1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <sys/utsname.h> 12 #include <sys/param.h> 13 #include <sys/stat.h> 14 #include <linux/kernel.h> 15 #include <linux/err.h> 16 #include <linux/btf.h> 17 #include <gelf.h> 18 #include "btf.h" 19 #include "bpf.h" 20 #include "libbpf.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 /* make sure libbpf doesn't use kernel-only integer typedefs */ 25 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 26 27 #define BTF_MAX_NR_TYPES 0x7fffffffU 28 #define BTF_MAX_STR_OFFSET 0x7fffffffU 29 30 static struct btf_type btf_void; 31 32 struct btf { 33 union { 34 struct btf_header *hdr; 35 void *data; 36 }; 37 struct btf_type **types; 38 const char *strings; 39 void *nohdr_data; 40 __u32 nr_types; 41 __u32 types_size; 42 __u32 data_size; 43 int fd; 44 }; 45 46 static inline __u64 ptr_to_u64(const void *ptr) 47 { 48 return (__u64) (unsigned long) ptr; 49 } 50 51 static int btf_add_type(struct btf *btf, struct btf_type *t) 52 { 53 if (btf->types_size - btf->nr_types < 2) { 54 struct btf_type **new_types; 55 __u32 expand_by, new_size; 56 57 if (btf->types_size == BTF_MAX_NR_TYPES) 58 return -E2BIG; 59 60 expand_by = max(btf->types_size >> 2, 16U); 61 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 62 63 new_types = realloc(btf->types, sizeof(*new_types) * new_size); 64 if (!new_types) 65 return -ENOMEM; 66 67 if (btf->nr_types == 0) 68 new_types[0] = &btf_void; 69 70 btf->types = new_types; 71 btf->types_size = new_size; 72 } 73 74 btf->types[++(btf->nr_types)] = t; 75 76 return 0; 77 } 78 79 static int btf_parse_hdr(struct btf *btf) 80 { 81 const struct btf_header *hdr = btf->hdr; 82 __u32 meta_left; 83 84 if (btf->data_size < sizeof(struct btf_header)) { 85 pr_debug("BTF header not found\n"); 86 return -EINVAL; 87 } 88 89 if (hdr->magic != BTF_MAGIC) { 90 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 91 return -EINVAL; 92 } 93 94 if (hdr->version != BTF_VERSION) { 95 pr_debug("Unsupported BTF version:%u\n", hdr->version); 96 return -ENOTSUP; 97 } 98 99 if (hdr->flags) { 100 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 101 return -ENOTSUP; 102 } 103 104 meta_left = btf->data_size - sizeof(*hdr); 105 if (!meta_left) { 106 pr_debug("BTF has no data\n"); 107 return -EINVAL; 108 } 109 110 if (meta_left < hdr->type_off) { 111 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 112 return -EINVAL; 113 } 114 115 if (meta_left < hdr->str_off) { 116 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 117 return -EINVAL; 118 } 119 120 if (hdr->type_off >= hdr->str_off) { 121 pr_debug("BTF type section offset >= string section offset. No type?\n"); 122 return -EINVAL; 123 } 124 125 if (hdr->type_off & 0x02) { 126 pr_debug("BTF type section is not aligned to 4 bytes\n"); 127 return -EINVAL; 128 } 129 130 btf->nohdr_data = btf->hdr + 1; 131 132 return 0; 133 } 134 135 static int btf_parse_str_sec(struct btf *btf) 136 { 137 const struct btf_header *hdr = btf->hdr; 138 const char *start = btf->nohdr_data + hdr->str_off; 139 const char *end = start + btf->hdr->str_len; 140 141 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 142 start[0] || end[-1]) { 143 pr_debug("Invalid BTF string section\n"); 144 return -EINVAL; 145 } 146 147 btf->strings = start; 148 149 return 0; 150 } 151 152 static int btf_type_size(struct btf_type *t) 153 { 154 int base_size = sizeof(struct btf_type); 155 __u16 vlen = btf_vlen(t); 156 157 switch (btf_kind(t)) { 158 case BTF_KIND_FWD: 159 case BTF_KIND_CONST: 160 case BTF_KIND_VOLATILE: 161 case BTF_KIND_RESTRICT: 162 case BTF_KIND_PTR: 163 case BTF_KIND_TYPEDEF: 164 case BTF_KIND_FUNC: 165 return base_size; 166 case BTF_KIND_INT: 167 return base_size + sizeof(__u32); 168 case BTF_KIND_ENUM: 169 return base_size + vlen * sizeof(struct btf_enum); 170 case BTF_KIND_ARRAY: 171 return base_size + sizeof(struct btf_array); 172 case BTF_KIND_STRUCT: 173 case BTF_KIND_UNION: 174 return base_size + vlen * sizeof(struct btf_member); 175 case BTF_KIND_FUNC_PROTO: 176 return base_size + vlen * sizeof(struct btf_param); 177 case BTF_KIND_VAR: 178 return base_size + sizeof(struct btf_var); 179 case BTF_KIND_DATASEC: 180 return base_size + vlen * sizeof(struct btf_var_secinfo); 181 default: 182 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 183 return -EINVAL; 184 } 185 } 186 187 static int btf_parse_type_sec(struct btf *btf) 188 { 189 struct btf_header *hdr = btf->hdr; 190 void *nohdr_data = btf->nohdr_data; 191 void *next_type = nohdr_data + hdr->type_off; 192 void *end_type = nohdr_data + hdr->str_off; 193 194 while (next_type < end_type) { 195 struct btf_type *t = next_type; 196 int type_size; 197 int err; 198 199 type_size = btf_type_size(t); 200 if (type_size < 0) 201 return type_size; 202 next_type += type_size; 203 err = btf_add_type(btf, t); 204 if (err) 205 return err; 206 } 207 208 return 0; 209 } 210 211 __u32 btf__get_nr_types(const struct btf *btf) 212 { 213 return btf->nr_types; 214 } 215 216 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 217 { 218 if (type_id > btf->nr_types) 219 return NULL; 220 221 return btf->types[type_id]; 222 } 223 224 static bool btf_type_is_void(const struct btf_type *t) 225 { 226 return t == &btf_void || btf_is_fwd(t); 227 } 228 229 static bool btf_type_is_void_or_null(const struct btf_type *t) 230 { 231 return !t || btf_type_is_void(t); 232 } 233 234 #define MAX_RESOLVE_DEPTH 32 235 236 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 237 { 238 const struct btf_array *array; 239 const struct btf_type *t; 240 __u32 nelems = 1; 241 __s64 size = -1; 242 int i; 243 244 t = btf__type_by_id(btf, type_id); 245 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 246 i++) { 247 switch (btf_kind(t)) { 248 case BTF_KIND_INT: 249 case BTF_KIND_STRUCT: 250 case BTF_KIND_UNION: 251 case BTF_KIND_ENUM: 252 case BTF_KIND_DATASEC: 253 size = t->size; 254 goto done; 255 case BTF_KIND_PTR: 256 size = sizeof(void *); 257 goto done; 258 case BTF_KIND_TYPEDEF: 259 case BTF_KIND_VOLATILE: 260 case BTF_KIND_CONST: 261 case BTF_KIND_RESTRICT: 262 case BTF_KIND_VAR: 263 type_id = t->type; 264 break; 265 case BTF_KIND_ARRAY: 266 array = btf_array(t); 267 if (nelems && array->nelems > UINT32_MAX / nelems) 268 return -E2BIG; 269 nelems *= array->nelems; 270 type_id = array->type; 271 break; 272 default: 273 return -EINVAL; 274 } 275 276 t = btf__type_by_id(btf, type_id); 277 } 278 279 done: 280 if (size < 0) 281 return -EINVAL; 282 if (nelems && size > UINT32_MAX / nelems) 283 return -E2BIG; 284 285 return nelems * size; 286 } 287 288 int btf__align_of(const struct btf *btf, __u32 id) 289 { 290 const struct btf_type *t = btf__type_by_id(btf, id); 291 __u16 kind = btf_kind(t); 292 293 switch (kind) { 294 case BTF_KIND_INT: 295 case BTF_KIND_ENUM: 296 return min(sizeof(void *), (size_t)t->size); 297 case BTF_KIND_PTR: 298 return sizeof(void *); 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_VOLATILE: 301 case BTF_KIND_CONST: 302 case BTF_KIND_RESTRICT: 303 return btf__align_of(btf, t->type); 304 case BTF_KIND_ARRAY: 305 return btf__align_of(btf, btf_array(t)->type); 306 case BTF_KIND_STRUCT: 307 case BTF_KIND_UNION: { 308 const struct btf_member *m = btf_members(t); 309 __u16 vlen = btf_vlen(t); 310 int i, max_align = 1, align; 311 312 for (i = 0; i < vlen; i++, m++) { 313 align = btf__align_of(btf, m->type); 314 if (align <= 0) 315 return align; 316 max_align = max(max_align, align); 317 } 318 319 return max_align; 320 } 321 default: 322 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 323 return 0; 324 } 325 } 326 327 int btf__resolve_type(const struct btf *btf, __u32 type_id) 328 { 329 const struct btf_type *t; 330 int depth = 0; 331 332 t = btf__type_by_id(btf, type_id); 333 while (depth < MAX_RESOLVE_DEPTH && 334 !btf_type_is_void_or_null(t) && 335 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 336 type_id = t->type; 337 t = btf__type_by_id(btf, type_id); 338 depth++; 339 } 340 341 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 342 return -EINVAL; 343 344 return type_id; 345 } 346 347 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 348 { 349 __u32 i; 350 351 if (!strcmp(type_name, "void")) 352 return 0; 353 354 for (i = 1; i <= btf->nr_types; i++) { 355 const struct btf_type *t = btf->types[i]; 356 const char *name = btf__name_by_offset(btf, t->name_off); 357 358 if (name && !strcmp(type_name, name)) 359 return i; 360 } 361 362 return -ENOENT; 363 } 364 365 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 366 __u32 kind) 367 { 368 __u32 i; 369 370 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 371 return 0; 372 373 for (i = 1; i <= btf->nr_types; i++) { 374 const struct btf_type *t = btf->types[i]; 375 const char *name; 376 377 if (btf_kind(t) != kind) 378 continue; 379 name = btf__name_by_offset(btf, t->name_off); 380 if (name && !strcmp(type_name, name)) 381 return i; 382 } 383 384 return -ENOENT; 385 } 386 387 void btf__free(struct btf *btf) 388 { 389 if (!btf) 390 return; 391 392 if (btf->fd != -1) 393 close(btf->fd); 394 395 free(btf->data); 396 free(btf->types); 397 free(btf); 398 } 399 400 struct btf *btf__new(__u8 *data, __u32 size) 401 { 402 struct btf *btf; 403 int err; 404 405 btf = calloc(1, sizeof(struct btf)); 406 if (!btf) 407 return ERR_PTR(-ENOMEM); 408 409 btf->fd = -1; 410 411 btf->data = malloc(size); 412 if (!btf->data) { 413 err = -ENOMEM; 414 goto done; 415 } 416 417 memcpy(btf->data, data, size); 418 btf->data_size = size; 419 420 err = btf_parse_hdr(btf); 421 if (err) 422 goto done; 423 424 err = btf_parse_str_sec(btf); 425 if (err) 426 goto done; 427 428 err = btf_parse_type_sec(btf); 429 430 done: 431 if (err) { 432 btf__free(btf); 433 return ERR_PTR(err); 434 } 435 436 return btf; 437 } 438 439 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 440 { 441 #if __BYTE_ORDER == __LITTLE_ENDIAN 442 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 443 #elif __BYTE_ORDER == __BIG_ENDIAN 444 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 445 #else 446 # error "Unrecognized __BYTE_ORDER__" 447 #endif 448 } 449 450 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 451 { 452 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 453 int err = 0, fd = -1, idx = 0; 454 struct btf *btf = NULL; 455 Elf_Scn *scn = NULL; 456 Elf *elf = NULL; 457 GElf_Ehdr ehdr; 458 459 if (elf_version(EV_CURRENT) == EV_NONE) { 460 pr_warn("failed to init libelf for %s\n", path); 461 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 462 } 463 464 fd = open(path, O_RDONLY); 465 if (fd < 0) { 466 err = -errno; 467 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 468 return ERR_PTR(err); 469 } 470 471 err = -LIBBPF_ERRNO__FORMAT; 472 473 elf = elf_begin(fd, ELF_C_READ, NULL); 474 if (!elf) { 475 pr_warn("failed to open %s as ELF file\n", path); 