1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 #include "str_error.h" 26 27 #define BTF_MAX_NR_TYPES 0x7fffffffU 28 #define BTF_MAX_STR_OFFSET 0x7fffffffU 29 30 static struct btf_type btf_void; 31 32 struct btf { 33 /* raw BTF data in native endianness */ 34 void *raw_data; 35 /* raw BTF data in non-native endianness */ 36 void *raw_data_swapped; 37 __u32 raw_size; 38 /* whether target endianness differs from the native one */ 39 bool swapped_endian; 40 41 /* 42 * When BTF is loaded from an ELF or raw memory it is stored 43 * in a contiguous memory block. The hdr, type_data, and, strs_data 44 * point inside that memory region to their respective parts of BTF 45 * representation: 46 * 47 * +--------------------------------+ 48 * | Header | Types | Strings | 49 * +--------------------------------+ 50 * ^ ^ ^ 51 * | | | 52 * hdr | | 53 * types_data-+ | 54 * strs_data------------+ 55 * 56 * If BTF data is later modified, e.g., due to types added or 57 * removed, BTF deduplication performed, etc, this contiguous 58 * representation is broken up into three independently allocated 59 * memory regions to be able to modify them independently. 60 * raw_data is nulled out at that point, but can be later allocated 61 * and cached again if user calls btf__raw_data(), at which point 62 * raw_data will contain a contiguous copy of header, types, and 63 * strings: 64 * 65 * +----------+ +---------+ +-----------+ 66 * | Header | | Types | | Strings | 67 * +----------+ +---------+ +-----------+ 68 * ^ ^ ^ 69 * | | | 70 * hdr | | 71 * types_data----+ | 72 * strset__data(strs_set)-----+ 73 * 74 * +----------+---------+-----------+ 75 * | Header | Types | Strings | 76 * raw_data----->+----------+---------+-----------+ 77 */ 78 struct btf_header *hdr; 79 80 void *types_data; 81 size_t types_data_cap; /* used size stored in hdr->type_len */ 82 83 /* type ID to `struct btf_type *` lookup index 84 * type_offs[0] corresponds to the first non-VOID type: 85 * - for base BTF it's type [1]; 86 * - for split BTF it's the first non-base BTF type. 87 */ 88 __u32 *type_offs; 89 size_t type_offs_cap; 90 /* number of types in this BTF instance: 91 * - doesn't include special [0] void type; 92 * - for split BTF counts number of types added on top of base BTF. 93 */ 94 __u32 nr_types; 95 /* if not NULL, points to the base BTF on top of which the current 96 * split BTF is based 97 */ 98 struct btf *base_btf; 99 /* BTF type ID of the first type in this BTF instance: 100 * - for base BTF it's equal to 1; 101 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 102 */ 103 int start_id; 104 /* logical string offset of this BTF instance: 105 * - for base BTF it's equal to 0; 106 * - for split BTF it's equal to total size of base BTF's string section size. 107 */ 108 int start_str_off; 109 110 /* only one of strs_data or strs_set can be non-NULL, depending on 111 * whether BTF is in a modifiable state (strs_set is used) or not 112 * (strs_data points inside raw_data) 113 */ 114 void *strs_data; 115 /* a set of unique strings */ 116 struct strset *strs_set; 117 /* whether strings are already deduplicated */ 118 bool strs_deduped; 119 120 /* whether base_btf should be freed in btf_free for this instance */ 121 bool owns_base; 122 123 /* BTF object FD, if loaded into kernel */ 124 int fd; 125 126 /* Pointer size (in bytes) for a target architecture of this BTF */ 127 int ptr_sz; 128 }; 129 130 static inline __u64 ptr_to_u64(const void *ptr) 131 { 132 return (__u64) (unsigned long) ptr; 133 } 134 135 /* Ensure given dynamically allocated memory region pointed to by *data* with 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 137 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 138 * are already used. At most *max_cnt* elements can be ever allocated. 139 * If necessary, memory is reallocated and all existing data is copied over, 140 * new pointer to the memory region is stored at *data, new memory region 141 * capacity (in number of elements) is stored in *cap. 142 * On success, memory pointer to the beginning of unused memory is returned. 143 * On error, NULL is returned. 144 */ 145 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 146 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 147 { 148 size_t new_cnt; 149 void *new_data; 150 151 if (cur_cnt + add_cnt <= *cap_cnt) 152 return *data + cur_cnt * elem_sz; 153 154 /* requested more than the set limit */ 155 if (cur_cnt + add_cnt > max_cnt) 156 return NULL; 157 158 new_cnt = *cap_cnt; 159 new_cnt += new_cnt / 4; /* expand by 25% */ 160 if (new_cnt < 16) /* but at least 16 elements */ 161 new_cnt = 16; 162 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 163 new_cnt = max_cnt; 164 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 165 new_cnt = cur_cnt + add_cnt; 166 167 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 168 if (!new_data) 169 return NULL; 170 171 /* zero out newly allocated portion of memory */ 172 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 173 174 *data = new_data; 175 *cap_cnt = new_cnt; 176 return new_data + cur_cnt * elem_sz; 177 } 178 179 /* Ensure given dynamically allocated memory region has enough allocated space 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 181 */ 182 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 183 { 184 void *p; 185 186 if (need_cnt <= *cap_cnt) 187 return 0; 188 189 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 190 if (!p) 191 return -ENOMEM; 192 193 return 0; 194 } 195 196 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 197 { 198 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 199 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 200 } 201 202 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 203 { 204 __u32 *p; 205 206 p = btf_add_type_offs_mem(btf, 1); 207 if (!p) 208 return -ENOMEM; 209 210 *p = type_off; 211 return 0; 212 } 213 214 static void btf_bswap_hdr(struct btf_header *h) 215 { 216 h->magic = bswap_16(h->magic); 217 h->hdr_len = bswap_32(h->hdr_len); 218 h->type_off = bswap_32(h->type_off); 219 h->type_len = bswap_32(h->type_len); 220 h->str_off = bswap_32(h->str_off); 221 h->str_len = bswap_32(h->str_len); 222 } 223 224 static int btf_parse_hdr(struct btf *btf) 225 { 226 struct btf_header *hdr = btf->hdr; 227 __u32 meta_left; 228 229 if (btf->raw_size < sizeof(struct btf_header)) { 230 pr_debug("BTF header not found\n"); 231 return -EINVAL; 232 } 233 234 if (hdr->magic == bswap_16(BTF_MAGIC)) { 235 btf->swapped_endian = true; 236 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 237 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 238 bswap_32(hdr->hdr_len)); 239 return -ENOTSUP; 240 } 241 btf_bswap_hdr(hdr); 242 } else if (hdr->magic != BTF_MAGIC) { 243 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 244 return -EINVAL; 245 } 246 247 if (btf->raw_size < hdr->hdr_len) { 248 pr_debug("BTF header len %u larger than data size %u\n", 249 hdr->hdr_len, btf->raw_size); 250 return -EINVAL; 251 } 252 253 meta_left = btf->raw_size - hdr->hdr_len; 254 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 255 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 256 return -EINVAL; 257 } 258 259 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 260 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 261 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 262 return -EINVAL; 263 } 264 265 if (hdr->type_off % 4) { 266 pr_debug("BTF type section is not aligned to 4 bytes\n"); 267 return -EINVAL; 268 } 269 270 return 0; 271 } 272 273 static int btf_parse_str_sec(struct btf *btf) 274 { 275 const struct btf_header *hdr = btf->hdr; 276 const char *start = btf->strs_data; 277 const char *end = start + btf->hdr->str_len; 278 279 if (btf->base_btf && hdr->str_len == 0) 280 return 0; 281 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 if (!btf->base_btf && start[0]) { 286 pr_debug("Invalid BTF string section\n"); 287 return -EINVAL; 288 } 289 return 0; 290 } 291 292 static int btf_type_size(const struct btf_type *t) 293 { 294 const int base_size = sizeof(struct btf_type); 295 __u16 vlen = btf_vlen(t); 296 297 switch (btf_kind(t)) { 298 case BTF_KIND_FWD: 299 case BTF_KIND_CONST: 300 case BTF_KIND_VOLATILE: 301 case BTF_KIND_RESTRICT: 302 case BTF_KIND_PTR: 303 case BTF_KIND_TYPEDEF: 304 case BTF_KIND_FUNC: 305 case BTF_KIND_FLOAT: 306 case BTF_KIND_TYPE_TAG: 307 return base_size; 308 case BTF_KIND_INT: 309 return base_size + sizeof(__u32); 310 case BTF_KIND_ENUM: 311 return base_size + vlen * sizeof(struct btf_enum); 312 case BTF_KIND_ENUM64: 313 return base_size + vlen * sizeof(struct btf_enum64); 314 case BTF_KIND_ARRAY: 315 return base_size + sizeof(struct btf_array); 316 case BTF_KIND_STRUCT: 317 case BTF_KIND_UNION: 318 return base_size + vlen * sizeof(struct btf_member); 319 case BTF_KIND_FUNC_PROTO: 320 return base_size + vlen * sizeof(struct btf_param); 321 case BTF_KIND_VAR: 322 return base_size + sizeof(struct btf_var); 323 case BTF_KIND_DATASEC: 324 return base_size + vlen * sizeof(struct btf_var_secinfo); 325 case BTF_KIND_DECL_TAG: 326 return base_size + sizeof(struct btf_decl_tag); 327 default: 328 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 329 return -EINVAL; 330 } 331 } 332 333 static void btf_bswap_type_base(struct btf_type *t) 334 { 335 t->name_off = bswap_32(t->name_off); 336 t->info = bswap_32(t->info); 337 t->type = bswap_32(t->type); 338 } 339 340 static int btf_bswap_type_rest(struct btf_type *t) 341 { 342 struct btf_var_secinfo *v; 343 struct btf_enum64 *e64; 344 struct btf_member *m; 345 struct btf_array *a; 346 struct btf_param *p; 347 struct btf_enum *e; 348 __u16 vlen = btf_vlen(t); 349 int i; 350 351 switch (btf_kind(t)) { 352 case BTF_KIND_FWD: 353 case BTF_KIND_CONST: 354 case BTF_KIND_VOLATILE: 355 case BTF_KIND_RESTRICT: 356 case BTF_KIND_PTR: 357 case BTF_KIND_TYPEDEF: 358 case BTF_KIND_FUNC: 359 case BTF_KIND_FLOAT: 360 case BTF_KIND_TYPE_TAG: 361 return 0; 362 case BTF_KIND_INT: 363 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 364 return 0; 365 case BTF_KIND_ENUM: 366 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 367 e->name_off = bswap_32(e->name_off); 368 e->val = bswap_32(e->val); 369 } 370 return 0; 371 case BTF_KIND_ENUM64: 372 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 373 e64->name_off = bswap_32(e64->name_off); 374 e64->val_lo32 = bswap_32(e64->val_lo32); 375 e64->val_hi32 = bswap_32(e64->val_hi32); 376 } 377 return 0; 378 case BTF_KIND_ARRAY: 379 a = btf_array(t); 380 a->type = bswap_32(a->type); 381 a->index_type = bswap_32(a->index_type); 382 a->nelems = bswap_32(a->nelems); 383 return 0; 384 case BTF_KIND_STRUCT: 385 case BTF_KIND_UNION: 386 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 387 m->name_off = bswap_32(m->name_off); 388 m->type = bswap_32(m->type); 389 m->offset = bswap_32(m->offset); 390 } 391 return 0; 392 case BTF_KIND_FUNC_PROTO: 393 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 394 p->name_off = bswap_32(p->name_off); 395 p->type = bswap_32(p->type); 396 } 397 return 0; 398 case BTF_KIND_VAR: 399 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 400 return 0; 401 case BTF_KIND_DATASEC: 402 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 403 v->type = bswap_32(v->type); 404 v->offset = bswap_32(v->offset); 405 v->size = bswap_32(v->size); 406 } 407 return 0; 408 case BTF_KIND_DECL_TAG: 409 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 410 return 0; 411 default: 412 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 413 return -EINVAL; 414 } 415 } 416 417 static int btf_parse_type_sec(struct btf *btf) 418 { 419 struct btf_header *hdr = btf->hdr; 420 void *next_type = btf->types_data; 421 void *end_type = next_type + hdr->type_len; 422 int err, type_size; 423 424 while (next_type + sizeof(struct btf_type) <= end_type) { 425 if (btf->swapped_endian) 426 btf_bswap_type_base(next_type); 427 428 type_size = btf_type_size(next_type); 429 if (type_size < 0) 430 return type_size; 431 if (next_type + type_size > end_type) { 432 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 433 return -EINVAL; 434 } 435 436 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 437 return -EINVAL; 438 439 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 440 if (err) 441 return err; 442 443 next_type += type_size; 444 btf->nr_types++; 445 } 446 447 if (next_type != end_type) { 448 pr_warn("BTF types data is malformed\n"); 449 return -EINVAL; 450 } 451 452 return 0; 453 } 454 455 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) 456 { 457 const char *s; 458 459 s = btf__str_by_offset(btf, str_off); 460 if (!s) { 461 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); 462 return -EINVAL; 463 } 464 465 return 0; 466 } 467 468 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) 469 { 470 const struct btf_type *t; 471 472 t = btf__type_by_id(btf, id); 473 if (!t) { 474 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); 475 return -EINVAL; 476 } 477 478 return 0; 479 } 480 481 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) 482 { 483 __u32 kind = btf_kind(t); 484 int err, i, n; 485 486 err = btf_validate_str(btf, t->name_off, "type name", id); 487 if (err) 488 return err; 489 490 switch (kind) { 491 case BTF_KIND_UNKN: 492 case BTF_KIND_INT: 493 case BTF_KIND_FWD: 494 case BTF_KIND_FLOAT: 495 break; 496 case BTF_KIND_PTR: 497 case BTF_KIND_TYPEDEF: 498 case BTF_KIND_VOLATILE: 499 case BTF_KIND_CONST: 500 case BTF_KIND_RESTRICT: 501 case BTF_KIND_VAR: 502 case BTF_KIND_DECL_TAG: 503 case BTF_KIND_TYPE_TAG: 504 err = btf_validate_id(btf, t->type, id); 505 if (err) 506 return err; 507 break; 508 case BTF_KIND_ARRAY: { 509 const struct btf_array *a = btf_array(t); 510 511 err = btf_validate_id(btf, a->type, id); 512 err = err ?: btf_validate_id(btf, a->index_type, id); 513 if (err) 514 return err; 515 break; 516 } 517 case BTF_KIND_STRUCT: 518 case BTF_KIND_UNION: { 519 const struct btf_member *m = btf_members(t); 520 521 n = btf_vlen(t); 522 for (i = 0; i < n; i++, m++) { 523 err = btf_validate_str(btf, m->name_off, "field name", id); 524 err = err ?: btf_validate_id(btf, m->type, id); 525 if (err) 526 return err; 527 } 528 break; 529 } 530 case BTF_KIND_ENUM: { 531 const struct btf_enum *m = btf_enum(t); 532 533 n = btf_vlen(t); 534 for (i = 0; i < n; i++, m++) { 535 err = btf_validate_str(btf, m->name_off, "enum name", id); 536 if (err) 537 return err; 538 } 539 break; 540 } 541 case BTF_KIND_ENUM64: { 542 const struct btf_enum64 *m = btf_enum64(t); 543 544 n = btf_vlen(t); 545 for (i = 0; i < n; i++, m++) { 546 err = btf_validate_str(btf, m->name_off, "enum name", id); 547 if (err) 548 return err; 549 } 550 break; 551 } 552 case BTF_KIND_FUNC: { 553 const struct btf_type *ft; 554 555 err = btf_validate_id(btf, t->type, id); 556 if (err) 557 return err; 558 ft = btf__type_by_id(btf, t->type); 559 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { 560 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); 561 return -EINVAL; 562 } 563 break; 564 } 565 case BTF_KIND_FUNC_PROTO: { 566 const struct btf_param *m = btf_params(t); 567 568 n = btf_vlen(t); 569 for (i = 0; i < n; i++, m++) { 570 err = btf_validate_str(btf, m->name_off, "param name", id); 571 err = err ?: btf_validate_id(btf, m->type, id); 572 if (err) 573 return err; 574 } 575 break; 576 } 577 case BTF_KIND_DATASEC: { 578 const struct btf_var_secinfo *m = btf_var_secinfos(t); 579 580 n = btf_vlen(t); 581 for (i = 0; i < n; i++, m++) { 582 err = btf_validate_id(btf, m->type, id); 583 if (err) 584 return err; 585 } 586 break; 587 } 588 default: 589 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); 590 return -EINVAL; 591 } 592 return 0; 593 } 594 595 /* Validate basic sanity of BTF. It's intentionally less thorough than 596 * kernel's validation and validates only properties of BTF that libbpf relies 597 * on to be correct (e.g., valid type IDs, valid string offsets, etc) 598 */ 599 static int btf_sanity_check(const struct btf *btf) 600 { 601 const struct btf_type *t; 602 __u32 i, n = btf__type_cnt(btf); 603 int err; 604 605 for (i = btf->start_id; i < n; i++) { 606 t = btf_type_by_id(btf, i); 607 err = btf_validate_type(btf, t, i); 608 if (err) 609 return err; 610 } 611 return 0; 612 } 613 614 __u32 btf__type_cnt(const struct btf *btf) 615 { 616 return btf->start_id + btf->nr_types; 617 } 618 619 const struct btf *btf__base_btf(const struct btf *btf) 620 { 621 return btf->base_btf; 622 } 623 624 /* internal helper returning non-const pointer to a type */ 625 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 626 { 627 if (type_id == 0) 628 return &btf_void; 629 if (type_id < btf->start_id) 630 return btf_type_by_id(btf->base_btf, type_id); 631 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 632 } 633 634 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 635 { 636 if (type_id >= btf->start_id + btf->nr_types) 637 return errno = EINVAL, NULL; 638 return btf_type_by_id((struct btf *)btf, type_id); 639 } 640 641 static int determine_ptr_size(const struct btf *btf) 642 { 643 static const char * const long_aliases[] = { 644 "long", 645 "long int", 646 "int long", 647 "unsigned long", 648 "long unsigned", 649 "unsigned long int", 650 "unsigned int long", 651 "long unsigned int", 652 "long int unsigned", 653 "int unsigned long", 654 "int long unsigned", 655 }; 656 const struct btf_type *t; 657 const char *name; 658 int i, j, n; 659 660 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 661 return btf->base_btf->ptr_sz; 662 663 n = btf__type_cnt(btf); 664 for (i = 1; i < n; i++) { 665 t = btf__type_by_id(btf, i); 666 if (!btf_is_int(t)) 667 continue; 668 669 if (t->size != 4 && t->size != 8) 670 continue; 671 672 name = btf__name_by_offset(btf, t->name_off); 673 if (!name) 674 continue; 675 676 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 677 if (strcmp(name, long_aliases[j]) == 0) 678 return t->size; 679 } 680 } 681 682 return -1; 683 } 684 685 static size_t btf_ptr_sz(const struct btf *btf) 686 { 687 if (!btf->ptr_sz) 688 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 689 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 690 } 691 692 /* Return pointer size this BTF instance assumes. The size is heuristically 693 * determined by looking for 'long' or 'unsigned long' integer type and 694 * recording its size in bytes. If BTF type information doesn't have any such 695 * type, this function returns 0. In the latter case, native architecture's 696 * pointer size is assumed, so will be either 4 or 8, depending on 697 * architecture that libbpf was compiled for. It's possible to override 698 * guessed value by using btf__set_pointer_size() API. 699 */ 700 size_t btf__pointer_size(const struct btf *btf) 701 { 702 if (!btf->ptr_sz) 703 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 704 705 if (btf->ptr_sz < 0) 706 /* not enough BTF type info to guess */ 707 return 0; 708 709 return btf->ptr_sz; 710 } 711 712 /* Override or set pointer size in bytes. Only values of 4 and 8 are 713 * supported. 