1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 25 #define BTF_MAX_NR_TYPES 0x7fffffffU 26 #define BTF_MAX_STR_OFFSET 0x7fffffffU 27 28 static struct btf_type btf_void; 29 30 struct btf { 31 /* raw BTF data in native endianness */ 32 void *raw_data; 33 /* raw BTF data in non-native endianness */ 34 void *raw_data_swapped; 35 __u32 raw_size; 36 /* whether target endianness differs from the native one */ 37 bool swapped_endian; 38 39 /* 40 * When BTF is loaded from an ELF or raw memory it is stored 41 * in a contiguous memory block. The hdr, type_data, and, strs_data 42 * point inside that memory region to their respective parts of BTF 43 * representation: 44 * 45 * +--------------------------------+ 46 * | Header | Types | Strings | 47 * +--------------------------------+ 48 * ^ ^ ^ 49 * | | | 50 * hdr | | 51 * types_data-+ | 52 * strs_data------------+ 53 * 54 * If BTF data is later modified, e.g., due to types added or 55 * removed, BTF deduplication performed, etc, this contiguous 56 * representation is broken up into three independently allocated 57 * memory regions to be able to modify them independently. 58 * raw_data is nulled out at that point, but can be later allocated 59 * and cached again if user calls btf__get_raw_data(), at which point 60 * raw_data will contain a contiguous copy of header, types, and 61 * strings: 62 * 63 * +----------+ +---------+ +-----------+ 64 * | Header | | Types | | Strings | 65 * +----------+ +---------+ +-----------+ 66 * ^ ^ ^ 67 * | | | 68 * hdr | | 69 * types_data----+ | 70 * strs_data------------------+ 71 * 72 * +----------+---------+-----------+ 73 * | Header | Types | Strings | 74 * raw_data----->+----------+---------+-----------+ 75 */ 76 struct btf_header *hdr; 77 78 void *types_data; 79 size_t types_data_cap; /* used size stored in hdr->type_len */ 80 81 /* type ID to `struct btf_type *` lookup index 82 * type_offs[0] corresponds to the first non-VOID type: 83 * - for base BTF it's type [1]; 84 * - for split BTF it's the first non-base BTF type. 85 */ 86 __u32 *type_offs; 87 size_t type_offs_cap; 88 /* number of types in this BTF instance: 89 * - doesn't include special [0] void type; 90 * - for split BTF counts number of types added on top of base BTF. 91 */ 92 __u32 nr_types; 93 /* if not NULL, points to the base BTF on top of which the current 94 * split BTF is based 95 */ 96 struct btf *base_btf; 97 /* BTF type ID of the first type in this BTF instance: 98 * - for base BTF it's equal to 1; 99 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 100 */ 101 int start_id; 102 /* logical string offset of this BTF instance: 103 * - for base BTF it's equal to 0; 104 * - for split BTF it's equal to total size of base BTF's string section size. 105 */ 106 int start_str_off; 107 108 void *strs_data; 109 size_t strs_data_cap; /* used size stored in hdr->str_len */ 110 111 /* lookup index for each unique string in strings section */ 112 struct hashmap *strs_hash; 113 /* whether strings are already deduplicated */ 114 bool strs_deduped; 115 /* extra indirection layer to make strings hashmap work with stable 116 * string offsets and ability to transparently choose between 117 * btf->strs_data or btf_dedup->strs_data as a source of strings. 118 * This is used for BTF strings dedup to transfer deduplicated strings 119 * data back to struct btf without re-building strings index. 120 */ 121 void **strs_data_ptr; 122 123 /* BTF object FD, if loaded into kernel */ 124 int fd; 125 126 /* Pointer size (in bytes) for a target architecture of this BTF */ 127 int ptr_sz; 128 }; 129 130 static inline __u64 ptr_to_u64(const void *ptr) 131 { 132 return (__u64) (unsigned long) ptr; 133 } 134 135 /* Ensure given dynamically allocated memory region pointed to by *data* with 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 137 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 138 * are already used. At most *max_cnt* elements can be ever allocated. 139 * If necessary, memory is reallocated and all existing data is copied over, 140 * new pointer to the memory region is stored at *data, new memory region 141 * capacity (in number of elements) is stored in *cap. 142 * On success, memory pointer to the beginning of unused memory is returned. 143 * On error, NULL is returned. 144 */ 145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 146 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 147 { 148 size_t new_cnt; 149 void *new_data; 150 151 if (cur_cnt + add_cnt <= *cap_cnt) 152 return *data + cur_cnt * elem_sz; 153 154 /* requested more than the set limit */ 155 if (cur_cnt + add_cnt > max_cnt) 156 return NULL; 157 158 new_cnt = *cap_cnt; 159 new_cnt += new_cnt / 4; /* expand by 25% */ 160 if (new_cnt < 16) /* but at least 16 elements */ 161 new_cnt = 16; 162 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 163 new_cnt = max_cnt; 164 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 165 new_cnt = cur_cnt + add_cnt; 166 167 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 168 if (!new_data) 169 return NULL; 170 171 /* zero out newly allocated portion of memory */ 172 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 173 174 *data = new_data; 175 *cap_cnt = new_cnt; 176 return new_data + cur_cnt * elem_sz; 177 } 178 179 /* Ensure given dynamically allocated memory region has enough allocated space 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 181 */ 182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 183 { 184 void *p; 185 186 if (need_cnt <= *cap_cnt) 187 return 0; 188 189 p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 190 if (!p) 191 return -ENOMEM; 192 193 return 0; 194 } 195 196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 197 { 198 __u32 *p; 199 200 p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 201 btf->nr_types, BTF_MAX_NR_TYPES, 1); 202 if (!p) 203 return -ENOMEM; 204 205 *p = type_off; 206 return 0; 207 } 208 209 static void btf_bswap_hdr(struct btf_header *h) 210 { 211 h->magic = bswap_16(h->magic); 212 h->hdr_len = bswap_32(h->hdr_len); 213 h->type_off = bswap_32(h->type_off); 214 h->type_len = bswap_32(h->type_len); 215 h->str_off = bswap_32(h->str_off); 216 h->str_len = bswap_32(h->str_len); 217 } 218 219 static int btf_parse_hdr(struct btf *btf) 220 { 221 struct btf_header *hdr = btf->hdr; 222 __u32 meta_left; 223 224 if (btf->raw_size < sizeof(struct btf_header)) { 225 pr_debug("BTF header not found\n"); 226 return -EINVAL; 227 } 228 229 if (hdr->magic == bswap_16(BTF_MAGIC)) { 230 btf->swapped_endian = true; 231 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 232 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 233 bswap_32(hdr->hdr_len)); 234 return -ENOTSUP; 235 } 236 btf_bswap_hdr(hdr); 237 } else if (hdr->magic != BTF_MAGIC) { 238 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 239 return -EINVAL; 240 } 241 242 meta_left = btf->raw_size - sizeof(*hdr); 243 if (meta_left < hdr->str_off + hdr->str_len) { 244 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 245 return -EINVAL; 246 } 247 248 if (hdr->type_off + hdr->type_len > hdr->str_off) { 249 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 250 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 251 return -EINVAL; 252 } 253 254 if (hdr->type_off % 4) { 255 pr_debug("BTF type section is not aligned to 4 bytes\n"); 256 return -EINVAL; 257 } 258 259 return 0; 260 } 261 262 static int btf_parse_str_sec(struct btf *btf) 263 { 264 const struct btf_header *hdr = btf->hdr; 265 const char *start = btf->strs_data; 266 const char *end = start + btf->hdr->str_len; 267 268 if (btf->base_btf && hdr->str_len == 0) 269 return 0; 270 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 if (!btf->base_btf && start[0]) { 275 pr_debug("Invalid BTF string section\n"); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 static int btf_type_size(const struct btf_type *t) 282 { 283 const int base_size = sizeof(struct btf_type); 284 __u16 vlen = btf_vlen(t); 285 286 switch (btf_kind(t)) { 287 case BTF_KIND_FWD: 288 case BTF_KIND_CONST: 289 case BTF_KIND_VOLATILE: 290 case BTF_KIND_RESTRICT: 291 case BTF_KIND_PTR: 292 case BTF_KIND_TYPEDEF: 293 case BTF_KIND_FUNC: 294 return base_size; 295 case BTF_KIND_INT: 296 return base_size + sizeof(__u32); 297 case BTF_KIND_ENUM: 298 return base_size + vlen * sizeof(struct btf_enum); 299 case BTF_KIND_ARRAY: 300 return base_size + sizeof(struct btf_array); 301 case BTF_KIND_STRUCT: 302 case BTF_KIND_UNION: 303 return base_size + vlen * sizeof(struct btf_member); 304 case BTF_KIND_FUNC_PROTO: 305 return base_size + vlen * sizeof(struct btf_param); 306 case BTF_KIND_VAR: 307 return base_size + sizeof(struct btf_var); 308 case BTF_KIND_DATASEC: 309 return base_size + vlen * sizeof(struct btf_var_secinfo); 310 default: 311 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 312 return -EINVAL; 313 } 314 } 315 316 static void btf_bswap_type_base(struct btf_type *t) 317 { 318 t->name_off = bswap_32(t->name_off); 319 t->info = bswap_32(t->info); 320 t->type = bswap_32(t->type); 321 } 322 323 static int btf_bswap_type_rest(struct btf_type *t) 324 { 325 struct btf_var_secinfo *v; 326 struct btf_member *m; 327 struct btf_array *a; 328 struct btf_param *p; 329 struct btf_enum *e; 330 __u16 vlen = btf_vlen(t); 331 int i; 332 333 switch (btf_kind(t)) { 334 case BTF_KIND_FWD: 335 case BTF_KIND_CONST: 336 case BTF_KIND_VOLATILE: 337 case BTF_KIND_RESTRICT: 338 case BTF_KIND_PTR: 339 case BTF_KIND_TYPEDEF: 340 case BTF_KIND_FUNC: 341 return 0; 342 case BTF_KIND_INT: 343 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 344 return 0; 345 case BTF_KIND_ENUM: 346 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 347 e->name_off = bswap_32(e->name_off); 348 e->val = bswap_32(e->val); 349 } 350 return 0; 351 case BTF_KIND_ARRAY: 352 a = btf_array(t); 353 a->type = bswap_32(a->type); 354 a->index_type = bswap_32(a->index_type); 355 a->nelems = bswap_32(a->nelems); 356 return 0; 357 case BTF_KIND_STRUCT: 358 case BTF_KIND_UNION: 359 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 360 m->name_off = bswap_32(m->name_off); 361 m->type = bswap_32(m->type); 362 m->offset = bswap_32(m->offset); 363 } 364 return 0; 365 case BTF_KIND_FUNC_PROTO: 366 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 367 p->name_off = bswap_32(p->name_off); 368 p->type = bswap_32(p->type); 369 } 370 return 0; 371 case BTF_KIND_VAR: 372 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 373 return 0; 374 case BTF_KIND_DATASEC: 375 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 376 v->type = bswap_32(v->type); 377 v->offset = bswap_32(v->offset); 378 v->size = bswap_32(v->size); 379 } 380 return 0; 381 default: 382 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 383 return -EINVAL; 384 } 385 } 386 387 static int btf_parse_type_sec(struct btf *btf) 388 { 389 struct btf_header *hdr = btf->hdr; 390 void *next_type = btf->types_data; 391 void *end_type = next_type + hdr->type_len; 392 int err, type_size; 393 394 while (next_type + sizeof(struct btf_type) <= end_type) { 395 if (btf->swapped_endian) 396 btf_bswap_type_base(next_type); 397 398 type_size = btf_type_size(next_type); 399 if (type_size < 0) 400 return type_size; 401 if (next_type + type_size > end_type) { 402 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 403 return -EINVAL; 404 } 405 406 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 407 return -EINVAL; 408 409 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 410 if (err) 411 return err; 412 413 next_type += type_size; 414 btf->nr_types++; 415 } 416 417 if (next_type != end_type) { 418 pr_warn("BTF types data is malformed\n"); 419 return -EINVAL; 420 } 421 422 return 0; 423 } 424 425 __u32 btf__get_nr_types(const struct btf *btf) 426 { 427 return btf->start_id + btf->nr_types - 1; 428 } 429 430 const struct btf *btf__base_btf(const struct btf *btf) 431 { 432 return btf->base_btf; 433 } 434 435 /* internal helper returning non-const pointer to a type */ 436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 437 { 438 if (type_id == 0) 439 return &btf_void; 440 if (type_id < btf->start_id) 441 return btf_type_by_id(btf->base_btf, type_id); 442 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 443 } 444 445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 446 { 447 if (type_id >= btf->start_id + btf->nr_types) 448 return NULL; 449 return btf_type_by_id((struct btf *)btf, type_id); 450 } 451 452 static int determine_ptr_size(const struct btf *btf) 453 { 454 const struct btf_type *t; 455 const char *name; 456 int i, n; 457 458 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 459 return btf->base_btf->ptr_sz; 460 461 n = btf__get_nr_types(btf); 462 for (i = 1; i <= n; i++) { 463 t = btf__type_by_id(btf, i); 464 if (!btf_is_int(t)) 465 continue; 466 467 name = btf__name_by_offset(btf, t->name_off); 468 if (!name) 469 continue; 470 471 if (strcmp(name, "long int") == 0 || 472 strcmp(name, "long unsigned int") == 0) { 473 if (t->size != 4 && t->size != 8) 474 continue; 475 return t->size; 476 } 477 } 478 479 return -1; 480 } 481 482 static size_t btf_ptr_sz(const struct btf *btf) 483 { 484 if (!btf->ptr_sz) 485 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 486 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 487 } 488 489 /* Return pointer size this BTF instance assumes. The size is heuristically 490 * determined by looking for 'long' or 'unsigned long' integer type and 491 * recording its size in bytes. If BTF type information doesn't have any such 492 * type, this function returns 0. In the latter case, native architecture's 493 * pointer size is assumed, so will be either 4 or 8, depending on 494 * architecture that libbpf was compiled for. It's possible to override 495 * guessed value by using btf__set_pointer_size() API. 496 */ 497 size_t btf__pointer_size(const struct btf *btf) 498 { 499 if (!btf->ptr_sz) 500 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 501 502 if (btf->ptr_sz < 0) 503 /* not enough BTF type info to guess */ 504 return 0; 505 506 return btf->ptr_sz; 507 } 508 509 /* Override or set pointer size in bytes. Only values of 4 and 8 are 510 * supported. 