xref: /linux/tools/lib/bpf/btf.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <linux/err.h>
12 #include <linux/btf.h>
13 #include <gelf.h>
14 #include "btf.h"
15 #include "bpf.h"
16 #include "libbpf.h"
17 #include "libbpf_internal.h"
18 #include "hashmap.h"
19 
20 #define BTF_MAX_NR_TYPES 0x7fffffff
21 #define BTF_MAX_STR_OFFSET 0x7fffffff
22 
23 static struct btf_type btf_void;
24 
25 struct btf {
26 	union {
27 		struct btf_header *hdr;
28 		void *data;
29 	};
30 	struct btf_type **types;
31 	const char *strings;
32 	void *nohdr_data;
33 	__u32 nr_types;
34 	__u32 types_size;
35 	__u32 data_size;
36 	int fd;
37 };
38 
39 static inline __u64 ptr_to_u64(const void *ptr)
40 {
41 	return (__u64) (unsigned long) ptr;
42 }
43 
44 static int btf_add_type(struct btf *btf, struct btf_type *t)
45 {
46 	if (btf->types_size - btf->nr_types < 2) {
47 		struct btf_type **new_types;
48 		__u32 expand_by, new_size;
49 
50 		if (btf->types_size == BTF_MAX_NR_TYPES)
51 			return -E2BIG;
52 
53 		expand_by = max(btf->types_size >> 2, 16);
54 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
55 
56 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
57 		if (!new_types)
58 			return -ENOMEM;
59 
60 		if (btf->nr_types == 0)
61 			new_types[0] = &btf_void;
62 
63 		btf->types = new_types;
64 		btf->types_size = new_size;
65 	}
66 
67 	btf->types[++(btf->nr_types)] = t;
68 
69 	return 0;
70 }
71 
72 static int btf_parse_hdr(struct btf *btf)
73 {
74 	const struct btf_header *hdr = btf->hdr;
75 	__u32 meta_left;
76 
77 	if (btf->data_size < sizeof(struct btf_header)) {
78 		pr_debug("BTF header not found\n");
79 		return -EINVAL;
80 	}
81 
82 	if (hdr->magic != BTF_MAGIC) {
83 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
84 		return -EINVAL;
85 	}
86 
87 	if (hdr->version != BTF_VERSION) {
88 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
89 		return -ENOTSUP;
90 	}
91 
92 	if (hdr->flags) {
93 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
94 		return -ENOTSUP;
95 	}
96 
97 	meta_left = btf->data_size - sizeof(*hdr);
98 	if (!meta_left) {
99 		pr_debug("BTF has no data\n");
100 		return -EINVAL;
101 	}
102 
103 	if (meta_left < hdr->type_off) {
104 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
105 		return -EINVAL;
106 	}
107 
108 	if (meta_left < hdr->str_off) {
109 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
110 		return -EINVAL;
111 	}
112 
113 	if (hdr->type_off >= hdr->str_off) {
114 		pr_debug("BTF type section offset >= string section offset. No type?\n");
115 		return -EINVAL;
116 	}
117 
118 	if (hdr->type_off & 0x02) {
119 		pr_debug("BTF type section is not aligned to 4 bytes\n");
120 		return -EINVAL;
121 	}
122 
123 	btf->nohdr_data = btf->hdr + 1;
124 
125 	return 0;
126 }
127 
128 static int btf_parse_str_sec(struct btf *btf)
129 {
130 	const struct btf_header *hdr = btf->hdr;
131 	const char *start = btf->nohdr_data + hdr->str_off;
132 	const char *end = start + btf->hdr->str_len;
133 
134 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
135 	    start[0] || end[-1]) {
136 		pr_debug("Invalid BTF string section\n");
137 		return -EINVAL;
138 	}
139 
140 	btf->strings = start;
141 
142 	return 0;
143 }
144 
145 static int btf_type_size(struct btf_type *t)
146 {
147 	int base_size = sizeof(struct btf_type);
148 	__u16 vlen = btf_vlen(t);
149 
150 	switch (btf_kind(t)) {
151 	case BTF_KIND_FWD:
152 	case BTF_KIND_CONST:
153 	case BTF_KIND_VOLATILE:
154 	case BTF_KIND_RESTRICT:
155 	case BTF_KIND_PTR:
156 	case BTF_KIND_TYPEDEF:
157 	case BTF_KIND_FUNC:
158 		return base_size;
159 	case BTF_KIND_INT:
160 		return base_size + sizeof(__u32);
161 	case BTF_KIND_ENUM:
162 		return base_size + vlen * sizeof(struct btf_enum);
163 	case BTF_KIND_ARRAY:
164 		return base_size + sizeof(struct btf_array);
165 	case BTF_KIND_STRUCT:
166 	case BTF_KIND_UNION:
167 		return base_size + vlen * sizeof(struct btf_member);
168 	case BTF_KIND_FUNC_PROTO:
169 		return base_size + vlen * sizeof(struct btf_param);
170 	case BTF_KIND_VAR:
171 		return base_size + sizeof(struct btf_var);
172 	case BTF_KIND_DATASEC:
173 		return base_size + vlen * sizeof(struct btf_var_secinfo);
174 	default:
175 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
176 		return -EINVAL;
177 	}
178 }
179 
180 static int btf_parse_type_sec(struct btf *btf)
181 {
182 	struct btf_header *hdr = btf->hdr;
183 	void *nohdr_data = btf->nohdr_data;
184 	void *next_type = nohdr_data + hdr->type_off;
185 	void *end_type = nohdr_data + hdr->str_off;
186 
187 	while (next_type < end_type) {
188 		struct btf_type *t = next_type;
189 		int type_size;
190 		int err;
191 
192 		type_size = btf_type_size(t);
193 		if (type_size < 0)
194 			return type_size;
195 		next_type += type_size;
196 		err = btf_add_type(btf, t);
197 		if (err)
198 			return err;
199 	}
200 
201 	return 0;
202 }
203 
204 __u32 btf__get_nr_types(const struct btf *btf)
205 {
206 	return btf->nr_types;
207 }
208 
209 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
210 {
211 	if (type_id > btf->nr_types)
212 		return NULL;
213 
214 	return btf->types[type_id];
215 }
216 
217 static bool btf_type_is_void(const struct btf_type *t)
218 {
219 	return t == &btf_void || btf_is_fwd(t);
220 }
221 
222 static bool btf_type_is_void_or_null(const struct btf_type *t)
223 {
224 	return !t || btf_type_is_void(t);
225 }
226 
227 #define MAX_RESOLVE_DEPTH 32
228 
229 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
230 {
231 	const struct btf_array *array;
232 	const struct btf_type *t;
233 	__u32 nelems = 1;
234 	__s64 size = -1;
235 	int i;
236 
237 	t = btf__type_by_id(btf, type_id);
238 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
239 	     i++) {
240 		switch (btf_kind(t)) {
241 		case BTF_KIND_INT:
242 		case BTF_KIND_STRUCT:
243 		case BTF_KIND_UNION:
244 		case BTF_KIND_ENUM:
245 		case BTF_KIND_DATASEC:
246 			size = t->size;
247 			goto done;
248 		case BTF_KIND_PTR:
249 			size = sizeof(void *);
250 			goto done;
251 		case BTF_KIND_TYPEDEF:
252 		case BTF_KIND_VOLATILE:
253 		case BTF_KIND_CONST:
254 		case BTF_KIND_RESTRICT:
255 		case BTF_KIND_VAR:
256 			type_id = t->type;
257 			break;
258 		case BTF_KIND_ARRAY:
259 			array = btf_array(t);
260 			if (nelems && array->nelems > UINT32_MAX / nelems)
261 				return -E2BIG;
262 			nelems *= array->nelems;
263 			type_id = array->type;
264 			break;
265 		default:
266 			return -EINVAL;
267 		}
268 
269 		t = btf__type_by_id(btf, type_id);
270 	}
271 
272 	if (size < 0)
273 		return -EINVAL;
274 
275 done:
276 	if (nelems && size > UINT32_MAX / nelems)
277 		return -E2BIG;
278 
279 	return nelems * size;
280 }
281 
282 int btf__resolve_type(const struct btf *btf, __u32 type_id)
283 {
284 	const struct btf_type *t;
285 	int depth = 0;
286 
287 	t = btf__type_by_id(btf, type_id);
288 	while (depth < MAX_RESOLVE_DEPTH &&
289 	       !btf_type_is_void_or_null(t) &&
290 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
291 		type_id = t->type;
292 		t = btf__type_by_id(btf, type_id);
293 		depth++;
294 	}
295 
296 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
297 		return -EINVAL;
298 
299 	return type_id;
300 }
301 
302 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
303 {
304 	__u32 i;
305 
306 	if (!strcmp(type_name, "void"))
307 		return 0;
308 
309 	for (i = 1; i <= btf->nr_types; i++) {
310 		const struct btf_type *t = btf->types[i];
311 		const char *name = btf__name_by_offset(btf, t->name_off);
312 
313 		if (name && !strcmp(type_name, name))
314 			return i;
315 	}
316 
317 	return -ENOENT;
318 }
319 
320 void btf__free(struct btf *btf)
321 {
322 	if (!btf)
323 		return;
324 
325 	if (btf->fd != -1)
326 		close(btf->fd);
327 
328 	free(btf->data);
329 	free(btf->types);
330 	free(btf);
331 }
332 
333 struct btf *btf__new(__u8 *data, __u32 size)
334 {
335 	struct btf *btf;
336 	int err;
337 
338 	btf = calloc(1, sizeof(struct btf));
339 	if (!btf)
340 		return ERR_PTR(-ENOMEM);
341 
342 	btf->fd = -1;
343 
344 	btf->data = malloc(size);
345 	if (!btf->data) {
346 		err = -ENOMEM;
347 		goto done;
348 	}
349 
350 	memcpy(btf->data, data, size);
351 	btf->data_size = size;
352 
353 	err = btf_parse_hdr(btf);
354 	if (err)
355 		goto done;
356 
357 	err = btf_parse_str_sec(btf);
358 	if (err)
359 		goto done;
360 
361 	err = btf_parse_type_sec(btf);
362 
363 done:
364 	if (err) {
365 		btf__free(btf);
366 		return ERR_PTR(err);
367 	}
368 
369 	return btf;
370 }
371 
372 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
373 {
374 #if __BYTE_ORDER == __LITTLE_ENDIAN
375 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
376 #elif __BYTE_ORDER == __BIG_ENDIAN
377 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
378 #else
379 # error "Unrecognized __BYTE_ORDER__"
380 #endif
381 }
382 
383 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
384 {
385 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
386 	int err = 0, fd = -1, idx = 0;
387 	struct btf *btf = NULL;
388 	Elf_Scn *scn = NULL;
389 	Elf *elf = NULL;
390 	GElf_Ehdr ehdr;
391 
392 	if (elf_version(EV_CURRENT) == EV_NONE) {
393 		pr_warning("failed to init libelf for %s\n", path);
394 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
395 	}
396 
397 	fd = open(path, O_RDONLY);
398 	if (fd < 0) {
399 		err = -errno;
400 		pr_warning("failed to open %s: %s\n", path, strerror(errno));
401 		return ERR_PTR(err);
402 	}
403 
404 	err = -LIBBPF_ERRNO__FORMAT;
405 
406 	elf = elf_begin(fd, ELF_C_READ, NULL);
407 	if (!elf) {
408 		pr_warning("failed to open %s as ELF file\n", path);
409 		goto done;
410 	}
411 	if (!gelf_getehdr(elf, &ehdr)) {
412 		pr_warning("failed to get EHDR from %s\n", path);
413 		goto done;
414 	}
415 	if (!btf_check_endianness(&ehdr)) {
416 		pr_warning("non-native ELF endianness is not supported\n");
417 		goto done;
418 	}
419 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
420 		pr_warning("failed to get e_shstrndx from %s\n", path);
421 		goto done;
422 	}
423 
424 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
425 		GElf_Shdr sh;
426 		char *name;
427 
428 		idx++;
429 		if (gelf_getshdr(scn, &sh) != &sh) {
430 			pr_warning("failed to get section(%d) header from %s\n",
431 				   idx, path);
432 			goto done;
433 		}
434 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