476 goto done; 477 } 478 if (!gelf_getehdr(elf, &ehdr)) { 479 pr_warn("failed to get EHDR from %s\n", path); 480 goto done; 481 } 482 if (!btf_check_endianness(&ehdr)) { 483 pr_warn("non-native ELF endianness is not supported\n"); 484 goto done; 485 } 486 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 487 pr_warn("failed to get e_shstrndx from %s\n", path); 488 goto done; 489 } 490 491 while ((scn = elf_nextscn(elf, scn)) != NULL) { 492 GElf_Shdr sh; 493 char *name; 494 495 idx++; 496 if (gelf_getshdr(scn, &sh) != &sh) { 497 pr_warn("failed to get section(%d) header from %s\n", 498 idx, path); 499 goto done; 500 } 501 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 502 if (!name) { 503 pr_warn("failed to get section(%d) name from %s\n", 504 idx, path); 505 goto done; 506 } 507 if (strcmp(name, BTF_ELF_SEC) == 0) { 508 btf_data = elf_getdata(scn, 0); 509 if (!btf_data) { 510 pr_warn("failed to get section(%d, %s) data from %s\n", 511 idx, name, path); 512 goto done; 513 } 514 continue; 515 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 516 btf_ext_data = elf_getdata(scn, 0); 517 if (!btf_ext_data) { 518 pr_warn("failed to get section(%d, %s) data from %s\n", 519 idx, name, path); 520 goto done; 521 } 522 continue; 523 } 524 } 525 526 err = 0; 527 528 if (!btf_data) { 529 err = -ENOENT; 530 goto done; 531 } 532 btf = btf__new(btf_data->d_buf, btf_data->d_size); 533 if (IS_ERR(btf)) 534 goto done; 535 536 if (btf_ext && btf_ext_data) { 537 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 538 btf_ext_data->d_size); 539 if (IS_ERR(*btf_ext)) 540 goto done; 541 } else if (btf_ext) { 542 *btf_ext = NULL; 543 } 544 done: 545 if (elf) 546 elf_end(elf); 547 close(fd); 548 549 if (err) 550 return ERR_PTR(err); 551 /* 552 * btf is always parsed before btf_ext, so no need to clean up 553 * btf_ext, if btf loading failed 554 */ 555 if (IS_ERR(btf)) 556 return btf; 557 if (btf_ext && IS_ERR(*btf_ext)) { 558 btf__free(btf); 559 err = PTR_ERR(*btf_ext); 560 return ERR_PTR(err); 561 } 562 return btf; 563 } 564 565 static int compare_vsi_off(const void *_a, const void *_b) 566 { 567 const struct btf_var_secinfo *a = _a; 568 const struct btf_var_secinfo *b = _b; 569 570 return a->offset - b->offset; 571 } 572 573 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 574 struct btf_type *t) 575 { 576 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 577 const char *name = btf__name_by_offset(btf, t->name_off); 578 const struct btf_type *t_var; 579 struct btf_var_secinfo *vsi; 580 const struct btf_var *var; 581 int ret; 582 583 if (!name) { 584 pr_debug("No name found in string section for DATASEC kind.\n"); 585 return -ENOENT; 586 } 587 588 /* .extern datasec size and var offsets were set correctly during 589 * extern collection step, so just skip straight to sorting variables 590 */ 591 if (t->size) 592 goto sort_vars; 593 594 ret = bpf_object__section_size(obj, name, &size); 595 if (ret || !size || (t->size && t->size != size)) { 596 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 597 return -ENOENT; 598 } 599 600 t->size = size; 601 602 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 603 t_var = btf__type_by_id(btf, vsi->type); 604 var = btf_var(t_var); 605 606 if (!btf_is_var(t_var)) { 607 pr_debug("Non-VAR type seen in section %s\n", name); 608 return -EINVAL; 609 } 610 611 if (var->linkage == BTF_VAR_STATIC) 612 continue; 613 614 name = btf__name_by_offset(btf, t_var->name_off); 615 if (!name) { 616 pr_debug("No name found in string section for VAR kind\n"); 617 return -ENOENT; 618 } 619 620 ret = bpf_object__variable_offset(obj, name, &off); 621 if (ret) { 622 pr_debug("No offset found in symbol table for VAR %s\n", 623 name); 624 return -ENOENT; 625 } 626 627 vsi->offset = off; 628 } 629 630 sort_vars: 631 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 632 return 0; 633 } 634 635 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 636 { 637 int err = 0; 638 __u32 i; 639 640 for (i = 1; i <= btf->nr_types; i++) { 641 struct btf_type *t = btf->types[i]; 642 643 /* Loader needs to fix up some of the things compiler 644 * couldn't get its hands on while emitting BTF. This 645 * is section size and global variable offset. We use 646 * the info from the ELF itself for this purpose. 647 */ 648 if (btf_is_datasec(t)) { 649 err = btf_fixup_datasec(obj, btf, t); 650 if (err) 651 break; 652 } 653 } 654 655 return err; 656 } 657 658 int btf__load(struct btf *btf) 659 { 660 __u32 log_buf_size = 0; 661 char *log_buf = NULL; 662 int err = 0; 663 664 if (btf->fd >= 0) 665 return -EEXIST; 666 667 retry_load: 668 if (log_buf_size) { 669 log_buf = malloc(log_buf_size); 670 if (!log_buf) 671 return -ENOMEM; 672 673 *log_buf = 0; 674 } 675 676 btf->fd = bpf_load_btf(btf->data, btf->data_size, 677 log_buf, log_buf_size, false); 678 if (btf->fd < 0) { 679 if (!log_buf || errno == ENOSPC) { 680 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 681 log_buf_size << 1); 682 free(log_buf); 683 goto retry_load; 684 } 685 686 err = -errno; 687 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 688 if (*log_buf) 689 pr_warn("%s\n", log_buf); 690 goto done; 691 } 692 693 done: 694 free(log_buf); 695 return err; 696 } 697 698 int btf__fd(const struct btf *btf) 699 { 700 return btf->fd; 701 } 702 703 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 704 { 705 *size = btf->data_size; 706 return btf->data; 707 } 708 709 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 710 { 711 if (offset < btf->hdr->str_len) 712 return &btf->strings[offset]; 713 else 714 return NULL; 715 } 716 717 int btf__get_from_id(__u32 id, struct btf **btf) 718 { 719 struct bpf_btf_info btf_info = { 0 }; 720 __u32 len = sizeof(btf_info); 721 __u32 last_size; 722 int btf_fd; 723 void *ptr; 724 int err; 725 726 err = 0; 727 *btf = NULL; 728 btf_fd = bpf_btf_get_fd_by_id(id); 729 if (btf_fd < 0) 730 return 0; 731 732 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 733 * let's start with a sane default - 4KiB here - and resize it only if 734 * bpf_obj_get_info_by_fd() needs a bigger buffer. 735 */ 736 btf_info.btf_size = 4096; 737 last_size = btf_info.btf_size; 738 ptr = malloc(last_size); 739 if (!ptr) { 740 err = -ENOMEM; 741 goto exit_free; 742 } 743 744 memset(ptr, 0, last_size); 745 btf_info.btf = ptr_to_u64(ptr); 746 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 747 748 if (!err && btf_info.btf_size > last_size) { 749 void *temp_ptr; 750 751 last_size = btf_info.btf_size; 752 temp_ptr = realloc(ptr, last_size); 753 if (!temp_ptr) { 754 err = -ENOMEM; 755 goto exit_free; 756 } 757 ptr = temp_ptr; 758 memset(ptr, 0, last_size); 759 btf_info.btf = ptr_to_u64(ptr); 760 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 761 } 762 763 if (err || btf_info.btf_size > last_size) { 764 err = errno; 765 goto exit_free; 766 } 767 768 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 769 if (IS_ERR(*btf)) { 770 err = PTR_ERR(*btf); 771 *btf = NULL; 772 } 773 774 exit_free: 775 close(btf_fd); 776 free(ptr); 777 778 return err; 779 } 780 781 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 782 __u32 expected_key_size, __u32 expected_value_size, 783 __u32 *key_type_id, __u32 *value_type_id) 784 { 785 const struct btf_type *container_type; 786 const struct btf_member *key, *value; 787 const size_t max_name = 256; 788 char container_name[max_name]; 789 __s64 key_size, value_size; 790 __s32 container_id; 791 792 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 793 max_name) { 794 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 795 map_name, map_name); 796 return -EINVAL; 797 } 798 799 container_id = btf__find_by_name(btf, container_name); 800 if (container_id < 0) { 801 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 802 map_name, container_name); 803 return container_id; 804 } 805 806 container_type = btf__type_by_id(btf, container_id); 807 if (!container_type) { 808 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 809 map_name, container_id); 810 return -EINVAL; 811 } 812 813 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 814 pr_warn("map:%s container_name:%s is an invalid container struct\n", 815 map_name, container_name); 816 return -EINVAL; 817 } 818 819 key = btf_members(container_type); 820 value = key + 1; 821 822 key_size = btf__resolve_size(btf, key->type); 823 if (key_size < 0) { 824 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 825 return key_size; 826 } 827 828 if (expected_key_size != key_size) { 829 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 830 map_name, (__u32)key_size, expected_key_size); 831 return -EINVAL; 832 } 833 834 value_size = btf__resolve_size(btf, value->type); 835 if (value_size < 0) { 836 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 837 return value_size; 838 } 839 840 if (expected_value_size != value_size) { 841 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 842 map_name, (__u32)value_size, expected_value_size); 843 return -EINVAL; 844 } 845 846 *key_type_id = key->type; 847 *value_type_id = value->type; 848 849 return 0; 850 } 851 852 struct btf_ext_sec_setup_param { 853 __u32 off; 854 __u32 len; 855 __u32 min_rec_size; 856 struct btf_ext_info *ext_info; 857 const char *desc; 858 }; 859 860 static int btf_ext_setup_info(struct btf_ext *btf_ext, 861 struct btf_ext_sec_setup_param *ext_sec) 862 { 863 const struct btf_ext_info_sec *sinfo; 864 struct btf_ext_info *ext_info; 865 __u32 info_left, record_size; 866 /* The start of the info sec (including the __u32 record_size). */ 867 void *info; 868 869 if (ext_sec->len == 0) 870 return 0; 871 872 if (ext_sec->off & 0x03) { 873 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 874 ext_sec->desc); 875 return -EINVAL; 876 } 877 878 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 879 info_left = ext_sec->len; 880 881 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 882 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 883 ext_sec->desc, ext_sec->off, ext_sec->len); 884 return -EINVAL; 885 } 886 887 /* At least a record size */ 888 if (info_left < sizeof(__u32)) { 889 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 890 return -EINVAL; 891 } 892 893 /* The record size needs to meet the minimum standard */ 894 record_size = *(__u32 *)info; 895 if (record_size < ext_sec->min_rec_size || 896 record_size & 0x03) { 897 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 898 ext_sec->desc, record_size); 899 return -EINVAL; 900 } 901 902 sinfo = info + sizeof(__u32); 903 info_left -= sizeof(__u32); 904 905 /* If no records, return failure now so .BTF.ext won't be used. */ 906 if (!info_left) { 907 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 908 return -EINVAL; 909 } 910 911 while (info_left) { 912 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 