511 */ 512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 513 { 514 if (ptr_sz != 4 && ptr_sz != 8) 515 return -EINVAL; 516 btf->ptr_sz = ptr_sz; 517 return 0; 518 } 519 520 static bool is_host_big_endian(void) 521 { 522 #if __BYTE_ORDER == __LITTLE_ENDIAN 523 return false; 524 #elif __BYTE_ORDER == __BIG_ENDIAN 525 return true; 526 #else 527 # error "Unrecognized __BYTE_ORDER__" 528 #endif 529 } 530 531 enum btf_endianness btf__endianness(const struct btf *btf) 532 { 533 if (is_host_big_endian()) 534 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 535 else 536 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 537 } 538 539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 540 { 541 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 542 return -EINVAL; 543 544 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 545 if (!btf->swapped_endian) { 546 free(btf->raw_data_swapped); 547 btf->raw_data_swapped = NULL; 548 } 549 return 0; 550 } 551 552 static bool btf_type_is_void(const struct btf_type *t) 553 { 554 return t == &btf_void || btf_is_fwd(t); 555 } 556 557 static bool btf_type_is_void_or_null(const struct btf_type *t) 558 { 559 return !t || btf_type_is_void(t); 560 } 561 562 #define MAX_RESOLVE_DEPTH 32 563 564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 565 { 566 const struct btf_array *array; 567 const struct btf_type *t; 568 __u32 nelems = 1; 569 __s64 size = -1; 570 int i; 571 572 t = btf__type_by_id(btf, type_id); 573 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 574 i++) { 575 switch (btf_kind(t)) { 576 case BTF_KIND_INT: 577 case BTF_KIND_STRUCT: 578 case BTF_KIND_UNION: 579 case BTF_KIND_ENUM: 580 case BTF_KIND_DATASEC: 581 size = t->size; 582 goto done; 583 case BTF_KIND_PTR: 584 size = btf_ptr_sz(btf); 585 goto done; 586 case BTF_KIND_TYPEDEF: 587 case BTF_KIND_VOLATILE: 588 case BTF_KIND_CONST: 589 case BTF_KIND_RESTRICT: 590 case BTF_KIND_VAR: 591 type_id = t->type; 592 break; 593 case BTF_KIND_ARRAY: 594 array = btf_array(t); 595 if (nelems && array->nelems > UINT32_MAX / nelems) 596 return -E2BIG; 597 nelems *= array->nelems; 598 type_id = array->type; 599 break; 600 default: 601 return -EINVAL; 602 } 603 604 t = btf__type_by_id(btf, type_id); 605 } 606 607 done: 608 if (size < 0) 609 return -EINVAL; 610 if (nelems && size > UINT32_MAX / nelems) 611 return -E2BIG; 612 613 return nelems * size; 614 } 615 616 int btf__align_of(const struct btf *btf, __u32 id) 617 { 618 const struct btf_type *t = btf__type_by_id(btf, id); 619 __u16 kind = btf_kind(t); 620 621 switch (kind) { 622 case BTF_KIND_INT: 623 case BTF_KIND_ENUM: 624 return min(btf_ptr_sz(btf), (size_t)t->size); 625 case BTF_KIND_PTR: 626 return btf_ptr_sz(btf); 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 return btf__align_of(btf, t->type); 632 case BTF_KIND_ARRAY: 633 return btf__align_of(btf, btf_array(t)->type); 634 case BTF_KIND_STRUCT: 635 case BTF_KIND_UNION: { 636 const struct btf_member *m = btf_members(t); 637 __u16 vlen = btf_vlen(t); 638 int i, max_align = 1, align; 639 640 for (i = 0; i < vlen; i++, m++) { 641 align = btf__align_of(btf, m->type); 642 if (align <= 0) 643 return align; 644 max_align = max(max_align, align); 645 } 646 647 return max_align; 648 } 649 default: 650 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 651 return 0; 652 } 653 } 654 655 int btf__resolve_type(const struct btf *btf, __u32 type_id) 656 { 657 const struct btf_type *t; 658 int depth = 0; 659 660 t = btf__type_by_id(btf, type_id); 661 while (depth < MAX_RESOLVE_DEPTH && 662 !btf_type_is_void_or_null(t) && 663 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 664 type_id = t->type; 665 t = btf__type_by_id(btf, type_id); 666 depth++; 667 } 668 669 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 670 return -EINVAL; 671 672 return type_id; 673 } 674 675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 676 { 677 __u32 i, nr_types = btf__get_nr_types(btf); 678 679 if (!strcmp(type_name, "void")) 680 return 0; 681 682 for (i = 1; i <= nr_types; i++) { 683 const struct btf_type *t = btf__type_by_id(btf, i); 684 const char *name = btf__name_by_offset(btf, t->name_off); 685 686 if (name && !strcmp(type_name, name)) 687 return i; 688 } 689 690 return -ENOENT; 691 } 692 693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 694 __u32 kind) 695 { 696 __u32 i, nr_types = btf__get_nr_types(btf); 697 698 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 699 return 0; 700 701 for (i = 1; i <= nr_types; i++) { 702 const struct btf_type *t = btf__type_by_id(btf, i); 703 const char *name; 704 705 if (btf_kind(t) != kind) 706 continue; 707 name = btf__name_by_offset(btf, t->name_off); 708 if (name && !strcmp(type_name, name)) 709 return i; 710 } 711 712 return -ENOENT; 713 } 714 715 static bool btf_is_modifiable(const struct btf *btf) 716 { 717 return (void *)btf->hdr != btf->raw_data; 718 } 719 720 void btf__free(struct btf *btf) 721 { 722 if (IS_ERR_OR_NULL(btf)) 723 return; 724 725 if (btf->fd >= 0) 726 close(btf->fd); 727 728 if (btf_is_modifiable(btf)) { 729 /* if BTF was modified after loading, it will have a split 730 * in-memory representation for header, types, and strings 731 * sections, so we need to free all of them individually. It 732 * might still have a cached contiguous raw data present, 733 * which will be unconditionally freed below. 734 */ 735 free(btf->hdr); 736 free(btf->types_data); 737 free(btf->strs_data); 738 } 739 free(btf->raw_data); 740 free(btf->raw_data_swapped); 741 free(btf->type_offs); 742 free(btf); 743 } 744 745 static struct btf *btf_new_empty(struct btf *base_btf) 746 { 747 struct btf *btf; 748 749 btf = calloc(1, sizeof(*btf)); 750 if (!btf) 751 return ERR_PTR(-ENOMEM); 752 753 btf->nr_types = 0; 754 btf->start_id = 1; 755 btf->start_str_off = 0; 756 btf->fd = -1; 757 btf->ptr_sz = sizeof(void *); 758 btf->swapped_endian = false; 759 760 if (base_btf) { 761 btf->base_btf = base_btf; 762 btf->start_id = btf__get_nr_types(base_btf) + 1; 763 btf->start_str_off = base_btf->hdr->str_len; 764 } 765 766 /* +1 for empty string at offset 0 */ 767 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 768 btf->raw_data = calloc(1, btf->raw_size); 769 if (!btf->raw_data) { 770 free(btf); 771 return ERR_PTR(-ENOMEM); 772 } 773 774 btf->hdr = btf->raw_data; 775 btf->hdr->hdr_len = sizeof(struct btf_header); 776 btf->hdr->magic = BTF_MAGIC; 777 btf->hdr->version = BTF_VERSION; 778 779 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 781 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 782 783 return btf; 784 } 785 786 struct btf *btf__new_empty(void) 787 { 788 return btf_new_empty(NULL); 789 } 790 791 struct btf *btf__new_empty_split(struct btf *base_btf) 792 { 793 return btf_new_empty(base_btf); 794 } 795 796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 797 { 798 struct btf *btf; 799 int err; 800 801 btf = calloc(1, sizeof(struct btf)); 802 if (!btf) 803 return ERR_PTR(-ENOMEM); 804 805 btf->nr_types = 0; 806 btf->start_id = 1; 807 btf->start_str_off = 0; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 btf->fd = -1; 837 838 done: 839 if (err) { 840 btf__free(btf); 841 return ERR_PTR(err); 842 } 843 844 return btf; 845 } 846 847 struct btf *btf__new(const void *data, __u32 size) 848 { 849 return btf_new(data, size, NULL); 850 } 851 852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 853 struct btf_ext **btf_ext) 854 { 855 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 856 int err = 0, fd = -1, idx = 0; 857 struct btf *btf = NULL; 858 Elf_Scn *scn = NULL; 859 Elf *elf = NULL; 860 GElf_Ehdr ehdr; 861 size_t shstrndx; 862 863 if (elf_version(EV_CURRENT) == EV_NONE) { 864 pr_warn("failed to init libelf for %s\n", path); 865 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 866 } 867 868 fd = open(path, O_RDONLY); 869 if (fd < 0) { 870 err = -errno; 871 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 872 return ERR_PTR(err); 873 } 874 875 err = -LIBBPF_ERRNO__FORMAT; 876 877 elf = elf_begin(fd, ELF_C_READ, NULL); 878 if (!elf) { 879 pr_warn("failed to open %s as ELF file\n", path); 880 goto done; 881 } 882 if (!gelf_getehdr(elf, &ehdr)) { 883 pr_warn("failed to get EHDR from %s\n", path); 884 goto done; 885 } 886 887 if (elf_getshdrstrndx(elf, &shstrndx)) { 888 pr_warn("failed to get section names section index for %s\n", 889 path); 890 goto done; 891 } 892 893 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 894 pr_warn("failed to get e_shstrndx from %s\n", path); 895 goto done; 896 } 897 898 while ((scn = elf_nextscn(elf, scn)) != NULL) { 899 GElf_Shdr sh; 900 char *name; 901 902 idx++; 903 if (gelf_getshdr(scn, &sh) != &sh) { 904 pr_warn("failed to get section(%d) header from %s\n", 905 idx, path); 906 goto done; 907 } 908 name = elf_strptr(elf, shstrndx, sh.sh_name); 909 if (!name) { 910 pr_warn("failed to get section(%d) name from %s\n", 911 idx, path); 912 goto done; 913 } 914 if (strcmp(name, BTF_ELF_SEC) == 0) { 915 btf_data = elf_getdata(scn, 0); 916 if (!btf_data) { 917 pr_warn("failed to get section(%d, %s) data from %s\n", 918 idx, name, path); 919 goto done; 920 } 921 continue; 922 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 923 btf_ext_data = elf_getdata(scn, 0); 924 if (!btf_ext_data) { 925 pr_warn("failed to get section(%d, %s) data from %s\n", 926 idx, name, path); 927 goto done; 928 } 929 continue; 930 } 931 } 932 933 err = 0; 934 935 if (!btf_data) { 936 err = -ENOENT; 937 goto done; 938 } 939 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 940 if (IS_ERR(btf)) 941 goto done; 942 943 switch (gelf_getclass(elf)) { 944 case ELFCLASS32: 945 btf__set_pointer_size(btf, 4); 946 break; 947 case ELFCLASS64: 948 btf__set_pointer_size(btf, 8); 949 break; 950 default: 951 pr_warn("failed to get ELF class (bitness) for %s\n", path); 952 break; 953 } 954 955 if (btf_ext && btf_ext_data) { 956 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 957 btf_ext_data->d_size); 958 if (IS_ERR(*btf_ext)) 959 goto done; 960 } else if (btf_ext) { 961 *btf_ext = NULL; 962 } 963 done: 964 if (elf) 965 elf_end(elf); 966 close(fd); 967 968 if (err) 969 return ERR_PTR(err); 970 /* 971 * btf is always parsed before btf_ext, so no need to clean up 972 * btf_ext, if btf loading failed 973 */ 974 if (IS_ERR(btf)) 975 return btf; 976 if (btf_ext && IS_ERR(*btf_ext)) { 977 btf__free(btf); 978 err = PTR_ERR(*btf_ext); 979 return ERR_PTR(err); 980 } 981 return btf; 982 } 983 984 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 985 { 986 return btf_parse_elf(path, NULL, btf_ext); 987 } 988 989 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 990 { 991 return btf_parse_elf(path, base_btf, NULL); 992 } 993 994 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 995 { 996 struct btf *btf = NULL; 997 void *data = NULL; 998 FILE *f = NULL; 999 __u16 magic; 1000 int err = 0; 1001 long sz; 1002 1003 f = fopen(path, "rb"); 1004 if (!f) { 1005 err = -errno; 1006 goto err_out; 1007 } 1008 1009 /* check BTF magic */ 1010 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1011 err = -EIO; 1012 goto err_out; 1013 } 1014 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1015 /* definitely not a raw BTF */ 1016 err = -EPROTO; 1017 goto err_out; 1018 } 1019 1020 /* get file size */ 1021 if (fseek(f, 0, SEEK_END)) { 1022 err = -errno; 1023 goto err_out; 1024 } 1025 sz = ftell(f); 1026 if (sz < 0) { 1027 err = -errno; 1028 goto err_out; 1029 } 1030 /* rewind to the start */ 1031 if (fseek(f, 0, SEEK_SET)) { 1032 err = -errno; 1033 goto err_out; 1034 } 1035 1036 /* pre-alloc memory and read all of BTF data */ 1037 data = malloc(sz); 1038 if (!data) { 1039 err = -ENOMEM; 1040 goto err_out; 1041 } 1042 if (fread(data, 1, sz, f) < sz) { 1043 err = -EIO; 1044 goto err_out; 1045 } 1046 1047 /* finally parse BTF data */ 1048 btf = btf_new(data, sz, base_btf); 1049 1050 err_out: 1051 free(data); 1052 if (f) 1053 fclose(f); 1054 return err ? ERR_PTR(err) : btf; 1055 } 1056 1057 struct btf *btf__parse_raw(const char *path) 1058 { 1059 return btf_parse_raw(path, NULL); 1060 } 1061 1062 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1063 { 1064 return btf_parse_raw(path, base_btf); 1065 } 1066 1067 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1068 { 1069 struct btf *btf; 1070 1071 if (btf_ext) 1072 *btf_ext = NULL; 1073 1074 btf = btf_parse_raw(path, base_btf); 1075 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 1076 return btf; 1077 1078 return btf_parse_elf(path, base_btf, btf_ext); 1079 } 1080 1081 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1082 { 1083 return btf_parse(path, NULL, btf_ext); 1084 } 1085 1086 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1087 { 1088 return btf_parse(path, base_btf, NULL); 1089 } 1090 1091 static int compare_vsi_off(const void *_a, const void *_b) 1092 { 1093 const struct btf_var_secinfo *a = _a; 1094 const struct btf_var_secinfo *b = _b; 1095 1096 return a->offset - b->offset; 1097 } 1098 1099 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1100 struct btf_type *t) 1101 { 1102 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1103 const char *name = btf__name_by_offset(btf, t->name_off); 1104 const struct btf_type *t_var; 1105 struct btf_var_secinfo *vsi; 1106 const struct btf_var *var; 1107 int ret; 1108 1109 if (!name) { 1110 pr_debug("No name found in string section for DATASEC kind.\n"); 1111 return -ENOENT; 1112 } 1113 1114 /* .extern datasec size and var offsets were set correctly during 1115 * extern collection step, so just skip straight to sorting variables 1116 */ 1117 if (t->size) 1118 goto sort_vars; 1119 1120 ret = bpf_object__section_size(obj, name, &size); 1121 if (ret || !size || (t->size && t->size != size)) { 1122 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1123 return -ENOENT; 1124 } 1125 1126 t->size = size; 1127 1128 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1129 t_var = btf__type_by_id(btf, vsi->type); 1130 var = btf_var(t_var); 1131 1132 if (!btf_is_var(t_var)) { 1133 pr_debug("Non-VAR type seen in section %s\n", name); 1134 return -EINVAL; 1135 } 1136 1137 if (var->linkage == BTF_VAR_STATIC) 1138 continue; 1139 1140 name = btf__name_by_offset(btf, t_var->name_off); 1141 if (!name) { 1142 pr_debug("No name found in string section for VAR kind\n"); 1143 return -ENOENT; 1144 } 1145 1146 ret = bpf_object__variable_offset(obj, name, &off); 1147 if (ret) { 1148 pr_debug("No offset found in symbol table for VAR %s\n", 1149 name); 1150 return -ENOENT; 1151 } 1152 1153 vsi->offset = off; 1154 } 1155 1156 sort_vars: 1157 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1158 return 0; 1159 } 1160 1161 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1162 { 1163 int err = 0; 1164 __u32 i; 1165 1166 for (i = 1; i <= btf->nr_types; i++) { 1167 struct btf_type *t = btf_type_by_id(btf, i); 1168 1169 /* Loader needs to fix up some of the things compiler 1170 * couldn't get its hands on while emitting BTF. This 1171 * is section size and global variable offset. We use 1172 * the info from the ELF itself for this purpose. 1173 */ 1174 if (btf_is_datasec(t)) { 1175 err = btf_fixup_datasec(obj, btf, t); 1176 if (err) 1177 break; 1178 } 1179 } 1180 1181 return err; 1182 } 1183 1184 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1185 1186 int btf__load(struct btf *btf) 1187 { 1188 __u32 log_buf_size = 0, raw_size; 1189 char *log_buf = NULL; 1190 void *raw_data; 1191 int err = 0; 1192 1193 if (btf->fd >= 0) 1194 return -EEXIST; 1195 1196 retry_load: 1197 if (log_buf_size) { 1198 log_buf = malloc(log_buf_size); 1199 if (!log_buf) 1200 return -ENOMEM; 1201 1202 *log_buf = 0; 1203 } 1204 1205 raw_data = btf_get_raw_data(btf, &raw_size, false); 1206 if (!raw_data) { 1207 err = -ENOMEM; 1208 goto done; 1209 } 1210 /* cache native raw data representation */ 1211 btf->raw_size = raw_size; 1212 btf->raw_data = raw_data; 1213 1214 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1215 if (btf->fd < 0) { 1216 if (!log_buf || errno == ENOSPC) { 1217 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1218 log_buf_size << 1); 1219 free(log_buf); 1220 goto retry_load; 1221 } 1222 1223 err = -errno; 1224 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1225 if (*log_buf) 1226 pr_warn("%s\n", log_buf); 1227 goto done; 1228 } 1229 1230 done: 1231 free(log_buf); 1232 return err; 1233 } 1234 1235 int btf__fd(const struct btf *btf) 1236 { 1237 return btf->fd; 1238 } 1239 1240 void btf__set_fd(struct btf *btf, int fd) 1241 { 1242 btf->fd = fd; 1243 } 1244 1245 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1246 { 1247 struct btf_header *hdr = btf->hdr; 1248 struct btf_type *t; 1249 void *data, *p; 1250 __u32 data_sz; 1251 int i; 1252 1253 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1254 if (data) { 1255 *size = btf->raw_size; 1256 return data; 1257 } 1258 1259 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1260 data = calloc(1, data_sz); 1261 if (!data) 1262 return NULL; 1263 p = data; 1264 1265 memcpy(p, hdr, hdr->hdr_len); 1266 if (swap_endian) 1267 btf_bswap_hdr(p); 1268 p += hdr->hdr_len; 1269 1270 memcpy(p, btf->types_data, hdr->type_len); 1271 if (swap_endian) { 1272 for (i = 0; i < btf->nr_types; i++) { 1273 t = p + btf->type_offs[i]; 1274 /* btf_bswap_type_rest() relies on native t->info, so 1275 * we swap base type info after we swapped all the 1276 * additional information 1277 */ 1278 if (btf_bswap_type_rest(t)) 1279 goto err_out; 1280 btf_bswap_type_base(t); 1281 } 1282 } 1283 p += hdr->type_len; 1284 1285 memcpy(p, btf->strs_data, hdr->str_len); 1286 p += hdr->str_len; 1287 1288 *size = data_sz; 1289 return data; 1290 err_out: 1291 free(data); 1292 return NULL; 1293 } 1294 1295 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1296 { 1297 struct btf *btf = (struct btf *)btf_ro; 1298 __u32 data_sz; 1299 void *data; 1300 1301 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1302 if (!data) 1303 return NULL; 1304 1305 btf->raw_size = data_sz; 1306 if (btf->swapped_endian) 1307 btf->raw_data_swapped = data; 1308 else 1309 btf->raw_data = data; 1310 *size = data_sz; 1311 return data; 1312 } 1313 1314 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1315 { 1316 if (offset < btf->start_str_off) 1317 return btf__str_by_offset(btf->base_btf, offset); 1318 else if (offset - btf->start_str_off < btf->hdr->str_len) 1319 return btf->strs_data + (offset - btf->start_str_off); 1320 else 1321 return NULL; 1322 } 1323 1324 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1325 { 1326 return btf__str_by_offset(btf, offset); 1327 } 1328 1329 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1330 { 1331 struct bpf_btf_info btf_info; 1332 __u32 len = sizeof(btf_info); 1333 __u32 last_size; 1334 struct btf *btf; 1335 void *ptr; 1336 int err; 1337 1338 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1339 * let's start with a sane default - 4KiB here - and resize it only if 1340 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1341 */ 1342 last_size = 4096; 1343 ptr = malloc(last_size); 1344 if (!ptr) 1345 return ERR_PTR(-ENOMEM); 1346 1347 memset(&btf_info, 0, sizeof(btf_info)); 1348 btf_info.btf = ptr_to_u64(ptr); 1349 btf_info.btf_size = last_size; 1350 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1351 1352 if (!err && btf_info.btf_size > last_size) { 1353 void *temp_ptr; 1354 1355 last_size = btf_info.btf_size; 1356 temp_ptr = realloc(ptr, last_size); 1357 if (!temp_ptr) { 1358 btf = ERR_PTR(-ENOMEM); 1359 goto exit_free; 1360 } 1361 ptr = temp_ptr; 1362 1363 len = sizeof(btf_info); 1364 memset(&btf_info, 0, sizeof(btf_info)); 1365 btf_info.btf = ptr_to_u64(ptr); 1366 btf_info.btf_size = last_size; 1367 1368 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1369 } 1370 1371 if (err || btf_info.btf_size > last_size) { 1372 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1373 goto exit_free; 1374 } 1375 1376 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1377 1378 exit_free: 1379 free(ptr); 1380 return btf; 1381 } 1382 1383 int btf__get_from_id(__u32 id, struct btf **btf) 1384 { 1385 struct btf *res; 1386 int btf_fd; 1387 1388 *btf = NULL; 1389 btf_fd = bpf_btf_get_fd_by_id(id); 1390 if (btf_fd < 0) 1391 return -errno; 1392 1393 res = btf_get_from_fd(btf_fd, NULL); 1394 close(btf_fd); 1395 if (IS_ERR(res)) 1396 return PTR_ERR(res); 1397 1398 *btf = res; 1399 return 0; 1400 } 1401 1402 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1403 __u32 expected_key_size, __u32 expected_value_size, 1404 __u32 *key_type_id, __u32 *value_type_id) 1405 { 1406 const struct btf_type *container_type; 1407 const struct btf_member *key, *value; 1408 const size_t max_name = 256; 1409 char container_name[max_name]; 1410 __s64 key_size, value_size; 1411 __s32 container_id; 1412 1413 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 1414 max_name) { 1415 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1416 map_name, map_name); 1417 return -EINVAL; 1418 } 1419 1420 container_id = btf__find_by_name(btf, container_name); 1421 if (container_id < 0) { 1422 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1423 map_name, container_name); 1424 return container_id; 1425 } 1426 1427 container_type = btf__type_by_id(btf, container_id); 1428 if (!container_type) { 1429 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1430 map_name, container_id); 1431 return -EINVAL; 1432 } 1433 1434 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1435 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1436 map_name, container_name); 1437 return -EINVAL; 1438 } 1439 1440 key = btf_members(container_type); 1441 value = key + 1; 1442 1443 key_size = btf__resolve_size(btf, key->type); 1444 if (key_size < 0) { 1445 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1446 return key_size; 1447 } 1448 1449 if (expected_key_size != key_size) { 1450 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1451 map_name, (__u32)key_size, expected_key_size); 1452 return -EINVAL; 1453 } 1454 1455 value_size = btf__resolve_size(btf, value->type); 1456 if (value_size < 0) { 1457 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1458 return value_size; 1459 } 1460 1461 if (expected_value_size != value_size) { 1462 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1463 map_name, (__u32)value_size, expected_value_size); 1464 return -EINVAL; 1465 } 1466 1467 *key_type_id = key->type; 1468 *value_type_id = value->type; 1469 1470 return 0; 1471 } 1472 1473 static size_t strs_hash_fn(const void *key, void *ctx) 1474 { 1475 const struct btf *btf = ctx; 1476 const char *strs = *btf->strs_data_ptr; 1477 const char *str = strs + (long)key; 1478 1479 return str_hash(str); 1480 } 1481 1482 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) 1483 { 1484 const struct btf *btf = ctx; 1485 const char *strs = *btf->strs_data_ptr; 1486 const char *str1 = strs + (long)key1; 1487 const char *str2 = strs + (long)key2; 1488 1489 return strcmp(str1, str2) == 0; 1490 } 1491 1492 static void btf_invalidate_raw_data(struct btf *btf) 1493 { 1494 if (btf->raw_data) { 1495 free(btf->raw_data); 1496 btf->raw_data = NULL; 1497 } 1498 if (btf->raw_data_swapped) { 1499 free(btf->raw_data_swapped); 1500 btf->raw_data_swapped = NULL; 1501 } 1502 } 1503 1504 /* Ensure BTF is ready to be modified (by splitting into a three memory 1505 * regions for header, types, and strings). Also invalidate cached 1506 * raw_data, if any. 1507 */ 1508 static int btf_ensure_modifiable(struct btf *btf) 1509 { 1510 void *hdr, *types, *strs, *strs_end, *s; 1511 struct hashmap *hash = NULL; 1512 long off; 1513 int err; 1514 1515 if (btf_is_modifiable(btf)) { 1516 /* any BTF modification invalidates raw_data */ 1517 btf_invalidate_raw_data(btf); 1518 return 0; 1519 } 1520 1521 /* split raw data into three memory regions */ 1522 hdr = malloc(btf->hdr->hdr_len); 1523 types = malloc(btf->hdr->type_len); 1524 strs = malloc(btf->hdr->str_len); 1525 if (!hdr || !types || !strs) 1526 goto err_out; 1527 1528 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1529 memcpy(types, btf->types_data, btf->hdr->type_len); 1530 memcpy(strs, btf->strs_data, btf->hdr->str_len); 1531 1532 /* make hashmap below use btf->strs_data as a source of strings */ 1533 btf->strs_data_ptr = &btf->strs_data; 1534 1535 /* build lookup index for all strings */ 1536 hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); 1537 if (IS_ERR(hash)) { 1538 err = PTR_ERR(hash); 1539 hash = NULL; 1540 goto err_out; 1541 } 1542 1543 strs_end = strs + btf->hdr->str_len; 1544 for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { 1545 /* hashmap__add() returns EEXIST if string with the same 1546 * content already is in the hash map 1547 */ 1548 err = hashmap__add(hash, (void *)off, (void *)off); 1549 if (err == -EEXIST) 1550 continue; /* duplicate */ 1551 if (err) 1552 goto err_out; 1553 } 1554 1555 /* only when everything was successful, update internal state */ 1556 btf->hdr = hdr; 1557 btf->types_data = types; 1558 btf->types_data_cap = btf->hdr->type_len; 1559 btf->strs_data = strs; 1560 btf->strs_data_cap = btf->hdr->str_len; 1561 btf->strs_hash = hash; 1562 /* if BTF was created from scratch, all strings are guaranteed to be 1563 * unique and deduplicated 1564 */ 1565 if (btf->hdr->str_len == 0) 1566 btf->strs_deduped = true; 1567 if (!btf->base_btf && btf->hdr->str_len == 1) 1568 btf->strs_deduped = true; 1569 1570 /* invalidate raw_data representation */ 1571 btf_invalidate_raw_data(btf); 1572 1573 return 0; 1574 1575 err_out: 1576 hashmap__free(hash); 1577 free(hdr); 1578 free(types); 1579 free(strs); 1580 return -ENOMEM; 1581 } 1582 1583 static void *btf_add_str_mem(struct btf *btf, size_t add_sz) 1584 { 1585 return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, 1586 btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); 1587 } 1588 1589 /* Find an offset in BTF string section that corresponds to a given string *s*. 1590 * Returns: 1591 * - >0 offset into string section, if string is found; 1592 * - -ENOENT, if string is not in the string section; 1593 * - <0, on any other error. 1594 */ 1595 int btf__find_str(struct btf *btf, const char *s) 1596 { 1597 long old_off, new_off, len; 1598 void *p; 1599 1600 if (btf->base_btf) { 1601 int ret; 1602 1603 ret = btf__find_str(btf->base_btf, s); 1604 if (ret != -ENOENT) 1605 return ret; 1606 } 1607 1608 /* BTF needs to be in a modifiable state to build string lookup index */ 1609 if (btf_ensure_modifiable(btf)) 1610 return -ENOMEM; 1611 1612 /* see btf__add_str() for why we do this */ 1613 len = strlen(s) + 1; 1614 p = btf_add_str_mem(btf, len); 1615 if (!p) 1616 return -ENOMEM; 1617 1618 new_off = btf->hdr->str_len; 1619 memcpy(p, s, len); 1620 1621 if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) 1622 return btf->start_str_off + old_off; 1623 1624 return -ENOENT; 1625 } 1626 1627 /* Add a string s to the BTF string section. 1628 * Returns: 1629 * - > 0 offset into string section, on success; 1630 * - < 0, on error. 1631 */ 1632 int btf__add_str(struct btf *btf, const char *s) 1633 { 1634 long old_off, new_off, len; 1635 void *p; 1636 int err; 1637 1638 if (btf->base_btf) { 1639 int ret; 1640 1641 ret = btf__find_str(btf->base_btf, s); 1642 if (ret != -ENOENT) 1643 return ret; 1644 } 1645 1646 if (btf_ensure_modifiable(btf)) 1647 return -ENOMEM; 1648 1649 /* Hashmap keys are always offsets within btf->strs_data, so to even 1650 * look up some string from the "outside", we need to first append it 1651 * at the end, so that it can be addressed with an offset. Luckily, 1652 * until btf->hdr->str_len is incremented, that string is just a piece 1653 * of garbage for the rest of BTF code, so no harm, no foul. On the 1654 * other hand, if the string is unique, it's already appended and 1655 * ready to be used, only a simple btf->hdr->str_len increment away. 1656 */ 1657 len = strlen(s) + 1; 1658 p = btf_add_str_mem(btf, len); 1659 if (!p) 1660 return -ENOMEM; 1661 1662 new_off = btf->hdr->str_len; 1663 memcpy(p, s, len); 1664 1665 /* Now attempt to add the string, but only if the string with the same 1666 * contents doesn't exist already (HASHMAP_ADD strategy). If such 1667 * string exists, we'll get its offset in old_off (that's old_key). 1668 */ 1669 err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, 1670 HASHMAP_ADD, (const void **)&old_off, NULL); 1671 if (err == -EEXIST) 1672 return btf->start_str_off + old_off; /* duplicated string, return existing offset */ 1673 if (err) 1674 return err; 1675 1676 btf->hdr->str_len += len; /* new unique string, adjust data length */ 1677 return btf->start_str_off + new_off; 1678 } 1679 1680 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1681 { 1682 return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1683 btf->hdr->type_len, UINT_MAX, add_sz); 1684 } 1685 1686 static __u32 btf_type_info(int kind, int vlen, int kflag) 1687 { 1688 return (kflag << 31) | (kind << 24) | vlen; 1689 } 1690 1691 static void btf_type_inc_vlen(struct btf_type *t) 1692 { 1693 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1694 } 1695 1696 static int btf_commit_type(struct btf *btf, int data_sz) 1697 { 1698 int err; 1699 1700 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1701 if (err) 1702 return err; 1703 1704 btf->hdr->type_len += data_sz; 1705 btf->hdr->str_off += data_sz; 1706 btf->nr_types++; 1707 return btf->start_id + btf->nr_types - 1; 1708 } 1709 1710 /* 1711 * Append new BTF_KIND_INT type with: 1712 * - *name* - non-empty, non-NULL type name; 1713 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1714 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1715 * Returns: 1716 * - >0, type ID of newly added BTF type; 1717 * - <0, on error. 1718 */ 1719 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1720 { 1721 struct btf_type *t; 1722 int sz, name_off; 1723 1724 /* non-empty name */ 1725 if (!name || !name[0]) 1726 return -EINVAL; 1727 /* byte_sz must be power of 2 */ 1728 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1729 return -EINVAL; 1730 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1731 return -EINVAL; 1732 1733 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1734 if (btf_ensure_modifiable(btf)) 1735 return -ENOMEM; 1736 1737 sz = sizeof(struct btf_type) + sizeof(int); 1738 t = btf_add_type_mem(btf, sz); 1739 if (!t) 1740 return -ENOMEM; 1741 1742 /* if something goes wrong later, we might end up with an extra string, 1743 * but that shouldn't be a problem, because BTF can't be constructed 1744 * completely anyway and will most probably be just discarded 1745 */ 1746 name_off = btf__add_str(btf, name); 1747 if (name_off < 0) 1748 return name_off; 1749 1750 t->name_off = name_off; 1751 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1752 t->size = byte_sz; 1753 /* set INT info, we don't allow setting legacy bit offset/size */ 1754 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1755 1756 return btf_commit_type(btf, sz); 1757 } 1758 1759 /* it's completely legal to append BTF types with type IDs pointing forward to 1760 * types that haven't been appended yet, so we only make sure that id looks 1761 * sane, we can't guarantee that ID will always be valid 1762 */ 1763 static int validate_type_id(int id) 1764 { 1765 if (id < 0 || id > BTF_MAX_NR_TYPES) 1766 return -EINVAL; 1767 return 0; 1768 } 1769 1770 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1771 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1772 { 1773 struct btf_type *t; 1774 int sz, name_off = 0; 1775 1776 if (validate_type_id(ref_type_id)) 1777 return -EINVAL; 1778 1779 if (btf_ensure_modifiable(btf)) 1780 return -ENOMEM; 1781 1782 sz = sizeof(struct btf_type); 1783 t = btf_add_type_mem(btf, sz); 1784 if (!t) 1785 return -ENOMEM; 1786 1787 if (name && name[0]) { 1788 name_off = btf__add_str(btf, name); 1789 if (name_off < 0) 1790 return name_off; 1791 } 1792 1793 t->name_off = name_off; 1794 t->info = btf_type_info(kind, 0, 0); 1795 t->type = ref_type_id; 1796 1797 return btf_commit_type(btf, sz); 1798 } 1799 1800 /* 1801 * Append new BTF_KIND_PTR type with: 1802 * - *ref_type_id* - referenced type ID, it might not exist yet; 1803 * Returns: 1804 * - >0, type ID of newly added BTF type; 1805 * - <0, on error. 1806 */ 1807 int btf__add_ptr(struct btf *btf, int ref_type_id) 1808 { 1809 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1810 } 1811 1812 /* 1813 * Append new BTF_KIND_ARRAY type with: 1814 * - *index_type_id* - type ID of the type describing array index; 1815 * - *elem_type_id* - type ID of the type describing array element; 1816 * - *nr_elems* - the size of the array; 1817 * Returns: 1818 * - >0, type ID of newly added BTF type; 1819 * - <0, on error. 1820 */ 1821 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1822 { 1823 struct btf_type *t; 1824 struct btf_array *a; 1825 int sz; 1826 1827 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1828 return -EINVAL; 1829 1830 if (btf_ensure_modifiable(btf)) 1831 return -ENOMEM; 1832 1833 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1834 t = btf_add_type_mem(btf, sz); 1835 if (!t) 1836 return -ENOMEM; 1837 1838 t->name_off = 0; 1839 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1840 t->size = 0; 1841 1842 a = btf_array(t); 1843 a->type = elem_type_id; 1844 a->index_type = index_type_id; 1845 a->nelems = nr_elems; 1846 1847 return btf_commit_type(btf, sz); 1848 } 1849 1850 /* generic STRUCT/UNION append function */ 1851 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1852 { 1853 struct btf_type *t; 1854 int sz, name_off = 0; 1855 1856 if (btf_ensure_modifiable(btf)) 1857 return -ENOMEM; 1858 1859 sz = sizeof(struct btf_type); 1860 t = btf_add_type_mem(btf, sz); 1861 if (!t) 1862 return -ENOMEM; 1863 1864 if (name && name[0]) { 1865 name_off = btf__add_str(btf, name); 1866 if (name_off < 0) 1867 return name_off; 1868 } 1869 1870 /* start out with vlen=0 and no kflag; this will be adjusted when 1871 * adding each member 1872 */ 1873 t->name_off = name_off; 1874 t->info = btf_type_info(kind, 0, 0); 1875 t->size = bytes_sz; 1876 1877 return btf_commit_type(btf, sz); 1878 } 1879 1880 /* 1881 * Append new BTF_KIND_STRUCT type with: 1882 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1883 * - *byte_sz* - size of the struct, in bytes; 1884 * 1885 * Struct initially has no fields in it. Fields can be added by 1886 * btf__add_field() right after btf__add_struct() succeeds. 1887 * 1888 * Returns: 1889 * - >0, type ID of newly added BTF type; 1890 * - <0, on error. 1891 */ 1892 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1893 { 1894 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1895 } 1896 1897 /* 1898 * Append new BTF_KIND_UNION type with: 1899 * - *name* - name of the union, can be NULL or empty for anonymous union; 1900 * - *byte_sz* - size of the union, in bytes; 1901 * 1902 * Union initially has no fields in it. Fields can be added by 1903 * btf__add_field() right after btf__add_union() succeeds. All fields 1904 * should have *bit_offset* of 0. 1905 * 1906 * Returns: 1907 * - >0, type ID of newly added BTF type; 1908 * - <0, on error. 