435 		if (!name) {
436 			pr_warning("failed to get section(%d) name from %s\n",
437 				   idx, path);
438 			goto done;
439 		}
440 		if (strcmp(name, BTF_ELF_SEC) == 0) {
441 			btf_data = elf_getdata(scn, 0);
442 			if (!btf_data) {
443 				pr_warning("failed to get section(%d, %s) data from %s\n",
444 					   idx, name, path);
445 				goto done;
446 			}
447 			continue;
448 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
449 			btf_ext_data = elf_getdata(scn, 0);
450 			if (!btf_ext_data) {
451 				pr_warning("failed to get section(%d, %s) data from %s\n",
452 					   idx, name, path);
453 				goto done;
454 			}
455 			continue;
456 		}
457 	}
458 
459 	err = 0;
460 
461 	if (!btf_data) {
462 		err = -ENOENT;
463 		goto done;
464 	}
465 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
466 	if (IS_ERR(btf))
467 		goto done;
468 
469 	if (btf_ext && btf_ext_data) {
470 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
471 					btf_ext_data->d_size);
472 		if (IS_ERR(*btf_ext))
473 			goto done;
474 	} else if (btf_ext) {
475 		*btf_ext = NULL;
476 	}
477 done:
478 	if (elf)
479 		elf_end(elf);
480 	close(fd);
481 
482 	if (err)
483 		return ERR_PTR(err);
484 	/*
485 	 * btf is always parsed before btf_ext, so no need to clean up
486 	 * btf_ext, if btf loading failed
487 	 */
488 	if (IS_ERR(btf))
489 		return btf;
490 	if (btf_ext && IS_ERR(*btf_ext)) {
491 		btf__free(btf);
492 		err = PTR_ERR(*btf_ext);
493 		return ERR_PTR(err);
494 	}
495 	return btf;
496 }
497 
498 static int compare_vsi_off(const void *_a, const void *_b)
499 {
500 	const struct btf_var_secinfo *a = _a;
501 	const struct btf_var_secinfo *b = _b;
502 
503 	return a->offset - b->offset;
504 }
505 
506 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
507 			     struct btf_type *t)
508 {
509 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
510 	const char *name = btf__name_by_offset(btf, t->name_off);
511 	const struct btf_type *t_var;
512 	struct btf_var_secinfo *vsi;
513 	const struct btf_var *var;
514 	int ret;
515 
516 	if (!name) {
517 		pr_debug("No name found in string section for DATASEC kind.\n");
518 		return -ENOENT;
519 	}
520 
521 	ret = bpf_object__section_size(obj, name, &size);
522 	if (ret || !size || (t->size && t->size != size)) {
523 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
524 		return -ENOENT;
525 	}
526 
527 	t->size = size;
528 
529 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
530 		t_var = btf__type_by_id(btf, vsi->type);
531 		var = btf_var(t_var);
532 
533 		if (!btf_is_var(t_var)) {
534 			pr_debug("Non-VAR type seen in section %s\n", name);
535 			return -EINVAL;
536 		}
537 
538 		if (var->linkage == BTF_VAR_STATIC)
539 			continue;
540 
541 		name = btf__name_by_offset(btf, t_var->name_off);
542 		if (!name) {
543 			pr_debug("No name found in string section for VAR kind\n");
544 			return -ENOENT;
545 		}
546 
547 		ret = bpf_object__variable_offset(obj, name, &off);
548 		if (ret) {
549 			pr_debug("No offset found in symbol table for VAR %s\n",
550 				 name);
551 			return -ENOENT;
552 		}
553 
554 		vsi->offset = off;
555 	}
556 
557 	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
558 	return 0;
559 }
560 
561 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
562 {
563 	int err = 0;
564 	__u32 i;
565 
566 	for (i = 1; i <= btf->nr_types; i++) {
567 		struct btf_type *t = btf->types[i];
568 
569 		/* Loader needs to fix up some of the things compiler
570 		 * couldn't get its hands on while emitting BTF. This
571 		 * is section size and global variable offset. We use
572 		 * the info from the ELF itself for this purpose.
573 		 */
574 		if (btf_is_datasec(t)) {
575 			err = btf_fixup_datasec(obj, btf, t);
576 			if (err)
577 				break;
578 		}
579 	}
580 
581 	return err;
582 }
583 
584 int btf__load(struct btf *btf)
585 {
586 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
587 	char *log_buf = NULL;
588 	int err = 0;
589 
590 	if (btf->fd >= 0)
591 		return -EEXIST;
592 
593 	log_buf = malloc(log_buf_size);
594 	if (!log_buf)
595 		return -ENOMEM;
596 
597 	*log_buf = 0;
598 
599 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
600 			       log_buf, log_buf_size, false);
601 	if (btf->fd < 0) {
602 		err = -errno;
603 		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
604 		if (*log_buf)
605 			pr_warning("%s\n", log_buf);
606 		goto done;
607 	}
608 
609 done:
610 	free(log_buf);
611 	return err;
612 }
613 
614 int btf__fd(const struct btf *btf)
615 {
616 	return btf->fd;
617 }
618 
619 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
620 {
621 	*size = btf->data_size;
622 	return btf->data;
623 }
624 
625 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
626 {
627 	if (offset < btf->hdr->str_len)
628 		return &btf->strings[offset];
629 	else
630 		return NULL;
631 }
632 
633 int btf__get_from_id(__u32 id, struct btf **btf)
634 {
635 	struct bpf_btf_info btf_info = { 0 };
636 	__u32 len = sizeof(btf_info);
637 	__u32 last_size;
638 	int btf_fd;
639 	void *ptr;
640 	int err;
641 
642 	err = 0;
643 	*btf = NULL;
644 	btf_fd = bpf_btf_get_fd_by_id(id);
645 	if (btf_fd < 0)
646 		return 0;
647 
648 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
649 	 * let's start with a sane default - 4KiB here - and resize it only if
650 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
651 	 */
652 	btf_info.btf_size = 4096;
653 	last_size = btf_info.btf_size;
654 	ptr = malloc(last_size);
655 	if (!ptr) {
656 		err = -ENOMEM;
657 		goto exit_free;
658 	}
659 
660 	memset(ptr, 0, last_size);
661 	btf_info.btf = ptr_to_u64(ptr);
662 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
663 
664 	if (!err && btf_info.btf_size > last_size) {
665 		void *temp_ptr;
666 
667 		last_size = btf_info.btf_size;
668 		temp_ptr = realloc(ptr, last_size);
669 		if (!temp_ptr) {
670 			err = -ENOMEM;
671 			goto exit_free;
672 		}
673 		ptr = temp_ptr;
674 		memset(ptr, 0, last_size);
675 		btf_info.btf = ptr_to_u64(ptr);
676 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
677 	}
678 
679 	if (err || btf_info.btf_size > last_size) {
680 		err = errno;
681 		goto exit_free;
682 	}
683 
684 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
685 	if (IS_ERR(*btf)) {
686 		err = PTR_ERR(*btf);
687 		*btf = NULL;
688 	}
689 
690 exit_free:
691 	close(btf_fd);
692 	free(ptr);
693 
694 	return err;
695 }
696 
697 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
698 			 __u32 expected_key_size, __u32 expected_value_size,
699 			 __u32 *key_type_id, __u32 *value_type_id)
700 {
701 	const struct btf_type *container_type;
702 	const struct btf_member *key, *value;
703 	const size_t max_name = 256;
704 	char container_name[max_name];
705 	__s64 key_size, value_size;
706 	__s32 container_id;
707 
708 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
709 	    max_name) {
710 		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
711 			   map_name, map_name);
712 		return -EINVAL;
713 	}
714 
715 	container_id = btf__find_by_name(btf, container_name);
716 	if (container_id < 0) {
717 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
718 			 map_name, container_name);
719 		return container_id;
720 	}
721 
722 	container_type = btf__type_by_id(btf, container_id);
723 	if (!container_type) {
724 		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
725 			   map_name, container_id);
726 		return -EINVAL;
727 	}
728 
729 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
730 		pr_warning("map:%s container_name:%s is an invalid container struct\n",
731 			   map_name, container_name);
732 		return -EINVAL;
733 	}
734 
735 	key = btf_members(container_type);
736 	value = key + 1;
737 
738 	key_size = btf__resolve_size(btf, key->type);
739 	if (key_size < 0) {
740 		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
741 		return key_size;
742 	}
743 
744 	if (expected_key_size != key_size) {
745 		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
746 			   map_name, (__u32)key_size, expected_key_size);
747 		return -EINVAL;
748 	}
749 
750 	value_size = btf__resolve_size(btf, value->type);
751 	if (value_size < 0) {
752 		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
753 		return value_size;
754 	}
755 
756 	if (expected_value_size != value_size) {
757 		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
758 			   map_name, (__u32)value_size, expected_value_size);
759 		return -EINVAL;
760 	}
761 
762 	*key_type_id = key->type;
763 	*value_type_id = value->type;
764 
765 	return 0;
766 }
767 
768 struct btf_ext_sec_setup_param {
769 	__u32 off;
770 	__u32 len;
771 	__u32 min_rec_size;
772 	struct btf_ext_info *ext_info;
773 	const char *desc;
774 };
775 
776 static int btf_ext_setup_info(struct btf_ext *btf_ext,
777 			      struct btf_ext_sec_setup_param *ext_sec)
778 {
779 	const struct btf_ext_info_sec *sinfo;
780 	struct btf_ext_info *ext_info;
781 	__u32 info_left, record_size;
782 	/* The start of the info sec (including the __u32 record_size). */
783 	void *info;
784 
785 	if (ext_sec->len == 0)
786 		return 0;
787 
788 	if (ext_sec->off & 0x03) {
789 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
790 		     ext_sec->desc);
791 		return -EINVAL;
792 	}
793 
794 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
795 	info_left = ext_sec->len;
796 
797 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
798 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
799 			 ext_sec->desc, ext_sec->off, ext_sec->len);
800 		return -EINVAL;
801 	}
802 
803 	/* At least a record size */
804 	if (info_left < sizeof(__u32)) {
805 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
806 		return -EINVAL;
807 	}
808 
809 	/* The record size needs to meet the minimum standard */
810 	record_size = *(__u32 *)info;
811 	if (record_size < ext_sec->min_rec_size ||
812 	    record_size & 0x03) {
813 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
814 			 ext_sec->desc, record_size);
815 		return -EINVAL;
816 	}
817 
818 	sinfo = info + sizeof(__u32);
819 	info_left -= sizeof(__u32);
820 
821 	/* If no records, return failure now so .BTF.ext won't be used. */
822 	if (!info_left) {
823 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
824 		return -EINVAL;
825 	}
826 
827 	while (info_left) {