714 */ 715 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 716 { 717 if (ptr_sz != 4 && ptr_sz != 8) 718 return libbpf_err(-EINVAL); 719 btf->ptr_sz = ptr_sz; 720 return 0; 721 } 722 723 static bool is_host_big_endian(void) 724 { 725 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 726 return false; 727 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 728 return true; 729 #else 730 # error "Unrecognized __BYTE_ORDER__" 731 #endif 732 } 733 734 enum btf_endianness btf__endianness(const struct btf *btf) 735 { 736 if (is_host_big_endian()) 737 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 738 else 739 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 740 } 741 742 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 743 { 744 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 745 return libbpf_err(-EINVAL); 746 747 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 748 if (!btf->swapped_endian) { 749 free(btf->raw_data_swapped); 750 btf->raw_data_swapped = NULL; 751 } 752 return 0; 753 } 754 755 static bool btf_type_is_void(const struct btf_type *t) 756 { 757 return t == &btf_void || btf_is_fwd(t); 758 } 759 760 static bool btf_type_is_void_or_null(const struct btf_type *t) 761 { 762 return !t || btf_type_is_void(t); 763 } 764 765 #define MAX_RESOLVE_DEPTH 32 766 767 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 768 { 769 const struct btf_array *array; 770 const struct btf_type *t; 771 __u32 nelems = 1; 772 __s64 size = -1; 773 int i; 774 775 t = btf__type_by_id(btf, type_id); 776 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 777 switch (btf_kind(t)) { 778 case BTF_KIND_INT: 779 case BTF_KIND_STRUCT: 780 case BTF_KIND_UNION: 781 case BTF_KIND_ENUM: 782 case BTF_KIND_ENUM64: 783 case BTF_KIND_DATASEC: 784 case BTF_KIND_FLOAT: 785 size = t->size; 786 goto done; 787 case BTF_KIND_PTR: 788 size = btf_ptr_sz(btf); 789 goto done; 790 case BTF_KIND_TYPEDEF: 791 case BTF_KIND_VOLATILE: 792 case BTF_KIND_CONST: 793 case BTF_KIND_RESTRICT: 794 case BTF_KIND_VAR: 795 case BTF_KIND_DECL_TAG: 796 case BTF_KIND_TYPE_TAG: 797 type_id = t->type; 798 break; 799 case BTF_KIND_ARRAY: 800 array = btf_array(t); 801 if (nelems && array->nelems > UINT32_MAX / nelems) 802 return libbpf_err(-E2BIG); 803 nelems *= array->nelems; 804 type_id = array->type; 805 break; 806 default: 807 return libbpf_err(-EINVAL); 808 } 809 810 t = btf__type_by_id(btf, type_id); 811 } 812 813 done: 814 if (size < 0) 815 return libbpf_err(-EINVAL); 816 if (nelems && size > UINT32_MAX / nelems) 817 return libbpf_err(-E2BIG); 818 819 return nelems * size; 820 } 821 822 int btf__align_of(const struct btf *btf, __u32 id) 823 { 824 const struct btf_type *t = btf__type_by_id(btf, id); 825 __u16 kind = btf_kind(t); 826 827 switch (kind) { 828 case BTF_KIND_INT: 829 case BTF_KIND_ENUM: 830 case BTF_KIND_ENUM64: 831 case BTF_KIND_FLOAT: 832 return min(btf_ptr_sz(btf), (size_t)t->size); 833 case BTF_KIND_PTR: 834 return btf_ptr_sz(btf); 835 case BTF_KIND_TYPEDEF: 836 case BTF_KIND_VOLATILE: 837 case BTF_KIND_CONST: 838 case BTF_KIND_RESTRICT: 839 case BTF_KIND_TYPE_TAG: 840 return btf__align_of(btf, t->type); 841 case BTF_KIND_ARRAY: 842 return btf__align_of(btf, btf_array(t)->type); 843 case BTF_KIND_STRUCT: 844 case BTF_KIND_UNION: { 845 const struct btf_member *m = btf_members(t); 846 __u16 vlen = btf_vlen(t); 847 int i, max_align = 1, align; 848 849 for (i = 0; i < vlen; i++, m++) { 850 align = btf__align_of(btf, m->type); 851 if (align <= 0) 852 return libbpf_err(align); 853 max_align = max(max_align, align); 854 855 /* if field offset isn't aligned according to field 856 * type's alignment, then struct must be packed 857 */ 858 if (btf_member_bitfield_size(t, i) == 0 && 859 (m->offset % (8 * align)) != 0) 860 return 1; 861 } 862 863 /* if struct/union size isn't a multiple of its alignment, 864 * then struct must be packed 865 */ 866 if ((t->size % max_align) != 0) 867 return 1; 868 869 return max_align; 870 } 871 default: 872 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 873 return errno = EINVAL, 0; 874 } 875 } 876 877 int btf__resolve_type(const struct btf *btf, __u32 type_id) 878 { 879 const struct btf_type *t; 880 int depth = 0; 881 882 t = btf__type_by_id(btf, type_id); 883 while (depth < MAX_RESOLVE_DEPTH && 884 !btf_type_is_void_or_null(t) && 885 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 886 type_id = t->type; 887 t = btf__type_by_id(btf, type_id); 888 depth++; 889 } 890 891 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 892 return libbpf_err(-EINVAL); 893 894 return type_id; 895 } 896 897 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 898 { 899 __u32 i, nr_types = btf__type_cnt(btf); 900 901 if (!strcmp(type_name, "void")) 902 return 0; 903 904 for (i = 1; i < nr_types; i++) { 905 const struct btf_type *t = btf__type_by_id(btf, i); 906 const char *name = btf__name_by_offset(btf, t->name_off); 907 908 if (name && !strcmp(type_name, name)) 909 return i; 910 } 911 912 return libbpf_err(-ENOENT); 913 } 914 915 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 916 const char *type_name, __u32 kind) 917 { 918 __u32 i, nr_types = btf__type_cnt(btf); 919 920 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 921 return 0; 922 923 for (i = start_id; i < nr_types; i++) { 924 const struct btf_type *t = btf__type_by_id(btf, i); 925 const char *name; 926 927 if (btf_kind(t) != kind) 928 continue; 929 name = btf__name_by_offset(btf, t->name_off); 930 if (name && !strcmp(type_name, name)) 931 return i; 932 } 933 934 return libbpf_err(-ENOENT); 935 } 936 937 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 938 __u32 kind) 939 { 940 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 941 } 942 943 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 944 __u32 kind) 945 { 946 return btf_find_by_name_kind(btf, 1, type_name, kind); 947 } 948 949 static bool btf_is_modifiable(const struct btf *btf) 950 { 951 return (void *)btf->hdr != btf->raw_data; 952 } 953 954 void btf__free(struct btf *btf) 955 { 956 if (IS_ERR_OR_NULL(btf)) 957 return; 958 959 if (btf->fd >= 0) 960 close(btf->fd); 961 962 if (btf_is_modifiable(btf)) { 963 /* if BTF was modified after loading, it will have a split 964 * in-memory representation for header, types, and strings 965 * sections, so we need to free all of them individually. It 966 * might still have a cached contiguous raw data present, 967 * which will be unconditionally freed below. 968 */ 969 free(btf->hdr); 970 free(btf->types_data); 971 strset__free(btf->strs_set); 972 } 973 free(btf->raw_data); 974 free(btf->raw_data_swapped); 975 free(btf->type_offs); 976 if (btf->owns_base) 977 btf__free(btf->base_btf); 978 free(btf); 979 } 980 981 static struct btf *btf_new_empty(struct btf *base_btf) 982 { 983 struct btf *btf; 984 985 btf = calloc(1, sizeof(*btf)); 986 if (!btf) 987 return ERR_PTR(-ENOMEM); 988 989 btf->nr_types = 0; 990 btf->start_id = 1; 991 btf->start_str_off = 0; 992 btf->fd = -1; 993 btf->ptr_sz = sizeof(void *); 994 btf->swapped_endian = false; 995 996 if (base_btf) { 997 btf->base_btf = base_btf; 998 btf->start_id = btf__type_cnt(base_btf); 999 btf->start_str_off = base_btf->hdr->str_len; 1000 btf->swapped_endian = base_btf->swapped_endian; 1001 } 1002 1003 /* +1 for empty string at offset 0 */ 1004 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 1005 btf->raw_data = calloc(1, btf->raw_size); 1006 if (!btf->raw_data) { 1007 free(btf); 1008 return ERR_PTR(-ENOMEM); 1009 } 1010 1011 btf->hdr = btf->raw_data; 1012 btf->hdr->hdr_len = sizeof(struct btf_header); 1013 btf->hdr->magic = BTF_MAGIC; 1014 btf->hdr->version = BTF_VERSION; 1015 1016 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 1017 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 1018 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 1019 1020 return btf; 1021 } 1022 1023 struct btf *btf__new_empty(void) 1024 { 1025 return libbpf_ptr(btf_new_empty(NULL)); 1026 } 1027 1028 struct btf *btf__new_empty_split(struct btf *base_btf) 1029 { 1030 return libbpf_ptr(btf_new_empty(base_btf)); 1031 } 1032 1033 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 1034 { 1035 struct btf *btf; 1036 int err; 1037 1038 btf = calloc(1, sizeof(struct btf)); 1039 if (!btf) 1040 return ERR_PTR(-ENOMEM); 1041 1042 btf->nr_types = 0; 1043 btf->start_id = 1; 1044 btf->start_str_off = 0; 1045 btf->fd = -1; 1046 1047 if (base_btf) { 1048 btf->base_btf = base_btf; 1049 btf->start_id = btf__type_cnt(base_btf); 1050 btf->start_str_off = base_btf->hdr->str_len; 1051 } 1052 1053 btf->raw_data = malloc(size); 1054 if (!btf->raw_data) { 1055 err = -ENOMEM; 1056 goto done; 1057 } 1058 memcpy(btf->raw_data, data, size); 1059 btf->raw_size = size; 1060 1061 btf->hdr = btf->raw_data; 1062 err = btf_parse_hdr(btf); 1063 if (err) 1064 goto done; 1065 1066 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 1067 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 1068 1069 err = btf_parse_str_sec(btf); 1070 err = err ?: btf_parse_type_sec(btf); 1071 err = err ?: btf_sanity_check(btf); 1072 if (err) 1073 goto done; 1074 1075 done: 1076 if (err) { 1077 btf__free(btf); 1078 return ERR_PTR(err); 1079 } 1080 1081 return btf; 1082 } 1083 1084 struct btf *btf__new(const void *data, __u32 size) 1085 { 1086 return libbpf_ptr(btf_new(data, size, NULL)); 1087 } 1088 1089 struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf) 1090 { 1091 return libbpf_ptr(btf_new(data, size, base_btf)); 1092 } 1093 1094 struct btf_elf_secs { 1095 Elf_Data *btf_data; 1096 Elf_Data *btf_ext_data; 1097 Elf_Data *btf_base_data; 1098 }; 1099 1100 static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs) 1101 { 1102 Elf_Scn *scn = NULL; 1103 Elf_Data *data; 1104 GElf_Ehdr ehdr; 1105 size_t shstrndx; 1106 int idx = 0; 1107 1108 if (!gelf_getehdr(elf, &ehdr)) { 1109 pr_warn("failed to get EHDR from %s\n", path); 1110 goto err; 1111 } 1112 1113 if (elf_getshdrstrndx(elf, &shstrndx)) { 1114 pr_warn("failed to get section names section index for %s\n", 1115 path); 1116 goto err; 1117 } 1118 1119 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 1120 pr_warn("failed to get e_shstrndx from %s\n", path); 1121 goto err; 1122 } 1123 1124 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1125 Elf_Data **field; 1126 GElf_Shdr sh; 1127 char *name; 1128 1129 idx++; 1130 if (gelf_getshdr(scn, &sh) != &sh) { 1131 pr_warn("failed to get section(%d) header from %s\n", 1132 idx, path); 1133 goto err; 1134 } 1135 name = elf_strptr(elf, shstrndx, sh.sh_name); 1136 if (!name) { 1137 pr_warn("failed to get section(%d) name from %s\n", 1138 idx, path); 1139 goto err; 1140 } 1141 1142 if (strcmp(name, BTF_ELF_SEC) == 0) 1143 field = &secs->btf_data; 1144 else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) 1145 field = &secs->btf_ext_data; 1146 else if (strcmp(name, BTF_BASE_ELF_SEC) == 0) 1147 field = &secs->btf_base_data; 1148 else 1149 continue; 1150 1151 data = elf_getdata(scn, 0); 1152 if (!data) { 1153 pr_warn("failed to get section(%d, %s) data from %s\n", 1154 idx, name, path); 1155 goto err; 1156 } 1157 *field = data; 1158 } 1159 1160 return 0; 1161 1162 err: 1163 return -LIBBPF_ERRNO__FORMAT; 1164 } 1165 1166 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 1167 struct btf_ext **btf_ext) 1168 { 1169 struct btf_elf_secs secs = {}; 1170 struct btf *dist_base_btf = NULL; 1171 struct btf *btf = NULL; 1172 int err = 0, fd = -1; 1173 Elf *elf = NULL; 1174 1175 if (elf_version(EV_CURRENT) == EV_NONE) { 1176 pr_warn("failed to init libelf for %s\n", path); 1177 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 1178 } 1179 1180 fd = open(path, O_RDONLY | O_CLOEXEC); 1181 if (fd < 0) { 1182 err = -errno; 1183 pr_warn("failed to open %s: %s\n", path, errstr(err)); 1184 return ERR_PTR(err); 1185 } 1186 1187 elf = elf_begin(fd, ELF_C_READ, NULL); 1188 if (!elf) { 1189 pr_warn("failed to open %s as ELF file\n", path); 1190 goto done; 1191 } 1192 1193 err = btf_find_elf_sections(elf, path, &secs); 1194 if (err) 1195 goto done; 1196 1197 if (!secs.btf_data) { 1198 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1199 err = -ENODATA; 1200 goto done; 1201 } 1202 1203 if (secs.btf_base_data) { 1204 dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size, 1205 NULL); 1206 if (IS_ERR(dist_base_btf)) { 1207 err = PTR_ERR(dist_base_btf); 1208 dist_base_btf = NULL; 1209 goto done; 1210 } 1211 } 1212 1213 btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size, 1214 dist_base_btf ?: base_btf); 1215 if (IS_ERR(btf)) { 1216 err = PTR_ERR(btf); 1217 goto done; 1218 } 1219 if (dist_base_btf && base_btf) { 1220 err = btf__relocate(btf, base_btf); 1221 if (err) 1222 goto done; 1223 btf__free(dist_base_btf); 1224 dist_base_btf = NULL; 1225 } 1226 1227 if (dist_base_btf) 1228 btf->owns_base = true; 1229 1230 switch (gelf_getclass(elf)) { 1231 case ELFCLASS32: 1232 btf__set_pointer_size(btf, 4); 1233 break; 1234 case ELFCLASS64: 1235 btf__set_pointer_size(btf, 8); 1236 break; 1237 default: 1238 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1239 break; 1240 } 1241 1242 if (btf_ext && secs.btf_ext_data) { 1243 *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size); 1244 if (IS_ERR(*btf_ext)) { 1245 err = PTR_ERR(*btf_ext); 1246 goto done; 1247 } 1248 } else if (btf_ext) { 1249 *btf_ext = NULL; 1250 } 1251 done: 1252 if (elf) 1253 elf_end(elf); 1254 close(fd); 1255 1256 if (!err) 1257 return btf; 1258 1259 if (btf_ext) 1260 btf_ext__free(*btf_ext); 1261 btf__free(dist_base_btf); 1262 btf__free(btf); 1263 1264 return ERR_PTR(err); 1265 } 1266 1267 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1268 { 1269 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1270 } 1271 1272 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1273 { 1274 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1275 } 1276 1277 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1278 { 1279 struct btf *btf = NULL; 1280 void *data = NULL; 1281 FILE *f = NULL; 1282 __u16 magic; 1283 int err = 0; 1284 long sz; 1285 1286 f = fopen(path, "rbe"); 1287 if (!f) { 1288 err = -errno; 1289 goto err_out; 1290 } 1291 1292 /* check BTF magic */ 1293 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1294 err = -EIO; 1295 goto err_out; 1296 } 1297 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1298 /* definitely not a raw BTF */ 1299 err = -EPROTO; 1300 goto err_out; 1301 } 1302 1303 /* get file size */ 1304 if (fseek(f, 0, SEEK_END)) { 1305 err = -errno; 1306 goto err_out; 1307 } 1308 sz = ftell(f); 1309 if (sz < 0) { 1310 err = -errno; 1311 goto err_out; 1312 } 1313 /* rewind to the start */ 1314 if (fseek(f, 0, SEEK_SET)) { 1315 err = -errno; 1316 goto err_out; 1317 } 1318 1319 /* pre-alloc memory and read all of BTF data */ 1320 data = malloc(sz); 1321 if (!data) { 1322 err = -ENOMEM; 1323 goto err_out; 1324 } 1325 if (fread(data, 1, sz, f) < sz) { 1326 err = -EIO; 1327 goto err_out; 1328 } 1329 1330 /* finally parse BTF data */ 1331 btf = btf_new(data, sz, base_btf); 1332 1333 err_out: 1334 free(data); 1335 if (f) 1336 fclose(f); 1337 return err ? ERR_PTR(err) : btf; 1338 } 1339 1340 struct btf *btf__parse_raw(const char *path) 1341 { 1342 return libbpf_ptr(btf_parse_raw(path, NULL)); 1343 } 1344 1345 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1346 { 1347 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1348 } 1349 1350 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1351 { 1352 struct btf *btf; 1353 int err; 1354 1355 if (btf_ext) 1356 *btf_ext = NULL; 1357 1358 btf = btf_parse_raw(path, base_btf); 1359 err = libbpf_get_error(btf); 1360 if (!err) 1361 return btf; 1362 if (err != -EPROTO) 1363 return ERR_PTR(err); 1364 return btf_parse_elf(path, base_btf, btf_ext); 1365 } 1366 1367 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1368 { 1369 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1370 } 1371 1372 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1373 { 1374 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1375 } 1376 1377 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1378 1379 int btf_load_into_kernel(struct btf *btf, 1380 char *log_buf, size_t log_sz, __u32 log_level, 1381 int token_fd) 1382 { 1383 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1384 __u32 buf_sz = 0, raw_size; 1385 char *buf = NULL, *tmp; 1386 void *raw_data; 1387 int err = 0; 1388 1389 if (btf->fd >= 0) 1390 return libbpf_err(-EEXIST); 1391 if (log_sz && !log_buf) 1392 return libbpf_err(-EINVAL); 1393 1394 /* cache native raw data representation */ 1395 raw_data = btf_get_raw_data(btf, &raw_size, false); 1396 if (!raw_data) { 1397 err = -ENOMEM; 1398 goto done; 1399 } 1400 btf->raw_size = raw_size; 1401 btf->raw_data = raw_data; 1402 1403 retry_load: 1404 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1405 * initially. Only if BTF loading fails, we bump log_level to 1 and 1406 * retry, using either auto-allocated or custom log_buf. This way 1407 * non-NULL custom log_buf provides a buffer just in case, but hopes 1408 * for successful load and no need for log_buf. 1409 */ 1410 if (log_level) { 1411 /* if caller didn't provide custom log_buf, we'll keep 1412 * allocating our own progressively bigger buffers for BTF 1413 * verification log 1414 */ 1415 if (!log_buf) { 1416 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1417 tmp = realloc(buf, buf_sz); 1418 if (!tmp) { 1419 err = -ENOMEM; 1420 goto done; 1421 } 1422 buf = tmp; 1423 buf[0] = '\0'; 1424 } 1425 1426 opts.log_buf = log_buf ? log_buf : buf; 1427 opts.log_size = log_buf ? log_sz : buf_sz; 1428 opts.log_level = log_level; 1429 } 1430 1431 opts.token_fd = token_fd; 1432 if (token_fd) 1433 opts.btf_flags |= BPF_F_TOKEN_FD; 1434 1435 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1436 if (btf->fd < 0) { 1437 /* time to turn on verbose mode and try again */ 1438 if (log_level == 0) { 1439 log_level = 1; 1440 goto retry_load; 1441 } 1442 /* only retry if caller didn't provide custom log_buf, but 1443 * make sure we can never overflow buf_sz 1444 */ 1445 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1446 goto retry_load; 1447 1448 err = -errno; 1449 pr_warn("BTF loading error: %s\n", errstr(err)); 1450 /* don't print out contents of custom log_buf */ 1451 if (!log_buf && buf[0]) 1452 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1453 } 1454 1455 done: 1456 free(buf); 1457 return libbpf_err(err); 1458 } 1459 1460 int btf__load_into_kernel(struct btf *btf) 1461 { 1462 return btf_load_into_kernel(btf, NULL, 0, 0, 0); 1463 } 1464 1465 int btf__fd(const struct btf *btf) 1466 { 1467 return btf->fd; 1468 } 1469 1470 void btf__set_fd(struct btf *btf, int fd) 1471 { 1472 btf->fd = fd; 1473 } 1474 1475 static const void *btf_strs_data(const struct btf *btf) 1476 { 1477 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1478 } 1479 1480 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1481 { 1482 struct btf_header *hdr = btf->hdr; 1483 struct btf_type *t; 1484 void *data, *p; 1485 __u32 data_sz; 1486 int i; 1487 1488 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1489 if (data) { 1490 *size = btf->raw_size; 1491 return data; 1492 } 1493 1494 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1495 data = calloc(1, data_sz); 1496 if (!data) 1497 return NULL; 1498 p = data; 1499 1500 memcpy(p, hdr, hdr->hdr_len); 1501 if (swap_endian) 1502 btf_bswap_hdr(p); 1503 p += hdr->hdr_len; 1504 1505 memcpy(p, btf->types_data, hdr->type_len); 1506 if (swap_endian) { 1507 for (i = 0; i < btf->nr_types; i++) { 1508 t = p + btf->type_offs[i]; 1509 /* btf_bswap_type_rest() relies on native t->info, so 1510 * we swap base type info after we swapped all the 1511 * additional information 1512 */ 1513 if (btf_bswap_type_rest(t)) 1514 goto err_out; 1515 btf_bswap_type_base(t); 1516 } 1517 } 1518 p += hdr->type_len; 1519 1520 memcpy(p, btf_strs_data(btf), hdr->str_len); 1521 p += hdr->str_len; 1522 1523 *size = data_sz; 1524 return data; 1525 err_out: 1526 free(data); 1527 return NULL; 1528 } 1529 1530 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1531 { 1532 struct btf *btf = (struct btf *)btf_ro; 1533 __u32 data_sz; 1534 void *data; 1535 1536 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1537 if (!data) 1538 return errno = ENOMEM, NULL; 1539 1540 btf->raw_size = data_sz; 1541 if (btf->swapped_endian) 1542 btf->raw_data_swapped = data; 1543 else 1544 btf->raw_data = data; 1545 *size = data_sz; 1546 return data; 1547 } 1548 1549 __attribute__((alias("btf__raw_data"))) 1550 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1551 1552 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1553 { 1554 if (offset < btf->start_str_off) 1555 return btf__str_by_offset(btf->base_btf, offset); 1556 else if (offset - btf->start_str_off < btf->hdr->str_len) 1557 return btf_strs_data(btf) + (offset - btf->start_str_off); 1558 else 1559 return errno = EINVAL, NULL; 1560 } 1561 1562 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1563 { 1564 return btf__str_by_offset(btf, offset); 1565 } 1566 1567 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1568 { 1569 struct bpf_btf_info btf_info; 1570 __u32 len = sizeof(btf_info); 1571 __u32 last_size; 1572 struct btf *btf; 1573 void *ptr; 1574 int err; 1575 1576 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1577 * let's start with a sane default - 4KiB here - and resize it only if 1578 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1579 */ 1580 last_size = 4096; 1581 ptr = malloc(last_size); 1582 if (!ptr) 1583 return ERR_PTR(-ENOMEM); 1584 1585 memset(&btf_info, 0, sizeof(btf_info)); 1586 btf_info.btf = ptr_to_u64(ptr); 1587 btf_info.btf_size = last_size; 1588 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1589 1590 if (!err && btf_info.btf_size > last_size) { 1591 void *temp_ptr; 1592 1593 last_size = btf_info.btf_size; 1594 temp_ptr = realloc(ptr, last_size); 1595 if (!temp_ptr) { 1596 btf = ERR_PTR(-ENOMEM); 1597 goto exit_free; 1598 } 1599 ptr = temp_ptr; 1600 1601 len = sizeof(btf_info); 1602 memset(&btf_info, 0, sizeof(btf_info)); 1603 btf_info.btf = ptr_to_u64(ptr); 1604 btf_info.btf_size = last_size; 1605 1606 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1607 } 1608 1609 if (err || btf_info.btf_size > last_size) { 1610 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1611 goto exit_free; 1612 } 1613 1614 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1615 1616 exit_free: 1617 free(ptr); 1618 return btf; 1619 } 1620 1621 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1622 { 1623 struct btf *btf; 1624 int btf_fd; 1625 1626 btf_fd = bpf_btf_get_fd_by_id(id); 1627 if (btf_fd < 0) 1628 return libbpf_err_ptr(-errno); 1629 1630 btf = btf_get_from_fd(btf_fd, base_btf); 1631 close(btf_fd); 1632 1633 return libbpf_ptr(btf); 1634 } 1635 1636 struct btf *btf__load_from_kernel_by_id(__u32 id) 1637 { 1638 return btf__load_from_kernel_by_id_split(id, NULL); 1639 } 1640 1641 static void btf_invalidate_raw_data(struct btf *btf) 1642 { 1643 if (btf->raw_data) { 1644 free(btf->raw_data); 1645 btf->raw_data = NULL; 1646 } 1647 if (btf->raw_data_swapped) { 1648 free(btf->raw_data_swapped); 1649 btf->raw_data_swapped = NULL; 1650 } 1651 } 1652 1653 /* Ensure BTF is ready to be modified (by splitting into a three memory 1654 * regions for header, types, and strings). Also invalidate cached 1655 * raw_data, if any. 1656 */ 1657 static int btf_ensure_modifiable(struct btf *btf) 1658 { 1659 void *hdr, *types; 1660 struct strset *set = NULL; 1661 int err = -ENOMEM; 1662 1663 if (btf_is_modifiable(btf)) { 1664 /* any BTF modification invalidates raw_data */ 1665 btf_invalidate_raw_data(btf); 1666 return 0; 1667 } 1668 1669 /* split raw data into three memory regions */ 1670 hdr = malloc(btf->hdr->hdr_len); 1671 types = malloc(btf->hdr->type_len); 1672 if (!hdr || !types) 1673 goto err_out; 1674 1675 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1676 memcpy(types, btf->types_data, btf->hdr->type_len); 1677 1678 /* build lookup index for all strings */ 1679 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1680 if (IS_ERR(set)) { 1681 err = PTR_ERR(set); 1682 goto err_out; 1683 } 1684 1685 /* only when everything was successful, update internal state */ 1686 btf->hdr = hdr; 1687 btf->types_data = types; 1688 btf->types_data_cap = btf->hdr->type_len; 1689 btf->strs_data = NULL; 1690 btf->strs_set = set; 1691 /* if BTF was created from scratch, all strings are guaranteed to be 1692 * unique and deduplicated 1693 */ 1694 if (btf->hdr->str_len == 0) 1695 btf->strs_deduped = true; 1696 if (!btf->base_btf && btf->hdr->str_len == 1) 1697 btf->strs_deduped = true; 1698 1699 /* invalidate raw_data representation */ 1700 btf_invalidate_raw_data(btf); 1701 1702 return 0; 1703 1704 err_out: 1705 strset__free(set); 1706 free(hdr); 1707 free(types); 1708 return err; 1709 } 1710 1711 /* Find an offset in BTF string section that corresponds to a given string *s*. 1712 * Returns: 1713 * - >0 offset into string section, if string is found; 1714 * - -ENOENT, if string is not in the string section; 1715 * - <0, on any other error. 1716 */ 1717 int btf__find_str(struct btf *btf, const char *s) 1718 { 1719 int off; 1720 1721 if (btf->base_btf) { 1722 off = btf__find_str(btf->base_btf, s); 1723 if (off != -ENOENT) 1724 return off; 1725 } 1726 1727 /* BTF needs to be in a modifiable state to build string lookup index */ 1728 if (btf_ensure_modifiable(btf)) 1729 return libbpf_err(-ENOMEM); 1730 1731 off = strset__find_str(btf->strs_set, s); 1732 if (off < 0) 1733 return libbpf_err(off); 1734 1735 return btf->start_str_off + off; 1736 } 1737 1738 /* Add a string s to the BTF string section. 1739 * Returns: 1740 * - > 0 offset into string section, on success; 1741 * - < 0, on error. 1742 */ 1743 int btf__add_str(struct btf *btf, const char *s) 1744 { 1745 int off; 1746 1747 if (btf->base_btf) { 1748 off = btf__find_str(btf->base_btf, s); 1749 if (off != -ENOENT) 1750 return off; 1751 } 1752 1753 if (btf_ensure_modifiable(btf)) 1754 return libbpf_err(-ENOMEM); 1755 1756 off = strset__add_str(btf->strs_set, s); 1757 if (off < 0) 1758 return libbpf_err(off); 1759 1760 btf->hdr->str_len = strset__data_size(btf->strs_set); 1761 1762 return btf->start_str_off + off; 1763 } 1764 1765 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1766 { 1767 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1768 btf->hdr->type_len, UINT_MAX, add_sz); 1769 } 1770 1771 static void btf_type_inc_vlen(struct btf_type *t) 1772 { 1773 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1774 } 1775 1776 static int btf_commit_type(struct btf *btf, int data_sz) 1777 { 1778 int err; 1779 1780 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1781 if (err) 1782 return libbpf_err(err); 1783 1784 btf->hdr->type_len += data_sz; 1785 btf->hdr->str_off += data_sz; 1786 btf->nr_types++; 1787 return btf->start_id + btf->nr_types - 1; 1788 } 1789 1790 struct btf_pipe { 1791 const struct btf *src; 1792 struct btf *dst; 1793 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1794 }; 1795 1796 static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off) 1797 { 1798 long mapped_off; 1799 int off, err; 1800 1801 if (!*str_off) /* nothing to do for empty strings */ 1802 return 0; 1803 1804 if (p->str_off_map && 1805 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1806 *str_off = mapped_off; 1807 return 0; 1808 } 1809 1810 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1811 if (off < 0) 1812 return off; 1813 1814 /* Remember string mapping from src to dst. It avoids 1815 * performing expensive string comparisons. 1816 */ 1817 if (p->str_off_map) { 1818 err = hashmap__append(p->str_off_map, *str_off, off); 1819 if (err) 1820 return err; 1821 } 1822 1823 *str_off = off; 1824 return 0; 1825 } 1826 1827 static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type) 1828 { 1829 struct btf_field_iter it; 1830 struct btf_type *t; 1831 __u32 *str_off; 1832 int sz, err; 1833 1834 sz = btf_type_size(src_type); 1835 if (sz < 0) 1836 return libbpf_err(sz); 1837 1838 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1839 if (btf_ensure_modifiable(p->dst)) 1840 return libbpf_err(-ENOMEM); 1841 1842 t = btf_add_type_mem(p->dst, sz); 1843 if (!t) 1844 return libbpf_err(-ENOMEM); 1845 1846 memcpy(t, src_type, sz); 1847 1848 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1849 if (err) 1850 return libbpf_err(err); 1851 1852 while ((str_off = btf_field_iter_next(&it))) { 1853 err = btf_rewrite_str(p, str_off); 1854 if (err) 1855 return libbpf_err(err); 1856 } 1857 1858 return btf_commit_type(p->dst, sz); 1859 } 1860 1861 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1862 { 1863 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1864 1865 return btf_add_type(&p, src_type); 1866 } 1867 1868 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1869 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1870 1871 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1872 { 1873 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1874 int data_sz, sz, cnt, i, err, old_strs_len; 1875 __u32 *off; 1876 void *t; 1877 1878 /* appending split BTF isn't supported yet */ 1879 if (src_btf->base_btf) 1880 return libbpf_err(-ENOTSUP); 1881 1882 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1883 if (btf_ensure_modifiable(btf)) 1884 return libbpf_err(-ENOMEM); 1885 1886 /* remember original strings section size if we have to roll back 1887 * partial strings section changes 1888 */ 1889 old_strs_len = btf->hdr->str_len; 1890 1891 data_sz = src_btf->hdr->type_len; 1892 cnt = btf__type_cnt(src_btf) - 1; 1893 1894 /* pre-allocate enough memory for new types */ 1895 t = btf_add_type_mem(btf, data_sz); 1896 if (!t) 1897 return libbpf_err(-ENOMEM); 1898 1899 /* pre-allocate enough memory for type offset index for new types */ 1900 off = btf_add_type_offs_mem(btf, cnt); 1901 if (!off) 1902 return libbpf_err(-ENOMEM); 1903 1904 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1905 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1906 if (IS_ERR(p.str_off_map)) 1907 return libbpf_err(-ENOMEM); 1908 1909 /* bulk copy types data for all types from src_btf */ 1910 memcpy(t, src_btf->types_data, data_sz); 1911 1912 for (i = 0; i < cnt; i++) { 1913 struct btf_field_iter it; 1914 __u32 *type_id, *str_off; 1915 1916 sz = btf_type_size(t); 1917 if (sz < 0) { 1918 /* unlikely, has to be corrupted src_btf */ 1919 err = sz; 1920 goto err_out; 1921 } 1922 1923 /* fill out type ID to type offset mapping for lookups by type ID */ 1924 *off = t - btf->types_data; 1925 1926 /* add, dedup, and remap strings referenced by this BTF type */ 1927 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1928 if (err) 1929 goto err_out; 1930 while ((str_off = btf_field_iter_next(&it))) { 1931 err = btf_rewrite_str(&p, str_off); 1932 if (err) 1933 goto err_out; 1934 } 1935 1936 /* remap all type IDs referenced from this BTF type */ 1937 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 1938 if (err) 1939 goto err_out; 1940 1941 while ((type_id = btf_field_iter_next(&it))) { 1942 if (!*type_id) /* nothing to do for VOID references */ 1943 continue; 1944 1945 /* we haven't updated btf's type count yet, so 1946 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1947 * add to all newly added BTF types 1948 */ 1949 *type_id += btf->start_id + btf->nr_types - 1; 1950 } 1951 1952 /* go to next type data and type offset index entry */ 1953 t += sz; 1954 off++; 1955 } 1956 1957 /* Up until now any of the copied type data was effectively invisible, 1958 * so if we exited early before this point due to error, BTF would be 1959 * effectively unmodified. There would be extra internal memory 1960 * pre-allocated, but it would not be available for querying. But now 1961 * that we've copied and rewritten all the data successfully, we can 1962 * update type count and various internal offsets and sizes to 1963 * "commit" the changes and made them visible to the outside world. 