1909 */ 1910 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1911 { 1912 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1913 } 1914 1915 static struct btf_type *btf_last_type(struct btf *btf) 1916 { 1917 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1918 } 1919 1920 /* 1921 * Append new field for the current STRUCT/UNION type with: 1922 * - *name* - name of the field, can be NULL or empty for anonymous field; 1923 * - *type_id* - type ID for the type describing field type; 1924 * - *bit_offset* - bit offset of the start of the field within struct/union; 1925 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1926 * Returns: 1927 * - 0, on success; 1928 * - <0, on error. 1929 */ 1930 int btf__add_field(struct btf *btf, const char *name, int type_id, 1931 __u32 bit_offset, __u32 bit_size) 1932 { 1933 struct btf_type *t; 1934 struct btf_member *m; 1935 bool is_bitfield; 1936 int sz, name_off = 0; 1937 1938 /* last type should be union/struct */ 1939 if (btf->nr_types == 0) 1940 return -EINVAL; 1941 t = btf_last_type(btf); 1942 if (!btf_is_composite(t)) 1943 return -EINVAL; 1944 1945 if (validate_type_id(type_id)) 1946 return -EINVAL; 1947 /* best-effort bit field offset/size enforcement */ 1948 is_bitfield = bit_size || (bit_offset % 8 != 0); 1949 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1950 return -EINVAL; 1951 1952 /* only offset 0 is allowed for unions */ 1953 if (btf_is_union(t) && bit_offset) 1954 return -EINVAL; 1955 1956 /* decompose and invalidate raw data */ 1957 if (btf_ensure_modifiable(btf)) 1958 return -ENOMEM; 1959 1960 sz = sizeof(struct btf_member); 1961 m = btf_add_type_mem(btf, sz); 1962 if (!m) 1963 return -ENOMEM; 1964 1965 if (name && name[0]) { 1966 name_off = btf__add_str(btf, name); 1967 if (name_off < 0) 1968 return name_off; 1969 } 1970 1971 m->name_off = name_off; 1972 m->type = type_id; 1973 m->offset = bit_offset | (bit_size << 24); 1974 1975 /* btf_add_type_mem can invalidate t pointer */ 1976 t = btf_last_type(btf); 1977 /* update parent type's vlen and kflag */ 1978 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1979 1980 btf->hdr->type_len += sz; 1981 btf->hdr->str_off += sz; 1982 return 0; 1983 } 1984 1985 /* 1986 * Append new BTF_KIND_ENUM type with: 1987 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1988 * - *byte_sz* - size of the enum, in bytes. 1989 * 1990 * Enum initially has no enum values in it (and corresponds to enum forward 1991 * declaration). Enumerator values can be added by btf__add_enum_value() 1992 * immediately after btf__add_enum() succeeds. 1993 * 1994 * Returns: 1995 * - >0, type ID of newly added BTF type; 1996 * - <0, on error. 1997 */ 1998 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 1999 { 2000 struct btf_type *t; 2001 int sz, name_off = 0; 2002 2003 /* byte_sz must be power of 2 */ 2004 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2005 return -EINVAL; 2006 2007 if (btf_ensure_modifiable(btf)) 2008 return -ENOMEM; 2009 2010 sz = sizeof(struct btf_type); 2011 t = btf_add_type_mem(btf, sz); 2012 if (!t) 2013 return -ENOMEM; 2014 2015 if (name && name[0]) { 2016 name_off = btf__add_str(btf, name); 2017 if (name_off < 0) 2018 return name_off; 2019 } 2020 2021 /* start out with vlen=0; it will be adjusted when adding enum values */ 2022 t->name_off = name_off; 2023 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2024 t->size = byte_sz; 2025 2026 return btf_commit_type(btf, sz); 2027 } 2028 2029 /* 2030 * Append new enum value for the current ENUM type with: 2031 * - *name* - name of the enumerator value, can't be NULL or empty; 2032 * - *value* - integer value corresponding to enum value *name*; 2033 * Returns: 2034 * - 0, on success; 2035 * - <0, on error. 2036 */ 2037 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2038 { 2039 struct btf_type *t; 2040 struct btf_enum *v; 2041 int sz, name_off; 2042 2043 /* last type should be BTF_KIND_ENUM */ 2044 if (btf->nr_types == 0) 2045 return -EINVAL; 2046 t = btf_last_type(btf); 2047 if (!btf_is_enum(t)) 2048 return -EINVAL; 2049 2050 /* non-empty name */ 2051 if (!name || !name[0]) 2052 return -EINVAL; 2053 if (value < INT_MIN || value > UINT_MAX) 2054 return -E2BIG; 2055 2056 /* decompose and invalidate raw data */ 2057 if (btf_ensure_modifiable(btf)) 2058 return -ENOMEM; 2059 2060 sz = sizeof(struct btf_enum); 2061 v = btf_add_type_mem(btf, sz); 2062 if (!v) 2063 return -ENOMEM; 2064 2065 name_off = btf__add_str(btf, name); 2066 if (name_off < 0) 2067 return name_off; 2068 2069 v->name_off = name_off; 2070 v->val = value; 2071 2072 /* update parent type's vlen */ 2073 t = btf_last_type(btf); 2074 btf_type_inc_vlen(t); 2075 2076 btf->hdr->type_len += sz; 2077 btf->hdr->str_off += sz; 2078 return 0; 2079 } 2080 2081 /* 2082 * Append new BTF_KIND_FWD type with: 2083 * - *name*, non-empty/non-NULL name; 2084 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2085 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2086 * Returns: 2087 * - >0, type ID of newly added BTF type; 2088 * - <0, on error. 2089 */ 2090 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2091 { 2092 if (!name || !name[0]) 2093 return -EINVAL; 2094 2095 switch (fwd_kind) { 2096 case BTF_FWD_STRUCT: 2097 case BTF_FWD_UNION: { 2098 struct btf_type *t; 2099 int id; 2100 2101 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2102 if (id <= 0) 2103 return id; 2104 t = btf_type_by_id(btf, id); 2105 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2106 return id; 2107 } 2108 case BTF_FWD_ENUM: 2109 /* enum forward in BTF currently is just an enum with no enum 2110 * values; we also assume a standard 4-byte size for it 2111 */ 2112 return btf__add_enum(btf, name, sizeof(int)); 2113 default: 2114 return -EINVAL; 2115 } 2116 } 2117 2118 /* 2119 * Append new BTF_KING_TYPEDEF type with: 2120 * - *name*, non-empty/non-NULL name; 2121 * - *ref_type_id* - referenced type ID, it might not exist yet; 2122 * Returns: 2123 * - >0, type ID of newly added BTF type; 2124 * - <0, on error. 2125 */ 2126 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2127 { 2128 if (!name || !name[0]) 2129 return -EINVAL; 2130 2131 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2132 } 2133 2134 /* 2135 * Append new BTF_KIND_VOLATILE type with: 2136 * - *ref_type_id* - referenced type ID, it might not exist yet; 2137 * Returns: 2138 * - >0, type ID of newly added BTF type; 2139 * - <0, on error. 2140 */ 2141 int btf__add_volatile(struct btf *btf, int ref_type_id) 2142 { 2143 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2144 } 2145 2146 /* 2147 * Append new BTF_KIND_CONST type with: 2148 * - *ref_type_id* - referenced type ID, it might not exist yet; 2149 * Returns: 2150 * - >0, type ID of newly added BTF type; 2151 * - <0, on error. 2152 */ 2153 int btf__add_const(struct btf *btf, int ref_type_id) 2154 { 2155 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2156 } 2157 2158 /* 2159 * Append new BTF_KIND_RESTRICT type with: 2160 * - *ref_type_id* - referenced type ID, it might not exist yet; 2161 * Returns: 2162 * - >0, type ID of newly added BTF type; 2163 * - <0, on error. 2164 */ 2165 int btf__add_restrict(struct btf *btf, int ref_type_id) 2166 { 2167 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2168 } 2169 2170 /* 2171 * Append new BTF_KIND_FUNC type with: 2172 * - *name*, non-empty/non-NULL name; 2173 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2174 * Returns: 2175 * - >0, type ID of newly added BTF type; 2176 * - <0, on error. 2177 */ 2178 int btf__add_func(struct btf *btf, const char *name, 2179 enum btf_func_linkage linkage, int proto_type_id) 2180 { 2181 int id; 2182 2183 if (!name || !name[0]) 2184 return -EINVAL; 2185 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2186 linkage != BTF_FUNC_EXTERN) 2187 return -EINVAL; 2188 2189 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2190 if (id > 0) { 2191 struct btf_type *t = btf_type_by_id(btf, id); 2192 2193 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2194 } 2195 return id; 2196 } 2197 2198 /* 2199 * Append new BTF_KIND_FUNC_PROTO with: 2200 * - *ret_type_id* - type ID for return result of a function. 2201 * 2202 * Function prototype initially has no arguments, but they can be added by 2203 * btf__add_func_param() one by one, immediately after 2204 * btf__add_func_proto() succeeded. 2205 * 2206 * Returns: 2207 * - >0, type ID of newly added BTF type; 2208 * - <0, on error. 2209 */ 2210 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2211 { 2212 struct btf_type *t; 2213 int sz; 2214 2215 if (validate_type_id(ret_type_id)) 2216 return -EINVAL; 2217 2218 if (btf_ensure_modifiable(btf)) 2219 return -ENOMEM; 2220 2221 sz = sizeof(struct btf_type); 2222 t = btf_add_type_mem(btf, sz); 2223 if (!t) 2224 return -ENOMEM; 2225 2226 /* start out with vlen=0; this will be adjusted when adding enum 2227 * values, if necessary 2228 */ 2229 t->name_off = 0; 2230 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2231 t->type = ret_type_id; 2232 2233 return btf_commit_type(btf, sz); 2234 } 2235 2236 /* 2237 * Append new function parameter for current FUNC_PROTO type with: 2238 * - *name* - parameter name, can be NULL or empty; 2239 * - *type_id* - type ID describing the type of the parameter. 2240 * Returns: 2241 * - 0, on success; 2242 * - <0, on error. 2243 */ 2244 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2245 { 2246 struct btf_type *t; 2247 struct btf_param *p; 2248 int sz, name_off = 0; 2249 2250 if (validate_type_id(type_id)) 2251 return -EINVAL; 2252 2253 /* last type should be BTF_KIND_FUNC_PROTO */ 2254 if (btf->nr_types == 0) 2255 return -EINVAL; 2256 t = btf_last_type(btf); 2257 if (!btf_is_func_proto(t)) 2258 return -EINVAL; 2259 2260 /* decompose and invalidate raw data */ 2261 if (btf_ensure_modifiable(btf)) 2262 return -ENOMEM; 2263 2264 sz = sizeof(struct btf_param); 2265 p = btf_add_type_mem(btf, sz); 2266 if (!p) 2267 return -ENOMEM; 2268 2269 if (name && name[0]) { 2270 name_off = btf__add_str(btf, name); 2271 if (name_off < 0) 2272 return name_off; 2273 } 2274 2275 p->name_off = name_off; 2276 p->type = type_id; 2277 2278 /* update parent type's vlen */ 2279 t = btf_last_type(btf); 2280 btf_type_inc_vlen(t); 2281 2282 btf->hdr->type_len += sz; 2283 btf->hdr->str_off += sz; 2284 return 0; 2285 } 2286 2287 /* 2288 * Append new BTF_KIND_VAR type with: 2289 * - *name* - non-empty/non-NULL name; 2290 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2291 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2292 * - *type_id* - type ID of the type describing the type of the variable. 2293 * Returns: 2294 * - >0, type ID of newly added BTF type; 2295 * - <0, on error. 2296 */ 2297 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2298 { 2299 struct btf_type *t; 2300 struct btf_var *v; 2301 int sz, name_off; 2302 2303 /* non-empty name */ 2304 if (!name || !name[0]) 2305 return -EINVAL; 2306 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2307 linkage != BTF_VAR_GLOBAL_EXTERN) 2308 return -EINVAL; 2309 if (validate_type_id(type_id)) 2310 return -EINVAL; 2311 2312 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2313 if (btf_ensure_modifiable(btf)) 2314 return -ENOMEM; 2315 2316 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2317 t = btf_add_type_mem(btf, sz); 2318 if (!t) 2319 return -ENOMEM; 2320 2321 name_off = btf__add_str(btf, name); 2322 if (name_off < 0) 2323 return name_off; 2324 2325 t->name_off = name_off; 2326 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2327 t->type = type_id; 2328 2329 v = btf_var(t); 2330 v->linkage = linkage; 2331 2332 return btf_commit_type(btf, sz); 2333 } 2334 2335 /* 2336 * Append new BTF_KIND_DATASEC type with: 2337 * - *name* - non-empty/non-NULL name; 2338 * - *byte_sz* - data section size, in bytes. 2339 * 2340 * Data section is initially empty. Variables info can be added with 2341 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2342 * 2343 * Returns: 2344 * - >0, type ID of newly added BTF type; 2345 * - <0, on error. 2346 */ 2347 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2348 { 2349 struct btf_type *t; 2350 int sz, name_off; 2351 2352 /* non-empty name */ 2353 if (!name || !name[0]) 2354 return -EINVAL; 2355 2356 if (btf_ensure_modifiable(btf)) 2357 return -ENOMEM; 2358 2359 sz = sizeof(struct btf_type); 2360 t = btf_add_type_mem(btf, sz); 2361 if (!t) 2362 return -ENOMEM; 2363 2364 name_off = btf__add_str(btf, name); 2365 if (name_off < 0) 2366 return name_off; 2367 2368 /* start with vlen=0, which will be update as var_secinfos are added */ 2369 t->name_off = name_off; 2370 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2371 t->size = byte_sz; 2372 2373 return btf_commit_type(btf, sz); 2374 } 2375 2376 /* 2377 * Append new data section variable information entry for current DATASEC type: 2378 * - *var_type_id* - type ID, describing type of the variable; 2379 * - *offset* - variable offset within data section, in bytes; 2380 * - *byte_sz* - variable size, in bytes. 2381 * 2382 * Returns: 2383 * - 0, on success; 2384 * - <0, on error. 2385 */ 2386 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2387 { 2388 struct btf_type *t; 2389 struct btf_var_secinfo *v; 2390 int sz; 2391 2392 /* last type should be BTF_KIND_DATASEC */ 2393 if (btf->nr_types == 0) 2394 return -EINVAL; 2395 t = btf_last_type(btf); 2396 if (!btf_is_datasec(t)) 2397 return -EINVAL; 2398 2399 if (validate_type_id(var_type_id)) 2400 return -EINVAL; 2401 2402 /* decompose and invalidate raw data */ 2403 if (btf_ensure_modifiable(btf)) 2404 return -ENOMEM; 2405 2406 sz = sizeof(struct btf_var_secinfo); 2407 v = btf_add_type_mem(btf, sz); 2408 if (!v) 2409 return -ENOMEM; 2410 2411 v->type = var_type_id; 2412 v->offset = offset; 2413 v->size = byte_sz; 2414 2415 /* update parent type's vlen */ 2416 t = btf_last_type(btf); 2417 btf_type_inc_vlen(t); 2418 2419 btf->hdr->type_len += sz; 2420 btf->hdr->str_off += sz; 2421 return 0; 2422 } 2423 2424 struct btf_ext_sec_setup_param { 2425 __u32 off; 2426 __u32 len; 2427 __u32 min_rec_size; 2428 struct btf_ext_info *ext_info; 2429 const char *desc; 2430 }; 2431 2432 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2433 struct btf_ext_sec_setup_param *ext_sec) 2434 { 2435 const struct btf_ext_info_sec *sinfo; 2436 struct btf_ext_info *ext_info; 2437 __u32 info_left, record_size; 2438 /* The start of the info sec (including the __u32 record_size). */ 2439 void *info; 2440 2441 if (ext_sec->len == 0) 2442 return 0; 2443 2444 if (ext_sec->off & 0x03) { 2445 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2446 ext_sec->desc); 2447 return -EINVAL; 2448 } 2449 2450 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2451 info_left = ext_sec->len; 2452 2453 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2454 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2455 ext_sec->desc, ext_sec->off, ext_sec->len); 2456 return -EINVAL; 2457 } 2458 2459 /* At least a record size */ 2460 if (info_left < sizeof(__u32)) { 2461 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2462 return -EINVAL; 2463 } 2464 2465 /* The record size needs to meet the minimum standard */ 2466 record_size = *(__u32 *)info; 2467 if (record_size < ext_sec->min_rec_size || 2468 record_size & 0x03) { 2469 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2470 ext_sec->desc, record_size); 2471 return -EINVAL; 2472 } 2473 2474 sinfo = info + sizeof(__u32); 2475 info_left -= sizeof(__u32); 2476 2477 /* If no records, return failure now so .BTF.ext won't be used. */ 2478 if (!info_left) { 2479 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2480 return -EINVAL; 2481 } 2482 2483 while (info_left) { 2484 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2485 __u64 total_record_size; 2486 __u32 num_records; 2487 2488 if (info_left < sec_hdrlen) { 2489 pr_debug("%s section header is not found in .BTF.ext\n", 2490 ext_sec->desc); 2491 return -EINVAL; 2492 } 2493 2494 num_records = sinfo->num_info; 2495 if (num_records == 0) { 2496 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2497 ext_sec->desc); 2498 return -EINVAL; 2499 } 2500 2501 total_record_size = sec_hdrlen + 2502 (__u64)num_records * record_size; 2503 if (info_left < total_record_size) { 2504 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2505 ext_sec->desc); 2506 return -EINVAL; 2507 } 2508 2509 info_left -= total_record_size; 2510 sinfo = (void *)sinfo + total_record_size; 2511 } 2512 2513 ext_info = ext_sec->ext_info; 2514 ext_info->len = ext_sec->len - sizeof(__u32); 2515 ext_info->rec_size = record_size; 2516 ext_info->info = info + sizeof(__u32); 2517 2518 return 0; 2519 } 2520 2521 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2522 { 2523 struct