828 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
829 		__u64 total_record_size;
830 		__u32 num_records;
831 
832 		if (info_left < sec_hdrlen) {
833 			pr_debug("%s section header is not found in .BTF.ext\n",
834 			     ext_sec->desc);
835 			return -EINVAL;
836 		}
837 
838 		num_records = sinfo->num_info;
839 		if (num_records == 0) {
840 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
841 			     ext_sec->desc);
842 			return -EINVAL;
843 		}
844 
845 		total_record_size = sec_hdrlen +
846 				    (__u64)num_records * record_size;
847 		if (info_left < total_record_size) {
848 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
849 			     ext_sec->desc);
850 			return -EINVAL;
851 		}
852 
853 		info_left -= total_record_size;
854 		sinfo = (void *)sinfo + total_record_size;
855 	}
856 
857 	ext_info = ext_sec->ext_info;
858 	ext_info->len = ext_sec->len - sizeof(__u32);
859 	ext_info->rec_size = record_size;
860 	ext_info->info = info + sizeof(__u32);
861 
862 	return 0;
863 }
864 
865 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
866 {
867 	struct btf_ext_sec_setup_param param = {
868 		.off = btf_ext->hdr->func_info_off,
869 		.len = btf_ext->hdr->func_info_len,
870 		.min_rec_size = sizeof(struct bpf_func_info_min),
871 		.ext_info = &btf_ext->func_info,
872 		.desc = "func_info"
873 	};
874 
875 	return btf_ext_setup_info(btf_ext, &param);
876 }
877 
878 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
879 {
880 	struct btf_ext_sec_setup_param param = {
881 		.off = btf_ext->hdr->line_info_off,
882 		.len = btf_ext->hdr->line_info_len,
883 		.min_rec_size = sizeof(struct bpf_line_info_min),
884 		.ext_info = &btf_ext->line_info,
885 		.desc = "line_info",
886 	};
887 
888 	return btf_ext_setup_info(btf_ext, &param);
889 }
890 
891 static int btf_ext_setup_offset_reloc(struct btf_ext *btf_ext)
892 {
893 	struct btf_ext_sec_setup_param param = {
894 		.off = btf_ext->hdr->offset_reloc_off,
895 		.len = btf_ext->hdr->offset_reloc_len,
896 		.min_rec_size = sizeof(struct bpf_offset_reloc),
897 		.ext_info = &btf_ext->offset_reloc_info,
898 		.desc = "offset_reloc",
899 	};
900 
901 	return btf_ext_setup_info(btf_ext, &param);
902 }
903 
904 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
905 {
906 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
907 
908 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
909 	    data_size < hdr->hdr_len) {
910 		pr_debug("BTF.ext header not found");
911 		return -EINVAL;
912 	}
913 
914 	if (hdr->magic != BTF_MAGIC) {
915 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
916 		return -EINVAL;
917 	}
918 
919 	if (hdr->version != BTF_VERSION) {
920 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
921 		return -ENOTSUP;
922 	}
923 
924 	if (hdr->flags) {
925 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
926 		return -ENOTSUP;
927 	}
928 
929 	if (data_size == hdr->hdr_len) {
930 		pr_debug("BTF.ext has no data\n");
931 		return -EINVAL;
932 	}
933 
934 	return 0;
935 }
936 
937 void btf_ext__free(struct btf_ext *btf_ext)
938 {
939 	if (!btf_ext)
940 		return;
941 	free(btf_ext->data);
942 	free(btf_ext);
943 }
944 
945 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
946 {
947 	struct btf_ext *btf_ext;
948 	int err;
949 
950 	err = btf_ext_parse_hdr(data, size);
951 	if (err)
952 		return ERR_PTR(err);
953 
954 	btf_ext = calloc(1, sizeof(struct btf_ext));
955 	if (!btf_ext)
956 		return ERR_PTR(-ENOMEM);
957 
958 	btf_ext->data_size = size;
959 	btf_ext->data = malloc(size);
960 	if (!btf_ext->data) {
961 		err = -ENOMEM;
962 		goto done;
963 	}
964 	memcpy(btf_ext->data, data, size);
965 
966 	if (btf_ext->hdr->hdr_len <
967 	    offsetofend(struct btf_ext_header, line_info_len))
968 		goto done;
969 	err = btf_ext_setup_func_info(btf_ext);
970 	if (err)
971 		goto done;
972 
973 	err = btf_ext_setup_line_info(btf_ext);
974 	if (err)
975 		goto done;
976 
977 	if (btf_ext->hdr->hdr_len <
978 	    offsetofend(struct btf_ext_header, offset_reloc_len))
979 		goto done;
980 	err = btf_ext_setup_offset_reloc(btf_ext);
981 	if (err)
982 		goto done;
983 
984 done:
985 	if (err) {
986 		btf_ext__free(btf_ext);
987 		return ERR_PTR(err);
988 	}
989 
990 	return btf_ext;
991 }
992 
993 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
994 {
995 	*size = btf_ext->data_size;
996 	return btf_ext->data;
997 }
998 
999 static int btf_ext_reloc_info(const struct btf *btf,
1000 			      const struct btf_ext_info *ext_info,
1001 			      const char *sec_name, __u32 insns_cnt,
1002 			      void **info, __u32 *cnt)
1003 {
1004 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1005 	__u32 i, record_size, existing_len, records_len;
1006 	struct btf_ext_info_sec *sinfo;
1007 	const char *info_sec_name;
1008 	__u64 remain_len;
1009 	void *data;
1010 
1011 	record_size = ext_info->rec_size;
1012 	sinfo = ext_info->info;
1013 	remain_len = ext_info->len;
1014 	while (remain_len > 0) {
1015 		records_len = sinfo->num_info * record_size;
1016 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1017 		if (strcmp(info_sec_name, sec_name)) {
1018 			remain_len -= sec_hdrlen + records_len;
1019 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1020 			continue;
1021 		}
1022 
1023 		existing_len = (*cnt) * record_size;
1024 		data = realloc(*info, existing_len + records_len);
1025 		if (!data)
1026 			return -ENOMEM;
1027 
1028 		memcpy(data + existing_len, sinfo->data, records_len);
1029 		/* adjust insn_off only, the rest data will be passed
1030 		 * to the kernel.
1031 		 */
1032 		for (i = 0; i < sinfo->num_info; i++) {
1033 			__u32 *insn_off;
1034 
1035 			insn_off = data + existing_len + (i * record_size);
1036 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1037 				insns_cnt;
1038 		}
1039 		*info = data;
1040 		*cnt += sinfo->num_info;
1041 		return 0;
1042 	}
1043 
1044 	return -ENOENT;
1045 }
1046 
1047 int btf_ext__reloc_func_info(const struct btf *btf,
1048 			     const struct btf_ext *btf_ext,
1049 			     const char *sec_name, __u32 insns_cnt,
1050 			     void **func_info, __u32 *cnt)
1051 {
1052 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1053 				  insns_cnt, func_info, cnt);
1054 }
1055 
1056 int btf_ext__reloc_line_info(const struct btf *btf,
1057 			     const struct btf_ext *btf_ext,
1058 			     const char *sec_name, __u32 insns_cnt,
1059 			     void **line_info, __u32 *cnt)
1060 {
1061 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1062 				  insns_cnt, line_info, cnt);
1063 }
1064 
1065 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1066 {
1067 	return btf_ext->func_info.rec_size;
1068 }
1069 
1070 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1071 {
1072 	return btf_ext->line_info.rec_size;
1073 }
1074 
1075 struct btf_dedup;
1076 
1077 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1078 				       const struct btf_dedup_opts *opts);
1079 static void btf_dedup_free(struct btf_dedup *d);
1080 static int btf_dedup_strings(struct btf_dedup *d);
1081 static int btf_dedup_prim_types(struct btf_dedup *d);
1082 static int btf_dedup_struct_types(struct btf_dedup *d);
1083 static int btf_dedup_ref_types(struct btf_dedup *d);
1084 static int btf_dedup_compact_types(struct btf_dedup *d);
1085 static int btf_dedup_remap_types(struct btf_dedup *d);
1086 
1087 /*
1088  * Deduplicate BTF types and strings.
1089  *
1090  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1091  * section with all BTF type descriptors and string data. It overwrites that
1092  * memory in-place with deduplicated types and strings without any loss of
1093  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1094  * is provided, all the strings referenced from .BTF.ext section are honored
1095  * and updated to point to the right offsets after deduplication.
1096  *
1097  * If function returns with error, type/string data might be garbled and should
1098  * be discarded.
1099  *
1100  * More verbose and detailed description of both problem btf_dedup is solving,
1101  * as well as solution could be found at:
1102  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1103  *
1104  * Problem description and justification
1105  * =====================================
1106  *
1107  * BTF type information is typically emitted either as a result of conversion
1108  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1109  * unit contains information about a subset of all the types that are used
1110  * in an application. These subsets are frequently overlapping and contain a lot
1111  * of duplicated information when later concatenated together into a single
1112  * binary. This algorithm ensures that each unique type is represented by single
1113  * BTF type descriptor, greatly reducing resulting size of BTF data.
1114  *
1115  * Compilation unit isolation and subsequent duplication of data is not the only
1116  * problem. The same type hierarchy (e.g., struct and all the type that struct
1117  * references) in different compilation units can be represented in BTF to
1118  * various degrees of completeness (or, rather, incompleteness) due to
1119  * struct/union forward declarations.
1120  *
1121  * Let's take a look at an example, that we'll use to better understand the
1122  * problem (and solution). Suppose we have two compilation units, each using
1123  * same `struct S`, but each of them having incomplete type information about
1124  * struct's fields:
1125  *
1126  * // CU #1:
1127  * struct S;
1128  * struct A {
1129  *	int a;
1130  *	struct A* self;
1131  *	struct S* parent;
1132  * };
1133  * struct B;
1134  * struct S {
1135  *	struct A* a_ptr;
1136  *	struct B* b_ptr;
1137  * };
1138  *
1139  * // CU #2:
1140  * struct S;
1141  * struct A;
1142  * struct B {
1143  *	int b;
1144  *	struct B* self;
1145  *	struct S* parent;
1146  * };
1147  * struct S {
1148  *	struct A* a_ptr;
1149  *	struct B* b_ptr;
1150  * };
1151  *
1152  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1153  * more), but will know the complete type information about `struct A`. While
1154  * for CU #2, it will know full type information about `struct B`, but will
1155  * only know about forward declaration of `struct A` (in BTF terms, it will
1156  * have `BTF_KIND_FWD` type descriptor with name `B`).
