1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ARRAY: 309 return base_size + sizeof(struct btf_array); 310 case BTF_KIND_STRUCT: 311 case BTF_KIND_UNION: 312 return base_size + vlen * sizeof(struct btf_member); 313 case BTF_KIND_FUNC_PROTO: 314 return base_size + vlen * sizeof(struct btf_param); 315 case BTF_KIND_VAR: 316 return base_size + sizeof(struct btf_var); 317 case BTF_KIND_DATASEC: 318 return base_size + vlen * sizeof(struct btf_var_secinfo); 319 case BTF_KIND_DECL_TAG: 320 return base_size + sizeof(struct btf_decl_tag); 321 default: 322 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 323 return -EINVAL; 324 } 325 } 326 327 static void btf_bswap_type_base(struct btf_type *t) 328 { 329 t->name_off = bswap_32(t->name_off); 330 t->info = bswap_32(t->info); 331 t->type = bswap_32(t->type); 332 } 333 334 static int btf_bswap_type_rest(struct btf_type *t) 335 { 336 struct btf_var_secinfo *v; 337 struct btf_member *m; 338 struct btf_array *a; 339 struct btf_param *p; 340 struct btf_enum *e; 341 __u16 vlen = btf_vlen(t); 342 int i; 343 344 switch (btf_kind(t)) { 345 case BTF_KIND_FWD: 346 case BTF_KIND_CONST: 347 case BTF_KIND_VOLATILE: 348 case BTF_KIND_RESTRICT: 349 case BTF_KIND_PTR: 350 case BTF_KIND_TYPEDEF: 351 case BTF_KIND_FUNC: 352 case BTF_KIND_FLOAT: 353 case BTF_KIND_TYPE_TAG: 354 return 0; 355 case BTF_KIND_INT: 356 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 357 return 0; 358 case BTF_KIND_ENUM: 359 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 360 e->name_off = bswap_32(e->name_off); 361 e->val = bswap_32(e->val); 362 } 363 return 0; 364 case BTF_KIND_ARRAY: 365 a = btf_array(t); 366 a->type = bswap_32(a->type); 367 a->index_type = bswap_32(a->index_type); 368 a->nelems = bswap_32(a->nelems); 369 return 0; 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 373 m->name_off = bswap_32(m->name_off); 374 m->type = bswap_32(m->type); 375 m->offset = bswap_32(m->offset); 376 } 377 return 0; 378 case BTF_KIND_FUNC_PROTO: 379 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 380 p->name_off = bswap_32(p->name_off); 381 p->type = bswap_32(p->type); 382 } 383 return 0; 384 case BTF_KIND_VAR: 385 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 386 return 0; 387 case BTF_KIND_DATASEC: 388 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 389 v->type = bswap_32(v->type); 390 v->offset = bswap_32(v->offset); 391 v->size = bswap_32(v->size); 392 } 393 return 0; 394 case BTF_KIND_DECL_TAG: 395 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 396 return 0; 397 default: 398 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 399 return -EINVAL; 400 } 401 } 402 403 static int btf_parse_type_sec(struct btf *btf) 404 { 405 struct btf_header *hdr = btf->hdr; 406 void *next_type = btf->types_data; 407 void *end_type = next_type + hdr->type_len; 408 int err, type_size; 409 410 while (next_type + sizeof(struct btf_type) <= end_type) { 411 if (btf->swapped_endian) 412 btf_bswap_type_base(next_type); 413 414 type_size = btf_type_size(next_type); 415 if (type_size < 0) 416 return type_size; 417 if (next_type + type_size > end_type) { 418 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 419 return -EINVAL; 420 } 421 422 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 423 return -EINVAL; 424 425 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 426 if (err) 427 return err; 428 429 next_type += type_size; 430 btf->nr_types++; 431 } 432 433 if (next_type != end_type) { 434 pr_warn("BTF types data is malformed\n"); 435 return -EINVAL; 436 } 437 438 return 0; 439 } 440 441 __u32 btf__get_nr_types(const struct btf *btf) 442 { 443 return btf->start_id + btf->nr_types - 1; 444 } 445 446 __u32 btf__type_cnt(const struct btf *btf) 447 { 448 return btf->start_id + btf->nr_types; 449 } 450 451 const struct btf *btf__base_btf(const struct btf *btf) 452 { 453 return btf->base_btf; 454 } 455 456 /* internal helper returning non-const pointer to a type */ 457 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 458 { 459 if (type_id == 0) 460 return &btf_void; 461 if (type_id < btf->start_id) 462 return btf_type_by_id(btf->base_btf, type_id); 463 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 464 } 465 466 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 467 { 468 if (type_id >= btf->start_id + btf->nr_types) 469 return errno = EINVAL, NULL; 470 return btf_type_by_id((struct btf *)btf, type_id); 471 } 472 473 static int determine_ptr_size(const struct btf *btf) 474 { 475 const struct btf_type *t; 476 const char *name; 477 int i, n; 478 479 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 480 return btf->base_btf->ptr_sz; 481 482 n = btf__type_cnt(btf); 483 for (i = 1; i < n; i++) { 484 t = btf__type_by_id(btf, i); 485 if (!btf_is_int(t)) 486 continue; 487 488 name = btf__name_by_offset(btf, t->name_off); 489 if (!name) 490 continue; 491 492 if (strcmp(name, "long int") == 0 || 493 strcmp(name, "long unsigned int") == 0) { 494 if (t->size != 4 && t->size != 8) 495 continue; 496 return t->size; 497 } 498 } 499 500 return -1; 501 } 502 503 static size_t btf_ptr_sz(const struct btf *btf) 504 { 505 if (!btf->ptr_sz) 506 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 507 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 508 } 509 510 /* Return pointer size this BTF instance assumes. The size is heuristically 511 * determined by looking for 'long' or 'unsigned long' integer type and 512 * recording its size in bytes. If BTF type information doesn't have any such 513 * type, this function returns 0. In the latter case, native architecture's 514 * pointer size is assumed, so will be either 4 or 8, depending on 515 * architecture that libbpf was compiled for. It's possible to override 516 * guessed value by using btf__set_pointer_size() API. 517 */ 518 size_t btf__pointer_size(const struct btf *btf) 519 { 520 if (!btf->ptr_sz) 521 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 522 523 if (btf->ptr_sz < 0) 524 /* not enough BTF type info to guess */ 525 return 0; 526 527 return btf->ptr_sz; 528 } 529 530 /* Override or set pointer size in bytes. Only values of 4 and 8 are 531 * supported. 532 */ 533 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 534 { 535 if (ptr_sz != 4 && ptr_sz != 8) 536 return libbpf_err(-EINVAL); 537 btf->ptr_sz = ptr_sz; 538 return 0; 539 } 540 541 static bool is_host_big_endian(void) 542 { 543 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 544 return false; 545 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 546 return true; 547 #else 548 # error "Unrecognized __BYTE_ORDER__" 549 #endif 550 } 551 552 enum btf_endianness btf__endianness(const struct btf *btf) 553 { 554 if (is_host_big_endian()) 555 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 556 else 557 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 558 } 559 560 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 561 { 562 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 563 return libbpf_err(-EINVAL); 564 565 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 566 if (!btf->swapped_endian) { 567 free(btf->raw_data_swapped); 568 btf->raw_data_swapped = NULL; 569 } 570 return 0; 571 } 572 573 static bool btf_type_is_void(const struct btf_type *t) 574 { 575 return t == &btf_void || btf_is_fwd(t); 576 } 577 578 static bool btf_type_is_void_or_null(const struct btf_type *t) 579 { 580 return !t || btf_type_is_void(t); 581 } 582 583 #define MAX_RESOLVE_DEPTH 32 584 585 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 586 { 587 const struct btf_array *array; 588 const struct btf_type *t; 589 __u32 nelems = 1; 590 __s64 size = -1; 591 int i; 592 593 t = btf__type_by_id(btf, type_id); 594 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 595 switch (btf_kind(t)) { 596 case BTF_KIND_INT: 597 case BTF_KIND_STRUCT: 598 case BTF_KIND_UNION: 599 case BTF_KIND_ENUM: 600 case BTF_KIND_DATASEC: 601 case BTF_KIND_FLOAT: 602 size = t->size; 603 goto done; 604 case BTF_KIND_PTR: 605 size = btf_ptr_sz(btf); 606 goto done; 607 case BTF_KIND_TYPEDEF: 608 case BTF_KIND_VOLATILE: 609 case BTF_KIND_CONST: 610 case BTF_KIND_RESTRICT: 611 case BTF_KIND_VAR: 612 case BTF_KIND_DECL_TAG: 613 case BTF_KIND_TYPE_TAG: 614 type_id = t->type; 615 break; 616 case BTF_KIND_ARRAY: 617 array = btf_array(t); 618 if (nelems && array->nelems > UINT32_MAX / nelems) 619 return libbpf_err(-E2BIG); 620 nelems *= array->nelems; 621 type_id = array->type; 622 break; 623 default: 624 return libbpf_err(-EINVAL); 625 } 626 627 t = btf__type_by_id(btf, type_id); 628 } 629 630 done: 631 if (size < 0) 632 return libbpf_err(-EINVAL); 633 if (nelems && size > UINT32_MAX / nelems) 634 return libbpf_err(-E2BIG); 635 636 return nelems * size; 637 } 638 639 int btf__align_of(const struct btf *btf, __u32 id) 640 { 641 const struct btf_type *t = btf__type_by_id(btf, id); 642 __u16 kind = btf_kind(t); 643 644 switch (kind) { 645 case BTF_KIND_INT: 646 case BTF_KIND_ENUM: 647 case BTF_KIND_FLOAT: 648 return min(btf_ptr_sz(btf), (size_t)t->size); 649 case BTF_KIND_PTR: 650 return btf_ptr_sz(btf); 651 case BTF_KIND_TYPEDEF: 652 case BTF_KIND_VOLATILE: 653 case BTF_KIND_CONST: 654 case BTF_KIND_RESTRICT: 655 case BTF_KIND_TYPE_TAG: 656 return btf__align_of(btf, t->type); 657 case BTF_KIND_ARRAY: 658 return btf__align_of(btf, btf_array(t)->type); 659 case BTF_KIND_STRUCT: 660 case BTF_KIND_UNION: { 661 const struct btf_member *m = btf_members(t); 662 __u16 vlen = btf_vlen(t); 663 int i, max_align = 1, align; 664 665 for (i = 0; i < vlen; i++, m++) { 666 align = btf__align_of(btf, m->type); 667 if (align <= 0) 668 return libbpf_err(align); 669 max_align = max(max_align, align); 670 } 671 672 return max_align; 673 } 674 default: 675 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 676 return errno = EINVAL, 0; 677 } 678 } 679 680 int btf__resolve_type(const struct btf *btf, __u32 type_id) 681 { 682 const struct btf_type *t; 683 int depth = 0; 684 685 t = btf__type_by_id(btf, type_id); 686 while (depth < MAX_RESOLVE_DEPTH && 687 !btf_type_is_void_or_null(t) && 688 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 689 type_id = t->type; 690 t = btf__type_by_id(btf, type_id); 691 depth++; 692 } 693 694 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 695 return libbpf_err(-EINVAL); 696 697 return type_id; 698 } 699 700 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 701 { 702 __u32 i, nr_types = btf__type_cnt(btf); 703 704 if (!strcmp(type_name, "void")) 705 return 0; 706 707 for (i = 1; i < nr_types; i++) { 708 const struct btf_type *t = btf__type_by_id(btf, i); 709 const char *name = btf__name_by_offset(btf, t->name_off); 710 711 if (name && !strcmp(type_name, name)) 712 return i; 713 } 714 715 return libbpf_err(-ENOENT); 716 } 717 718 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 719 const char *type_name, __u32 kind) 720 { 721 __u32 i, nr_types = btf__type_cnt(btf); 722 723 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 724 return 0; 725 726 for (i = start_id; i < nr_types; i++) { 727 const struct btf_type *t = btf__type_by_id(btf, i); 728 const char *name; 729 730 if (btf_kind(t) != kind) 731 continue; 732 name = btf__name_by_offset(btf, t->name_off); 733 if (name && !strcmp(type_name, name)) 734 return i; 735 } 736 737 return libbpf_err(-ENOENT); 738 } 739 740 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 741 __u32 kind) 742 { 743 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 744 } 745 746 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 747 __u32 kind) 748 { 749 return btf_find_by_name_kind(btf, 1, type_name, kind); 750 } 751 752 static bool btf_is_modifiable(const struct btf *btf) 753 { 754 return (void *)btf->hdr != btf->raw_data; 755 } 756 757 void btf__free(struct btf *btf) 758 { 759 if (IS_ERR_OR_NULL(btf)) 760 return; 761 762 if (btf->fd >= 0) 763 close(btf->fd); 764 765 if (btf_is_modifiable(btf)) { 766 /* if BTF was modified after loading, it will have a split 767 * in-memory representation for header, types, and strings 768 * sections, so we need to free all of them individually. It 769 * might still have a cached contiguous raw data present, 770 * which will be unconditionally freed below. 771 */ 772 free(btf->hdr); 773 free(btf->types_data); 774 strset__free(btf->strs_set); 775 } 776 free(btf->raw_data); 777 free(btf->raw_data_swapped); 778 free(btf->type_offs); 779 free(btf); 780 } 781 782 static struct btf *btf_new_empty(struct btf *base_btf) 783 { 784 struct btf *btf; 785 786 btf = calloc(1, sizeof(*btf)); 787 if (!btf) 788 return ERR_PTR(-ENOMEM); 789 790 btf->nr_types = 0; 791 btf->start_id = 1; 792 btf->start_str_off = 0; 793 btf->fd = -1; 794 btf->ptr_sz = sizeof(void *); 795 btf->swapped_endian = false; 796 797 if (base_btf) { 798 btf->base_btf = base_btf; 799 btf->start_id = btf__type_cnt(base_btf); 800 btf->start_str_off = base_btf->hdr->str_len; 801 } 802 803 /* +1 for empty string at offset 0 */ 804 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 805 btf->raw_data = calloc(1, btf->raw_size); 806 if (!btf->raw_data) { 807 free(btf); 808 return ERR_PTR(-ENOMEM); 809 } 810 811 btf->hdr = btf->raw_data; 812 btf->hdr->hdr_len = sizeof(struct btf_header); 813 btf->hdr->magic = BTF_MAGIC; 814 btf->hdr->version = BTF_VERSION; 815 816 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 817 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 818 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 819 820 return btf; 821 } 822 823 struct btf *btf__new_empty(void) 824 { 825 return libbpf_ptr(btf_new_empty(NULL)); 826 } 827 828 struct btf *btf__new_empty_split(struct btf *base_btf) 829 { 830 return libbpf_ptr(btf_new_empty(base_btf)); 831 } 832 833 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 834 { 835 struct btf *btf; 836 int err; 837 838 btf = calloc(1, sizeof(struct btf)); 839 if (!btf) 840 return ERR_PTR(-ENOMEM); 841 842 btf->nr_types = 0; 843 btf->start_id = 1; 844 btf->start_str_off = 0; 845 btf->fd = -1; 846 847 if (base_btf) { 848 btf->base_btf = base_btf; 849 btf->start_id = btf__type_cnt(base_btf); 850 btf->start_str_off = base_btf->hdr->str_len; 851 } 852 853 btf->raw_data = malloc(size); 854 if (!btf->raw_data) { 855 err = -ENOMEM; 856 goto done; 857 } 858 memcpy(btf->raw_data, data, size); 859 btf->raw_size = size; 860 861 btf->hdr = btf->raw_data; 862 err = btf_parse_hdr(btf); 863 if (err) 864 goto done; 865 866 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 867 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 868 869 err = btf_parse_str_sec(btf); 870 err = err ?: btf_parse_type_sec(btf); 871 if (err) 872 goto done; 873 874 done: 875 if (err) { 876 btf__free(btf); 877 return ERR_PTR(err); 878 } 879 880 return btf; 881 } 882 883 struct btf *btf__new(const void *data, __u32 size) 884 { 885 return libbpf_ptr(btf_new(data, size, NULL)); 886 } 887 888 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 889 struct btf_ext **btf_ext) 890 { 891 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 892 int err = 0, fd = -1, idx = 0; 893 struct btf *btf = NULL; 894 Elf_Scn *scn = NULL; 895 Elf *elf = NULL; 896 GElf_Ehdr ehdr; 897 size_t shstrndx; 898 899 if (elf_version(EV_CURRENT) == EV_NONE) { 900 pr_warn("failed to init libelf for %s\n", path); 901 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 902 } 903 904 fd = open(path, O_RDONLY | O_CLOEXEC); 905 if (fd < 0) { 906 err = -errno; 907 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 908 return ERR_PTR(err); 909 } 910 911 err = -LIBBPF_ERRNO__FORMAT; 912 913 elf = elf_begin(fd, ELF_C_READ, NULL); 914 if (!elf) { 915 pr_warn("failed to open %s as ELF file\n", path); 916 goto done; 917 } 918 if (!gelf_getehdr(elf, &ehdr)) { 919 pr_warn("failed to get EHDR from %s\n", path); 920 goto done; 921 } 922 923 if (elf_getshdrstrndx(elf, &shstrndx)) { 924 pr_warn("failed to get section names section index for %s\n", 925 path); 926 goto done; 927 } 928 929 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 930 pr_warn("failed to get e_shstrndx from %s\n", path); 931 goto done; 932 } 933 934 while ((scn = elf_nextscn(elf, scn)) != NULL) { 935 GElf_Shdr sh; 936 char *name; 937 938 idx++; 939 if (gelf_getshdr(scn, &sh) != &sh) { 940 pr_warn("failed to get section(%d) header from %s\n", 941 idx, path); 942 goto done; 943 } 944 name = elf_strptr(elf, shstrndx, sh.sh_name); 945 if (!name) { 946 pr_warn("failed to get section(%d) name from %s\n", 947 idx, path); 948 goto done; 949 } 