xref: /linux/tools/lib/bpf/btf.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index
82 	 * type_offs[0] corresponds to the first non-VOID type:
83 	 *   - for base BTF it's type [1];
84 	 *   - for split BTF it's the first non-base BTF type.
85 	 */
86 	__u32 *type_offs;
87 	size_t type_offs_cap;
88 	/* number of types in this BTF instance:
89 	 *   - doesn't include special [0] void type;
90 	 *   - for split BTF counts number of types added on top of base BTF.
91 	 */
92 	__u32 nr_types;
93 	/* if not NULL, points to the base BTF on top of which the current
94 	 * split BTF is based
95 	 */
96 	struct btf *base_btf;
97 	/* BTF type ID of the first type in this BTF instance:
98 	 *   - for base BTF it's equal to 1;
99 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
100 	 */
101 	int start_id;
102 	/* logical string offset of this BTF instance:
103 	 *   - for base BTF it's equal to 0;
104 	 *   - for split BTF it's equal to total size of base BTF's string section size.
105 	 */
106 	int start_str_off;
107 
108 	void *strs_data;
109 	size_t strs_data_cap; /* used size stored in hdr->str_len */
110 
111 	/* lookup index for each unique string in strings section */
112 	struct hashmap *strs_hash;
113 	/* whether strings are already deduplicated */
114 	bool strs_deduped;
115 	/* extra indirection layer to make strings hashmap work with stable
116 	 * string offsets and ability to transparently choose between
117 	 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 	 * This is used for BTF strings dedup to transfer deduplicated strings
119 	 * data back to struct btf without re-building strings index.
120 	 */
121 	void **strs_data_ptr;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
197 {
198 	__u32 *p;
199 
200 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
201 			btf->nr_types, BTF_MAX_NR_TYPES, 1);
202 	if (!p)
203 		return -ENOMEM;
204 
205 	*p = type_off;
206 	return 0;
207 }
208 
209 static void btf_bswap_hdr(struct btf_header *h)
210 {
211 	h->magic = bswap_16(h->magic);
212 	h->hdr_len = bswap_32(h->hdr_len);
213 	h->type_off = bswap_32(h->type_off);
214 	h->type_len = bswap_32(h->type_len);
215 	h->str_off = bswap_32(h->str_off);
216 	h->str_len = bswap_32(h->str_len);
217 }
218 
219 static int btf_parse_hdr(struct btf *btf)
220 {
221 	struct btf_header *hdr = btf->hdr;
222 	__u32 meta_left;
223 
224 	if (btf->raw_size < sizeof(struct btf_header)) {
225 		pr_debug("BTF header not found\n");
226 		return -EINVAL;
227 	}
228 
229 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
230 		btf->swapped_endian = true;
231 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
232 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 				bswap_32(hdr->hdr_len));
234 			return -ENOTSUP;
235 		}
236 		btf_bswap_hdr(hdr);
237 	} else if (hdr->magic != BTF_MAGIC) {
238 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
239 		return -EINVAL;
240 	}
241 
242 	meta_left = btf->raw_size - sizeof(*hdr);
243 	if (meta_left < hdr->str_off + hdr->str_len) {
244 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
245 		return -EINVAL;
246 	}
247 
248 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
249 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
250 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
251 		return -EINVAL;
252 	}
253 
254 	if (hdr->type_off % 4) {
255 		pr_debug("BTF type section is not aligned to 4 bytes\n");
256 		return -EINVAL;
257 	}
258 
259 	return 0;
260 }
261 
262 static int btf_parse_str_sec(struct btf *btf)
263 {
264 	const struct btf_header *hdr = btf->hdr;
265 	const char *start = btf->strs_data;
266 	const char *end = start + btf->hdr->str_len;
267 
268 	if (btf->base_btf && hdr->str_len == 0)
269 		return 0;
270 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	if (!btf->base_btf && start[0]) {
275 		pr_debug("Invalid BTF string section\n");
276 		return -EINVAL;
277 	}
278 	return 0;
279 }
280 
281 static int btf_type_size(const struct btf_type *t)
282 {
283 	const int base_size = sizeof(struct btf_type);
284 	__u16 vlen = btf_vlen(t);
285 
286 	switch (btf_kind(t)) {
287 	case BTF_KIND_FWD:
288 	case BTF_KIND_CONST:
289 	case BTF_KIND_VOLATILE:
290 	case BTF_KIND_RESTRICT:
291 	case BTF_KIND_PTR:
292 	case BTF_KIND_TYPEDEF:
293 	case BTF_KIND_FUNC:
294 		return base_size;
295 	case BTF_KIND_INT:
296 		return base_size + sizeof(__u32);
297 	case BTF_KIND_ENUM:
298 		return base_size + vlen * sizeof(struct btf_enum);
299 	case BTF_KIND_ARRAY:
300 		return base_size + sizeof(struct btf_array);
301 	case BTF_KIND_STRUCT:
302 	case BTF_KIND_UNION:
303 		return base_size + vlen * sizeof(struct btf_member);
304 	case BTF_KIND_FUNC_PROTO:
305 		return base_size + vlen * sizeof(struct btf_param);
306 	case BTF_KIND_VAR:
307 		return base_size + sizeof(struct btf_var);
308 	case BTF_KIND_DATASEC:
309 		return base_size + vlen * sizeof(struct btf_var_secinfo);
310 	default:
311 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
312 		return -EINVAL;
313 	}
314 }
315 
316 static void btf_bswap_type_base(struct btf_type *t)
317 {
318 	t->name_off = bswap_32(t->name_off);
319 	t->info = bswap_32(t->info);
320 	t->type = bswap_32(t->type);
321 }
322 
323 static int btf_bswap_type_rest(struct btf_type *t)
324 {
325 	struct btf_var_secinfo *v;
326 	struct btf_member *m;
327 	struct btf_array *a;
328 	struct btf_param *p;
329 	struct btf_enum *e;
330 	__u16 vlen = btf_vlen(t);
331 	int i;
332 
333 	switch (btf_kind(t)) {
334 	case BTF_KIND_FWD:
335 	case BTF_KIND_CONST:
336 	case BTF_KIND_VOLATILE:
337 	case BTF_KIND_RESTRICT:
338 	case BTF_KIND_PTR:
339 	case BTF_KIND_TYPEDEF:
340 	case BTF_KIND_FUNC:
341 		return 0;
342 	case BTF_KIND_INT:
343 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
344 		return 0;
345 	case BTF_KIND_ENUM:
346 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
347 			e->name_off = bswap_32(e->name_off);
348 			e->val = bswap_32(e->val);
349 		}
350 		return 0;
351 	case BTF_KIND_ARRAY:
352 		a = btf_array(t);
353 		a->type = bswap_32(a->type);
354 		a->index_type = bswap_32(a->index_type);
355 		a->nelems = bswap_32(a->nelems);
356 		return 0;
357 	case BTF_KIND_STRUCT:
358 	case BTF_KIND_UNION:
359 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
360 			m->name_off = bswap_32(m->name_off);
361 			m->type = bswap_32(m->type);
362 			m->offset = bswap_32(m->offset);
363 		}
364 		return 0;
365 	case BTF_KIND_FUNC_PROTO:
366 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
367 			p->name_off = bswap_32(p->name_off);
368 			p->type = bswap_32(p->type);
369 		}
370 		return 0;
371 	case BTF_KIND_VAR:
372 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
373 		return 0;
374 	case BTF_KIND_DATASEC:
375 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
376 			v->type = bswap_32(v->type);
377 			v->offset = bswap_32(v->offset);
378 			v->size = bswap_32(v->size);
379 		}
380 		return 0;
381 	default:
382 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
383 		return -EINVAL;
384 	}
385 }
386 
387 static int btf_parse_type_sec(struct btf *btf)
388 {
389 	struct btf_header *hdr = btf->hdr;
390 	void *next_type = btf->types_data;
391 	void *end_type = next_type + hdr->type_len;
392 	int err, type_size;
393 
394 	while (next_type + sizeof(struct btf_type) <= end_type) {
395 		if (btf->swapped_endian)
396 			btf_bswap_type_base(next_type);
397 
398 		type_size = btf_type_size(next_type);
399 		if (type_size < 0)
400 			return type_size;
401 		if (next_type + type_size > end_type) {
402 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
403 			return -EINVAL;
404 		}
405 
406 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
407 			return -EINVAL;
408 
409 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
410 		if (err)
411 			return err;
412 
413 		next_type += type_size;
414 		btf->nr_types++;
415 	}
416 
417 	if (next_type != end_type) {
418 		pr_warn("BTF types data is malformed\n");
419 		return -EINVAL;
420 	}
421 
422 	return 0;
423 }
424 
425 __u32 btf__get_nr_types(const struct btf *btf)
426 {
427 	return btf->start_id + btf->nr_types - 1;
428 }
429 
430 const struct btf *btf__base_btf(const struct btf *btf)
431 {
432 	return btf->base_btf;
433 }
434 
435 /* internal helper returning non-const pointer to a type */
436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
437 {
438 	if (type_id == 0)
439 		return &btf_void;
440 	if (type_id < btf->start_id)
441 		return btf_type_by_id(btf->base_btf, type_id);
442 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
443 }
444 
445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
446 {
447 	if (type_id >= btf->start_id + btf->nr_types)
448 		return NULL;
449 	return btf_type_by_id((struct btf *)btf, type_id);
450 }
451 
452 static int determine_ptr_size(const struct btf *btf)
453 {
454 	const struct btf_type *t;
455 	const char *name;
456 	int i, n;
457 
458 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
459 		return btf->base_btf->ptr_sz;
460 
461 	n = btf__get_nr_types(btf);
462 	for (i = 1; i <= n; i++) {
463 		t = btf__type_by_id(btf, i);
464 		if (!btf_is_int(t))
465 			continue;
466 
467 		name = btf__name_by_offset(btf, t->name_off);
468 		if (!name)
469 			continue;
470 
471 		if (strcmp(name, "long int") == 0 ||
472 		    strcmp(name, "long unsigned int") == 0) {
473 			if (t->size != 4 && t->size != 8)
474 				continue;
475 			return t->size;
476 		}
477 	}
478 
479 	return -1;
480 }
481 
482 static size_t btf_ptr_sz(const struct btf *btf)
483 {
484 	if (!btf->ptr_sz)
485 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
486 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
487 }
488 
489 /* Return pointer size this BTF instance assumes. The size is heuristically
490  * determined by looking for 'long' or 'unsigned long' integer type and
491  * recording its size in bytes. If BTF type information doesn't have any such
492  * type, this function returns 0. In the latter case, native architecture's
493  * pointer size is assumed, so will be either 4 or 8, depending on
494  * architecture that libbpf was compiled for. It's possible to override
495  * guessed value by using btf__set_pointer_size() API.
496  */
497 size_t btf__pointer_size(const struct btf *btf)
498 {
499 	if (!btf->ptr_sz)
500 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
501 
502 	if (btf->ptr_sz < 0)
503 		/* not enough BTF type info to guess */
504 		return 0;
505 
506 	return btf->ptr_sz;
507 }
508 
509 /* Override or set pointer size in bytes. Only values of 4 and 8 are
510  * supported.
511  */
512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
513 {
514 	if (ptr_sz != 4 && ptr_sz != 8)
515 		return -EINVAL;
516 	btf->ptr_sz = ptr_sz;
517 	return 0;
518 }
519 
520 static bool is_host_big_endian(void)
521 {
522 #if __BYTE_ORDER == __LITTLE_ENDIAN
523 	return false;
524 #elif __BYTE_ORDER == __BIG_ENDIAN
525 	return true;
526 #else
527 # error "Unrecognized __BYTE_ORDER__"
528 #endif
529 }
530 
531 enum btf_endianness btf__endianness(const struct btf *btf)
532 {
533 	if (is_host_big_endian())
534 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
535 	else
536 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
537 }
538 
539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
540 {
541 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
542 		return -EINVAL;
543 
544 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
545 	if (!btf->swapped_endian) {
546 		free(btf->raw_data_swapped);
547 		btf->raw_data_swapped = NULL;
548 	}
549 	return 0;
550 }
551 
552 static bool btf_type_is_void(const struct btf_type *t)
553 {
554 	return t == &btf_void || btf_is_fwd(t);
555 }
556 
557 static bool btf_type_is_void_or_null(const struct btf_type *t)
558 {
559 	return !t || btf_type_is_void(t);
560 }
561 
562 #define MAX_RESOLVE_DEPTH 32
563 
564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
565 {
566 	const struct btf_array *array;
567 	const struct btf_type *t;
568 	__u32 nelems = 1;
569 	__s64 size = -1;
570 	int i;
571 
572 	t = btf__type_by_id(btf, type_id);
573 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
574 	     i++) {
575 		switch (btf_kind(t)) {
576 		case BTF_KIND_INT:
577 		case BTF_KIND_STRUCT:
578 		case BTF_KIND_UNION:
579 		case BTF_KIND_ENUM:
580 		case BTF_KIND_DATASEC:
581 			size = t->size;
582 			goto done;
583 		case BTF_KIND_PTR:
584 			size = btf_ptr_sz(btf);
585 			goto done;
586 		case BTF_KIND_TYPEDEF:
587 		case BTF_KIND_VOLATILE:
588 		case BTF_KIND_CONST:
589 		case BTF_KIND_RESTRICT:
590 		case BTF_KIND_VAR:
591 			type_id = t->type;
592 			break;
593 		case BTF_KIND_ARRAY:
594 			array = btf_array(t);
595 			if (nelems && array->nelems > UINT32_MAX / nelems)
596 				return -E2BIG;
597 			nelems *= array->nelems;
598 			type_id = array->type;
599 			break;
600 		default:
601 			return -EINVAL;
602 		}
603 
604 		t = btf__type_by_id(btf, type_id);
605 	}
606 
607 done:
608 	if (size < 0)
609 		return -EINVAL;
610 	if (nelems && size > UINT32_MAX / nelems)
611 		return -E2BIG;
612 
613 	return nelems * size;
614 }
615 
616 int btf__align_of(const struct btf *btf, __u32 id)
617 {
618 	const struct btf_type *t = btf__type_by_id(btf, id);
619 	__u16 kind = btf_kind(t);
620 
621 	switch (kind) {
622 	case BTF_KIND_INT:
623 	case BTF_KIND_ENUM:
624 		return min(btf_ptr_sz(btf), (size_t)t->size);
625 	case BTF_KIND_PTR:
626 		return btf_ptr_sz(btf);
627 	case BTF_KIND_TYPEDEF:
628 	case BTF_KIND_VOLATILE:
629 	case BTF_KIND_CONST:
630 	case BTF_KIND_RESTRICT:
631 		return btf__align_of(btf, t->type);
632 	case BTF_KIND_ARRAY:
633 		return btf__align_of(btf, btf_array(t)->type);
634 	case BTF_KIND_STRUCT:
635 	case BTF_KIND_UNION: {
636 		const struct btf_member *m = btf_members(t);
637 		__u16 vlen = btf_vlen(t);
638 		int i, max_align = 1, align;
639 
640 		for (i = 0; i < vlen; i++, m++) {
641 			align = btf__align_of(btf, m->type);
642 			if (align <= 0)
643 				return align;
644 			max_align = max(max_align, align);
645 		}
646 
647 		return max_align;
648 	}
649 	default:
650 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
651 		return 0;
652 	}
653 }
654 
655 int btf__resolve_type(const struct btf *btf, __u32 type_id)
656 {
657 	const struct btf_type *t;
658 	int depth = 0;
659 
660 	t = btf__type_by_id(btf, type_id);
661 	while (depth < MAX_RESOLVE_DEPTH &&
662 	       !btf_type_is_void_or_null(t) &&
663 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
664 		type_id = t->type;
665 		t = btf__type_by_id(btf, type_id);
666 		depth++;
667 	}
668 
669 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
670 		return -EINVAL;
671 
672 	return type_id;
673 }
674 
675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
676 {
677 	__u32 i, nr_types = btf__get_nr_types(btf);
678 
679 	if (!strcmp(type_name, "void"))
680 		return 0;
681 
682 	for (i = 1; i <= nr_types; i++) {
683 		const struct btf_type *t = btf__type_by_id(btf, i);
684 		const char *name = btf__name_by_offset(btf, t->name_off);
685 
686 		if (name && !strcmp(type_name, name))
687 			return i;
688 	}
689 
690 	return -ENOENT;
691 }
692 
693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
694 			     __u32 kind)
695 {
696 	__u32 i, nr_types = btf__get_nr_types(btf);
697 
698 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
699 		return 0;
700 
701 	for (i = 1; i <= nr_types; i++) {
702 		const struct btf_type *t = btf__type_by_id(btf, i);
703 		const char *name;
704 
705 		if (btf_kind(t) != kind)
706 			continue;
707 		name = btf__name_by_offset(btf, t->name_off);
708 		if (name && !strcmp(type_name, name))
709 			return i;
710 	}
711 
712 	return -ENOENT;
713 }
714 
715 static bool btf_is_modifiable(const struct btf *btf)
716 {
717 	return (void *)btf->hdr != btf->raw_data;
718 }
719 
720 void btf__free(struct btf *btf)
721 {
722 	if (IS_ERR_OR_NULL(btf))
723 		return;
724 
725 	if (btf->fd >= 0)
726 		close(btf->fd);
727 
728 	if (btf_is_modifiable(btf)) {
729 		/* if BTF was modified after loading, it will have a split
730 		 * in-memory representation for header, types, and strings
731 		 * sections, so we need to free all of them individually. It
732 		 * might still have a cached contiguous raw data present,
733 		 * which will be unconditionally freed below.