1157  *
1158  * This compilation unit isolation means that it's possible that there is no
1159  * single CU with complete type information describing structs `S`, `A`, and
1160  * `B`. Also, we might get tons of duplicated and redundant type information.
1161  *
1162  * Additional complication we need to keep in mind comes from the fact that
1163  * types, in general, can form graphs containing cycles, not just DAGs.
1164  *
1165  * While algorithm does deduplication, it also merges and resolves type
1166  * information (unless disabled throught `struct btf_opts`), whenever possible.
1167  * E.g., in the example above with two compilation units having partial type
1168  * information for structs `A` and `B`, the output of algorithm will emit
1169  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1170  * (as well as type information for `int` and pointers), as if they were defined
1171  * in a single compilation unit as:
1172  *
1173  * struct A {
1174  *	int a;
1175  *	struct A* self;
1176  *	struct S* parent;
1177  * };
1178  * struct B {
1179  *	int b;
1180  *	struct B* self;
1181  *	struct S* parent;
1182  * };
1183  * struct S {
1184  *	struct A* a_ptr;
1185  *	struct B* b_ptr;
1186  * };
1187  *
1188  * Algorithm summary
1189  * =================
1190  *
1191  * Algorithm completes its work in 6 separate passes:
1192  *
1193  * 1. Strings deduplication.
1194  * 2. Primitive types deduplication (int, enum, fwd).
1195  * 3. Struct/union types deduplication.
1196  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1197  *    protos, and const/volatile/restrict modifiers).
1198  * 5. Types compaction.
1199  * 6. Types remapping.
1200  *
1201  * Algorithm determines canonical type descriptor, which is a single
1202  * representative type for each truly unique type. This canonical type is the
1203  * one that will go into final deduplicated BTF type information. For
1204  * struct/unions, it is also the type that algorithm will merge additional type
1205  * information into (while resolving FWDs), as it discovers it from data in
1206  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1207  * that type is canonical, or to some other type, if that type is equivalent
1208  * and was chosen as canonical representative. This mapping is stored in
1209  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1210  * FWD type got resolved to.
1211  *
1212  * To facilitate fast discovery of canonical types, we also maintain canonical
1213  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1214  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1215  * that match that signature. With sufficiently good choice of type signature
1216  * hashing function, we can limit number of canonical types for each unique type
1217  * signature to a very small number, allowing to find canonical type for any
1218  * duplicated type very quickly.
1219  *
1220  * Struct/union deduplication is the most critical part and algorithm for
1221  * deduplicating structs/unions is described in greater details in comments for
1222  * `btf_dedup_is_equiv` function.
1223  */
1224 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1225 	       const struct btf_dedup_opts *opts)
1226 {
1227 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1228 	int err;
1229 
1230 	if (IS_ERR(d)) {
1231 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1232 		return -EINVAL;
1233 	}
1234 
1235 	err = btf_dedup_strings(d);
1236 	if (err < 0) {
1237 		pr_debug("btf_dedup_strings failed:%d\n", err);
1238 		goto done;
1239 	}
1240 	err = btf_dedup_prim_types(d);
1241 	if (err < 0) {
1242 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1243 		goto done;
1244 	}
1245 	err = btf_dedup_struct_types(d);
1246 	if (err < 0) {
1247 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1248 		goto done;
1249 	}
1250 	err = btf_dedup_ref_types(d);
1251 	if (err < 0) {
1252 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1253 		goto done;
1254 	}
1255 	err = btf_dedup_compact_types(d);
1256 	if (err < 0) {
1257 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1258 		goto done;
1259 	}
1260 	err = btf_dedup_remap_types(d);
1261 	if (err < 0) {
1262 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1263 		goto done;
1264 	}
1265 
1266 done:
1267 	btf_dedup_free(d);
1268 	return err;
1269 }
1270 
1271 #define BTF_UNPROCESSED_ID ((__u32)-1)
1272 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1273 
1274 struct btf_dedup {
1275 	/* .BTF section to be deduped in-place */
1276 	struct btf *btf;
1277 	/*
1278 	 * Optional .BTF.ext section. When provided, any strings referenced
1279 	 * from it will be taken into account when deduping strings
1280 	 */
1281 	struct btf_ext *btf_ext;
1282 	/*
1283 	 * This is a map from any type's signature hash to a list of possible
1284 	 * canonical representative type candidates. Hash collisions are
1285 	 * ignored, so even types of various kinds can share same list of
1286 	 * candidates, which is fine because we rely on subsequent
1287 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1288 	 */
1289 	struct hashmap *dedup_table;
1290 	/* Canonical types map */
1291 	__u32 *map;
1292 	/* Hypothetical mapping, used during type graph equivalence checks */
1293 	__u32 *hypot_map;
1294 	__u32 *hypot_list;
1295 	size_t hypot_cnt;
1296 	size_t hypot_cap;
1297 	/* Various option modifying behavior of algorithm */
1298 	struct btf_dedup_opts opts;
1299 };
1300 
1301 struct btf_str_ptr {
1302 	const char *str;
1303 	__u32 new_off;
1304 	bool used;
1305 };
1306 
1307 struct btf_str_ptrs {
1308 	struct btf_str_ptr *ptrs;
1309 	const char *data;
1310 	__u32 cnt;
1311 	__u32 cap;
1312 };
1313 
1314 static long hash_combine(long h, long value)
1315 {
1316 	return h * 31 + value;
1317 }
1318 
1319 #define for_each_dedup_cand(d, node, hash) \
1320 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1321 
1322 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1323 {
1324 	return hashmap__append(d->dedup_table,
1325 			       (void *)hash, (void *)(long)type_id);
1326 }
1327 
1328 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1329 				   __u32 from_id, __u32 to_id)
1330 {
1331 	if (d->hypot_cnt == d->hypot_cap) {
1332 		__u32 *new_list;
1333 
1334 		d->hypot_cap += max(16, d->hypot_cap / 2);
1335 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1336 		if (!new_list)
1337 			return -ENOMEM;
1338 		d->hypot_list = new_list;
1339 	}
1340 	d->hypot_list[d->hypot_cnt++] = from_id;
1341 	d->hypot_map[from_id] = to_id;
1342 	return 0;
1343 }
1344 
1345 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1346 {
1347 	int i;
1348 
1349 	for (i = 0; i < d->hypot_cnt; i++)
1350 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1351 	d->hypot_cnt = 0;
1352 }
1353 
1354 static void btf_dedup_free(struct btf_dedup *d)
1355 {
1356 	hashmap__free(d->dedup_table);
1357 	d->dedup_table = NULL;
1358 
1359 	free(d->map);
1360 	d->map = NULL;
1361 
1362 	free(d->hypot_map);
1363 	d->hypot_map = NULL;
1364 
1365 	free(d->hypot_list);
1366 	d->hypot_list = NULL;
1367 
1368 	free(d);
1369 }
1370 
1371 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1372 {
1373 	return (size_t)key;
1374 }
1375 
1376 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1377 {
1378 	return 0;
1379 }
1380 
1381 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1382 {
1383 	return k1 == k2;
1384 }
1385 
1386 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1387 				       const struct btf_dedup_opts *opts)
1388 {
1389 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1390 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1391 	int i, err = 0;
1392 
1393 	if (!d)
1394 		return ERR_PTR(-ENOMEM);
1395 
1396 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1397 	/* dedup_table_size is now used only to force collisions in tests */
1398 	if (opts && opts->dedup_table_size == 1)
1399 		hash_fn = btf_dedup_collision_hash_fn;
1400 
1401 	d->btf = btf;
1402 	d->btf_ext = btf_ext;
1403 
1404 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1405 	if (IS_ERR(d->dedup_table)) {
1406 		err = PTR_ERR(d->dedup_table);
1407 		d->dedup_table = NULL;
1408 		goto done;
1409 	}
1410 
1411 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1412 	if (!d->map) {
1413 		err = -ENOMEM;
1414 		goto done;
1415 	}
1416 	/* special BTF "void" type is made canonical immediately */
1417 	d->map[0] = 0;
1418 	for (i = 1; i <= btf->nr_types; i++) {
1419 		struct btf_type *t = d->btf->types[i];
1420 
1421 		/* VAR and DATASEC are never deduped and are self-canonical */
1422 		if (btf_is_var(t) || btf_is_datasec(t))
1423 			d->map[i] = i;
1424 		else
1425 			d->map[i] = BTF_UNPROCESSED_ID;
1426 	}
1427 
1428 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1429 	if (!d->hypot_map) {
1430 		err = -ENOMEM;
1431 		goto done;
1432 	}
1433 	for (i = 0; i <= btf->nr_types; i++)
1434 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1435 
1436 done:
1437 	if (err) {
1438 		btf_dedup_free(d);
1439 		return ERR_PTR(err);
1440 	}
1441 
1442 	return d;
1443 }
1444 
1445 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1446 
1447 /*
1448  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1449  * string and pass pointer to it to a provided callback `fn`.