btf_ext_sec_setup_param param = { 2524 .off = btf_ext->hdr->func_info_off, 2525 .len = btf_ext->hdr->func_info_len, 2526 .min_rec_size = sizeof(struct bpf_func_info_min), 2527 .ext_info = &btf_ext->func_info, 2528 .desc = "func_info" 2529 }; 2530 2531 return btf_ext_setup_info(btf_ext, ¶m); 2532 } 2533 2534 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2535 { 2536 struct btf_ext_sec_setup_param param = { 2537 .off = btf_ext->hdr->line_info_off, 2538 .len = btf_ext->hdr->line_info_len, 2539 .min_rec_size = sizeof(struct bpf_line_info_min), 2540 .ext_info = &btf_ext->line_info, 2541 .desc = "line_info", 2542 }; 2543 2544 return btf_ext_setup_info(btf_ext, ¶m); 2545 } 2546 2547 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2548 { 2549 struct btf_ext_sec_setup_param param = { 2550 .off = btf_ext->hdr->core_relo_off, 2551 .len = btf_ext->hdr->core_relo_len, 2552 .min_rec_size = sizeof(struct bpf_core_relo), 2553 .ext_info = &btf_ext->core_relo_info, 2554 .desc = "core_relo", 2555 }; 2556 2557 return btf_ext_setup_info(btf_ext, ¶m); 2558 } 2559 2560 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2561 { 2562 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2563 2564 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2565 data_size < hdr->hdr_len) { 2566 pr_debug("BTF.ext header not found"); 2567 return -EINVAL; 2568 } 2569 2570 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2571 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2572 return -ENOTSUP; 2573 } else if (hdr->magic != BTF_MAGIC) { 2574 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2575 return -EINVAL; 2576 } 2577 2578 if (hdr->version != BTF_VERSION) { 2579 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2580 return -ENOTSUP; 2581 } 2582 2583 if (hdr->flags) { 2584 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2585 return -ENOTSUP; 2586 } 2587 2588 if (data_size == hdr->hdr_len) { 2589 pr_debug("BTF.ext has no data\n"); 2590 return -EINVAL; 2591 } 2592 2593 return 0; 2594 } 2595 2596 void btf_ext__free(struct btf_ext *btf_ext) 2597 { 2598 if (IS_ERR_OR_NULL(btf_ext)) 2599 return; 2600 free(btf_ext->data); 2601 free(btf_ext); 2602 } 2603 2604 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2605 { 2606 struct btf_ext *btf_ext; 2607 int err; 2608 2609 err = btf_ext_parse_hdr(data, size); 2610 if (err) 2611 return ERR_PTR(err); 2612 2613 btf_ext = calloc(1, sizeof(struct btf_ext)); 2614 if (!btf_ext) 2615 return ERR_PTR(-ENOMEM); 2616 2617 btf_ext->data_size = size; 2618 btf_ext->data = malloc(size); 2619 if (!btf_ext->data) { 2620 err = -ENOMEM; 2621 goto done; 2622 } 2623 memcpy(btf_ext->data, data, size); 2624 2625 if (btf_ext->hdr->hdr_len < 2626 offsetofend(struct btf_ext_header, line_info_len)) 2627 goto done; 2628 err = btf_ext_setup_func_info(btf_ext); 2629 if (err) 2630 goto done; 2631 2632 err = btf_ext_setup_line_info(btf_ext); 2633 if (err) 2634 goto done; 2635 2636 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2637 goto done; 2638 err = btf_ext_setup_core_relos(btf_ext); 2639 if (err) 2640 goto done; 2641 2642 done: 2643 if (err) { 2644 btf_ext__free(btf_ext); 2645 return ERR_PTR(err); 2646 } 2647 2648 return btf_ext; 2649 } 2650 2651 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2652 { 2653 *size = btf_ext->data_size; 2654 return btf_ext->data; 2655 } 2656 2657 static int btf_ext_reloc_info(const struct btf *btf, 2658 const struct btf_ext_info *ext_info, 2659 const char *sec_name, __u32 insns_cnt, 2660 void **info, __u32 *cnt) 2661 { 2662 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2663 __u32 i, record_size, existing_len, records_len; 2664 struct btf_ext_info_sec *sinfo; 2665 const char *info_sec_name; 2666 __u64 remain_len; 2667 void *data; 2668 2669 record_size = ext_info->rec_size; 2670 sinfo = ext_info->info; 2671 remain_len = ext_info->len; 2672 while (remain_len > 0) { 2673 records_len = sinfo->num_info * record_size; 2674 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2675 if (strcmp(info_sec_name, sec_name)) { 2676 remain_len -= sec_hdrlen + records_len; 2677 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2678 continue; 2679 } 2680 2681 existing_len = (*cnt) * record_size; 2682 data = realloc(*info, existing_len + records_len); 2683 if (!data) 2684 return -ENOMEM; 2685 2686 memcpy(data + existing_len, sinfo->data, records_len); 2687 /* adjust insn_off only, the rest data will be passed 2688 * to the kernel. 2689 */ 2690 for (i = 0; i < sinfo->num_info; i++) { 2691 __u32 *insn_off; 2692 2693 insn_off = data + existing_len + (i * record_size); 2694 *insn_off = *insn_off / sizeof(struct bpf_insn) + 2695 insns_cnt; 2696 } 2697 *info = data; 2698 *cnt += sinfo->num_info; 2699 return 0; 2700 } 2701 2702 return -ENOENT; 2703 } 2704 2705 int btf_ext__reloc_func_info(const struct btf *btf, 2706 const struct btf_ext *btf_ext, 2707 const char *sec_name, __u32 insns_cnt, 2708 void **func_info, __u32 *cnt) 2709 { 2710 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2711 insns_cnt, func_info, cnt); 2712 } 2713 2714 int btf_ext__reloc_line_info(const struct btf *btf, 2715 const struct btf_ext *btf_ext, 2716 const char *sec_name, __u32 insns_cnt, 2717 void **line_info, __u32 *cnt) 2718 { 2719 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2720 insns_cnt, line_info, cnt); 2721 } 2722 2723 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2724 { 2725 return btf_ext->func_info.rec_size; 2726 } 2727 2728 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2729 { 2730 return btf_ext->line_info.rec_size; 2731 } 2732 2733 struct btf_dedup; 2734 2735 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2736 const struct btf_dedup_opts *opts); 2737 static void btf_dedup_free(struct btf_dedup *d); 2738 static int btf_dedup_prep(struct btf_dedup *d); 2739 static int btf_dedup_strings(struct btf_dedup *d); 2740 static int btf_dedup_prim_types(struct btf_dedup *d); 2741 static int btf_dedup_struct_types(struct btf_dedup *d); 2742 static int btf_dedup_ref_types(struct btf_dedup *d); 2743 static int btf_dedup_compact_types(struct btf_dedup *d); 2744 static int btf_dedup_remap_types(struct btf_dedup *d); 2745 2746 /* 2747 * Deduplicate BTF types and strings. 2748 * 2749 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2750 * section with all BTF type descriptors and string data. It overwrites that 2751 * memory in-place with deduplicated types and strings without any loss of 2752 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2753 * is provided, all the strings referenced from .BTF.ext section are honored 2754 * and updated to point to the right offsets after deduplication. 2755 * 2756 * If function returns with error, type/string data might be garbled and should 2757 * be discarded. 2758 * 2759 * More verbose and detailed description of both problem btf_dedup is solving, 2760 * as well as solution could be found at: 2761 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2762 * 2763 * Problem description and justification 2764 * ===================================== 2765 * 2766 * BTF type information is typically emitted either as a result of conversion 2767 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2768 * unit contains information about a subset of all the types that are used 2769 * in an application. These subsets are frequently overlapping and contain a lot 2770 * of duplicated information when later concatenated together into a single 2771 * binary. This algorithm ensures that each unique type is represented by single 2772 * BTF type descriptor, greatly reducing resulting size of BTF data. 2773 * 2774 * Compilation unit isolation and subsequent duplication of data is not the only 2775 * problem. The same type hierarchy (e.g., struct and all the type that struct 2776 * references) in different compilation units can be represented in BTF to 2777 * various degrees of completeness (or, rather, incompleteness) due to 2778 * struct/union forward declarations. 2779 * 2780 * Let's take a look at an example, that we'll use to better understand the 2781 * problem (and solution). Suppose we have two compilation units, each using 2782 * same `struct S`, but each of them having incomplete type information about 2783 * struct's fields: 2784 * 2785 * // CU #1: 2786 * struct S; 2787 * struct A { 2788 * int a; 2789 * struct A* self; 2790 * struct S* parent; 2791 * }; 2792 * struct B; 2793 * struct S { 2794 * struct A* a_ptr; 2795 * struct B* b_ptr; 2796 * }; 2797 * 2798 * // CU #2: 2799 * struct S; 2800 * struct A; 2801 * struct B { 2802 * int b; 2803 * struct B* self; 2804 * struct S* parent; 2805 * }; 2806 * struct S { 2807 * struct A* a_ptr; 2808 * struct B* b_ptr; 2809 * }; 2810 * 2811 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2812 * more), but will know the complete type information about `struct A`. While 2813 * for CU #2, it will know full type information about `struct B`, but will 2814 * only know about forward declaration of `struct A` (in BTF terms, it will 2815 * have `BTF_KIND_FWD` type descriptor with name `B`). 2816 * 2817 * This compilation unit isolation means that it's possible that there is no 2818 * single CU with complete type information describing structs `S`, `A`, and 2819 * `B`. Also, we might get tons of duplicated and redundant type information. 2820 * 2821 * Additional complication we need to keep in mind comes from the fact that 2822 * types, in general, can form graphs containing cycles, not just DAGs. 2823 * 2824 * While algorithm does deduplication, it also merges and resolves type 2825 * information (unless disabled throught `struct btf_opts`), whenever possible. 2826 * E.g., in the example above with two compilation units having partial type 2827 * information for structs `A` and `B`, the output of algorithm will emit 2828 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2829 * (as well as type information for `int` and pointers), as if they were defined 2830 * in a single compilation unit as: 2831 * 2832 * struct A { 2833 * int a; 2834 * struct A* self; 2835 * struct S* parent; 2836 * }; 2837 * struct B { 2838 * int b; 2839 * struct B* self; 2840 * struct S* parent; 2841 * }; 2842 * struct S { 2843 * struct A* a_ptr; 2844 * struct B* b_ptr; 2845 * }; 2846 * 2847 * Algorithm summary 2848 * ================= 2849 * 2850 * Algorithm completes its work in 6 separate passes: 2851 * 2852 * 1. Strings deduplication. 2853 * 2. Primitive types deduplication (int, enum, fwd). 2854 * 3. Struct/union types deduplication. 2855 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2856 * protos, and const/volatile/restrict modifiers). 2857 * 5. Types compaction. 2858 * 6. Types remapping. 2859 * 2860 * Algorithm determines canonical type descriptor, which is a single 2861 * representative type for each truly unique type. This canonical type is the 2862 * one that will go into final deduplicated BTF type information. For 2863 * struct/unions, it is also the type that algorithm will merge additional type 2864 * information into (while resolving FWDs), as it discovers it from data in 2865 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2866 * that type is canonical, or to some other type, if that type is equivalent 2867 * and was chosen as canonical representative. This mapping is stored in 2868 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2869 * FWD type got resolved to. 2870 * 2871 * To facilitate fast discovery of canonical types, we also maintain canonical 2872 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2873 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2874 * that match that signature. With sufficiently good choice of type signature 2875 * hashing function, we can limit number of canonical types for each unique type 2876 * signature to a very small number, allowing to find canonical type for any 2877 * duplicated type very quickly. 2878 * 2879 * Struct/union deduplication is the most critical part and algorithm for 2880 * deduplicating structs/unions is described in greater details in comments for 2881 * `btf_dedup_is_equiv` function. 2882 */ 2883 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2884 const struct btf_dedup_opts *opts) 2885 { 2886 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2887 int err; 2888 2889 if (IS_ERR(d)) { 2890 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2891 return -EINVAL; 2892 } 2893 2894 if (btf_ensure_modifiable(btf)) 2895 return -ENOMEM; 2896 2897 err = btf_dedup_prep(d); 2898 if (err) { 2899 pr_debug("btf_dedup_prep failed:%d\n", err); 2900 goto done; 2901 } 2902 err = btf_dedup_strings(d); 2903 if (err < 0) { 2904 pr_debug("btf_dedup_strings failed:%d\n", err); 2905 goto done; 2906 } 2907 err = btf_dedup_prim_types(d); 2908 if (err < 0) { 2909 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2910 goto done; 2911 } 2912 err = btf_dedup_struct_types(d); 2913 if (err < 0) { 2914 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2915 goto done; 2916 } 2917 err = btf_dedup_ref_types(d); 2918 if (err < 0) { 2919 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2920 goto done; 2921 } 2922 err = btf_dedup_compact_types(d); 2923 if (err < 0) { 2924 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2925 goto done; 2926 } 2927 err = btf_dedup_remap_types(d); 2928 if (err < 0) { 2929 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2930 goto done; 2931 } 2932 2933 done: 2934 btf_dedup_free(d); 2935 return err; 2936 } 2937 2938 #define BTF_UNPROCESSED_ID ((__u32)-1) 2939 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2940 2941 struct btf_dedup { 2942 /* .BTF section to be deduped in-place */ 2943 struct btf *btf; 2944 /* 2945 * Optional .BTF.ext section. When provided, any strings referenced 2946 * from it will be taken into account when deduping strings 2947 */ 2948 struct btf_ext *btf_ext; 2949 /* 2950 * This is a map from any type's signature hash to a list of possible 2951 * canonical representative type candidates. Hash collisions are 2952 * ignored, so even types of various kinds can share same list of 2953 * candidates, which is fine because we rely on subsequent 2954 * btf_xxx_equal() checks to authoritatively verify type equality. 2955 */ 2956 struct hashmap *dedup_table; 2957 /* Canonical types map */ 2958 __u32 *map; 2959 /* Hypothetical mapping, used during type graph equivalence checks */ 2960 __u32 *hypot_map; 2961 __u32 *hypot_list; 2962 size_t hypot_cnt; 2963 size_t hypot_cap; 2964 /* Whether hypothetical mapping, if successful, would need to adjust 2965 * already canonicalized types (due to a new forward declaration to 2966 * concrete type resolution). In such case, during split BTF dedup 2967 * candidate type would still be considered as different, because base 2968 * BTF is considered to be immutable. 