734 		 */
735 		free(btf->hdr);
736 		free(btf->types_data);
737 		free(btf->strs_data);
738 	}
739 	free(btf->raw_data);
740 	free(btf->raw_data_swapped);
741 	free(btf->type_offs);
742 	free(btf);
743 }
744 
745 static struct btf *btf_new_empty(struct btf *base_btf)
746 {
747 	struct btf *btf;
748 
749 	btf = calloc(1, sizeof(*btf));
750 	if (!btf)
751 		return ERR_PTR(-ENOMEM);
752 
753 	btf->nr_types = 0;
754 	btf->start_id = 1;
755 	btf->start_str_off = 0;
756 	btf->fd = -1;
757 	btf->ptr_sz = sizeof(void *);
758 	btf->swapped_endian = false;
759 
760 	if (base_btf) {
761 		btf->base_btf = base_btf;
762 		btf->start_id = btf__get_nr_types(base_btf) + 1;
763 		btf->start_str_off = base_btf->hdr->str_len;
764 	}
765 
766 	/* +1 for empty string at offset 0 */
767 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
768 	btf->raw_data = calloc(1, btf->raw_size);
769 	if (!btf->raw_data) {
770 		free(btf);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	btf->hdr = btf->raw_data;
775 	btf->hdr->hdr_len = sizeof(struct btf_header);
776 	btf->hdr->magic = BTF_MAGIC;
777 	btf->hdr->version = BTF_VERSION;
778 
779 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
781 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
782 
783 	return btf;
784 }
785 
786 struct btf *btf__new_empty(void)
787 {
788 	return btf_new_empty(NULL);
789 }
790 
791 struct btf *btf__new_empty_split(struct btf *base_btf)
792 {
793 	return btf_new_empty(base_btf);
794 }
795 
796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
797 {
798 	struct btf *btf;
799 	int err;
800 
801 	btf = calloc(1, sizeof(struct btf));
802 	if (!btf)
803 		return ERR_PTR(-ENOMEM);
804 
805 	btf->nr_types = 0;
806 	btf->start_id = 1;
807 	btf->start_str_off = 0;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 	btf->fd = -1;
837 
838 done:
839 	if (err) {
840 		btf__free(btf);
841 		return ERR_PTR(err);
842 	}
843 
844 	return btf;
845 }
846 
847 struct btf *btf__new(const void *data, __u32 size)
848 {
849 	return btf_new(data, size, NULL);
850 }
851 
852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
853 				 struct btf_ext **btf_ext)
854 {
855 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
856 	int err = 0, fd = -1, idx = 0;
857 	struct btf *btf = NULL;
858 	Elf_Scn *scn = NULL;
859 	Elf *elf = NULL;
860 	GElf_Ehdr ehdr;
861 	size_t shstrndx;
862 
863 	if (elf_version(EV_CURRENT) == EV_NONE) {
864 		pr_warn("failed to init libelf for %s\n", path);
865 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
866 	}
867 
868 	fd = open(path, O_RDONLY);
869 	if (fd < 0) {
870 		err = -errno;
871 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
872 		return ERR_PTR(err);
873 	}
874 
875 	err = -LIBBPF_ERRNO__FORMAT;
876 
877 	elf = elf_begin(fd, ELF_C_READ, NULL);
878 	if (!elf) {
879 		pr_warn("failed to open %s as ELF file\n", path);
880 		goto done;
881 	}
882 	if (!gelf_getehdr(elf, &ehdr)) {
883 		pr_warn("failed to get EHDR from %s\n", path);
884 		goto done;
885 	}
886 
887 	if (elf_getshdrstrndx(elf, &shstrndx)) {
888 		pr_warn("failed to get section names section index for %s\n",
889 			path);
890 		goto done;
891 	}
892 
893 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
894 		pr_warn("failed to get e_shstrndx from %s\n", path);
895 		goto done;
896 	}
897 
898 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
899 		GElf_Shdr sh;
900 		char *name;
901 
902 		idx++;
903 		if (gelf_getshdr(scn, &sh) != &sh) {
904 			pr_warn("failed to get section(%d) header from %s\n",
905 				idx, path);
906 			goto done;
907 		}
908 		name = elf_strptr(elf, shstrndx, sh.sh_name);
909 		if (!name) {
910 			pr_warn("failed to get section(%d) name from %s\n",
911 				idx, path);
912 			goto done;
913 		}
914 		if (strcmp(name, BTF_ELF_SEC) == 0) {
915 			btf_data = elf_getdata(scn, 0);
916 			if (!btf_data) {
917 				pr_warn("failed to get section(%d, %s) data from %s\n",
918 					idx, name, path);
919 				goto done;
920 			}
921 			continue;
922 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
923 			btf_ext_data = elf_getdata(scn, 0);
924 			if (!btf_ext_data) {
925 				pr_warn("failed to get section(%d, %s) data from %s\n",
926 					idx, name, path);
927 				goto done;
928 			}
929 			continue;
930 		}
931 	}
932 
933 	err = 0;
934 
935 	if (!btf_data) {
936 		err = -ENOENT;
937 		goto done;
938 	}
939 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
940 	if (IS_ERR(btf))
941 		goto done;
942 
943 	switch (gelf_getclass(elf)) {
944 	case ELFCLASS32:
945 		btf__set_pointer_size(btf, 4);
946 		break;
947 	case ELFCLASS64:
948 		btf__set_pointer_size(btf, 8);
949 		break;
950 	default:
951 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
952 		break;
953 	}
954 
955 	if (btf_ext && btf_ext_data) {
956 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
957 					btf_ext_data->d_size);
958 		if (IS_ERR(*btf_ext))
959 			goto done;
960 	} else if (btf_ext) {
961 		*btf_ext = NULL;
962 	}
963 done:
964 	if (elf)
965 		elf_end(elf);
966 	close(fd);
967 
968 	if (err)
969 		return ERR_PTR(err);
970 	/*
971 	 * btf is always parsed before btf_ext, so no need to clean up
972 	 * btf_ext, if btf loading failed
973 	 */
974 	if (IS_ERR(btf))
975 		return btf;
976 	if (btf_ext && IS_ERR(*btf_ext)) {
977 		btf__free(btf);
978 		err = PTR_ERR(*btf_ext);
979 		return ERR_PTR(err);
980 	}
981 	return btf;
982 }
983 
984 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
985 {
986 	return btf_parse_elf(path, NULL, btf_ext);
987 }
988 
989 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
990 {
991 	return btf_parse_elf(path, base_btf, NULL);
992 }
993 
994 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
995 {
996 	struct btf *btf = NULL;
997 	void *data = NULL;
998 	FILE *f = NULL;
999 	__u16 magic;
1000 	int err = 0;
1001 	long sz;
1002 
1003 	f = fopen(path, "rb");
1004 	if (!f) {
1005 		err = -errno;
1006 		goto err_out;
1007 	}
1008 
1009 	/* check BTF magic */
1010 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1011 		err = -EIO;
1012 		goto err_out;
1013 	}
1014 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1015 		/* definitely not a raw BTF */
1016 		err = -EPROTO;
1017 		goto err_out;
1018 	}
1019 
1020 	/* get file size */
1021 	if (fseek(f, 0, SEEK_END)) {
1022 		err = -errno;
1023 		goto err_out;
1024 	}
1025 	sz = ftell(f);
1026 	if (sz < 0) {
1027 		err = -errno;
1028 		goto err_out;
1029 	}
1030 	/* rewind to the start */
1031 	if (fseek(f, 0, SEEK_SET)) {
1032 		err = -errno;
1033 		goto err_out;
1034 	}
1035 
1036 	/* pre-alloc memory and read all of BTF data */
1037 	data = malloc(sz);
1038 	if (!data) {
1039 		err = -ENOMEM;
1040 		goto err_out;
1041 	}
1042 	if (fread(data, 1, sz, f) < sz) {
1043 		err = -EIO;
1044 		goto err_out;
1045 	}
1046 
1047 	/* finally parse BTF data */
1048 	btf = btf_new(data, sz, base_btf);
1049 
1050 err_out:
1051 	free(data);
1052 	if (f)
1053 		fclose(f);
1054 	return err ? ERR_PTR(err) : btf;
1055 }
1056 
1057 struct btf *btf__parse_raw(const char *path)
1058 {
1059 	return btf_parse_raw(path, NULL);
1060 }
1061 
1062 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1063 {
1064 	return btf_parse_raw(path, base_btf);
1065 }
1066 
1067 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1068 {
1069 	struct btf *btf;
1070 
1071 	if (btf_ext)
1072 		*btf_ext = NULL;
1073 
1074 	btf = btf_parse_raw(path, base_btf);
1075 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1076 		return btf;
1077 
1078 	return btf_parse_elf(path, base_btf, btf_ext);
1079 }
1080 
1081 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1082 {
1083 	return btf_parse(path, NULL, btf_ext);
1084 }
1085 
1086 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1087 {
1088 	return btf_parse(path, base_btf, NULL);
1089 }
1090 
1091 static int compare_vsi_off(const void *_a, const void *_b)
1092 {
1093 	const struct btf_var_secinfo *a = _a;
1094 	const struct btf_var_secinfo *b = _b;
1095 
1096 	return a->offset - b->offset;
1097 }
1098 
1099 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1100 			     struct btf_type *t)
1101 {
1102 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1103 	const char *name = btf__name_by_offset(btf, t->name_off);
1104 	const struct btf_type *t_var;
1105 	struct btf_var_secinfo *vsi;
1106 	const struct btf_var *var;
1107 	int ret;
1108 
1109 	if (!name) {
1110 		pr_debug("No name found in string section for DATASEC kind.\n");
1111 		return -ENOENT;
1112 	}
1113 
1114 	/* .extern datasec size and var offsets were set correctly during
1115 	 * extern collection step, so just skip straight to sorting variables
1116 	 */
1117 	if (t->size)
1118 		goto sort_vars;
1119 
1120 	ret = bpf_object__section_size(obj, name, &size);
1121 	if (ret || !size || (t->size && t->size != size)) {
1122 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1123 		return -ENOENT;
1124 	}
1125 
1126 	t->size = size;
1127 
1128 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1129 		t_var = btf__type_by_id(btf, vsi->type);
1130 		var = btf_var(t_var);
1131 
1132 		if (!btf_is_var(t_var)) {
1133 			pr_debug("Non-VAR type seen in section %s\n", name);
1134 			return -EINVAL;
1135 		}
1136 
1137 		if (var->linkage == BTF_VAR_STATIC)
1138 			continue;
1139 
1140 		name = btf__name_by_offset(btf, t_var->name_off);
1141 		if (!name) {
1142 			pr_debug("No name found in string section for VAR kind\n");
1143 			return -ENOENT;
1144 		}
1145 
1146 		ret = bpf_object__variable_offset(obj, name, &off);
1147 		if (ret) {
1148 			pr_debug("No offset found in symbol table for VAR %s\n",
1149 				 name);
1150 			return -ENOENT;
1151 		}
1152 
1153 		vsi->offset = off;
1154 	}
1155 
1156 sort_vars:
1157 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1158 	return 0;
1159 }
1160 
1161 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1162 {
1163 	int err = 0;
1164 	__u32 i;
1165 
1166 	for (i = 1; i <= btf->nr_types; i++) {
1167 		struct btf_type *t = btf_type_by_id(btf, i);
1168 
1169 		/* Loader needs to fix up some of the things compiler
1170 		 * couldn't get its hands on while emitting BTF. This
1171 		 * is section size and global variable offset. We use
1172 		 * the info from the ELF itself for this purpose.
1173 		 */
1174 		if (btf_is_datasec(t)) {
1175 			err = btf_fixup_datasec(obj, btf, t);
1176 			if (err)
1177 				break;
1178 		}
1179 	}
1180 
1181 	return err;
1182 }
1183 
1184 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1185 
1186 int btf__load(struct btf *btf)
1187 {
1188 	__u32 log_buf_size = 0, raw_size;
1189 	char *log_buf = NULL;
1190 	void *raw_data;
1191 	int err = 0;
1192 
1193 	if (btf->fd >= 0)
1194 		return -EEXIST;
1195 
1196 retry_load:
1197 	if (log_buf_size) {
1198 		log_buf = malloc(log_buf_size);
1199 		if (!log_buf)
1200 			return -ENOMEM;
1201 
1202 		*log_buf = 0;
1203 	}
1204 
1205 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1206 	if (!raw_data) {
1207 		err = -ENOMEM;
1208 		goto done;
1209 	}
1210 	/* cache native raw data representation */
1211 	btf->raw_size = raw_size;
1212 	btf->raw_data = raw_data;
1213 
1214 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1215 	if (btf->fd < 0) {
1216 		if (!log_buf || errno == ENOSPC) {
1217 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1218 					   log_buf_size << 1);
1219 			free(log_buf);
1220 			goto retry_load;
1221 		}
1222 
1223 		err = -errno;
1224 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1225 		if (*log_buf)
1226 			pr_warn("%s\n", log_buf);
1227 		goto done;
1228 	}
1229 
1230 done:
1231 	free(log_buf);
1232 	return err;
1233 }
1234 
1235 int btf__fd(const struct btf *btf)
1236 {
1237 	return btf->fd;
1238 }
1239 
1240 void btf__set_fd(struct btf *btf, int fd)
1241 {
1242 	btf->fd = fd;
1243 }
1244 
1245 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1246 {
1247 	struct btf_header *hdr = btf->hdr;
1248 	struct btf_type *t;
1249 	void *data, *p;
1250 	__u32 data_sz;
1251 	int i;
1252 
1253 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1254 	if (data) {
1255 		*size = btf->raw_size;
1256 		return data;
1257 	}
1258 
1259 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1260 	data = calloc(1, data_sz);
1261 	if (!data)
1262 		return NULL;
1263 	p = data;
1264 
1265 	memcpy(p, hdr, hdr->hdr_len);
1266 	if (swap_endian)
1267 		btf_bswap_hdr(p);
1268 	p += hdr->hdr_len;
1269 
1270 	memcpy(p, btf->types_data, hdr->type_len);
1271 	if (swap_endian) {
1272 		for (i = 0; i < btf->nr_types; i++) {
1273 			t = p + btf->type_offs[i];
1274 			/* btf_bswap_type_rest() relies on native t->info, so
1275 			 * we swap base type info after we swapped all the
1276 			 * additional information
1277 			 */
1278 			if (btf_bswap_type_rest(t))
1279 				goto err_out;
1280 			btf_bswap_type_base(t);
1281 		}
1282 	}
1283 	p += hdr->type_len;
1284 
1285 	memcpy(p, btf->strs_data, hdr->str_len);
1286 	p += hdr->str_len;
1287 
1288 	*size = data_sz;
1289 	return data;
1290 err_out:
1291 	free(data);
1292 	return NULL;
1293 }
1294 
1295 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1296 {
1297 	struct btf *btf = (struct btf *)btf_ro;
1298 	__u32 data_sz;
1299 	void *data;
1300 
1301 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1302 	if (!data)
1303 		return NULL;
1304 
1305 	btf->raw_size = data_sz;
1306 	if (btf->swapped_endian)
1307 		btf->raw_data_swapped = data;
1308 	else
1309 		btf->raw_data = data;
1310 	*size = data_sz;
1311 	return data;
1312 }
1313 
1314 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1315 {
1316 	if (offset < btf->start_str_off)
1317 		return btf__str_by_offset(btf->base_btf, offset);
1318 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1319 		return btf->strs_data + (offset - btf->start_str_off);
1320 	else
1321 		return NULL;
1322 }
1323 
1324 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1325 {
1326 	return btf__str_by_offset(btf, offset);
1327 }
1328 
1329 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1330 {
1331 	struct bpf_btf_info btf_info;
1332 	__u32 len = sizeof(btf_info);
1333 	__u32 last_size;
1334 	struct btf *btf;
1335 	void *ptr;
1336 	int err;
1337 
1338 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1339 	 * let's start with a sane default - 4KiB here - and resize it only if
1340 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1341 	 */
1342 	last_size = 4096;
1343 	ptr = malloc(last_size);
1344 	if (!ptr)
1345 		return ERR_PTR(-ENOMEM);
1346 
1347 	memset(&btf_info, 0, sizeof(btf_info));
1348 	btf_info.btf = ptr_to_u64(ptr);
1349 	btf_info.btf_size = last_size;
1350 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351 
1352 	if (!err && btf_info.btf_size > last_size) {
1353 		void *temp_ptr;
1354 
1355 		last_size = btf_info.btf_size;
1356 		temp_ptr = realloc(ptr, last_size);
1357 		if (!temp_ptr) {
1358 			btf = ERR_PTR(-ENOMEM);
1359 			goto exit_free;
1360 		}
1361 		ptr = temp_ptr;
1362 
1363 		len = sizeof(btf_info);
1364 		memset(&btf_info, 0, sizeof(btf_info));
1365 		btf_info.btf = ptr_to_u64(ptr);
1366 		btf_info.btf_size = last_size;
1367 
1368 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1369 	}
1370 
1371 	if (err || btf_info.btf_size > last_size) {
1372 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1373 		goto exit_free;
1374 	}
1375 
1376 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1377 
1378 exit_free:
1379 	free(ptr);
1380 	return btf;
1381 }
1382 
1383 int btf__get_from_id(__u32 id, struct btf **btf)
1384 {
1385 	struct btf *res;
1386 	int btf_fd;
1387 
1388 	*btf = NULL;
1389 	btf_fd = bpf_btf_get_fd_by_id(id);
1390 	if (btf_fd < 0)
1391 		return -errno;
1392 
1393 	res = btf_get_from_fd(btf_fd, NULL);
1394 	close(btf_fd);
1395 	if (IS_ERR(res))
1396 		return PTR_ERR(res);
1397 
1398 	*btf = res;
1399 	return 0;
1400 }
1401 
1402 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1403 			 __u32 expected_key_size, __u32 expected_value_size,
1404 			 __u32 *key_type_id, __u32 *value_type_id)
1405 {
1406 	const struct btf_type *container_type;
1407 	const struct btf_member *key, *value;
1408 	const size_t max_name = 256;
1409 	char container_name[max_name];
1410 	__s64 key_size, value_size;
1411 	__s32 container_id;
1412 
1413 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1414 	    max_name) {
1415 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1416 			map_name, map_name);
1417 		return -EINVAL;
1418 	}
1419 
1420 	container_id = btf__find_by_name(btf, container_name);
1421 	if (container_id < 0) {
1422 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1423 			 map_name, container_name);
1424 		return container_id;
1425 	}
1426 
1427 	container_type = btf__type_by_id(btf, container_id);
1428 	if (!container_type) {
1429 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1430 			map_name, container_id);
1431 		return -EINVAL;
1432 	}
1433 
1434 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1435 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1436 			map_name, container_name);
1437 		return -EINVAL;
1438 	}
1439 
1440 	key = btf_members(container_type);
1441 	value = key + 1;
1442 
1443 	key_size = btf__resolve_size(btf, key->type);
1444 	if (key_size < 0) {
1445 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1446 		return key_size;
1447 	}
1448 
1449 	if (expected_key_size != key_size) {
1450 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1451 			map_name, (__u32)key_size, expected_key_size);
1452 		return -EINVAL;
1453 	}
1454 
1455 	value_size = btf__resolve_size(btf, value->type);
1456 	if (value_size < 0) {
1457 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1458 		return value_size;
1459 	}
1460 
1461 	if (expected_value_size != value_size) {
1462 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1463 			map_name, (__u32)value_size, expected_value_size);
1464 		return -EINVAL;
1465 	}
1466 
1467 	*key_type_id = key->type;
1468 	*value_type_id = value->type;
1469 
1470 	return 0;
1471 }
1472 
1473 static size_t strs_hash_fn(const void *key, void *ctx)
1474 {
1475 	const struct btf *btf = ctx;
1476 	const char *strs = *btf->strs_data_ptr;
1477 	const char *str = strs + (long)key;
1478 
1479 	return str_hash(str);
1480 }
1481 
1482 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1483 {
1484 	const struct btf *btf = ctx;
1485 	const char *strs = *btf->strs_data_ptr;
1486 	const char *str1 = strs + (long)key1;
1487 	const char *str2 = strs + (long)key2;
1488 
1489 	return strcmp(str1, str2) == 0;
1490 }
1491 
1492 static void btf_invalidate_raw_data(struct btf *btf)
1493 {
1494 	if (btf->raw_data) {
1495 		free(btf->raw_data);
1496 		btf->raw_data = NULL;
1497 	}
1498 	if (btf->raw_data_swapped) {
1499 		free(btf->raw_data_swapped);
1500 		btf->raw_data_swapped = NULL;
1501 	}
1502 }
1503 
1504 /* Ensure BTF is ready to be modified (by splitting into a three memory
1505  * regions for header, types, and strings). Also invalidate cached
1506  * raw_data, if any.