1450  */
1451 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1452 {
1453 	void *line_data_cur, *line_data_end;
1454 	int i, j, r, rec_size;
1455 	struct btf_type *t;
1456 
1457 	for (i = 1; i <= d->btf->nr_types; i++) {
1458 		t = d->btf->types[i];
1459 		r = fn(&t->name_off, ctx);
1460 		if (r)
1461 			return r;
1462 
1463 		switch (btf_kind(t)) {
1464 		case BTF_KIND_STRUCT:
1465 		case BTF_KIND_UNION: {
1466 			struct btf_member *m = btf_members(t);
1467 			__u16 vlen = btf_vlen(t);
1468 
1469 			for (j = 0; j < vlen; j++) {
1470 				r = fn(&m->name_off, ctx);
1471 				if (r)
1472 					return r;
1473 				m++;
1474 			}
1475 			break;
1476 		}
1477 		case BTF_KIND_ENUM: {
1478 			struct btf_enum *m = btf_enum(t);
1479 			__u16 vlen = btf_vlen(t);
1480 
1481 			for (j = 0; j < vlen; j++) {
1482 				r = fn(&m->name_off, ctx);
1483 				if (r)
1484 					return r;
1485 				m++;
1486 			}
1487 			break;
1488 		}
1489 		case BTF_KIND_FUNC_PROTO: {
1490 			struct btf_param *m = btf_params(t);
1491 			__u16 vlen = btf_vlen(t);
1492 
1493 			for (j = 0; j < vlen; j++) {
1494 				r = fn(&m->name_off, ctx);
1495 				if (r)
1496 					return r;
1497 				m++;
1498 			}
1499 			break;
1500 		}
1501 		default:
1502 			break;
1503 		}
1504 	}
1505 
1506 	if (!d->btf_ext)
1507 		return 0;
1508 
1509 	line_data_cur = d->btf_ext->line_info.info;
1510 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1511 	rec_size = d->btf_ext->line_info.rec_size;
1512 
1513 	while (line_data_cur < line_data_end) {
1514 		struct btf_ext_info_sec *sec = line_data_cur;
1515 		struct bpf_line_info_min *line_info;
1516 		__u32 num_info = sec->num_info;
1517 
1518 		r = fn(&sec->sec_name_off, ctx);
1519 		if (r)
1520 			return r;
1521 
1522 		line_data_cur += sizeof(struct btf_ext_info_sec);
1523 		for (i = 0; i < num_info; i++) {
1524 			line_info = line_data_cur;
1525 			r = fn(&line_info->file_name_off, ctx);
1526 			if (r)
1527 				return r;
1528 			r = fn(&line_info->line_off, ctx);
1529 			if (r)
1530 				return r;
1531 			line_data_cur += rec_size;
1532 		}
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 static int str_sort_by_content(const void *a1, const void *a2)
1539 {
1540 	const struct btf_str_ptr *p1 = a1;
1541 	const struct btf_str_ptr *p2 = a2;
1542 
1543 	return strcmp(p1->str, p2->str);
1544 }
1545 
1546 static int str_sort_by_offset(const void *a1, const void *a2)
1547 {
1548 	const struct btf_str_ptr *p1 = a1;
1549 	const struct btf_str_ptr *p2 = a2;
1550 
1551 	if (p1->str != p2->str)
1552 		return p1->str < p2->str ? -1 : 1;
1553 	return 0;
1554 }
1555 
1556 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1557 {
1558 	const struct btf_str_ptr *p = pelem;
1559 
1560 	if (str_ptr != p->str)
1561 		return (const char *)str_ptr < p->str ? -1 : 1;
1562 	return 0;
1563 }
1564 
1565 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1566 {
1567 	struct btf_str_ptrs *strs;
1568 	struct btf_str_ptr *s;
1569 
1570 	if (*str_off_ptr == 0)
1571 		return 0;
1572 
1573 	strs = ctx;
1574 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1575 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1576 	if (!s)
1577 		return -EINVAL;
1578 	s->used = true;
1579 	return 0;
1580 }
1581 
1582 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1583 {
1584 	struct btf_str_ptrs *strs;
1585 	struct btf_str_ptr *s;
1586 
1587 	if (*str_off_ptr == 0)
1588 		return 0;
1589 
1590 	strs = ctx;
1591 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1592 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1593 	if (!s)
1594 		return -EINVAL;
1595 	*str_off_ptr = s->new_off;
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Dedup string and filter out those that are not referenced from either .BTF
1601  * or .BTF.ext (if provided) sections.
1602  *
1603  * This is done by building index of all strings in BTF's string section,
1604  * then iterating over all entities that can reference strings (e.g., type
1605  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1606  * strings as used. After that all used strings are deduped and compacted into
1607  * sequential blob of memory and new offsets are calculated. Then all the string
1608  * references are iterated again and rewritten using new offsets.
1609  */
1610 static int btf_dedup_strings(struct btf_dedup *d)
1611 {
1612 	const struct btf_header *hdr = d->btf->hdr;
1613 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1614 	char *end = start + d->btf->hdr->str_len;
1615 	char *p = start, *tmp_strs = NULL;
1616 	struct btf_str_ptrs strs = {
1617 		.cnt = 0,
1618 		.cap = 0,
1619 		.ptrs = NULL,
1620 		.data = start,
1621 	};
1622 	int i, j, err = 0, grp_idx;
1623 	bool grp_used;
1624 
1625 	/* build index of all strings */
1626 	while (p < end) {
1627 		if (strs.cnt + 1 > strs.cap) {
1628 			struct btf_str_ptr *new_ptrs;
1629 
1630 			strs.cap += max(strs.cnt / 2, 16);
1631 			new_ptrs = realloc(strs.ptrs,
1632 					   sizeof(strs.ptrs[0]) * strs.cap);
1633 			if (!new_ptrs) {
1634 				err = -ENOMEM;
1635 				goto done;
1636 			}
1637 			strs.ptrs = new_ptrs;
1638 		}
1639 
1640 		strs.ptrs[strs.cnt].str = p;
1641 		strs.ptrs[strs.cnt].used = false;
1642 
1643 		p += strlen(p) + 1;
1644 		strs.cnt++;
1645 	}
1646 
1647 	/* temporary storage for deduplicated strings */
1648 	tmp_strs = malloc(d->btf->hdr->str_len);
1649 	if (!tmp_strs) {
1650 		err = -ENOMEM;
1651 		goto done;
1652 	}
1653 
1654 	/* mark all used strings */
1655 	strs.ptrs[0].used = true;
1656 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1657 	if (err)
1658 		goto done;
1659 
1660 	/* sort strings by context, so that we can identify duplicates */
1661 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1662 
1663 	/*
1664 	 * iterate groups of equal strings and if any instance in a group was
1665 	 * referenced, emit single instance and remember new offset
1666 	 */
1667 	p = tmp_strs;
1668 	grp_idx = 0;
1669 	grp_used = strs.ptrs[0].used;
1670 	/* iterate past end to avoid code duplication after loop */
1671 	for (i = 1; i <= strs.cnt; i++) {
1672 		/*
1673 		 * when i == strs.cnt, we want to skip string comparison and go
1674 		 * straight to handling last group of strings (otherwise we'd
1675 		 * need to handle last group after the loop w/ duplicated code)
1676 		 */
1677 		if (i < strs.cnt &&
1678 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1679 			grp_used = grp_used || strs.ptrs[i].used;
1680 			continue;
1681 		}
1682 
1683 		/*
1684 		 * this check would have been required after the loop to handle
1685 		 * last group of strings, but due to <= condition in a loop
1686 		 * we avoid that duplication
1687 		 */
1688 		if (grp_used) {
1689 			int new_off = p - tmp_strs;
1690 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1691 
1692 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1693 			for (j = grp_idx; j < i; j++)
1694 				strs.ptrs[j].new_off = new_off;
1695 			p += len + 1;
1696 		}
1697 
1698 		if (i < strs.cnt) {
1699 			grp_idx = i;
1700 			grp_used = strs.ptrs[i].used;
1701 		}
1702 	}
1703 
1704 	/* replace original strings with deduped ones */
1705 	d->btf->hdr->str_len = p - tmp_strs;
1706 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1707 	end = start + d->btf->hdr->str_len;
1708 
1709 	/* restore original order for further binary search lookups */
1710 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1711 
1712 	/* remap string offsets */
1713 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1714 	if (err)
1715 		goto done;
1716 
1717 	d->btf->hdr->str_len = end - start;
1718 
1719 done:
1720 	free(tmp_strs);
1721 	free(strs.ptrs);
1722 	return err;
1723 }
1724 
1725 static long btf_hash_common(struct btf_type *t)
1726 {
1727 	long h;
1728 
1729 	h = hash_combine(0, t->name_off);
1730 	h = hash_combine(h, t->info);
1731 	h = hash_combine(h, t->size);
1732 	return h;
1733 }
1734 
1735 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1736 {
1737 	return t1->name_off == t2->name_off &&
1738 	       t1->info == t2->info &&
1739 	       t1->size == t2->size;
1740 }
1741 
1742 /* Calculate type signature hash of INT. */
1743 static long btf_hash_int(struct btf_type *t)
1744 {
1745 	__u32 info = *(__u32 *)(t + 1);
1746 	long h;
1747 
1748 	h = btf_hash_common(t);
1749 	h = hash_combine(h, info);
1750 	return h;
1751 }
1752 
1753 /* Check structural equality of two INTs. */
1754 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1755 {
1756 	__u32 info1, info2;
1757 
1758 	if (!btf_equal_common(t1, t2))
1759 		return false;
1760 	info1 = *(__u32 *)(t1 + 1);
1761 	info2 = *(__u32 *)(t2 + 1);
1762 	return info1 == info2;
1763 }
1764 
1765 /* Calculate type signature hash of ENUM. */
1766 static long btf_hash_enum(struct btf_type *t)
1767 {
1768 	long h;
1769 
1770 	/* don't hash vlen and enum members to support enum fwd resolving */
1771 	h = hash_combine(0, t->name_off);
1772 	h = hash_combine(h, t->info & ~0xffff);
1773 	h = hash_combine(h, t->size);
1774 	return h;
1775 }
1776 
1777 /* Check structural equality of two ENUMs. */
1778 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1779 {
1780 	const struct btf_enum *m1, *m2;
1781 	__u16 vlen;
1782 	int i;
1783 
1784 	if (!btf_equal_common(t1, t2))
1785 		return false;
1786 
1787 	vlen = btf_vlen(t1);
1788 	m1 = btf_enum(t1);
1789 	m2 = btf_enum(t2);
1790 	for (i = 0; i < vlen; i++) {
1791 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1792 			return false;
1793 		m1++;
1794 		m2++;
1795 	}
1796 	return true;
1797 }
1798 
1799 static inline bool btf_is_enum_fwd(struct btf_type *t)
1800 {
1801 	return btf_is_enum(t) && btf_vlen(t) == 0;
1802 }
1803 
1804 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1805 {
1806 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1807 		return btf_equal_enum(t1, t2);
1808 	/* ignore vlen when comparing */
1809 	return t1->name_off == t2->name_off &&
1810 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1811 	       t1->size == t2->size;
1812 }
1813 
1814 /*
1815  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1816  * as referenced type IDs equivalence is established separately during type
1817  * graph equivalence check algorithm.
1818  */
1819 static long btf_hash_struct(struct btf_type *t)
1820 {
1821 	const struct btf_member *member = btf_members(t);
1822 	__u32 vlen = btf_vlen(t);
1823 	long h = btf_hash_common(t);
1824 	int i;
1825 
1826 	for (i = 0; i < vlen; i++) {
1827 		h = hash_combine(h, member->name_off);
1828 		h = hash_combine(h, member->offset);
1829 		/* no hashing of referenced type ID, it can be unresolved yet */
1830 		member++;
1831 	}
1832 	return h;
1833 }
1834 
1835 /*
1836  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1837  * IDs. This check is performed during type graph equivalence check and
1838  * referenced types equivalence is checked separately.
1839  */
1840 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1841 {
1842 	const struct btf_member *m1, *m2;
1843 	__u16 vlen;
1844 	int i;
1845 
1846 	if (!btf_equal_common(t1, t2))
1847 		return false;
1848 
1849 	vlen = btf_vlen(t1);
1850 	m1 = btf_members(t1);
1851 	m2 = btf_members(t2);
1852 	for (i = 0; i < vlen; i++) {
1853 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1854 			return false;
1855 		m1++;
1856 		m2++;
1857 	}
1858 	return true;
1859 }
1860 
1861 /*
1862  * Calculate type signature hash of ARRAY, including referenced type IDs,
1863  * under assumption that they were already resolved to canonical type IDs and
1864  * are not going to change.
1865  */
1866 static long btf_hash_array(struct btf_type *t)
1867 {
1868 	const struct btf_array *info = btf_array(t);
1869 	long h = btf_hash_common(t);
1870 
1871 	h = hash_combine(h, info->type);
1872 	h = hash_combine(h, info->index_type);
1873 	h = hash_combine(h, info->nelems);
1874 	return h;
1875 }
1876 
1877 /*
1878  * Check exact equality of two ARRAYs, taking into account referenced
1879  * type IDs, under assumption that they were already resolved to canonical
1880  * type IDs and are not going to change.
