hdr->type_len = p - d->btf->types_data; 4861 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4862 sizeof(*new_offs)); 4863 if (d->btf->type_offs_cap && !new_offs) 4864 return -ENOMEM; 4865 d->btf->type_offs = new_offs; 4866 d->btf->hdr->str_off = d->btf->hdr->type_len; 4867 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4868 return 0; 4869 } 4870 4871 /* 4872 * Figure out final (deduplicated and compacted) type ID for provided original 4873 * `type_id` by first resolving it into corresponding canonical type ID and 4874 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4875 * which is populated during compaction phase. 4876 */ 4877 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4878 { 4879 struct btf_dedup *d = ctx; 4880 __u32 resolved_type_id, new_type_id; 4881 4882 resolved_type_id = resolve_type_id(d, *type_id); 4883 new_type_id = d->hypot_map[resolved_type_id]; 4884 if (new_type_id > BTF_MAX_NR_TYPES) 4885 return -EINVAL; 4886 4887 *type_id = new_type_id; 4888 return 0; 4889 } 4890 4891 /* 4892 * Remap referenced type IDs into deduped type IDs. 4893 * 4894 * After BTF types are deduplicated and compacted, their final type IDs may 4895 * differ from original ones. The map from original to a corresponding 4896 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4897 * compaction phase. During remapping phase we are rewriting all type IDs 4898 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4899 * their final deduped type IDs. 4900 */ 4901 static int btf_dedup_remap_types(struct btf_dedup *d) 4902 { 4903 int i, r; 4904 4905 for (i = 0; i < d->btf->nr_types; i++) { 4906 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4907 4908 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4909 if (r) 4910 return r; 4911 } 4912 4913 if (!d->btf_ext) 4914 return 0; 4915 4916 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4917 if (r) 4918 return r; 4919 4920 return 0; 4921 } 4922 4923 /* 4924 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4925 * data out of it to use for target BTF. 4926 */ 4927 struct btf *btf__load_vmlinux_btf(void) 4928 { 4929 const char *locations[] = { 4930 /* try canonical vmlinux BTF through sysfs first */ 4931 "/sys/kernel/btf/vmlinux", 4932 /* fall back to trying to find vmlinux on disk otherwise */ 4933 "/boot/vmlinux-%1$s", 4934 "/lib/modules/%1$s/vmlinux-%1$s", 4935 "/lib/modules/%1$s/build/vmlinux", 4936 "/usr/lib/modules/%1$s/kernel/vmlinux", 4937 "/usr/lib/debug/boot/vmlinux-%1$s", 4938 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 4939 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 4940 }; 4941 char path[PATH_MAX + 1]; 4942 struct utsname buf; 4943 struct btf *btf; 4944 int i, err; 4945 4946 uname(&buf); 4947 4948 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4949 snprintf(path, PATH_MAX, locations[i], buf.release); 4950 4951 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 4952 continue; 4953 4954 btf = btf__parse(path, NULL); 4955 err = libbpf_get_error(btf); 4956 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4957 if (err) 4958 continue; 4959 4960 return btf; 4961 } 4962 4963 pr_warn("failed to find valid kernel BTF\n"); 4964 return libbpf_err_ptr(-ESRCH); 4965 } 4966 4967 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4968 4969 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4970 { 4971 char path[80]; 4972 4973 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4974 return btf__parse_split(path, vmlinux_btf); 4975 } 4976 4977 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4978 { 4979 int i, n, err; 4980 4981 switch (btf_kind(t)) { 4982 case BTF_KIND_INT: 4983 case BTF_KIND_FLOAT: 4984 case BTF_KIND_ENUM: 4985 case BTF_KIND_ENUM64: 4986 return 0; 4987 4988 case BTF_KIND_FWD: 4989 case BTF_KIND_CONST: 4990 case BTF_KIND_VOLATILE: 4991 case BTF_KIND_RESTRICT: 4992 case BTF_KIND_PTR: 4993 case BTF_KIND_TYPEDEF: 4994 case BTF_KIND_FUNC: 4995 case BTF_KIND_VAR: 4996 case BTF_KIND_DECL_TAG: 4997 case BTF_KIND_TYPE_TAG: 4998 return