913 __u64 total_record_size; 914 __u32 num_records; 915 916 if (info_left < sec_hdrlen) { 917 pr_debug("%s section header is not found in .BTF.ext\n", 918 ext_sec->desc); 919 return -EINVAL; 920 } 921 922 num_records = sinfo->num_info; 923 if (num_records == 0) { 924 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 925 ext_sec->desc); 926 return -EINVAL; 927 } 928 929 total_record_size = sec_hdrlen + 930 (__u64)num_records * record_size; 931 if (info_left < total_record_size) { 932 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 933 ext_sec->desc); 934 return -EINVAL; 935 } 936 937 info_left -= total_record_size; 938 sinfo = (void *)sinfo + total_record_size; 939 } 940 941 ext_info = ext_sec->ext_info; 942 ext_info->len = ext_sec->len - sizeof(__u32); 943 ext_info->rec_size = record_size; 944 ext_info->info = info + sizeof(__u32); 945 946 return 0; 947 } 948 949 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 950 { 951 struct btf_ext_sec_setup_param param = { 952 .off = btf_ext->hdr->func_info_off, 953 .len = btf_ext->hdr->func_info_len, 954 .min_rec_size = sizeof(struct bpf_func_info_min), 955 .ext_info = &btf_ext->func_info, 956 .desc = "func_info" 957 }; 958 959 return btf_ext_setup_info(btf_ext, ¶m); 960 } 961 962 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 963 { 964 struct btf_ext_sec_setup_param param = { 965 .off = btf_ext->hdr->line_info_off, 966 .len = btf_ext->hdr->line_info_len, 967 .min_rec_size = sizeof(struct bpf_line_info_min), 968 .ext_info = &btf_ext->line_info, 969 .desc = "line_info", 970 }; 971 972 return btf_ext_setup_info(btf_ext, ¶m); 973 } 974 975 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext) 976 { 977 struct btf_ext_sec_setup_param param = { 978 .off = btf_ext->hdr->field_reloc_off, 979 .len = btf_ext->hdr->field_reloc_len, 980 .min_rec_size = sizeof(struct bpf_field_reloc), 981 .ext_info = &btf_ext->field_reloc_info, 982 .desc = "field_reloc", 983 }; 984 985 return btf_ext_setup_info(btf_ext, ¶m); 986 } 987 988 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 989 { 990 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 991 992 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 993 data_size < hdr->hdr_len) { 994 pr_debug("BTF.ext header not found"); 995 return -EINVAL; 996 } 997 998 if (hdr->magic != BTF_MAGIC) { 999 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 1000 return -EINVAL; 1001 } 1002 1003 if (hdr->version != BTF_VERSION) { 1004 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 1005 return -ENOTSUP; 1006 } 1007 1008 if (hdr->flags) { 1009 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 1010 return -ENOTSUP; 1011 } 1012 1013 if (data_size == hdr->hdr_len) { 1014 pr_debug("BTF.ext has no data\n"); 1015 return -EINVAL; 1016 } 1017 1018 return 0; 1019 } 1020 1021 void btf_ext__free(struct btf_ext *btf_ext) 1022 { 1023 if (!btf_ext) 1024 return; 1025 free(btf_ext->data); 1026 free(btf_ext); 1027 } 1028 1029 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 1030 { 1031 struct btf_ext *btf_ext; 1032 int err; 1033 1034 err = btf_ext_parse_hdr(data, size); 1035 if (err) 1036 return ERR_PTR(err); 1037 1038 btf_ext = calloc(1, sizeof(struct btf_ext)); 1039 if (!btf_ext) 1040 return ERR_PTR(-ENOMEM); 1041 1042 btf_ext->data_size = size; 1043 btf_ext->data = malloc(size); 1044 if (!btf_ext->data) { 1045 err = -ENOMEM; 1046 goto done; 1047 } 1048 memcpy(btf_ext->data, data, size); 1049 1050 if (btf_ext->hdr->hdr_len < 1051 offsetofend(struct btf_ext_header, line_info_len)) 1052 goto done; 1053 err = btf_ext_setup_func_info(btf_ext); 1054 if (err) 1055 goto done; 1056 1057 err = btf_ext_setup_line_info(btf_ext); 1058 if (err) 1059 goto done; 1060 1061 if (btf_ext->hdr->hdr_len < 1062 offsetofend(struct btf_ext_header, field_reloc_len)) 1063 goto done; 1064 err = btf_ext_setup_field_reloc(btf_ext); 1065 if (err) 1066 goto done; 1067 1068 done: 1069 if (err) { 1070 btf_ext__free(btf_ext); 1071 return ERR_PTR(err); 1072 } 1073 1074 return btf_ext; 1075 } 1076 1077 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1078 { 1079 *size = btf_ext->data_size; 1080 return btf_ext->data; 1081 } 1082 1083 static int btf_ext_reloc_info(const struct btf *btf, 1084 const struct btf_ext_info *ext_info, 1085 const char *sec_name, __u32 insns_cnt, 1086 void **info, __u32 *cnt) 1087 { 1088 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1089 __u32 i, record_size, existing_len, records_len; 1090 struct btf_ext_info_sec *sinfo; 1091 const char *info_sec_name; 1092 __u64 remain_len; 1093 void *data; 1094 1095 record_size = ext_info->rec_size; 1096 sinfo = ext_info->info; 1097 remain_len = ext_info->len; 1098 while (remain_len > 0) { 1099 records_len = sinfo->num_info * record_size; 1100 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1101 if (strcmp(info_sec_name, sec_name)) { 1102 remain_len -= sec_hdrlen + records_len; 1103 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1104 continue; 1105 } 1106 1107 existing_len = (*cnt) * record_size; 1108 data = realloc(*info, existing_len + records_len); 1109 if (!data) 1110 return -ENOMEM; 1111 1112 memcpy(data + existing_len, sinfo->data, records_len); 1113 /* adjust insn_off only, the rest data will be passed 1114 * to the kernel. 1115 */ 1116 for (i = 0; i < sinfo->num_info; i++) { 1117 __u32 *insn_off; 1118 1119 insn_off = data + existing_len + (i * record_size); 1120 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1121 insns_cnt; 1122 } 1123 *info = data; 1124 *cnt += sinfo->num_info; 1125 return 0; 1126 } 1127 1128 return -ENOENT; 1129 } 1130 1131 int btf_ext__reloc_func_info(const struct btf *btf, 1132 const struct btf_ext *btf_ext, 1133 const char *sec_name, __u32 insns_cnt, 1134 void **func_info, __u32 *cnt) 1135 { 1136 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1137 insns_cnt, func_info, cnt); 1138 } 1139 1140 int btf_ext__reloc_line_info(const struct btf *btf, 1141 const struct btf_ext *btf_ext, 1142 const char *sec_name, __u32 insns_cnt, 1143 void **line_info, __u32 *cnt) 1144 { 1145 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1146 insns_cnt, line_info, cnt); 1147 } 1148 1149 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1150 { 1151 return btf_ext->func_info.rec_size; 1152 } 1153 1154 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1155 { 1156 return btf_ext->line_info.rec_size; 1157 } 1158 1159 struct btf_dedup; 1160 1161 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1162 const struct btf_dedup_opts *opts); 1163 static void btf_dedup_free(struct btf_dedup *d); 1164 static int btf_dedup_strings(struct btf_dedup *d); 1165 static int btf_dedup_prim_types(struct btf_dedup *d); 1166 static int btf_dedup_struct_types(struct btf_dedup *d); 1167 static int btf_dedup_ref_types(struct btf_dedup *d); 1168 static int btf_dedup_compact_types(struct btf_dedup *d); 1169 static int btf_dedup_remap_types(struct btf_dedup *d); 1170 1171 /* 1172 * Deduplicate BTF types and strings. 1173 * 1174 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1175 * section with all BTF type descriptors and string data. It overwrites that 1176 * memory in-place with deduplicated types and strings without any loss of 1177 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1178 * is provided, all the strings referenced from .BTF.ext section are honored 1179 * and updated to point to the right offsets after deduplication. 1180 * 1181 * If function returns with error, type/string data might be garbled and should 1182 * be discarded. 1183 * 1184 * More verbose and detailed description of both problem btf_dedup is solving, 1185 * as well as solution could be found at: 1186 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1187 * 1188 * Problem description and justification 1189 * ===================================== 1190 * 1191 * BTF type information is typically emitted either as a result of conversion 1192 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1193 * unit contains information about a subset of all the types that are used 1194 * in an application. These subsets are frequently overlapping and contain a lot 1195 * of duplicated information when later concatenated together into a single 1196 * binary. This algorithm ensures that each unique type is represented by single 1197 * BTF type descriptor, greatly reducing resulting size of BTF data. 1198 * 1199 * Compilation unit isolation and subsequent duplication of data is not the only 1200 * problem. The same type hierarchy (e.g., struct and all the type that struct 1201 * references) in different compilation units can be represented in BTF to 1202 * various degrees of completeness (or, rather, incompleteness) due to 1203 * struct/union forward declarations. 1204 * 1205 * Let's take a look at an example, that we'll use to better understand the 1206 * problem (and solution). Suppose we have two compilation units, each using 1207 * same `struct S`, but each of them having incomplete type information about 1208 * struct's fields: 1209 * 1210 * // CU #1: 1211 * struct S; 1212 * struct A { 1213 * int a; 1214 * struct A* self; 1215 * struct S* parent; 1216 * }; 1217 * struct B; 1218 * struct S { 1219 * struct A* a_ptr; 1220 * struct B* b_ptr; 1221 * }; 1222 * 1223 * // CU #2: 1224 * struct S; 1225 * struct A; 1226 * struct B { 1227 * int b; 1228 * struct B* self; 1229 * struct S* parent; 1230 * }; 1231 * struct S { 1232 * struct A* a_ptr; 1233 * struct B* b_ptr; 1234 * }; 1235 * 1236 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1237 * more), but will know the complete type information about `struct A`. While 1238 * for CU #2, it will know full type information about `struct B`, but will 1239 * only know about forward declaration of `struct A` (in BTF terms, it will 1240 * have `BTF_KIND_FWD` type descriptor with name `B`). 1241 * 1242 * This compilation unit isolation means that it's possible that there is no 1243 * single CU with complete type information describing structs `S`, `A`, and 1244 * `B`. Also, we might get tons of duplicated and redundant type information. 1245 * 1246 * Additional complication we need to keep in mind comes from the fact that 1247 * types, in general, can form graphs containing cycles, not just DAGs. 1248 * 1249 * While algorithm does deduplication, it also merges and resolves type 1250 * information (unless disabled throught `struct btf_opts`), whenever possible. 1251 * E.g., in the example above with two compilation units having partial type 1252 * information for structs `A` and `B`, the output of algorithm will emit 1253 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1254 * (as well as type information for `int` and pointers), as if they were defined 1255 * in a single compilation unit as: 1256 * 1257 * struct A { 1258 * int a; 1259 * struct A* self; 1260 * struct S* parent; 1261 * }; 1262 * struct B { 1263 * int b; 1264 * struct B* self; 1265 * struct S* parent; 1266 * }; 1267 * struct S { 1268 * struct A* a_ptr; 1269 * struct B* b_ptr; 1270 * }; 1271 * 1272 * Algorithm summary 1273 * ================= 1274 * 1275 * Algorithm completes its work in 6 separate passes: 1276 * 1277 * 1. Strings deduplication. 