1964 */ 1965 btf->hdr->type_len += data_sz; 1966 btf->hdr->str_off += data_sz; 1967 btf->nr_types += cnt; 1968 1969 hashmap__free(p.str_off_map); 1970 1971 /* return type ID of the first added BTF type */ 1972 return btf->start_id + btf->nr_types - cnt; 1973 err_out: 1974 /* zero out preallocated memory as if it was just allocated with 1975 * libbpf_add_mem() 1976 */ 1977 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1978 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1979 1980 /* and now restore original strings section size; types data size 1981 * wasn't modified, so doesn't need restoring, see big comment above 1982 */ 1983 btf->hdr->str_len = old_strs_len; 1984 1985 hashmap__free(p.str_off_map); 1986 1987 return libbpf_err(err); 1988 } 1989 1990 /* 1991 * Append new BTF_KIND_INT type with: 1992 * - *name* - non-empty, non-NULL type name; 1993 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1994 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1995 * Returns: 1996 * - >0, type ID of newly added BTF type; 1997 * - <0, on error. 1998 */ 1999 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 2000 { 2001 struct btf_type *t; 2002 int sz, name_off; 2003 2004 /* non-empty name */ 2005 if (!name || !name[0]) 2006 return libbpf_err(-EINVAL); 2007 /* byte_sz must be power of 2 */ 2008 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 2009 return libbpf_err(-EINVAL); 2010 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 2011 return libbpf_err(-EINVAL); 2012 2013 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2014 if (btf_ensure_modifiable(btf)) 2015 return libbpf_err(-ENOMEM); 2016 2017 sz = sizeof(struct btf_type) + sizeof(int); 2018 t = btf_add_type_mem(btf, sz); 2019 if (!t) 2020 return libbpf_err(-ENOMEM); 2021 2022 /* if something goes wrong later, we might end up with an extra string, 2023 * but that shouldn't be a problem, because BTF can't be constructed 2024 * completely anyway and will most probably be just discarded 2025 */ 2026 name_off = btf__add_str(btf, name); 2027 if (name_off < 0) 2028 return name_off; 2029 2030 t->name_off = name_off; 2031 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 2032 t->size = byte_sz; 2033 /* set INT info, we don't allow setting legacy bit offset/size */ 2034 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 2035 2036 return btf_commit_type(btf, sz); 2037 } 2038 2039 /* 2040 * Append new BTF_KIND_FLOAT type with: 2041 * - *name* - non-empty, non-NULL type name; 2042 * - *sz* - size of the type, in bytes; 2043 * Returns: 2044 * - >0, type ID of newly added BTF type; 2045 * - <0, on error. 2046 */ 2047 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 2048 { 2049 struct btf_type *t; 2050 int sz, name_off; 2051 2052 /* non-empty name */ 2053 if (!name || !name[0]) 2054 return libbpf_err(-EINVAL); 2055 2056 /* byte_sz must be one of the explicitly allowed values */ 2057 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 2058 byte_sz != 16) 2059 return libbpf_err(-EINVAL); 2060 2061 if (btf_ensure_modifiable(btf)) 2062 return libbpf_err(-ENOMEM); 2063 2064 sz = sizeof(struct btf_type); 2065 t = btf_add_type_mem(btf, sz); 2066 if (!t) 2067 return libbpf_err(-ENOMEM); 2068 2069 name_off = btf__add_str(btf, name); 2070 if (name_off < 0) 2071 return name_off; 2072 2073 t->name_off = name_off; 2074 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 2075 t->size = byte_sz; 2076 2077 return btf_commit_type(btf, sz); 2078 } 2079 2080 /* it's completely legal to append BTF types with type IDs pointing forward to 2081 * types that haven't been appended yet, so we only make sure that id looks 2082 * sane, we can't guarantee that ID will always be valid 2083 */ 2084 static int validate_type_id(int id) 2085 { 2086 if (id < 0 || id > BTF_MAX_NR_TYPES) 2087 return -EINVAL; 2088 return 0; 2089 } 2090 2091 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 2092 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 2093 { 2094 struct btf_type *t; 2095 int sz, name_off = 0; 2096 2097 if (validate_type_id(ref_type_id)) 2098 return libbpf_err(-EINVAL); 2099 2100 if (btf_ensure_modifiable(btf)) 2101 return libbpf_err(-ENOMEM); 2102 2103 sz = sizeof(struct btf_type); 2104 t = btf_add_type_mem(btf, sz); 2105 if (!t) 2106 return libbpf_err(-ENOMEM); 2107 2108 if (name && name[0]) { 2109 name_off = btf__add_str(btf, name); 2110 if (name_off < 0) 2111 return name_off; 2112 } 2113 2114 t->name_off = name_off; 2115 t->info = btf_type_info(kind, 0, 0); 2116 t->type = ref_type_id; 2117 2118 return btf_commit_type(btf, sz); 2119 } 2120 2121 /* 2122 * Append new BTF_KIND_PTR type with: 2123 * - *ref_type_id* - referenced type ID, it might not exist yet; 2124 * Returns: 2125 * - >0, type ID of newly added BTF type; 2126 * - <0, on error. 2127 */ 2128 int btf__add_ptr(struct btf *btf, int ref_type_id) 2129 { 2130 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 2131 } 2132 2133 /* 2134 * Append new BTF_KIND_ARRAY type with: 2135 * - *index_type_id* - type ID of the type describing array index; 2136 * - *elem_type_id* - type ID of the type describing array element; 2137 * - *nr_elems* - the size of the array; 2138 * Returns: 2139 * - >0, type ID of newly added BTF type; 2140 * - <0, on error. 2141 */ 2142 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 2143 { 2144 struct btf_type *t; 2145 struct btf_array *a; 2146 int sz; 2147 2148 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 2149 return libbpf_err(-EINVAL); 2150 2151 if (btf_ensure_modifiable(btf)) 2152 return libbpf_err(-ENOMEM); 2153 2154 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 2155 t = btf_add_type_mem(btf, sz); 2156 if (!t) 2157 return libbpf_err(-ENOMEM); 2158 2159 t->name_off = 0; 2160 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 2161 t->size = 0; 2162 2163 a = btf_array(t); 2164 a->type = elem_type_id; 2165 a->index_type = index_type_id; 2166 a->nelems = nr_elems; 2167 2168 return btf_commit_type(btf, sz); 2169 } 2170 2171 /* generic STRUCT/UNION append function */ 2172 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 2173 { 2174 struct btf_type *t; 2175 int sz, name_off = 0; 2176 2177 if (btf_ensure_modifiable(btf)) 2178 return libbpf_err(-ENOMEM); 2179 2180 sz = sizeof(struct btf_type); 2181 t = btf_add_type_mem(btf, sz); 2182 if (!t) 2183 return libbpf_err(-ENOMEM); 2184 2185 if (name && name[0]) { 2186 name_off = btf__add_str(btf, name); 2187 if (name_off < 0) 2188 return name_off; 2189 } 2190 2191 /* start out with vlen=0 and no kflag; this will be adjusted when 2192 * adding each member 2193 */ 2194 t->name_off = name_off; 2195 t->info = btf_type_info(kind, 0, 0); 2196 t->size = bytes_sz; 2197 2198 return btf_commit_type(btf, sz); 2199 } 2200 2201 /* 2202 * Append new BTF_KIND_STRUCT type with: 2203 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2204 * - *byte_sz* - size of the struct, in bytes; 2205 * 2206 * Struct initially has no fields in it. Fields can be added by 2207 * btf__add_field() right after btf__add_struct() succeeds. 2208 * 2209 * Returns: 2210 * - >0, type ID of newly added BTF type; 2211 * - <0, on error. 2212 */ 2213 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2214 { 2215 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2216 } 2217 2218 /* 2219 * Append new BTF_KIND_UNION type with: 2220 * - *name* - name of the union, can be NULL or empty for anonymous union; 2221 * - *byte_sz* - size of the union, in bytes; 2222 * 2223 * Union initially has no fields in it. Fields can be added by 2224 * btf__add_field() right after btf__add_union() succeeds. All fields 2225 * should have *bit_offset* of 0. 2226 * 2227 * Returns: 2228 * - >0, type ID of newly added BTF type; 2229 * - <0, on error. 2230 */ 2231 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2232 { 2233 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2234 } 2235 2236 static struct btf_type *btf_last_type(struct btf *btf) 2237 { 2238 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2239 } 2240 2241 /* 2242 * Append new field for the current STRUCT/UNION type with: 2243 * - *name* - name of the field, can be NULL or empty for anonymous field; 2244 * - *type_id* - type ID for the type describing field type; 2245 * - *bit_offset* - bit offset of the start of the field within struct/union; 2246 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2247 * Returns: 2248 * - 0, on success; 2249 * - <0, on error. 2250 */ 2251 int btf__add_field(struct btf *btf, const char *name, int type_id, 2252 __u32 bit_offset, __u32 bit_size) 2253 { 2254 struct btf_type *t; 2255 struct btf_member *m; 2256 bool is_bitfield; 2257 int sz, name_off = 0; 2258 2259 /* last type should be union/struct */ 2260 if (btf->nr_types == 0) 2261 return libbpf_err(-EINVAL); 2262 t = btf_last_type(btf); 2263 if (!btf_is_composite(t)) 2264 return libbpf_err(-EINVAL); 2265 2266 if (validate_type_id(type_id)) 2267 return libbpf_err(-EINVAL); 2268 /* best-effort bit field offset/size enforcement */ 2269 is_bitfield = bit_size || (bit_offset % 8 != 0); 2270 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2271 return libbpf_err(-EINVAL); 2272 2273 /* only offset 0 is allowed for unions */ 2274 if (btf_is_union(t) && bit_offset) 2275 return libbpf_err(-EINVAL); 2276 2277 /* decompose and invalidate raw data */ 2278 if (btf_ensure_modifiable(btf)) 2279 return libbpf_err(-ENOMEM); 2280 2281 sz = sizeof(struct btf_member); 2282 m = btf_add_type_mem(btf, sz); 2283 if (!m) 2284 return libbpf_err(-ENOMEM); 2285 2286 if (name && name[0]) { 2287 name_off = btf__add_str(btf, name); 2288 if (name_off < 0) 2289 return name_off; 2290 } 2291 2292 m->name_off = name_off; 2293 m->type = type_id; 2294 m->offset = bit_offset | (bit_size << 24); 2295 2296 /* btf_add_type_mem can invalidate t pointer */ 2297 t = btf_last_type(btf); 2298 /* update parent type's vlen and kflag */ 2299 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2300 2301 btf->hdr->type_len += sz; 2302 btf->hdr->str_off += sz; 2303 return 0; 2304 } 2305 2306 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2307 bool is_signed, __u8 kind) 2308 { 2309 struct btf_type *t; 2310 int sz, name_off = 0; 2311 2312 /* byte_sz must be power of 2 */ 2313 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2314 return libbpf_err(-EINVAL); 2315 2316 if (btf_ensure_modifiable(btf)) 2317 return libbpf_err(-ENOMEM); 2318 2319 sz = sizeof(struct btf_type); 2320 t = btf_add_type_mem(btf, sz); 2321 if (!t) 2322 return libbpf_err(-ENOMEM); 2323 2324 if (name && name[0]) { 2325 name_off = btf__add_str(btf, name); 2326 if (name_off < 0) 2327 return name_off; 2328 } 2329 2330 /* start out with vlen=0; it will be adjusted when adding enum values */ 2331 t->name_off = name_off; 2332 t->info = btf_type_info(kind, 0, is_signed); 2333 t->size = byte_sz; 2334 2335 return btf_commit_type(btf, sz); 2336 } 2337 2338 /* 2339 * Append new BTF_KIND_ENUM type with: 2340 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2341 * - *byte_sz* - size of the enum, in bytes. 2342 * 2343 * Enum initially has no enum values in it (and corresponds to enum forward 2344 * declaration). Enumerator values can be added by btf__add_enum_value() 2345 * immediately after btf__add_enum() succeeds. 2346 * 2347 * Returns: 2348 * - >0, type ID of newly added BTF type; 2349 * - <0, on error. 2350 */ 2351 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2352 { 2353 /* 2354 * set the signedness to be unsigned, it will change to signed 2355 * if any later enumerator is negative. 2356 */ 2357 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2358 } 2359 2360 /* 2361 * Append new enum value for the current ENUM type with: 2362 * - *name* - name of the enumerator value, can't be NULL or empty; 2363 * - *value* - integer value corresponding to enum value *name*; 2364 * Returns: 2365 * - 0, on success; 2366 * - <0, on error. 2367 */ 2368 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2369 { 2370 struct btf_type *t; 2371 struct btf_enum *v; 2372 int sz, name_off; 2373 2374 /* last type should be BTF_KIND_ENUM */ 2375 if (btf->nr_types == 0) 2376 return libbpf_err(-EINVAL); 2377 t = btf_last_type(btf); 2378 if (!btf_is_enum(t)) 2379 return libbpf_err(-EINVAL); 2380 2381 /* non-empty name */ 2382 if (!name || !name[0]) 2383 return libbpf_err(-EINVAL); 2384 if (value < INT_MIN || value > UINT_MAX) 2385 return libbpf_err(-E2BIG); 2386 2387 /* decompose and invalidate raw data */ 2388 if (btf_ensure_modifiable(btf)) 2389 return libbpf_err(-ENOMEM); 2390 2391 sz = sizeof(struct btf_enum); 2392 v = btf_add_type_mem(btf, sz); 2393 if (!v) 2394 return libbpf_err(-ENOMEM); 2395 2396 name_off = btf__add_str(btf, name); 2397 if (name_off < 0) 2398 return name_off; 2399 2400 v->name_off = name_off; 2401 v->val = value; 2402 2403 /* update parent type's vlen */ 2404 t = btf_last_type(btf); 2405 btf_type_inc_vlen(t); 2406 2407 /* if negative value, set signedness to signed */ 2408 if (value < 0) 2409 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2410 2411 btf->hdr->type_len += sz; 2412 btf->hdr->str_off += sz; 2413 return 0; 2414 } 2415 2416 /* 2417 * Append new BTF_KIND_ENUM64 type with: 2418 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2419 * - *byte_sz* - size of the enum, in bytes. 2420 * - *is_signed* - whether the enum values are signed or not; 2421 * 2422 * Enum initially has no enum values in it (and corresponds to enum forward 2423 * declaration). Enumerator values can be added by btf__add_enum64_value() 2424 * immediately after btf__add_enum64() succeeds. 2425 * 2426 * Returns: 2427 * - >0, type ID of newly added BTF type; 2428 * - <0, on error. 2429 */ 2430 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2431 bool is_signed) 2432 { 2433 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2434 BTF_KIND_ENUM64); 2435 } 2436 2437 /* 2438 * Append new enum value for the current ENUM64 type with: 2439 * - *name* - name of the enumerator value, can't be NULL or empty; 2440 * - *value* - integer value corresponding to enum value *name*; 2441 * Returns: 2442 * - 0, on success; 2443 * - <0, on error. 2444 */ 2445 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2446 { 2447 struct btf_enum64 *v; 2448 struct btf_type *t; 2449 int sz, name_off; 2450 2451 /* last type should be BTF_KIND_ENUM64 */ 2452 if (btf->nr_types == 0) 2453 return libbpf_err(-EINVAL); 2454 t = btf_last_type(btf); 2455 if (!btf_is_enum64(t)) 2456 return libbpf_err(-EINVAL); 2457 2458 /* non-empty name */ 2459 if (!name || !name[0]) 2460 return libbpf_err(-EINVAL); 2461 2462 /* decompose and invalidate raw data */ 2463 if (btf_ensure_modifiable(btf)) 2464 return libbpf_err(-ENOMEM); 2465 2466 sz = sizeof(struct btf_enum64); 2467 v = btf_add_type_mem(btf, sz); 2468 if (!v) 2469 return libbpf_err(-ENOMEM); 2470 2471 name_off = btf__add_str(btf, name); 2472 if (name_off < 0) 2473 return name_off; 2474 2475 v->name_off = name_off; 2476 v->val_lo32 = (__u32)value; 2477 v->val_hi32 = value >> 32; 2478 2479 /* update parent type's vlen */ 2480 t = btf_last_type(btf); 2481 btf_type_inc_vlen(t); 2482 2483 btf->hdr->type_len += sz; 2484 btf->hdr->str_off += sz; 2485 return 0; 2486 } 2487 2488 /* 2489 * Append new BTF_KIND_FWD type with: 2490 * - *name*, non-empty/non-NULL name; 2491 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2492 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2493 * Returns: 2494 * - >0, type ID of newly added BTF type; 2495 * - <0, on error. 2496 */ 2497 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2498 { 2499 if (!name || !name[0]) 2500 return libbpf_err(-EINVAL); 2501 2502 switch (fwd_kind) { 2503 case BTF_FWD_STRUCT: 2504 case BTF_FWD_UNION: { 2505 struct btf_type *t; 2506 int id; 2507 2508 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2509 if (id <= 0) 2510 return id; 2511 t = btf_type_by_id(btf, id); 2512 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2513 return id; 2514 } 2515 case BTF_FWD_ENUM: 2516 /* enum forward in BTF currently is just an enum with no enum 2517 * values; we also assume a standard 4-byte size for it 2518 */ 2519 return btf__add_enum(btf, name, sizeof(int)); 2520 default: 2521 return libbpf_err(-EINVAL); 2522 } 2523 } 2524 2525 /* 2526 * Append new BTF_KING_TYPEDEF type with: 2527 * - *name*, non-empty/non-NULL name; 2528 * - *ref_type_id* - referenced type ID, it might not exist yet; 2529 * Returns: 2530 * - >0, type ID of newly added BTF type; 2531 * - <0, on error. 2532 */ 2533 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2534 { 2535 if (!name || !name[0]) 2536 return libbpf_err(-EINVAL); 2537 2538 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2539 } 2540 2541 /* 2542 * Append new BTF_KIND_VOLATILE type with: 2543 * - *ref_type_id* - referenced type ID, it might not exist yet; 2544 * Returns: 2545 * - >0, type ID of newly added BTF type; 2546 * - <0, on error. 2547 */ 2548 int btf__add_volatile(struct btf *btf, int ref_type_id) 2549 { 2550 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2551 } 2552 2553 /* 2554 * Append new BTF_KIND_CONST type with: 2555 * - *ref_type_id* - referenced type ID, it might not exist yet; 2556 * Returns: 2557 * - >0, type ID of newly added BTF type; 2558 * - <0, on error. 