1507  */
1508 static int btf_ensure_modifiable(struct btf *btf)
1509 {
1510 	void *hdr, *types, *strs, *strs_end, *s;
1511 	struct hashmap *hash = NULL;
1512 	long off;
1513 	int err;
1514 
1515 	if (btf_is_modifiable(btf)) {
1516 		/* any BTF modification invalidates raw_data */
1517 		btf_invalidate_raw_data(btf);
1518 		return 0;
1519 	}
1520 
1521 	/* split raw data into three memory regions */
1522 	hdr = malloc(btf->hdr->hdr_len);
1523 	types = malloc(btf->hdr->type_len);
1524 	strs = malloc(btf->hdr->str_len);
1525 	if (!hdr || !types || !strs)
1526 		goto err_out;
1527 
1528 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1529 	memcpy(types, btf->types_data, btf->hdr->type_len);
1530 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1531 
1532 	/* make hashmap below use btf->strs_data as a source of strings */
1533 	btf->strs_data_ptr = &btf->strs_data;
1534 
1535 	/* build lookup index for all strings */
1536 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1537 	if (IS_ERR(hash)) {
1538 		err = PTR_ERR(hash);
1539 		hash = NULL;
1540 		goto err_out;
1541 	}
1542 
1543 	strs_end = strs + btf->hdr->str_len;
1544 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1545 		/* hashmap__add() returns EEXIST if string with the same
1546 		 * content already is in the hash map
1547 		 */
1548 		err = hashmap__add(hash, (void *)off, (void *)off);
1549 		if (err == -EEXIST)
1550 			continue; /* duplicate */
1551 		if (err)
1552 			goto err_out;
1553 	}
1554 
1555 	/* only when everything was successful, update internal state */
1556 	btf->hdr = hdr;
1557 	btf->types_data = types;
1558 	btf->types_data_cap = btf->hdr->type_len;
1559 	btf->strs_data = strs;
1560 	btf->strs_data_cap = btf->hdr->str_len;
1561 	btf->strs_hash = hash;
1562 	/* if BTF was created from scratch, all strings are guaranteed to be
1563 	 * unique and deduplicated
1564 	 */
1565 	if (btf->hdr->str_len == 0)
1566 		btf->strs_deduped = true;
1567 	if (!btf->base_btf && btf->hdr->str_len == 1)
1568 		btf->strs_deduped = true;
1569 
1570 	/* invalidate raw_data representation */
1571 	btf_invalidate_raw_data(btf);
1572 
1573 	return 0;
1574 
1575 err_out:
1576 	hashmap__free(hash);
1577 	free(hdr);
1578 	free(types);
1579 	free(strs);
1580 	return -ENOMEM;
1581 }
1582 
1583 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1584 {
1585 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1586 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1587 }
1588 
1589 /* Find an offset in BTF string section that corresponds to a given string *s*.
1590  * Returns:
1591  *   - >0 offset into string section, if string is found;
1592  *   - -ENOENT, if string is not in the string section;
1593  *   - <0, on any other error.
1594  */
1595 int btf__find_str(struct btf *btf, const char *s)
1596 {
1597 	long old_off, new_off, len;
1598 	void *p;
1599 
1600 	if (btf->base_btf) {
1601 		int ret;
1602 
1603 		ret = btf__find_str(btf->base_btf, s);
1604 		if (ret != -ENOENT)
1605 			return ret;
1606 	}
1607 
1608 	/* BTF needs to be in a modifiable state to build string lookup index */
1609 	if (btf_ensure_modifiable(btf))
1610 		return -ENOMEM;
1611 
1612 	/* see btf__add_str() for why we do this */
1613 	len = strlen(s) + 1;
1614 	p = btf_add_str_mem(btf, len);
1615 	if (!p)
1616 		return -ENOMEM;
1617 
1618 	new_off = btf->hdr->str_len;
1619 	memcpy(p, s, len);
1620 
1621 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1622 		return btf->start_str_off + old_off;
1623 
1624 	return -ENOENT;
1625 }
1626 
1627 /* Add a string s to the BTF string section.
1628  * Returns:
1629  *   - > 0 offset into string section, on success;
1630  *   - < 0, on error.
1631  */
1632 int btf__add_str(struct btf *btf, const char *s)
1633 {
1634 	long old_off, new_off, len;
1635 	void *p;
1636 	int err;
1637 
1638 	if (btf->base_btf) {
1639 		int ret;
1640 
1641 		ret = btf__find_str(btf->base_btf, s);
1642 		if (ret != -ENOENT)
1643 			return ret;
1644 	}
1645 
1646 	if (btf_ensure_modifiable(btf))
1647 		return -ENOMEM;
1648 
1649 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1650 	 * look up some string from the "outside", we need to first append it
1651 	 * at the end, so that it can be addressed with an offset. Luckily,
1652 	 * until btf->hdr->str_len is incremented, that string is just a piece
1653 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1654 	 * other hand, if the string is unique, it's already appended and
1655 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1656 	 */
1657 	len = strlen(s) + 1;
1658 	p = btf_add_str_mem(btf, len);
1659 	if (!p)
1660 		return -ENOMEM;
1661 
1662 	new_off = btf->hdr->str_len;
1663 	memcpy(p, s, len);
1664 
1665 	/* Now attempt to add the string, but only if the string with the same
1666 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1667 	 * string exists, we'll get its offset in old_off (that's old_key).
1668 	 */
1669 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1670 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1671 	if (err == -EEXIST)
1672 		return btf->start_str_off + old_off; /* duplicated string, return existing offset */
1673 	if (err)
1674 		return err;
1675 
1676 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1677 	return btf->start_str_off + new_off;
1678 }
1679 
1680 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1681 {
1682 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1683 			   btf->hdr->type_len, UINT_MAX, add_sz);
1684 }
1685 
1686 static __u32 btf_type_info(int kind, int vlen, int kflag)
1687 {
1688 	return (kflag << 31) | (kind << 24) | vlen;
1689 }
1690 
1691 static void btf_type_inc_vlen(struct btf_type *t)
1692 {
1693 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1694 }
1695 
1696 static int btf_commit_type(struct btf *btf, int data_sz)
1697 {
1698 	int err;
1699 
1700 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1701 	if (err)
1702 		return err;
1703 
1704 	btf->hdr->type_len += data_sz;
1705 	btf->hdr->str_off += data_sz;
1706 	btf->nr_types++;
1707 	return btf->start_id + btf->nr_types - 1;
1708 }
1709 
1710 /*
1711  * Append new BTF_KIND_INT type with:
1712  *   - *name* - non-empty, non-NULL type name;
1713  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1714  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1715  * Returns:
1716  *   - >0, type ID of newly added BTF type;
1717  *   - <0, on error.
1718  */
1719 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1720 {
1721 	struct btf_type *t;
1722 	int sz, name_off;
1723 
1724 	/* non-empty name */
1725 	if (!name || !name[0])
1726 		return -EINVAL;
1727 	/* byte_sz must be power of 2 */
1728 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1729 		return -EINVAL;
1730 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1731 		return -EINVAL;
1732 
1733 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1734 	if (btf_ensure_modifiable(btf))
1735 		return -ENOMEM;
1736 
1737 	sz = sizeof(struct btf_type) + sizeof(int);
1738 	t = btf_add_type_mem(btf, sz);
1739 	if (!t)
1740 		return -ENOMEM;
1741 
1742 	/* if something goes wrong later, we might end up with an extra string,
1743 	 * but that shouldn't be a problem, because BTF can't be constructed
1744 	 * completely anyway and will most probably be just discarded
1745 	 */
1746 	name_off = btf__add_str(btf, name);
1747 	if (name_off < 0)
1748 		return name_off;
1749 
1750 	t->name_off = name_off;
1751 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1752 	t->size = byte_sz;
1753 	/* set INT info, we don't allow setting legacy bit offset/size */
1754 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1755 
1756 	return btf_commit_type(btf, sz);
1757 }
1758 
1759 /* it's completely legal to append BTF types with type IDs pointing forward to
1760  * types that haven't been appended yet, so we only make sure that id looks
1761  * sane, we can't guarantee that ID will always be valid
1762  */
1763 static int validate_type_id(int id)
1764 {
1765 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1766 		return -EINVAL;
1767 	return 0;
1768 }
1769 
1770 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1771 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1772 {
1773 	struct btf_type *t;
1774 	int sz, name_off = 0;
1775 
1776 	if (validate_type_id(ref_type_id))
1777 		return -EINVAL;
1778 
1779 	if (btf_ensure_modifiable(btf))
1780 		return -ENOMEM;
1781 
1782 	sz = sizeof(struct btf_type);
1783 	t = btf_add_type_mem(btf, sz);
1784 	if (!t)
1785 		return -ENOMEM;
1786 
1787 	if (name && name[0]) {
1788 		name_off = btf__add_str(btf, name);
1789 		if (name_off < 0)
1790 			return name_off;
1791 	}
1792 
1793 	t->name_off = name_off;
1794 	t->info = btf_type_info(kind, 0, 0);
1795 	t->type = ref_type_id;
1796 
1797 	return btf_commit_type(btf, sz);
1798 }
1799 
1800 /*
1801  * Append new BTF_KIND_PTR type with:
1802  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1803  * Returns:
1804  *   - >0, type ID of newly added BTF type;
1805  *   - <0, on error.
1806  */
1807 int btf__add_ptr(struct btf *btf, int ref_type_id)
1808 {
1809 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1810 }
1811 
1812 /*
1813  * Append new BTF_KIND_ARRAY type with:
1814  *   - *index_type_id* - type ID of the type describing array index;
1815  *   - *elem_type_id* - type ID of the type describing array element;
1816  *   - *nr_elems* - the size of the array;
1817  * Returns:
1818  *   - >0, type ID of newly added BTF type;
1819  *   - <0, on error.
1820  */
1821 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1822 {
1823 	struct btf_type *t;
1824 	struct btf_array *a;
1825 	int sz;
1826 
1827 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1828 		return -EINVAL;
1829 
1830 	if (btf_ensure_modifiable(btf))
1831 		return -ENOMEM;
1832 
1833 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1834 	t = btf_add_type_mem(btf, sz);
1835 	if (!t)
1836 		return -ENOMEM;
1837 
1838 	t->name_off = 0;
1839 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1840 	t->size = 0;
1841 
1842 	a = btf_array(t);
1843 	a->type = elem_type_id;
1844 	a->index_type = index_type_id;
1845 	a->nelems = nr_elems;
1846 
1847 	return btf_commit_type(btf, sz);
1848 }
1849 
1850 /* generic STRUCT/UNION append function */
1851 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1852 {
1853 	struct btf_type *t;
1854 	int sz, name_off = 0;
1855 
1856 	if (btf_ensure_modifiable(btf))
1857 		return -ENOMEM;
1858 
1859 	sz = sizeof(struct btf_type);
1860 	t = btf_add_type_mem(btf, sz);
1861 	if (!t)
1862 		return -ENOMEM;
1863 
1864 	if (name && name[0]) {
1865 		name_off = btf__add_str(btf, name);
1866 		if (name_off < 0)
1867 			return name_off;
1868 	}
1869 
1870 	/* start out with vlen=0 and no kflag; this will be adjusted when
1871 	 * adding each member
1872 	 */
1873 	t->name_off = name_off;
1874 	t->info = btf_type_info(kind, 0, 0);
1875 	t->size = bytes_sz;
1876 
1877 	return btf_commit_type(btf, sz);
1878 }
1879 
1880 /*
1881  * Append new BTF_KIND_STRUCT type with:
1882  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1883  *   - *byte_sz* - size of the struct, in bytes;
1884  *
1885  * Struct initially has no fields in it. Fields can be added by
1886  * btf__add_field() right after btf__add_struct() succeeds.
1887  *
1888  * Returns:
1889  *   - >0, type ID of newly added BTF type;
1890  *   - <0, on error.
1891  */
1892 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1893 {
1894 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1895 }
1896 
1897 /*
1898  * Append new BTF_KIND_UNION type with:
1899  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1900  *   - *byte_sz* - size of the union, in bytes;
1901  *
1902  * Union initially has no fields in it. Fields can be added by
1903  * btf__add_field() right after btf__add_union() succeeds. All fields
1904  * should have *bit_offset* of 0.
1905  *
1906  * Returns:
1907  *   - >0, type ID of newly added BTF type;
1908  *   - <0, on error.
1909  */
1910 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1911 {
1912 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1913 }
1914 
1915 static struct btf_type *btf_last_type(struct btf *btf)
1916 {
1917 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1918 }
1919 
1920 /*
1921  * Append new field for the current STRUCT/UNION type with:
1922  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1923  *   - *type_id* - type ID for the type describing field type;
1924  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1925  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1926  * Returns:
1927  *   -  0, on success;
1928  *   - <0, on error.