1278 * 2. Primitive types deduplication (int, enum, fwd). 1279 * 3. Struct/union types deduplication. 1280 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1281 * protos, and const/volatile/restrict modifiers). 1282 * 5. Types compaction. 1283 * 6. Types remapping. 1284 * 1285 * Algorithm determines canonical type descriptor, which is a single 1286 * representative type for each truly unique type. This canonical type is the 1287 * one that will go into final deduplicated BTF type information. For 1288 * struct/unions, it is also the type that algorithm will merge additional type 1289 * information into (while resolving FWDs), as it discovers it from data in 1290 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1291 * that type is canonical, or to some other type, if that type is equivalent 1292 * and was chosen as canonical representative. This mapping is stored in 1293 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1294 * FWD type got resolved to. 1295 * 1296 * To facilitate fast discovery of canonical types, we also maintain canonical 1297 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1298 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1299 * that match that signature. With sufficiently good choice of type signature 1300 * hashing function, we can limit number of canonical types for each unique type 1301 * signature to a very small number, allowing to find canonical type for any 1302 * duplicated type very quickly. 1303 * 1304 * Struct/union deduplication is the most critical part and algorithm for 1305 * deduplicating structs/unions is described in greater details in comments for 1306 * `btf_dedup_is_equiv` function. 1307 */ 1308 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1309 const struct btf_dedup_opts *opts) 1310 { 1311 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1312 int err; 1313 1314 if (IS_ERR(d)) { 1315 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1316 return -EINVAL; 1317 } 1318 1319 err = btf_dedup_strings(d); 1320 if (err < 0) { 1321 pr_debug("btf_dedup_strings failed:%d\n", err); 1322 goto done; 1323 } 1324 err = btf_dedup_prim_types(d); 1325 if (err < 0) { 1326 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1327 goto done; 1328 } 1329 err = btf_dedup_struct_types(d); 1330 if (err < 0) { 1331 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1332 goto done; 1333 } 1334 err = btf_dedup_ref_types(d); 1335 if (err < 0) { 1336 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1337 goto done; 1338 } 1339 err = btf_dedup_compact_types(d); 1340 if (err < 0) { 1341 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1342 goto done; 1343 } 1344 err = btf_dedup_remap_types(d); 1345 if (err < 0) { 1346 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1347 goto done; 1348 } 1349 1350 done: 1351 btf_dedup_free(d); 1352 return err; 1353 } 1354 1355 #define BTF_UNPROCESSED_ID ((__u32)-1) 1356 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1357 1358 struct btf_dedup { 1359 /* .BTF section to be deduped in-place */ 1360 struct btf *btf; 1361 /* 1362 * Optional .BTF.ext section. When provided, any strings referenced 1363 * from it will be taken into account when deduping strings 1364 */ 1365 struct btf_ext *btf_ext; 1366 /* 1367 * This is a map from any type's signature hash to a list of possible 1368 * canonical representative type candidates. Hash collisions are 1369 * ignored, so even types of various kinds can share same list of 1370 * candidates, which is fine because we rely on subsequent 1371 * btf_xxx_equal() checks to authoritatively verify type equality. 1372 */ 1373 struct hashmap *dedup_table; 1374 /* Canonical types map */ 1375 __u32 *map; 1376 /* Hypothetical mapping, used during type graph equivalence checks */ 1377 __u32 *hypot_map; 1378 __u32 *hypot_list; 1379 size_t hypot_cnt; 1380 size_t hypot_cap; 1381 /* Various option modifying behavior of algorithm */ 1382 struct btf_dedup_opts opts; 1383 }; 1384 1385 struct btf_str_ptr { 1386 const char *str; 1387 __u32 new_off; 1388 bool used; 1389 }; 1390 1391 struct btf_str_ptrs { 1392 struct btf_str_ptr *ptrs; 1393 const char *data; 1394 __u32 cnt; 1395 __u32 cap; 1396 }; 1397 1398 static long hash_combine(long h, long value) 1399 { 1400 return h * 31 + value; 1401 } 1402 1403 #define for_each_dedup_cand(d, node, hash) \ 1404 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1405 1406 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1407 { 1408 return hashmap__append(d->dedup_table, 1409 (void *)hash, (void *)(long)type_id); 1410 } 1411 1412 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1413 __u32 from_id, __u32 to_id) 1414 { 1415 if (d->hypot_cnt == d->hypot_cap) { 1416 __u32 *new_list; 1417 1418 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 1419 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); 1420 if (!new_list) 1421 return -ENOMEM; 1422 d->hypot_list = new_list; 1423 } 1424 d->hypot_list[d->hypot_cnt++] = from_id; 1425 d->hypot_map[from_id] = to_id; 1426 return 0; 1427 } 1428 1429 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1430 { 1431 int i; 1432 1433 for (i = 0; i < d->hypot_cnt; i++) 1434 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1435 d->hypot_cnt = 0; 1436 } 1437 1438 static void btf_dedup_free(struct btf_dedup *d) 1439 { 1440 hashmap__free(d->dedup_table); 1441 d->dedup_table = NULL; 1442 1443 free(d->map); 1444 d->map = NULL; 1445 1446 free(d->hypot_map); 1447 d->hypot_map = NULL; 1448 1449 free(d->hypot_list); 1450 d->hypot_list = NULL; 1451 1452 free(d); 1453 } 1454 1455 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1456 { 1457 return (size_t)key; 1458 } 1459 1460 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1461 { 1462 return 0; 1463 } 1464 1465 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1466 { 1467 return k1 == k2; 1468 } 1469 1470 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1471 const struct btf_dedup_opts *opts) 1472 { 1473 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1474 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1475 int i, err = 0; 1476 1477 if (!d) 1478 return ERR_PTR(-ENOMEM); 1479 1480 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1481 /* dedup_table_size is now used only to force collisions in tests */ 1482 if (opts && opts->dedup_table_size == 1) 1483 hash_fn = btf_dedup_collision_hash_fn; 1484 1485 d->btf = btf; 1486 d->btf_ext = btf_ext; 1487 1488 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1489 if (IS_ERR(d->dedup_table)) { 1490 err = PTR_ERR(d->dedup_table); 1491 d->dedup_table = NULL; 1492 goto done; 1493 } 1494 1495 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1496 if (!d->map) { 1497 err = -ENOMEM; 1498 goto done; 1499 } 1500 /* special BTF "void" type is made canonical immediately */ 1501 d->map[0] = 0; 1502 for (i = 1; i <= btf->nr_types; i++) { 1503 struct btf_type *t = d->btf->types[i]; 1504 1505 /* VAR and DATASEC are never deduped and are self-canonical */ 1506 if (btf_is_var(t) || btf_is_datasec(t)) 1507 d->map[i] = i; 1508 else 1509 d->map[i] = BTF_UNPROCESSED_ID; 1510 } 1511 1512 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1513 if (!d->hypot_map) { 1514 err = -ENOMEM; 1515 goto done; 1516 } 1517 for (i = 0; i <= btf->nr_types; i++) 1518 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1519 1520 done: 1521 if (err) { 1522 btf_dedup_free(d); 1523 return ERR_PTR(err); 1524 } 1525 1526 return d; 1527 } 1528 1529 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1530 1531 /* 1532 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1533 * string and pass pointer to it to a provided callback `fn`. 1534 */ 1535 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1536 { 1537 void *line_data_cur, *line_data_end; 1538 int i, j, r, rec_size; 1539 struct btf_type *t; 1540 1541 for (i = 1; i <= d->btf->nr_types; i++) { 1542 t = d->btf->types[i]; 1543 r = fn(&t->name_off, ctx); 1544 if (r) 1545 return r; 1546 1547 switch (btf_kind(t)) { 1548 case BTF_KIND_STRUCT: 1549 case BTF_KIND_UNION: { 1550 struct btf_member *m = btf_members(t); 1551 __u16 vlen = btf_vlen(t); 1552 1553 for (j = 0; j < vlen; j++) { 1554 r = fn(&m->name_off, ctx); 1555 if (r) 1556 return r; 1557 m++; 1558 } 1559 break; 1560 } 1561 case BTF_KIND_ENUM: { 1562 struct btf_enum *m = btf_enum(t); 1563 __u16 vlen = btf_vlen(t); 1564 1565 for (j = 0; j < vlen; j++) { 1566 r = fn(&m->name_off, ctx); 1567 if (r) 1568 return r; 1569 m++; 1570 } 1571 break; 1572 } 1573 case BTF_KIND_FUNC_PROTO: { 1574 struct btf_param *m = btf_params(t); 1575 __u16 vlen = btf_vlen(t); 1576 1577 for (j = 0; j < vlen; j++) { 1578 r = fn(&m->name_off, ctx); 1579 if (r) 1580 return r; 1581 m++; 1582 } 1583 break; 1584 } 1585 default: 1586 break; 1587 } 1588 } 1589 1590 if (!d->btf_ext) 1591 return 0; 1592 1593 line_data_cur = d->btf_ext->line_info.info; 1594 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1595 rec_size = d->btf_ext->line_info.rec_size; 1596 1597 while (line_data_cur < line_data_end) { 1598 struct btf_ext_info_sec *sec = line_data_cur; 1599 struct bpf_line_info_min *line_info; 1600 __u32 num_info = sec->num_info; 1601 1602 r = fn(&sec->sec_name_off, ctx); 1603 if (r) 1604 return r; 1605 1606 line_data_cur += sizeof(struct btf_ext_info_sec); 1607 for (i = 0; i < num_info; i++) { 1608 line_info = line_data_cur; 1609 r = fn(&line_info->file_name_off, ctx); 1610 if (r) 1611 return r; 1612 r = fn(&line_info->line_off, ctx); 1613 if (r) 1614 return r; 1615 line_data_cur += rec_size; 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 static int str_sort_by_content(const void *a1, const void *a2) 1623 { 1624 const struct btf_str_ptr *p1 = a1; 1625 const struct btf_str_ptr *p2 = a2; 1626 1627 return strcmp(p1->str, p2->str); 1628 } 1629 1630 static int str_sort_by_offset(const void *a1, const void *a2) 1631 { 1632 const struct btf_str_ptr *p1 = a1; 1633 const struct btf_str_ptr *p2 = a2; 1634 1635 if (p1->str != p2->str) 1636 return p1->str < p2->str ? -1 : 1; 1637 return 0; 1638 } 1639 1640 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1641 { 1642 const struct btf_str_ptr *p = pelem; 1643 1644 if (str_ptr != p->str) 1645 return (const char *)str_ptr < p->str ? -1 : 1; 1646 return 0; 1647 } 1648 1649 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1650 { 1651 struct btf_str_ptrs *strs; 1652 struct btf_str_ptr *s; 1653 1654 if (*str_off_ptr == 0) 1655 return 0; 1656 1657 strs = ctx; 1658 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1659 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1660 if (!s) 1661 return -EINVAL; 1662 s->used = true; 1663 return 0; 1664 } 1665 1666 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1667 { 1668 struct btf_str_ptrs *strs; 1669 struct btf_str_ptr *s; 1670 1671 if (*str_off_ptr == 0) 1672 return 0; 1673 1674 strs = ctx; 1675 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1676 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1677 if (!s) 1678 return -EINVAL; 1679 *str_off_ptr = s->new_off; 1680 return 0; 1681 } 1682 1683 /* 1684 * Dedup string and filter out those that are not referenced from either .BTF 1685 * or .BTF.ext (if provided) sections. 