2969 */ 2970 bool hypot_adjust_canon; 2971 /* Various option modifying behavior of algorithm */ 2972 struct btf_dedup_opts opts; 2973 /* temporary strings deduplication state */ 2974 void *strs_data; 2975 size_t strs_cap; 2976 size_t strs_len; 2977 struct hashmap* strs_hash; 2978 }; 2979 2980 static long hash_combine(long h, long value) 2981 { 2982 return h * 31 + value; 2983 } 2984 2985 #define for_each_dedup_cand(d, node, hash) \ 2986 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2987 2988 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2989 { 2990 return hashmap__append(d->dedup_table, 2991 (void *)hash, (void *)(long)type_id); 2992 } 2993 2994 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 2995 __u32 from_id, __u32 to_id) 2996 { 2997 if (d->hypot_cnt == d->hypot_cap) { 2998 __u32 *new_list; 2999 3000 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3001 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3002 if (!new_list) 3003 return -ENOMEM; 3004 d->hypot_list = new_list; 3005 } 3006 d->hypot_list[d->hypot_cnt++] = from_id; 3007 d->hypot_map[from_id] = to_id; 3008 return 0; 3009 } 3010 3011 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3012 { 3013 int i; 3014 3015 for (i = 0; i < d->hypot_cnt; i++) 3016 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3017 d->hypot_cnt = 0; 3018 d->hypot_adjust_canon = false; 3019 } 3020 3021 static void btf_dedup_free(struct btf_dedup *d) 3022 { 3023 hashmap__free(d->dedup_table); 3024 d->dedup_table = NULL; 3025 3026 free(d->map); 3027 d->map = NULL; 3028 3029 free(d->hypot_map); 3030 d->hypot_map = NULL; 3031 3032 free(d->hypot_list); 3033 d->hypot_list = NULL; 3034 3035 free(d); 3036 } 3037 3038 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3039 { 3040 return (size_t)key; 3041 } 3042 3043 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3044 { 3045 return 0; 3046 } 3047 3048 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3049 { 3050 return k1 == k2; 3051 } 3052 3053 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3054 const struct btf_dedup_opts *opts) 3055 { 3056 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3057 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3058 int i, err = 0, type_cnt; 3059 3060 if (!d) 3061 return ERR_PTR(-ENOMEM); 3062 3063 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3064 /* dedup_table_size is now used only to force collisions in tests */ 3065 if (opts && opts->dedup_table_size == 1) 3066 hash_fn = btf_dedup_collision_hash_fn; 3067 3068 d->btf = btf; 3069 d->btf_ext = btf_ext; 3070 3071 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3072 if (IS_ERR(d->dedup_table)) { 3073 err = PTR_ERR(d->dedup_table); 3074 d->dedup_table = NULL; 3075 goto done; 3076 } 3077 3078 type_cnt = btf__get_nr_types(btf) + 1; 3079 d->map = malloc(sizeof(__u32) * type_cnt); 3080 if (!d->map) { 3081 err = -ENOMEM; 3082 goto done; 3083 } 3084 /* special BTF "void" type is made canonical immediately */ 3085 d->map[0] = 0; 3086 for (i = 1; i < type_cnt; i++) { 3087 struct btf_type *t = btf_type_by_id(d->btf, i); 3088 3089 /* VAR and DATASEC are never deduped and are self-canonical */ 3090 if (btf_is_var(t) || btf_is_datasec(t)) 3091 d->map[i] = i; 3092 else 3093 d->map[i] = BTF_UNPROCESSED_ID; 3094 } 3095 3096 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3097 if (!d->hypot_map) { 3098 err = -ENOMEM; 3099 goto done; 3100 } 3101 for (i = 0; i < type_cnt; i++) 3102 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3103 3104 done: 3105 if (err) { 3106 btf_dedup_free(d); 3107 return ERR_PTR(err); 3108 } 3109 3110 return d; 3111 } 3112 3113 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 3114 3115 /* 3116 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3117 * string and pass pointer to it to a provided callback `fn`. 3118 */ 3119 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 3120 { 3121 void *line_data_cur, *line_data_end; 3122 int i, j, r, rec_size; 3123 struct btf_type *t; 3124 3125 for (i = 0; i < d->btf->nr_types; i++) { 3126 t = btf_type_by_id(d->btf, d->btf->start_id + i); 3127 r = fn(&t->name_off, ctx); 3128 if (r) 3129 return r; 3130 3131 switch (btf_kind(t)) { 3132 case BTF_KIND_STRUCT: 3133 case BTF_KIND_UNION: { 3134 struct btf_member *m = btf_members(t); 3135 __u16 vlen = btf_vlen(t); 3136 3137 for (j = 0; j < vlen; j++) { 3138 r = fn(&m->name_off, ctx); 3139 if (r) 3140 return r; 3141 m++; 3142 } 3143 break; 3144 } 3145 case BTF_KIND_ENUM: { 3146 struct btf_enum *m = btf_enum(t); 3147 __u16 vlen = btf_vlen(t); 3148 3149 for (j = 0; j < vlen; j++) { 3150 r = fn(&m->name_off, ctx); 3151 if (r) 3152 return r; 3153 m++; 3154 } 3155 break; 3156 } 3157 case BTF_KIND_FUNC_PROTO: { 3158 struct btf_param *m = btf_params(t); 3159 __u16 vlen = btf_vlen(t); 3160 3161 for (j = 0; j < vlen; j++) { 3162 r = fn(&m->name_off, ctx); 3163 if (r) 3164 return r; 3165 m++; 3166 } 3167 break; 3168 } 3169 default: 3170 break; 3171 } 3172 } 3173 3174 if (!d->btf_ext) 3175 return 0; 3176 3177 line_data_cur = d->btf_ext->line_info.info; 3178 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 3179 rec_size = d->btf_ext->line_info.rec_size; 3180 3181 while (line_data_cur < line_data_end) { 3182 struct btf_ext_info_sec *sec = line_data_cur; 3183 struct bpf_line_info_min *line_info; 3184 __u32 num_info = sec->num_info; 3185 3186 r = fn(&sec->sec_name_off, ctx); 3187 if (r) 3188 return r; 3189 3190 line_data_cur += sizeof(struct btf_ext_info_sec); 3191 for (i = 0; i < num_info; i++) { 3192 line_info = line_data_cur; 3193 r = fn(&line_info->file_name_off, ctx); 3194 if (r) 3195 return r; 3196 r = fn(&line_info->line_off, ctx); 3197 if (r) 3198 return r; 3199 line_data_cur += rec_size; 3200 } 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3207 { 3208 struct btf_dedup *d = ctx; 3209 __u32 str_off = *str_off_ptr; 3210 long old_off, new_off, len; 3211 const char *s; 3212 void *p; 3213 int err; 3214 3215 /* don't touch empty string or string in main BTF */ 3216 if (str_off == 0 || str_off < d->btf->start_str_off) 3217 return 0; 3218 3219 s = btf__str_by_offset(d->btf, str_off); 3220 if (d->btf->base_btf) { 3221 err = btf__find_str(d->btf->base_btf, s); 3222 if (err >= 0) { 3223 *str_off_ptr = err; 3224 return 0; 3225 } 3226 if (err != -ENOENT) 3227 return err; 3228 } 3229 3230 len = strlen(s) + 1; 3231 3232 new_off = d->strs_len; 3233 p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len); 3234 if (!p) 3235 return -ENOMEM; 3236 3237 memcpy(p, s, len); 3238 3239 /* Now attempt to add the string, but only if the string with the same 3240 * contents doesn't exist already (HASHMAP_ADD strategy). If such 3241 * string exists, we'll get its offset in old_off (that's old_key). 3242 */ 3243 err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off, 3244 HASHMAP_ADD, (const void **)&old_off, NULL); 3245 if (err == -EEXIST) { 3246 *str_off_ptr = d->btf->start_str_off + old_off; 3247 } else if (err) { 3248 return err; 3249 } else { 3250 *str_off_ptr = d->btf->start_str_off + new_off; 3251 d->strs_len += len; 3252 } 3253 return 0; 3254 } 3255 3256 /* 3257 * Dedup string and filter out those that are not referenced from either .BTF 3258 * or .BTF.ext (if provided) sections. 3259 * 3260 * This is done by building index of all strings in BTF's string section, 3261 * then iterating over all entities that can reference strings (e.g., type 3262 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3263 * strings as used. After that all used strings are deduped and compacted into 3264 * sequential blob of memory and new offsets are calculated. Then all the string 3265 * references are iterated again and rewritten using new offsets. 3266 */ 3267 static int btf_dedup_strings(struct btf_dedup *d) 3268 { 3269 char *s; 3270 int err; 3271 3272 if (d->btf->strs_deduped) 3273 return 0; 3274 3275 /* temporarily switch to use btf_dedup's strs_data for strings for hash 3276 * functions; later we'll just transfer hashmap to struct btf as is, 3277 * along the strs_data 3278 */ 3279 d->btf->strs_data_ptr = &d->strs_data; 3280 3281 d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf); 3282 if (IS_ERR(d->strs_hash)) { 3283 err = PTR_ERR(d->strs_hash); 3284 d->strs_hash = NULL; 3285 goto err_out; 3286 } 3287 3288 if (!d->btf->base_btf) { 3289 s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1); 3290 if (!s) 3291 return -ENOMEM; 3292 /* initial empty string */ 3293 s[0] = 0; 3294 d->strs_len = 1; 3295 3296 /* insert empty string; we won't be looking it up during strings 3297 * dedup, but it's good to have it for generic BTF string lookups 3298 */ 3299 err = hashmap__insert(d->strs_hash, (void *)0, (void *)0, 3300 HASHMAP_ADD, NULL, NULL); 3301 if (err) 3302 goto err_out; 3303 } 3304 3305 /* remap string offsets */ 3306 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3307 if (err) 3308 goto err_out; 3309 3310 /* replace BTF string data and hash with deduped ones */ 3311 free(d->btf->strs_data); 3312 hashmap__free(d->btf->strs_hash); 3313 d->btf->strs_data = d->strs_data; 3314 d->btf->strs_data_cap = d->strs_cap; 3315 d->btf->hdr->str_len = d->strs_len; 3316 d->btf->strs_hash = d->strs_hash; 3317 /* now point strs_data_ptr back to btf->strs_data */ 3318 d->btf->strs_data_ptr = &d->btf->strs_data; 3319 3320 d->strs_data = d->strs_hash = NULL; 3321 d->strs_len = d->strs_cap = 0; 3322 d->btf->strs_deduped = true; 3323 return 0; 3324 3325 err_out: 3326 free(d->strs_data); 3327 hashmap__free(d->strs_hash); 3328 d->strs_data = d->strs_hash = NULL; 3329 d->strs_len = d->strs_cap = 0; 3330 3331 /* restore strings pointer for existing d->btf->strs_hash back */ 3332 d->btf->strs_data_ptr = &d->strs_data; 3333 3334 return err; 3335 } 3336 3337 static long btf_hash_common(struct btf_type *t) 3338 { 3339 long h; 3340 3341 h = hash_combine(0, t->name_off); 3342 h = hash_combine(h, t->info); 3343 h = hash_combine(h, t->size); 3344 return h; 3345 } 3346 3347 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3348 { 3349 return t1->name_off == t2->name_off && 3350 t1->info == t2->info && 3351 t1->size == t2->size; 3352 } 3353 3354 /* Calculate type signature hash of INT. */ 3355 static long btf_hash_int(struct btf_type *t) 3356 { 3357 __u32 info = *(__u32 *)(t + 1); 3358 long h; 3359 3360 h = btf_hash_common(t); 3361 h = hash_combine(h, info); 3362 return h; 3363 } 3364 3365 /* Check structural equality of two INTs. */ 3366 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3367 { 3368 __u32 info1, info2; 3369 3370 if (!btf_equal_common(t1, t2)) 3371 return false; 3372 info1 = *(__u32 *)(t1 + 1); 3373 info2 = *(__u32 *)(t2 + 1); 3374 return info1 == info2; 3375 } 3376 3377 /* Calculate type signature hash of ENUM. */ 3378 static long btf_hash_enum(struct btf_type *t) 3379 { 3380 long h; 3381 3382 /* don't hash vlen and enum members to support enum fwd resolving */ 3383 h = hash_combine(0, t->name_off); 3384 h = hash_combine(h, t->info & ~0xffff); 3385 h = hash_combine(h, t->size); 3386 return h; 3387 } 3388 3389 /* Check structural equality of two ENUMs. */ 3390 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3391 { 3392 const struct btf_enum *m1, *m2; 3393 __u16 vlen; 3394 int i; 3395 3396 if (!btf_equal_common(t1, t2)) 3397 return false; 3398 3399 vlen = btf_vlen(t1); 3400 m1 = btf_enum(t1); 3401 m2 = btf_enum(t2); 3402 for (i = 0; i < vlen; i++) { 3403 if (m1->name_off != m2->name_off || m1->val != m2->val) 3404 return false; 3405 m1++; 3406 m2++; 3407 } 3408 return true; 3409 } 3410 3411 static inline bool btf_is_enum_fwd(struct btf_type *t) 3412 { 3413 return btf_is_enum(t) && btf_vlen(t) == 0; 3414 } 3415 3416 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3417 { 3418 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3419 return btf_equal_enum(t1, t2); 3420 /* ignore vlen when comparing */ 3421 return t1->name_off == t2->name_off && 3422 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3423 t1->size == t2->size; 3424 } 3425 3426 /* 3427 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3428 * as referenced type IDs equivalence is established separately during type 3429 * graph equivalence check algorithm. 3430 */ 3431 static long btf_hash_struct(struct btf_type *t) 3432 { 3433 const struct btf_member *member = btf_members(t); 3434 __u32 vlen = btf_vlen(t); 3435 long h = btf_hash_common(t); 3436 int i; 3437 3438 for (i = 0; i < vlen; i++) { 3439 h = hash_combine(h, member->name_off); 3440 h = hash_combine(h, member->offset); 3441 /* no hashing of referenced type ID, it can be unresolved yet */ 3442 member++; 3443 } 3444 return h; 3445 } 3446 3447 /* 3448 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3449 * IDs. This check is performed during type graph equivalence check and 3450 * referenced types equivalence is checked separately. 3451 */ 3452 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3453 { 3454 const struct btf_member *m1, *m2; 3455 __u16 vlen; 3456 int i; 3457 3458 if (!btf_equal_common(t1, t2)) 3459 return false; 3460 3461 vlen = btf_vlen(t1); 3462 m1 = btf_members(t1); 3463 m2 = btf_members(t2); 3464 for (i = 0; i < vlen; i++) { 3465 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3466 return false; 3467 m1++; 3468 m2++; 3469 } 3470 return true; 3471 } 3472 3473 /* 3474 * Calculate type signature hash of ARRAY, including referenced type IDs, 3475 * under assumption that they were already resolved to canonical type IDs and 3476 * are not going to change. 3477 */ 3478 static long btf_hash_array(struct btf_type *t) 3479 { 3480 const struct btf_array *info = btf_array(t); 3481 long h = btf_hash_common(t); 3482 3483 h = hash_combine(h, info->type); 3484 h = hash_combine(h, info->index_type); 3485 h = hash_combine(h, info->nelems); 3486 return h; 3487 } 3488 3489 /* 3490 * Check exact equality of two ARRAYs, taking into account referenced 3491 * type IDs, under assumption that they were already resolved to canonical 3492 * type IDs and are not going to change. 3493 * This function is called during reference types deduplication to compare 3494 * ARRAY to potential canonical representative. 3495 */ 3496 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3497 { 3498 const struct btf_array *info1, *info2; 3499 3500 if (!btf_equal_common(t1, t2)) 3501 return false; 3502 3503 info1 = btf_array(t1); 3504 info2 = btf_array(t2); 3505 return info1->type == info2->type && 3506 info1->index_type == info2->index_type && 3507 info1->nelems == info2->nelems; 3508 } 3509 3510 /* 3511 * Check structural compatibility of two ARRAYs, ignoring referenced type 3512 * IDs. This check is performed during type graph equivalence check and 3513 * referenced types equivalence is checked separately. 3514 */ 3515 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3516 { 3517 if (!btf_equal_common(t1, t2)) 3518 return false; 3519 3520 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3521 } 3522 3523 /* 3524 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3525 * under assumption that they were already resolved to canonical type IDs and 3526 * are not going to change. 3527 */ 3528 static long btf_hash_fnproto(struct btf_type *t) 3529 { 3530 const struct btf_param *member = btf_params(t); 3531 __u16 vlen = btf_vlen(t); 3532 long h = btf_hash_common(t); 3533 int i; 3534 3535 for (i = 0; i < vlen; i++) { 3536 h = hash_combine(h, member->name_off); 3537 h = hash_combine(h, member->type); 3538 member++; 3539 } 3540 return h; 3541 } 3542 3543 /* 3544 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3545 * type IDs, under assumption that they were already resolved to canonical 3546 * type IDs and are not going to change. 3547 * This function is called during reference types deduplication to compare 3548 * FUNC_PROTO to potential canonical representative. 3549 */ 3550 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3551 { 3552 const struct btf_param *m1, *m2; 3553 __u16 vlen; 3554 int i; 3555 3556 if (!btf_equal_common(t1, t2)) 3557 return false; 3558 3559 vlen = btf_vlen(t1); 3560 m1 = btf_params(t1); 3561 m2 = btf_params(t2); 3562 for (i = 0; i < vlen; i++) { 3563 if (m1->name_off != m2->name_off || m1->type != m2->type) 3564 return false; 3565 m1++; 3566 m2++; 3567 } 3568 return true; 3569 } 3570 3571 /* 3572 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3573 * IDs. This check is performed during type graph equivalence check and 3574 * referenced types equivalence is checked separately. 