950 if (strcmp(name, BTF_ELF_SEC) == 0) { 951 btf_data = elf_getdata(scn, 0); 952 if (!btf_data) { 953 pr_warn("failed to get section(%d, %s) data from %s\n", 954 idx, name, path); 955 goto done; 956 } 957 continue; 958 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 959 btf_ext_data = elf_getdata(scn, 0); 960 if (!btf_ext_data) { 961 pr_warn("failed to get section(%d, %s) data from %s\n", 962 idx, name, path); 963 goto done; 964 } 965 continue; 966 } 967 } 968 969 err = 0; 970 971 if (!btf_data) { 972 err = -ENOENT; 973 goto done; 974 } 975 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 976 err = libbpf_get_error(btf); 977 if (err) 978 goto done; 979 980 switch (gelf_getclass(elf)) { 981 case ELFCLASS32: 982 btf__set_pointer_size(btf, 4); 983 break; 984 case ELFCLASS64: 985 btf__set_pointer_size(btf, 8); 986 break; 987 default: 988 pr_warn("failed to get ELF class (bitness) for %s\n", path); 989 break; 990 } 991 992 if (btf_ext && btf_ext_data) { 993 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 994 err = libbpf_get_error(*btf_ext); 995 if (err) 996 goto done; 997 } else if (btf_ext) { 998 *btf_ext = NULL; 999 } 1000 done: 1001 if (elf) 1002 elf_end(elf); 1003 close(fd); 1004 1005 if (!err) 1006 return btf; 1007 1008 if (btf_ext) 1009 btf_ext__free(*btf_ext); 1010 btf__free(btf); 1011 1012 return ERR_PTR(err); 1013 } 1014 1015 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1016 { 1017 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1018 } 1019 1020 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1021 { 1022 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1023 } 1024 1025 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1026 { 1027 struct btf *btf = NULL; 1028 void *data = NULL; 1029 FILE *f = NULL; 1030 __u16 magic; 1031 int err = 0; 1032 long sz; 1033 1034 f = fopen(path, "rb"); 1035 if (!f) { 1036 err = -errno; 1037 goto err_out; 1038 } 1039 1040 /* check BTF magic */ 1041 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1042 err = -EIO; 1043 goto err_out; 1044 } 1045 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1046 /* definitely not a raw BTF */ 1047 err = -EPROTO; 1048 goto err_out; 1049 } 1050 1051 /* get file size */ 1052 if (fseek(f, 0, SEEK_END)) { 1053 err = -errno; 1054 goto err_out; 1055 } 1056 sz = ftell(f); 1057 if (sz < 0) { 1058 err = -errno; 1059 goto err_out; 1060 } 1061 /* rewind to the start */ 1062 if (fseek(f, 0, SEEK_SET)) { 1063 err = -errno; 1064 goto err_out; 1065 } 1066 1067 /* pre-alloc memory and read all of BTF data */ 1068 data = malloc(sz); 1069 if (!data) { 1070 err = -ENOMEM; 1071 goto err_out; 1072 } 1073 if (fread(data, 1, sz, f) < sz) { 1074 err = -EIO; 1075 goto err_out; 1076 } 1077 1078 /* finally parse BTF data */ 1079 btf = btf_new(data, sz, base_btf); 1080 1081 err_out: 1082 free(data); 1083 if (f) 1084 fclose(f); 1085 return err ? ERR_PTR(err) : btf; 1086 } 1087 1088 struct btf *btf__parse_raw(const char *path) 1089 { 1090 return libbpf_ptr(btf_parse_raw(path, NULL)); 1091 } 1092 1093 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1094 { 1095 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1096 } 1097 1098 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1099 { 1100 struct btf *btf; 1101 int err; 1102 1103 if (btf_ext) 1104 *btf_ext = NULL; 1105 1106 btf = btf_parse_raw(path, base_btf); 1107 err = libbpf_get_error(btf); 1108 if (!err) 1109 return btf; 1110 if (err != -EPROTO) 1111 return ERR_PTR(err); 1112 return btf_parse_elf(path, base_btf, btf_ext); 1113 } 1114 1115 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1116 { 1117 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1118 } 1119 1120 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1121 { 1122 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1123 } 1124 1125 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1126 1127 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1128 { 1129 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1130 __u32 buf_sz = 0, raw_size; 1131 char *buf = NULL, *tmp; 1132 void *raw_data; 1133 int err = 0; 1134 1135 if (btf->fd >= 0) 1136 return libbpf_err(-EEXIST); 1137 if (log_sz && !log_buf) 1138 return libbpf_err(-EINVAL); 1139 1140 /* cache native raw data representation */ 1141 raw_data = btf_get_raw_data(btf, &raw_size, false); 1142 if (!raw_data) { 1143 err = -ENOMEM; 1144 goto done; 1145 } 1146 btf->raw_size = raw_size; 1147 btf->raw_data = raw_data; 1148 1149 retry_load: 1150 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1151 * initially. Only if BTF loading fails, we bump log_level to 1 and 1152 * retry, using either auto-allocated or custom log_buf. This way 1153 * non-NULL custom log_buf provides a buffer just in case, but hopes 1154 * for successful load and no need for log_buf. 1155 */ 1156 if (log_level) { 1157 /* if caller didn't provide custom log_buf, we'll keep 1158 * allocating our own progressively bigger buffers for BTF 1159 * verification log 1160 */ 1161 if (!log_buf) { 1162 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1163 tmp = realloc(buf, buf_sz); 1164 if (!tmp) { 1165 err = -ENOMEM; 1166 goto done; 1167 } 1168 buf = tmp; 1169 buf[0] = '\0'; 1170 } 1171 1172 opts.log_buf = log_buf ? log_buf : buf; 1173 opts.log_size = log_buf ? log_sz : buf_sz; 1174 opts.log_level = log_level; 1175 } 1176 1177 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1178 if (btf->fd < 0) { 1179 /* time to turn on verbose mode and try again */ 1180 if (log_level == 0) { 1181 log_level = 1; 1182 goto retry_load; 1183 } 1184 /* only retry if caller didn't provide custom log_buf, but 1185 * make sure we can never overflow buf_sz 1186 */ 1187 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1188 goto retry_load; 1189 1190 err = -errno; 1191 pr_warn("BTF loading error: %d\n", err); 1192 /* don't print out contents of custom log_buf */ 1193 if (!log_buf && buf[0]) 1194 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1195 } 1196 1197 done: 1198 free(buf); 1199 return libbpf_err(err); 1200 } 1201 1202 int btf__load_into_kernel(struct btf *btf) 1203 { 1204 return btf_load_into_kernel(btf, NULL, 0, 0); 1205 } 1206 1207 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1208 1209 int btf__fd(const struct btf *btf) 1210 { 1211 return btf->fd; 1212 } 1213 1214 void btf__set_fd(struct btf *btf, int fd) 1215 { 1216 btf->fd = fd; 1217 } 1218 1219 static const void *btf_strs_data(const struct btf *btf) 1220 { 1221 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1222 } 1223 1224 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1225 { 1226 struct btf_header *hdr = btf->hdr; 1227 struct btf_type *t; 1228 void *data, *p; 1229 __u32 data_sz; 1230 int i; 1231 1232 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1233 if (data) { 1234 *size = btf->raw_size; 1235 return data; 1236 } 1237 1238 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1239 data = calloc(1, data_sz); 1240 if (!data) 1241 return NULL; 1242 p = data; 1243 1244 memcpy(p, hdr, hdr->hdr_len); 1245 if (swap_endian) 1246 btf_bswap_hdr(p); 1247 p += hdr->hdr_len; 1248 1249 memcpy(p, btf->types_data, hdr->type_len); 1250 if (swap_endian) { 1251 for (i = 0; i < btf->nr_types; i++) { 1252 t = p + btf->type_offs[i]; 1253 /* btf_bswap_type_rest() relies on native t->info, so 1254 * we swap base type info after we swapped all the 1255 * additional information 1256 */ 1257 if (btf_bswap_type_rest(t)) 1258 goto err_out; 1259 btf_bswap_type_base(t); 1260 } 1261 } 1262 p += hdr->type_len; 1263 1264 memcpy(p, btf_strs_data(btf), hdr->str_len); 1265 p += hdr->str_len; 1266 1267 *size = data_sz; 1268 return data; 1269 err_out: 1270 free(data); 1271 return NULL; 1272 } 1273 1274 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1275 { 1276 struct btf *btf = (struct btf *)btf_ro; 1277 __u32 data_sz; 1278 void *data; 1279 1280 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1281 if (!data) 1282 return errno = ENOMEM, NULL; 1283 1284 btf->raw_size = data_sz; 1285 if (btf->swapped_endian) 1286 btf->raw_data_swapped = data; 1287 else 1288 btf->raw_data = data; 1289 *size = data_sz; 1290 return data; 1291 } 1292 1293 __attribute__((alias("btf__raw_data"))) 1294 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1295 1296 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1297 { 1298 if (offset < btf->start_str_off) 1299 return btf__str_by_offset(btf->base_btf, offset); 1300 else if (offset - btf->start_str_off < btf->hdr->str_len) 1301 return btf_strs_data(btf) + (offset - btf->start_str_off); 1302 else 1303 return errno = EINVAL, NULL; 1304 } 1305 1306 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1307 { 1308 return btf__str_by_offset(btf, offset); 1309 } 1310 1311 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1312 { 1313 struct bpf_btf_info btf_info; 1314 __u32 len = sizeof(btf_info); 1315 __u32 last_size; 1316 struct btf *btf; 1317 void *ptr; 1318 int err; 1319 1320 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1321 * let's start with a sane default - 4KiB here - and resize it only if 1322 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1323 */ 1324 last_size = 4096; 1325 ptr = malloc(last_size); 1326 if (!ptr) 1327 return ERR_PTR(-ENOMEM); 1328 1329 memset(&btf_info, 0, sizeof(btf_info)); 1330 btf_info.btf = ptr_to_u64(ptr); 1331 btf_info.btf_size = last_size; 1332 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1333 1334 if (!err && btf_info.btf_size > last_size) { 1335 void *temp_ptr; 1336 1337 last_size = btf_info.btf_size; 1338 temp_ptr = realloc(ptr, last_size); 1339 if (!temp_ptr) { 1340 btf = ERR_PTR(-ENOMEM); 1341 goto exit_free; 1342 } 1343 ptr = temp_ptr; 1344 1345 len = sizeof(btf_info); 1346 memset(&btf_info, 0, sizeof(btf_info)); 1347 btf_info.btf = ptr_to_u64(ptr); 1348 btf_info.btf_size = last_size; 1349 1350 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1351 } 1352 1353 if (err || btf_info.btf_size > last_size) { 1354 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1355 goto exit_free; 1356 } 1357 1358 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1359 1360 exit_free: 1361 free(ptr); 1362 return btf; 1363 } 1364 1365 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1366 { 1367 struct btf *btf; 1368 int btf_fd; 1369 1370 btf_fd = bpf_btf_get_fd_by_id(id); 1371 if (btf_fd < 0) 1372 return libbpf_err_ptr(-errno); 1373 1374 btf = btf_get_from_fd(btf_fd, base_btf); 1375 close(btf_fd); 1376 1377 return libbpf_ptr(btf); 1378 } 1379 1380 struct btf *btf__load_from_kernel_by_id(__u32 id) 1381 { 1382 return btf__load_from_kernel_by_id_split(id, NULL); 1383 } 1384 1385 int btf__get_from_id(__u32 id, struct btf **btf) 1386 { 1387 struct btf *res; 1388 int err; 1389 1390 *btf = NULL; 1391 res = btf__load_from_kernel_by_id(id); 1392 err = libbpf_get_error(res); 1393 1394 if (err) 1395 return libbpf_err(err); 1396 1397 *btf = res; 1398 return 0; 1399 } 1400 1401 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1402 __u32 expected_key_size, __u32 expected_value_size, 1403 __u32 *key_type_id, __u32 *value_type_id) 1404 { 1405 const struct btf_type *container_type; 1406 const struct btf_member *key, *value; 1407 const size_t max_name = 256; 1408 char container_name[max_name]; 1409 __s64 key_size, value_size; 1410 __s32 container_id; 1411 1412 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1413 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1414 map_name, map_name); 1415 return libbpf_err(-EINVAL); 1416 } 1417 1418 container_id = btf__find_by_name(btf, container_name); 1419 if (container_id < 0) { 1420 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1421 map_name, container_name); 1422 return libbpf_err(container_id); 1423 } 1424 1425 container_type = btf__type_by_id(btf, container_id); 1426 if (!container_type) { 1427 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1428 map_name, container_id); 1429 return libbpf_err(-EINVAL); 1430 } 1431 1432 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1433 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1434 map_name, container_name); 1435 return libbpf_err(-EINVAL); 1436 } 1437 1438 key = btf_members(container_type); 1439 value = key + 1; 1440 1441 key_size = btf__resolve_size(btf, key->type); 1442 if (key_size < 0) { 1443 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1444 return libbpf_err(key_size); 1445 } 1446 1447 if (expected_key_size != key_size) { 1448 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1449 map_name, (__u32)key_size, expected_key_size); 1450 return libbpf_err(-EINVAL); 1451 } 1452 1453 value_size = btf__resolve_size(btf, value->type); 1454 if (value_size < 0) { 1455 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1456 return libbpf_err(value_size); 1457 } 1458 1459 if (expected_value_size != value_size) { 1460 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1461 map_name, (__u32)value_size, expected_value_size); 1462 return libbpf_err(-EINVAL); 1463 } 1464 1465 *key_type_id = key->type; 1466 *value_type_id = value->type; 1467 1468 return 0; 1469 } 1470 1471 static void btf_invalidate_raw_data(struct btf *btf) 1472 { 1473 if (btf->raw_data) { 1474 free(btf->raw_data); 1475 btf->raw_data = NULL; 1476 } 1477 if (btf->raw_data_swapped) { 1478 free(btf->raw_data_swapped); 1479 btf->raw_data_swapped = NULL; 1480 } 1481 } 1482 1483 /* Ensure BTF is ready to be modified (by splitting into a three memory 1484 * regions for header, types, and strings). Also invalidate cached 1485 * raw_data, if any. 1486 */ 1487 static int btf_ensure_modifiable(struct btf *btf) 1488 { 1489 void *hdr, *types; 1490 struct strset *set = NULL; 1491 int err = -ENOMEM; 1492 1493 if (btf_is_modifiable(btf)) { 1494 /* any BTF modification invalidates raw_data */ 1495 btf_invalidate_raw_data(btf); 1496 return 0; 1497 } 1498 1499 /* split raw data into three memory regions */ 1500 hdr = malloc(btf->hdr->hdr_len); 1501 types = malloc(btf->hdr->type_len); 1502 if (!hdr || !types) 1503 goto err_out; 1504 1505 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1506 memcpy(types, btf->types_data, btf->hdr->type_len); 1507 1508 /* build lookup index for all strings */ 1509 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1510 if (IS_ERR(set)) { 1511 err = PTR_ERR(set); 1512 goto err_out; 1513 } 1514 1515 /* only when everything was successful, update internal state */ 1516 btf->hdr = hdr; 1517 btf->types_data = types; 1518 btf->types_data_cap = btf->hdr->type_len; 1519 btf->strs_data = NULL; 1520 btf->strs_set = set; 1521 /* if BTF was created from scratch, all strings are guaranteed to be 1522 * unique and deduplicated 1523 */ 1524 if (btf->hdr->str_len == 0) 1525 btf->strs_deduped = true; 1526 if (!btf->base_btf && btf->hdr->str_len == 1) 1527 btf->strs_deduped = true; 1528 1529 /* invalidate raw_data representation */ 1530 btf_invalidate_raw_data(btf); 1531 1532 return 0; 1533 1534 err_out: 1535 strset__free(set); 1536 free(hdr); 1537 free(types); 1538 return err; 1539 } 1540 1541 /* Find an offset in BTF string section that corresponds to a given string *s*. 1542 * Returns: 1543 * - >0 offset into string section, if string is found; 1544 * - -ENOENT, if string is not in the string section; 1545 * - <0, on any other error. 1546 */ 1547 int btf__find_str(struct btf *btf, const char *s) 1548 { 1549 int off; 1550 1551 if (btf->base_btf) { 1552 off = btf__find_str(btf->base_btf, s); 1553 if (off != -ENOENT) 1554 return off; 1555 } 1556 1557 /* BTF needs to be in a modifiable state to build string lookup index */ 1558 if (btf_ensure_modifiable(btf)) 1559 return libbpf_err(-ENOMEM); 1560 1561 off = strset__find_str(btf->strs_set, s); 1562 if (off < 0) 1563 return libbpf_err(off); 1564 1565 return btf->start_str_off + off; 1566 } 1567 1568 /* Add a string s to the BTF string section. 1569 * Returns: 1570 * - > 0 offset into string section, on success; 1571 * - < 0, on error. 