1686 * 1687 * This is done by building index of all strings in BTF's string section, 1688 * then iterating over all entities that can reference strings (e.g., type 1689 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1690 * strings as used. After that all used strings are deduped and compacted into 1691 * sequential blob of memory and new offsets are calculated. Then all the string 1692 * references are iterated again and rewritten using new offsets. 1693 */ 1694 static int btf_dedup_strings(struct btf_dedup *d) 1695 { 1696 const struct btf_header *hdr = d->btf->hdr; 1697 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1698 char *end = start + d->btf->hdr->str_len; 1699 char *p = start, *tmp_strs = NULL; 1700 struct btf_str_ptrs strs = { 1701 .cnt = 0, 1702 .cap = 0, 1703 .ptrs = NULL, 1704 .data = start, 1705 }; 1706 int i, j, err = 0, grp_idx; 1707 bool grp_used; 1708 1709 /* build index of all strings */ 1710 while (p < end) { 1711 if (strs.cnt + 1 > strs.cap) { 1712 struct btf_str_ptr *new_ptrs; 1713 1714 strs.cap += max(strs.cnt / 2, 16U); 1715 new_ptrs = realloc(strs.ptrs, 1716 sizeof(strs.ptrs[0]) * strs.cap); 1717 if (!new_ptrs) { 1718 err = -ENOMEM; 1719 goto done; 1720 } 1721 strs.ptrs = new_ptrs; 1722 } 1723 1724 strs.ptrs[strs.cnt].str = p; 1725 strs.ptrs[strs.cnt].used = false; 1726 1727 p += strlen(p) + 1; 1728 strs.cnt++; 1729 } 1730 1731 /* temporary storage for deduplicated strings */ 1732 tmp_strs = malloc(d->btf->hdr->str_len); 1733 if (!tmp_strs) { 1734 err = -ENOMEM; 1735 goto done; 1736 } 1737 1738 /* mark all used strings */ 1739 strs.ptrs[0].used = true; 1740 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1741 if (err) 1742 goto done; 1743 1744 /* sort strings by context, so that we can identify duplicates */ 1745 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1746 1747 /* 1748 * iterate groups of equal strings and if any instance in a group was 1749 * referenced, emit single instance and remember new offset 1750 */ 1751 p = tmp_strs; 1752 grp_idx = 0; 1753 grp_used = strs.ptrs[0].used; 1754 /* iterate past end to avoid code duplication after loop */ 1755 for (i = 1; i <= strs.cnt; i++) { 1756 /* 1757 * when i == strs.cnt, we want to skip string comparison and go 1758 * straight to handling last group of strings (otherwise we'd 1759 * need to handle last group after the loop w/ duplicated code) 1760 */ 1761 if (i < strs.cnt && 1762 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1763 grp_used = grp_used || strs.ptrs[i].used; 1764 continue; 1765 } 1766 1767 /* 1768 * this check would have been required after the loop to handle 1769 * last group of strings, but due to <= condition in a loop 1770 * we avoid that duplication 1771 */ 1772 if (grp_used) { 1773 int new_off = p - tmp_strs; 1774 __u32 len = strlen(strs.ptrs[grp_idx].str); 1775 1776 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1777 for (j = grp_idx; j < i; j++) 1778 strs.ptrs[j].new_off = new_off; 1779 p += len + 1; 1780 } 1781 1782 if (i < strs.cnt) { 1783 grp_idx = i; 1784 grp_used = strs.ptrs[i].used; 1785 } 1786 } 1787 1788 /* replace original strings with deduped ones */ 1789 d->btf->hdr->str_len = p - tmp_strs; 1790 memmove(start, tmp_strs, d->btf->hdr->str_len); 1791 end = start + d->btf->hdr->str_len; 1792 1793 /* restore original order for further binary search lookups */ 1794 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1795 1796 /* remap string offsets */ 1797 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1798 if (err) 1799 goto done; 1800 1801 d->btf->hdr->str_len = end - start; 1802 1803 done: 1804 free(tmp_strs); 1805 free(strs.ptrs); 1806 return err; 1807 } 1808 1809 static long btf_hash_common(struct btf_type *t) 1810 { 1811 long h; 1812 1813 h = hash_combine(0, t->name_off); 1814 h = hash_combine(h, t->info); 1815 h = hash_combine(h, t->size); 1816 return h; 1817 } 1818 1819 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1820 { 1821 return t1->name_off == t2->name_off && 1822 t1->info == t2->info && 1823 t1->size == t2->size; 1824 } 1825 1826 /* Calculate type signature hash of INT. */ 1827 static long btf_hash_int(struct btf_type *t) 1828 { 1829 __u32 info = *(__u32 *)(t + 1); 1830 long h; 1831 1832 h = btf_hash_common(t); 1833 h = hash_combine(h, info); 1834 return h; 1835 } 1836 1837 /* Check structural equality of two INTs. */ 1838 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1839 { 1840 __u32 info1, info2; 1841 1842 if (!btf_equal_common(t1, t2)) 1843 return false; 1844 info1 = *(__u32 *)(t1 + 1); 1845 info2 = *(__u32 *)(t2 + 1); 1846 return info1 == info2; 1847 } 1848 1849 /* Calculate type signature hash of ENUM. */ 1850 static long btf_hash_enum(struct btf_type *t) 1851 { 1852 long h; 1853 1854 /* don't hash vlen and enum members to support enum fwd resolving */ 1855 h = hash_combine(0, t->name_off); 1856 h = hash_combine(h, t->info & ~0xffff); 1857 h = hash_combine(h, t->size); 1858 return h; 1859 } 1860 1861 /* Check structural equality of two ENUMs. */ 1862 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 1863 { 1864 const struct btf_enum *m1, *m2; 1865 __u16 vlen; 1866 int i; 1867 1868 if (!btf_equal_common(t1, t2)) 1869 return false; 1870 1871 vlen = btf_vlen(t1); 1872 m1 = btf_enum(t1); 1873 m2 = btf_enum(t2); 1874 for (i = 0; i < vlen; i++) { 1875 if (m1->name_off != m2->name_off || m1->val != m2->val) 1876 return false; 1877 m1++; 1878 m2++; 1879 } 1880 return true; 1881 } 1882 1883 static inline bool btf_is_enum_fwd(struct btf_type *t) 1884 { 1885 return btf_is_enum(t) && btf_vlen(t) == 0; 1886 } 1887 1888 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 1889 { 1890 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 1891 return btf_equal_enum(t1, t2); 1892 /* ignore vlen when comparing */ 1893 return t1->name_off == t2->name_off && 1894 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 1895 t1->size == t2->size; 1896 } 1897 1898 /* 1899 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 1900 * as referenced type IDs equivalence is established separately during type 1901 * graph equivalence check algorithm. 1902 */ 1903 static long btf_hash_struct(struct btf_type *t) 1904 { 1905 const struct btf_member *member = btf_members(t); 1906 __u32 vlen = btf_vlen(t); 1907 long h = btf_hash_common(t); 1908 int i; 1909 1910 for (i = 0; i < vlen; i++) { 1911 h = hash_combine(h, member->name_off); 1912 h = hash_combine(h, member->offset); 1913 /* no hashing of referenced type ID, it can be unresolved yet */ 1914 member++; 1915 } 1916 return h; 1917 } 1918 1919 /* 1920 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1921 * IDs. This check is performed during type graph equivalence check and 1922 * referenced types equivalence is checked separately. 1923 */ 1924 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 1925 { 1926 const struct btf_member *m1, *m2; 1927 __u16 vlen; 1928 int i; 1929 1930 if (!btf_equal_common(t1, t2)) 1931 return false; 1932 1933 vlen = btf_vlen(t1); 1934 m1 = btf_members(t1); 1935 m2 = btf_members(t2); 1936 for (i = 0; i < vlen; i++) { 1937 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 1938 return false; 1939 m1++; 1940 m2++; 1941 } 1942 return true; 1943 } 1944 1945 /* 1946 * Calculate type signature hash of ARRAY, including referenced type IDs, 1947 * under assumption that they were already resolved to canonical type IDs and 1948 * are not going to change. 1949 */ 1950 static long btf_hash_array(struct btf_type *t) 1951 { 1952 const struct btf_array *info = btf_array(t); 1953 long h = btf_hash_common(t); 1954 1955 h = hash_combine(h, info->type); 1956 h = hash_combine(h, info->index_type); 1957 h = hash_combine(h, info->nelems); 1958 return h; 1959 } 1960 1961 /* 1962 * Check exact equality of two ARRAYs, taking into account referenced 1963 * type IDs, under assumption that they were already resolved to canonical 1964 * type IDs and are not going to change. 1965 * This function is called during reference types deduplication to compare 1966 * ARRAY to potential canonical representative. 1967 */ 1968 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 1969 { 1970 const struct btf_array *info1, *info2; 1971 1972 if (!btf_equal_common(t1, t2)) 1973 return false; 1974 1975 info1 = btf_array(t1); 1976 info2 = btf_array(t2); 1977 return info1->type == info2->type && 1978 info1->index_type == info2->index_type && 1979 info1->nelems == info2->nelems; 1980 } 1981 1982 /* 1983 * Check structural compatibility of two ARRAYs, ignoring referenced type 1984 * IDs. This check is performed during type graph equivalence check and 1985 * referenced types equivalence is checked separately. 1986 */ 1987 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 1988 { 1989 if (!btf_equal_common(t1, t2)) 1990 return false; 1991 1992 return btf_array(t1)->nelems == btf_array(t2)->nelems; 1993 } 1994 1995 /* 1996 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 1997 * under assumption that they were already resolved to canonical type IDs and 1998 * are not going to change. 1999 */ 2000 static long btf_hash_fnproto(struct btf_type *t) 2001 { 2002 const struct btf_param *member = btf_params(t); 2003 __u16 vlen = btf_vlen(t); 2004 long h = btf_hash_common(t); 2005 int i; 2006 2007 for (i = 0; i < vlen; i++) { 2008 h = hash_combine(h, member->name_off); 2009 h = hash_combine(h, member->type); 2010 member++; 2011 } 2012 return h; 2013 } 2014 2015 /* 2016 * Check exact equality of two FUNC_PROTOs, taking into account referenced 2017 * type IDs, under assumption that they were already resolved to canonical 2018 * type IDs and are not going to change. 2019 * This function is called during reference types deduplication to compare 2020 * FUNC_PROTO to potential canonical representative. 