3575 */ 3576 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3577 { 3578 const struct btf_param *m1, *m2; 3579 __u16 vlen; 3580 int i; 3581 3582 /* skip return type ID */ 3583 if (t1->name_off != t2->name_off || t1->info != t2->info) 3584 return false; 3585 3586 vlen = btf_vlen(t1); 3587 m1 = btf_params(t1); 3588 m2 = btf_params(t2); 3589 for (i = 0; i < vlen; i++) { 3590 if (m1->name_off != m2->name_off) 3591 return false; 3592 m1++; 3593 m2++; 3594 } 3595 return true; 3596 } 3597 3598 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3599 * types and initializing the rest of the state (canonical type mapping) for 3600 * the fixed base BTF part. 3601 */ 3602 static int btf_dedup_prep(struct btf_dedup *d) 3603 { 3604 struct btf_type *t; 3605 int type_id; 3606 long h; 3607 3608 if (!d->btf->base_btf) 3609 return 0; 3610 3611 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3612 t = btf_type_by_id(d->btf, type_id); 3613 3614 /* all base BTF types are self-canonical by definition */ 3615 d->map[type_id] = type_id; 3616 3617 switch (btf_kind(t)) { 3618 case BTF_KIND_VAR: 3619 case BTF_KIND_DATASEC: 3620 /* VAR and DATASEC are never hash/deduplicated */ 3621 continue; 3622 case BTF_KIND_CONST: 3623 case BTF_KIND_VOLATILE: 3624 case BTF_KIND_RESTRICT: 3625 case BTF_KIND_PTR: 3626 case BTF_KIND_FWD: 3627 case BTF_KIND_TYPEDEF: 3628 case BTF_KIND_FUNC: 3629 h = btf_hash_common(t); 3630 break; 3631 case BTF_KIND_INT: 3632 h = btf_hash_int(t); 3633 break; 3634 case BTF_KIND_ENUM: 3635 h = btf_hash_enum(t); 3636 break; 3637 case BTF_KIND_STRUCT: 3638 case BTF_KIND_UNION: 3639 h = btf_hash_struct(t); 3640 break; 3641 case BTF_KIND_ARRAY: 3642 h = btf_hash_array(t); 3643 break; 3644 case BTF_KIND_FUNC_PROTO: 3645 h = btf_hash_fnproto(t); 3646 break; 3647 default: 3648 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3649 return -EINVAL; 3650 } 3651 if (btf_dedup_table_add(d, h, type_id)) 3652 return -ENOMEM; 3653 } 3654 3655 return 0; 3656 } 3657 3658 /* 3659 * Deduplicate primitive types, that can't reference other types, by calculating 3660 * their type signature hash and comparing them with any possible canonical 3661 * candidate. If no canonical candidate matches, type itself is marked as 3662 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3663 */ 3664 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3665 { 3666 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3667 struct hashmap_entry *hash_entry; 3668 struct btf_type *cand; 3669 /* if we don't find equivalent type, then we are canonical */ 3670 __u32 new_id = type_id; 3671 __u32 cand_id; 3672 long h; 3673 3674 switch (btf_kind(t)) { 3675 case BTF_KIND_CONST: 3676 case BTF_KIND_VOLATILE: 3677 case BTF_KIND_RESTRICT: 3678 case BTF_KIND_PTR: 3679 case BTF_KIND_TYPEDEF: 3680 case BTF_KIND_ARRAY: 3681 case BTF_KIND_STRUCT: 3682 case BTF_KIND_UNION: 3683 case BTF_KIND_FUNC: 3684 case BTF_KIND_FUNC_PROTO: 3685 case BTF_KIND_VAR: 3686 case BTF_KIND_DATASEC: 3687 return 0; 3688 3689 case BTF_KIND_INT: 3690 h = btf_hash_int(t); 3691 for_each_dedup_cand(d, hash_entry, h) { 3692 cand_id = (__u32)(long)hash_entry->value; 3693 cand = btf_type_by_id(d->btf, cand_id); 3694 if (btf_equal_int(t, cand)) { 3695 new_id = cand_id; 3696 break; 3697 } 3698 } 3699 break; 3700 3701 case BTF_KIND_ENUM: 3702 h = btf_hash_enum(t); 3703 for_each_dedup_cand(d, hash_entry, h) { 3704 cand_id = (__u32)(long)hash_entry->value; 3705 cand = btf_type_by_id(d->btf, cand_id); 3706 if (btf_equal_enum(t, cand)) { 3707 new_id = cand_id; 3708 break; 3709 } 3710 if (d->opts.dont_resolve_fwds) 3711 continue; 3712 if (btf_compat_enum(t, cand)) { 3713 if (btf_is_enum_fwd(t)) { 3714 /* resolve fwd to full enum */ 3715 new_id = cand_id; 3716 break; 3717 } 3718 /* resolve canonical enum fwd to full enum */ 3719 d->map[cand_id] = type_id; 3720 } 3721 } 3722 break; 3723 3724 case BTF_KIND_FWD: 3725 h = btf_hash_common(t); 3726 for_each_dedup_cand(d, hash_entry, h) { 3727 cand_id = (__u32)(long)hash_entry->value; 3728 cand = btf_type_by_id(d->btf, cand_id); 3729 if (btf_equal_common(t, cand)) { 3730 new_id = cand_id; 3731 break; 3732 } 3733 } 3734 break; 3735 3736 default: 3737 return -EINVAL; 3738 } 3739 3740 d->map[type_id] = new_id; 3741 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3742 return -ENOMEM; 3743 3744 return 0; 3745 } 3746 3747 static int btf_dedup_prim_types(struct btf_dedup *d) 3748 { 3749 int i, err; 3750 3751 for (i = 0; i < d->btf->nr_types; i++) { 3752 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3753 if (err) 3754 return err; 3755 } 3756 return 0; 3757 } 3758 3759 /* 3760 * Check whether type is already mapped into canonical one (could be to itself). 3761 */ 3762 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3763 { 3764 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3765 } 3766 3767 /* 3768 * Resolve type ID into its canonical type ID, if any; otherwise return original 3769 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3770 * STRUCT/UNION link and resolve it into canonical type ID as well. 3771 */ 3772 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3773 { 3774 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3775 type_id = d->map[type_id]; 3776 return type_id; 3777 } 3778 3779 /* 3780 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3781 * type ID. 3782 */ 3783 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3784 { 3785 __u32 orig_type_id = type_id; 3786 3787 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3788 return type_id; 3789 3790 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3791 type_id = d->map[type_id]; 3792 3793 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3794 return type_id; 3795 3796 return orig_type_id; 3797 } 3798 3799 3800 static inline __u16 btf_fwd_kind(struct btf_type *t) 3801 { 3802 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3803 } 3804 3805 /* Check if given two types are identical ARRAY definitions */ 3806 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3807 { 3808 struct btf_type *t1, *t2; 3809 3810 t1 = btf_type_by_id(d->btf, id1); 3811 t2 = btf_type_by_id(d->btf, id2); 3812 if (!btf_is_array(t1) || !btf_is_array(t2)) 3813 return 0; 3814 3815 return btf_equal_array(t1, t2); 3816 } 3817 3818 /* 3819 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3820 * call it "candidate graph" in this description for brevity) to a type graph 3821 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3822 * here, though keep in mind that not all types in canonical graph are 3823 * necessarily canonical representatives themselves, some of them might be 3824 * duplicates or its uniqueness might not have been established yet). 3825 * Returns: 3826 * - >0, if type graphs are equivalent; 3827 * - 0, if not equivalent; 3828 * - <0, on error. 3829 * 3830 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3831 * equivalence of BTF types at each step. If at any point BTF types in candidate 3832 * and canonical graphs are not compatible structurally, whole graphs are 3833 * incompatible. If types are structurally equivalent (i.e., all information 3834 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3835 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3836 * If a type references other types, then those referenced types are checked 3837 * for equivalence recursively. 3838 * 3839 * During DFS traversal, if we find that for current `canon_id` type we 3840 * already have some mapping in hypothetical map, we check for two possible 3841 * situations: 3842 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3843 * happen when type graphs have cycles. In this case we assume those two 3844 * types are equivalent. 3845 * - `canon_id` is mapped to different type. This is contradiction in our 3846 * hypothetical mapping, because same graph in canonical graph corresponds 3847 * to two different types in candidate graph, which for equivalent type 3848 * graphs shouldn't happen. This condition terminates equivalence check 3849 * with negative result. 3850 * 3851 * If type graphs traversal exhausts types to check and find no contradiction, 3852 * then type graphs are equivalent. 3853 * 3854 * When checking types for equivalence, there is one special case: FWD types. 3855 * If FWD type resolution is allowed and one of the types (either from canonical 3856 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3857 * flag) and their names match, hypothetical mapping is updated to point from 3858 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3859 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3860 * 3861 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3862 * if there are two exactly named (or anonymous) structs/unions that are 3863 * compatible structurally, one of which has FWD field, while other is concrete 3864 * STRUCT/UNION, but according to C sources they are different structs/unions 3865 * that are referencing different types with the same name. This is extremely 3866 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3867 * this logic is causing problems. 3868 * 3869 * Doing FWD resolution means that both candidate and/or canonical graphs can 3870 * consists of portions of the graph that come from multiple compilation units. 3871 * This is due to the fact that types within single compilation unit are always 3872 * deduplicated and FWDs are already resolved, if referenced struct/union 3873 * definiton is available. So, if we had unresolved FWD and found corresponding 3874 * STRUCT/UNION, they will be from different compilation units. This 3875 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3876 * type graph will likely have at least two different BTF types that describe 3877 * same type (e.g., most probably there will be two different BTF types for the 3878 * same 'int' primitive type) and could even have "overlapping" parts of type 3879 * graph that describe same subset of types. 3880 * 3881 * This in turn means that our assumption that each type in canonical graph 3882 * must correspond to exactly one type in candidate graph might not hold 3883 * anymore and will make it harder to detect contradictions using hypothetical 3884 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3885 * resolution only in canonical graph. FWDs in candidate graphs are never 3886 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3887 * that can occur: 3888 * - Both types in canonical and candidate graphs are FWDs. If they are 3889 * structurally equivalent, then they can either be both resolved to the 3890 * same STRUCT/UNION or not resolved at all. In both cases they are 3891 * equivalent and there is no need to resolve FWD on candidate side. 3892 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3893 * so nothing to resolve as well, algorithm will check equivalence anyway. 3894 * - Type in canonical graph is FWD, while type in candidate is concrete 3895 * STRUCT/UNION. In this case candidate graph comes from single compilation 3896 * unit, so there is exactly one BTF type for each unique C type. After 3897 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3898 * in canonical graph mapping to single BTF type in candidate graph, but 3899 * because hypothetical mapping maps from canonical to candidate types, it's 3900 * alright, and we still maintain the property of having single `canon_id` 3901 * mapping to single `cand_id` (there could be two different `canon_id` 3902 * mapped to the same `cand_id`, but it's not contradictory). 3903 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3904 * graph is FWD. In this case we are just going to check compatibility of 3905 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3906 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3907 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3908 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3909 * canonical graph. 3910 */ 3911 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3912 __u32 canon_id) 3913 { 3914 struct btf_type *cand_type; 3915 struct btf_type *canon_type; 3916 __u32 hypot_type_id; 3917 __u16 cand_kind; 3918 __u16 canon_kind; 3919 int i, eq; 3920 3921 /* if both resolve to the same canonical, they must be equivalent */ 3922 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3923 return 1; 3924 3925 canon_id = resolve_fwd_id(d, canon_id); 3926 3927 hypot_type_id = d->hypot_map[canon_id]; 3928 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3929 /* In some cases compiler will generate different DWARF types 3930 * for *identical* array type definitions and use them for 3931 * different fields within the *same* struct. This breaks type 3932 * equivalence check, which makes an assumption that candidate 3933 * types sub-graph has a consistent and deduped-by-compiler 3934 * types within a single CU. So work around that by explicitly 3935 * allowing identical array types here. 3936 */ 3937 return hypot_type_id == cand_id || 3938 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3939 } 3940 3941 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3942 return -ENOMEM; 3943 3944 cand_type = btf_type_by_id(d->btf, cand_id); 3945 canon_type = btf_type_by_id(d->btf, canon_id); 3946 cand_kind = btf_kind(cand_type); 3947 canon_kind = btf_kind(canon_type); 3948 3949 if (cand_type->name_off != canon_type->name_off) 3950 return 0; 3951 3952 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3953 if (!d->opts.dont_resolve_fwds 3954 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3955 && cand_kind != canon_kind) { 3956 __u16 real_kind; 3957 __u16 fwd_kind; 3958 3959 if (cand_kind == BTF_KIND_FWD) { 3960 real_kind = canon_kind; 3961 fwd_kind = btf_fwd_kind(cand_type); 3962 } else { 3963 real_kind = cand_kind; 3964 fwd_kind = btf_fwd_kind(canon_type); 3965 /* we'd need to resolve base FWD to STRUCT/UNION */ 3966 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3967 d->hypot_adjust_canon = true; 3968 } 3969 return fwd_kind == real_kind; 3970 } 3971 3972 if (cand_kind != canon_kind) 3973 return 0; 3974 3975 switch (cand_kind) { 3976 case BTF_KIND_INT: 3977 return btf_equal_int(cand_type, canon_type); 3978 3979 case BTF_KIND_ENUM: 3980 if (d->opts.dont_resolve_fwds) 3981 return btf_equal_enum(cand_type, canon_type); 3982 else 3983 return btf_compat_enum(cand_type, canon_type); 3984 3985 case BTF_KIND_FWD: 3986 return btf_equal_common(cand_type, canon_type); 3987 3988 case BTF_KIND_CONST: 3989 case BTF_KIND_VOLATILE: 3990 case BTF_KIND_RESTRICT: 3991 case BTF_KIND_PTR: 3992 case BTF_KIND_TYPEDEF: 3993 case BTF_KIND_FUNC: 3994 if (cand_type->info != canon_type->info) 3995 return 0; 3996 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3997 3998 case BTF_KIND_ARRAY: { 3999 const struct btf_array *cand_arr, *canon_arr; 4000 4001 if (!btf_compat_array(cand_type, canon_type)) 4002 return 0; 4003 cand_arr = btf_array(cand_type); 4004 canon_arr = btf_array(canon_type); 4005 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4006 if (eq <= 0) 4007 return eq; 4008 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4009 } 4010 4011 case BTF_KIND_STRUCT: 4012 case BTF_KIND_UNION: { 4013 const struct btf_member *cand_m, *canon_m; 4014 __u16 vlen; 4015 4016 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4017 return 0; 4018 vlen = btf_vlen(cand_type); 4019 cand_m = btf_members(cand_type); 4020 canon_m = btf_members(canon_type); 4021 for (i = 0; i < vlen; i++) { 4022 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4023 if (eq <= 0) 4024 return eq; 4025 cand_m++; 4026 canon_m++; 4027 } 4028 4029 return 1; 4030 } 4031 4032 case BTF_KIND_FUNC_PROTO: { 4033 const struct btf_param *cand_p, *canon_p; 4034 __u16 vlen; 4035 4036 if (!btf_compat_fnproto(cand_type, canon_type)) 4037 return 0; 4038 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4039 if (eq <= 0) 4040 return eq; 4041 vlen = btf_vlen(cand_type); 4042 cand_p = btf_params(cand_type); 4043 canon_p = btf_params(canon_type); 4044 for (i = 0; i < vlen; i++) { 4045 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4046 if (eq <= 0) 4047 return eq; 4048 cand_p++; 4049 canon_p++; 4050 } 4051 return 1; 4052 } 4053 4054 default: 4055 return -EINVAL; 4056 } 4057 return 0; 4058 } 4059 4060 /* 4061 * Use hypothetical mapping, produced by successful type graph equivalence 4062 * check, to augment existing struct/union canonical mapping, where possible. 4063 * 4064 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4065 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4066 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4067 * we are recording the mapping anyway. As opposed to carefulness required 4068 * for struct/union correspondence mapping (described below), for FWD resolution 4069 * it's not important, as by the time that FWD type (reference type) will be 4070 * deduplicated all structs/unions will be deduped already anyway. 4071 * 4072 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4073 * not required for correctness. It needs to be done carefully to ensure that 4074 * struct/union from candidate's type graph is not mapped into corresponding 4075 * struct/union from canonical type graph that itself hasn't been resolved into 4076 * canonical representative. The only guarantee we have is that canonical 4077 * struct/union was determined as canonical and that won't change. But any 4078 * types referenced through that struct/union fields could have been not yet 4079 * resolved, so in case like that it's too early to establish any kind of 4080 * correspondence between structs/unions. 4081 * 4082 * No canonical correspondence is derived for primitive types (they are already 4083 * deduplicated completely already anyway) or reference types (they rely on 4084 * stability of struct/union canonical relationship for equivalence checks). 4085 */ 4086 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4087 { 4088 __u32 canon_type_id, targ_type_id; 4089 __u16 t_kind, c_kind; 4090 __u32 t_id, c_id; 4091 int i; 4092 4093 for (i = 0; i < d->hypot_cnt; i++) { 4094 canon_type_id = d->hypot_list[i]; 4095 targ_type_id = d->hypot_map[canon_type_id]; 4096 t_id = resolve_type_id(d, targ_type_id); 4097 c_id = resolve_type_id(d, canon_type_id); 4098 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4099 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4100 /* 4101 * Resolve FWD into STRUCT/UNION. 