1572 */ 1573 int btf__add_str(struct btf *btf, const char *s) 1574 { 1575 int off; 1576 1577 if (btf->base_btf) { 1578 off = btf__find_str(btf->base_btf, s); 1579 if (off != -ENOENT) 1580 return off; 1581 } 1582 1583 if (btf_ensure_modifiable(btf)) 1584 return libbpf_err(-ENOMEM); 1585 1586 off = strset__add_str(btf->strs_set, s); 1587 if (off < 0) 1588 return libbpf_err(off); 1589 1590 btf->hdr->str_len = strset__data_size(btf->strs_set); 1591 1592 return btf->start_str_off + off; 1593 } 1594 1595 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1596 { 1597 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1598 btf->hdr->type_len, UINT_MAX, add_sz); 1599 } 1600 1601 static void btf_type_inc_vlen(struct btf_type *t) 1602 { 1603 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1604 } 1605 1606 static int btf_commit_type(struct btf *btf, int data_sz) 1607 { 1608 int err; 1609 1610 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1611 if (err) 1612 return libbpf_err(err); 1613 1614 btf->hdr->type_len += data_sz; 1615 btf->hdr->str_off += data_sz; 1616 btf->nr_types++; 1617 return btf->start_id + btf->nr_types - 1; 1618 } 1619 1620 struct btf_pipe { 1621 const struct btf *src; 1622 struct btf *dst; 1623 }; 1624 1625 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1626 { 1627 struct btf_pipe *p = ctx; 1628 int off; 1629 1630 if (!*str_off) /* nothing to do for empty strings */ 1631 return 0; 1632 1633 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1634 if (off < 0) 1635 return off; 1636 1637 *str_off = off; 1638 return 0; 1639 } 1640 1641 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1642 { 1643 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1644 struct btf_type *t; 1645 int sz, err; 1646 1647 sz = btf_type_size(src_type); 1648 if (sz < 0) 1649 return libbpf_err(sz); 1650 1651 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1652 if (btf_ensure_modifiable(btf)) 1653 return libbpf_err(-ENOMEM); 1654 1655 t = btf_add_type_mem(btf, sz); 1656 if (!t) 1657 return libbpf_err(-ENOMEM); 1658 1659 memcpy(t, src_type, sz); 1660 1661 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1662 if (err) 1663 return libbpf_err(err); 1664 1665 return btf_commit_type(btf, sz); 1666 } 1667 1668 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1669 { 1670 struct btf *btf = ctx; 1671 1672 if (!*type_id) /* nothing to do for VOID references */ 1673 return 0; 1674 1675 /* we haven't updated btf's type count yet, so 1676 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1677 * add to all newly added BTF types 1678 */ 1679 *type_id += btf->start_id + btf->nr_types - 1; 1680 return 0; 1681 } 1682 1683 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1684 { 1685 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1686 int data_sz, sz, cnt, i, err, old_strs_len; 1687 __u32 *off; 1688 void *t; 1689 1690 /* appending split BTF isn't supported yet */ 1691 if (src_btf->base_btf) 1692 return libbpf_err(-ENOTSUP); 1693 1694 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1695 if (btf_ensure_modifiable(btf)) 1696 return libbpf_err(-ENOMEM); 1697 1698 /* remember original strings section size if we have to roll back 1699 * partial strings section changes 1700 */ 1701 old_strs_len = btf->hdr->str_len; 1702 1703 data_sz = src_btf->hdr->type_len; 1704 cnt = btf__type_cnt(src_btf) - 1; 1705 1706 /* pre-allocate enough memory for new types */ 1707 t = btf_add_type_mem(btf, data_sz); 1708 if (!t) 1709 return libbpf_err(-ENOMEM); 1710 1711 /* pre-allocate enough memory for type offset index for new types */ 1712 off = btf_add_type_offs_mem(btf, cnt); 1713 if (!off) 1714 return libbpf_err(-ENOMEM); 1715 1716 /* bulk copy types data for all types from src_btf */ 1717 memcpy(t, src_btf->types_data, data_sz); 1718 1719 for (i = 0; i < cnt; i++) { 1720 sz = btf_type_size(t); 1721 if (sz < 0) { 1722 /* unlikely, has to be corrupted src_btf */ 1723 err = sz; 1724 goto err_out; 1725 } 1726 1727 /* fill out type ID to type offset mapping for lookups by type ID */ 1728 *off = t - btf->types_data; 1729 1730 /* add, dedup, and remap strings referenced by this BTF type */ 1731 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1732 if (err) 1733 goto err_out; 1734 1735 /* remap all type IDs referenced from this BTF type */ 1736 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1737 if (err) 1738 goto err_out; 1739 1740 /* go to next type data and type offset index entry */ 1741 t += sz; 1742 off++; 1743 } 1744 1745 /* Up until now any of the copied type data was effectively invisible, 1746 * so if we exited early before this point due to error, BTF would be 1747 * effectively unmodified. There would be extra internal memory 1748 * pre-allocated, but it would not be available for querying. But now 1749 * that we've copied and rewritten all the data successfully, we can 1750 * update type count and various internal offsets and sizes to 1751 * "commit" the changes and made them visible to the outside world. 1752 */ 1753 btf->hdr->type_len += data_sz; 1754 btf->hdr->str_off += data_sz; 1755 btf->nr_types += cnt; 1756 1757 /* return type ID of the first added BTF type */ 1758 return btf->start_id + btf->nr_types - cnt; 1759 err_out: 1760 /* zero out preallocated memory as if it was just allocated with 1761 * libbpf_add_mem() 1762 */ 1763 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1764 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1765 1766 /* and now restore original strings section size; types data size 1767 * wasn't modified, so doesn't need restoring, see big comment above */ 1768 btf->hdr->str_len = old_strs_len; 1769 1770 return libbpf_err(err); 1771 } 1772 1773 /* 1774 * Append new BTF_KIND_INT type with: 1775 * - *name* - non-empty, non-NULL type name; 1776 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1777 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1778 * Returns: 1779 * - >0, type ID of newly added BTF type; 1780 * - <0, on error. 1781 */ 1782 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1783 { 1784 struct btf_type *t; 1785 int sz, name_off; 1786 1787 /* non-empty name */ 1788 if (!name || !name[0]) 1789 return libbpf_err(-EINVAL); 1790 /* byte_sz must be power of 2 */ 1791 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1792 return libbpf_err(-EINVAL); 1793 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1794 return libbpf_err(-EINVAL); 1795 1796 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1797 if (btf_ensure_modifiable(btf)) 1798 return libbpf_err(-ENOMEM); 1799 1800 sz = sizeof(struct btf_type) + sizeof(int); 1801 t = btf_add_type_mem(btf, sz); 1802 if (!t) 1803 return libbpf_err(-ENOMEM); 1804 1805 /* if something goes wrong later, we might end up with an extra string, 1806 * but that shouldn't be a problem, because BTF can't be constructed 1807 * completely anyway and will most probably be just discarded 1808 */ 1809 name_off = btf__add_str(btf, name); 1810 if (name_off < 0) 1811 return name_off; 1812 1813 t->name_off = name_off; 1814 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1815 t->size = byte_sz; 1816 /* set INT info, we don't allow setting legacy bit offset/size */ 1817 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1818 1819 return btf_commit_type(btf, sz); 1820 } 1821 1822 /* 1823 * Append new BTF_KIND_FLOAT type with: 1824 * - *name* - non-empty, non-NULL type name; 1825 * - *sz* - size of the type, in bytes; 1826 * Returns: 1827 * - >0, type ID of newly added BTF type; 1828 * - <0, on error. 1829 */ 1830 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1831 { 1832 struct btf_type *t; 1833 int sz, name_off; 1834 1835 /* non-empty name */ 1836 if (!name || !name[0]) 1837 return libbpf_err(-EINVAL); 1838 1839 /* byte_sz must be one of the explicitly allowed values */ 1840 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1841 byte_sz != 16) 1842 return libbpf_err(-EINVAL); 1843 1844 if (btf_ensure_modifiable(btf)) 1845 return libbpf_err(-ENOMEM); 1846 1847 sz = sizeof(struct btf_type); 1848 t = btf_add_type_mem(btf, sz); 1849 if (!t) 1850 return libbpf_err(-ENOMEM); 1851 1852 name_off = btf__add_str(btf, name); 1853 if (name_off < 0) 1854 return name_off; 1855 1856 t->name_off = name_off; 1857 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1858 t->size = byte_sz; 1859 1860 return btf_commit_type(btf, sz); 1861 } 1862 1863 /* it's completely legal to append BTF types with type IDs pointing forward to 1864 * types that haven't been appended yet, so we only make sure that id looks 1865 * sane, we can't guarantee that ID will always be valid 1866 */ 1867 static int validate_type_id(int id) 1868 { 1869 if (id < 0 || id > BTF_MAX_NR_TYPES) 1870 return -EINVAL; 1871 return 0; 1872 } 1873 1874 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1875 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1876 { 1877 struct btf_type *t; 1878 int sz, name_off = 0; 1879 1880 if (validate_type_id(ref_type_id)) 1881 return libbpf_err(-EINVAL); 1882 1883 if (btf_ensure_modifiable(btf)) 1884 return libbpf_err(-ENOMEM); 1885 1886 sz = sizeof(struct btf_type); 1887 t = btf_add_type_mem(btf, sz); 1888 if (!t) 1889 return libbpf_err(-ENOMEM); 1890 1891 if (name && name[0]) { 1892 name_off = btf__add_str(btf, name); 1893 if (name_off < 0) 1894 return name_off; 1895 } 1896 1897 t->name_off = name_off; 1898 t->info = btf_type_info(kind, 0, 0); 1899 t->type = ref_type_id; 1900 1901 return btf_commit_type(btf, sz); 1902 } 1903 1904 /* 1905 * Append new BTF_KIND_PTR type with: 1906 * - *ref_type_id* - referenced type ID, it might not exist yet; 1907 * Returns: 1908 * - >0, type ID of newly added BTF type; 1909 * - <0, on error. 1910 */ 1911 int btf__add_ptr(struct btf *btf, int ref_type_id) 1912 { 1913 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1914 } 1915 1916 /* 1917 * Append new BTF_KIND_ARRAY type with: 1918 * - *index_type_id* - type ID of the type describing array index; 1919 * - *elem_type_id* - type ID of the type describing array element; 1920 * - *nr_elems* - the size of the array; 1921 * Returns: 1922 * - >0, type ID of newly added BTF type; 1923 * - <0, on error. 1924 */ 1925 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1926 { 1927 struct btf_type *t; 1928 struct btf_array *a; 1929 int sz; 1930 1931 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1932 return libbpf_err(-EINVAL); 1933 1934 if (btf_ensure_modifiable(btf)) 1935 return libbpf_err(-ENOMEM); 1936 1937 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1938 t = btf_add_type_mem(btf, sz); 1939 if (!t) 1940 return libbpf_err(-ENOMEM); 1941 1942 t->name_off = 0; 1943 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1944 t->size = 0; 1945 1946 a = btf_array(t); 1947 a->type = elem_type_id; 1948 a->index_type = index_type_id; 1949 a->nelems = nr_elems; 1950 1951 return btf_commit_type(btf, sz); 1952 } 1953 1954 /* generic STRUCT/UNION append function */ 1955 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1956 { 1957 struct btf_type *t; 1958 int sz, name_off = 0; 1959 1960 if (btf_ensure_modifiable(btf)) 1961 return libbpf_err(-ENOMEM); 1962 1963 sz = sizeof(struct btf_type); 1964 t = btf_add_type_mem(btf, sz); 1965 if (!t) 1966 return libbpf_err(-ENOMEM); 1967 1968 if (name && name[0]) { 1969 name_off = btf__add_str(btf, name); 1970 if (name_off < 0) 1971 return name_off; 1972 } 1973 1974 /* start out with vlen=0 and no kflag; this will be adjusted when 1975 * adding each member 1976 */ 1977 t->name_off = name_off; 1978 t->info = btf_type_info(kind, 0, 0); 1979 t->size = bytes_sz; 1980 1981 return btf_commit_type(btf, sz); 1982 } 1983 1984 /* 1985 * Append new BTF_KIND_STRUCT type with: 1986 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1987 * - *byte_sz* - size of the struct, in bytes; 1988 * 1989 * Struct initially has no fields in it. Fields can be added by 1990 * btf__add_field() right after btf__add_struct() succeeds. 1991 * 1992 * Returns: 1993 * - >0, type ID of newly added BTF type; 1994 * - <0, on error. 1995 */ 1996 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1997 { 1998 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1999 } 2000 2001 /* 2002 * Append new BTF_KIND_UNION type with: 2003 * - *name* - name of the union, can be NULL or empty for anonymous union; 2004 * - *byte_sz* - size of the union, in bytes; 2005 * 2006 * Union initially has no fields in it. Fields can be added by 2007 * btf__add_field() right after btf__add_union() succeeds. All fields 2008 * should have *bit_offset* of 0. 2009 * 2010 * Returns: 2011 * - >0, type ID of newly added BTF type; 2012 * - <0, on error. 2013 */ 2014 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2015 { 2016 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2017 } 2018 2019 static struct btf_type *btf_last_type(struct btf *btf) 2020 { 2021 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2022 } 2023 2024 /* 2025 * Append new field for the current STRUCT/UNION type with: 2026 * - *name* - name of the field, can be NULL or empty for anonymous field; 2027 * - *type_id* - type ID for the type describing field type; 2028 * - *bit_offset* - bit offset of the start of the field within struct/union; 2029 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2030 * Returns: 2031 * - 0, on success; 2032 * - <0, on error. 2033 */ 2034 int btf__add_field(struct btf *btf, const char *name, int type_id, 2035 __u32 bit_offset, __u32 bit_size) 2036 { 2037 struct btf_type *t; 2038 struct btf_member *m; 2039 bool is_bitfield; 2040 int sz, name_off = 0; 2041 2042 /* last type should be union/struct */ 2043 if (btf->nr_types == 0) 2044 return libbpf_err(-EINVAL); 2045 t = btf_last_type(btf); 2046 if (!btf_is_composite(t)) 2047 return libbpf_err(-EINVAL); 2048 2049 if (validate_type_id(type_id)) 2050 return libbpf_err(-EINVAL); 2051 /* best-effort bit field offset/size enforcement */ 2052 is_bitfield = bit_size || (bit_offset % 8 != 0); 2053 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2054 return libbpf_err(-EINVAL); 2055 2056 /* only offset 0 is allowed for unions */ 2057 if (btf_is_union(t) && bit_offset) 2058 return libbpf_err(-EINVAL); 2059 2060 /* decompose and invalidate raw data */ 2061 if (btf_ensure_modifiable(btf)) 2062 return libbpf_err(-ENOMEM); 2063 2064 sz = sizeof(struct btf_member); 2065 m = btf_add_type_mem(btf, sz); 2066 if (!m) 2067 return libbpf_err(-ENOMEM); 2068 2069 if (name && name[0]) { 2070 name_off = btf__add_str(btf, name); 2071 if (name_off < 0) 2072 return name_off; 2073 } 2074 2075 m->name_off = name_off; 2076 m->type = type_id; 2077 m->offset = bit_offset | (bit_size << 24); 2078 2079 /* btf_add_type_mem can invalidate t pointer */ 2080 t = btf_last_type(btf); 2081 /* update parent type's vlen and kflag */ 2082 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2083 2084 btf->hdr->type_len += sz; 2085 btf->hdr->str_off += sz; 2086 return 0; 2087 } 2088 2089 /* 2090 * Append new BTF_KIND_ENUM type with: 2091 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2092 * - *byte_sz* - size of the enum, in bytes. 2093 * 2094 * Enum initially has no enum values in it (and corresponds to enum forward 2095 * declaration). Enumerator values can be added by btf__add_enum_value() 2096 * immediately after btf__add_enum() succeeds. 2097 * 2098 * Returns: 2099 * - >0, type ID of newly added BTF type; 2100 * - <0, on error. 2101 */ 2102 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2103 { 2104 struct btf_type *t; 2105 int sz, name_off = 0; 2106 2107 /* byte_sz must be power of 2 */ 2108 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2109 return libbpf_err(-EINVAL); 2110 2111 if (btf_ensure_modifiable(btf)) 2112 return libbpf_err(-ENOMEM); 2113 2114 sz = sizeof(struct btf_type); 2115 t = btf_add_type_mem(btf, sz); 2116 if (!t) 2117 return libbpf_err(-ENOMEM); 2118 2119 if (name && name[0]) { 2120 name_off = btf__add_str(btf, name); 2121 if (name_off < 0) 2122 return name_off; 2123 } 2124 2125 /* start out with vlen=0; it will be adjusted when adding enum values */ 2126 t->name_off = name_off; 2127 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2128 t->size = byte_sz; 2129 2130 return btf_commit_type(btf, sz); 2131 } 2132 2133 /* 2134 * Append new enum value for the current ENUM type with: 2135 * - *name* - name of the enumerator value, can't be NULL or empty; 2136 * - *value* - integer value corresponding to enum value *name*; 2137 * Returns: 2138 * - 0, on success; 2139 * - <0, on error. 