2021 */ 2022 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 2023 { 2024 const struct btf_param *m1, *m2; 2025 __u16 vlen; 2026 int i; 2027 2028 if (!btf_equal_common(t1, t2)) 2029 return false; 2030 2031 vlen = btf_vlen(t1); 2032 m1 = btf_params(t1); 2033 m2 = btf_params(t2); 2034 for (i = 0; i < vlen; i++) { 2035 if (m1->name_off != m2->name_off || m1->type != m2->type) 2036 return false; 2037 m1++; 2038 m2++; 2039 } 2040 return true; 2041 } 2042 2043 /* 2044 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2045 * IDs. This check is performed during type graph equivalence check and 2046 * referenced types equivalence is checked separately. 2047 */ 2048 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 2049 { 2050 const struct btf_param *m1, *m2; 2051 __u16 vlen; 2052 int i; 2053 2054 /* skip return type ID */ 2055 if (t1->name_off != t2->name_off || t1->info != t2->info) 2056 return false; 2057 2058 vlen = btf_vlen(t1); 2059 m1 = btf_params(t1); 2060 m2 = btf_params(t2); 2061 for (i = 0; i < vlen; i++) { 2062 if (m1->name_off != m2->name_off) 2063 return false; 2064 m1++; 2065 m2++; 2066 } 2067 return true; 2068 } 2069 2070 /* 2071 * Deduplicate primitive types, that can't reference other types, by calculating 2072 * their type signature hash and comparing them with any possible canonical 2073 * candidate. If no canonical candidate matches, type itself is marked as 2074 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2075 */ 2076 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2077 { 2078 struct btf_type *t = d->btf->types[type_id]; 2079 struct hashmap_entry *hash_entry; 2080 struct btf_type *cand; 2081 /* if we don't find equivalent type, then we are canonical */ 2082 __u32 new_id = type_id; 2083 __u32 cand_id; 2084 long h; 2085 2086 switch (btf_kind(t)) { 2087 case BTF_KIND_CONST: 2088 case BTF_KIND_VOLATILE: 2089 case BTF_KIND_RESTRICT: 2090 case BTF_KIND_PTR: 2091 case BTF_KIND_TYPEDEF: 2092 case BTF_KIND_ARRAY: 2093 case BTF_KIND_STRUCT: 2094 case BTF_KIND_UNION: 2095 case BTF_KIND_FUNC: 2096 case BTF_KIND_FUNC_PROTO: 2097 case BTF_KIND_VAR: 2098 case BTF_KIND_DATASEC: 2099 return 0; 2100 2101 case BTF_KIND_INT: 2102 h = btf_hash_int(t); 2103 for_each_dedup_cand(d, hash_entry, h) { 2104 cand_id = (__u32)(long)hash_entry->value; 2105 cand = d->btf->types[cand_id]; 2106 if (btf_equal_int(t, cand)) { 2107 new_id = cand_id; 2108 break; 2109 } 2110 } 2111 break; 2112 2113 case BTF_KIND_ENUM: 2114 h = btf_hash_enum(t); 2115 for_each_dedup_cand(d, hash_entry, h) { 2116 cand_id = (__u32)(long)hash_entry->value; 2117 cand = d->btf->types[cand_id]; 2118 if (btf_equal_enum(t, cand)) { 2119 new_id = cand_id; 2120 break; 2121 } 2122 if (d->opts.dont_resolve_fwds) 2123 continue; 2124 if (btf_compat_enum(t, cand)) { 2125 if (btf_is_enum_fwd(t)) { 2126 /* resolve fwd to full enum */ 2127 new_id = cand_id; 2128 break; 2129 } 2130 /* resolve canonical enum fwd to full enum */ 2131 d->map[cand_id] = type_id; 2132 } 2133 } 2134 break; 2135 2136 case BTF_KIND_FWD: 2137 h = btf_hash_common(t); 2138 for_each_dedup_cand(d, hash_entry, h) { 2139 cand_id = (__u32)(long)hash_entry->value; 2140 cand = d->btf->types[cand_id]; 2141 if (btf_equal_common(t, cand)) { 2142 new_id = cand_id; 2143 break; 2144 } 2145 } 2146 break; 2147 2148 default: 2149 return -EINVAL; 2150 } 2151 2152 d->map[type_id] = new_id; 2153 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2154 return -ENOMEM; 2155 2156 return 0; 2157 } 2158 2159 static int btf_dedup_prim_types(struct btf_dedup *d) 2160 { 2161 int i, err; 2162 2163 for (i = 1; i <= d->btf->nr_types; i++) { 2164 err = btf_dedup_prim_type(d, i); 2165 if (err) 2166 return err; 2167 } 2168 return 0; 2169 } 2170 2171 /* 2172 * Check whether type is already mapped into canonical one (could be to itself). 2173 */ 2174 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2175 { 2176 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2177 } 2178 2179 /* 2180 * Resolve type ID into its canonical type ID, if any; otherwise return original 2181 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2182 * STRUCT/UNION link and resolve it into canonical type ID as well. 2183 */ 2184 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2185 { 2186 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2187 type_id = d->map[type_id]; 2188 return type_id; 2189 } 2190 2191 /* 2192 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2193 * type ID. 2194 */ 2195 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2196 { 2197 __u32 orig_type_id = type_id; 2198 2199 if (!btf_is_fwd(d->btf->types[type_id])) 2200 return type_id; 2201 2202 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2203 type_id = d->map[type_id]; 2204 2205 if (!btf_is_fwd(d->btf->types[type_id])) 2206 return type_id; 2207 2208 return orig_type_id; 2209 } 2210 2211 2212 static inline __u16 btf_fwd_kind(struct btf_type *t) 2213 { 2214 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2215 } 2216 2217 /* 2218 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2219 * call it "candidate graph" in this description for brevity) to a type graph 2220 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2221 * here, though keep in mind that not all types in canonical graph are 2222 * necessarily canonical representatives themselves, some of them might be 2223 * duplicates or its uniqueness might not have been established yet). 2224 * Returns: 2225 * - >0, if type graphs are equivalent; 2226 * - 0, if not equivalent; 2227 * - <0, on error. 2228 * 2229 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2230 * equivalence of BTF types at each step. If at any point BTF types in candidate 2231 * and canonical graphs are not compatible structurally, whole graphs are 2232 * incompatible. If types are structurally equivalent (i.e., all information 2233 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2234 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2235 * If a type references other types, then those referenced types are checked 2236 * for equivalence recursively. 2237 * 2238 * During DFS traversal, if we find that for current `canon_id` type we 2239 * already have some mapping in hypothetical map, we check for two possible 2240 * situations: 2241 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2242 * happen when type graphs have cycles. In this case we assume those two 2243 * types are equivalent. 2244 * - `canon_id` is mapped to different type. This is contradiction in our 2245 * hypothetical mapping, because same graph in canonical graph corresponds 2246 * to two different types in candidate graph, which for equivalent type 2247 * graphs shouldn't happen. This condition terminates equivalence check 2248 * with negative result. 2249 * 2250 * If type graphs traversal exhausts types to check and find no contradiction, 2251 * then type graphs are equivalent. 2252 * 2253 * When checking types for equivalence, there is one special case: FWD types. 2254 * If FWD type resolution is allowed and one of the types (either from canonical 2255 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2256 * flag) and their names match, hypothetical mapping is updated to point from 2257 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2258 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2259 * 2260 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2261 * if there are two exactly named (or anonymous) structs/unions that are 2262 * compatible structurally, one of which has FWD field, while other is concrete 2263 * STRUCT/UNION, but according to C sources they are different structs/unions 2264 * that are referencing different types with the same name. This is extremely 2265 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2266 * this logic is causing problems. 2267 * 2268 * Doing FWD resolution means that both candidate and/or canonical graphs can 2269 * consists of portions of the graph that come from multiple compilation units. 2270 * This is due to the fact that types within single compilation unit are always 2271 * deduplicated and FWDs are already resolved, if referenced struct/union 2272 * definiton is available. So, if we had unresolved FWD and found corresponding 2273 * STRUCT/UNION, they will be from different compilation units. This 2274 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2275 * type graph will likely have at least two different BTF types that describe 2276 * same type (e.g., most probably there will be two different BTF types for the 2277 * same 'int' primitive type) and could even have "overlapping" parts of type 2278 * graph that describe same subset of types. 2279 * 2280 * This in turn means that our assumption that each type in canonical graph 2281 * must correspond to exactly one type in candidate graph might not hold 2282 * anymore and will make it harder to detect contradictions using hypothetical 2283 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2284 * resolution only in canonical graph. FWDs in candidate graphs are never 2285 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2286 * that can occur: 2287 * - Both types in canonical and candidate graphs are FWDs. If they are 2288 * structurally equivalent, then they can either be both resolved to the 2289 * same STRUCT/UNION or not resolved at all. In both cases they are 2290 * equivalent and there is no need to resolve FWD on candidate side. 2291 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2292 * so nothing to resolve as well, algorithm will check equivalence anyway. 2293 * - Type in canonical graph is FWD, while type in candidate is concrete 2294 * STRUCT/UNION. In this case candidate graph comes from single compilation 2295 * unit, so there is exactly one BTF type for each unique C type. After 2296 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2297 * in canonical graph mapping to single BTF type in candidate graph, but 2298 * because hypothetical mapping maps from canonical to candidate types, it's 2299 * alright, and we still maintain the property of having single `canon_id` 2300 * mapping to single `cand_id` (there could be two different `canon_id` 2301 * mapped to the same `cand_id`, but it's not contradictory). 2302 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2303 * graph is FWD. In this case we are just going to check compatibility of 2304 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2305 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2306 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2307 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2308 * canonical graph. 