1881  * This function is called during reference types deduplication to compare
1882  * ARRAY to potential canonical representative.
1883  */
1884 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1885 {
1886 	const struct btf_array *info1, *info2;
1887 
1888 	if (!btf_equal_common(t1, t2))
1889 		return false;
1890 
1891 	info1 = btf_array(t1);
1892 	info2 = btf_array(t2);
1893 	return info1->type == info2->type &&
1894 	       info1->index_type == info2->index_type &&
1895 	       info1->nelems == info2->nelems;
1896 }
1897 
1898 /*
1899  * Check structural compatibility of two ARRAYs, ignoring referenced type
1900  * IDs. This check is performed during type graph equivalence check and
1901  * referenced types equivalence is checked separately.
1902  */
1903 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1904 {
1905 	if (!btf_equal_common(t1, t2))
1906 		return false;
1907 
1908 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1909 }
1910 
1911 /*
1912  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1913  * under assumption that they were already resolved to canonical type IDs and
1914  * are not going to change.
1915  */
1916 static long btf_hash_fnproto(struct btf_type *t)
1917 {
1918 	const struct btf_param *member = btf_params(t);
1919 	__u16 vlen = btf_vlen(t);
1920 	long h = btf_hash_common(t);
1921 	int i;
1922 
1923 	for (i = 0; i < vlen; i++) {
1924 		h = hash_combine(h, member->name_off);
1925 		h = hash_combine(h, member->type);
1926 		member++;
1927 	}
1928 	return h;
1929 }
1930 
1931 /*
1932  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1933  * type IDs, under assumption that they were already resolved to canonical
1934  * type IDs and are not going to change.
1935  * This function is called during reference types deduplication to compare
1936  * FUNC_PROTO to potential canonical representative.
1937  */
1938 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1939 {
1940 	const struct btf_param *m1, *m2;
1941 	__u16 vlen;
1942 	int i;
1943 
1944 	if (!btf_equal_common(t1, t2))
1945 		return false;
1946 
1947 	vlen = btf_vlen(t1);
1948 	m1 = btf_params(t1);
1949 	m2 = btf_params(t2);
1950 	for (i = 0; i < vlen; i++) {
1951 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1952 			return false;
1953 		m1++;
1954 		m2++;
1955 	}
1956 	return true;
1957 }
1958 
1959 /*
1960  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1961  * IDs. This check is performed during type graph equivalence check and
1962  * referenced types equivalence is checked separately.
1963  */
1964 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1965 {
1966 	const struct btf_param *m1, *m2;
1967 	__u16 vlen;
1968 	int i;
1969 
1970 	/* skip return type ID */
1971 	if (t1->name_off != t2->name_off || t1->info != t2->info)
1972 		return false;
1973 
1974 	vlen = btf_vlen(t1);
1975 	m1 = btf_params(t1);
1976 	m2 = btf_params(t2);
1977 	for (i = 0; i < vlen; i++) {
1978 		if (m1->name_off != m2->name_off)
1979 			return false;
1980 		m1++;
1981 		m2++;
1982 	}
1983 	return true;
1984 }
1985 
1986 /*
1987  * Deduplicate primitive types, that can't reference other types, by calculating
1988  * their type signature hash and comparing them with any possible canonical
1989  * candidate. If no canonical candidate matches, type itself is marked as
1990  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
1991  */
1992 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
1993 {
1994 	struct btf_type *t = d->btf->types[type_id];
1995 	struct hashmap_entry *hash_entry;
1996 	struct btf_type *cand;
1997 	/* if we don't find equivalent type, then we are canonical */
1998 	__u32 new_id = type_id;
1999 	__u32 cand_id;
2000 	long h;
2001 
2002 	switch (btf_kind(t)) {
2003 	case BTF_KIND_CONST:
2004 	case BTF_KIND_VOLATILE:
2005 	case BTF_KIND_RESTRICT:
2006 	case BTF_KIND_PTR:
2007 	case BTF_KIND_TYPEDEF:
2008 	case BTF_KIND_ARRAY:
2009 	case BTF_KIND_STRUCT:
2010 	case BTF_KIND_UNION:
2011 	case BTF_KIND_FUNC:
2012 	case BTF_KIND_FUNC_PROTO:
2013 	case BTF_KIND_VAR:
2014 	case BTF_KIND_DATASEC:
2015 		return 0;
2016 
2017 	case BTF_KIND_INT:
2018 		h = btf_hash_int(t);
2019 		for_each_dedup_cand(d, hash_entry, h) {
2020 			cand_id = (__u32)(long)hash_entry->value;
2021 			cand = d->btf->types[cand_id];
2022 			if (btf_equal_int(t, cand)) {
2023 				new_id = cand_id;
2024 				break;
2025 			}
2026 		}
2027 		break;
2028 
2029 	case BTF_KIND_ENUM:
2030 		h = btf_hash_enum(t);
2031 		for_each_dedup_cand(d, hash_entry, h) {
2032 			cand_id = (__u32)(long)hash_entry->value;
2033 			cand = d->btf->types[cand_id];
2034 			if (btf_equal_enum(t, cand)) {
2035 				new_id = cand_id;
2036 				break;
2037 			}
2038 			if (d->opts.dont_resolve_fwds)
2039 				continue;
2040 			if (btf_compat_enum(t, cand)) {
2041 				if (btf_is_enum_fwd(t)) {
2042 					/* resolve fwd to full enum */
2043 					new_id = cand_id;
2044 					break;
2045 				}
2046 				/* resolve canonical enum fwd to full enum */
2047 				d->map[cand_id] = type_id;
2048 			}
2049 		}
2050 		break;
2051 
2052 	case BTF_KIND_FWD:
2053 		h = btf_hash_common(t);
2054 		for_each_dedup_cand(d, hash_entry, h) {
2055 			cand_id = (__u32)(long)hash_entry->value;
2056 			cand = d->btf->types[cand_id];
2057 			if (btf_equal_common(t, cand)) {
2058 				new_id = cand_id;
2059 				break;
2060 			}
2061 		}
2062 		break;
2063 
2064 	default:
2065 		return -EINVAL;
2066 	}
2067 
2068 	d->map[type_id] = new_id;
2069 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2070 		return -ENOMEM;
2071 
2072 	return 0;
2073 }
2074 
2075 static int btf_dedup_prim_types(struct btf_dedup *d)
2076 {
2077 	int i, err;
2078 
2079 	for (i = 1; i <= d->btf->nr_types; i++) {
2080 		err = btf_dedup_prim_type(d, i);
2081 		if (err)
2082 			return err;
2083 	}
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Check whether type is already mapped into canonical one (could be to itself).
2089  */
2090 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2091 {
2092 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2093 }
2094 
2095 /*
2096  * Resolve type ID into its canonical type ID, if any; otherwise return original
2097  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2098  * STRUCT/UNION link and resolve it into canonical type ID as well.
2099  */
2100 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2101 {
2102 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2103 		type_id = d->map[type_id];
2104 	return type_id;
2105 }
2106 
2107 /*
2108  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2109  * type ID.
2110  */
2111 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2112 {
2113 	__u32 orig_type_id = type_id;
2114 
2115 	if (!btf_is_fwd(d->btf->types[type_id]))
2116 		return type_id;
2117 
2118 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2119 		type_id = d->map[type_id];
2120 
2121 	if (!btf_is_fwd(d->btf->types[type_id]))
2122 		return type_id;
2123 
2124 	return orig_type_id;
2125 }
2126 
2127 
2128 static inline __u16 btf_fwd_kind(struct btf_type *t)
2129 {
2130 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2131 }
2132 
2133 /*
2134  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2135  * call it "candidate graph" in this description for brevity) to a type graph
2136  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2137  * here, though keep in mind that not all types in canonical graph are
2138  * necessarily canonical representatives themselves, some of them might be
2139  * duplicates or its uniqueness might not have been established yet).
2140  * Returns:
2141  *  - >0, if type graphs are equivalent;
2142  *  -  0, if not equivalent;
2143  *  - <0, on error.
2144  *
2145  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2146  * equivalence of BTF types at each step. If at any point BTF types in candidate
2147  * and canonical graphs are not compatible structurally, whole graphs are
2148  * incompatible. If types are structurally equivalent (i.e., all information
2149  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2150  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2151  * If a type references other types, then those referenced types are checked
2152  * for equivalence recursively.
2153  *
2154  * During DFS traversal, if we find that for current `canon_id` type we
2155  * already have some mapping in hypothetical map, we check for two possible
2156  * situations:
2157  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2158  *     happen when type graphs have cycles. In this case we assume those two
2159  *     types are equivalent.
2160  *   - `canon_id` is mapped to different type. This is contradiction in our
2161  *     hypothetical mapping, because same graph in canonical graph corresponds
2162  *     to two different types in candidate graph, which for equivalent type
2163  *     graphs shouldn't happen. This condition terminates equivalence check
2164  *     with negative result.
2165  *
2166  * If type graphs traversal exhausts types to check and find no contradiction,
2167  * then type graphs are equivalent.
2168  *
2169  * When checking types for equivalence, there is one special case: FWD types.
2170  * If FWD type resolution is allowed and one of the types (either from canonical
2171  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2172  * flag) and their names match, hypothetical mapping is updated to point from
2173  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2174  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2175  *
2176  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2177  * if there are two exactly named (or anonymous) structs/unions that are
2178  * compatible structurally, one of which has FWD field, while other is concrete
2179  * STRUCT/UNION, but according to C sources they are different structs/unions
2180  * that are referencing different types with the same name. This is extremely
2181  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2182  * this logic is causing problems.
2183  *
2184  * Doing FWD resolution means that both candidate and/or canonical graphs can
2185  * consists of portions of the graph that come from multiple compilation units.
2186  * This is due to the fact that types within single compilation unit are always
2187  * deduplicated and FWDs are already resolved, if referenced struct/union
2188  * definiton is available. So, if we had unresolved FWD and found corresponding
2189  * STRUCT/UNION, they will be from different compilation units. This
2190  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2191  * type graph will likely have at least two different BTF types that describe
2192  * same type (e.g., most probably there will be two different BTF types for the
2193  * same 'int' primitive type) and could even have "overlapping" parts of type
2194  * graph that describe same subset of types.
2195  *
2196  * This in turn means that our assumption that each type in canonical graph
2197  * must correspond to exactly one type in candidate graph might not hold
2198  * anymore and will make it harder to detect contradictions using hypothetical
2199  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2200  * resolution only in canonical graph. FWDs in candidate graphs are never
2201  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2202  * that can occur:
2203  *   - Both types in canonical and candidate graphs are FWDs. If they are
2204  *     structurally equivalent, then they can either be both resolved to the
2205  *     same STRUCT/UNION or not resolved at all. In both cases they are
2206  *     equivalent and there is no need to resolve FWD on candidate side.
2207  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2208  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2209  *   - Type in canonical graph is FWD, while type in candidate is concrete
2210  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2211  *     unit, so there is exactly one BTF type for each unique C type. After
2212  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2213  *     in canonical graph mapping to single BTF type in candidate graph, but
2214  *     because hypothetical mapping maps from canonical to candidate types, it's
2215  *     alright, and we still maintain the property of having single `canon_id`
2216  *     mapping to single `cand_id` (there could be two different `canon_id`
2217  *     mapped to the same `cand_id`, but it's not contradictory).