2140 */ 2141 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2142 { 2143 struct btf_type *t; 2144 struct btf_enum *v; 2145 int sz, name_off; 2146 2147 /* last type should be BTF_KIND_ENUM */ 2148 if (btf->nr_types == 0) 2149 return libbpf_err(-EINVAL); 2150 t = btf_last_type(btf); 2151 if (!btf_is_enum(t)) 2152 return libbpf_err(-EINVAL); 2153 2154 /* non-empty name */ 2155 if (!name || !name[0]) 2156 return libbpf_err(-EINVAL); 2157 if (value < INT_MIN || value > UINT_MAX) 2158 return libbpf_err(-E2BIG); 2159 2160 /* decompose and invalidate raw data */ 2161 if (btf_ensure_modifiable(btf)) 2162 return libbpf_err(-ENOMEM); 2163 2164 sz = sizeof(struct btf_enum); 2165 v = btf_add_type_mem(btf, sz); 2166 if (!v) 2167 return libbpf_err(-ENOMEM); 2168 2169 name_off = btf__add_str(btf, name); 2170 if (name_off < 0) 2171 return name_off; 2172 2173 v->name_off = name_off; 2174 v->val = value; 2175 2176 /* update parent type's vlen */ 2177 t = btf_last_type(btf); 2178 btf_type_inc_vlen(t); 2179 2180 btf->hdr->type_len += sz; 2181 btf->hdr->str_off += sz; 2182 return 0; 2183 } 2184 2185 /* 2186 * Append new BTF_KIND_FWD type with: 2187 * - *name*, non-empty/non-NULL name; 2188 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2189 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2190 * Returns: 2191 * - >0, type ID of newly added BTF type; 2192 * - <0, on error. 2193 */ 2194 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2195 { 2196 if (!name || !name[0]) 2197 return libbpf_err(-EINVAL); 2198 2199 switch (fwd_kind) { 2200 case BTF_FWD_STRUCT: 2201 case BTF_FWD_UNION: { 2202 struct btf_type *t; 2203 int id; 2204 2205 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2206 if (id <= 0) 2207 return id; 2208 t = btf_type_by_id(btf, id); 2209 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2210 return id; 2211 } 2212 case BTF_FWD_ENUM: 2213 /* enum forward in BTF currently is just an enum with no enum 2214 * values; we also assume a standard 4-byte size for it 2215 */ 2216 return btf__add_enum(btf, name, sizeof(int)); 2217 default: 2218 return libbpf_err(-EINVAL); 2219 } 2220 } 2221 2222 /* 2223 * Append new BTF_KING_TYPEDEF type with: 2224 * - *name*, non-empty/non-NULL name; 2225 * - *ref_type_id* - referenced type ID, it might not exist yet; 2226 * Returns: 2227 * - >0, type ID of newly added BTF type; 2228 * - <0, on error. 2229 */ 2230 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2231 { 2232 if (!name || !name[0]) 2233 return libbpf_err(-EINVAL); 2234 2235 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2236 } 2237 2238 /* 2239 * Append new BTF_KIND_VOLATILE type with: 2240 * - *ref_type_id* - referenced type ID, it might not exist yet; 2241 * Returns: 2242 * - >0, type ID of newly added BTF type; 2243 * - <0, on error. 2244 */ 2245 int btf__add_volatile(struct btf *btf, int ref_type_id) 2246 { 2247 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2248 } 2249 2250 /* 2251 * Append new BTF_KIND_CONST type with: 2252 * - *ref_type_id* - referenced type ID, it might not exist yet; 2253 * Returns: 2254 * - >0, type ID of newly added BTF type; 2255 * - <0, on error. 2256 */ 2257 int btf__add_const(struct btf *btf, int ref_type_id) 2258 { 2259 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2260 } 2261 2262 /* 2263 * Append new BTF_KIND_RESTRICT type with: 2264 * - *ref_type_id* - referenced type ID, it might not exist yet; 2265 * Returns: 2266 * - >0, type ID of newly added BTF type; 2267 * - <0, on error. 2268 */ 2269 int btf__add_restrict(struct btf *btf, int ref_type_id) 2270 { 2271 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2272 } 2273 2274 /* 2275 * Append new BTF_KIND_TYPE_TAG type with: 2276 * - *value*, non-empty/non-NULL tag value; 2277 * - *ref_type_id* - referenced type ID, it might not exist yet; 2278 * Returns: 2279 * - >0, type ID of newly added BTF type; 2280 * - <0, on error. 2281 */ 2282 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2283 { 2284 if (!value|| !value[0]) 2285 return libbpf_err(-EINVAL); 2286 2287 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2288 } 2289 2290 /* 2291 * Append new BTF_KIND_FUNC type with: 2292 * - *name*, non-empty/non-NULL name; 2293 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2294 * Returns: 2295 * - >0, type ID of newly added BTF type; 2296 * - <0, on error. 2297 */ 2298 int btf__add_func(struct btf *btf, const char *name, 2299 enum btf_func_linkage linkage, int proto_type_id) 2300 { 2301 int id; 2302 2303 if (!name || !name[0]) 2304 return libbpf_err(-EINVAL); 2305 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2306 linkage != BTF_FUNC_EXTERN) 2307 return libbpf_err(-EINVAL); 2308 2309 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2310 if (id > 0) { 2311 struct btf_type *t = btf_type_by_id(btf, id); 2312 2313 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2314 } 2315 return libbpf_err(id); 2316 } 2317 2318 /* 2319 * Append new BTF_KIND_FUNC_PROTO with: 2320 * - *ret_type_id* - type ID for return result of a function. 2321 * 2322 * Function prototype initially has no arguments, but they can be added by 2323 * btf__add_func_param() one by one, immediately after 2324 * btf__add_func_proto() succeeded. 2325 * 2326 * Returns: 2327 * - >0, type ID of newly added BTF type; 2328 * - <0, on error. 2329 */ 2330 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2331 { 2332 struct btf_type *t; 2333 int sz; 2334 2335 if (validate_type_id(ret_type_id)) 2336 return libbpf_err(-EINVAL); 2337 2338 if (btf_ensure_modifiable(btf)) 2339 return libbpf_err(-ENOMEM); 2340 2341 sz = sizeof(struct btf_type); 2342 t = btf_add_type_mem(btf, sz); 2343 if (!t) 2344 return libbpf_err(-ENOMEM); 2345 2346 /* start out with vlen=0; this will be adjusted when adding enum 2347 * values, if necessary 2348 */ 2349 t->name_off = 0; 2350 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2351 t->type = ret_type_id; 2352 2353 return btf_commit_type(btf, sz); 2354 } 2355 2356 /* 2357 * Append new function parameter for current FUNC_PROTO type with: 2358 * - *name* - parameter name, can be NULL or empty; 2359 * - *type_id* - type ID describing the type of the parameter. 2360 * Returns: 2361 * - 0, on success; 2362 * - <0, on error. 2363 */ 2364 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2365 { 2366 struct btf_type *t; 2367 struct btf_param *p; 2368 int sz, name_off = 0; 2369 2370 if (validate_type_id(type_id)) 2371 return libbpf_err(-EINVAL); 2372 2373 /* last type should be BTF_KIND_FUNC_PROTO */ 2374 if (btf->nr_types == 0) 2375 return libbpf_err(-EINVAL); 2376 t = btf_last_type(btf); 2377 if (!btf_is_func_proto(t)) 2378 return libbpf_err(-EINVAL); 2379 2380 /* decompose and invalidate raw data */ 2381 if (btf_ensure_modifiable(btf)) 2382 return libbpf_err(-ENOMEM); 2383 2384 sz = sizeof(struct btf_param); 2385 p = btf_add_type_mem(btf, sz); 2386 if (!p) 2387 return libbpf_err(-ENOMEM); 2388 2389 if (name && name[0]) { 2390 name_off = btf__add_str(btf, name); 2391 if (name_off < 0) 2392 return name_off; 2393 } 2394 2395 p->name_off = name_off; 2396 p->type = type_id; 2397 2398 /* update parent type's vlen */ 2399 t = btf_last_type(btf); 2400 btf_type_inc_vlen(t); 2401 2402 btf->hdr->type_len += sz; 2403 btf->hdr->str_off += sz; 2404 return 0; 2405 } 2406 2407 /* 2408 * Append new BTF_KIND_VAR type with: 2409 * - *name* - non-empty/non-NULL name; 2410 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2411 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2412 * - *type_id* - type ID of the type describing the type of the variable. 2413 * Returns: 2414 * - >0, type ID of newly added BTF type; 2415 * - <0, on error. 2416 */ 2417 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2418 { 2419 struct btf_type *t; 2420 struct btf_var *v; 2421 int sz, name_off; 2422 2423 /* non-empty name */ 2424 if (!name || !name[0]) 2425 return libbpf_err(-EINVAL); 2426 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2427 linkage != BTF_VAR_GLOBAL_EXTERN) 2428 return libbpf_err(-EINVAL); 2429 if (validate_type_id(type_id)) 2430 return libbpf_err(-EINVAL); 2431 2432 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2433 if (btf_ensure_modifiable(btf)) 2434 return libbpf_err(-ENOMEM); 2435 2436 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2437 t = btf_add_type_mem(btf, sz); 2438 if (!t) 2439 return libbpf_err(-ENOMEM); 2440 2441 name_off = btf__add_str(btf, name); 2442 if (name_off < 0) 2443 return name_off; 2444 2445 t->name_off = name_off; 2446 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2447 t->type = type_id; 2448 2449 v = btf_var(t); 2450 v->linkage = linkage; 2451 2452 return btf_commit_type(btf, sz); 2453 } 2454 2455 /* 2456 * Append new BTF_KIND_DATASEC type with: 2457 * - *name* - non-empty/non-NULL name; 2458 * - *byte_sz* - data section size, in bytes. 2459 * 2460 * Data section is initially empty. Variables info can be added with 2461 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2462 * 2463 * Returns: 2464 * - >0, type ID of newly added BTF type; 2465 * - <0, on error. 2466 */ 2467 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2468 { 2469 struct btf_type *t; 2470 int sz, name_off; 2471 2472 /* non-empty name */ 2473 if (!name || !name[0]) 2474 return libbpf_err(-EINVAL); 2475 2476 if (btf_ensure_modifiable(btf)) 2477 return libbpf_err(-ENOMEM); 2478 2479 sz = sizeof(struct btf_type); 2480 t = btf_add_type_mem(btf, sz); 2481 if (!t) 2482 return libbpf_err(-ENOMEM); 2483 2484 name_off = btf__add_str(btf, name); 2485 if (name_off < 0) 2486 return name_off; 2487 2488 /* start with vlen=0, which will be update as var_secinfos are added */ 2489 t->name_off = name_off; 2490 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2491 t->size = byte_sz; 2492 2493 return btf_commit_type(btf, sz); 2494 } 2495 2496 /* 2497 * Append new data section variable information entry for current DATASEC type: 2498 * - *var_type_id* - type ID, describing type of the variable; 2499 * - *offset* - variable offset within data section, in bytes; 2500 * - *byte_sz* - variable size, in bytes. 2501 * 2502 * Returns: 2503 * - 0, on success; 2504 * - <0, on error. 2505 */ 2506 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2507 { 2508 struct btf_type *t; 2509 struct btf_var_secinfo *v; 2510 int sz; 2511 2512 /* last type should be BTF_KIND_DATASEC */ 2513 if (btf->nr_types == 0) 2514 return libbpf_err(-EINVAL); 2515 t = btf_last_type(btf); 2516 if (!btf_is_datasec(t)) 2517 return libbpf_err(-EINVAL); 2518 2519 if (validate_type_id(var_type_id)) 2520 return libbpf_err(-EINVAL); 2521 2522 /* decompose and invalidate raw data */ 2523 if (btf_ensure_modifiable(btf)) 2524 return libbpf_err(-ENOMEM); 2525 2526 sz = sizeof(struct btf_var_secinfo); 2527 v = btf_add_type_mem(btf, sz); 2528 if (!v) 2529 return libbpf_err(-ENOMEM); 2530 2531 v->type = var_type_id; 2532 v->offset = offset; 2533 v->size = byte_sz; 2534 2535 /* update parent type's vlen */ 2536 t = btf_last_type(btf); 2537 btf_type_inc_vlen(t); 2538 2539 btf->hdr->type_len += sz; 2540 btf->hdr->str_off += sz; 2541 return 0; 2542 } 2543 2544 /* 2545 * Append new BTF_KIND_DECL_TAG type with: 2546 * - *value* - non-empty/non-NULL string; 2547 * - *ref_type_id* - referenced type ID, it might not exist yet; 2548 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2549 * member or function argument index; 2550 * Returns: 2551 * - >0, type ID of newly added BTF type; 2552 * - <0, on error. 2553 */ 2554 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2555 int component_idx) 2556 { 2557 struct btf_type *t; 2558 int sz, value_off; 2559 2560 if (!value || !value[0] || component_idx < -1) 2561 return libbpf_err(-EINVAL); 2562 2563 if (validate_type_id(ref_type_id)) 2564 return libbpf_err(-EINVAL); 2565 2566 if (btf_ensure_modifiable(btf)) 2567 return libbpf_err(-ENOMEM); 2568 2569 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2570 t = btf_add_type_mem(btf, sz); 2571 if (!t) 2572 return libbpf_err(-ENOMEM); 2573 2574 value_off = btf__add_str(btf, value); 2575 if (value_off < 0) 2576 return value_off; 2577 2578 t->name_off = value_off; 2579 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2580 t->type = ref_type_id; 2581 btf_decl_tag(t)->component_idx = component_idx; 2582 2583 return btf_commit_type(btf, sz); 2584 } 2585 2586 struct btf_ext_sec_setup_param { 2587 __u32 off; 2588 __u32 len; 2589 __u32 min_rec_size; 2590 struct btf_ext_info *ext_info; 2591 const char *desc; 2592 }; 2593 2594 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2595 struct btf_ext_sec_setup_param *ext_sec) 2596 { 2597 const struct btf_ext_info_sec *sinfo; 2598 struct btf_ext_info *ext_info; 2599 __u32 info_left, record_size; 2600 /* The start of the info sec (including the __u32 record_size). */ 2601 void *info; 2602 2603 if (ext_sec->len == 0) 2604 return 0; 2605 2606 if (ext_sec->off & 0x03) { 2607 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2608 ext_sec->desc); 2609 return -EINVAL; 2610 } 2611 2612 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2613 info_left = ext_sec->len; 2614 2615 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2616 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2617 ext_sec->desc, ext_sec->off, ext_sec->len); 2618 return -EINVAL; 2619 } 2620 2621 /* At least a record size */ 2622 if (info_left < sizeof(__u32)) { 2623 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2624 return -EINVAL; 2625 } 2626 2627 /* The record size needs to meet the minimum standard */ 2628 record_size = *(__u32 *)info; 2629 if (record_size < ext_sec->min_rec_size || 2630 record_size & 0x03) { 2631 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2632 ext_sec->desc, record_size); 2633 return -EINVAL; 2634 } 2635 2636 sinfo = info + sizeof(__u32); 2637 info_left -= sizeof(__u32); 2638 2639 /* If no records, return failure now so .BTF.ext won't be used. */ 2640 if (!info_left) { 2641 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2642 return -EINVAL; 2643 } 2644 2645 while (info_left) { 2646 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2647 __u64 total_record_size; 2648 __u32 num_records; 2649 2650 if (info_left < sec_hdrlen) { 2651 pr_debug("%s section header is not found in .BTF.ext\n", 2652 ext_sec->desc); 2653 return -EINVAL; 2654 } 2655 2656 num_records = sinfo->num_info; 2657 if (num_records == 0) { 2658 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2659 ext_sec->desc); 2660 return -EINVAL; 2661 } 2662 2663 total_record_size = sec_hdrlen + 2664 (__u64)num_records * record_size; 2665 if (info_left < total_record_size) { 2666 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2667 ext_sec->desc); 2668 return -EINVAL; 2669 } 2670 2671 info_left -= total_record_size; 2672 sinfo = (void *)sinfo + total_record_size; 2673 } 2674 2675 ext_info = ext_sec->ext_info; 2676 ext_info->len = ext_sec->len - sizeof(__u32); 2677 ext_info->rec_size = record_size; 2678 ext_info->info = info + sizeof(__u32); 2679 2680 return 0; 2681 } 2682 2683 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2684 { 2685 struct btf_ext_sec_setup_param param = { 2686 .off = btf_ext->hdr->func_info_off, 2687 .len = btf_ext->hdr->func_info_len, 2688 .min_rec_size = sizeof(struct bpf_func_info_min), 2689 .ext_info = &btf_ext->func_info, 2690 .desc = "func_info" 2691 }; 2692 2693 return btf_ext_setup_info(btf_ext, ¶m); 2694 } 2695 2696 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2697 { 2698 struct btf_ext_sec_setup_param param = { 2699 .off = btf_ext->hdr->line_info_off, 2700 .len = btf_ext->hdr->line_info_len, 2701 .min_rec_size = sizeof(struct bpf_line_info_min), 2702 .ext_info = &btf_ext->line_info, 2703 .desc = "line_info", 2704 }; 2705 2706 return btf_ext_setup_info(btf_ext, ¶m); 2707 } 2708 2709 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2710 { 2711 struct btf_ext_sec_setup_param param = { 2712 .off = btf_ext->hdr->core_relo_off, 2713 .len = btf_ext->hdr->core_relo_len, 2714 .min_rec_size = sizeof(struct bpf_core_relo), 2715 .ext_info = &btf_ext->core_relo_info, 2716 .desc = "core_relo", 2717 }; 2718 2719 return btf_ext_setup_info(btf_ext, ¶m); 2720 } 2721 2722 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2723 { 2724 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2725 2726 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2727 data_size < hdr->hdr_len) { 2728 pr_debug("BTF.ext header not found"); 2729 return -EINVAL; 2730 } 2731 2732 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2733 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2734 return -ENOTSUP; 2735 } else if (hdr->magic != BTF_MAGIC) { 2736 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2737 return -EINVAL; 2738 } 2739 2740 if (hdr->version != BTF_VERSION) { 2741 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2742 return -ENOTSUP; 2743 } 2744 2745 if (hdr->flags) { 2746 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2747 return -ENOTSUP; 2748 } 2749 2750 if (data_size == hdr->hdr_len) { 2751 pr_debug("BTF.ext