2559 */ 2560 int btf__add_const(struct btf *btf, int ref_type_id) 2561 { 2562 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2563 } 2564 2565 /* 2566 * Append new BTF_KIND_RESTRICT type with: 2567 * - *ref_type_id* - referenced type ID, it might not exist yet; 2568 * Returns: 2569 * - >0, type ID of newly added BTF type; 2570 * - <0, on error. 2571 */ 2572 int btf__add_restrict(struct btf *btf, int ref_type_id) 2573 { 2574 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2575 } 2576 2577 /* 2578 * Append new BTF_KIND_TYPE_TAG type with: 2579 * - *value*, non-empty/non-NULL tag value; 2580 * - *ref_type_id* - referenced type ID, it might not exist yet; 2581 * Returns: 2582 * - >0, type ID of newly added BTF type; 2583 * - <0, on error. 2584 */ 2585 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2586 { 2587 if (!value || !value[0]) 2588 return libbpf_err(-EINVAL); 2589 2590 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2591 } 2592 2593 /* 2594 * Append new BTF_KIND_FUNC type with: 2595 * - *name*, non-empty/non-NULL name; 2596 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2597 * Returns: 2598 * - >0, type ID of newly added BTF type; 2599 * - <0, on error. 2600 */ 2601 int btf__add_func(struct btf *btf, const char *name, 2602 enum btf_func_linkage linkage, int proto_type_id) 2603 { 2604 int id; 2605 2606 if (!name || !name[0]) 2607 return libbpf_err(-EINVAL); 2608 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2609 linkage != BTF_FUNC_EXTERN) 2610 return libbpf_err(-EINVAL); 2611 2612 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2613 if (id > 0) { 2614 struct btf_type *t = btf_type_by_id(btf, id); 2615 2616 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2617 } 2618 return libbpf_err(id); 2619 } 2620 2621 /* 2622 * Append new BTF_KIND_FUNC_PROTO with: 2623 * - *ret_type_id* - type ID for return result of a function. 2624 * 2625 * Function prototype initially has no arguments, but they can be added by 2626 * btf__add_func_param() one by one, immediately after 2627 * btf__add_func_proto() succeeded. 2628 * 2629 * Returns: 2630 * - >0, type ID of newly added BTF type; 2631 * - <0, on error. 2632 */ 2633 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2634 { 2635 struct btf_type *t; 2636 int sz; 2637 2638 if (validate_type_id(ret_type_id)) 2639 return libbpf_err(-EINVAL); 2640 2641 if (btf_ensure_modifiable(btf)) 2642 return libbpf_err(-ENOMEM); 2643 2644 sz = sizeof(struct btf_type); 2645 t = btf_add_type_mem(btf, sz); 2646 if (!t) 2647 return libbpf_err(-ENOMEM); 2648 2649 /* start out with vlen=0; this will be adjusted when adding enum 2650 * values, if necessary 2651 */ 2652 t->name_off = 0; 2653 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2654 t->type = ret_type_id; 2655 2656 return btf_commit_type(btf, sz); 2657 } 2658 2659 /* 2660 * Append new function parameter for current FUNC_PROTO type with: 2661 * - *name* - parameter name, can be NULL or empty; 2662 * - *type_id* - type ID describing the type of the parameter. 2663 * Returns: 2664 * - 0, on success; 2665 * - <0, on error. 2666 */ 2667 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2668 { 2669 struct btf_type *t; 2670 struct btf_param *p; 2671 int sz, name_off = 0; 2672 2673 if (validate_type_id(type_id)) 2674 return libbpf_err(-EINVAL); 2675 2676 /* last type should be BTF_KIND_FUNC_PROTO */ 2677 if (btf->nr_types == 0) 2678 return libbpf_err(-EINVAL); 2679 t = btf_last_type(btf); 2680 if (!btf_is_func_proto(t)) 2681 return libbpf_err(-EINVAL); 2682 2683 /* decompose and invalidate raw data */ 2684 if (btf_ensure_modifiable(btf)) 2685 return libbpf_err(-ENOMEM); 2686 2687 sz = sizeof(struct btf_param); 2688 p = btf_add_type_mem(btf, sz); 2689 if (!p) 2690 return libbpf_err(-ENOMEM); 2691 2692 if (name && name[0]) { 2693 name_off = btf__add_str(btf, name); 2694 if (name_off < 0) 2695 return name_off; 2696 } 2697 2698 p->name_off = name_off; 2699 p->type = type_id; 2700 2701 /* update parent type's vlen */ 2702 t = btf_last_type(btf); 2703 btf_type_inc_vlen(t); 2704 2705 btf->hdr->type_len += sz; 2706 btf->hdr->str_off += sz; 2707 return 0; 2708 } 2709 2710 /* 2711 * Append new BTF_KIND_VAR type with: 2712 * - *name* - non-empty/non-NULL name; 2713 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2714 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2715 * - *type_id* - type ID of the type describing the type of the variable. 2716 * Returns: 2717 * - >0, type ID of newly added BTF type; 2718 * - <0, on error. 2719 */ 2720 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2721 { 2722 struct btf_type *t; 2723 struct btf_var *v; 2724 int sz, name_off; 2725 2726 /* non-empty name */ 2727 if (!name || !name[0]) 2728 return libbpf_err(-EINVAL); 2729 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2730 linkage != BTF_VAR_GLOBAL_EXTERN) 2731 return libbpf_err(-EINVAL); 2732 if (validate_type_id(type_id)) 2733 return libbpf_err(-EINVAL); 2734 2735 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2736 if (btf_ensure_modifiable(btf)) 2737 return libbpf_err(-ENOMEM); 2738 2739 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2740 t = btf_add_type_mem(btf, sz); 2741 if (!t) 2742 return libbpf_err(-ENOMEM); 2743 2744 name_off = btf__add_str(btf, name); 2745 if (name_off < 0) 2746 return name_off; 2747 2748 t->name_off = name_off; 2749 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2750 t->type = type_id; 2751 2752 v = btf_var(t); 2753 v->linkage = linkage; 2754 2755 return btf_commit_type(btf, sz); 2756 } 2757 2758 /* 2759 * Append new BTF_KIND_DATASEC type with: 2760 * - *name* - non-empty/non-NULL name; 2761 * - *byte_sz* - data section size, in bytes. 2762 * 2763 * Data section is initially empty. Variables info can be added with 2764 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2765 * 2766 * Returns: 2767 * - >0, type ID of newly added BTF type; 2768 * - <0, on error. 2769 */ 2770 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2771 { 2772 struct btf_type *t; 2773 int sz, name_off; 2774 2775 /* non-empty name */ 2776 if (!name || !name[0]) 2777 return libbpf_err(-EINVAL); 2778 2779 if (btf_ensure_modifiable(btf)) 2780 return libbpf_err(-ENOMEM); 2781 2782 sz = sizeof(struct btf_type); 2783 t = btf_add_type_mem(btf, sz); 2784 if (!t) 2785 return libbpf_err(-ENOMEM); 2786 2787 name_off = btf__add_str(btf, name); 2788 if (name_off < 0) 2789 return name_off; 2790 2791 /* start with vlen=0, which will be update as var_secinfos are added */ 2792 t->name_off = name_off; 2793 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2794 t->size = byte_sz; 2795 2796 return btf_commit_type(btf, sz); 2797 } 2798 2799 /* 2800 * Append new data section variable information entry for current DATASEC type: 2801 * - *var_type_id* - type ID, describing type of the variable; 2802 * - *offset* - variable offset within data section, in bytes; 2803 * - *byte_sz* - variable size, in bytes. 2804 * 2805 * Returns: 2806 * - 0, on success; 2807 * - <0, on error. 2808 */ 2809 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2810 { 2811 struct btf_type *t; 2812 struct btf_var_secinfo *v; 2813 int sz; 2814 2815 /* last type should be BTF_KIND_DATASEC */ 2816 if (btf->nr_types == 0) 2817 return libbpf_err(-EINVAL); 2818 t = btf_last_type(btf); 2819 if (!btf_is_datasec(t)) 2820 return libbpf_err(-EINVAL); 2821 2822 if (validate_type_id(var_type_id)) 2823 return libbpf_err(-EINVAL); 2824 2825 /* decompose and invalidate raw data */ 2826 if (btf_ensure_modifiable(btf)) 2827 return libbpf_err(-ENOMEM); 2828 2829 sz = sizeof(struct btf_var_secinfo); 2830 v = btf_add_type_mem(btf, sz); 2831 if (!v) 2832 return libbpf_err(-ENOMEM); 2833 2834 v->type = var_type_id; 2835 v->offset = offset; 2836 v->size = byte_sz; 2837 2838 /* update parent type's vlen */ 2839 t = btf_last_type(btf); 2840 btf_type_inc_vlen(t); 2841 2842 btf->hdr->type_len += sz; 2843 btf->hdr->str_off += sz; 2844 return 0; 2845 } 2846 2847 /* 2848 * Append new BTF_KIND_DECL_TAG type with: 2849 * - *value* - non-empty/non-NULL string; 2850 * - *ref_type_id* - referenced type ID, it might not exist yet; 2851 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2852 * member or function argument index; 2853 * Returns: 2854 * - >0, type ID of newly added BTF type; 2855 * - <0, on error. 2856 */ 2857 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2858 int component_idx) 2859 { 2860 struct btf_type *t; 2861 int sz, value_off; 2862 2863 if (!value || !value[0] || component_idx < -1) 2864 return libbpf_err(-EINVAL); 2865 2866 if (validate_type_id(ref_type_id)) 2867 return libbpf_err(-EINVAL); 2868 2869 if (btf_ensure_modifiable(btf)) 2870 return libbpf_err(-ENOMEM); 2871 2872 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2873 t = btf_add_type_mem(btf, sz); 2874 if (!t) 2875 return libbpf_err(-ENOMEM); 2876 2877 value_off = btf__add_str(btf, value); 2878 if (value_off < 0) 2879 return value_off; 2880 2881 t->name_off = value_off; 2882 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2883 t->type = ref_type_id; 2884 btf_decl_tag(t)->component_idx = component_idx; 2885 2886 return btf_commit_type(btf, sz); 2887 } 2888 2889 struct btf_ext_sec_info_param { 2890 __u32 off; 2891 __u32 len; 2892 __u32 min_rec_size; 2893 struct btf_ext_info *ext_info; 2894 const char *desc; 2895 }; 2896 2897 /* 2898 * Parse a single info subsection of the BTF.ext info data: 2899 * - validate subsection structure and elements 2900 * - save info subsection start and sizing details in struct btf_ext 2901 * - endian-independent operation, for calling before byte-swapping 2902 */ 2903 static int btf_ext_parse_sec_info(struct btf_ext *btf_ext, 2904 struct btf_ext_sec_info_param *ext_sec, 2905 bool is_native) 2906 { 2907 const struct btf_ext_info_sec *sinfo; 2908 struct btf_ext_info *ext_info; 2909 __u32 info_left, record_size; 2910 size_t sec_cnt = 0; 2911 void *info; 2912 2913 if (ext_sec->len == 0) 2914 return 0; 2915 2916 if (ext_sec->off & 0x03) { 2917 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2918 ext_sec->desc); 2919 return -EINVAL; 2920 } 2921 2922 /* The start of the info sec (including the __u32 record_size). */ 2923 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2924 info_left = ext_sec->len; 2925 2926 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2927 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2928 ext_sec->desc, ext_sec->off, ext_sec->len); 2929 return -EINVAL; 2930 } 2931 2932 /* At least a record size */ 2933 if (info_left < sizeof(__u32)) { 2934 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2935 return -EINVAL; 2936 } 2937 2938 /* The record size needs to meet either the minimum standard or, when 2939 * handling non-native endianness data, the exact standard so as 2940 * to allow safe byte-swapping. 2941 */ 2942 record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info); 2943 if (record_size < ext_sec->min_rec_size || 2944 (!is_native && record_size != ext_sec->min_rec_size) || 2945 record_size & 0x03) { 2946 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2947 ext_sec->desc, record_size); 2948 return -EINVAL; 2949 } 2950 2951 sinfo = info + sizeof(__u32); 2952 info_left -= sizeof(__u32); 2953 2954 /* If no records, return failure now so .BTF.ext won't be used. */ 2955 if (!info_left) { 2956 pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc); 2957 return -EINVAL; 2958 } 2959 2960 while (info_left) { 2961 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2962 __u64 total_record_size; 2963 __u32 num_records; 2964 2965 if (info_left < sec_hdrlen) { 2966 pr_debug("%s section header is not found in .BTF.ext\n", 2967 ext_sec->desc); 2968 return -EINVAL; 2969 } 2970 2971 num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info); 2972 if (num_records == 0) { 2973 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2974 ext_sec->desc); 2975 return -EINVAL; 2976 } 2977 2978 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2979 if (info_left < total_record_size) { 2980 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2981 ext_sec->desc); 2982 return -EINVAL; 2983 } 2984 2985 info_left -= total_record_size; 2986 sinfo = (void *)sinfo + total_record_size; 2987 sec_cnt++; 2988 } 2989 2990 ext_info = ext_sec->ext_info; 2991 ext_info->len = ext_sec->len - sizeof(__u32); 2992 ext_info->rec_size = record_size; 2993 ext_info->info = info + sizeof(__u32); 2994 ext_info->sec_cnt = sec_cnt; 2995 2996 return 0; 2997 } 2998 2999 /* Parse all info secs in the BTF.ext info data */ 3000 static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native) 3001 { 3002 struct btf_ext_sec_info_param func_info = { 3003 .off = btf_ext->hdr->func_info_off, 3004 .len = btf_ext->hdr->func_info_len, 3005 .min_rec_size = sizeof(struct bpf_func_info_min), 3006 .ext_info = &btf_ext->func_info, 3007 .desc = "func_info" 3008 }; 3009 struct btf_ext_sec_info_param line_info = { 3010 .off = btf_ext->hdr->line_info_off, 3011 .len = btf_ext->hdr->line_info_len, 3012 .min_rec_size = sizeof(struct bpf_line_info_min), 3013 .ext_info = &btf_ext->line_info, 3014 .desc = "line_info", 3015 }; 3016 struct btf_ext_sec_info_param core_relo = { 3017 .off = btf_ext->hdr->core_relo_off, 3018 .len = btf_ext->hdr->core_relo_len, 3019 .min_rec_size = sizeof(struct bpf_core_relo), 3020 .ext_info = &btf_ext->core_relo_info, 3021 .desc = "core_relo", 3022 }; 3023 int err; 3024 3025 err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native); 3026 if (err) 3027 return err; 3028 3029 err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native); 3030 if (err) 3031 return err; 3032 3033 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3034 return 0; /* skip core relos parsing */ 3035 3036 err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native); 3037 if (err) 3038 return err; 3039 3040 return 0; 3041 } 3042 3043 /* Swap byte-order of BTF.ext header with any endianness */ 3044 static void btf_ext_bswap_hdr(struct btf_ext_header *h) 3045 { 3046 bool is_native = h->magic == BTF_MAGIC; 3047 __u32 hdr_len; 3048 3049 hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len); 3050 3051 h->magic = bswap_16(h->magic); 3052 h->hdr_len = bswap_32(h->hdr_len); 3053 h->func_info_off = bswap_32(h->func_info_off); 3054 h->func_info_len = bswap_32(h->func_info_len); 3055 h->line_info_off = bswap_32(h->line_info_off); 3056 h->line_info_len = bswap_32(h->line_info_len); 3057 3058 if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3059 return; 3060 3061 h->core_relo_off = bswap_32(h->core_relo_off); 3062 h->core_relo_len = bswap_32(h->core_relo_len); 3063 } 3064 3065 /* Swap byte-order of generic info subsection */ 3066 static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native, 3067 info_rec_bswap_fn bswap_fn) 3068 { 3069 struct btf_ext_info_sec *sec; 3070 __u32 info_left, rec_size, *rs; 3071 3072 if (len == 0) 3073 return; 3074 3075 rs = info; /* info record size */ 3076 rec_size = is_native ? *rs : bswap_32(*rs); 3077 *rs = bswap_32(*rs); 3078 3079 sec = info + sizeof(__u32); /* info sec #1 */ 3080 info_left = len - sizeof(__u32); 3081 while (info_left) { 3082 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 3083 __u32 i, num_recs; 3084 void *p; 3085 3086 num_recs = is_native ? sec->num_info : bswap_32(sec->num_info); 3087 sec->sec_name_off = bswap_32(sec->sec_name_off); 3088 sec->num_info = bswap_32(sec->num_info); 3089 p = sec->data; /* info rec #1 */ 3090 for (i = 0; i < num_recs; i++, p += rec_size) 3091 bswap_fn(p); 3092 sec = p; 3093 info_left -= sec_hdrlen + (__u64)rec_size * num_recs; 3094 } 3095 } 3096 3097 /* 3098 * Swap byte-order of all info data in a BTF.ext section 3099 * - requires BTF.ext hdr in native endianness 3100 */ 3101 static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data) 3102 { 3103 const bool is_native = btf_ext->swapped_endian; 3104 const struct btf_ext_header *h = data; 3105 void *info; 3106 3107 /* Swap func_info subsection byte-order */ 3108 info = data + h->hdr_len + h->func_info_off; 3109 btf_ext_bswap_info_sec(info, h->func_info_len, is_native, 3110 (info_rec_bswap_fn)bpf_func_info_bswap); 3111 3112 /* Swap line_info subsection byte-order */ 3113 info = data + h->hdr_len + h->line_info_off; 3114 btf_ext_bswap_info_sec(info, h->line_info_len, is_native, 3115 (info_rec_bswap_fn)bpf_line_info_bswap); 3116 3117 /* Swap core_relo subsection byte-order (if present) */ 3118 if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3119 return; 3120 3121 info = data + h->hdr_len + h->core_relo_off; 3122 btf_ext_bswap_info_sec(info, h->core_relo_len, is_native, 3123 (info_rec_bswap_fn)bpf_core_relo_bswap); 3124 } 3125 3126 /* Parse hdr data and info sections: check and convert to native endianness */ 3127 static int btf_ext_parse(struct btf_ext *btf_ext) 3128 { 3129 __u32 hdr_len, data_size = btf_ext->data_size; 3130 struct btf_ext_header *hdr = btf_ext->hdr; 3131 bool swapped_endian = false; 3132 int err; 3133 3134 if (data_size < offsetofend(struct btf_ext_header, hdr_len)) { 3135 pr_debug("BTF.ext header too short\n"); 3136 return -EINVAL; 3137 } 3138 3139 hdr_len = hdr->hdr_len; 3140 if (hdr->magic == bswap_16(BTF_MAGIC)) { 3141 swapped_endian = true; 3142 hdr_len = bswap_32(hdr_len); 3143 } else if (hdr->magic != BTF_MAGIC) { 3144 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 3145 return -EINVAL; 3146 } 3147 3148 /* Ensure known version of structs, current BTF_VERSION == 1 */ 3149 if (hdr->version != 1) { 3150 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 3151 return -ENOTSUP; 3152 } 3153 3154 if (hdr->flags) { 3155 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 3156 return -ENOTSUP; 3157 } 3158 3159 if (data_size < hdr_len) { 3160 pr_debug("BTF.ext header not found\n"); 3161 return -EINVAL; 3162 } else if (data_size == hdr_len) { 3163 pr_debug("BTF.ext has no data\n"); 3164 return -EINVAL; 3165 } 3166 3167 /* Verify mandatory hdr info details present */ 3168 if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 3169 pr_warn("BTF.ext header missing func_info, line_info\n"); 3170 return -EINVAL; 3171 } 3172 3173 /* Keep hdr native byte-order in memory for introspection */ 3174 if (swapped_endian) 3175 btf_ext_bswap_hdr(btf_ext->hdr); 3176 3177 /* Validate info subsections and cache key metadata */ 3178 err = btf_ext_parse_info(btf_ext, !swapped_endian); 3179 if (err) 3180 return err; 3181 3182 /* Keep infos native byte-order in memory for introspection */ 3183 if (swapped_endian) 3184 btf_ext_bswap_info(btf_ext, btf_ext->data); 3185 3186 /* 3187 * Set btf_ext->swapped_endian only after all header and info data has 3188 * been swapped, helping bswap functions determine if their data are 3189 * in native byte-order when called. 