4102 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4103 * mapped to canonical representative (as opposed to 4104 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4105 * eventually that struct is going to be mapped and all resolved 4106 * FWDs will automatically resolve to correct canonical 4107 * representative. This will happen before ref type deduping, 4108 * which critically depends on stability of these mapping. This 4109 * stability is not a requirement for STRUCT/UNION equivalence 4110 * checks, though. 4111 */ 4112 4113 /* if it's the split BTF case, we still need to point base FWD 4114 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4115 * will be resolved against base FWD. If we don't point base 4116 * canonical FWD to the resolved STRUCT/UNION, then all the 4117 * FWDs in split BTF won't be correctly resolved to a proper 4118 * STRUCT/UNION. 4119 */ 4120 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4121 d->map[c_id] = t_id; 4122 4123 /* if graph equivalence determined that we'd need to adjust 4124 * base canonical types, then we need to only point base FWDs 4125 * to STRUCTs/UNIONs and do no more modifications. For all 4126 * other purposes the type graphs were not equivalent. 4127 */ 4128 if (d->hypot_adjust_canon) 4129 continue; 4130 4131 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4132 d->map[t_id] = c_id; 4133 4134 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4135 c_kind != BTF_KIND_FWD && 4136 is_type_mapped(d, c_id) && 4137 !is_type_mapped(d, t_id)) { 4138 /* 4139 * as a perf optimization, we can map struct/union 4140 * that's part of type graph we just verified for 4141 * equivalence. We can do that for struct/union that has 4142 * canonical representative only, though. 4143 */ 4144 d->map[t_id] = c_id; 4145 } 4146 } 4147 } 4148 4149 /* 4150 * Deduplicate struct/union types. 4151 * 4152 * For each struct/union type its type signature hash is calculated, taking 4153 * into account type's name, size, number, order and names of fields, but 4154 * ignoring type ID's referenced from fields, because they might not be deduped 4155 * completely until after reference types deduplication phase. This type hash 4156 * is used to iterate over all potential canonical types, sharing same hash. 4157 * For each canonical candidate we check whether type graphs that they form 4158 * (through referenced types in fields and so on) are equivalent using algorithm 4159 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4160 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4161 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4162 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4163 * potentially map other structs/unions to their canonical representatives, 4164 * if such relationship hasn't yet been established. This speeds up algorithm 4165 * by eliminating some of the duplicate work. 4166 * 4167 * If no matching canonical representative was found, struct/union is marked 4168 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4169 * for further look ups. 4170 */ 4171 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4172 { 4173 struct btf_type *cand_type, *t; 4174 struct hashmap_entry *hash_entry; 4175 /* if we don't find equivalent type, then we are canonical */ 4176 __u32 new_id = type_id; 4177 __u16 kind; 4178 long h; 4179 4180 /* already deduped or is in process of deduping (loop detected) */ 4181 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4182 return 0; 4183 4184 t = btf_type_by_id(d->btf, type_id); 4185 kind = btf_kind(t); 4186 4187 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4188 return 0; 4189 4190 h = btf_hash_struct(t); 4191 for_each_dedup_cand(d, hash_entry, h) { 4192 __u32 cand_id = (__u32)(long)hash_entry->value; 4193 int eq; 4194 4195 /* 4196 * Even though btf_dedup_is_equiv() checks for 4197 * btf_shallow_equal_struct() internally when checking two 4198 * structs (unions) for equivalence, we need to guard here 4199 * from picking matching FWD type as a dedup candidate. 4200 * This can happen due to hash collision. In such case just 4201 * relying on btf_dedup_is_equiv() would lead to potentially 4202 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4203 * FWD and compatible STRUCT/UNION are considered equivalent. 4204 */ 4205 cand_type = btf_type_by_id(d->btf, cand_id); 4206 if (!btf_shallow_equal_struct(t, cand_type)) 4207 continue; 4208 4209 btf_dedup_clear_hypot_map(d); 4210 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4211 if (eq < 0) 4212 return eq; 4213 if (!eq) 4214 continue; 4215 btf_dedup_merge_hypot_map(d); 4216 if (d->hypot_adjust_canon) /* not really equivalent */ 4217 continue; 4218 new_id = cand_id; 4219 break; 4220 } 4221 4222 d->map[type_id] = new_id; 4223 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4224 return -ENOMEM; 4225 4226 return 0; 4227 } 4228 4229 static int btf_dedup_struct_types(struct btf_dedup *d) 4230 { 4231 int i, err; 4232 4233 for (i = 0; i < d->btf->nr_types; i++) { 4234 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4235 if (err) 4236 return err; 4237 } 4238 return 0; 4239 } 4240 4241 /* 4242 * Deduplicate reference type. 4243 * 4244 * Once all primitive and struct/union types got deduplicated, we can easily 4245 * deduplicate all other (reference) BTF types. This is done in two steps: 4246 * 4247 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4248 * resolution can be done either immediately for primitive or struct/union types 4249 * (because they were deduped in previous two phases) or recursively for 4250 * reference types. Recursion will always terminate at either primitive or 4251 * struct/union type, at which point we can "unwind" chain of reference types 4252 * one by one. There is no danger of encountering cycles because in C type 4253 * system the only way to form type cycle is through struct/union, so any chain 4254 * of reference types, even those taking part in a type cycle, will inevitably 4255 * reach struct/union at some point. 4256 * 4257 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4258 * becomes "stable", in the sense that no further deduplication will cause 4259 * any changes to it. With that, it's now possible to calculate type's signature 4260 * hash (this time taking into account referenced type IDs) and loop over all 4261 * potential canonical representatives. If no match was found, current type 4262 * will become canonical representative of itself and will be added into 4263 * btf_dedup->dedup_table as another possible canonical representative. 4264 */ 4265 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4266 { 4267 struct hashmap_entry *hash_entry; 4268 __u32 new_id = type_id, cand_id; 4269 struct btf_type *t, *cand; 4270 /* if we don't find equivalent type, then we are representative type */ 4271 int ref_type_id; 4272 long h; 4273 4274 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4275 return -ELOOP; 4276 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4277 return resolve_type_id(d, type_id); 4278 4279 t = btf_type_by_id(d->btf, type_id); 4280 d->map[type_id] = BTF_IN_PROGRESS_ID; 4281 4282 switch (btf_kind(t)) { 4283 case BTF_KIND_CONST: 4284 case BTF_KIND_VOLATILE: 4285 case BTF_KIND_RESTRICT: 4286 case BTF_KIND_PTR: 4287 case BTF_KIND_TYPEDEF: 4288 case BTF_KIND_FUNC: 4289 ref_type_id = btf_dedup_ref_type(d, t->type); 4290 if (ref_type_id < 0) 4291 return ref_type_id; 4292 t->type = ref_type_id; 4293 4294 h = btf_hash_common(t); 4295 for_each_dedup_cand(d, hash_entry, h) { 4296 cand_id = (__u32)(long)hash_entry->value; 4297 cand = btf_type_by_id(d->btf, cand_id); 4298 if (btf_equal_common(t, cand)) { 4299 new_id = cand_id; 4300 break; 4301 } 4302 } 4303 break; 4304 4305 case BTF_KIND_ARRAY: { 4306 struct btf_array *info = btf_array(t); 4307 4308 ref_type_id = btf_dedup_ref_type(d, info->type); 4309 if (ref_type_id < 0) 4310 return ref_type_id; 4311 info->type = ref_type_id; 4312 4313 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4314 if (ref_type_id < 0) 4315 return ref_type_id; 4316 info->index_type = ref_type_id; 4317 4318 h = btf_hash_array(t); 4319 for_each_dedup_cand(d, hash_entry, h) { 4320 cand_id = (__u32)(long)hash_entry->value; 4321 cand = btf_type_by_id(d->btf, cand_id); 4322 if (btf_equal_array(t, cand)) { 4323 new_id = cand_id; 4324 break; 4325 } 4326 } 4327 break; 4328 } 4329 4330 case BTF_KIND_FUNC_PROTO: { 4331 struct btf_param *param; 4332 __u16 vlen; 4333 int i; 4334 4335 ref_type_id = btf_dedup_ref_type(d, t->type); 4336 if (ref_type_id < 0) 4337 return ref_type_id; 4338 t->type = ref_type_id; 4339 4340 vlen = btf_vlen(t); 4341 param = btf_params(t); 4342 for (i = 0; i < vlen; i++) { 4343 ref_type_id = btf_dedup_ref_type(d, param->type); 4344 if (ref_type_id < 0) 4345 return ref_type_id; 4346 param->type = ref_type_id; 4347 param++; 4348 } 4349 4350 h = btf_hash_fnproto(t); 4351 for_each_dedup_cand(d, hash_entry, h) { 4352 cand_id = (__u32)(long)hash_entry->value; 4353 cand = btf_type_by_id(d->btf, cand_id); 4354 if (btf_equal_fnproto(t, cand)) { 4355 new_id = cand_id; 4356 break; 4357 } 4358 } 4359 break; 4360 } 4361 4362 default: 4363 return -EINVAL; 4364 } 4365 4366 d->map[type_id] = new_id; 4367 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4368 return -ENOMEM; 4369 4370 return new_id; 4371 } 4372 4373 static int btf_dedup_ref_types(struct btf_dedup *d) 4374 { 4375 int i, err; 4376 4377 for (i = 0; i < d->btf->nr_types; i++) { 4378 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4379 if (err < 0) 4380 return err; 4381 } 4382 /* we won't need d->dedup_table anymore */ 4383 hashmap__free(d->dedup_table); 4384 d->dedup_table = NULL; 4385 return 0; 4386 } 4387 4388 /* 4389 * Compact types. 4390 * 4391 * After we established for each type its corresponding canonical representative 4392 * type, we now can eliminate types that are not canonical and leave only 4393 * canonical ones layed out sequentially in memory by copying them over 4394 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4395 * a map from original type ID to a new compacted type ID, which will be used 4396 * during next phase to "fix up" type IDs, referenced from struct/union and 4397 * reference types. 4398 */ 4399 static int btf_dedup_compact_types(struct btf_dedup *d) 4400 { 4401 __u32 *new_offs; 4402 __u32 next_type_id = d->btf->start_id; 4403 const struct btf_type *t; 4404 void *p; 4405 int i, id, len; 4406 4407 /* we are going to reuse hypot_map to store compaction remapping */ 4408 d->hypot_map[0] = 0; 4409 /* base BTF types are not renumbered */ 4410 for (id = 1; id < d->btf->start_id; id++) 4411 d->hypot_map[id] = id; 4412 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4413 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4414 4415 p = d->btf->types_data; 4416 4417 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4418 if (d->map[id] != id) 4419 continue; 4420 4421 t = btf__type_by_id(d->btf, id); 4422 len = btf_type_size(t); 4423 if (len < 0) 4424 return len; 4425 4426 memmove(p, t, len); 4427 d->hypot_map[id] = next_type_id; 4428 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4429 p += len; 4430 next_type_id++; 4431 } 4432 4433 /* shrink struct btf's internal types index and update btf_header */ 4434 d->btf->nr_types = next_type_id - d->btf->start_id; 4435 d->btf->type_offs_cap = d->btf->nr_types; 4436 d->btf->hdr->type_len = p - d->btf->types_data; 4437 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4438 sizeof(*new_offs)); 4439 if (d->btf->type_offs_cap && !new_offs) 4440 return -ENOMEM; 4441 d->btf->type_offs = new_offs; 4442 d->btf->hdr->str_off = d->btf->hdr->type_len; 4443 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4444 return 0; 4445 } 4446 4447 /* 4448 * Figure out final (deduplicated and compacted) type ID for provided original 4449 * `type_id` by first resolving it into corresponding canonical type ID and 4450 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4451 * which is populated during compaction phase. 4452 */ 4453 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 4454 { 4455 __u32 resolved_type_id, new_type_id; 4456 4457 resolved_type_id = resolve_type_id(d, type_id); 4458 new_type_id = d->hypot_map[resolved_type_id]; 4459 if (new_type_id > BTF_MAX_NR_TYPES) 4460 return -EINVAL; 4461 return new_type_id; 4462 } 4463 4464 /* 4465 * Remap referenced type IDs into deduped type IDs. 4466 * 4467 * After BTF types are deduplicated and compacted, their final type IDs may 4468 * differ from original ones. The map from original to a corresponding 4469 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4470 * compaction phase. During remapping phase we are rewriting all type IDs 4471 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4472 * their final deduped type IDs. 4473 */ 4474 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 4475 { 4476 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4477 int i, r; 4478 4479 switch (btf_kind(t)) { 4480 case BTF_KIND_INT: 4481 case BTF_KIND_ENUM: 4482 break; 4483 4484 case BTF_KIND_FWD: 4485 case BTF_KIND_CONST: 4486 case BTF_KIND_VOLATILE: 4487 case BTF_KIND_RESTRICT: 4488 case BTF_KIND_PTR: 4489 case BTF_KIND_TYPEDEF: 4490 case BTF_KIND_FUNC: 4491 case BTF_KIND_VAR: 4492 r = btf_dedup_remap_type_id(d, t->type); 4493 if (r < 0) 4494 return r; 4495 t->type = r; 4496 break; 4497 4498 case BTF_KIND_ARRAY: { 4499 struct btf_array *arr_info = btf_array(t); 4500 4501 r = btf_dedup_remap_type_id(d, arr_info->type); 4502 if (r < 0) 4503 return r; 4504 arr_info->type = r; 4505 r = btf_dedup_remap_type_id(d, arr_info->index_type); 4506 if (r < 0) 4507 return r; 4508 arr_info->index_type = r; 4509 break; 4510 } 4511 4512 case BTF_KIND_STRUCT: 4513 case BTF_KIND_UNION: { 4514 struct btf_member *member = btf_members(t); 4515 __u16 vlen = btf_vlen(t); 4516 4517 for (i = 0; i < vlen; i++) { 4518 r = btf_dedup_remap_type_id(d, member->type); 4519 if (r < 0) 4520 return r; 4521 member->type = r; 4522 member++; 4523 } 4524 break; 4525 } 4526 4527 case BTF_KIND_FUNC_PROTO: { 4528 struct btf_param *param = btf_params(t); 4529 __u16 vlen = btf_vlen(t); 4530 4531 r = btf_dedup_remap_type_id(d, t->type); 4532 if (r < 0) 4533 return r; 4534 t->type = r; 4535 4536 for (i = 0; i < vlen; i++) { 4537 r = btf_dedup_remap_type_id(d, param->type); 4538 if (r < 0) 4539 return r; 4540 param->type = r; 4541 param++; 4542 } 4543 break; 4544 } 4545 4546 case BTF_KIND_DATASEC: { 4547 struct btf_var_secinfo *var = btf_var_secinfos(t); 4548 __u16 vlen = btf_vlen(t); 4549 4550 for (i = 0; i < vlen; i++) { 4551 r = btf_dedup_remap_type_id(d, var->type); 4552 if (r < 0) 4553 return r; 4554 var->type = r; 4555 var++; 4556 } 4557 break; 4558 } 4559 4560 default: 4561 return -EINVAL; 4562 } 4563 4564 return 0; 4565 } 4566 4567 static int btf_dedup_remap_types(struct btf_dedup *d) 4568 { 4569 int i, r; 4570 4571 for (i = 0; i < d->btf->nr_types; i++) { 4572 r = btf_dedup_remap_type(d, d->btf->start_id + i); 4573 if (r < 0) 4574 return r; 4575 } 4576 return 0; 4577 } 4578 4579 /* 4580 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4581 * data out of it to use for target BTF. 4582 */ 4583 struct btf *libbpf_find_kernel_btf(void) 4584 { 4585 struct { 4586 const char *path_fmt; 4587 bool raw_btf; 4588 } locations[] = { 4589 /* try canonical vmlinux BTF through sysfs first */ 4590 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4591 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4592 { "/boot/vmlinux-%1$s" }, 4593 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4594 { "/lib/modules/%1$s/build/vmlinux" }, 4595 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4596 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4597 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4598 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4599 }; 4600 char path[PATH_MAX + 1]; 4601 struct utsname buf; 4602 struct btf *btf; 4603 int i; 4604 4605 uname(&buf); 4606 4607 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4608 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4609 4610 if (access(path, R_OK)) 4611 continue; 4612 4613 if (locations[i].raw_btf) 4614 btf = btf__parse_raw(path); 4615 else 4616 btf = btf__parse_elf(path, NULL); 4617 4618 pr_debug("loading kernel BTF '%s': %ld\n", 4619 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 4620 if (IS_ERR(btf)) 4621 continue; 4622 4623 return btf; 4624 } 4625 4626 pr_warn("failed to find valid kernel BTF\n"); 4627 return ERR_PTR(-ESRCH); 4628 } 4629