has no data\n"); 2752 return -EINVAL; 2753 } 2754 2755 return 0; 2756 } 2757 2758 void btf_ext__free(struct btf_ext *btf_ext) 2759 { 2760 if (IS_ERR_OR_NULL(btf_ext)) 2761 return; 2762 free(btf_ext->data); 2763 free(btf_ext); 2764 } 2765 2766 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2767 { 2768 struct btf_ext *btf_ext; 2769 int err; 2770 2771 btf_ext = calloc(1, sizeof(struct btf_ext)); 2772 if (!btf_ext) 2773 return libbpf_err_ptr(-ENOMEM); 2774 2775 btf_ext->data_size = size; 2776 btf_ext->data = malloc(size); 2777 if (!btf_ext->data) { 2778 err = -ENOMEM; 2779 goto done; 2780 } 2781 memcpy(btf_ext->data, data, size); 2782 2783 err = btf_ext_parse_hdr(btf_ext->data, size); 2784 if (err) 2785 goto done; 2786 2787 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2788 err = -EINVAL; 2789 goto done; 2790 } 2791 2792 err = btf_ext_setup_func_info(btf_ext); 2793 if (err) 2794 goto done; 2795 2796 err = btf_ext_setup_line_info(btf_ext); 2797 if (err) 2798 goto done; 2799 2800 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2801 err = -EINVAL; 2802 goto done; 2803 } 2804 2805 err = btf_ext_setup_core_relos(btf_ext); 2806 if (err) 2807 goto done; 2808 2809 done: 2810 if (err) { 2811 btf_ext__free(btf_ext); 2812 return libbpf_err_ptr(err); 2813 } 2814 2815 return btf_ext; 2816 } 2817 2818 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2819 { 2820 *size = btf_ext->data_size; 2821 return btf_ext->data; 2822 } 2823 2824 static int btf_ext_reloc_info(const struct btf *btf, 2825 const struct btf_ext_info *ext_info, 2826 const char *sec_name, __u32 insns_cnt, 2827 void **info, __u32 *cnt) 2828 { 2829 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2830 __u32 i, record_size, existing_len, records_len; 2831 struct btf_ext_info_sec *sinfo; 2832 const char *info_sec_name; 2833 __u64 remain_len; 2834 void *data; 2835 2836 record_size = ext_info->rec_size; 2837 sinfo = ext_info->info; 2838 remain_len = ext_info->len; 2839 while (remain_len > 0) { 2840 records_len = sinfo->num_info * record_size; 2841 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2842 if (strcmp(info_sec_name, sec_name)) { 2843 remain_len -= sec_hdrlen + records_len; 2844 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2845 continue; 2846 } 2847 2848 existing_len = (*cnt) * record_size; 2849 data = realloc(*info, existing_len + records_len); 2850 if (!data) 2851 return libbpf_err(-ENOMEM); 2852 2853 memcpy(data + existing_len, sinfo->data, records_len); 2854 /* adjust insn_off only, the rest data will be passed 2855 * to the kernel. 2856 */ 2857 for (i = 0; i < sinfo->num_info; i++) { 2858 __u32 *insn_off; 2859 2860 insn_off = data + existing_len + (i * record_size); 2861 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2862 } 2863 *info = data; 2864 *cnt += sinfo->num_info; 2865 return 0; 2866 } 2867 2868 return libbpf_err(-ENOENT); 2869 } 2870 2871 int btf_ext__reloc_func_info(const struct btf *btf, 2872 const struct btf_ext *btf_ext, 2873 const char *sec_name, __u32 insns_cnt, 2874 void **func_info, __u32 *cnt) 2875 { 2876 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2877 insns_cnt, func_info, cnt); 2878 } 2879 2880 int btf_ext__reloc_line_info(const struct btf *btf, 2881 const struct btf_ext *btf_ext, 2882 const char *sec_name, __u32 insns_cnt, 2883 void **line_info, __u32 *cnt) 2884 { 2885 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2886 insns_cnt, line_info, cnt); 2887 } 2888 2889 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2890 { 2891 return btf_ext->func_info.rec_size; 2892 } 2893 2894 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2895 { 2896 return btf_ext->line_info.rec_size; 2897 } 2898 2899 struct btf_dedup; 2900 2901 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2902 static void btf_dedup_free(struct btf_dedup *d); 2903 static int btf_dedup_prep(struct btf_dedup *d); 2904 static int btf_dedup_strings(struct btf_dedup *d); 2905 static int btf_dedup_prim_types(struct btf_dedup *d); 2906 static int btf_dedup_struct_types(struct btf_dedup *d); 2907 static int btf_dedup_ref_types(struct btf_dedup *d); 2908 static int btf_dedup_compact_types(struct btf_dedup *d); 2909 static int btf_dedup_remap_types(struct btf_dedup *d); 2910 2911 /* 2912 * Deduplicate BTF types and strings. 2913 * 2914 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2915 * section with all BTF type descriptors and string data. It overwrites that 2916 * memory in-place with deduplicated types and strings without any loss of 2917 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2918 * is provided, all the strings referenced from .BTF.ext section are honored 2919 * and updated to point to the right offsets after deduplication. 2920 * 2921 * If function returns with error, type/string data might be garbled and should 2922 * be discarded. 2923 * 2924 * More verbose and detailed description of both problem btf_dedup is solving, 2925 * as well as solution could be found at: 2926 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2927 * 2928 * Problem description and justification 2929 * ===================================== 2930 * 2931 * BTF type information is typically emitted either as a result of conversion 2932 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2933 * unit contains information about a subset of all the types that are used 2934 * in an application. These subsets are frequently overlapping and contain a lot 2935 * of duplicated information when later concatenated together into a single 2936 * binary. This algorithm ensures that each unique type is represented by single 2937 * BTF type descriptor, greatly reducing resulting size of BTF data. 2938 * 2939 * Compilation unit isolation and subsequent duplication of data is not the only 2940 * problem. The same type hierarchy (e.g., struct and all the type that struct 2941 * references) in different compilation units can be represented in BTF to 2942 * various degrees of completeness (or, rather, incompleteness) due to 2943 * struct/union forward declarations. 2944 * 2945 * Let's take a look at an example, that we'll use to better understand the 2946 * problem (and solution). Suppose we have two compilation units, each using 2947 * same `struct S`, but each of them having incomplete type information about 2948 * struct's fields: 2949 * 2950 * // CU #1: 2951 * struct S; 2952 * struct A { 2953 * int a; 2954 * struct A* self; 2955 * struct S* parent; 2956 * }; 2957 * struct B; 2958 * struct S { 2959 * struct A* a_ptr; 2960 * struct B* b_ptr; 2961 * }; 2962 * 2963 * // CU #2: 2964 * struct S; 2965 * struct A; 2966 * struct B { 2967 * int b; 2968 * struct B* self; 2969 * struct S* parent; 2970 * }; 2971 * struct S { 2972 * struct A* a_ptr; 2973 * struct B* b_ptr; 2974 * }; 2975 * 2976 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2977 * more), but will know the complete type information about `struct A`. While 2978 * for CU #2, it will know full type information about `struct B`, but will 2979 * only know about forward declaration of `struct A` (in BTF terms, it will 2980 * have `BTF_KIND_FWD` type descriptor with name `B`). 2981 * 2982 * This compilation unit isolation means that it's possible that there is no 2983 * single CU with complete type information describing structs `S`, `A`, and 2984 * `B`. Also, we might get tons of duplicated and redundant type information. 2985 * 2986 * Additional complication we need to keep in mind comes from the fact that 2987 * types, in general, can form graphs containing cycles, not just DAGs. 2988 * 2989 * While algorithm does deduplication, it also merges and resolves type 2990 * information (unless disabled throught `struct btf_opts`), whenever possible. 2991 * E.g., in the example above with two compilation units having partial type 2992 * information for structs `A` and `B`, the output of algorithm will emit 2993 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2994 * (as well as type information for `int` and pointers), as if they were defined 2995 * in a single compilation unit as: 2996 * 2997 * struct A { 2998 * int a; 2999 * struct A* self; 3000 * struct S* parent; 3001 * }; 3002 * struct B { 3003 * int b; 3004 * struct B* self; 3005 * struct S* parent; 3006 * }; 3007 * struct S { 3008 * struct A* a_ptr; 3009 * struct B* b_ptr; 3010 * }; 3011 * 3012 * Algorithm summary 3013 * ================= 3014 * 3015 * Algorithm completes its work in 6 separate passes: 3016 * 3017 * 1. Strings deduplication. 3018 * 2. Primitive types deduplication (int, enum, fwd). 3019 * 3. Struct/union types deduplication. 3020 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3021 * protos, and const/volatile/restrict modifiers). 3022 * 5. Types compaction. 3023 * 6. Types remapping. 3024 * 3025 * Algorithm determines canonical type descriptor, which is a single 3026 * representative type for each truly unique type. This canonical type is the 3027 * one that will go into final deduplicated BTF type information. For 3028 * struct/unions, it is also the type that algorithm will merge additional type 3029 * information into (while resolving FWDs), as it discovers it from data in 3030 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3031 * that type is canonical, or to some other type, if that type is equivalent 3032 * and was chosen as canonical representative. This mapping is stored in 3033 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3034 * FWD type got resolved to. 3035 * 3036 * To facilitate fast discovery of canonical types, we also maintain canonical 3037 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3038 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3039 * that match that signature. With sufficiently good choice of type signature 3040 * hashing function, we can limit number of canonical types for each unique type 3041 * signature to a very small number, allowing to find canonical type for any 3042 * duplicated type very quickly. 3043 * 3044 * Struct/union deduplication is the most critical part and algorithm for 3045 * deduplicating structs/unions is described in greater details in comments for 3046 * `btf_dedup_is_equiv` function. 3047 */ 3048 3049 DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0) 3050 int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts) 3051 { 3052 struct btf_dedup *d; 3053 int err; 3054 3055 if (!OPTS_VALID(opts, btf_dedup_opts)) 3056 return libbpf_err(-EINVAL); 3057 3058 d = btf_dedup_new(btf, opts); 3059 if (IS_ERR(d)) { 3060 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3061 return libbpf_err(-EINVAL); 3062 } 3063 3064 if (btf_ensure_modifiable(btf)) { 3065 err = -ENOMEM; 3066 goto done; 3067 } 3068 3069 err = btf_dedup_prep(d); 3070 if (err) { 3071 pr_debug("btf_dedup_prep failed:%d\n", err); 3072 goto done; 3073 } 3074 err = btf_dedup_strings(d); 3075 if (err < 0) { 3076 pr_debug("btf_dedup_strings failed:%d\n", err); 3077 goto done; 3078 } 3079 err = btf_dedup_prim_types(d); 3080 if (err < 0) { 3081 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3082 goto done; 3083 } 3084 err = btf_dedup_struct_types(d); 3085 if (err < 0) { 3086 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3087 goto done; 3088 } 3089 err = btf_dedup_ref_types(d); 3090 if (err < 0) { 3091 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3092 goto done; 3093 } 3094 err = btf_dedup_compact_types(d); 3095 if (err < 0) { 3096 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3097 goto done; 3098 } 3099 err = btf_dedup_remap_types(d); 3100 if (err < 0) { 3101 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3102 goto done; 3103 } 3104 3105 done: 3106 btf_dedup_free(d); 3107 return libbpf_err(err); 3108 } 3109 3110 COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2) 3111 int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts) 3112 { 3113 LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext); 3114 3115 if (unused_opts) { 3116 pr_warn("please use new version of btf__dedup() that supports options\n"); 3117 return libbpf_err(-ENOTSUP); 3118 } 3119 3120 return btf__dedup(btf, &opts); 3121 } 3122 3123 #define BTF_UNPROCESSED_ID ((__u32)-1) 3124 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3125 3126 struct btf_dedup { 3127 /* .BTF section to be deduped in-place */ 3128 struct btf *btf; 3129 /* 3130 * Optional .BTF.ext section. When provided, any strings referenced 3131 * from it will be taken into account when deduping strings 3132 */ 3133 struct btf_ext *btf_ext; 3134 /* 3135 * This is a map from any type's signature hash to a list of possible 3136 * canonical representative type candidates. Hash collisions are 3137 * ignored, so even types of various kinds can share same list of 3138 * candidates, which is fine because we rely on subsequent 3139 * btf_xxx_equal() checks to authoritatively verify type equality. 3140 */ 3141 struct hashmap *dedup_table; 3142 /* Canonical types map */ 3143 __u32 *map; 3144 /* Hypothetical mapping, used during type graph equivalence checks */ 3145 __u32 *hypot_map; 3146 __u32 *hypot_list; 3147 size_t hypot_cnt; 3148 size_t hypot_cap; 3149 /* Whether hypothetical mapping, if successful, would need to adjust 3150 * already canonicalized types (due to a new forward declaration to 3151 * concrete type resolution). In such case, during split BTF dedup 3152 * candidate type would still be considered as different, because base 3153 * BTF is considered to be immutable. 3154 */ 3155 bool hypot_adjust_canon; 3156 /* Various option modifying behavior of algorithm */ 3157 struct btf_dedup_opts opts; 3158 /* temporary strings deduplication state */ 3159 struct strset *strs_set; 3160 }; 3161 3162 static long hash_combine(long h, long value) 3163 { 3164 return h * 31 + value; 3165 } 3166 3167 #define for_each_dedup_cand(d, node, hash) \ 3168 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3169 3170 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3171 { 3172 return hashmap__append(d->dedup_table, 3173 (void *)hash, (void *)(long)type_id); 3174 } 3175 3176 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3177 __u32 from_id, __u32 to_id) 3178 { 3179 if (d->hypot_cnt == d->hypot_cap) { 3180 __u32 *new_list; 3181 3182 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3183 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3184 if (!new_list) 3185 return -ENOMEM; 3186 d->hypot_list = new_list; 3187 } 3188 d->hypot_list[d->hypot_cnt++] = from_id; 3189 d->hypot_map[from_id] = to_id; 3190 return 0; 3191 } 3192 3193 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3194 { 3195 int i; 3196 3197 for (i = 0; i < d->hypot_cnt; i++) 3198 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3199 d->hypot_cnt = 0; 3200 d->hypot_adjust_canon = false; 3201 } 3202 3203 static void btf_dedup_free(struct btf_dedup *d) 3204 { 3205 hashmap__free(d->dedup_table); 3206 d->dedup_table = NULL; 3207 3208 free(d->map); 3209 d->map = NULL; 3210 3211 free(d->hypot_map); 3212 d->hypot_map = NULL; 3213 3214 free(d->hypot_list); 3215 d->hypot_list = NULL; 3216 3217 free(d); 3218 } 3219 3220 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3221 { 3222 return (size_t)key; 3223 } 3224 3225 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3226 { 3227 return 0; 3228 } 3229 3230 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3231 { 3232 return k1 == k2; 3233 } 3234 3235 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3236 { 3237 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3238 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3239 int i, err = 0, type_cnt; 3240 3241 if (!d) 3242 return ERR_PTR(-ENOMEM); 3243 3244 if (OPTS_GET(opts, force_collisions, false)) 3245 hash_fn = btf_dedup_collision_hash_fn; 3246 3247 d->btf = btf; 3248 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3249 3250 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3251 if (IS_ERR(d->dedup_table)) { 3252 err = PTR_ERR(d->dedup_table); 3253 d->dedup_table = NULL; 3254 goto done; 3255 } 3256 3257 type_cnt = btf__type_cnt(btf); 3258 d->map = malloc(sizeof(__u32) * type_cnt); 3259 if (!d->map) { 3260 err = -ENOMEM; 3261 goto done; 3262 } 3263 /* special BTF "void" type is made canonical immediately */ 3264 d->map[0] = 0; 3265 for (i = 1; i < type_cnt; i++) { 3266 struct btf_type *t = btf_type_by_id(d->btf, i); 3267 3268 /* VAR and DATASEC are never deduped and are self-canonical */ 3269 if (btf_is_var(t) || btf_is_datasec(t)) 3270 d->map[i] = i; 3271 else 3272 d->map[i] = BTF_UNPROCESSED_ID; 3273 } 3274 3275 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3276 if (!d->hypot_map) { 3277 err = -ENOMEM; 3278 goto done; 3279 } 3280 for (i = 0; i < type_cnt; i++) 3281 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3282 3283 done: 3284 if (err) { 3285 btf_dedup_free(d); 3286 return ERR_PTR(err); 3287 } 3288 3289 return d; 3290 } 3291 3292 /* 3293 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3294 * string and pass pointer to it to a provided callback `fn`. 