3190 */ 3191 btf_ext->swapped_endian = swapped_endian; 3192 return 0; 3193 } 3194 3195 void btf_ext__free(struct btf_ext *btf_ext) 3196 { 3197 if (IS_ERR_OR_NULL(btf_ext)) 3198 return; 3199 free(btf_ext->func_info.sec_idxs); 3200 free(btf_ext->line_info.sec_idxs); 3201 free(btf_ext->core_relo_info.sec_idxs); 3202 free(btf_ext->data); 3203 free(btf_ext->data_swapped); 3204 free(btf_ext); 3205 } 3206 3207 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 3208 { 3209 struct btf_ext *btf_ext; 3210 int err; 3211 3212 btf_ext = calloc(1, sizeof(struct btf_ext)); 3213 if (!btf_ext) 3214 return libbpf_err_ptr(-ENOMEM); 3215 3216 btf_ext->data_size = size; 3217 btf_ext->data = malloc(size); 3218 if (!btf_ext->data) { 3219 err = -ENOMEM; 3220 goto done; 3221 } 3222 memcpy(btf_ext->data, data, size); 3223 3224 err = btf_ext_parse(btf_ext); 3225 3226 done: 3227 if (err) { 3228 btf_ext__free(btf_ext); 3229 return libbpf_err_ptr(err); 3230 } 3231 3232 return btf_ext; 3233 } 3234 3235 static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian) 3236 { 3237 struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro; 3238 const __u32 data_sz = btf_ext->data_size; 3239 void *data; 3240 3241 /* Return native data (always present) or swapped data if present */ 3242 if (!swap_endian) 3243 return btf_ext->data; 3244 else if (btf_ext->data_swapped) 3245 return btf_ext->data_swapped; 3246 3247 /* Recreate missing swapped data, then cache and return */ 3248 data = calloc(1, data_sz); 3249 if (!data) 3250 return NULL; 3251 memcpy(data, btf_ext->data, data_sz); 3252 3253 btf_ext_bswap_info(btf_ext, data); 3254 btf_ext_bswap_hdr(data); 3255 btf_ext->data_swapped = data; 3256 return data; 3257 } 3258 3259 const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size) 3260 { 3261 void *data; 3262 3263 data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian); 3264 if (!data) 3265 return errno = ENOMEM, NULL; 3266 3267 *size = btf_ext->data_size; 3268 return data; 3269 } 3270 3271 __attribute__((alias("btf_ext__raw_data"))) 3272 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size); 3273 3274 enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext) 3275 { 3276 if (is_host_big_endian()) 3277 return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 3278 else 3279 return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 3280 } 3281 3282 int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian) 3283 { 3284 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 3285 return libbpf_err(-EINVAL); 3286 3287 btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 3288 3289 if (!btf_ext->swapped_endian) { 3290 free(btf_ext->data_swapped); 3291 btf_ext->data_swapped = NULL; 3292 } 3293 return 0; 3294 } 3295 3296 struct btf_dedup; 3297 3298 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 3299 static void btf_dedup_free(struct btf_dedup *d); 3300 static int btf_dedup_prep(struct btf_dedup *d); 3301 static int btf_dedup_strings(struct btf_dedup *d); 3302 static int btf_dedup_prim_types(struct btf_dedup *d); 3303 static int btf_dedup_struct_types(struct btf_dedup *d); 3304 static int btf_dedup_ref_types(struct btf_dedup *d); 3305 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 3306 static int btf_dedup_compact_types(struct btf_dedup *d); 3307 static int btf_dedup_remap_types(struct btf_dedup *d); 3308 3309 /* 3310 * Deduplicate BTF types and strings. 3311 * 3312 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 3313 * section with all BTF type descriptors and string data. It overwrites that 3314 * memory in-place with deduplicated types and strings without any loss of 3315 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 3316 * is provided, all the strings referenced from .BTF.ext section are honored 3317 * and updated to point to the right offsets after deduplication. 3318 * 3319 * If function returns with error, type/string data might be garbled and should 3320 * be discarded. 3321 * 3322 * More verbose and detailed description of both problem btf_dedup is solving, 3323 * as well as solution could be found at: 3324 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 3325 * 3326 * Problem description and justification 3327 * ===================================== 3328 * 3329 * BTF type information is typically emitted either as a result of conversion 3330 * from DWARF to BTF or directly by compiler. In both cases, each compilation 3331 * unit contains information about a subset of all the types that are used 3332 * in an application. These subsets are frequently overlapping and contain a lot 3333 * of duplicated information when later concatenated together into a single 3334 * binary. This algorithm ensures that each unique type is represented by single 3335 * BTF type descriptor, greatly reducing resulting size of BTF data. 3336 * 3337 * Compilation unit isolation and subsequent duplication of data is not the only 3338 * problem. The same type hierarchy (e.g., struct and all the type that struct 3339 * references) in different compilation units can be represented in BTF to 3340 * various degrees of completeness (or, rather, incompleteness) due to 3341 * struct/union forward declarations. 3342 * 3343 * Let's take a look at an example, that we'll use to better understand the 3344 * problem (and solution). Suppose we have two compilation units, each using 3345 * same `struct S`, but each of them having incomplete type information about 3346 * struct's fields: 3347 * 3348 * // CU #1: 3349 * struct S; 3350 * struct A { 3351 * int a; 3352 * struct A* self; 3353 * struct S* parent; 3354 * }; 3355 * struct B; 3356 * struct S { 3357 * struct A* a_ptr; 3358 * struct B* b_ptr; 3359 * }; 3360 * 3361 * // CU #2: 3362 * struct S; 3363 * struct A; 3364 * struct B { 3365 * int b; 3366 * struct B* self; 3367 * struct S* parent; 3368 * }; 3369 * struct S { 3370 * struct A* a_ptr; 3371 * struct B* b_ptr; 3372 * }; 3373 * 3374 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3375 * more), but will know the complete type information about `struct A`. While 3376 * for CU #2, it will know full type information about `struct B`, but will 3377 * only know about forward declaration of `struct A` (in BTF terms, it will 3378 * have `BTF_KIND_FWD` type descriptor with name `B`). 3379 * 3380 * This compilation unit isolation means that it's possible that there is no 3381 * single CU with complete type information describing structs `S`, `A`, and 3382 * `B`. Also, we might get tons of duplicated and redundant type information. 3383 * 3384 * Additional complication we need to keep in mind comes from the fact that 3385 * types, in general, can form graphs containing cycles, not just DAGs. 3386 * 3387 * While algorithm does deduplication, it also merges and resolves type 3388 * information (unless disabled throught `struct btf_opts`), whenever possible. 3389 * E.g., in the example above with two compilation units having partial type 3390 * information for structs `A` and `B`, the output of algorithm will emit 3391 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3392 * (as well as type information for `int` and pointers), as if they were defined 3393 * in a single compilation unit as: 3394 * 3395 * struct A { 3396 * int a; 3397 * struct A* self; 3398 * struct S* parent; 3399 * }; 3400 * struct B { 3401 * int b; 3402 * struct B* self; 3403 * struct S* parent; 3404 * }; 3405 * struct S { 3406 * struct A* a_ptr; 3407 * struct B* b_ptr; 3408 * }; 3409 * 3410 * Algorithm summary 3411 * ================= 3412 * 3413 * Algorithm completes its work in 7 separate passes: 3414 * 3415 * 1. Strings deduplication. 3416 * 2. Primitive types deduplication (int, enum, fwd). 3417 * 3. Struct/union types deduplication. 3418 * 4. Resolve unambiguous forward declarations. 3419 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3420 * protos, and const/volatile/restrict modifiers). 3421 * 6. Types compaction. 3422 * 7. Types remapping. 3423 * 3424 * Algorithm determines canonical type descriptor, which is a single 3425 * representative type for each truly unique type. This canonical type is the 3426 * one that will go into final deduplicated BTF type information. For 3427 * struct/unions, it is also the type that algorithm will merge additional type 3428 * information into (while resolving FWDs), as it discovers it from data in 3429 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3430 * that type is canonical, or to some other type, if that type is equivalent 3431 * and was chosen as canonical representative. This mapping is stored in 3432 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3433 * FWD type got resolved to. 3434 * 3435 * To facilitate fast discovery of canonical types, we also maintain canonical 3436 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3437 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3438 * that match that signature. With sufficiently good choice of type signature 3439 * hashing function, we can limit number of canonical types for each unique type 3440 * signature to a very small number, allowing to find canonical type for any 3441 * duplicated type very quickly. 3442 * 3443 * Struct/union deduplication is the most critical part and algorithm for 3444 * deduplicating structs/unions is described in greater details in comments for 3445 * `btf_dedup_is_equiv` function. 3446 */ 3447 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3448 { 3449 struct btf_dedup *d; 3450 int err; 3451 3452 if (!OPTS_VALID(opts, btf_dedup_opts)) 3453 return libbpf_err(-EINVAL); 3454 3455 d = btf_dedup_new(btf, opts); 3456 if (IS_ERR(d)) { 3457 pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d)); 3458 return libbpf_err(-EINVAL); 3459 } 3460 3461 if (btf_ensure_modifiable(btf)) { 3462 err = -ENOMEM; 3463 goto done; 3464 } 3465 3466 err = btf_dedup_prep(d); 3467 if (err) { 3468 pr_debug("btf_dedup_prep failed: %s\n", errstr(err)); 3469 goto done; 3470 } 3471 err = btf_dedup_strings(d); 3472 if (err < 0) { 3473 pr_debug("btf_dedup_strings failed: %s\n", errstr(err)); 3474 goto done; 3475 } 3476 err = btf_dedup_prim_types(d); 3477 if (err < 0) { 3478 pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err)); 3479 goto done; 3480 } 3481 err = btf_dedup_struct_types(d); 3482 if (err < 0) { 3483 pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err)); 3484 goto done; 3485 } 3486 err = btf_dedup_resolve_fwds(d); 3487 if (err < 0) { 3488 pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err)); 3489 goto done; 3490 } 3491 err = btf_dedup_ref_types(d); 3492 if (err < 0) { 3493 pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err)); 3494 goto done; 3495 } 3496 err = btf_dedup_compact_types(d); 3497 if (err < 0) { 3498 pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err)); 3499 goto done; 3500 } 3501 err = btf_dedup_remap_types(d); 3502 if (err < 0) { 3503 pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err)); 3504 goto done; 3505 } 3506 3507 done: 3508 btf_dedup_free(d); 3509 return libbpf_err(err); 3510 } 3511 3512 #define BTF_UNPROCESSED_ID ((__u32)-1) 3513 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3514 3515 struct btf_dedup { 3516 /* .BTF section to be deduped in-place */ 3517 struct btf *btf; 3518 /* 3519 * Optional .BTF.ext section. When provided, any strings referenced 3520 * from it will be taken into account when deduping strings 3521 */ 3522 struct btf_ext *btf_ext; 3523 /* 3524 * This is a map from any type's signature hash to a list of possible 3525 * canonical representative type candidates. Hash collisions are 3526 * ignored, so even types of various kinds can share same list of 3527 * candidates, which is fine because we rely on subsequent 3528 * btf_xxx_equal() checks to authoritatively verify type equality. 3529 */ 3530 struct hashmap *dedup_table; 3531 /* Canonical types map */ 3532 __u32 *map; 3533 /* Hypothetical mapping, used during type graph equivalence checks */ 3534 __u32 *hypot_map; 3535 __u32 *hypot_list; 3536 size_t hypot_cnt; 3537 size_t hypot_cap; 3538 /* Whether hypothetical mapping, if successful, would need to adjust 3539 * already canonicalized types (due to a new forward declaration to 3540 * concrete type resolution). In such case, during split BTF dedup 3541 * candidate type would still be considered as different, because base 3542 * BTF is considered to be immutable. 3543 */ 3544 bool hypot_adjust_canon; 3545 /* Various option modifying behavior of algorithm */ 3546 struct btf_dedup_opts opts; 3547 /* temporary strings deduplication state */ 3548 struct strset *strs_set; 3549 }; 3550 3551 static unsigned long hash_combine(unsigned long h, unsigned long value) 3552 { 3553 return h * 31 + value; 3554 } 3555 3556 #define for_each_dedup_cand(d, node, hash) \ 3557 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3558 3559 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3560 { 3561 return hashmap__append(d->dedup_table, hash, type_id); 3562 } 3563 3564 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3565 __u32 from_id, __u32 to_id) 3566 { 3567 if (d->hypot_cnt == d->hypot_cap) { 3568 __u32 *new_list; 3569 3570 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3571 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3572 if (!new_list) 3573 return -ENOMEM; 3574 d->hypot_list = new_list; 3575 } 3576 d->hypot_list[d->hypot_cnt++] = from_id; 3577 d->hypot_map[from_id] = to_id; 3578 return 0; 3579 } 3580 3581 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3582 { 3583 int i; 3584 3585 for (i = 0; i < d->hypot_cnt; i++) 3586 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3587 d->hypot_cnt = 0; 3588 d->hypot_adjust_canon = false; 3589 } 3590 3591 static void btf_dedup_free(struct btf_dedup *d) 3592 { 3593 hashmap__free(d->dedup_table); 3594 d->dedup_table = NULL; 3595 3596 free(d->map); 3597 d->map = NULL; 3598 3599 free(d->hypot_map); 3600 d->hypot_map = NULL; 3601 3602 free(d->hypot_list); 3603 d->hypot_list = NULL; 3604 3605 free(d); 3606 } 3607 3608 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3609 { 3610 return key; 3611 } 3612 3613 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3614 { 3615 return 0; 3616 } 3617 3618 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3619 { 3620 return k1 == k2; 3621 } 3622 3623 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3624 { 3625 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3626 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3627 int i, err = 0, type_cnt; 3628 3629 if (!d) 3630 return ERR_PTR(-ENOMEM); 3631 3632 if (OPTS_GET(opts, force_collisions, false)) 3633 hash_fn = btf_dedup_collision_hash_fn; 3634 3635 d->btf = btf; 3636 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3637 3638 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3639 if (IS_ERR(d->dedup_table)) { 3640 err = PTR_ERR(d->dedup_table); 3641 d->dedup_table = NULL; 3642 goto done; 3643 } 3644 3645 type_cnt = btf__type_cnt(btf); 3646 d->map = malloc(sizeof(__u32) * type_cnt); 3647 if (!d->map) { 3648 err = -ENOMEM; 3649 goto done; 3650 } 3651 /* special BTF "void" type is made canonical immediately */ 3652 d->map[0] = 0; 3653 for (i = 1; i < type_cnt; i++) { 3654 struct btf_type *t = btf_type_by_id(d->btf, i); 3655 3656 /* VAR and DATASEC are never deduped and are self-canonical */ 3657 if (btf_is_var(t) || btf_is_datasec(t)) 3658 d->map[i] = i; 3659 else 3660 d->map[i] = BTF_UNPROCESSED_ID; 3661 } 3662 3663 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3664 if (!d->hypot_map) { 3665 err = -ENOMEM; 3666 goto done; 3667 } 3668 for (i = 0; i < type_cnt; i++) 3669 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3670 3671 done: 3672 if (err) { 3673 btf_dedup_free(d); 3674 return ERR_PTR(err); 3675 } 3676 3677 return d; 3678 } 3679 3680 /* 3681 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3682 * string and pass pointer to it to a provided callback `fn`. 