2309 */ 2310 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2311 __u32 canon_id) 2312 { 2313 struct btf_type *cand_type; 2314 struct btf_type *canon_type; 2315 __u32 hypot_type_id; 2316 __u16 cand_kind; 2317 __u16 canon_kind; 2318 int i, eq; 2319 2320 /* if both resolve to the same canonical, they must be equivalent */ 2321 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2322 return 1; 2323 2324 canon_id = resolve_fwd_id(d, canon_id); 2325 2326 hypot_type_id = d->hypot_map[canon_id]; 2327 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2328 return hypot_type_id == cand_id; 2329 2330 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2331 return -ENOMEM; 2332 2333 cand_type = d->btf->types[cand_id]; 2334 canon_type = d->btf->types[canon_id]; 2335 cand_kind = btf_kind(cand_type); 2336 canon_kind = btf_kind(canon_type); 2337 2338 if (cand_type->name_off != canon_type->name_off) 2339 return 0; 2340 2341 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2342 if (!d->opts.dont_resolve_fwds 2343 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2344 && cand_kind != canon_kind) { 2345 __u16 real_kind; 2346 __u16 fwd_kind; 2347 2348 if (cand_kind == BTF_KIND_FWD) { 2349 real_kind = canon_kind; 2350 fwd_kind = btf_fwd_kind(cand_type); 2351 } else { 2352 real_kind = cand_kind; 2353 fwd_kind = btf_fwd_kind(canon_type); 2354 } 2355 return fwd_kind == real_kind; 2356 } 2357 2358 if (cand_kind != canon_kind) 2359 return 0; 2360 2361 switch (cand_kind) { 2362 case BTF_KIND_INT: 2363 return btf_equal_int(cand_type, canon_type); 2364 2365 case BTF_KIND_ENUM: 2366 if (d->opts.dont_resolve_fwds) 2367 return btf_equal_enum(cand_type, canon_type); 2368 else 2369 return btf_compat_enum(cand_type, canon_type); 2370 2371 case BTF_KIND_FWD: 2372 return btf_equal_common(cand_type, canon_type); 2373 2374 case BTF_KIND_CONST: 2375 case BTF_KIND_VOLATILE: 2376 case BTF_KIND_RESTRICT: 2377 case BTF_KIND_PTR: 2378 case BTF_KIND_TYPEDEF: 2379 case BTF_KIND_FUNC: 2380 if (cand_type->info != canon_type->info) 2381 return 0; 2382 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2383 2384 case BTF_KIND_ARRAY: { 2385 const struct btf_array *cand_arr, *canon_arr; 2386 2387 if (!btf_compat_array(cand_type, canon_type)) 2388 return 0; 2389 cand_arr = btf_array(cand_type); 2390 canon_arr = btf_array(canon_type); 2391 eq = btf_dedup_is_equiv(d, 2392 cand_arr->index_type, canon_arr->index_type); 2393 if (eq <= 0) 2394 return eq; 2395 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2396 } 2397 2398 case BTF_KIND_STRUCT: 2399 case BTF_KIND_UNION: { 2400 const struct btf_member *cand_m, *canon_m; 2401 __u16 vlen; 2402 2403 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2404 return 0; 2405 vlen = btf_vlen(cand_type); 2406 cand_m = btf_members(cand_type); 2407 canon_m = btf_members(canon_type); 2408 for (i = 0; i < vlen; i++) { 2409 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2410 if (eq <= 0) 2411 return eq; 2412 cand_m++; 2413 canon_m++; 2414 } 2415 2416 return 1; 2417 } 2418 2419 case BTF_KIND_FUNC_PROTO: { 2420 const struct btf_param *cand_p, *canon_p; 2421 __u16 vlen; 2422 2423 if (!btf_compat_fnproto(cand_type, canon_type)) 2424 return 0; 2425 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2426 if (eq <= 0) 2427 return eq; 2428 vlen = btf_vlen(cand_type); 2429 cand_p = btf_params(cand_type); 2430 canon_p = btf_params(canon_type); 2431 for (i = 0; i < vlen; i++) { 2432 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2433 if (eq <= 0) 2434 return eq; 2435 cand_p++; 2436 canon_p++; 2437 } 2438 return 1; 2439 } 2440 2441 default: 2442 return -EINVAL; 2443 } 2444 return 0; 2445 } 2446 2447 /* 2448 * Use hypothetical mapping, produced by successful type graph equivalence 2449 * check, to augment existing struct/union canonical mapping, where possible. 2450 * 2451 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2452 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2453 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2454 * we are recording the mapping anyway. As opposed to carefulness required 2455 * for struct/union correspondence mapping (described below), for FWD resolution 2456 * it's not important, as by the time that FWD type (reference type) will be 2457 * deduplicated all structs/unions will be deduped already anyway. 2458 * 2459 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2460 * not required for correctness. It needs to be done carefully to ensure that 2461 * struct/union from candidate's type graph is not mapped into corresponding 2462 * struct/union from canonical type graph that itself hasn't been resolved into 2463 * canonical representative. The only guarantee we have is that canonical 2464 * struct/union was determined as canonical and that won't change. But any 2465 * types referenced through that struct/union fields could have been not yet 2466 * resolved, so in case like that it's too early to establish any kind of 2467 * correspondence between structs/unions. 2468 * 2469 * No canonical correspondence is derived for primitive types (they are already 2470 * deduplicated completely already anyway) or reference types (they rely on 2471 * stability of struct/union canonical relationship for equivalence checks). 2472 */ 2473 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2474 { 2475 __u32 cand_type_id, targ_type_id; 2476 __u16 t_kind, c_kind; 2477 __u32 t_id, c_id; 2478 int i; 2479 2480 for (i = 0; i < d->hypot_cnt; i++) { 2481 cand_type_id = d->hypot_list[i]; 2482 targ_type_id = d->hypot_map[cand_type_id]; 2483 t_id = resolve_type_id(d, targ_type_id); 2484 c_id = resolve_type_id(d, cand_type_id); 2485 t_kind = btf_kind(d->btf->types[t_id]); 2486 c_kind = btf_kind(d->btf->types[c_id]); 2487 /* 2488 * Resolve FWD into STRUCT/UNION. 2489 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2490 * mapped to canonical representative (as opposed to 2491 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2492 * eventually that struct is going to be mapped and all resolved 2493 * FWDs will automatically resolve to correct canonical 2494 * representative. This will happen before ref type deduping, 2495 * which critically depends on stability of these mapping. This 2496 * stability is not a requirement for STRUCT/UNION equivalence 2497 * checks, though. 2498 */ 2499 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2500 d->map[c_id] = t_id; 2501 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2502 d->map[t_id] = c_id; 2503 2504 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2505 c_kind != BTF_KIND_FWD && 2506 is_type_mapped(d, c_id) && 2507 !is_type_mapped(d, t_id)) { 2508 /* 2509 * as a perf optimization, we can map struct/union 2510 * that's part of type graph we just verified for 2511 * equivalence. We can do that for struct/union that has 2512 * canonical representative only, though. 2513 */ 2514 d->map[t_id] = c_id; 2515 } 2516 } 2517 } 2518 2519 /* 2520 * Deduplicate struct/union types. 2521 * 2522 * For each struct/union type its type signature hash is calculated, taking 2523 * into account type's name, size, number, order and names of fields, but 2524 * ignoring type ID's referenced from fields, because they might not be deduped 2525 * completely until after reference types deduplication phase. This type hash 2526 * is used to iterate over all potential canonical types, sharing same hash. 2527 * For each canonical candidate we check whether type graphs that they form 2528 * (through referenced types in fields and so on) are equivalent using algorithm 2529 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2530 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2531 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2532 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2533 * potentially map other structs/unions to their canonical representatives, 2534 * if such relationship hasn't yet been established. This speeds up algorithm 2535 * by eliminating some of the duplicate work. 2536 * 2537 * If no matching canonical representative was found, struct/union is marked 2538 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2539 * for further look ups. 2540 */ 2541 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2542 { 2543 struct btf_type *cand_type, *t; 2544 struct hashmap_entry *hash_entry; 2545 /* if we don't find equivalent type, then we are canonical */ 2546 __u32 new_id = type_id; 2547 __u16 kind; 2548 long h; 2549 2550 /* already deduped or is in process of deduping (loop detected) */ 2551 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2552 return 0; 2553 2554 t = d->btf->types[type_id]; 2555 kind = btf_kind(t); 2556 2557 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2558 return 0; 2559 2560 h = btf_hash_struct(t); 2561 for_each_dedup_cand(d, hash_entry, h) { 2562 __u32 cand_id = (__u32)(long)hash_entry->value; 2563 int eq; 2564 2565 /* 2566 * Even though btf_dedup_is_equiv() checks for 2567 * btf_shallow_equal_struct() internally when checking two 2568 * structs (unions) for equivalence, we need to guard here 2569 * from picking matching FWD type as a dedup candidate. 2570 * This can happen due to hash collision. In such case just 2571 * relying on btf_dedup_is_equiv() would lead to potentially 2572 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2573 * FWD and compatible STRUCT/UNION are considered equivalent. 2574 */ 2575 cand_type = d->btf->types[cand_id]; 2576 if (!btf_shallow_equal_struct(t, cand_type)) 2577 continue; 2578 2579 btf_dedup_clear_hypot_map(d); 2580 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2581 if (eq < 0) 2582 return eq; 2583 if (!eq) 2584 continue; 2585 new_id = cand_id; 2586 btf_dedup_merge_hypot_map(d); 2587 break; 2588 } 2589 2590 d->map[type_id] = new_id; 2591 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2592 return -ENOMEM; 2593 2594 return 0; 2595 } 2596 2597 static int btf_dedup_struct_types(struct btf_dedup *d) 2598 { 2599 int i, err; 2600 2601 for (i = 1; i <= d->btf->nr_types; i++) { 2602 err = btf_dedup_struct_type(d, i); 2603 if (err) 2604 return err; 2605 } 2606 return 0; 2607 } 2608 2609 /* 2610 * Deduplicate reference type. 2611 * 2612 * Once all primitive and struct/union types got deduplicated, we can easily 2613 * deduplicate all other (reference) BTF types. This is done in two steps: 2614 * 2615 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2616 * resolution can be done either immediately for primitive or struct/union types 2617 * (because they were deduped in previous two phases) or recursively for 2618 * reference types. Recursion will always terminate at either primitive or 2619 * struct/union type, at which point we can "unwind" chain of reference types 2620 * one by one. There is no danger of encountering cycles because in C type 2621 * system the only way to form type cycle is through struct/union, so any chain 2622 * of reference types, even those taking part in a type cycle, will inevitably 2623 * reach struct/union at some point. 2624 * 2625 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2626 * becomes "stable", in the sense that no further deduplication will cause 2627 * any changes to it. With that, it's now possible to calculate type's signature 2628 * hash (this time taking into account referenced type IDs) and loop over all 2629 * potential canonical representatives. If no match was found, current type 2630 * will become canonical representative of itself and will be added into 2631 * btf_dedup->dedup_table as another possible canonical representative. 