3295 */ 3296 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3297 { 3298 int i, r; 3299 3300 for (i = 0; i < d->btf->nr_types; i++) { 3301 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3302 3303 r = btf_type_visit_str_offs(t, fn, ctx); 3304 if (r) 3305 return r; 3306 } 3307 3308 if (!d->btf_ext) 3309 return 0; 3310 3311 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3312 if (r) 3313 return r; 3314 3315 return 0; 3316 } 3317 3318 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3319 { 3320 struct btf_dedup *d = ctx; 3321 __u32 str_off = *str_off_ptr; 3322 const char *s; 3323 int off, err; 3324 3325 /* don't touch empty string or string in main BTF */ 3326 if (str_off == 0 || str_off < d->btf->start_str_off) 3327 return 0; 3328 3329 s = btf__str_by_offset(d->btf, str_off); 3330 if (d->btf->base_btf) { 3331 err = btf__find_str(d->btf->base_btf, s); 3332 if (err >= 0) { 3333 *str_off_ptr = err; 3334 return 0; 3335 } 3336 if (err != -ENOENT) 3337 return err; 3338 } 3339 3340 off = strset__add_str(d->strs_set, s); 3341 if (off < 0) 3342 return off; 3343 3344 *str_off_ptr = d->btf->start_str_off + off; 3345 return 0; 3346 } 3347 3348 /* 3349 * Dedup string and filter out those that are not referenced from either .BTF 3350 * or .BTF.ext (if provided) sections. 3351 * 3352 * This is done by building index of all strings in BTF's string section, 3353 * then iterating over all entities that can reference strings (e.g., type 3354 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3355 * strings as used. After that all used strings are deduped and compacted into 3356 * sequential blob of memory and new offsets are calculated. Then all the string 3357 * references are iterated again and rewritten using new offsets. 3358 */ 3359 static int btf_dedup_strings(struct btf_dedup *d) 3360 { 3361 int err; 3362 3363 if (d->btf->strs_deduped) 3364 return 0; 3365 3366 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3367 if (IS_ERR(d->strs_set)) { 3368 err = PTR_ERR(d->strs_set); 3369 goto err_out; 3370 } 3371 3372 if (!d->btf->base_btf) { 3373 /* insert empty string; we won't be looking it up during strings 3374 * dedup, but it's good to have it for generic BTF string lookups 3375 */ 3376 err = strset__add_str(d->strs_set, ""); 3377 if (err < 0) 3378 goto err_out; 3379 } 3380 3381 /* remap string offsets */ 3382 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3383 if (err) 3384 goto err_out; 3385 3386 /* replace BTF string data and hash with deduped ones */ 3387 strset__free(d->btf->strs_set); 3388 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3389 d->btf->strs_set = d->strs_set; 3390 d->strs_set = NULL; 3391 d->btf->strs_deduped = true; 3392 return 0; 3393 3394 err_out: 3395 strset__free(d->strs_set); 3396 d->strs_set = NULL; 3397 3398 return err; 3399 } 3400 3401 static long btf_hash_common(struct btf_type *t) 3402 { 3403 long h; 3404 3405 h = hash_combine(0, t->name_off); 3406 h = hash_combine(h, t->info); 3407 h = hash_combine(h, t->size); 3408 return h; 3409 } 3410 3411 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3412 { 3413 return t1->name_off == t2->name_off && 3414 t1->info == t2->info && 3415 t1->size == t2->size; 3416 } 3417 3418 /* Calculate type signature hash of INT or TAG. */ 3419 static long btf_hash_int_decl_tag(struct btf_type *t) 3420 { 3421 __u32 info = *(__u32 *)(t + 1); 3422 long h; 3423 3424 h = btf_hash_common(t); 3425 h = hash_combine(h, info); 3426 return h; 3427 } 3428 3429 /* Check structural equality of two INTs or TAGs. */ 3430 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3431 { 3432 __u32 info1, info2; 3433 3434 if (!btf_equal_common(t1, t2)) 3435 return false; 3436 info1 = *(__u32 *)(t1 + 1); 3437 info2 = *(__u32 *)(t2 + 1); 3438 return info1 == info2; 3439 } 3440 3441 /* Calculate type signature hash of ENUM. */ 3442 static long btf_hash_enum(struct btf_type *t) 3443 { 3444 long h; 3445 3446 /* don't hash vlen and enum members to support enum fwd resolving */ 3447 h = hash_combine(0, t->name_off); 3448 h = hash_combine(h, t->info & ~0xffff); 3449 h = hash_combine(h, t->size); 3450 return h; 3451 } 3452 3453 /* Check structural equality of two ENUMs. */ 3454 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3455 { 3456 const struct btf_enum *m1, *m2; 3457 __u16 vlen; 3458 int i; 3459 3460 if (!btf_equal_common(t1, t2)) 3461 return false; 3462 3463 vlen = btf_vlen(t1); 3464 m1 = btf_enum(t1); 3465 m2 = btf_enum(t2); 3466 for (i = 0; i < vlen; i++) { 3467 if (m1->name_off != m2->name_off || m1->val != m2->val) 3468 return false; 3469 m1++; 3470 m2++; 3471 } 3472 return true; 3473 } 3474 3475 static inline bool btf_is_enum_fwd(struct btf_type *t) 3476 { 3477 return btf_is_enum(t) && btf_vlen(t) == 0; 3478 } 3479 3480 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3481 { 3482 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3483 return btf_equal_enum(t1, t2); 3484 /* ignore vlen when comparing */ 3485 return t1->name_off == t2->name_off && 3486 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3487 t1->size == t2->size; 3488 } 3489 3490 /* 3491 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3492 * as referenced type IDs equivalence is established separately during type 3493 * graph equivalence check algorithm. 3494 */ 3495 static long btf_hash_struct(struct btf_type *t) 3496 { 3497 const struct btf_member *member = btf_members(t); 3498 __u32 vlen = btf_vlen(t); 3499 long h = btf_hash_common(t); 3500 int i; 3501 3502 for (i = 0; i < vlen; i++) { 3503 h = hash_combine(h, member->name_off); 3504 h = hash_combine(h, member->offset); 3505 /* no hashing of referenced type ID, it can be unresolved yet */ 3506 member++; 3507 } 3508 return h; 3509 } 3510 3511 /* 3512 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3513 * type IDs. This check is performed during type graph equivalence check and 3514 * referenced types equivalence is checked separately. 3515 */ 3516 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3517 { 3518 const struct btf_member *m1, *m2; 3519 __u16 vlen; 3520 int i; 3521 3522 if (!btf_equal_common(t1, t2)) 3523 return false; 3524 3525 vlen = btf_vlen(t1); 3526 m1 = btf_members(t1); 3527 m2 = btf_members(t2); 3528 for (i = 0; i < vlen; i++) { 3529 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3530 return false; 3531 m1++; 3532 m2++; 3533 } 3534 return true; 3535 } 3536 3537 /* 3538 * Calculate type signature hash of ARRAY, including referenced type IDs, 3539 * under assumption that they were already resolved to canonical type IDs and 3540 * are not going to change. 3541 */ 3542 static long btf_hash_array(struct btf_type *t) 3543 { 3544 const struct btf_array *info = btf_array(t); 3545 long h = btf_hash_common(t); 3546 3547 h = hash_combine(h, info->type); 3548 h = hash_combine(h, info->index_type); 3549 h = hash_combine(h, info->nelems); 3550 return h; 3551 } 3552 3553 /* 3554 * Check exact equality of two ARRAYs, taking into account referenced 3555 * type IDs, under assumption that they were already resolved to canonical 3556 * type IDs and are not going to change. 3557 * This function is called during reference types deduplication to compare 3558 * ARRAY to potential canonical representative. 3559 */ 3560 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3561 { 3562 const struct btf_array *info1, *info2; 3563 3564 if (!btf_equal_common(t1, t2)) 3565 return false; 3566 3567 info1 = btf_array(t1); 3568 info2 = btf_array(t2); 3569 return info1->type == info2->type && 3570 info1->index_type == info2->index_type && 3571 info1->nelems == info2->nelems; 3572 } 3573 3574 /* 3575 * Check structural compatibility of two ARRAYs, ignoring referenced type 3576 * IDs. This check is performed during type graph equivalence check and 3577 * referenced types equivalence is checked separately. 3578 */ 3579 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3580 { 3581 if (!btf_equal_common(t1, t2)) 3582 return false; 3583 3584 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3585 } 3586 3587 /* 3588 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3589 * under assumption that they were already resolved to canonical type IDs and 3590 * are not going to change. 3591 */ 3592 static long btf_hash_fnproto(struct btf_type *t) 3593 { 3594 const struct btf_param *member = btf_params(t); 3595 __u16 vlen = btf_vlen(t); 3596 long h = btf_hash_common(t); 3597 int i; 3598 3599 for (i = 0; i < vlen; i++) { 3600 h = hash_combine(h, member->name_off); 3601 h = hash_combine(h, member->type); 3602 member++; 3603 } 3604 return h; 3605 } 3606 3607 /* 3608 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3609 * type IDs, under assumption that they were already resolved to canonical 3610 * type IDs and are not going to change. 3611 * This function is called during reference types deduplication to compare 3612 * FUNC_PROTO to potential canonical representative. 3613 */ 3614 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3615 { 3616 const struct btf_param *m1, *m2; 3617 __u16 vlen; 3618 int i; 3619 3620 if (!btf_equal_common(t1, t2)) 3621 return false; 3622 3623 vlen = btf_vlen(t1); 3624 m1 = btf_params(t1); 3625 m2 = btf_params(t2); 3626 for (i = 0; i < vlen; i++) { 3627 if (m1->name_off != m2->name_off || m1->type != m2->type) 3628 return false; 3629 m1++; 3630 m2++; 3631 } 3632 return true; 3633 } 3634 3635 /* 3636 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3637 * IDs. This check is performed during type graph equivalence check and 3638 * referenced types equivalence is checked separately. 3639 */ 3640 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3641 { 3642 const struct btf_param *m1, *m2; 3643 __u16 vlen; 3644 int i; 3645 3646 /* skip return type ID */ 3647 if (t1->name_off != t2->name_off || t1->info != t2->info) 3648 return false; 3649 3650 vlen = btf_vlen(t1); 3651 m1 = btf_params(t1); 3652 m2 = btf_params(t2); 3653 for (i = 0; i < vlen; i++) { 3654 if (m1->name_off != m2->name_off) 3655 return false; 3656 m1++; 3657 m2++; 3658 } 3659 return true; 3660 } 3661 3662 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3663 * types and initializing the rest of the state (canonical type mapping) for 3664 * the fixed base BTF part. 3665 */ 3666 static int btf_dedup_prep(struct btf_dedup *d) 3667 { 3668 struct btf_type *t; 3669 int type_id; 3670 long h; 3671 3672 if (!d->btf->base_btf) 3673 return 0; 3674 3675 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3676 t = btf_type_by_id(d->btf, type_id); 3677 3678 /* all base BTF types are self-canonical by definition */ 3679 d->map[type_id] = type_id; 3680 3681 switch (btf_kind(t)) { 3682 case BTF_KIND_VAR: 3683 case BTF_KIND_DATASEC: 3684 /* VAR and DATASEC are never hash/deduplicated */ 3685 continue; 3686 case BTF_KIND_CONST: 3687 case BTF_KIND_VOLATILE: 3688 case BTF_KIND_RESTRICT: 3689 case BTF_KIND_PTR: 3690 case BTF_KIND_FWD: 3691 case BTF_KIND_TYPEDEF: 3692 case BTF_KIND_FUNC: 3693 case BTF_KIND_FLOAT: 3694 case BTF_KIND_TYPE_TAG: 3695 h = btf_hash_common(t); 3696 break; 3697 case BTF_KIND_INT: 3698 case BTF_KIND_DECL_TAG: 3699 h = btf_hash_int_decl_tag(t); 3700 break; 3701 case BTF_KIND_ENUM: 3702 h = btf_hash_enum(t); 3703 break; 3704 case BTF_KIND_STRUCT: 3705 case BTF_KIND_UNION: 3706 h = btf_hash_struct(t); 3707 break; 3708 case BTF_KIND_ARRAY: 3709 h = btf_hash_array(t); 3710 break; 3711 case BTF_KIND_FUNC_PROTO: 3712 h = btf_hash_fnproto(t); 3713 break; 3714 default: 3715 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3716 return -EINVAL; 3717 } 3718 if (btf_dedup_table_add(d, h, type_id)) 3719 return -ENOMEM; 3720 } 3721 3722 return 0; 3723 } 3724 3725 /* 3726 * Deduplicate primitive types, that can't reference other types, by calculating 3727 * their type signature hash and comparing them with any possible canonical 3728 * candidate. If no canonical candidate matches, type itself is marked as 3729 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3730 */ 3731 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3732 { 3733 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3734 struct hashmap_entry *hash_entry; 3735 struct btf_type *cand; 3736 /* if we don't find equivalent type, then we are canonical */ 3737 __u32 new_id = type_id; 3738 __u32 cand_id; 3739 long h; 3740 3741 switch (btf_kind(t)) { 3742 case BTF_KIND_CONST: 3743 case BTF_KIND_VOLATILE: 3744 case BTF_KIND_RESTRICT: 3745 case BTF_KIND_PTR: 3746 case BTF_KIND_TYPEDEF: 3747 case BTF_KIND_ARRAY: 3748 case BTF_KIND_STRUCT: 3749 case BTF_KIND_UNION: 3750 case BTF_KIND_FUNC: 3751 case BTF_KIND_FUNC_PROTO: 3752 case BTF_KIND_VAR: 3753 case BTF_KIND_DATASEC: 3754 case BTF_KIND_DECL_TAG: 3755 case BTF_KIND_TYPE_TAG: 3756 return 0; 3757 3758 case BTF_KIND_INT: 3759 h = btf_hash_int_decl_tag(t); 3760 for_each_dedup_cand(d, hash_entry, h) { 3761 cand_id = (__u32)(long)hash_entry->value; 3762 cand = btf_type_by_id(d->btf, cand_id); 3763 if (btf_equal_int_tag(t, cand)) { 3764 new_id = cand_id; 3765 break; 3766 } 3767 } 3768 break; 3769 3770 case BTF_KIND_ENUM: 3771 h = btf_hash_enum(t); 3772 for_each_dedup_cand(d, hash_entry, h) { 3773 cand_id = (__u32)(long)hash_entry->value; 3774 cand = btf_type_by_id(d->btf, cand_id); 3775 if (btf_equal_enum(t, cand)) { 3776 new_id = cand_id; 3777 break; 3778 } 3779 if (btf_compat_enum(t, cand)) { 3780 if (btf_is_enum_fwd(t)) { 3781 /* resolve fwd to full enum */ 3782 new_id = cand_id; 3783 break; 3784 } 3785 /* resolve canonical enum fwd to full enum */ 3786 d->map[cand_id] = type_id; 3787 } 3788 } 3789 break; 3790 3791 case BTF_KIND_FWD: 3792 case BTF_KIND_FLOAT: 3793 h = btf_hash_common(t); 3794 for_each_dedup_cand(d, hash_entry, h) { 3795 cand_id = (__u32)(long)hash_entry->value; 3796 cand = btf_type_by_id(d->btf, cand_id); 3797 if (btf_equal_common(t, cand)) { 3798 new_id = cand_id; 3799 break; 3800 } 3801 } 3802 break; 3803 3804 default: 3805 return -EINVAL; 3806 } 3807 3808 d->map[type_id] = new_id; 3809 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3810 return -ENOMEM; 3811 3812 return 0; 3813 } 3814 3815 static int btf_dedup_prim_types(struct btf_dedup *d) 3816 { 3817 int i, err; 3818 3819 for (i = 0; i < d->btf->nr_types; i++) { 3820 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3821 if (err) 3822 return err; 3823 } 3824 return 0; 3825 } 3826 3827 /* 3828 * Check whether type is already mapped into canonical one (could be to itself). 3829 */ 3830 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3831 { 3832 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3833 } 3834 3835 /* 3836 * Resolve type ID into its canonical type ID, if any; otherwise return original 3837 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3838 * STRUCT/UNION link and resolve it into canonical type ID as well. 3839 */ 3840 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3841 { 3842 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3843 type_id = d->map[type_id]; 3844 return type_id; 3845 } 3846 3847 /* 3848 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3849 * type ID. 3850 */ 3851 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3852 { 3853 __u32 orig_type_id = type_id; 3854 3855 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3856 return type_id; 3857 3858 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3859 type_id = d->map[type_id]; 3860 3861 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3862 return type_id; 3863 3864 return orig_type_id; 3865 } 3866 3867 3868 static inline __u16 btf_fwd_kind(struct btf_type *t) 3869 { 3870 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3871 } 3872 3873 /* Check if given two types are identical ARRAY definitions */ 3874 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3875 { 3876 struct btf_type *t1, *t2; 3877 3878 t1 = btf_type_by_id(d->btf, id1); 3879 t2 = btf_type_by_id(d->btf, id2); 3880 if (!btf_is_array(t1) || !btf_is_array(t2)) 3881 return 0; 3882 3883 return btf_equal_array(t1, t2); 3884 } 3885 3886 /* Check if given two types are identical STRUCT/UNION definitions */ 3887 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3888 { 3889 const struct btf_member *m1, *m2; 3890 struct btf_type *t1, *t2; 3891 int n, i; 3892 3893 t1 = btf_type_by_id(d->btf, id1); 3894 t2 = btf_type_by_id(d->btf, id2); 3895 3896 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3897 return false; 3898 3899 if (!btf_shallow_equal_struct(t1, t2)) 3900 return false; 3901 3902 m1 = btf_members(t1); 3903 m2 = btf_members(t2); 3904 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3905 if (m1->type != m2->type) 3906 return false; 3907 } 3908 return true; 3909 } 3910 3911 /* 3912 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3913 * call it "candidate graph" in this description for brevity) to a type graph 3914 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3915 * here, though keep in mind that not all types in canonical graph are 3916 * necessarily canonical representatives themselves, some of them might be 3917 * duplicates or its uniqueness might not have been established yet). 