1929  */
1930 int btf__add_field(struct btf *btf, const char *name, int type_id,
1931 		   __u32 bit_offset, __u32 bit_size)
1932 {
1933 	struct btf_type *t;
1934 	struct btf_member *m;
1935 	bool is_bitfield;
1936 	int sz, name_off = 0;
1937 
1938 	/* last type should be union/struct */
1939 	if (btf->nr_types == 0)
1940 		return -EINVAL;
1941 	t = btf_last_type(btf);
1942 	if (!btf_is_composite(t))
1943 		return -EINVAL;
1944 
1945 	if (validate_type_id(type_id))
1946 		return -EINVAL;
1947 	/* best-effort bit field offset/size enforcement */
1948 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1949 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1950 		return -EINVAL;
1951 
1952 	/* only offset 0 is allowed for unions */
1953 	if (btf_is_union(t) && bit_offset)
1954 		return -EINVAL;
1955 
1956 	/* decompose and invalidate raw data */
1957 	if (btf_ensure_modifiable(btf))
1958 		return -ENOMEM;
1959 
1960 	sz = sizeof(struct btf_member);
1961 	m = btf_add_type_mem(btf, sz);
1962 	if (!m)
1963 		return -ENOMEM;
1964 
1965 	if (name && name[0]) {
1966 		name_off = btf__add_str(btf, name);
1967 		if (name_off < 0)
1968 			return name_off;
1969 	}
1970 
1971 	m->name_off = name_off;
1972 	m->type = type_id;
1973 	m->offset = bit_offset | (bit_size << 24);
1974 
1975 	/* btf_add_type_mem can invalidate t pointer */
1976 	t = btf_last_type(btf);
1977 	/* update parent type's vlen and kflag */
1978 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1979 
1980 	btf->hdr->type_len += sz;
1981 	btf->hdr->str_off += sz;
1982 	return 0;
1983 }
1984 
1985 /*
1986  * Append new BTF_KIND_ENUM type with:
1987  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1988  *   - *byte_sz* - size of the enum, in bytes.
1989  *
1990  * Enum initially has no enum values in it (and corresponds to enum forward
1991  * declaration). Enumerator values can be added by btf__add_enum_value()
1992  * immediately after btf__add_enum() succeeds.
1993  *
1994  * Returns:
1995  *   - >0, type ID of newly added BTF type;
1996  *   - <0, on error.
1997  */
1998 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1999 {
2000 	struct btf_type *t;
2001 	int sz, name_off = 0;
2002 
2003 	/* byte_sz must be power of 2 */
2004 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2005 		return -EINVAL;
2006 
2007 	if (btf_ensure_modifiable(btf))
2008 		return -ENOMEM;
2009 
2010 	sz = sizeof(struct btf_type);
2011 	t = btf_add_type_mem(btf, sz);
2012 	if (!t)
2013 		return -ENOMEM;
2014 
2015 	if (name && name[0]) {
2016 		name_off = btf__add_str(btf, name);
2017 		if (name_off < 0)
2018 			return name_off;
2019 	}
2020 
2021 	/* start out with vlen=0; it will be adjusted when adding enum values */
2022 	t->name_off = name_off;
2023 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2024 	t->size = byte_sz;
2025 
2026 	return btf_commit_type(btf, sz);
2027 }
2028 
2029 /*
2030  * Append new enum value for the current ENUM type with:
2031  *   - *name* - name of the enumerator value, can't be NULL or empty;
2032  *   - *value* - integer value corresponding to enum value *name*;
2033  * Returns:
2034  *   -  0, on success;
2035  *   - <0, on error.
2036  */
2037 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2038 {
2039 	struct btf_type *t;
2040 	struct btf_enum *v;
2041 	int sz, name_off;
2042 
2043 	/* last type should be BTF_KIND_ENUM */
2044 	if (btf->nr_types == 0)
2045 		return -EINVAL;
2046 	t = btf_last_type(btf);
2047 	if (!btf_is_enum(t))
2048 		return -EINVAL;
2049 
2050 	/* non-empty name */
2051 	if (!name || !name[0])
2052 		return -EINVAL;
2053 	if (value < INT_MIN || value > UINT_MAX)
2054 		return -E2BIG;
2055 
2056 	/* decompose and invalidate raw data */
2057 	if (btf_ensure_modifiable(btf))
2058 		return -ENOMEM;
2059 
2060 	sz = sizeof(struct btf_enum);
2061 	v = btf_add_type_mem(btf, sz);
2062 	if (!v)
2063 		return -ENOMEM;
2064 
2065 	name_off = btf__add_str(btf, name);
2066 	if (name_off < 0)
2067 		return name_off;
2068 
2069 	v->name_off = name_off;
2070 	v->val = value;
2071 
2072 	/* update parent type's vlen */
2073 	t = btf_last_type(btf);
2074 	btf_type_inc_vlen(t);
2075 
2076 	btf->hdr->type_len += sz;
2077 	btf->hdr->str_off += sz;
2078 	return 0;
2079 }
2080 
2081 /*
2082  * Append new BTF_KIND_FWD type with:
2083  *   - *name*, non-empty/non-NULL name;
2084  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2085  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2086  * Returns:
2087  *   - >0, type ID of newly added BTF type;
2088  *   - <0, on error.
2089  */
2090 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2091 {
2092 	if (!name || !name[0])
2093 		return -EINVAL;
2094 
2095 	switch (fwd_kind) {
2096 	case BTF_FWD_STRUCT:
2097 	case BTF_FWD_UNION: {
2098 		struct btf_type *t;
2099 		int id;
2100 
2101 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2102 		if (id <= 0)
2103 			return id;
2104 		t = btf_type_by_id(btf, id);
2105 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2106 		return id;
2107 	}
2108 	case BTF_FWD_ENUM:
2109 		/* enum forward in BTF currently is just an enum with no enum
2110 		 * values; we also assume a standard 4-byte size for it
2111 		 */
2112 		return btf__add_enum(btf, name, sizeof(int));
2113 	default:
2114 		return -EINVAL;
2115 	}
2116 }
2117 
2118 /*
2119  * Append new BTF_KING_TYPEDEF type with:
2120  *   - *name*, non-empty/non-NULL name;
2121  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2122  * Returns:
2123  *   - >0, type ID of newly added BTF type;
2124  *   - <0, on error.
2125  */
2126 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2127 {
2128 	if (!name || !name[0])
2129 		return -EINVAL;
2130 
2131 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2132 }
2133 
2134 /*
2135  * Append new BTF_KIND_VOLATILE type with:
2136  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2137  * Returns:
2138  *   - >0, type ID of newly added BTF type;
2139  *   - <0, on error.
2140  */
2141 int btf__add_volatile(struct btf *btf, int ref_type_id)
2142 {
2143 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2144 }
2145 
2146 /*
2147  * Append new BTF_KIND_CONST type with:
2148  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2149  * Returns:
2150  *   - >0, type ID of newly added BTF type;
2151  *   - <0, on error.
2152  */
2153 int btf__add_const(struct btf *btf, int ref_type_id)
2154 {
2155 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2156 }
2157 
2158 /*
2159  * Append new BTF_KIND_RESTRICT type with:
2160  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2161  * Returns:
2162  *   - >0, type ID of newly added BTF type;
2163  *   - <0, on error.
2164  */
2165 int btf__add_restrict(struct btf *btf, int ref_type_id)
2166 {
2167 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2168 }
2169 
2170 /*
2171  * Append new BTF_KIND_FUNC type with:
2172  *   - *name*, non-empty/non-NULL name;
2173  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2174  * Returns:
2175  *   - >0, type ID of newly added BTF type;
2176  *   - <0, on error.
2177  */
2178 int btf__add_func(struct btf *btf, const char *name,
2179 		  enum btf_func_linkage linkage, int proto_type_id)
2180 {
2181 	int id;
2182 
2183 	if (!name || !name[0])
2184 		return -EINVAL;
2185 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2186 	    linkage != BTF_FUNC_EXTERN)
2187 		return -EINVAL;
2188 
2189 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2190 	if (id > 0) {
2191 		struct btf_type *t = btf_type_by_id(btf, id);
2192 
2193 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2194 	}
2195 	return id;
2196 }
2197 
2198 /*
2199  * Append new BTF_KIND_FUNC_PROTO with:
2200  *   - *ret_type_id* - type ID for return result of a function.
2201  *
2202  * Function prototype initially has no arguments, but they can be added by
2203  * btf__add_func_param() one by one, immediately after
2204  * btf__add_func_proto() succeeded.
2205  *
2206  * Returns:
2207  *   - >0, type ID of newly added BTF type;
2208  *   - <0, on error.
2209  */
2210 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2211 {
2212 	struct btf_type *t;
2213 	int sz;
2214 
2215 	if (validate_type_id(ret_type_id))
2216 		return -EINVAL;
2217 
2218 	if (btf_ensure_modifiable(btf))
2219 		return -ENOMEM;
2220 
2221 	sz = sizeof(struct btf_type);
2222 	t = btf_add_type_mem(btf, sz);
2223 	if (!t)
2224 		return -ENOMEM;
2225 
2226 	/* start out with vlen=0; this will be adjusted when adding enum
2227 	 * values, if necessary
2228 	 */
2229 	t->name_off = 0;
2230 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2231 	t->type = ret_type_id;
2232 
2233 	return btf_commit_type(btf, sz);
2234 }
2235 
2236 /*
2237  * Append new function parameter for current FUNC_PROTO type with:
2238  *   - *name* - parameter name, can be NULL or empty;
2239  *   - *type_id* - type ID describing the type of the parameter.
2240  * Returns:
2241  *   -  0, on success;
2242  *   - <0, on error.
2243  */
2244 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2245 {
2246 	struct btf_type *t;
2247 	struct btf_param *p;
2248 	int sz, name_off = 0;
2249 
2250 	if (validate_type_id(type_id))
2251 		return -EINVAL;
2252 
2253 	/* last type should be BTF_KIND_FUNC_PROTO */
2254 	if (btf->nr_types == 0)
2255 		return -EINVAL;
2256 	t = btf_last_type(btf);
2257 	if (!btf_is_func_proto(t))
2258 		return -EINVAL;
2259 
2260 	/* decompose and invalidate raw data */
2261 	if (btf_ensure_modifiable(btf))
2262 		return -ENOMEM;
2263 
2264 	sz = sizeof(struct btf_param);
2265 	p = btf_add_type_mem(btf, sz);
2266 	if (!p)
2267 		return -ENOMEM;
2268 
2269 	if (name && name[0]) {
2270 		name_off = btf__add_str(btf, name);
2271 		if (name_off < 0)
2272 			return name_off;
2273 	}
2274 
2275 	p->name_off = name_off;
2276 	p->type = type_id;
2277 
2278 	/* update parent type's vlen */
2279 	t = btf_last_type(btf);
2280 	btf_type_inc_vlen(t);
2281 
2282 	btf->hdr->type_len += sz;
2283 	btf->hdr->str_off += sz;
2284 	return 0;
2285 }
2286 
2287 /*
2288  * Append new BTF_KIND_VAR type with:
2289  *   - *name* - non-empty/non-NULL name;
2290  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2291  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2292  *   - *type_id* - type ID of the type describing the type of the variable.
2293  * Returns:
2294  *   - >0, type ID of newly added BTF type;
2295  *   - <0, on error.
2296  */
2297 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2298 {
2299 	struct btf_type *t;
2300 	struct btf_var *v;
2301 	int sz, name_off;
2302 
2303 	/* non-empty name */
2304 	if (!name || !name[0])
2305 		return -EINVAL;
2306 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2307 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2308 		return -EINVAL;
2309 	if (validate_type_id(type_id))
2310 		return -EINVAL;
2311 
2312 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2313 	if (btf_ensure_modifiable(btf))
2314 		return -ENOMEM;
2315 
2316 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2317 	t = btf_add_type_mem(btf, sz);
2318 	if (!t)
2319 		return -ENOMEM;
2320 
2321 	name_off = btf__add_str(btf, name);
2322 	if (name_off < 0)
2323 		return name_off;
2324 
2325 	t->name_off = name_off;
2326 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2327 	t->type = type_id;
2328 
2329 	v = btf_var(t);
2330 	v->linkage = linkage;
2331 
2332 	return btf_commit_type(btf, sz);
2333 }
2334 
2335 /*
2336  * Append new BTF_KIND_DATASEC type with:
2337  *   - *name* - non-empty/non-NULL name;
2338  *   - *byte_sz* - data section size, in bytes.
2339  *
2340  * Data section is initially empty. Variables info can be added with
2341  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2342  *
2343  * Returns:
2344  *   - >0, type ID of newly added BTF type;
2345  *   - <0, on error.
2346  */
2347 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2348 {
2349 	struct btf_type *t;
2350 	int sz, name_off;
2351 
2352 	/* non-empty name */
2353 	if (!name || !name[0])
2354 		return -EINVAL;
2355 
2356 	if (btf_ensure_modifiable(btf))
2357 		return -ENOMEM;
2358 
2359 	sz = sizeof(struct btf_type);
2360 	t = btf_add_type_mem(btf, sz);
2361 	if (!t)
2362 		return -ENOMEM;
2363 
2364 	name_off = btf__add_str(btf, name);
2365 	if (name_off < 0)
2366 		return name_off;
2367 
2368 	/* start with vlen=0, which will be update as var_secinfos are added */
2369 	t->name_off = name_off;
2370 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2371 	t->size = byte_sz;
2372 
2373 	return btf_commit_type(btf, sz);
2374 }
2375 
2376 /*
2377  * Append new data section variable information entry for current DATASEC type:
2378  *   - *var_type_id* - type ID, describing type of the variable;
2379  *   - *offset* - variable offset within data section, in bytes;
2380  *   - *byte_sz* - variable size, in bytes.
2381  *
2382  * Returns:
2383  *   -  0, on success;
2384  *   - <0, on error.