2632 */ 2633 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2634 { 2635 struct hashmap_entry *hash_entry; 2636 __u32 new_id = type_id, cand_id; 2637 struct btf_type *t, *cand; 2638 /* if we don't find equivalent type, then we are representative type */ 2639 int ref_type_id; 2640 long h; 2641 2642 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2643 return -ELOOP; 2644 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2645 return resolve_type_id(d, type_id); 2646 2647 t = d->btf->types[type_id]; 2648 d->map[type_id] = BTF_IN_PROGRESS_ID; 2649 2650 switch (btf_kind(t)) { 2651 case BTF_KIND_CONST: 2652 case BTF_KIND_VOLATILE: 2653 case BTF_KIND_RESTRICT: 2654 case BTF_KIND_PTR: 2655 case BTF_KIND_TYPEDEF: 2656 case BTF_KIND_FUNC: 2657 ref_type_id = btf_dedup_ref_type(d, t->type); 2658 if (ref_type_id < 0) 2659 return ref_type_id; 2660 t->type = ref_type_id; 2661 2662 h = btf_hash_common(t); 2663 for_each_dedup_cand(d, hash_entry, h) { 2664 cand_id = (__u32)(long)hash_entry->value; 2665 cand = d->btf->types[cand_id]; 2666 if (btf_equal_common(t, cand)) { 2667 new_id = cand_id; 2668 break; 2669 } 2670 } 2671 break; 2672 2673 case BTF_KIND_ARRAY: { 2674 struct btf_array *info = btf_array(t); 2675 2676 ref_type_id = btf_dedup_ref_type(d, info->type); 2677 if (ref_type_id < 0) 2678 return ref_type_id; 2679 info->type = ref_type_id; 2680 2681 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2682 if (ref_type_id < 0) 2683 return ref_type_id; 2684 info->index_type = ref_type_id; 2685 2686 h = btf_hash_array(t); 2687 for_each_dedup_cand(d, hash_entry, h) { 2688 cand_id = (__u32)(long)hash_entry->value; 2689 cand = d->btf->types[cand_id]; 2690 if (btf_equal_array(t, cand)) { 2691 new_id = cand_id; 2692 break; 2693 } 2694 } 2695 break; 2696 } 2697 2698 case BTF_KIND_FUNC_PROTO: { 2699 struct btf_param *param; 2700 __u16 vlen; 2701 int i; 2702 2703 ref_type_id = btf_dedup_ref_type(d, t->type); 2704 if (ref_type_id < 0) 2705 return ref_type_id; 2706 t->type = ref_type_id; 2707 2708 vlen = btf_vlen(t); 2709 param = btf_params(t); 2710 for (i = 0; i < vlen; i++) { 2711 ref_type_id = btf_dedup_ref_type(d, param->type); 2712 if (ref_type_id < 0) 2713 return ref_type_id; 2714 param->type = ref_type_id; 2715 param++; 2716 } 2717 2718 h = btf_hash_fnproto(t); 2719 for_each_dedup_cand(d, hash_entry, h) { 2720 cand_id = (__u32)(long)hash_entry->value; 2721 cand = d->btf->types[cand_id]; 2722 if (btf_equal_fnproto(t, cand)) { 2723 new_id = cand_id; 2724 break; 2725 } 2726 } 2727 break; 2728 } 2729 2730 default: 2731 return -EINVAL; 2732 } 2733 2734 d->map[type_id] = new_id; 2735 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2736 return -ENOMEM; 2737 2738 return new_id; 2739 } 2740 2741 static int btf_dedup_ref_types(struct btf_dedup *d) 2742 { 2743 int i, err; 2744 2745 for (i = 1; i <= d->btf->nr_types; i++) { 2746 err = btf_dedup_ref_type(d, i); 2747 if (err < 0) 2748 return err; 2749 } 2750 /* we won't need d->dedup_table anymore */ 2751 hashmap__free(d->dedup_table); 2752 d->dedup_table = NULL; 2753 return 0; 2754 } 2755 2756 /* 2757 * Compact types. 2758 * 2759 * After we established for each type its corresponding canonical representative 2760 * type, we now can eliminate types that are not canonical and leave only 2761 * canonical ones layed out sequentially in memory by copying them over 2762 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2763 * a map from original type ID to a new compacted type ID, which will be used 2764 * during next phase to "fix up" type IDs, referenced from struct/union and 2765 * reference types. 2766 */ 2767 static int btf_dedup_compact_types(struct btf_dedup *d) 2768 { 2769 struct btf_type **new_types; 2770 __u32 next_type_id = 1; 2771 char *types_start, *p; 2772 int i, len; 2773 2774 /* we are going to reuse hypot_map to store compaction remapping */ 2775 d->hypot_map[0] = 0; 2776 for (i = 1; i <= d->btf->nr_types; i++) 2777 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2778 2779 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2780 p = types_start; 2781 2782 for (i = 1; i <= d->btf->nr_types; i++) { 2783 if (d->map[i] != i) 2784 continue; 2785 2786 len = btf_type_size(d->btf->types[i]); 2787 if (len < 0) 2788 return len; 2789 2790 memmove(p, d->btf->types[i], len); 2791 d->hypot_map[i] = next_type_id; 2792 d->btf->types[next_type_id] = (struct btf_type *)p; 2793 p += len; 2794 next_type_id++; 2795 } 2796 2797 /* shrink struct btf's internal types index and update btf_header */ 2798 d->btf->nr_types = next_type_id - 1; 2799 d->btf->types_size = d->btf->nr_types; 2800 d->btf->hdr->type_len = p - types_start; 2801 new_types = realloc(d->btf->types, 2802 (1 + d->btf->nr_types) * sizeof(struct btf_type *)); 2803 if (!new_types) 2804 return -ENOMEM; 2805 d->btf->types = new_types; 2806 2807 /* make sure string section follows type information without gaps */ 2808 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2809 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2810 d->btf->strings = p; 2811 p += d->btf->hdr->str_len; 2812 2813 d->btf->data_size = p - (char *)d->btf->data; 2814 return 0; 2815 } 2816 2817 /* 2818 * Figure out final (deduplicated and compacted) type ID for provided original 2819 * `type_id` by first resolving it into corresponding canonical type ID and 2820 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2821 * which is populated during compaction phase. 2822 */ 2823 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2824 { 2825 __u32 resolved_type_id, new_type_id; 2826 2827 resolved_type_id = resolve_type_id(d, type_id); 2828 new_type_id = d->hypot_map[resolved_type_id]; 2829 if (new_type_id > BTF_MAX_NR_TYPES) 2830 return -EINVAL; 2831 return new_type_id; 2832 } 2833 2834 /* 2835 * Remap referenced type IDs into deduped type IDs. 2836 * 2837 * After BTF types are deduplicated and compacted, their final type IDs may 2838 * differ from original ones. The map from original to a corresponding 2839 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2840 * compaction phase. During remapping phase we are rewriting all type IDs 2841 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2842 * their final deduped type IDs. 2843 */ 2844 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2845 { 2846 struct btf_type *t = d->btf->types[type_id]; 2847 int i, r; 2848 2849 switch (btf_kind(t)) { 2850 case BTF_KIND_INT: 2851 case BTF_KIND_ENUM: 2852 break; 2853 2854 case BTF_KIND_FWD: 2855 case BTF_KIND_CONST: 2856 case BTF_KIND_VOLATILE: 2857 case BTF_KIND_RESTRICT: 2858 case BTF_KIND_PTR: 2859 case BTF_KIND_TYPEDEF: 2860 case BTF_KIND_FUNC: 2861 case BTF_KIND_VAR: 2862 r = btf_dedup_remap_type_id(d, t->type); 2863 if (r < 0) 2864 return r; 2865 t->type = r; 2866 break; 2867 2868 case BTF_KIND_ARRAY: { 2869 struct btf_array *arr_info = btf_array(t); 2870 2871 r = btf_dedup_remap_type_id(d, arr_info->type); 2872 if (r < 0) 2873 return r; 2874 arr_info->type = r; 2875 r = btf_dedup_remap_type_id(d, arr_info->index_type); 2876 if (r < 0) 2877 return r; 2878 arr_info->index_type = r; 2879 break; 2880 } 2881 2882 case BTF_KIND_STRUCT: 2883 case BTF_KIND_UNION: { 2884 struct btf_member *member = btf_members(t); 2885 __u16 vlen = btf_vlen(t); 2886 2887 for (i = 0; i < vlen; i++) { 2888 r = btf_dedup_remap_type_id(d, member->type); 2889 if (r < 0) 2890 return r; 2891 member->type = r; 2892 member++; 2893 } 2894 break; 2895 } 2896 2897 case BTF_KIND_FUNC_PROTO: { 2898 struct btf_param *param = btf_params(t); 2899 __u16 vlen = btf_vlen(t); 2900 2901 r = btf_dedup_remap_type_id(d, t->type); 2902 if (r < 0) 2903 return r; 2904 t->type = r; 2905 2906 for (i = 0; i < vlen; i++) { 2907 r = btf_dedup_remap_type_id(d, param->type); 2908 if (r < 0) 2909 return r; 2910 param->type = r; 2911 param++; 2912 } 2913 break; 2914 } 2915 2916 case BTF_KIND_DATASEC: { 2917 struct btf_var_secinfo *var = btf_var_secinfos(t); 2918 __u16 vlen = btf_vlen(t); 2919 2920 for (i = 0; i < vlen; i++) { 2921 r = btf_dedup_remap_type_id(d, var->type); 2922 if (r < 0) 2923 return r; 2924 var->type = r; 2925 var++; 2926 } 2927 break; 2928 } 2929 2930 default: 2931 return -EINVAL; 2932 } 2933 2934 return 0; 2935 } 2936 2937 static int btf_dedup_remap_types(struct btf_dedup *d) 2938 { 2939 int i, r; 2940 2941 for (i = 1; i <= d->btf->nr_types; i++) { 2942 r = btf_dedup_remap_type(d, i); 2943 if (r < 0) 2944 return r; 2945 } 2946 return 0; 2947 } 2948 2949 static struct btf *btf_load_raw(const char *path) 2950 { 2951 struct btf *btf; 2952 size_t read_cnt; 2953 struct stat st; 2954 void *data; 2955 FILE *f; 2956 2957 if (stat(path, &st)) 2958 return ERR_PTR(-errno); 2959 2960 data = malloc(st.st_size); 2961 if (!data) 2962 return ERR_PTR(-ENOMEM); 2963 2964 f = fopen(path, "rb"); 2965 if (!f) { 2966 btf = ERR_PTR(-errno); 2967 goto cleanup; 2968 } 2969 2970 read_cnt = fread(data, 1, st.st_size, f); 2971 fclose(f); 2972 if (read_cnt < st.st_size) { 2973 btf = ERR_PTR(-EBADF); 2974 goto cleanup; 2975 } 2976 2977 btf = btf__new(data, read_cnt); 2978 2979 cleanup: 2980 free(data); 2981 return btf; 2982 } 2983 2984 /* 2985 * Probe few well-known locations for vmlinux kernel image and try to load BTF 2986 * data out of it to use for target BTF. 2987 */ 2988 struct btf *libbpf_find_kernel_btf(void) 2989 { 2990 struct { 2991 const char *path_fmt; 2992 bool raw_btf; 2993 } locations[] = { 2994 /* try canonical vmlinux BTF through sysfs first */ 2995 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 2996 /* fall back to trying to find vmlinux ELF on disk otherwise */ 2997 { "/boot/vmlinux-%1$s" }, 2998 { "/lib/modules/%1$s/vmlinux-%1$s" }, 2999 { "/lib/modules/%1$s/build/vmlinux" }, 3000 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 3001 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 3002 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 3003 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 3004 }; 3005 char path[PATH_MAX + 1]; 3006 struct utsname buf; 3007 struct btf *btf; 3008 int i; 3009 3010 uname(&buf); 3011 3012 for (i = 0; i < ARRAY_SIZE(locations); i++) { 3013 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 3014 3015 if (access(path, R_OK)) 3016 continue; 3017 3018 if (locations[i].raw_btf) 3019 btf = btf_load_raw(path); 3020 else 3021 btf = btf__parse_elf(path, NULL); 3022 3023 pr_debug("loading kernel BTF '%s': %ld\n", 3024 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 3025 if (IS_ERR(btf)) 3026 continue; 3027 3028 return btf; 3029 } 3030 3031 pr_warn("failed to find valid kernel BTF\n"); 3032 return ERR_PTR(-ESRCH); 3033 } 3034