3918 * Returns: 3919 * - >0, if type graphs are equivalent; 3920 * - 0, if not equivalent; 3921 * - <0, on error. 3922 * 3923 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3924 * equivalence of BTF types at each step. If at any point BTF types in candidate 3925 * and canonical graphs are not compatible structurally, whole graphs are 3926 * incompatible. If types are structurally equivalent (i.e., all information 3927 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3928 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3929 * If a type references other types, then those referenced types are checked 3930 * for equivalence recursively. 3931 * 3932 * During DFS traversal, if we find that for current `canon_id` type we 3933 * already have some mapping in hypothetical map, we check for two possible 3934 * situations: 3935 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3936 * happen when type graphs have cycles. In this case we assume those two 3937 * types are equivalent. 3938 * - `canon_id` is mapped to different type. This is contradiction in our 3939 * hypothetical mapping, because same graph in canonical graph corresponds 3940 * to two different types in candidate graph, which for equivalent type 3941 * graphs shouldn't happen. This condition terminates equivalence check 3942 * with negative result. 3943 * 3944 * If type graphs traversal exhausts types to check and find no contradiction, 3945 * then type graphs are equivalent. 3946 * 3947 * When checking types for equivalence, there is one special case: FWD types. 3948 * If FWD type resolution is allowed and one of the types (either from canonical 3949 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3950 * flag) and their names match, hypothetical mapping is updated to point from 3951 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3952 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3953 * 3954 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3955 * if there are two exactly named (or anonymous) structs/unions that are 3956 * compatible structurally, one of which has FWD field, while other is concrete 3957 * STRUCT/UNION, but according to C sources they are different structs/unions 3958 * that are referencing different types with the same name. This is extremely 3959 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3960 * this logic is causing problems. 3961 * 3962 * Doing FWD resolution means that both candidate and/or canonical graphs can 3963 * consists of portions of the graph that come from multiple compilation units. 3964 * This is due to the fact that types within single compilation unit are always 3965 * deduplicated and FWDs are already resolved, if referenced struct/union 3966 * definiton is available. So, if we had unresolved FWD and found corresponding 3967 * STRUCT/UNION, they will be from different compilation units. This 3968 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3969 * type graph will likely have at least two different BTF types that describe 3970 * same type (e.g., most probably there will be two different BTF types for the 3971 * same 'int' primitive type) and could even have "overlapping" parts of type 3972 * graph that describe same subset of types. 3973 * 3974 * This in turn means that our assumption that each type in canonical graph 3975 * must correspond to exactly one type in candidate graph might not hold 3976 * anymore and will make it harder to detect contradictions using hypothetical 3977 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3978 * resolution only in canonical graph. FWDs in candidate graphs are never 3979 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3980 * that can occur: 3981 * - Both types in canonical and candidate graphs are FWDs. If they are 3982 * structurally equivalent, then they can either be both resolved to the 3983 * same STRUCT/UNION or not resolved at all. In both cases they are 3984 * equivalent and there is no need to resolve FWD on candidate side. 3985 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3986 * so nothing to resolve as well, algorithm will check equivalence anyway. 3987 * - Type in canonical graph is FWD, while type in candidate is concrete 3988 * STRUCT/UNION. In this case candidate graph comes from single compilation 3989 * unit, so there is exactly one BTF type for each unique C type. After 3990 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3991 * in canonical graph mapping to single BTF type in candidate graph, but 3992 * because hypothetical mapping maps from canonical to candidate types, it's 3993 * alright, and we still maintain the property of having single `canon_id` 3994 * mapping to single `cand_id` (there could be two different `canon_id` 3995 * mapped to the same `cand_id`, but it's not contradictory). 3996 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3997 * graph is FWD. In this case we are just going to check compatibility of 3998 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3999 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4000 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4001 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4002 * canonical graph. 4003 */ 4004 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4005 __u32 canon_id) 4006 { 4007 struct btf_type *cand_type; 4008 struct btf_type *canon_type; 4009 __u32 hypot_type_id; 4010 __u16 cand_kind; 4011 __u16 canon_kind; 4012 int i, eq; 4013 4014 /* if both resolve to the same canonical, they must be equivalent */ 4015 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4016 return 1; 4017 4018 canon_id = resolve_fwd_id(d, canon_id); 4019 4020 hypot_type_id = d->hypot_map[canon_id]; 4021 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4022 if (hypot_type_id == cand_id) 4023 return 1; 4024 /* In some cases compiler will generate different DWARF types 4025 * for *identical* array type definitions and use them for 4026 * different fields within the *same* struct. This breaks type 4027 * equivalence check, which makes an assumption that candidate 4028 * types sub-graph has a consistent and deduped-by-compiler 4029 * types within a single CU. So work around that by explicitly 4030 * allowing identical array types here. 4031 */ 4032 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4033 return 1; 4034 /* It turns out that similar situation can happen with 4035 * struct/union sometimes, sigh... Handle the case where 4036 * structs/unions are exactly the same, down to the referenced 4037 * type IDs. Anything more complicated (e.g., if referenced 4038 * types are different, but equivalent) is *way more* 4039 * complicated and requires a many-to-many equivalence mapping. 4040 */ 4041 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4042 return 1; 4043 return 0; 4044 } 4045 4046 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4047 return -ENOMEM; 4048 4049 cand_type = btf_type_by_id(d->btf, cand_id); 4050 canon_type = btf_type_by_id(d->btf, canon_id); 4051 cand_kind = btf_kind(cand_type); 4052 canon_kind = btf_kind(canon_type); 4053 4054 if (cand_type->name_off != canon_type->name_off) 4055 return 0; 4056 4057 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4058 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4059 && cand_kind != canon_kind) { 4060 __u16 real_kind; 4061 __u16 fwd_kind; 4062 4063 if (cand_kind == BTF_KIND_FWD) { 4064 real_kind = canon_kind; 4065 fwd_kind = btf_fwd_kind(cand_type); 4066 } else { 4067 real_kind = cand_kind; 4068 fwd_kind = btf_fwd_kind(canon_type); 4069 /* we'd need to resolve base FWD to STRUCT/UNION */ 4070 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4071 d->hypot_adjust_canon = true; 4072 } 4073 return fwd_kind == real_kind; 4074 } 4075 4076 if (cand_kind != canon_kind) 4077 return 0; 4078 4079 switch (cand_kind) { 4080 case BTF_KIND_INT: 4081 return btf_equal_int_tag(cand_type, canon_type); 4082 4083 case BTF_KIND_ENUM: 4084 return btf_compat_enum(cand_type, canon_type); 4085 4086 case BTF_KIND_FWD: 4087 case BTF_KIND_FLOAT: 4088 return btf_equal_common(cand_type, canon_type); 4089 4090 case BTF_KIND_CONST: 4091 case BTF_KIND_VOLATILE: 4092 case BTF_KIND_RESTRICT: 4093 case BTF_KIND_PTR: 4094 case BTF_KIND_TYPEDEF: 4095 case BTF_KIND_FUNC: 4096 case BTF_KIND_TYPE_TAG: 4097 if (cand_type->info != canon_type->info) 4098 return 0; 4099 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4100 4101 case BTF_KIND_ARRAY: { 4102 const struct btf_array *cand_arr, *canon_arr; 4103 4104 if (!btf_compat_array(cand_type, canon_type)) 4105 return 0; 4106 cand_arr = btf_array(cand_type); 4107 canon_arr = btf_array(canon_type); 4108 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4109 if (eq <= 0) 4110 return eq; 4111 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4112 } 4113 4114 case BTF_KIND_STRUCT: 4115 case BTF_KIND_UNION: { 4116 const struct btf_member *cand_m, *canon_m; 4117 __u16 vlen; 4118 4119 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4120 return 0; 4121 vlen = btf_vlen(cand_type); 4122 cand_m = btf_members(cand_type); 4123 canon_m = btf_members(canon_type); 4124 for (i = 0; i < vlen; i++) { 4125 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4126 if (eq <= 0) 4127 return eq; 4128 cand_m++; 4129 canon_m++; 4130 } 4131 4132 return 1; 4133 } 4134 4135 case BTF_KIND_FUNC_PROTO: { 4136 const struct btf_param *cand_p, *canon_p; 4137 __u16 vlen; 4138 4139 if (!btf_compat_fnproto(cand_type, canon_type)) 4140 return 0; 4141 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4142 if (eq <= 0) 4143 return eq; 4144 vlen = btf_vlen(cand_type); 4145 cand_p = btf_params(cand_type); 4146 canon_p = btf_params(canon_type); 4147 for (i = 0; i < vlen; i++) { 4148 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4149 if (eq <= 0) 4150 return eq; 4151 cand_p++; 4152 canon_p++; 4153 } 4154 return 1; 4155 } 4156 4157 default: 4158 return -EINVAL; 4159 } 4160 return 0; 4161 } 4162 4163 /* 4164 * Use hypothetical mapping, produced by successful type graph equivalence 4165 * check, to augment existing struct/union canonical mapping, where possible. 4166 * 4167 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4168 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4169 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4170 * we are recording the mapping anyway. As opposed to carefulness required 4171 * for struct/union correspondence mapping (described below), for FWD resolution 4172 * it's not important, as by the time that FWD type (reference type) will be 4173 * deduplicated all structs/unions will be deduped already anyway. 4174 * 4175 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4176 * not required for correctness. It needs to be done carefully to ensure that 4177 * struct/union from candidate's type graph is not mapped into corresponding 4178 * struct/union from canonical type graph that itself hasn't been resolved into 4179 * canonical representative. The only guarantee we have is that canonical 4180 * struct/union was determined as canonical and that won't change. But any 4181 * types referenced through that struct/union fields could have been not yet 4182 * resolved, so in case like that it's too early to establish any kind of 4183 * correspondence between structs/unions. 4184 * 4185 * No canonical correspondence is derived for primitive types (they are already 4186 * deduplicated completely already anyway) or reference types (they rely on 4187 * stability of struct/union canonical relationship for equivalence checks). 4188 */ 4189 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4190 { 4191 __u32 canon_type_id, targ_type_id; 4192 __u16 t_kind, c_kind; 4193 __u32 t_id, c_id; 4194 int i; 4195 4196 for (i = 0; i < d->hypot_cnt; i++) { 4197 canon_type_id = d->hypot_list[i]; 4198 targ_type_id = d->hypot_map[canon_type_id]; 4199 t_id = resolve_type_id(d, targ_type_id); 4200 c_id = resolve_type_id(d, canon_type_id); 4201 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4202 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4203 /* 4204 * Resolve FWD into STRUCT/UNION. 4205 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4206 * mapped to canonical representative (as opposed to 4207 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4208 * eventually that struct is going to be mapped and all resolved 4209 * FWDs will automatically resolve to correct canonical 4210 * representative. This will happen before ref type deduping, 4211 * which critically depends on stability of these mapping. This 4212 * stability is not a requirement for STRUCT/UNION equivalence 4213 * checks, though. 4214 */ 4215 4216 /* if it's the split BTF case, we still need to point base FWD 4217 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4218 * will be resolved against base FWD. If we don't point base 4219 * canonical FWD to the resolved STRUCT/UNION, then all the 4220 * FWDs in split BTF won't be correctly resolved to a proper 4221 * STRUCT/UNION. 4222 */ 4223 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4224 d->map[c_id] = t_id; 4225 4226 /* if graph equivalence determined that we'd need to adjust 4227 * base canonical types, then we need to only point base FWDs 4228 * to STRUCTs/UNIONs and do no more modifications. For all 4229 * other purposes the type graphs were not equivalent. 4230 */ 4231 if (d->hypot_adjust_canon) 4232 continue; 4233 4234 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4235 d->map[t_id] = c_id; 4236 4237 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4238 c_kind != BTF_KIND_FWD && 4239 is_type_mapped(d, c_id) && 4240 !is_type_mapped(d, t_id)) { 4241 /* 4242 * as a perf optimization, we can map struct/union 4243 * that's part of type graph we just verified for 4244 * equivalence. We can do that for struct/union that has 4245 * canonical representative only, though. 4246 */ 4247 d->map[t_id] = c_id; 4248 } 4249 } 4250 } 4251 4252 /* 4253 * Deduplicate struct/union types. 4254 * 4255 * For each struct/union type its type signature hash is calculated, taking 4256 * into account type's name, size, number, order and names of fields, but 4257 * ignoring type ID's referenced from fields, because they might not be deduped 4258 * completely until after reference types deduplication phase. This type hash 4259 * is used to iterate over all potential canonical types, sharing same hash. 4260 * For each canonical candidate we check whether type graphs that they form 4261 * (through referenced types in fields and so on) are equivalent using algorithm 4262 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4263 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4264 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4265 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4266 * potentially map other structs/unions to their canonical representatives, 4267 * if such relationship hasn't yet been established. This speeds up algorithm 4268 * by eliminating some of the duplicate work. 4269 * 4270 * If no matching canonical representative was found, struct/union is marked 4271 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4272 * for further look ups. 4273 */ 4274 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4275 { 4276 struct btf_type *cand_type, *t; 4277 struct hashmap_entry *hash_entry; 4278 /* if we don't find equivalent type, then we are canonical */ 4279 __u32 new_id = type_id; 4280 __u16 kind; 4281 long h; 4282 4283 /* already deduped or is in process of deduping (loop detected) */ 4284 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4285 return 0; 4286 4287 t = btf_type_by_id(d->btf, type_id); 4288 kind = btf_kind(t); 4289 4290 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4291 return 0; 4292 4293 h = btf_hash_struct(t); 4294 for_each_dedup_cand(d, hash_entry, h) { 4295 __u32 cand_id = (__u32)(long)hash_entry->value; 4296 int eq; 4297 4298 /* 4299 * Even though btf_dedup_is_equiv() checks for 4300 * btf_shallow_equal_struct() internally when checking two 4301 * structs (unions) for equivalence, we need to guard here 4302 * from picking matching FWD type as a dedup candidate. 