2385  */
2386 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2387 {
2388 	struct btf_type *t;
2389 	struct btf_var_secinfo *v;
2390 	int sz;
2391 
2392 	/* last type should be BTF_KIND_DATASEC */
2393 	if (btf->nr_types == 0)
2394 		return -EINVAL;
2395 	t = btf_last_type(btf);
2396 	if (!btf_is_datasec(t))
2397 		return -EINVAL;
2398 
2399 	if (validate_type_id(var_type_id))
2400 		return -EINVAL;
2401 
2402 	/* decompose and invalidate raw data */
2403 	if (btf_ensure_modifiable(btf))
2404 		return -ENOMEM;
2405 
2406 	sz = sizeof(struct btf_var_secinfo);
2407 	v = btf_add_type_mem(btf, sz);
2408 	if (!v)
2409 		return -ENOMEM;
2410 
2411 	v->type = var_type_id;
2412 	v->offset = offset;
2413 	v->size = byte_sz;
2414 
2415 	/* update parent type's vlen */
2416 	t = btf_last_type(btf);
2417 	btf_type_inc_vlen(t);
2418 
2419 	btf->hdr->type_len += sz;
2420 	btf->hdr->str_off += sz;
2421 	return 0;
2422 }
2423 
2424 struct btf_ext_sec_setup_param {
2425 	__u32 off;
2426 	__u32 len;
2427 	__u32 min_rec_size;
2428 	struct btf_ext_info *ext_info;
2429 	const char *desc;
2430 };
2431 
2432 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2433 			      struct btf_ext_sec_setup_param *ext_sec)
2434 {
2435 	const struct btf_ext_info_sec *sinfo;
2436 	struct btf_ext_info *ext_info;
2437 	__u32 info_left, record_size;
2438 	/* The start of the info sec (including the __u32 record_size). */
2439 	void *info;
2440 
2441 	if (ext_sec->len == 0)
2442 		return 0;
2443 
2444 	if (ext_sec->off & 0x03) {
2445 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2446 		     ext_sec->desc);
2447 		return -EINVAL;
2448 	}
2449 
2450 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2451 	info_left = ext_sec->len;
2452 
2453 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2454 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2455 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2456 		return -EINVAL;
2457 	}
2458 
2459 	/* At least a record size */
2460 	if (info_left < sizeof(__u32)) {
2461 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2462 		return -EINVAL;
2463 	}
2464 
2465 	/* The record size needs to meet the minimum standard */
2466 	record_size = *(__u32 *)info;
2467 	if (record_size < ext_sec->min_rec_size ||
2468 	    record_size & 0x03) {
2469 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2470 			 ext_sec->desc, record_size);
2471 		return -EINVAL;
2472 	}
2473 
2474 	sinfo = info + sizeof(__u32);
2475 	info_left -= sizeof(__u32);
2476 
2477 	/* If no records, return failure now so .BTF.ext won't be used. */
2478 	if (!info_left) {
2479 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2480 		return -EINVAL;
2481 	}
2482 
2483 	while (info_left) {
2484 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2485 		__u64 total_record_size;
2486 		__u32 num_records;
2487 
2488 		if (info_left < sec_hdrlen) {
2489 			pr_debug("%s section header is not found in .BTF.ext\n",
2490 			     ext_sec->desc);
2491 			return -EINVAL;
2492 		}
2493 
2494 		num_records = sinfo->num_info;
2495 		if (num_records == 0) {
2496 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2497 			     ext_sec->desc);
2498 			return -EINVAL;
2499 		}
2500 
2501 		total_record_size = sec_hdrlen +
2502 				    (__u64)num_records * record_size;
2503 		if (info_left < total_record_size) {
2504 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2505 			     ext_sec->desc);
2506 			return -EINVAL;
2507 		}
2508 
2509 		info_left -= total_record_size;
2510 		sinfo = (void *)sinfo + total_record_size;
2511 	}
2512 
2513 	ext_info = ext_sec->ext_info;
2514 	ext_info->len = ext_sec->len - sizeof(__u32);
2515 	ext_info->rec_size = record_size;
2516 	ext_info->info = info + sizeof(__u32);
2517 
2518 	return 0;
2519 }
2520 
2521 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2522 {
2523 	struct btf_ext_sec_setup_param param = {
2524 		.off = btf_ext->hdr->func_info_off,
2525 		.len = btf_ext->hdr->func_info_len,
2526 		.min_rec_size = sizeof(struct bpf_func_info_min),
2527 		.ext_info = &btf_ext->func_info,
2528 		.desc = "func_info"
2529 	};
2530 
2531 	return btf_ext_setup_info(btf_ext, &param);
2532 }
2533 
2534 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2535 {
2536 	struct btf_ext_sec_setup_param param = {
2537 		.off = btf_ext->hdr->line_info_off,
2538 		.len = btf_ext->hdr->line_info_len,
2539 		.min_rec_size = sizeof(struct bpf_line_info_min),
2540 		.ext_info = &btf_ext->line_info,
2541 		.desc = "line_info",
2542 	};
2543 
2544 	return btf_ext_setup_info(btf_ext, &param);
2545 }
2546 
2547 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2548 {
2549 	struct btf_ext_sec_setup_param param = {
2550 		.off = btf_ext->hdr->core_relo_off,
2551 		.len = btf_ext->hdr->core_relo_len,
2552 		.min_rec_size = sizeof(struct bpf_core_relo),
2553 		.ext_info = &btf_ext->core_relo_info,
2554 		.desc = "core_relo",
2555 	};
2556 
2557 	return btf_ext_setup_info(btf_ext, &param);
2558 }
2559 
2560 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2561 {
2562 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2563 
2564 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2565 	    data_size < hdr->hdr_len) {
2566 		pr_debug("BTF.ext header not found");
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2571 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2572 		return -ENOTSUP;
2573 	} else if (hdr->magic != BTF_MAGIC) {
2574 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (hdr->version != BTF_VERSION) {
2579 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2580 		return -ENOTSUP;
2581 	}
2582 
2583 	if (hdr->flags) {
2584 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2585 		return -ENOTSUP;
2586 	}
2587 
2588 	if (data_size == hdr->hdr_len) {
2589 		pr_debug("BTF.ext has no data\n");
2590 		return -EINVAL;
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 void btf_ext__free(struct btf_ext *btf_ext)
2597 {
2598 	if (IS_ERR_OR_NULL(btf_ext))
2599 		return;
2600 	free(btf_ext->data);
2601 	free(btf_ext);
2602 }
2603 
2604 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2605 {
2606 	struct btf_ext *btf_ext;
2607 	int err;
2608 
2609 	err = btf_ext_parse_hdr(data, size);
2610 	if (err)
2611 		return ERR_PTR(err);
2612 
2613 	btf_ext = calloc(1, sizeof(struct btf_ext));
2614 	if (!btf_ext)
2615 		return ERR_PTR(-ENOMEM);
2616 
2617 	btf_ext->data_size = size;
2618 	btf_ext->data = malloc(size);
2619 	if (!btf_ext->data) {
2620 		err = -ENOMEM;
2621 		goto done;
2622 	}
2623 	memcpy(btf_ext->data, data, size);
2624 
2625 	if (btf_ext->hdr->hdr_len <
2626 	    offsetofend(struct btf_ext_header, line_info_len))
2627 		goto done;
2628 	err = btf_ext_setup_func_info(btf_ext);
2629 	if (err)
2630 		goto done;
2631 
2632 	err = btf_ext_setup_line_info(btf_ext);
2633 	if (err)
2634 		goto done;
2635 
2636 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2637 		goto done;
2638 	err = btf_ext_setup_core_relos(btf_ext);
2639 	if (err)
2640 		goto done;
2641 
2642 done:
2643 	if (err) {
2644 		btf_ext__free(btf_ext);
2645 		return ERR_PTR(err);
2646 	}
2647 
2648 	return btf_ext;
2649 }
2650 
2651 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2652 {
2653 	*size = btf_ext->data_size;
2654 	return btf_ext->data;
2655 }
2656 
2657 static int btf_ext_reloc_info(const struct btf *btf,
2658 			      const struct btf_ext_info *ext_info,
2659 			      const char *sec_name, __u32 insns_cnt,
2660 			      void **info, __u32 *cnt)
2661 {
2662 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2663 	__u32 i, record_size, existing_len, records_len;
2664 	struct btf_ext_info_sec *sinfo;
2665 	const char *info_sec_name;
2666 	__u64 remain_len;
2667 	void *data;
2668 
2669 	record_size = ext_info->rec_size;
2670 	sinfo = ext_info->info;
2671 	remain_len = ext_info->len;
2672 	while (remain_len > 0) {
2673 		records_len = sinfo->num_info * record_size;
2674 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2675 		if (strcmp(info_sec_name, sec_name)) {
2676 			remain_len -= sec_hdrlen + records_len;
2677 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2678 			continue;
2679 		}
2680 
2681 		existing_len = (*cnt) * record_size;
2682 		data = realloc(*info, existing_len + records_len);
2683 		if (!data)
2684 			return -ENOMEM;
2685 
2686 		memcpy(data + existing_len, sinfo->data, records_len);
2687 		/* adjust insn_off only, the rest data will be passed
2688 		 * to the kernel.
2689 		 */
2690 		for (i = 0; i < sinfo->num_info; i++) {
2691 			__u32 *insn_off;
2692 
2693 			insn_off = data + existing_len + (i * record_size);
2694 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2695 				insns_cnt;
2696 		}
2697 		*info = data;
2698 		*cnt += sinfo->num_info;
2699 		return 0;
2700 	}
2701 
2702 	return -ENOENT;
2703 }
2704 
2705 int btf_ext__reloc_func_info(const struct btf *btf,
2706 			     const struct btf_ext *btf_ext,
2707 			     const char *sec_name, __u32 insns_cnt,
2708 			     void **func_info, __u32 *cnt)
2709 {
2710 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2711 				  insns_cnt, func_info, cnt);
2712 }
2713 
2714 int btf_ext__reloc_line_info(const struct btf *btf,
2715 			     const struct btf_ext *btf_ext,
2716 			     const char *sec_name, __u32 insns_cnt,
2717 			     void **line_info, __u32 *cnt)
2718 {
2719 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2720 				  insns_cnt, line_info, cnt);
2721 }
2722 
2723 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2724 {
2725 	return btf_ext->func_info.rec_size;
2726 }
2727 
2728 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2729 {
2730 	return btf_ext->line_info.rec_size;
2731 }
2732 
2733 struct btf_dedup;
2734 
2735 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2736 				       const struct btf_dedup_opts *opts);
2737 static void btf_dedup_free(struct btf_dedup *d);
2738 static int btf_dedup_prep(struct btf_dedup *d);
2739 static int btf_dedup_strings(struct btf_dedup *d);
2740 static int btf_dedup_prim_types(struct btf_dedup *d);
2741 static int btf_dedup_struct_types(struct btf_dedup *d);
2742 static int btf_dedup_ref_types(struct btf_dedup *d);
2743 static int btf_dedup_compact_types(struct btf_dedup *d);
2744 static int btf_dedup_remap_types(struct btf_dedup *d);
2745 
2746 /*
2747  * Deduplicate BTF types and strings.
2748  *
2749  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2750  * section with all BTF type descriptors and string data. It overwrites that
2751  * memory in-place with deduplicated types and strings without any loss of
2752  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2753  * is provided, all the strings referenced from .BTF.ext section are honored
2754  * and updated to point to the right offsets after deduplication.
2755  *
2756  * If function returns with error, type/string data might be garbled and should
2757  * be discarded.
2758  *
2759  * More verbose and detailed description of both problem btf_dedup is solving,
2760  * as well as solution could be found at:
2761  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2762  *
2763  * Problem description and justification
2764  * =====================================
2765  *
2766  * BTF type information is typically emitted either as a result of conversion
2767  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2768  * unit contains information about a subset of all the types that are used
2769  * in an application. These subsets are frequently overlapping and contain a lot
2770  * of duplicated information when later concatenated together into a single
2771  * binary. This algorithm ensures that each unique type is represented by single
2772  * BTF type descriptor, greatly reducing resulting size of BTF data.
2773  *
2774  * Compilation unit isolation and subsequent duplication of data is not the only
2775  * problem. The same type hierarchy (e.g., struct and all the type that struct
2776  * references) in different compilation units can be represented in BTF to
2777  * various degrees of completeness (or, rather, incompleteness) due to
2778  * struct/union forward declarations.
2779  *
2780  * Let's take a look at an example, that we'll use to better understand the
2781  * problem (and solution). Suppose we have two compilation units, each using
2782  * same `struct S`, but each of them having incomplete type information about
2783  * struct's fields:
2784  *
2785  * // CU #1:
2786  * struct S;
2787  * struct A {
2788  *	int a;
2789  *	struct A* self;
2790  *	struct S* parent;
2791  * };
2792  * struct B;
2793  * struct S {
2794  *	struct A* a_ptr;
2795  *	struct B* b_ptr;
2796  * };
2797  *
2798  * // CU #2:
2799  * struct S;
2800  * struct A;
2801  * struct B {
2802  *	int b;
2803  *	struct B* self;
2804  *	struct S* parent;
2805  * };
2806  * struct S {
2807  *	struct A* a_ptr;
2808  *	struct B* b_ptr;
2809  * };
2810  *
2811  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2812  * more), but will know the complete type information about `struct A`. While
2813  * for CU #2, it will know full type information about `struct B`, but will
2814  * only know about forward declaration of `struct A` (in BTF terms, it will
2815  * have `BTF_KIND_FWD` type descriptor with name `B`).
2816  *
2817  * This compilation unit isolation means that it's possible that there is no
2818  * single CU with complete type information describing structs `S`, `A`, and
2819  * `B`. Also, we might get tons of duplicated and redundant type information.
2820  *
2821  * Additional complication we need to keep in mind comes from the fact that
2822  * types, in general, can form graphs containing cycles, not just DAGs.
2823  *
2824  * While algorithm does deduplication, it also merges and resolves type
2825  * information (unless disabled throught `struct btf_opts`), whenever possible.
2826  * E.g., in the example above with two compilation units having partial type
2827  * information for structs `A` and `B`, the output of algorithm will emit
2828  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2829  * (as well as type information for `int` and pointers), as if they were defined
2830  * in a single compilation unit as:
2831  *
2832  * struct A {
2833  *	int a;
2834  *	struct A* self;
2835  *	struct S* parent;
2836  * };
2837  * struct B {
2838  *	int b;
2839  *	struct B* self;
2840  *	struct S* parent;
2841  * };
2842  * struct S {
2843  *	struct A* a_ptr;
2844  *	struct B* b_ptr;
2845  * };
2846  *
2847  * Algorithm summary
2848  * =================
2849  *
2850  * Algorithm completes its work in 6 separate passes:
2851  *
2852  * 1. Strings deduplication.
2853  * 2. Primitive types deduplication (int, enum, fwd).
2854  * 3. Struct/union types deduplication.
2855  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2856  *    protos, and const/volatile/restrict modifiers).
2857  * 5. Types compaction.
2858  * 6. Types remapping.
2859  *
2860  * Algorithm determines canonical type descriptor, which is a single
2861  * representative type for each truly unique type. This canonical type is the
2862  * one that will go into final deduplicated BTF type information. For
2863  * struct/unions, it is also the type that algorithm will merge additional type
2864  * information into (while resolving FWDs), as it discovers it from data in
2865  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2866  * that type is canonical, or to some other type, if that type is equivalent
2867  * and was chosen as canonical representative. This mapping is stored in
2868  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2869  * FWD type got resolved to.
2870  *
2871  * To facilitate fast discovery of canonical types, we also maintain canonical
2872  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2873  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2874  * that match that signature. With sufficiently good choice of type signature
2875  * hashing function, we can limit number of canonical types for each unique type
2876  * signature to a very small number, allowing to find canonical type for any
2877  * duplicated type very quickly.
2878  *
2879  * Struct/union deduplication is the most critical part and algorithm for
2880  * deduplicating structs/unions is described in greater details in comments for
2881  * `btf_dedup_is_equiv` function.
2882  */
2883 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2884 	       const struct btf_dedup_opts *opts)
2885 {
2886 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2887 	int err;
2888 
2889 	if (IS_ERR(d)) {
2890 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2891 		return -EINVAL;
2892 	}
2893 
2894 	if (btf_ensure_modifiable(btf))
2895 		return -ENOMEM;
2896 
2897 	err = btf_dedup_prep(d);
2898 	if (err) {
2899 		pr_debug("btf_dedup_prep failed:%d\n", err);
2900 		goto done;
2901 	}
2902 	err = btf_dedup_strings(d);
2903 	if (err < 0) {
2904 		pr_debug("btf_dedup_strings failed:%d\n", err);
2905 		goto done;
2906 	}
2907 	err = btf_dedup_prim_types(d);
2908 	if (err < 0) {
2909 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2910 		goto done;
2911 	}
2912 	err = btf_dedup_struct_types(d);
2913 	if (err < 0) {
2914 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2915 		goto done;
2916 	}
2917 	err = btf_dedup_ref_types(d);
2918 	if (err < 0) {
2919 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2920 		goto done;
2921 	}
2922 	err = btf_dedup_compact_types(d);
2923 	if (err < 0) {
2924 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2925 		goto done;
2926 	}
2927 	err = btf_dedup_remap_types(d);
2928 	if (err < 0) {
2929 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2930 		goto done;
2931 	}
2932 
2933 done:
2934 	btf_dedup_free(d);
2935 	return err;
2936 }
2937 
2938 #define BTF_UNPROCESSED_ID ((__u32)-1)
2939 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2940 
2941 struct btf_dedup {
2942 	/* .BTF section to be deduped in-place */
2943 	struct btf *btf;
2944 	/*
2945 	 * Optional .BTF.ext section. When provided, any strings referenced
2946 	 * from it will be taken into account when deduping strings
2947 	 */
2948 	struct btf_ext *btf_ext;
2949 	/*
2950 	 * This is a map from any type's signature hash to a list of possible
2951 	 * canonical representative type candidates. Hash collisions are
2952 	 * ignored, so even types of various kinds can share same list of
2953 	 * candidates, which is fine because we rely on subsequent
2954 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2955 	 */
2956 	struct hashmap *dedup_table;
2957 	/* Canonical types map */
2958 	__u32 *map;
2959 	/* Hypothetical mapping, used during type graph equivalence checks */
2960 	__u32 *hypot_map;
2961 	__u32 *hypot_list;
2962 	size_t hypot_cnt;
2963 	size_t hypot_cap;
2964 	/* Whether hypothetical mapping, if successful, would need to adjust
2965 	 * already canonicalized types (due to a new forward declaration to
2966 	 * concrete type resolution). In such case, during split BTF dedup
2967 	 * candidate type would still be considered as different, because base
2968 	 * BTF is considered to be immutable.
2969 	 */
2970 	bool hypot_adjust_canon;
2971 	/* Various option modifying behavior of algorithm */
2972 	struct btf_dedup_opts opts;
2973 	/* temporary strings deduplication state */
2974 	void *strs_data;
2975 	size_t strs_cap;
2976 	size_t strs_len;
2977 	struct hashmap* strs_hash;
2978 };
2979 
2980 static long hash_combine(long h, long value)
2981 {
2982 	return h * 31 + value;
2983 }
2984 
2985 #define for_each_dedup_cand(d, node, hash) \
2986 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2987 
2988 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2989 {
2990 	return hashmap__append(d->dedup_table,
2991 			       (void *)hash, (void *)(long)type_id);
2992 }
2993 
2994 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2995 				   __u32 from_id, __u32 to_id)
2996 {
2997 	if (d->hypot_cnt == d->hypot_cap) {
2998 		__u32 *new_list;
2999 
3000 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3001 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3002 		if (!new_list)
3003 			return -ENOMEM;
3004 		d->hypot_list = new_list;
3005 	}
3006 	d->hypot_list[d->hypot_cnt++] = from_id;
3007 	d->hypot_map[from_id] = to_id;
3008 	return 0;
3009 }
3010 
3011 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3012 {
3013 	int i;
3014 
3015 	for (i = 0; i < d->hypot_cnt; i++)
3016 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3017 	d->hypot_cnt = 0;
3018 	d->hypot_adjust_canon = false;
3019 }
3020 
3021 static void btf_dedup_free(struct btf_dedup *d)
3022 {
3023 	hashmap__free(d->dedup_table);
3024 	d->dedup_table = NULL;
3025 
3026 	free(d->map);
3027 	d->map = NULL;
3028 
3029 	free(d->hypot_map);
3030 	d->hypot_map = NULL;
3031 
3032 	free(d->hypot_list);
3033 	d->hypot_list = NULL;
3034 
3035 	free(d);
3036 }
3037 
3038 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3039 {
3040 	return (size_t)key;
3041 }
3042 
3043 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3044 {
3045 	return 0;
3046 }
3047 
3048 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3049 {
3050 	return k1 == k2;
3051 }
3052 
3053 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3054 				       const struct btf_dedup_opts *opts)
3055 {
3056 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3057 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3058 	int i, err = 0, type_cnt;
3059 
3060 	if (!d)
3061 		return ERR_PTR(-ENOMEM);
3062 
3063 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3064 	/* dedup_table_size is now used only to force collisions in tests */
3065 	if (opts && opts->dedup_table_size == 1)
3066 		hash_fn = btf_dedup_collision_hash_fn;
3067 
3068 	d->btf = btf;
3069 	d->btf_ext = btf_ext;
3070 
3071 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3072 	if (IS_ERR(d->dedup_table)) {
3073 		err = PTR_ERR(d->dedup_table);
3074 		d->dedup_table = NULL;
3075 		goto done;
3076 	}
3077 
3078 	type_cnt = btf__get_nr_types(btf) + 1;
3079 	d->map = malloc(sizeof(__u32) * type_cnt);
3080 	if (!d->map) {
3081 		err = -ENOMEM;
3082 		goto done;
3083 	}
3084 	/* special BTF "void" type is made canonical immediately */
3085 	d->map[0] = 0;
3086 	for (i = 1; i < type_cnt; i++) {
3087 		struct btf_type *t = btf_type_by_id(d->btf, i);
3088 
3089 		/* VAR and DATASEC are never deduped and are self-canonical */
3090 		if (btf_is_var(t) || btf_is_datasec(t))
3091 			d->map[i] = i;
3092 		else
3093 			d->map[i] = BTF_UNPROCESSED_ID;
3094 	}
3095 
3096 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3097 	if (!d->hypot_map) {
3098 		err = -ENOMEM;
3099 		goto done;
3100 	}
3101 	for (i = 0; i < type_cnt; i++)
3102 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3103 
3104 done:
3105 	if (err) {
3106 		btf_dedup_free(d);
3107 		return ERR_PTR(err);
3108 	}
3109 
3110 	return d;
3111 }
3112 
3113 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3114 
3115 /*
3116  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3117  * string and pass pointer to it to a provided callback `fn`.