2218  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2219  *     graph is FWD. In this case we are just going to check compatibility of
2220  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2221  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2222  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2223  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2224  *     canonical graph.
2225  */
2226 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2227 			      __u32 canon_id)
2228 {
2229 	struct btf_type *cand_type;
2230 	struct btf_type *canon_type;
2231 	__u32 hypot_type_id;
2232 	__u16 cand_kind;
2233 	__u16 canon_kind;
2234 	int i, eq;
2235 
2236 	/* if both resolve to the same canonical, they must be equivalent */
2237 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2238 		return 1;
2239 
2240 	canon_id = resolve_fwd_id(d, canon_id);
2241 
2242 	hypot_type_id = d->hypot_map[canon_id];
2243 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2244 		return hypot_type_id == cand_id;
2245 
2246 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2247 		return -ENOMEM;
2248 
2249 	cand_type = d->btf->types[cand_id];
2250 	canon_type = d->btf->types[canon_id];
2251 	cand_kind = btf_kind(cand_type);
2252 	canon_kind = btf_kind(canon_type);
2253 
2254 	if (cand_type->name_off != canon_type->name_off)
2255 		return 0;
2256 
2257 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2258 	if (!d->opts.dont_resolve_fwds
2259 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2260 	    && cand_kind != canon_kind) {
2261 		__u16 real_kind;
2262 		__u16 fwd_kind;
2263 
2264 		if (cand_kind == BTF_KIND_FWD) {
2265 			real_kind = canon_kind;
2266 			fwd_kind = btf_fwd_kind(cand_type);
2267 		} else {
2268 			real_kind = cand_kind;
2269 			fwd_kind = btf_fwd_kind(canon_type);
2270 		}
2271 		return fwd_kind == real_kind;
2272 	}
2273 
2274 	if (cand_kind != canon_kind)
2275 		return 0;
2276 
2277 	switch (cand_kind) {
2278 	case BTF_KIND_INT:
2279 		return btf_equal_int(cand_type, canon_type);
2280 
2281 	case BTF_KIND_ENUM:
2282 		if (d->opts.dont_resolve_fwds)
2283 			return btf_equal_enum(cand_type, canon_type);
2284 		else
2285 			return btf_compat_enum(cand_type, canon_type);
2286 
2287 	case BTF_KIND_FWD:
2288 		return btf_equal_common(cand_type, canon_type);
2289 
2290 	case BTF_KIND_CONST:
2291 	case BTF_KIND_VOLATILE:
2292 	case BTF_KIND_RESTRICT:
2293 	case BTF_KIND_PTR:
2294 	case BTF_KIND_TYPEDEF:
2295 	case BTF_KIND_FUNC:
2296 		if (cand_type->info != canon_type->info)
2297 			return 0;
2298 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2299 
2300 	case BTF_KIND_ARRAY: {
2301 		const struct btf_array *cand_arr, *canon_arr;
2302 
2303 		if (!btf_compat_array(cand_type, canon_type))
2304 			return 0;
2305 		cand_arr = btf_array(cand_type);
2306 		canon_arr = btf_array(canon_type);
2307 		eq = btf_dedup_is_equiv(d,
2308 			cand_arr->index_type, canon_arr->index_type);
2309 		if (eq <= 0)
2310 			return eq;
2311 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2312 	}
2313 
2314 	case BTF_KIND_STRUCT:
2315 	case BTF_KIND_UNION: {
2316 		const struct btf_member *cand_m, *canon_m;
2317 		__u16 vlen;
2318 
2319 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2320 			return 0;
2321 		vlen = btf_vlen(cand_type);
2322 		cand_m = btf_members(cand_type);
2323 		canon_m = btf_members(canon_type);
2324 		for (i = 0; i < vlen; i++) {
2325 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2326 			if (eq <= 0)
2327 				return eq;
2328 			cand_m++;
2329 			canon_m++;
2330 		}
2331 
2332 		return 1;
2333 	}
2334 
2335 	case BTF_KIND_FUNC_PROTO: {
2336 		const struct btf_param *cand_p, *canon_p;
2337 		__u16 vlen;
2338 
2339 		if (!btf_compat_fnproto(cand_type, canon_type))
2340 			return 0;
2341 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2342 		if (eq <= 0)
2343 			return eq;
2344 		vlen = btf_vlen(cand_type);
2345 		cand_p = btf_params(cand_type);
2346 		canon_p = btf_params(canon_type);
2347 		for (i = 0; i < vlen; i++) {
2348 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2349 			if (eq <= 0)
2350 				return eq;
2351 			cand_p++;
2352 			canon_p++;
2353 		}
2354 		return 1;
2355 	}
2356 
2357 	default:
2358 		return -EINVAL;
2359 	}
2360 	return 0;
2361 }
2362 
2363 /*
2364  * Use hypothetical mapping, produced by successful type graph equivalence
2365  * check, to augment existing struct/union canonical mapping, where possible.
2366  *
2367  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2368  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2369  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2370  * we are recording the mapping anyway. As opposed to carefulness required
2371  * for struct/union correspondence mapping (described below), for FWD resolution
2372  * it's not important, as by the time that FWD type (reference type) will be
2373  * deduplicated all structs/unions will be deduped already anyway.
2374  *
2375  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2376  * not required for correctness. It needs to be done carefully to ensure that
2377  * struct/union from candidate's type graph is not mapped into corresponding
2378  * struct/union from canonical type graph that itself hasn't been resolved into
2379  * canonical representative. The only guarantee we have is that canonical
2380  * struct/union was determined as canonical and that won't change. But any
2381  * types referenced through that struct/union fields could have been not yet
2382  * resolved, so in case like that it's too early to establish any kind of
2383  * correspondence between structs/unions.
2384  *
2385  * No canonical correspondence is derived for primitive types (they are already
2386  * deduplicated completely already anyway) or reference types (they rely on
2387  * stability of struct/union canonical relationship for equivalence checks).
2388  */
2389 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2390 {
2391 	__u32 cand_type_id, targ_type_id;
2392 	__u16 t_kind, c_kind;
2393 	__u32 t_id, c_id;
2394 	int i;
2395 
2396 	for (i = 0; i < d->hypot_cnt; i++) {
2397 		cand_type_id = d->hypot_list[i];
2398 		targ_type_id = d->hypot_map[cand_type_id];
2399 		t_id = resolve_type_id(d, targ_type_id);
2400 		c_id = resolve_type_id(d, cand_type_id);
2401 		t_kind = btf_kind(d->btf->types[t_id]);
2402 		c_kind = btf_kind(d->btf->types[c_id]);
2403 		/*
2404 		 * Resolve FWD into STRUCT/UNION.
2405 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2406 		 * mapped to canonical representative (as opposed to
2407 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2408 		 * eventually that struct is going to be mapped and all resolved
2409 		 * FWDs will automatically resolve to correct canonical
2410 		 * representative. This will happen before ref type deduping,
2411 		 * which critically depends on stability of these mapping. This
2412 		 * stability is not a requirement for STRUCT/UNION equivalence
2413 		 * checks, though.
2414 		 */
2415 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2416 			d->map[c_id] = t_id;
2417 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2418 			d->map[t_id] = c_id;
2419 
2420 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2421 		    c_kind != BTF_KIND_FWD &&
2422 		    is_type_mapped(d, c_id) &&
2423 		    !is_type_mapped(d, t_id)) {
2424 			/*
2425 			 * as a perf optimization, we can map struct/union
2426 			 * that's part of type graph we just verified for
2427 			 * equivalence. We can do that for struct/union that has
2428 			 * canonical representative only, though.
2429 			 */
2430 			d->map[t_id] = c_id;
2431 		}
2432 	}
2433 }
2434 
2435 /*
2436  * Deduplicate struct/union types.
2437  *
2438  * For each struct/union type its type signature hash is calculated, taking
2439  * into account type's name, size, number, order and names of fields, but
2440  * ignoring type ID's referenced from fields, because they might not be deduped
2441  * completely until after reference types deduplication phase. This type hash
2442  * is used to iterate over all potential canonical types, sharing same hash.
2443  * For each canonical candidate we check whether type graphs that they form
2444  * (through referenced types in fields and so on) are equivalent using algorithm
2445  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2446  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2447  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2448  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2449  * potentially map other structs/unions to their canonical representatives,
2450  * if such relationship hasn't yet been established. This speeds up algorithm
2451  * by eliminating some of the duplicate work.
2452  *
2453  * If no matching canonical representative was found, struct/union is marked
2454  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2455  * for further look ups.
2456  */
2457 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2458 {
2459 	struct btf_type *cand_type, *t;
2460 	struct hashmap_entry *hash_entry;
2461 	/* if we don't find equivalent type, then we are canonical */
2462 	__u32 new_id = type_id;
2463 	__u16 kind;
2464 	long h;
2465 
2466 	/* already deduped or is in process of deduping (loop detected) */
2467 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2468 		return 0;
2469 
2470 	t = d->btf->types[type_id];
2471 	kind = btf_kind(t);
2472 
2473 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2474 		return 0;
2475 
2476 	h = btf_hash_struct(t);
2477 	for_each_dedup_cand(d, hash_entry, h) {
2478 		__u32 cand_id = (__u32)(long)hash_entry->value;
2479 		int eq;
2480 
2481 		/*
2482 		 * Even though btf_dedup_is_equiv() checks for
2483 		 * btf_shallow_equal_struct() internally when checking two
2484 		 * structs (unions) for equivalence, we need to guard here
2485 		 * from picking matching FWD type as a dedup candidate.
2486 		 * This can happen due to hash collision. In such case just
2487 		 * relying on btf_dedup_is_equiv() would lead to potentially
2488 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2489 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2490 		 */
2491 		cand_type = d->btf->types[cand_id];
2492 		if (!btf_shallow_equal_struct(t, cand_type))
2493 			continue;
2494 
2495 		btf_dedup_clear_hypot_map(d);
2496 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2497 		if (eq < 0)
2498 			return eq;
2499 		if (!eq)
2500 			continue;
2501 		new_id = cand_id;
2502 		btf_dedup_merge_hypot_map(d);
2503 		break;
2504 	}
2505 
2506 	d->map[type_id] = new_id;
2507 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2508 		return -ENOMEM;
2509 
2510 	return 0;
2511 }
2512 
2513 static int btf_dedup_struct_types(struct btf_dedup *d)
2514 {
2515 	int i, err;
2516 
2517 	for (i = 1; i <= d->btf->nr_types; i++) {
2518 		err = btf_dedup_struct_type(d, i);
2519 		if (err)
2520 			return err;
2521 	}
2522 	return 0;
2523 }
2524 
2525 /*
2526  * Deduplicate reference type.