4303 * This can happen due to hash collision. In such case just 4304 * relying on btf_dedup_is_equiv() would lead to potentially 4305 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4306 * FWD and compatible STRUCT/UNION are considered equivalent. 4307 */ 4308 cand_type = btf_type_by_id(d->btf, cand_id); 4309 if (!btf_shallow_equal_struct(t, cand_type)) 4310 continue; 4311 4312 btf_dedup_clear_hypot_map(d); 4313 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4314 if (eq < 0) 4315 return eq; 4316 if (!eq) 4317 continue; 4318 btf_dedup_merge_hypot_map(d); 4319 if (d->hypot_adjust_canon) /* not really equivalent */ 4320 continue; 4321 new_id = cand_id; 4322 break; 4323 } 4324 4325 d->map[type_id] = new_id; 4326 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4327 return -ENOMEM; 4328 4329 return 0; 4330 } 4331 4332 static int btf_dedup_struct_types(struct btf_dedup *d) 4333 { 4334 int i, err; 4335 4336 for (i = 0; i < d->btf->nr_types; i++) { 4337 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4338 if (err) 4339 return err; 4340 } 4341 return 0; 4342 } 4343 4344 /* 4345 * Deduplicate reference type. 4346 * 4347 * Once all primitive and struct/union types got deduplicated, we can easily 4348 * deduplicate all other (reference) BTF types. This is done in two steps: 4349 * 4350 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4351 * resolution can be done either immediately for primitive or struct/union types 4352 * (because they were deduped in previous two phases) or recursively for 4353 * reference types. Recursion will always terminate at either primitive or 4354 * struct/union type, at which point we can "unwind" chain of reference types 4355 * one by one. There is no danger of encountering cycles because in C type 4356 * system the only way to form type cycle is through struct/union, so any chain 4357 * of reference types, even those taking part in a type cycle, will inevitably 4358 * reach struct/union at some point. 4359 * 4360 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4361 * becomes "stable", in the sense that no further deduplication will cause 4362 * any changes to it. With that, it's now possible to calculate type's signature 4363 * hash (this time taking into account referenced type IDs) and loop over all 4364 * potential canonical representatives. If no match was found, current type 4365 * will become canonical representative of itself and will be added into 4366 * btf_dedup->dedup_table as another possible canonical representative. 4367 */ 4368 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4369 { 4370 struct hashmap_entry *hash_entry; 4371 __u32 new_id = type_id, cand_id; 4372 struct btf_type *t, *cand; 4373 /* if we don't find equivalent type, then we are representative type */ 4374 int ref_type_id; 4375 long h; 4376 4377 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4378 return -ELOOP; 4379 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4380 return resolve_type_id(d, type_id); 4381 4382 t = btf_type_by_id(d->btf, type_id); 4383 d->map[type_id] = BTF_IN_PROGRESS_ID; 4384 4385 switch (btf_kind(t)) { 4386 case BTF_KIND_CONST: 4387 case BTF_KIND_VOLATILE: 4388 case BTF_KIND_RESTRICT: 4389 case BTF_KIND_PTR: 4390 case BTF_KIND_TYPEDEF: 4391 case BTF_KIND_FUNC: 4392 case BTF_KIND_TYPE_TAG: 4393 ref_type_id = btf_dedup_ref_type(d, t->type); 4394 if (ref_type_id < 0) 4395 return ref_type_id; 4396 t->type = ref_type_id; 4397 4398 h = btf_hash_common(t); 4399 for_each_dedup_cand(d, hash_entry, h) { 4400 cand_id = (__u32)(long)hash_entry->value; 4401 cand = btf_type_by_id(d->btf, cand_id); 4402 if (btf_equal_common(t, cand)) { 4403 new_id = cand_id; 4404 break; 4405 } 4406 } 4407 break; 4408 4409 case BTF_KIND_DECL_TAG: 4410 ref_type_id = btf_dedup_ref_type(d, t->type); 4411 if (ref_type_id < 0) 4412 return ref_type_id; 4413 t->type = ref_type_id; 4414 4415 h = btf_hash_int_decl_tag(t); 4416 for_each_dedup_cand(d, hash_entry, h) { 4417 cand_id = (__u32)(long)hash_entry->value; 4418 cand = btf_type_by_id(d->btf, cand_id); 4419 if (btf_equal_int_tag(t, cand)) { 4420 new_id = cand_id; 4421 break; 4422 } 4423 } 4424 break; 4425 4426 case BTF_KIND_ARRAY: { 4427 struct btf_array *info = btf_array(t); 4428 4429 ref_type_id = btf_dedup_ref_type(d, info->type); 4430 if (ref_type_id < 0) 4431 return ref_type_id; 4432 info->type = ref_type_id; 4433 4434 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4435 if (ref_type_id < 0) 4436 return ref_type_id; 4437 info->index_type = ref_type_id; 4438 4439 h = btf_hash_array(t); 4440 for_each_dedup_cand(d, hash_entry, h) { 4441 cand_id = (__u32)(long)hash_entry->value; 4442 cand = btf_type_by_id(d->btf, cand_id); 4443 if (btf_equal_array(t, cand)) { 4444 new_id = cand_id; 4445 break; 4446 } 4447 } 4448 break; 4449 } 4450 4451 case BTF_KIND_FUNC_PROTO: { 4452 struct btf_param *param; 4453 __u16 vlen; 4454 int i; 4455 4456 ref_type_id = btf_dedup_ref_type(d, t->type); 4457 if (ref_type_id < 0) 4458 return ref_type_id; 4459 t->type = ref_type_id; 4460 4461 vlen = btf_vlen(t); 4462 param = btf_params(t); 4463 for (i = 0; i < vlen; i++) { 4464 ref_type_id = btf_dedup_ref_type(d, param->type); 4465 if (ref_type_id < 0) 4466 return ref_type_id; 4467 param->type = ref_type_id; 4468 param++; 4469 } 4470 4471 h = btf_hash_fnproto(t); 4472 for_each_dedup_cand(d, hash_entry, h) { 4473 cand_id = (__u32)(long)hash_entry->value; 4474 cand = btf_type_by_id(d->btf, cand_id); 4475 if (btf_equal_fnproto(t, cand)) { 4476 new_id = cand_id; 4477 break; 4478 } 4479 } 4480 break; 4481 } 4482 4483 default: 4484 return -EINVAL; 4485 } 4486 4487 d->map[type_id] = new_id; 4488 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4489 return -ENOMEM; 4490 4491 return new_id; 4492 } 4493 4494 static int btf_dedup_ref_types(struct btf_dedup *d) 4495 { 4496 int i, err; 4497 4498 for (i = 0; i < d->btf->nr_types; i++) { 4499 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4500 if (err < 0) 4501 return err; 4502 } 4503 /* we won't need d->dedup_table anymore */ 4504 hashmap__free(d->dedup_table); 4505 d->dedup_table = NULL; 4506 return 0; 4507 } 4508 4509 /* 4510 * Compact types. 4511 * 4512 * After we established for each type its corresponding canonical representative 4513 * type, we now can eliminate types that are not canonical and leave only 4514 * canonical ones layed out sequentially in memory by copying them over 4515 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4516 * a map from original type ID to a new compacted type ID, which will be used 4517 * during next phase to "fix up" type IDs, referenced from struct/union and 4518 * reference types. 4519 */ 4520 static int btf_dedup_compact_types(struct btf_dedup *d) 4521 { 4522 __u32 *new_offs; 4523 __u32 next_type_id = d->btf->start_id; 4524 const struct btf_type *t; 4525 void *p; 4526 int i, id, len; 4527 4528 /* we are going to reuse hypot_map to store compaction remapping */ 4529 d->hypot_map[0] = 0; 4530 /* base BTF types are not renumbered */ 4531 for (id = 1; id < d->btf->start_id; id++) 4532 d->hypot_map[id] = id; 4533 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4534 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4535 4536 p = d->btf->types_data; 4537 4538 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4539 if (d->map[id] != id) 4540 continue; 4541 4542 t = btf__type_by_id(d->btf, id); 4543 len = btf_type_size(t); 4544 if (len < 0) 4545 return len; 4546 4547 memmove(p, t, len); 4548 d->hypot_map[id] = next_type_id; 4549 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4550 p += len; 4551 next_type_id++; 4552 } 4553 4554 /* shrink struct btf's internal types index and update btf_header */ 4555 d->btf->nr_types = next_type_id - d->btf->start_id; 4556 d->btf->type_offs_cap = d->btf->nr_types; 4557 d->btf->hdr->type_len = p - d->btf->types_data; 4558 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4559 sizeof(*new_offs)); 4560 if (d->btf->type_offs_cap && !new_offs) 4561 return -ENOMEM; 4562 d->btf->type_offs = new_offs; 4563 d->btf->hdr->str_off = d->btf->hdr->type_len; 4564 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4565 return 0; 4566 } 4567 4568 /* 4569 * Figure out final (deduplicated and compacted) type ID for provided original 4570 * `type_id` by first resolving it into corresponding canonical type ID and 4571 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4572 * which is populated during compaction phase. 4573 */ 4574 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4575 { 4576 struct btf_dedup *d = ctx; 4577 __u32 resolved_type_id, new_type_id; 4578 4579 resolved_type_id = resolve_type_id(d, *type_id); 4580 new_type_id = d->hypot_map[resolved_type_id]; 4581 if (new_type_id > BTF_MAX_NR_TYPES) 4582 return -EINVAL; 4583 4584 *type_id = new_type_id; 4585 return 0; 4586 } 4587 4588 /* 4589 * Remap referenced type IDs into deduped type IDs. 4590 * 4591 * After BTF types are deduplicated and compacted, their final type IDs may 4592 * differ from original ones. The map from original to a corresponding 4593 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4594 * compaction phase. During remapping phase we are rewriting all type IDs 4595 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4596 * their final deduped type IDs. 4597 */ 4598 static int btf_dedup_remap_types(struct btf_dedup *d) 4599 { 4600 int i, r; 4601 4602 for (i = 0; i < d->btf->nr_types; i++) { 4603 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4604 4605 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4606 if (r) 4607 return r; 4608 } 4609 4610 if (!d->btf_ext) 4611 return 0; 4612 4613 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4614 if (r) 4615 return r; 4616 4617 return 0; 4618 } 4619 4620 /* 4621 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4622 * data out of it to use for target BTF. 4623 */ 4624 struct btf *btf__load_vmlinux_btf(void) 4625 { 4626 struct { 4627 const char *path_fmt; 4628 bool raw_btf; 4629 } locations[] = { 4630 /* try canonical vmlinux BTF through sysfs first */ 4631 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4632 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4633 { "/boot/vmlinux-%1$s" }, 4634 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4635 { "/lib/modules/%1$s/build/vmlinux" }, 4636 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4637 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4638 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4639 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4640 }; 4641 char path[PATH_MAX + 1]; 4642 struct utsname buf; 4643 struct btf *btf; 4644 int i, err; 4645 4646 uname(&buf); 4647 4648 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4649 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4650 4651 if (access(path, R_OK)) 4652 continue; 4653 4654 if (locations[i].raw_btf) 4655 btf = btf__parse_raw(path); 4656 else 4657 btf = btf__parse_elf(path, NULL); 4658 err = libbpf_get_error(btf); 4659 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4660 if (err) 4661 continue; 4662 4663 return btf; 4664 } 4665 4666 pr_warn("failed to find valid kernel BTF\n"); 4667 return libbpf_err_ptr(-ESRCH); 4668 } 4669 4670 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4671 4672 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4673 { 4674 char path[80]; 4675 4676 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4677 return btf__parse_split(path, vmlinux_btf); 4678 } 4679 4680 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4681 { 4682 int i, n, err; 4683 4684 switch (btf_kind(t)) { 4685 case BTF_KIND_INT: 4686 case BTF_KIND_FLOAT: 4687 case BTF_KIND_ENUM: 4688 return 0; 4689 4690 case BTF_KIND_FWD: 4691 case BTF_KIND_CONST: 4692 case BTF_KIND_VOLATILE: 4693 case BTF_KIND_RESTRICT: 4694 case BTF_KIND_PTR: 4695 case BTF_KIND_TYPEDEF: 4696 case BTF_KIND_FUNC: 4697 case BTF_KIND_VAR: 4698 case BTF_KIND_DECL_TAG: 4699 case BTF_KIND_TYPE_TAG: 4700 return visit(&t->type, ctx); 4701 4702 case BTF_KIND_ARRAY: { 4703 struct btf_array *a = btf_array(t); 4704 4705 err = visit(&a->type, ctx); 4706 err = err ?: visit(&a->index_type, ctx); 4707 return err; 4708 } 4709 4710 case BTF_KIND_STRUCT: 4711 case BTF_KIND_UNION: { 4712 struct btf_member *m = btf_members(t); 4713 4714 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4715 err = visit(&m->type, ctx); 4716 if (err) 4717 return err; 4718 } 4719 return 0; 4720 } 4721 4722 case BTF_KIND_FUNC_PROTO: { 4723 struct btf_param *m = btf_params(t); 4724 4725 err = visit(&t->type, ctx); 4726 if (err) 4727 return err; 4728 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4729 err = visit(&m->type, ctx); 4730 if (err) 4731 return err; 4732 } 4733 return 0; 4734 } 4735 4736 case BTF_KIND_DATASEC: { 4737 struct btf_var_secinfo *m = btf_var_secinfos(t); 4738 4739 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4740 err = visit(&m->type, ctx); 4741 if (err) 4742 return err; 4743 } 4744 return 0; 4745 } 4746 4747 default: 4748 return -EINVAL; 4749 } 4750 } 4751 4752 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4753 { 4754 int i, n, err; 4755 4756 err = visit(&t->name_off, ctx); 4757 if (err) 4758 return err; 4759 4760 switch (btf_kind(t)) { 4761 case BTF_KIND_STRUCT: 4762 case BTF_KIND_UNION: { 4763 struct btf_member *m = btf_members(t); 4764 4765 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4766 err = visit(&m->name_off, ctx); 4767 if (err) 4768 return err; 4769 } 4770 break; 4771 } 4772 case BTF_KIND_ENUM: { 4773 struct btf_enum *m = btf_enum(t); 4774 4775 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4776 err = visit(&m->name_off, ctx); 4777 if (err) 4778 return err; 4779 } 4780 break; 4781 } 4782 case BTF_KIND_FUNC_PROTO: { 4783 struct btf_param *m = btf_params(t); 4784 4785 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4786 err = visit(&m->name_off, ctx); 4787 if (err) 4788 return err; 4789 } 4790 break; 4791 } 4792 default: 4793 break; 4794 } 4795 4796 return 0; 4797 } 4798 4799 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4800 { 4801 const struct btf_ext_info *seg; 4802 struct btf_ext_info_sec *sec; 4803 int i, err; 4804 4805 seg = &btf_ext->func_info; 4806 for_each_btf_ext_sec(seg, sec) { 4807 struct bpf_func_info_min *rec; 4808 4809 for_each_btf_ext_rec(seg, sec, i, rec) { 4810 err = visit(&rec->type_id, ctx); 4811 if (err < 0) 4812 return err; 4813 } 4814 } 4815 4816 seg = &btf_ext->core_relo_info; 4817 for_each_btf_ext_sec(seg, sec) { 4818 struct bpf_core_relo *rec; 4819 4820 for_each_btf_ext_rec(seg, sec, i, rec) { 4821 err = visit(&rec->type_id, ctx); 4822 if (err < 0) 4823 return err; 4824 } 4825 } 4826 4827 return 0; 4828 } 4829 4830 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4831 { 4832 const struct btf_ext_info *seg; 4833 struct btf_ext_info_sec *sec; 4834 int i, err; 4835 4836 seg = &btf_ext->func_info; 4837 for_each_btf_ext_sec(seg, sec) { 4838 err = visit(&sec->sec_name_off, ctx); 4839 if (err) 4840 return err; 4841 } 4842 4843 seg = &btf_ext->line_info; 4844 for_each_btf_ext_sec(seg, sec) { 4845 struct bpf_line_info_min *rec; 4846 4847 err = visit(&sec->sec_name_off, ctx); 4848 if (err) 4849 return err; 4850 4851 for_each_btf_ext_rec(seg, sec, i, rec) { 4852 err = visit(&rec->file_name_off, ctx); 4853 if (err) 4854 return err; 4855 err = visit(&rec->line_off, ctx); 4856 if (err) 4857 return err; 4858 } 4859 } 4860 4861 seg = &btf_ext->core_relo_info; 4862 for_each_btf_ext_sec(seg, sec) { 4863 struct bpf_core_relo *rec; 4864 4865 err = visit(&sec->sec_name_off, ctx); 4866 if (err) 4867 return err; 4868 4869 for_each_btf_ext_rec(seg, sec, i, rec) { 4870 err = visit(&rec->access_str_off, ctx); 4871 if (err) 4872 return err; 4873 } 4874 } 4875 4876 return 0; 4877 } 4878