3118  */
3119 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3120 {
3121 	void *line_data_cur, *line_data_end;
3122 	int i, j, r, rec_size;
3123 	struct btf_type *t;
3124 
3125 	for (i = 0; i < d->btf->nr_types; i++) {
3126 		t = btf_type_by_id(d->btf, d->btf->start_id + i);
3127 		r = fn(&t->name_off, ctx);
3128 		if (r)
3129 			return r;
3130 
3131 		switch (btf_kind(t)) {
3132 		case BTF_KIND_STRUCT:
3133 		case BTF_KIND_UNION: {
3134 			struct btf_member *m = btf_members(t);
3135 			__u16 vlen = btf_vlen(t);
3136 
3137 			for (j = 0; j < vlen; j++) {
3138 				r = fn(&m->name_off, ctx);
3139 				if (r)
3140 					return r;
3141 				m++;
3142 			}
3143 			break;
3144 		}
3145 		case BTF_KIND_ENUM: {
3146 			struct btf_enum *m = btf_enum(t);
3147 			__u16 vlen = btf_vlen(t);
3148 
3149 			for (j = 0; j < vlen; j++) {
3150 				r = fn(&m->name_off, ctx);
3151 				if (r)
3152 					return r;
3153 				m++;
3154 			}
3155 			break;
3156 		}
3157 		case BTF_KIND_FUNC_PROTO: {
3158 			struct btf_param *m = btf_params(t);
3159 			__u16 vlen = btf_vlen(t);
3160 
3161 			for (j = 0; j < vlen; j++) {
3162 				r = fn(&m->name_off, ctx);
3163 				if (r)
3164 					return r;
3165 				m++;
3166 			}
3167 			break;
3168 		}
3169 		default:
3170 			break;
3171 		}
3172 	}
3173 
3174 	if (!d->btf_ext)
3175 		return 0;
3176 
3177 	line_data_cur = d->btf_ext->line_info.info;
3178 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3179 	rec_size = d->btf_ext->line_info.rec_size;
3180 
3181 	while (line_data_cur < line_data_end) {
3182 		struct btf_ext_info_sec *sec = line_data_cur;
3183 		struct bpf_line_info_min *line_info;
3184 		__u32 num_info = sec->num_info;
3185 
3186 		r = fn(&sec->sec_name_off, ctx);
3187 		if (r)
3188 			return r;
3189 
3190 		line_data_cur += sizeof(struct btf_ext_info_sec);
3191 		for (i = 0; i < num_info; i++) {
3192 			line_info = line_data_cur;
3193 			r = fn(&line_info->file_name_off, ctx);
3194 			if (r)
3195 				return r;
3196 			r = fn(&line_info->line_off, ctx);
3197 			if (r)
3198 				return r;
3199 			line_data_cur += rec_size;
3200 		}
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3207 {
3208 	struct btf_dedup *d = ctx;
3209 	__u32 str_off = *str_off_ptr;
3210 	long old_off, new_off, len;
3211 	const char *s;
3212 	void *p;
3213 	int err;
3214 
3215 	/* don't touch empty string or string in main BTF */
3216 	if (str_off == 0 || str_off < d->btf->start_str_off)
3217 		return 0;
3218 
3219 	s = btf__str_by_offset(d->btf, str_off);
3220 	if (d->btf->base_btf) {
3221 		err = btf__find_str(d->btf->base_btf, s);
3222 		if (err >= 0) {
3223 			*str_off_ptr = err;
3224 			return 0;
3225 		}
3226 		if (err != -ENOENT)
3227 			return err;
3228 	}
3229 
3230 	len = strlen(s) + 1;
3231 
3232 	new_off = d->strs_len;
3233 	p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len);
3234 	if (!p)
3235 		return -ENOMEM;
3236 
3237 	memcpy(p, s, len);
3238 
3239 	/* Now attempt to add the string, but only if the string with the same
3240 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3241 	 * string exists, we'll get its offset in old_off (that's old_key).
3242 	 */
3243 	err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off,
3244 			      HASHMAP_ADD, (const void **)&old_off, NULL);
3245 	if (err == -EEXIST) {
3246 		*str_off_ptr = d->btf->start_str_off + old_off;
3247 	} else if (err) {
3248 		return err;
3249 	} else {
3250 		*str_off_ptr = d->btf->start_str_off + new_off;
3251 		d->strs_len += len;
3252 	}
3253 	return 0;
3254 }
3255 
3256 /*
3257  * Dedup string and filter out those that are not referenced from either .BTF
3258  * or .BTF.ext (if provided) sections.
3259  *
3260  * This is done by building index of all strings in BTF's string section,
3261  * then iterating over all entities that can reference strings (e.g., type
3262  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3263  * strings as used. After that all used strings are deduped and compacted into
3264  * sequential blob of memory and new offsets are calculated. Then all the string
3265  * references are iterated again and rewritten using new offsets.
3266  */
3267 static int btf_dedup_strings(struct btf_dedup *d)
3268 {
3269 	char *s;
3270 	int err;
3271 
3272 	if (d->btf->strs_deduped)
3273 		return 0;
3274 
3275 	/* temporarily switch to use btf_dedup's strs_data for strings for hash
3276 	 * functions; later we'll just transfer hashmap to struct btf as is,
3277 	 * along the strs_data
3278 	 */
3279 	d->btf->strs_data_ptr = &d->strs_data;
3280 
3281 	d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf);
3282 	if (IS_ERR(d->strs_hash)) {
3283 		err = PTR_ERR(d->strs_hash);
3284 		d->strs_hash = NULL;
3285 		goto err_out;
3286 	}
3287 
3288 	if (!d->btf->base_btf) {
3289 		s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1);
3290 		if (!s)
3291 			return -ENOMEM;
3292 		/* initial empty string */
3293 		s[0] = 0;
3294 		d->strs_len = 1;
3295 
3296 		/* insert empty string; we won't be looking it up during strings
3297 		 * dedup, but it's good to have it for generic BTF string lookups
3298 		 */
3299 		err = hashmap__insert(d->strs_hash, (void *)0, (void *)0,
3300 				      HASHMAP_ADD, NULL, NULL);
3301 		if (err)
3302 			goto err_out;
3303 	}
3304 
3305 	/* remap string offsets */
3306 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3307 	if (err)
3308 		goto err_out;
3309 
3310 	/* replace BTF string data and hash with deduped ones */
3311 	free(d->btf->strs_data);
3312 	hashmap__free(d->btf->strs_hash);
3313 	d->btf->strs_data = d->strs_data;
3314 	d->btf->strs_data_cap = d->strs_cap;
3315 	d->btf->hdr->str_len = d->strs_len;
3316 	d->btf->strs_hash = d->strs_hash;
3317 	/* now point strs_data_ptr back to btf->strs_data */
3318 	d->btf->strs_data_ptr = &d->btf->strs_data;
3319 
3320 	d->strs_data = d->strs_hash = NULL;
3321 	d->strs_len = d->strs_cap = 0;
3322 	d->btf->strs_deduped = true;
3323 	return 0;
3324 
3325 err_out:
3326 	free(d->strs_data);
3327 	hashmap__free(d->strs_hash);
3328 	d->strs_data = d->strs_hash = NULL;
3329 	d->strs_len = d->strs_cap = 0;
3330 
3331 	/* restore strings pointer for existing d->btf->strs_hash back */
3332 	d->btf->strs_data_ptr = &d->strs_data;
3333 
3334 	return err;
3335 }
3336 
3337 static long btf_hash_common(struct btf_type *t)
3338 {
3339 	long h;
3340 
3341 	h = hash_combine(0, t->name_off);
3342 	h = hash_combine(h, t->info);
3343 	h = hash_combine(h, t->size);
3344 	return h;
3345 }
3346 
3347 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3348 {
3349 	return t1->name_off == t2->name_off &&
3350 	       t1->info == t2->info &&
3351 	       t1->size == t2->size;
3352 }
3353 
3354 /* Calculate type signature hash of INT. */
3355 static long btf_hash_int(struct btf_type *t)
3356 {
3357 	__u32 info = *(__u32 *)(t + 1);
3358 	long h;
3359 
3360 	h = btf_hash_common(t);
3361 	h = hash_combine(h, info);
3362 	return h;
3363 }
3364 
3365 /* Check structural equality of two INTs. */
3366 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3367 {
3368 	__u32 info1, info2;
3369 
3370 	if (!btf_equal_common(t1, t2))
3371 		return false;
3372 	info1 = *(__u32 *)(t1 + 1);
3373 	info2 = *(__u32 *)(t2 + 1);
3374 	return info1 == info2;
3375 }
3376 
3377 /* Calculate type signature hash of ENUM. */
3378 static long btf_hash_enum(struct btf_type *t)
3379 {
3380 	long h;
3381 
3382 	/* don't hash vlen and enum members to support enum fwd resolving */
3383 	h = hash_combine(0, t->name_off);
3384 	h = hash_combine(h, t->info & ~0xffff);
3385 	h = hash_combine(h, t->size);
3386 	return h;
3387 }
3388 
3389 /* Check structural equality of two ENUMs. */
3390 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3391 {
3392 	const struct btf_enum *m1, *m2;
3393 	__u16 vlen;
3394 	int i;
3395 
3396 	if (!btf_equal_common(t1, t2))
3397 		return false;
3398 
3399 	vlen = btf_vlen(t1);
3400 	m1 = btf_enum(t1);
3401 	m2 = btf_enum(t2);
3402 	for (i = 0; i < vlen; i++) {
3403 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3404 			return false;
3405 		m1++;
3406 		m2++;
3407 	}
3408 	return true;
3409 }
3410 
3411 static inline bool btf_is_enum_fwd(struct btf_type *t)
3412 {
3413 	return btf_is_enum(t) && btf_vlen(t) == 0;
3414 }
3415 
3416 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3417 {
3418 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3419 		return btf_equal_enum(t1, t2);
3420 	/* ignore vlen when comparing */
3421 	return t1->name_off == t2->name_off &&
3422 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3423 	       t1->size == t2->size;
3424 }
3425 
3426 /*
3427  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3428  * as referenced type IDs equivalence is established separately during type
3429  * graph equivalence check algorithm.
3430  */
3431 static long btf_hash_struct(struct btf_type *t)
3432 {
3433 	const struct btf_member *member = btf_members(t);
3434 	__u32 vlen = btf_vlen(t);
3435 	long h = btf_hash_common(t);
3436 	int i;
3437 
3438 	for (i = 0; i < vlen; i++) {
3439 		h = hash_combine(h, member->name_off);
3440 		h = hash_combine(h, member->offset);
3441 		/* no hashing of referenced type ID, it can be unresolved yet */
3442 		member++;
3443 	}
3444 	return h;
3445 }
3446 
3447 /*
3448  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3449  * IDs. This check is performed during type graph equivalence check and
3450  * referenced types equivalence is checked separately.
3451  */
3452 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3453 {
3454 	const struct btf_member *m1, *m2;
3455 	__u16 vlen;
3456 	int i;
3457 
3458 	if (!btf_equal_common(t1, t2))
3459 		return false;
3460 
3461 	vlen = btf_vlen(t1);
3462 	m1 = btf_members(t1);
3463 	m2 = btf_members(t2);
3464 	for (i = 0; i < vlen; i++) {
3465 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3466 			return false;
3467 		m1++;
3468 		m2++;
3469 	}
3470 	return true;
3471 }
3472 
3473 /*
3474  * Calculate type signature hash of ARRAY, including referenced type IDs,
3475  * under assumption that they were already resolved to canonical type IDs and
3476  * are not going to change.
3477  */
3478 static long btf_hash_array(struct btf_type *t)
3479 {
3480 	const struct btf_array *info = btf_array(t);
3481 	long h = btf_hash_common(t);
3482 
3483 	h = hash_combine(h, info->type);
3484 	h = hash_combine(h, info->index_type);
3485 	h = hash_combine(h, info->nelems);
3486 	return h;
3487 }
3488 
3489 /*
3490  * Check exact equality of two ARRAYs, taking into account referenced
3491  * type IDs, under assumption that they were already resolved to canonical
3492  * type IDs and are not going to change.
3493  * This function is called during reference types deduplication to compare
3494  * ARRAY to potential canonical representative.
3495  */
3496 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3497 {
3498 	const struct btf_array *info1, *info2;
3499 
3500 	if (!btf_equal_common(t1, t2))
3501 		return false;
3502 
3503 	info1 = btf_array(t1);
3504 	info2 = btf_array(t2);
3505 	return info1->type == info2->type &&
3506 	       info1->index_type == info2->index_type &&
3507 	       info1->nelems == info2->nelems;
3508 }
3509 
3510 /*
3511  * Check structural compatibility of two ARRAYs, ignoring referenced type
3512  * IDs. This check is performed during type graph equivalence check and
3513  * referenced types equivalence is checked separately.
3514  */
3515 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3516 {
3517 	if (!btf_equal_common(t1, t2))
3518 		return false;
3519 
3520 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3521 }
3522 
3523 /*
3524  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3525  * under assumption that they were already resolved to canonical type IDs and
3526  * are not going to change.
3527  */
3528 static long btf_hash_fnproto(struct btf_type *t)
3529 {
3530 	const struct btf_param *member = btf_params(t);
3531 	__u16 vlen = btf_vlen(t);
3532 	long h = btf_hash_common(t);
3533 	int i;
3534 
3535 	for (i = 0; i < vlen; i++) {
3536 		h = hash_combine(h, member->name_off);
3537 		h = hash_combine(h, member->type);
3538 		member++;
3539 	}
3540 	return h;
3541 }
3542 
3543 /*
3544  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3545  * type IDs, under assumption that they were already resolved to canonical
3546  * type IDs and are not going to change.
3547  * This function is called during reference types deduplication to compare
3548  * FUNC_PROTO to potential canonical representative.
3549  */
3550 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3551 {
3552 	const struct btf_param *m1, *m2;
3553 	__u16 vlen;
3554 	int i;
3555 
3556 	if (!btf_equal_common(t1, t2))
3557 		return false;
3558 
3559 	vlen = btf_vlen(t1);
3560 	m1 = btf_params(t1);
3561 	m2 = btf_params(t2);
3562 	for (i = 0; i < vlen; i++) {
3563 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3564 			return false;
3565 		m1++;
3566 		m2++;
3567 	}
3568 	return true;
3569 }
3570 
3571 /*
3572  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3573  * IDs. This check is performed during type graph equivalence check and
3574  * referenced types equivalence is checked separately.
3575  */
3576 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3577 {
3578 	const struct btf_param *m1, *m2;
3579 	__u16 vlen;
3580 	int i;
3581 
3582 	/* skip return type ID */
3583 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3584 		return false;
3585 
3586 	vlen = btf_vlen(t1);
3587 	m1 = btf_params(t1);
3588 	m2 = btf_params(t2);
3589 	for (i = 0; i < vlen; i++) {
3590 		if (m1->name_off != m2->name_off)
3591 			return false;
3592 		m1++;
3593 		m2++;
3594 	}
3595 	return true;
3596 }
3597 
3598 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3599  * types and initializing the rest of the state (canonical type mapping) for
3600  * the fixed base BTF part.