2527  *
2528  * Once all primitive and struct/union types got deduplicated, we can easily
2529  * deduplicate all other (reference) BTF types. This is done in two steps:
2530  *
2531  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2532  * resolution can be done either immediately for primitive or struct/union types
2533  * (because they were deduped in previous two phases) or recursively for
2534  * reference types. Recursion will always terminate at either primitive or
2535  * struct/union type, at which point we can "unwind" chain of reference types
2536  * one by one. There is no danger of encountering cycles because in C type
2537  * system the only way to form type cycle is through struct/union, so any chain
2538  * of reference types, even those taking part in a type cycle, will inevitably
2539  * reach struct/union at some point.
2540  *
2541  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2542  * becomes "stable", in the sense that no further deduplication will cause
2543  * any changes to it. With that, it's now possible to calculate type's signature
2544  * hash (this time taking into account referenced type IDs) and loop over all
2545  * potential canonical representatives. If no match was found, current type
2546  * will become canonical representative of itself and will be added into
2547  * btf_dedup->dedup_table as another possible canonical representative.
2548  */
2549 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2550 {
2551 	struct hashmap_entry *hash_entry;
2552 	__u32 new_id = type_id, cand_id;
2553 	struct btf_type *t, *cand;
2554 	/* if we don't find equivalent type, then we are representative type */
2555 	int ref_type_id;
2556 	long h;
2557 
2558 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2559 		return -ELOOP;
2560 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2561 		return resolve_type_id(d, type_id);
2562 
2563 	t = d->btf->types[type_id];
2564 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2565 
2566 	switch (btf_kind(t)) {
2567 	case BTF_KIND_CONST:
2568 	case BTF_KIND_VOLATILE:
2569 	case BTF_KIND_RESTRICT:
2570 	case BTF_KIND_PTR:
2571 	case BTF_KIND_TYPEDEF:
2572 	case BTF_KIND_FUNC:
2573 		ref_type_id = btf_dedup_ref_type(d, t->type);
2574 		if (ref_type_id < 0)
2575 			return ref_type_id;
2576 		t->type = ref_type_id;
2577 
2578 		h = btf_hash_common(t);
2579 		for_each_dedup_cand(d, hash_entry, h) {
2580 			cand_id = (__u32)(long)hash_entry->value;
2581 			cand = d->btf->types[cand_id];
2582 			if (btf_equal_common(t, cand)) {
2583 				new_id = cand_id;
2584 				break;
2585 			}
2586 		}
2587 		break;
2588 
2589 	case BTF_KIND_ARRAY: {
2590 		struct btf_array *info = btf_array(t);
2591 
2592 		ref_type_id = btf_dedup_ref_type(d, info->type);
2593 		if (ref_type_id < 0)
2594 			return ref_type_id;
2595 		info->type = ref_type_id;
2596 
2597 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2598 		if (ref_type_id < 0)
2599 			return ref_type_id;
2600 		info->index_type = ref_type_id;
2601 
2602 		h = btf_hash_array(t);
2603 		for_each_dedup_cand(d, hash_entry, h) {
2604 			cand_id = (__u32)(long)hash_entry->value;
2605 			cand = d->btf->types[cand_id];
2606 			if (btf_equal_array(t, cand)) {
2607 				new_id = cand_id;
2608 				break;
2609 			}
2610 		}
2611 		break;
2612 	}
2613 
2614 	case BTF_KIND_FUNC_PROTO: {
2615 		struct btf_param *param;
2616 		__u16 vlen;
2617 		int i;
2618 
2619 		ref_type_id = btf_dedup_ref_type(d, t->type);
2620 		if (ref_type_id < 0)
2621 			return ref_type_id;
2622 		t->type = ref_type_id;
2623 
2624 		vlen = btf_vlen(t);
2625 		param = btf_params(t);
2626 		for (i = 0; i < vlen; i++) {
2627 			ref_type_id = btf_dedup_ref_type(d, param->type);
2628 			if (ref_type_id < 0)
2629 				return ref_type_id;
2630 			param->type = ref_type_id;
2631 			param++;
2632 		}
2633 
2634 		h = btf_hash_fnproto(t);
2635 		for_each_dedup_cand(d, hash_entry, h) {
2636 			cand_id = (__u32)(long)hash_entry->value;
2637 			cand = d->btf->types[cand_id];
2638 			if (btf_equal_fnproto(t, cand)) {
2639 				new_id = cand_id;
2640 				break;
2641 			}
2642 		}
2643 		break;
2644 	}
2645 
2646 	default:
2647 		return -EINVAL;
2648 	}
2649 
2650 	d->map[type_id] = new_id;
2651 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2652 		return -ENOMEM;
2653 
2654 	return new_id;
2655 }
2656 
2657 static int btf_dedup_ref_types(struct btf_dedup *d)
2658 {
2659 	int i, err;
2660 
2661 	for (i = 1; i <= d->btf->nr_types; i++) {
2662 		err = btf_dedup_ref_type(d, i);
2663 		if (err < 0)
2664 			return err;
2665 	}
2666 	/* we won't need d->dedup_table anymore */
2667 	hashmap__free(d->dedup_table);
2668 	d->dedup_table = NULL;
2669 	return 0;
2670 }
2671 
2672 /*
2673  * Compact types.
2674  *
2675  * After we established for each type its corresponding canonical representative
2676  * type, we now can eliminate types that are not canonical and leave only
2677  * canonical ones layed out sequentially in memory by copying them over
2678  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2679  * a map from original type ID to a new compacted type ID, which will be used
2680  * during next phase to "fix up" type IDs, referenced from struct/union and
2681  * reference types.
2682  */
2683 static int btf_dedup_compact_types(struct btf_dedup *d)
2684 {
2685 	struct btf_type **new_types;
2686 	__u32 next_type_id = 1;
2687 	char *types_start, *p;
2688 	int i, len;
2689 
2690 	/* we are going to reuse hypot_map to store compaction remapping */
2691 	d->hypot_map[0] = 0;
2692 	for (i = 1; i <= d->btf->nr_types; i++)
2693 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2694 
2695 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2696 	p = types_start;
2697 
2698 	for (i = 1; i <= d->btf->nr_types; i++) {
2699 		if (d->map[i] != i)
2700 			continue;
2701 
2702 		len = btf_type_size(d->btf->types[i]);
2703 		if (len < 0)
2704 			return len;
2705 
2706 		memmove(p, d->btf->types[i], len);
2707 		d->hypot_map[i] = next_type_id;
2708 		d->btf->types[next_type_id] = (struct btf_type *)p;
2709 		p += len;
2710 		next_type_id++;
2711 	}
2712 
2713 	/* shrink struct btf's internal types index and update btf_header */
2714 	d->btf->nr_types = next_type_id - 1;
2715 	d->btf->types_size = d->btf->nr_types;
2716 	d->btf->hdr->type_len = p - types_start;
2717 	new_types = realloc(d->btf->types,
2718 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2719 	if (!new_types)
2720 		return -ENOMEM;
2721 	d->btf->types = new_types;
2722 
2723 	/* make sure string section follows type information without gaps */
2724 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2725 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2726 	d->btf->strings = p;
2727 	p += d->btf->hdr->str_len;
2728 
2729 	d->btf->data_size = p - (char *)d->btf->data;
2730 	return 0;
2731 }
2732 
2733 /*
2734  * Figure out final (deduplicated and compacted) type ID for provided original
2735  * `type_id` by first resolving it into corresponding canonical type ID and
2736  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2737  * which is populated during compaction phase.
2738  */
2739 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2740 {
2741 	__u32 resolved_type_id, new_type_id;
2742 
2743 	resolved_type_id = resolve_type_id(d, type_id);
2744 	new_type_id = d->hypot_map[resolved_type_id];
2745 	if (new_type_id > BTF_MAX_NR_TYPES)
2746 		return -EINVAL;
2747 	return new_type_id;
2748 }
2749 
2750 /*
2751  * Remap referenced type IDs into deduped type IDs.
2752  *
2753  * After BTF types are deduplicated and compacted, their final type IDs may
2754  * differ from original ones. The map from original to a corresponding
2755  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2756  * compaction phase. During remapping phase we are rewriting all type IDs
2757  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2758  * their final deduped type IDs.
2759  */
2760 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2761 {
2762 	struct btf_type *t = d->btf->types[type_id];
2763 	int i, r;
2764 
2765 	switch (btf_kind(t)) {
2766 	case BTF_KIND_INT:
2767 	case BTF_KIND_ENUM:
2768 		break;
2769 
2770 	case BTF_KIND_FWD:
2771 	case BTF_KIND_CONST:
2772 	case BTF_KIND_VOLATILE:
2773 	case BTF_KIND_RESTRICT:
2774 	case BTF_KIND_PTR:
2775 	case BTF_KIND_TYPEDEF:
2776 	case BTF_KIND_FUNC:
2777 	case BTF_KIND_VAR:
2778 		r = btf_dedup_remap_type_id(d, t->type);
2779 		if (r < 0)
2780 			return r;
2781 		t->type = r;
2782 		break;
2783 
2784 	case BTF_KIND_ARRAY: {
2785 		struct btf_array *arr_info = btf_array(t);
2786 
2787 		r = btf_dedup_remap_type_id(d, arr_info->type);
2788 		if (r < 0)
2789 			return r;
2790 		arr_info->type = r;
2791 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2792 		if (r < 0)
2793 			return r;
2794 		arr_info->index_type = r;
2795 		break;
2796 	}
2797 
2798 	case BTF_KIND_STRUCT:
2799 	case BTF_KIND_UNION: {
2800 		struct btf_member *member = btf_members(t);
2801 		__u16 vlen = btf_vlen(t);
2802 
2803 		for (i = 0; i < vlen; i++) {
2804 			r = btf_dedup_remap_type_id(d, member->type);
2805 			if (r < 0)
2806 				return r;
2807 			member->type = r;
2808 			member++;
2809 		}
2810 		break;
2811 	}
2812 
2813 	case BTF_KIND_FUNC_PROTO: {
2814 		struct btf_param *param = btf_params(t);
2815 		__u16 vlen = btf_vlen(t);
2816 
2817 		r = btf_dedup_remap_type_id(d, t->type);
2818 		if (r < 0)
2819 			return r;
2820 		t->type = r;
2821 
2822 		for (i = 0; i < vlen; i++) {
2823 			r = btf_dedup_remap_type_id(d, param->type);
2824 			if (r < 0)
2825 				return r;
2826 			param->type = r;
2827 			param++;
2828 		}
2829 		break;
2830 	}
2831 
2832 	case BTF_KIND_DATASEC: {
2833 		struct btf_var_secinfo *var = btf_var_secinfos(t);
2834 		__u16 vlen = btf_vlen(t);
2835 
2836 		for (i = 0; i < vlen; i++) {
2837 			r = btf_dedup_remap_type_id(d, var->type);
2838 			if (r < 0)
2839 				return r;
2840 			var->type = r;
2841 			var++;
2842 		}
2843 		break;
2844 	}
2845 
2846 	default:
2847 		return -EINVAL;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int btf_dedup_remap_types(struct btf_dedup *d)
2854 {
2855 	int i, r;
2856 
2857 	for (i = 1; i <= d->btf->nr_types; i++) {
2858 		r = btf_dedup_remap_type(d, i);
2859 		if (r < 0)
2860 			return r;
2861 	}
2862 	return 0;
2863 }
2864