visit(&t->type, ctx); 4999 5000 case BTF_KIND_ARRAY: { 5001 struct btf_array *a = btf_array(t); 5002 5003 err = visit(&a->type, ctx); 5004 err = err ?: visit(&a->index_type, ctx); 5005 return err; 5006 } 5007 5008 case BTF_KIND_STRUCT: 5009 case BTF_KIND_UNION: { 5010 struct btf_member *m = btf_members(t); 5011 5012 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5013 err = visit(&m->type, ctx); 5014 if (err) 5015 return err; 5016 } 5017 return 0; 5018 } 5019 5020 case BTF_KIND_FUNC_PROTO: { 5021 struct btf_param *m = btf_params(t); 5022 5023 err = visit(&t->type, ctx); 5024 if (err) 5025 return err; 5026 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5027 err = visit(&m->type, ctx); 5028 if (err) 5029 return err; 5030 } 5031 return 0; 5032 } 5033 5034 case BTF_KIND_DATASEC: { 5035 struct btf_var_secinfo *m = btf_var_secinfos(t); 5036 5037 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5038 err = visit(&m->type, ctx); 5039 if (err) 5040 return err; 5041 } 5042 return 0; 5043 } 5044 5045 default: 5046 return -EINVAL; 5047 } 5048 } 5049 5050 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 5051 { 5052 int i, n, err; 5053 5054 err = visit(&t->name_off, ctx); 5055 if (err) 5056 return err; 5057 5058 switch (btf_kind(t)) { 5059 case BTF_KIND_STRUCT: 5060 case BTF_KIND_UNION: { 5061 struct btf_member *m = btf_members(t); 5062 5063 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5064 err = visit(&m->name_off, ctx); 5065 if (err) 5066 return err; 5067 } 5068 break; 5069 } 5070 case BTF_KIND_ENUM: { 5071 struct btf_enum *m = btf_enum(t); 5072 5073 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5074 err = visit(&m->name_off, ctx); 5075 if (err) 5076 return err; 5077 } 5078 break; 5079 } 5080 case BTF_KIND_ENUM64: { 5081 struct btf_enum64 *m = btf_enum64(t); 5082 5083 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5084 err = visit(&m->name_off, ctx); 5085 if (err) 5086 return err; 5087 } 5088 break; 5089 } 5090 case BTF_KIND_FUNC_PROTO: { 5091 struct btf_param *m = btf_params(t); 5092 5093 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 5094 err = visit(&m->name_off, ctx); 5095 if (err) 5096 return err; 5097 } 5098 break; 5099 } 5100 default: 5101 break; 5102 } 5103 5104 return 0; 5105 } 5106 5107 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 5108 { 5109 const struct btf_ext_info *seg; 5110 struct btf_ext_info_sec *sec; 5111 int i, err; 5112 5113 seg = &btf_ext->func_info; 5114 for_each_btf_ext_sec(seg, sec) { 5115 struct bpf_func_info_min *rec; 5116 5117 for_each_btf_ext_rec(seg, sec, i, rec) { 5118 err = visit(&rec->type_id, ctx); 5119 if (err < 0) 5120 return err; 5121 } 5122 } 5123 5124 seg = &btf_ext->core_relo_info; 5125 for_each_btf_ext_sec(seg, sec) { 5126 struct bpf_core_relo *rec; 5127 5128 for_each_btf_ext_rec(seg, sec, i, rec) { 5129 err = visit(&rec->type_id, ctx); 5130 if (err < 0) 5131 return err; 5132 } 5133 } 5134 5135 return 0; 5136 } 5137 5138 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 5139 { 5140 const struct btf_ext_info *seg; 5141 struct btf_ext_info_sec *sec; 5142 int i, err; 5143 5144 seg = &btf_ext->func_info; 5145 for_each_btf_ext_sec(seg, sec) { 5146 err = visit(&sec->sec_name_off, ctx); 5147 if (err) 5148 return err; 5149 } 5150 5151 seg = &btf_ext->line_info; 5152 for_each_btf_ext_sec(seg, sec) { 5153 struct bpf_line_info_min *rec; 5154 5155 err = visit(&sec->sec_name_off, ctx); 5156 if (err) 5157 return err; 5158 5159 for_each_btf_ext_rec(seg, sec, i, rec) { 5160 err = visit(&rec->file_name_off, ctx); 5161 if (err) 5162 return err; 5163 err = visit(&rec->line_off, ctx); 5164 if (err) 5165 return err; 5166 } 5167 } 5168 5169 seg = &btf_ext->core_relo_info; 5170 for_each_btf_ext_sec(seg, sec) { 5171 struct bpf_core_relo *rec; 5172 5173 err = visit(&sec->sec_name_off, ctx); 5174 if (err) 5175 return err; 5176 5177 for_each_btf_ext_rec(seg, sec, i, rec) { 5178 err = visit(&rec->access_str_off, ctx); 5179 if (err) 5180 return err; 5181 } 5182 } 5183 5184 return 0; 5185 } 5186