3683 */ 3684 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3685 { 3686 int i, r; 3687 3688 for (i = 0; i < d->btf->nr_types; i++) { 3689 struct btf_field_iter it; 3690 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3691 __u32 *str_off; 3692 3693 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 3694 if (r) 3695 return r; 3696 3697 while ((str_off = btf_field_iter_next(&it))) { 3698 r = fn(str_off, ctx); 3699 if (r) 3700 return r; 3701 } 3702 } 3703 3704 if (!d->btf_ext) 3705 return 0; 3706 3707 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3708 if (r) 3709 return r; 3710 3711 return 0; 3712 } 3713 3714 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3715 { 3716 struct btf_dedup *d = ctx; 3717 __u32 str_off = *str_off_ptr; 3718 const char *s; 3719 int off, err; 3720 3721 /* don't touch empty string or string in main BTF */ 3722 if (str_off == 0 || str_off < d->btf->start_str_off) 3723 return 0; 3724 3725 s = btf__str_by_offset(d->btf, str_off); 3726 if (d->btf->base_btf) { 3727 err = btf__find_str(d->btf->base_btf, s); 3728 if (err >= 0) { 3729 *str_off_ptr = err; 3730 return 0; 3731 } 3732 if (err != -ENOENT) 3733 return err; 3734 } 3735 3736 off = strset__add_str(d->strs_set, s); 3737 if (off < 0) 3738 return off; 3739 3740 *str_off_ptr = d->btf->start_str_off + off; 3741 return 0; 3742 } 3743 3744 /* 3745 * Dedup string and filter out those that are not referenced from either .BTF 3746 * or .BTF.ext (if provided) sections. 3747 * 3748 * This is done by building index of all strings in BTF's string section, 3749 * then iterating over all entities that can reference strings (e.g., type 3750 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3751 * strings as used. After that all used strings are deduped and compacted into 3752 * sequential blob of memory and new offsets are calculated. Then all the string 3753 * references are iterated again and rewritten using new offsets. 3754 */ 3755 static int btf_dedup_strings(struct btf_dedup *d) 3756 { 3757 int err; 3758 3759 if (d->btf->strs_deduped) 3760 return 0; 3761 3762 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3763 if (IS_ERR(d->strs_set)) { 3764 err = PTR_ERR(d->strs_set); 3765 goto err_out; 3766 } 3767 3768 if (!d->btf->base_btf) { 3769 /* insert empty string; we won't be looking it up during strings 3770 * dedup, but it's good to have it for generic BTF string lookups 3771 */ 3772 err = strset__add_str(d->strs_set, ""); 3773 if (err < 0) 3774 goto err_out; 3775 } 3776 3777 /* remap string offsets */ 3778 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3779 if (err) 3780 goto err_out; 3781 3782 /* replace BTF string data and hash with deduped ones */ 3783 strset__free(d->btf->strs_set); 3784 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3785 d->btf->strs_set = d->strs_set; 3786 d->strs_set = NULL; 3787 d->btf->strs_deduped = true; 3788 return 0; 3789 3790 err_out: 3791 strset__free(d->strs_set); 3792 d->strs_set = NULL; 3793 3794 return err; 3795 } 3796 3797 static long btf_hash_common(struct btf_type *t) 3798 { 3799 long h; 3800 3801 h = hash_combine(0, t->name_off); 3802 h = hash_combine(h, t->info); 3803 h = hash_combine(h, t->size); 3804 return h; 3805 } 3806 3807 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3808 { 3809 return t1->name_off == t2->name_off && 3810 t1->info == t2->info && 3811 t1->size == t2->size; 3812 } 3813 3814 /* Calculate type signature hash of INT or TAG. */ 3815 static long btf_hash_int_decl_tag(struct btf_type *t) 3816 { 3817 __u32 info = *(__u32 *)(t + 1); 3818 long h; 3819 3820 h = btf_hash_common(t); 3821 h = hash_combine(h, info); 3822 return h; 3823 } 3824 3825 /* Check structural equality of two INTs or TAGs. */ 3826 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3827 { 3828 __u32 info1, info2; 3829 3830 if (!btf_equal_common(t1, t2)) 3831 return false; 3832 info1 = *(__u32 *)(t1 + 1); 3833 info2 = *(__u32 *)(t2 + 1); 3834 return info1 == info2; 3835 } 3836 3837 /* Calculate type signature hash of ENUM/ENUM64. */ 3838 static long btf_hash_enum(struct btf_type *t) 3839 { 3840 long h; 3841 3842 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3843 h = hash_combine(0, t->name_off); 3844 return h; 3845 } 3846 3847 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3848 { 3849 const struct btf_enum *m1, *m2; 3850 __u16 vlen; 3851 int i; 3852 3853 vlen = btf_vlen(t1); 3854 m1 = btf_enum(t1); 3855 m2 = btf_enum(t2); 3856 for (i = 0; i < vlen; i++) { 3857 if (m1->name_off != m2->name_off || m1->val != m2->val) 3858 return false; 3859 m1++; 3860 m2++; 3861 } 3862 return true; 3863 } 3864 3865 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3866 { 3867 const struct btf_enum64 *m1, *m2; 3868 __u16 vlen; 3869 int i; 3870 3871 vlen = btf_vlen(t1); 3872 m1 = btf_enum64(t1); 3873 m2 = btf_enum64(t2); 3874 for (i = 0; i < vlen; i++) { 3875 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3876 m1->val_hi32 != m2->val_hi32) 3877 return false; 3878 m1++; 3879 m2++; 3880 } 3881 return true; 3882 } 3883 3884 /* Check structural equality of two ENUMs or ENUM64s. */ 3885 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3886 { 3887 if (!btf_equal_common(t1, t2)) 3888 return false; 3889 3890 /* t1 & t2 kinds are identical because of btf_equal_common */ 3891 if (btf_kind(t1) == BTF_KIND_ENUM) 3892 return btf_equal_enum_members(t1, t2); 3893 else 3894 return btf_equal_enum64_members(t1, t2); 3895 } 3896 3897 static inline bool btf_is_enum_fwd(struct btf_type *t) 3898 { 3899 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3900 } 3901 3902 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3903 { 3904 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3905 return btf_equal_enum(t1, t2); 3906 /* At this point either t1 or t2 or both are forward declarations, thus: 3907 * - skip comparing vlen because it is zero for forward declarations; 3908 * - skip comparing size to allow enum forward declarations 3909 * to be compatible with enum64 full declarations; 3910 * - skip comparing kind for the same reason. 3911 */ 3912 return t1->name_off == t2->name_off && 3913 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3914 } 3915 3916 /* 3917 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3918 * as referenced type IDs equivalence is established separately during type 3919 * graph equivalence check algorithm. 3920 */ 3921 static long btf_hash_struct(struct btf_type *t) 3922 { 3923 const struct btf_member *member = btf_members(t); 3924 __u32 vlen = btf_vlen(t); 3925 long h = btf_hash_common(t); 3926 int i; 3927 3928 for (i = 0; i < vlen; i++) { 3929 h = hash_combine(h, member->name_off); 3930 h = hash_combine(h, member->offset); 3931 /* no hashing of referenced type ID, it can be unresolved yet */ 3932 member++; 3933 } 3934 return h; 3935 } 3936 3937 /* 3938 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3939 * type IDs. This check is performed during type graph equivalence check and 3940 * referenced types equivalence is checked separately. 3941 */ 3942 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3943 { 3944 const struct btf_member *m1, *m2; 3945 __u16 vlen; 3946 int i; 3947 3948 if (!btf_equal_common(t1, t2)) 3949 return false; 3950 3951 vlen = btf_vlen(t1); 3952 m1 = btf_members(t1); 3953 m2 = btf_members(t2); 3954 for (i = 0; i < vlen; i++) { 3955 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3956 return false; 3957 m1++; 3958 m2++; 3959 } 3960 return true; 3961 } 3962 3963 /* 3964 * Calculate type signature hash of ARRAY, including referenced type IDs, 3965 * under assumption that they were already resolved to canonical type IDs and 3966 * are not going to change. 3967 */ 3968 static long btf_hash_array(struct btf_type *t) 3969 { 3970 const struct btf_array *info = btf_array(t); 3971 long h = btf_hash_common(t); 3972 3973 h = hash_combine(h, info->type); 3974 h = hash_combine(h, info->index_type); 3975 h = hash_combine(h, info->nelems); 3976 return h; 3977 } 3978 3979 /* 3980 * Check exact equality of two ARRAYs, taking into account referenced 3981 * type IDs, under assumption that they were already resolved to canonical 3982 * type IDs and are not going to change. 3983 * This function is called during reference types deduplication to compare 3984 * ARRAY to potential canonical representative. 3985 */ 3986 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3987 { 3988 const struct btf_array *info1, *info2; 3989 3990 if (!btf_equal_common(t1, t2)) 3991 return false; 3992 3993 info1 = btf_array(t1); 3994 info2 = btf_array(t2); 3995 return info1->type == info2->type && 3996 info1->index_type == info2->index_type && 3997 info1->nelems == info2->nelems; 3998 } 3999 4000 /* 4001 * Check structural compatibility of two ARRAYs, ignoring referenced type 4002 * IDs. This check is performed during type graph equivalence check and 4003 * referenced types equivalence is checked separately. 4004 */ 4005 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 4006 { 4007 if (!btf_equal_common(t1, t2)) 4008 return false; 4009 4010 return btf_array(t1)->nelems == btf_array(t2)->nelems; 4011 } 4012 4013 /* 4014 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 4015 * under assumption that they were already resolved to canonical type IDs and 4016 * are not going to change. 4017 */ 4018 static long btf_hash_fnproto(struct btf_type *t) 4019 { 4020 const struct btf_param *member = btf_params(t); 4021 __u16 vlen = btf_vlen(t); 4022 long h = btf_hash_common(t); 4023 int i; 4024 4025 for (i = 0; i < vlen; i++) { 4026 h = hash_combine(h, member->name_off); 4027 h = hash_combine(h, member->type); 4028 member++; 4029 } 4030 return h; 4031 } 4032 4033 /* 4034 * Check exact equality of two FUNC_PROTOs, taking into account referenced 4035 * type IDs, under assumption that they were already resolved to canonical 4036 * type IDs and are not going to change. 4037 * This function is called during reference types deduplication to compare 4038 * FUNC_PROTO to potential canonical representative. 4039 */ 4040 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 4041 { 4042 const struct btf_param *m1, *m2; 4043 __u16 vlen; 4044 int i; 4045 4046 if (!btf_equal_common(t1, t2)) 4047 return false; 4048 4049 vlen = btf_vlen(t1); 4050 m1 = btf_params(t1); 4051 m2 = btf_params(t2); 4052 for (i = 0; i < vlen; i++) { 4053 if (m1->name_off != m2->name_off || m1->type != m2->type) 4054 return false; 4055 m1++; 4056 m2++; 4057 } 4058 return true; 4059 } 4060 4061 /* 4062 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 4063 * IDs. This check is performed during type graph equivalence check and 4064 * referenced types equivalence is checked separately. 4065 */ 4066 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 4067 { 4068 const struct btf_param *m1, *m2; 4069 __u16 vlen; 4070 int i; 4071 4072 /* skip return type ID */ 4073 if (t1->name_off != t2->name_off || t1->info != t2->info) 4074 return false; 4075 4076 vlen = btf_vlen(t1); 4077 m1 = btf_params(t1); 4078 m2 = btf_params(t2); 4079 for (i = 0; i < vlen; i++) { 4080 if (m1->name_off != m2->name_off) 4081 return false; 4082 m1++; 4083 m2++; 4084 } 4085 return true; 4086 } 4087 4088 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 4089 * types and initializing the rest of the state (canonical type mapping) for 4090 * the fixed base BTF part. 4091 */ 4092 static int btf_dedup_prep(struct btf_dedup *d) 4093 { 4094 struct btf_type *t; 4095 int type_id; 4096 long h; 4097 4098 if (!d->btf->base_btf) 4099 return 0; 4100 4101 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 4102 t = btf_type_by_id(d->btf, type_id); 4103 4104 /* all base BTF types are self-canonical by definition */ 4105 d->map[type_id] = type_id; 4106 4107 switch (btf_kind(t)) { 4108 case BTF_KIND_VAR: 4109 case BTF_KIND_DATASEC: 4110 /* VAR and DATASEC are never hash/deduplicated */ 4111 continue; 4112 case BTF_KIND_CONST: 4113 case BTF_KIND_VOLATILE: 4114 case BTF_KIND_RESTRICT: 4115 case BTF_KIND_PTR: 4116 case BTF_KIND_FWD: 4117 case BTF_KIND_TYPEDEF: 4118 case BTF_KIND_FUNC: 4119 case BTF_KIND_FLOAT: 4120 case BTF_KIND_TYPE_TAG: 4121 h = btf_hash_common(t); 4122 break; 4123 case BTF_KIND_INT: 4124 case BTF_KIND_DECL_TAG: 4125 h = btf_hash_int_decl_tag(t); 4126 break; 4127 case BTF_KIND_ENUM: 4128 case BTF_KIND_ENUM64: 4129 h = btf_hash_enum(t); 4130 break; 4131 case BTF_KIND_STRUCT: 4132 case BTF_KIND_UNION: 4133 h = btf_hash_struct(t); 4134 break; 4135 case BTF_KIND_ARRAY: 4136 h = btf_hash_array(t); 4137 break; 4138 case BTF_KIND_FUNC_PROTO: 4139 h = btf_hash_fnproto(t); 4140 break; 4141 default: 4142 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 4143 return -EINVAL; 4144 } 4145 if (btf_dedup_table_add(d, h, type_id)) 4146 return -ENOMEM; 4147 } 4148 4149 return 0; 4150 } 4151 4152 /* 4153 * Deduplicate primitive types, that can't reference other types, by calculating 4154 * their type signature hash and comparing them with any possible canonical 4155 * candidate. If no canonical candidate matches, type itself is marked as 4156 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 4157 */ 4158 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 4159 { 4160 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4161 struct hashmap_entry *hash_entry; 4162 struct btf_type *cand; 4163 /* if we don't find equivalent type, then we are canonical */ 4164 __u32 new_id = type_id; 4165 __u32 cand_id; 4166 long h; 4167 4168 switch (btf_kind(t)) { 4169 case BTF_KIND_CONST: 4170 case BTF_KIND_VOLATILE: 4171 case BTF_KIND_RESTRICT: 4172 case BTF_KIND_PTR: 4173 case BTF_KIND_TYPEDEF: 4174 case BTF_KIND_ARRAY: 4175 case BTF_KIND_STRUCT: 4176 case BTF_KIND_UNION: 4177 case BTF_KIND_FUNC: 4178 case BTF_KIND_FUNC_PROTO: 4179 case BTF_KIND_VAR: 4180 case BTF_KIND_DATASEC: 4181 case BTF_KIND_DECL_TAG: 4182 case BTF_KIND_TYPE_TAG: 4183 return 0; 4184 4185 case BTF_KIND_INT: 4186 h = btf_hash_int_decl_tag(t); 4187 for_each_dedup_cand(d, hash_entry, h) { 4188 cand_id = hash_entry->value; 4189 cand = btf_type_by_id(d->btf, cand_id); 4190 if (btf_equal_int_tag(t, cand)) { 4191 new_id = cand_id; 4192 break; 4193 } 4194 } 4195 break; 4196 4197 case BTF_KIND_ENUM: 4198 case BTF_KIND_ENUM64: 4199 h = btf_hash_enum(t); 4200 for_each_dedup_cand(d, hash_entry, h) { 4201 cand_id = hash_entry->value; 4202 cand = btf_type_by_id(d->btf, cand_id); 4203 if (btf_equal_enum(t, cand)) { 4204 new_id = cand_id; 4205 break; 4206 } 4207 if (btf_compat_enum(t, cand)) { 4208 if (btf_is_enum_fwd(t)) { 4209 /* resolve fwd to full enum */ 4210 new_id = cand_id; 4211 break; 4212 } 4213 /* resolve canonical enum fwd to full enum */ 4214 d->map[cand_id] = type_id; 4215 } 4216 } 4217 break; 4218 4219 case BTF_KIND_FWD: 4220 case BTF_KIND_FLOAT: 4221 h = btf_hash_common(t); 4222 for_each_dedup_cand(d, hash_entry, h) { 4223 cand_id = hash_entry->value; 4224 cand = btf_type_by_id(d->btf, cand_id); 4225 if (btf_equal_common(t, cand)) { 4226 new_id = cand_id; 4227 break; 4228 } 4229 } 4230 break; 4231 4232 default: 4233 return -EINVAL; 4234 } 4235 4236 d->map[type_id] = new_id; 4237 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4238 return -ENOMEM; 4239 4240 return 0; 4241 } 4242 4243 static int btf_dedup_prim_types(struct btf_dedup *d) 4244 { 4245 int i, err; 4246 4247 for (i = 0; i < d->btf->nr_types; i++) { 4248 err = btf_dedup_prim_type(d, d->btf->start_id + i); 4249 if (err) 4250 return err; 4251 } 4252 return 0; 4253 } 4254 4255 /* 4256 * Check whether type is already mapped into canonical one (could be to itself). 