3601  */
3602 static int btf_dedup_prep(struct btf_dedup *d)
3603 {
3604 	struct btf_type *t;
3605 	int type_id;
3606 	long h;
3607 
3608 	if (!d->btf->base_btf)
3609 		return 0;
3610 
3611 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3612 		t = btf_type_by_id(d->btf, type_id);
3613 
3614 		/* all base BTF types are self-canonical by definition */
3615 		d->map[type_id] = type_id;
3616 
3617 		switch (btf_kind(t)) {
3618 		case BTF_KIND_VAR:
3619 		case BTF_KIND_DATASEC:
3620 			/* VAR and DATASEC are never hash/deduplicated */
3621 			continue;
3622 		case BTF_KIND_CONST:
3623 		case BTF_KIND_VOLATILE:
3624 		case BTF_KIND_RESTRICT:
3625 		case BTF_KIND_PTR:
3626 		case BTF_KIND_FWD:
3627 		case BTF_KIND_TYPEDEF:
3628 		case BTF_KIND_FUNC:
3629 			h = btf_hash_common(t);
3630 			break;
3631 		case BTF_KIND_INT:
3632 			h = btf_hash_int(t);
3633 			break;
3634 		case BTF_KIND_ENUM:
3635 			h = btf_hash_enum(t);
3636 			break;
3637 		case BTF_KIND_STRUCT:
3638 		case BTF_KIND_UNION:
3639 			h = btf_hash_struct(t);
3640 			break;
3641 		case BTF_KIND_ARRAY:
3642 			h = btf_hash_array(t);
3643 			break;
3644 		case BTF_KIND_FUNC_PROTO:
3645 			h = btf_hash_fnproto(t);
3646 			break;
3647 		default:
3648 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3649 			return -EINVAL;
3650 		}
3651 		if (btf_dedup_table_add(d, h, type_id))
3652 			return -ENOMEM;
3653 	}
3654 
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Deduplicate primitive types, that can't reference other types, by calculating
3660  * their type signature hash and comparing them with any possible canonical
3661  * candidate. If no canonical candidate matches, type itself is marked as
3662  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3663  */
3664 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3665 {
3666 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3667 	struct hashmap_entry *hash_entry;
3668 	struct btf_type *cand;
3669 	/* if we don't find equivalent type, then we are canonical */
3670 	__u32 new_id = type_id;
3671 	__u32 cand_id;
3672 	long h;
3673 
3674 	switch (btf_kind(t)) {
3675 	case BTF_KIND_CONST:
3676 	case BTF_KIND_VOLATILE:
3677 	case BTF_KIND_RESTRICT:
3678 	case BTF_KIND_PTR:
3679 	case BTF_KIND_TYPEDEF:
3680 	case BTF_KIND_ARRAY:
3681 	case BTF_KIND_STRUCT:
3682 	case BTF_KIND_UNION:
3683 	case BTF_KIND_FUNC:
3684 	case BTF_KIND_FUNC_PROTO:
3685 	case BTF_KIND_VAR:
3686 	case BTF_KIND_DATASEC:
3687 		return 0;
3688 
3689 	case BTF_KIND_INT:
3690 		h = btf_hash_int(t);
3691 		for_each_dedup_cand(d, hash_entry, h) {
3692 			cand_id = (__u32)(long)hash_entry->value;
3693 			cand = btf_type_by_id(d->btf, cand_id);
3694 			if (btf_equal_int(t, cand)) {
3695 				new_id = cand_id;
3696 				break;
3697 			}
3698 		}
3699 		break;
3700 
3701 	case BTF_KIND_ENUM:
3702 		h = btf_hash_enum(t);
3703 		for_each_dedup_cand(d, hash_entry, h) {
3704 			cand_id = (__u32)(long)hash_entry->value;
3705 			cand = btf_type_by_id(d->btf, cand_id);
3706 			if (btf_equal_enum(t, cand)) {
3707 				new_id = cand_id;
3708 				break;
3709 			}
3710 			if (d->opts.dont_resolve_fwds)
3711 				continue;
3712 			if (btf_compat_enum(t, cand)) {
3713 				if (btf_is_enum_fwd(t)) {
3714 					/* resolve fwd to full enum */
3715 					new_id = cand_id;
3716 					break;
3717 				}
3718 				/* resolve canonical enum fwd to full enum */
3719 				d->map[cand_id] = type_id;
3720 			}
3721 		}
3722 		break;
3723 
3724 	case BTF_KIND_FWD:
3725 		h = btf_hash_common(t);
3726 		for_each_dedup_cand(d, hash_entry, h) {
3727 			cand_id = (__u32)(long)hash_entry->value;
3728 			cand = btf_type_by_id(d->btf, cand_id);
3729 			if (btf_equal_common(t, cand)) {
3730 				new_id = cand_id;
3731 				break;
3732 			}
3733 		}
3734 		break;
3735 
3736 	default:
3737 		return -EINVAL;
3738 	}
3739 
3740 	d->map[type_id] = new_id;
3741 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3742 		return -ENOMEM;
3743 
3744 	return 0;
3745 }
3746 
3747 static int btf_dedup_prim_types(struct btf_dedup *d)
3748 {
3749 	int i, err;
3750 
3751 	for (i = 0; i < d->btf->nr_types; i++) {
3752 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3753 		if (err)
3754 			return err;
3755 	}
3756 	return 0;
3757 }
3758 
3759 /*
3760  * Check whether type is already mapped into canonical one (could be to itself).
3761  */
3762 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3763 {
3764 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3765 }
3766 
3767 /*
3768  * Resolve type ID into its canonical type ID, if any; otherwise return original
3769  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3770  * STRUCT/UNION link and resolve it into canonical type ID as well.
3771  */
3772 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3773 {
3774 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3775 		type_id = d->map[type_id];
3776 	return type_id;
3777 }
3778 
3779 /*
3780  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3781  * type ID.
3782  */
3783 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3784 {
3785 	__u32 orig_type_id = type_id;
3786 
3787 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3788 		return type_id;
3789 
3790 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3791 		type_id = d->map[type_id];
3792 
3793 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3794 		return type_id;
3795 
3796 	return orig_type_id;
3797 }
3798 
3799 
3800 static inline __u16 btf_fwd_kind(struct btf_type *t)
3801 {
3802 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3803 }
3804 
3805 /* Check if given two types are identical ARRAY definitions */
3806 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3807 {
3808 	struct btf_type *t1, *t2;
3809 
3810 	t1 = btf_type_by_id(d->btf, id1);
3811 	t2 = btf_type_by_id(d->btf, id2);
3812 	if (!btf_is_array(t1) || !btf_is_array(t2))
3813 		return 0;
3814 
3815 	return btf_equal_array(t1, t2);
3816 }
3817 
3818 /*
3819  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3820  * call it "candidate graph" in this description for brevity) to a type graph
3821  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3822  * here, though keep in mind that not all types in canonical graph are
3823  * necessarily canonical representatives themselves, some of them might be
3824  * duplicates or its uniqueness might not have been established yet).
3825  * Returns:
3826  *  - >0, if type graphs are equivalent;
3827  *  -  0, if not equivalent;
3828  *  - <0, on error.
3829  *
3830  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3831  * equivalence of BTF types at each step. If at any point BTF types in candidate
3832  * and canonical graphs are not compatible structurally, whole graphs are
3833  * incompatible. If types are structurally equivalent (i.e., all information
3834  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3835  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3836  * If a type references other types, then those referenced types are checked
3837  * for equivalence recursively.
3838  *
3839  * During DFS traversal, if we find that for current `canon_id` type we
3840  * already have some mapping in hypothetical map, we check for two possible
3841  * situations:
3842  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3843  *     happen when type graphs have cycles. In this case we assume those two
3844  *     types are equivalent.
3845  *   - `canon_id` is mapped to different type. This is contradiction in our
3846  *     hypothetical mapping, because same graph in canonical graph corresponds
3847  *     to two different types in candidate graph, which for equivalent type
3848  *     graphs shouldn't happen. This condition terminates equivalence check
3849  *     with negative result.
3850  *
3851  * If type graphs traversal exhausts types to check and find no contradiction,
3852  * then type graphs are equivalent.
3853  *
3854  * When checking types for equivalence, there is one special case: FWD types.
3855  * If FWD type resolution is allowed and one of the types (either from canonical
3856  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3857  * flag) and their names match, hypothetical mapping is updated to point from
3858  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3859  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3860  *
3861  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3862  * if there are two exactly named (or anonymous) structs/unions that are
3863  * compatible structurally, one of which has FWD field, while other is concrete
3864  * STRUCT/UNION, but according to C sources they are different structs/unions
3865  * that are referencing different types with the same name. This is extremely
3866  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3867  * this logic is causing problems.
3868  *
3869  * Doing FWD resolution means that both candidate and/or canonical graphs can
3870  * consists of portions of the graph that come from multiple compilation units.
3871  * This is due to the fact that types within single compilation unit are always
3872  * deduplicated and FWDs are already resolved, if referenced struct/union
3873  * definiton is available. So, if we had unresolved FWD and found corresponding
3874  * STRUCT/UNION, they will be from different compilation units. This
3875  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3876  * type graph will likely have at least two different BTF types that describe
3877  * same type (e.g., most probably there will be two different BTF types for the
3878  * same 'int' primitive type) and could even have "overlapping" parts of type
3879  * graph that describe same subset of types.
3880  *
3881  * This in turn means that our assumption that each type in canonical graph
3882  * must correspond to exactly one type in candidate graph might not hold
3883  * anymore and will make it harder to detect contradictions using hypothetical
3884  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3885  * resolution only in canonical graph. FWDs in candidate graphs are never
3886  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3887  * that can occur:
3888  *   - Both types in canonical and candidate graphs are FWDs. If they are
3889  *     structurally equivalent, then they can either be both resolved to the
3890  *     same STRUCT/UNION or not resolved at all. In both cases they are
3891  *     equivalent and there is no need to resolve FWD on candidate side.
3892  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3893  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3894  *   - Type in canonical graph is FWD, while type in candidate is concrete
3895  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3896  *     unit, so there is exactly one BTF type for each unique C type. After
3897  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3898  *     in canonical graph mapping to single BTF type in candidate graph, but
3899  *     because hypothetical mapping maps from canonical to candidate types, it's
3900  *     alright, and we still maintain the property of having single `canon_id`
3901  *     mapping to single `cand_id` (there could be two different `canon_id`
3902  *     mapped to the same `cand_id`, but it's not contradictory).
3903  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3904  *     graph is FWD. In this case we are just going to check compatibility of
3905  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3906  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3907  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3908  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3909  *     canonical graph.
3910  */
3911 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3912 			      __u32 canon_id)
3913 {
3914 	struct btf_type *cand_type;
3915 	struct btf_type *canon_type;
3916 	__u32 hypot_type_id;
3917 	__u16 cand_kind;
3918 	__u16 canon_kind;
3919 	int i, eq;
3920 
3921 	/* if both resolve to the same canonical, they must be equivalent */
3922 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3923 		return 1;
3924 
3925 	canon_id = resolve_fwd_id(d, canon_id);
3926 
3927 	hypot_type_id = d->hypot_map[canon_id];
3928 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3929 		/* In some cases compiler will generate different DWARF types
3930 		 * for *identical* array type definitions and use them for
3931 		 * different fields within the *same* struct. This breaks type
3932 		 * equivalence check, which makes an assumption that candidate
3933 		 * types sub-graph has a consistent and deduped-by-compiler
3934 		 * types within a single CU. So work around that by explicitly
3935 		 * allowing identical array types here.
3936 		 */
3937 		return hypot_type_id == cand_id ||
3938 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3939 	}
3940 
3941 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3942 		return -ENOMEM;
3943 
3944 	cand_type = btf_type_by_id(d->btf, cand_id);
3945 	canon_type = btf_type_by_id(d->btf, canon_id);
3946 	cand_kind = btf_kind(cand_type);
3947 	canon_kind = btf_kind(canon_type);
3948 
3949 	if (cand_type->name_off != canon_type->name_off)
3950 		return 0;
3951 
3952 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3953 	if (!d->opts.dont_resolve_fwds
3954 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3955 	    && cand_kind != canon_kind) {
3956 		__u16 real_kind;
3957 		__u16 fwd_kind;
3958 
3959 		if (cand_kind == BTF_KIND_FWD) {
3960 			real_kind = canon_kind;
3961 			fwd_kind = btf_fwd_kind(cand_type);
3962 		} else {
3963 			real_kind = cand_kind;
3964 			fwd_kind = btf_fwd_kind(canon_type);
3965 			/* we'd need to resolve base FWD to STRUCT/UNION */
3966 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3967 				d->hypot_adjust_canon = true;
3968 		}
3969 		return fwd_kind == real_kind;
3970 	}
3971 
3972 	if (cand_kind != canon_kind)
3973 		return 0;
3974 
3975 	switch (cand_kind) {
3976 	case BTF_KIND_INT:
3977 		return btf_equal_int(cand_type, canon_type);
3978 
3979 	case BTF_KIND_ENUM:
3980 		if (d->opts.dont_resolve_fwds)
3981 			return btf_equal_enum(cand_type, canon_type);
3982 		else
3983 			return btf_compat_enum(cand_type, canon_type);
3984 
3985 	case BTF_KIND_FWD:
3986 		return btf_equal_common(cand_type, canon_type);
3987 
3988 	case BTF_KIND_CONST:
3989 	case BTF_KIND_VOLATILE:
3990 	case BTF_KIND_RESTRICT:
3991 	case BTF_KIND_PTR:
3992 	case BTF_KIND_TYPEDEF:
3993 	case BTF_KIND_FUNC:
3994 		if (cand_type->info != canon_type->info)
3995 			return 0;
3996 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3997 
3998 	case BTF_KIND_ARRAY: {
3999 		const struct btf_array *cand_arr, *canon_arr;
4000 
4001 		if (!btf_compat_array(cand_type, canon_type))
4002 			return 0;
4003 		cand_arr = btf_array(cand_type);
4004 		canon_arr = btf_array(canon_type);
4005 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4006 		if (eq <= 0)
4007 			return eq;
4008 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4009 	}
4010 
4011 	case BTF_KIND_STRUCT:
4012 	case BTF_KIND_UNION: {
4013 		const struct btf_member *cand_m, *canon_m;
4014 		__u16 vlen;
4015 
4016 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4017 			return 0;
4018 		vlen = btf_vlen(cand_type);
4019 		cand_m = btf_members(cand_type);
4020 		canon_m = btf_members(canon_type);
4021 		for (i = 0; i < vlen; i++) {
4022 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4023 			if (eq <= 0)
4024 				return eq;
4025 			cand_m++;
4026 			canon_m++;
4027 		}
4028 
4029 		return 1;
4030 	}
4031 
4032 	case BTF_KIND_FUNC_PROTO: {
4033 		const struct btf_param *cand_p, *canon_p;
4034 		__u16 vlen;
4035 
4036 		if (!btf_compat_fnproto(cand_type, canon_type))
4037 			return 0;
4038 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4039 		if (eq <= 0)
4040 			return eq;
4041 		vlen = btf_vlen(cand_type);
4042 		cand_p = btf_params(cand_type);
4043 		canon_p = btf_params(canon_type);
4044 		for (i = 0; i < vlen; i++) {
4045 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4046 			if (eq <= 0)
4047 				return eq;
4048 			cand_p++;
4049 			canon_p++;
4050 		}
4051 		return 1;
4052 	}
4053 
4054 	default:
4055 		return -EINVAL;
4056 	}
4057 	return 0;
4058 }
4059 
4060 /*
4061  * Use hypothetical mapping, produced by successful type graph equivalence
4062  * check, to augment existing struct/union canonical mapping, where possible.
4063  *
4064  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4065  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4066  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4067  * we are recording the mapping anyway. As opposed to carefulness required
4068  * for struct/union correspondence mapping (described below), for FWD resolution
4069  * it's not important, as by the time that FWD type (reference type) will be
4070  * deduplicated all structs/unions will be deduped already anyway.
4071  *
4072  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4073  * not required for correctness. It needs to be done carefully to ensure that
4074  * struct/union from candidate's type graph is not mapped into corresponding
4075  * struct/union from canonical type graph that itself hasn't been resolved into
4076  * canonical representative. The only guarantee we have is that canonical
4077  * struct/union was determined as canonical and that won't change. But any
4078  * types referenced through that struct/union fields could have been not yet
4079  * resolved, so in case like that it's too early to establish any kind of
4080  * correspondence between structs/unions.
4081  *
4082  * No canonical correspondence is derived for primitive types (they are already
4083  * deduplicated completely already anyway) or reference types (they rely on
4084  * stability of struct/union canonical relationship for equivalence checks).
4085  */
4086 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4087 {
4088 	__u32 canon_type_id, targ_type_id;
4089 	__u16 t_kind, c_kind;
4090 	__u32 t_id, c_id;
4091 	int i;
4092 
4093 	for (i = 0; i < d->hypot_cnt; i++) {
4094 		canon_type_id = d->hypot_list[i];
4095 		targ_type_id = d->hypot_map[canon_type_id];
4096 		t_id = resolve_type_id(d, targ_type_id);
4097 		c_id = resolve_type_id(d, canon_type_id);
4098 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4099 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4100 		/*
4101 		 * Resolve FWD into STRUCT/UNION.
4102 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4103 		 * mapped to canonical representative (as opposed to
4104 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4105 		 * eventually that struct is going to be mapped and all resolved
4106 		 * FWDs will automatically resolve to correct canonical
4107 		 * representative. This will happen before ref type deduping,
4108 		 * which critically depends on stability of these mapping. This
4109 		 * stability is not a requirement for STRUCT/UNION equivalence
4110 		 * checks, though.
4111 		 */
4112 
4113 		/* if it's the split BTF case, we still need to point base FWD
4114 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4115 		 * will be resolved against base FWD. If we don't point base
4116 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4117 		 * FWDs in split BTF won't be correctly resolved to a proper
4118 		 * STRUCT/UNION.
4119 		 */
4120 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4121 			d->map[c_id] = t_id;
4122 
4123 		/* if graph equivalence determined that we'd need to adjust
4124 		 * base canonical types, then we need to only point base FWDs
4125 		 * to STRUCTs/UNIONs and do no more modifications. For all
4126 		 * other purposes the type graphs were not equivalent.
4127 		 */
4128 		if (d->hypot_adjust_canon)
4129 			continue;
4130 
4131 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4132 			d->map[t_id] = c_id;
4133 
4134 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4135 		    c_kind != BTF_KIND_FWD &&
4136 		    is_type_mapped(d, c_id) &&
4137 		    !is_type_mapped(d, t_id)) {
4138 			/*
4139 			 * as a perf optimization, we can map struct/union
4140 			 * that's part of type graph we just verified for
4141 			 * equivalence. We can do that for struct/union that has
4142 			 * canonical representative only, though.
4143 			 */
4144 			d->map[t_id] = c_id;
4145 		}
4146 	}
4147 }
4148 
4149 /*
4150  * Deduplicate struct/union types.
4151  *
4152  * For each struct/union type its type signature hash is calculated, taking
4153  * into account type's name, size, number, order and names of fields, but
4154  * ignoring type ID's referenced from fields, because they might not be deduped
4155  * completely until after reference types deduplication phase. This type hash
4156  * is used to iterate over all potential canonical types, sharing same hash.
4157  * For each canonical candidate we check whether type graphs that they form
4158  * (through referenced types in fields and so on) are equivalent using algorithm
4159  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4160  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4161  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4162  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4163  * potentially map other structs/unions to their canonical representatives,
4164  * if such relationship hasn't yet been established. This speeds up algorithm
4165  * by eliminating some of the duplicate work.
4166  *
4167  * If no matching canonical representative was found, struct/union is marked
4168  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4169  * for further look ups.
4170  */
4171 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4172 {
4173 	struct btf_type *cand_type, *t;
4174 	struct hashmap_entry *hash_entry;
4175 	/* if we don't find equivalent type, then we are canonical */
4176 	__u32 new_id = type_id;
4177 	__u16 kind;
4178 	long h;
4179 
4180 	/* already deduped or is in process of deduping (loop detected) */
4181 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4182 		return 0;
4183 
4184 	t = btf_type_by_id(d->btf, type_id);
4185 	kind = btf_kind(t);
4186 
4187 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4188 		return 0;
4189 
4190 	h = btf_hash_struct(t);
4191 	for_each_dedup_cand(d, hash_entry, h) {
4192 		__u32 cand_id = (__u32)(long)hash_entry->value;
4193 		int eq;
4194 
4195 		/*
4196 		 * Even though btf_dedup_is_equiv() checks for
4197 		 * btf_shallow_equal_struct() internally when checking two
4198 		 * structs (unions) for equivalence, we need to guard here
4199 		 * from picking matching FWD type as a dedup candidate.
4200 		 * This can happen due to hash collision. In such case just
4201 		 * relying on btf_dedup_is_equiv() would lead to potentially
4202 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4203 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4204 		 */
4205 		cand_type = btf_type_by_id(d->btf, cand_id);
4206 		if (!btf_shallow_equal_struct(t, cand_type))
4207 			continue;
4208 
4209 		btf_dedup_clear_hypot_map(d);
4210 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4211 		if (eq < 0)
4212 			return eq;
4213 		if (!eq)
4214 			continue;
4215 		btf_dedup_merge_hypot_map(d);
4216 		if (d->hypot_adjust_canon) /* not really equivalent */
4217 			continue;
4218 		new_id = cand_id;
4219 		break;
4220 	}
4221 
4222 	d->map[type_id] = new_id;
4223 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4224 		return -ENOMEM;
4225 
4226 	return 0;
4227 }
4228 
4229 static int btf_dedup_struct_types(struct btf_dedup *d)
4230 {
4231 	int i, err;
4232 
4233 	for (i = 0; i < d->btf->nr_types; i++) {
4234 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4235 		if (err)
4236 			return err;
4237 	}
4238 	return 0;
4239 }
4240 
4241 /*
4242  * Deduplicate reference type.
4243  *
4244  * Once all primitive and struct/union types got deduplicated, we can easily
4245  * deduplicate all other (reference) BTF types. This is done in two steps:
4246  *
4247  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4248  * resolution can be done either immediately for primitive or struct/union types
4249  * (because they were deduped in previous two phases) or recursively for
4250  * reference types. Recursion will always terminate at either primitive or
4251  * struct/union type, at which point we can "unwind" chain of reference types
4252  * one by one. There is no danger of encountering cycles because in C type
4253  * system the only way to form type cycle is through struct/union, so any chain
4254  * of reference types, even those taking part in a type cycle, will inevitably
4255  * reach struct/union at some point.
4256  *
4257  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4258  * becomes "stable", in the sense that no further deduplication will cause
4259  * any changes to it. With that, it's now possible to calculate type's signature
4260  * hash (this time taking into account referenced type IDs) and loop over all
4261  * potential canonical representatives. If no match was found, current type
4262  * will become canonical representative of itself and will be added into
4263  * btf_dedup->dedup_table as another possible canonical representative.
4264  */
4265 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4266 {
4267 	struct hashmap_entry *hash_entry;
4268 	__u32 new_id = type_id, cand_id;
4269 	struct btf_type *t, *cand;
4270 	/* if we don't find equivalent type, then we are representative type */
4271 	int ref_type_id;
4272 	long h;
4273 
4274 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4275 		return -ELOOP;
4276 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4277 		return resolve_type_id(d, type_id);
4278 
4279 	t = btf_type_by_id(d->btf, type_id);
4280 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4281 
4282 	switch (btf_kind(t)) {
4283 	case BTF_KIND_CONST:
4284 	case BTF_KIND_VOLATILE:
4285 	case BTF_KIND_RESTRICT:
4286 	case BTF_KIND_PTR:
4287 	case BTF_KIND_TYPEDEF:
4288 	case BTF_KIND_FUNC:
4289 		ref_type_id = btf_dedup_ref_type(d, t->type);
4290 		if (ref_type_id < 0)
4291 			return ref_type_id;
4292 		t->type = ref_type_id;
4293 
4294 		h = btf_hash_common(t);
4295 		for_each_dedup_cand(d, hash_entry, h) {
4296 			cand_id = (__u32)(long)hash_entry->value;
4297 			cand = btf_type_by_id(d->btf, cand_id);
4298 			if (btf_equal_common(t, cand)) {
4299 				new_id = cand_id;
4300 				break;
4301 			}
4302 		}
4303 		break;
4304 
4305 	case BTF_KIND_ARRAY: {
4306 		struct btf_array *info = btf_array(t);
4307 
4308 		ref_type_id = btf_dedup_ref_type(d, info->type);
4309 		if (ref_type_id < 0)
4310 			return ref_type_id;
4311 		info->type = ref_type_id;
4312 
4313 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4314 		if (ref_type_id < 0)
4315 			return ref_type_id;
4316 		info->index_type = ref_type_id;
4317 
4318 		h = btf_hash_array(t);
4319 		for_each_dedup_cand(d, hash_entry, h) {
4320 			cand_id = (__u32)(long)hash_entry->value;
4321 			cand = btf_type_by_id(d->btf, cand_id);
4322 			if (btf_equal_array(t, cand)) {
4323 				new_id = cand_id;
4324 				break;
4325 			}
4326 		}
4327 		break;
4328 	}
4329 
4330 	case BTF_KIND_FUNC_PROTO: {
4331 		struct btf_param *param;
4332 		__u16 vlen;
4333 		int i;
4334 
4335 		ref_type_id = btf_dedup_ref_type(d, t->type);
4336 		if (ref_type_id < 0)
4337 			return ref_type_id;
4338 		t->type = ref_type_id;
4339 
4340 		vlen = btf_vlen(t);
4341 		param = btf_params(t);
4342 		for (i = 0; i < vlen; i++) {
4343 			ref_type_id = btf_dedup_ref_type(d, param->type);
4344 			if (ref_type_id < 0)
4345 				return ref_type_id;
4346 			param->type = ref_type_id;
4347 			param++;
4348 		}
4349 
4350 		h = btf_hash_fnproto(t);
4351 		for_each_dedup_cand(d, hash_entry, h) {
4352 			cand_id = (__u32)(long)hash_entry->value;
4353 			cand = btf_type_by_id(d->btf, cand_id);
4354 			if (btf_equal_fnproto(t, cand)) {
4355 				new_id = cand_id;
4356 				break;
4357 			}
4358 		}
4359 		break;
4360 	}
4361 
4362 	default:
4363 		return -EINVAL;
4364 	}
4365 
4366 	d->map[type_id] = new_id;
4367 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4368 		return -ENOMEM;
4369 
4370 	return new_id;
4371 }
4372 
4373 static int btf_dedup_ref_types(struct btf_dedup *d)
4374 {
4375 	int i, err;
4376 
4377 	for (i = 0; i < d->btf->nr_types; i++) {
4378 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4379 		if (err < 0)
4380 			return err;
4381 	}
4382 	/* we won't need d->dedup_table anymore */
4383 	hashmap__free(d->dedup_table);
4384 	d->dedup_table = NULL;
4385 	return 0;
4386 }
4387 
4388 /*
4389  * Compact types.
4390  *
4391  * After we established for each type its corresponding canonical representative
4392  * type, we now can eliminate types that are not canonical and leave only
4393  * canonical ones layed out sequentially in memory by copying them over
4394  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4395  * a map from original type ID to a new compacted type ID, which will be used
4396  * during next phase to "fix up" type IDs, referenced from struct/union and
4397  * reference types.
4398  */
4399 static int btf_dedup_compact_types(struct btf_dedup *d)
4400 {
4401 	__u32 *new_offs;
4402 	__u32 next_type_id = d->btf->start_id;
4403 	const struct btf_type *t;
4404 	void *p;
4405 	int i, id, len;
4406 
4407 	/* we are going to reuse hypot_map to store compaction remapping */
4408 	d->hypot_map[0] = 0;
4409 	/* base BTF types are not renumbered */
4410 	for (id = 1; id < d->btf->start_id; id++)
4411 		d->hypot_map[id] = id;
4412 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4413 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4414 
4415 	p = d->btf->types_data;
4416 
4417 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4418 		if (d->map[id] != id)
4419 			continue;
4420 
4421 		t = btf__type_by_id(d->btf, id);
4422 		len = btf_type_size(t);
4423 		if (len < 0)
4424 			return len;
4425 
4426 		memmove(p, t, len);
4427 		d->hypot_map[id] = next_type_id;
4428 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4429 		p += len;
4430 		next_type_id++;
4431 	}
4432 
4433 	/* shrink struct btf's internal types index and update btf_header */
4434 	d->btf->nr_types = next_type_id - d->btf->start_id;
4435 	d->btf->type_offs_cap = d->btf->nr_types;
4436 	d->btf->hdr->type_len = p - d->btf->types_data;
4437 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4438 				       sizeof(*new_offs));
4439 	if (d->btf->type_offs_cap && !new_offs)
4440 		return -ENOMEM;
4441 	d->btf->type_offs = new_offs;
4442 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4443 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4444 	return 0;
4445 }
4446 
4447 /*
4448  * Figure out final (deduplicated and compacted) type ID for provided original
4449  * `type_id` by first resolving it into corresponding canonical type ID and
4450  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4451  * which is populated during compaction phase.
4452  */
4453 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4454 {
4455 	__u32 resolved_type_id, new_type_id;
4456 
4457 	resolved_type_id = resolve_type_id(d, type_id);
4458 	new_type_id = d->hypot_map[resolved_type_id];
4459 	if (new_type_id > BTF_MAX_NR_TYPES)
4460 		return -EINVAL;
4461 	return new_type_id;
4462 }
4463 
4464 /*
4465  * Remap referenced type IDs into deduped type IDs.
4466  *
4467  * After BTF types are deduplicated and compacted, their final type IDs may
4468  * differ from original ones. The map from original to a corresponding
4469  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4470  * compaction phase. During remapping phase we are rewriting all type IDs
4471  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4472  * their final deduped type IDs.
4473  */
4474 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4475 {
4476 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4477 	int i, r;
4478 
4479 	switch (btf_kind(t)) {
4480 	case BTF_KIND_INT:
4481 	case BTF_KIND_ENUM:
4482 		break;
4483 
4484 	case BTF_KIND_FWD:
4485 	case BTF_KIND_CONST:
4486 	case BTF_KIND_VOLATILE:
4487 	case BTF_KIND_RESTRICT:
4488 	case BTF_KIND_PTR:
4489 	case BTF_KIND_TYPEDEF:
4490 	case BTF_KIND_FUNC:
4491 	case BTF_KIND_VAR:
4492 		r = btf_dedup_remap_type_id(d, t->type);
4493 		if (r < 0)
4494 			return r;
4495 		t->type = r;
4496 		break;
4497 
4498 	case BTF_KIND_ARRAY: {
4499 		struct btf_array *arr_info = btf_array(t);
4500 
4501 		r = btf_dedup_remap_type_id(d, arr_info->type);
4502 		if (r < 0)
4503 			return r;
4504 		arr_info->type = r;
4505 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4506 		if (r < 0)
4507 			return r;
4508 		arr_info->index_type = r;
4509 		break;
4510 	}
4511 
4512 	case BTF_KIND_STRUCT:
4513 	case BTF_KIND_UNION: {
4514 		struct btf_member *member = btf_members(t);
4515 		__u16 vlen = btf_vlen(t);
4516 
4517 		for (i = 0; i < vlen; i++) {
4518 			r = btf_dedup_remap_type_id(d, member->type);
4519 			if (r < 0)
4520 				return r;
4521 			member->type = r;
4522 			member++;
4523 		}
4524 		break;
4525 	}
4526 
4527 	case BTF_KIND_FUNC_PROTO: {
4528 		struct btf_param *param = btf_params(t);
4529 		__u16 vlen = btf_vlen(t);
4530 
4531 		r = btf_dedup_remap_type_id(d, t->type);
4532 		if (r < 0)
4533 			return r;
4534 		t->type = r;
4535 
4536 		for (i = 0; i < vlen; i++) {
4537 			r = btf_dedup_remap_type_id(d, param->type);
4538 			if (r < 0)
4539 				return r;
4540 			param->type = r;
4541 			param++;
4542 		}
4543 		break;
4544 	}
4545 
4546 	case BTF_KIND_DATASEC: {
4547 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4548 		__u16 vlen = btf_vlen(t);
4549 
4550 		for (i = 0; i < vlen; i++) {
4551 			r = btf_dedup_remap_type_id(d, var->type);
4552 			if (r < 0)
4553 				return r;
4554 			var->type = r;
4555 			var++;
4556 		}
4557 		break;
4558 	}
4559 
4560 	default:
4561 		return -EINVAL;
4562 	}
4563 
4564 	return 0;
4565 }
4566 
4567 static int btf_dedup_remap_types(struct btf_dedup *d)
4568 {
4569 	int i, r;
4570 
4571 	for (i = 0; i < d->btf->nr_types; i++) {
4572 		r = btf_dedup_remap_type(d, d->btf->start_id + i);
4573 		if (r < 0)
4574 			return r;
4575 	}
4576 	return 0;
4577 }
4578 
4579 /*
4580  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4581  * data out of it to use for target BTF.
4582  */
4583 struct btf *libbpf_find_kernel_btf(void)
4584 {
4585 	struct {
4586 		const char *path_fmt;
4587 		bool raw_btf;
4588 	} locations[] = {
4589 		/* try canonical vmlinux BTF through sysfs first */
4590 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4591 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4592 		{ "/boot/vmlinux-%1$s" },
4593 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4594 		{ "/lib/modules/%1$s/build/vmlinux" },
4595 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4596 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4597 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4598 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4599 	};
4600 	char path[PATH_MAX + 1];
4601 	struct utsname buf;
4602 	struct btf *btf;
4603 	int i;
4604 
4605 	uname(&buf);
4606 
4607 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4608 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4609 
4610 		if (access(path, R_OK))
4611 			continue;
4612 
4613 		if (locations[i].raw_btf)
4614 			btf = btf__parse_raw(path);
4615 		else
4616 			btf = btf__parse_elf(path, NULL);
4617 
4618 		pr_debug("loading kernel BTF '%s': %ld\n",
4619 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4620 		if (IS_ERR(btf))
4621 			continue;
4622 
4623 		return btf;
4624 	}
4625 
4626 	pr_warn("failed to find valid kernel BTF\n");
4627 	return ERR_PTR(-ESRCH);
4628 }
4629