4257 */ 4258 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 4259 { 4260 return d->map[type_id] <= BTF_MAX_NR_TYPES; 4261 } 4262 4263 /* 4264 * Resolve type ID into its canonical type ID, if any; otherwise return original 4265 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 4266 * STRUCT/UNION link and resolve it into canonical type ID as well. 4267 */ 4268 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 4269 { 4270 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4271 type_id = d->map[type_id]; 4272 return type_id; 4273 } 4274 4275 /* 4276 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 4277 * type ID. 4278 */ 4279 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 4280 { 4281 __u32 orig_type_id = type_id; 4282 4283 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4284 return type_id; 4285 4286 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4287 type_id = d->map[type_id]; 4288 4289 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4290 return type_id; 4291 4292 return orig_type_id; 4293 } 4294 4295 4296 static inline __u16 btf_fwd_kind(struct btf_type *t) 4297 { 4298 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 4299 } 4300 4301 /* Check if given two types are identical ARRAY definitions */ 4302 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 4303 { 4304 struct btf_type *t1, *t2; 4305 4306 t1 = btf_type_by_id(d->btf, id1); 4307 t2 = btf_type_by_id(d->btf, id2); 4308 if (!btf_is_array(t1) || !btf_is_array(t2)) 4309 return false; 4310 4311 return btf_equal_array(t1, t2); 4312 } 4313 4314 /* Check if given two types are identical STRUCT/UNION definitions */ 4315 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 4316 { 4317 const struct btf_member *m1, *m2; 4318 struct btf_type *t1, *t2; 4319 int n, i; 4320 4321 t1 = btf_type_by_id(d->btf, id1); 4322 t2 = btf_type_by_id(d->btf, id2); 4323 4324 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 4325 return false; 4326 4327 if (!btf_shallow_equal_struct(t1, t2)) 4328 return false; 4329 4330 m1 = btf_members(t1); 4331 m2 = btf_members(t2); 4332 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 4333 if (m1->type != m2->type && 4334 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 4335 !btf_dedup_identical_structs(d, m1->type, m2->type)) 4336 return false; 4337 } 4338 return true; 4339 } 4340 4341 /* 4342 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 4343 * call it "candidate graph" in this description for brevity) to a type graph 4344 * formed by (potential) canonical struct/union ("canonical graph" for brevity 4345 * here, though keep in mind that not all types in canonical graph are 4346 * necessarily canonical representatives themselves, some of them might be 4347 * duplicates or its uniqueness might not have been established yet). 4348 * Returns: 4349 * - >0, if type graphs are equivalent; 4350 * - 0, if not equivalent; 4351 * - <0, on error. 4352 * 4353 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 4354 * equivalence of BTF types at each step. If at any point BTF types in candidate 4355 * and canonical graphs are not compatible structurally, whole graphs are 4356 * incompatible. If types are structurally equivalent (i.e., all information 4357 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 4358 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`). 4359 * If a type references other types, then those referenced types are checked 4360 * for equivalence recursively. 4361 * 4362 * During DFS traversal, if we find that for current `canon_id` type we 4363 * already have some mapping in hypothetical map, we check for two possible 4364 * situations: 4365 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 4366 * happen when type graphs have cycles. In this case we assume those two 4367 * types are equivalent. 4368 * - `canon_id` is mapped to different type. This is contradiction in our 4369 * hypothetical mapping, because same graph in canonical graph corresponds 4370 * to two different types in candidate graph, which for equivalent type 4371 * graphs shouldn't happen. This condition terminates equivalence check 4372 * with negative result. 4373 * 4374 * If type graphs traversal exhausts types to check and find no contradiction, 4375 * then type graphs are equivalent. 4376 * 4377 * When checking types for equivalence, there is one special case: FWD types. 4378 * If FWD type resolution is allowed and one of the types (either from canonical 4379 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 4380 * flag) and their names match, hypothetical mapping is updated to point from 4381 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 4382 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 4383 * 4384 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 4385 * if there are two exactly named (or anonymous) structs/unions that are 4386 * compatible structurally, one of which has FWD field, while other is concrete 4387 * STRUCT/UNION, but according to C sources they are different structs/unions 4388 * that are referencing different types with the same name. This is extremely 4389 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 4390 * this logic is causing problems. 4391 * 4392 * Doing FWD resolution means that both candidate and/or canonical graphs can 4393 * consists of portions of the graph that come from multiple compilation units. 4394 * This is due to the fact that types within single compilation unit are always 4395 * deduplicated and FWDs are already resolved, if referenced struct/union 4396 * definition is available. So, if we had unresolved FWD and found corresponding 4397 * STRUCT/UNION, they will be from different compilation units. This 4398 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 4399 * type graph will likely have at least two different BTF types that describe 4400 * same type (e.g., most probably there will be two different BTF types for the 4401 * same 'int' primitive type) and could even have "overlapping" parts of type 4402 * graph that describe same subset of types. 4403 * 4404 * This in turn means that our assumption that each type in canonical graph 4405 * must correspond to exactly one type in candidate graph might not hold 4406 * anymore and will make it harder to detect contradictions using hypothetical 4407 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4408 * resolution only in canonical graph. FWDs in candidate graphs are never 4409 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4410 * that can occur: 4411 * - Both types in canonical and candidate graphs are FWDs. If they are 4412 * structurally equivalent, then they can either be both resolved to the 4413 * same STRUCT/UNION or not resolved at all. In both cases they are 4414 * equivalent and there is no need to resolve FWD on candidate side. 4415 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4416 * so nothing to resolve as well, algorithm will check equivalence anyway. 4417 * - Type in canonical graph is FWD, while type in candidate is concrete 4418 * STRUCT/UNION. In this case candidate graph comes from single compilation 4419 * unit, so there is exactly one BTF type for each unique C type. After 4420 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4421 * in canonical graph mapping to single BTF type in candidate graph, but 4422 * because hypothetical mapping maps from canonical to candidate types, it's 4423 * alright, and we still maintain the property of having single `canon_id` 4424 * mapping to single `cand_id` (there could be two different `canon_id` 4425 * mapped to the same `cand_id`, but it's not contradictory). 4426 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4427 * graph is FWD. In this case we are just going to check compatibility of 4428 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4429 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4430 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4431 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4432 * canonical graph. 4433 */ 4434 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4435 __u32 canon_id) 4436 { 4437 struct btf_type *cand_type; 4438 struct btf_type *canon_type; 4439 __u32 hypot_type_id; 4440 __u16 cand_kind; 4441 __u16 canon_kind; 4442 int i, eq; 4443 4444 /* if both resolve to the same canonical, they must be equivalent */ 4445 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4446 return 1; 4447 4448 canon_id = resolve_fwd_id(d, canon_id); 4449 4450 hypot_type_id = d->hypot_map[canon_id]; 4451 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4452 if (hypot_type_id == cand_id) 4453 return 1; 4454 /* In some cases compiler will generate different DWARF types 4455 * for *identical* array type definitions and use them for 4456 * different fields within the *same* struct. This breaks type 4457 * equivalence check, which makes an assumption that candidate 4458 * types sub-graph has a consistent and deduped-by-compiler 4459 * types within a single CU. So work around that by explicitly 4460 * allowing identical array types here. 4461 */ 4462 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4463 return 1; 4464 /* It turns out that similar situation can happen with 4465 * struct/union sometimes, sigh... Handle the case where 4466 * structs/unions are exactly the same, down to the referenced 4467 * type IDs. Anything more complicated (e.g., if referenced 4468 * types are different, but equivalent) is *way more* 4469 * complicated and requires a many-to-many equivalence mapping. 4470 */ 4471 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4472 return 1; 4473 return 0; 4474 } 4475 4476 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4477 return -ENOMEM; 4478 4479 cand_type = btf_type_by_id(d->btf, cand_id); 4480 canon_type = btf_type_by_id(d->btf, canon_id); 4481 cand_kind = btf_kind(cand_type); 4482 canon_kind = btf_kind(canon_type); 4483 4484 if (cand_type->name_off != canon_type->name_off) 4485 return 0; 4486 4487 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4488 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4489 && cand_kind != canon_kind) { 4490 __u16 real_kind; 4491 __u16 fwd_kind; 4492 4493 if (cand_kind == BTF_KIND_FWD) { 4494 real_kind = canon_kind; 4495 fwd_kind = btf_fwd_kind(cand_type); 4496 } else { 4497 real_kind = cand_kind; 4498 fwd_kind = btf_fwd_kind(canon_type); 4499 /* we'd need to resolve base FWD to STRUCT/UNION */ 4500 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4501 d->hypot_adjust_canon = true; 4502 } 4503 return fwd_kind == real_kind; 4504 } 4505 4506 if (cand_kind != canon_kind) 4507 return 0; 4508 4509 switch (cand_kind) { 4510 case BTF_KIND_INT: 4511 return btf_equal_int_tag(cand_type, canon_type); 4512 4513 case BTF_KIND_ENUM: 4514 case BTF_KIND_ENUM64: 4515 return btf_compat_enum(cand_type, canon_type); 4516 4517 case BTF_KIND_FWD: 4518 case BTF_KIND_FLOAT: 4519 return btf_equal_common(cand_type, canon_type); 4520 4521 case BTF_KIND_CONST: 4522 case BTF_KIND_VOLATILE: 4523 case BTF_KIND_RESTRICT: 4524 case BTF_KIND_PTR: 4525 case BTF_KIND_TYPEDEF: 4526 case BTF_KIND_FUNC: 4527 case BTF_KIND_TYPE_TAG: 4528 if (cand_type->info != canon_type->info) 4529 return 0; 4530 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4531 4532 case BTF_KIND_ARRAY: { 4533 const struct btf_array *cand_arr, *canon_arr; 4534 4535 if (!btf_compat_array(cand_type, canon_type)) 4536 return 0; 4537 cand_arr = btf_array(cand_type); 4538 canon_arr = btf_array(canon_type); 4539 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4540 if (eq <= 0) 4541 return eq; 4542 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4543 } 4544 4545 case BTF_KIND_STRUCT: 4546 case BTF_KIND_UNION: { 4547 const struct btf_member *cand_m, *canon_m; 4548 __u16 vlen; 4549 4550 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4551 return 0; 4552 vlen = btf_vlen(cand_type); 4553 cand_m = btf_members(cand_type); 4554 canon_m = btf_members(canon_type); 4555 for (i = 0; i < vlen; i++) { 4556 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4557 if (eq <= 0) 4558 return eq; 4559 cand_m++; 4560 canon_m++; 4561 } 4562 4563 return 1; 4564 } 4565 4566 case BTF_KIND_FUNC_PROTO: { 4567 const struct btf_param *cand_p, *canon_p; 4568 __u16 vlen; 4569 4570 if (!btf_compat_fnproto(cand_type, canon_type)) 4571 return 0; 4572 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4573 if (eq <= 0) 4574 return eq; 4575 vlen = btf_vlen(cand_type); 4576 cand_p = btf_params(cand_type); 4577 canon_p = btf_params(canon_type); 4578 for (i = 0; i < vlen; i++) { 4579 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4580 if (eq <= 0) 4581 return eq; 4582 cand_p++; 4583 canon_p++; 4584 } 4585 return 1; 4586 } 4587 4588 default: 4589 return -EINVAL; 4590 } 4591 return 0; 4592 } 4593 4594 /* 4595 * Use hypothetical mapping, produced by successful type graph equivalence 4596 * check, to augment existing struct/union canonical mapping, where possible. 4597 * 4598 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4599 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4600 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4601 * we are recording the mapping anyway. As opposed to carefulness required 4602 * for struct/union correspondence mapping (described below), for FWD resolution 4603 * it's not important, as by the time that FWD type (reference type) will be 4604 * deduplicated all structs/unions will be deduped already anyway. 4605 * 4606 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4607 * not required for correctness. It needs to be done carefully to ensure that 4608 * struct/union from candidate's type graph is not mapped into corresponding 4609 * struct/union from canonical type graph that itself hasn't been resolved into 4610 * canonical representative. The only guarantee we have is that canonical 4611 * struct/union was determined as canonical and that won't change. But any 4612 * types referenced through that struct/union fields could have been not yet 4613 * resolved, so in case like that it's too early to establish any kind of 4614 * correspondence between structs/unions. 4615 * 4616 * No canonical correspondence is derived for primitive types (they are already 4617 * deduplicated completely already anyway) or reference types (they rely on 4618 * stability of struct/union canonical relationship for equivalence checks). 4619 */ 4620 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4621 { 4622 __u32 canon_type_id, targ_type_id; 4623 __u16 t_kind, c_kind; 4624 __u32 t_id, c_id; 4625 int i; 4626 4627 for (i = 0; i < d->hypot_cnt; i++) { 4628 canon_type_id = d->hypot_list[i]; 4629 targ_type_id = d->hypot_map[canon_type_id]; 4630 t_id = resolve_type_id(d, targ_type_id); 4631 c_id = resolve_type_id(d, canon_type_id); 4632 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4633 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4634 /* 4635 * Resolve FWD into STRUCT/UNION. 4636 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4637 * mapped to canonical representative (as opposed to 4638 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4639 * eventually that struct is going to be mapped and all resolved 4640 * FWDs will automatically resolve to correct canonical 4641 * representative. This will happen before ref type deduping, 4642 * which critically depends on stability of these mapping. This 4643 * stability is not a requirement for STRUCT/UNION equivalence 4644 * checks, though. 4645 */ 4646 4647 /* if it's the split BTF case, we still need to point base FWD 4648 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4649 * will be resolved against base FWD. If we don't point base 4650 * canonical FWD to the resolved STRUCT/UNION, then all the 4651 * FWDs in split BTF won't be correctly resolved to a proper 4652 * STRUCT/UNION. 4653 */ 4654 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4655 d->map[c_id] = t_id; 4656 4657 /* if graph equivalence determined that we'd need to adjust 4658 * base canonical types, then we need to only point base FWDs 4659 * to STRUCTs/UNIONs and do no more modifications. For all 4660 * other purposes the type graphs were not equivalent. 4661 */ 4662 if (d->hypot_adjust_canon) 4663 continue; 4664 4665 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4666 d->map[t_id] = c_id; 4667 4668 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4669 c_kind != BTF_KIND_FWD && 4670 is_type_mapped(d, c_id) && 4671 !is_type_mapped(d, t_id)) { 4672 /* 4673 * as a perf optimization, we can map struct/union 4674 * that's part of type graph we just verified for 4675 * equivalence. We can do that for struct/union that has 4676 * canonical representative only, though. 4677 */ 4678 d->map[t_id] = c_id; 4679 } 4680 } 4681 } 4682 4683 /* 4684 * Deduplicate struct/union types. 4685 * 4686 * For each struct/union type its type signature hash is calculated, taking 4687 * into account type's name, size, number, order and names of fields, but 4688 * ignoring type ID's referenced from fields, because they might not be deduped 4689 * completely until after reference types deduplication phase. This type hash 4690 * is used to iterate over all potential canonical types, sharing same hash. 4691 * For each canonical candidate we check whether type graphs that they form 4692 * (through referenced types in fields and so on) are equivalent using algorithm 4693 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4694 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4695 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4696 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4697 * potentially map other structs/unions to their canonical representatives, 4698 * if such relationship hasn't yet been established. This speeds up algorithm 4699 * by eliminating some of the duplicate work. 4700 * 4701 * If no matching canonical representative was found, struct/union is marked 4702 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4703 * for further look ups. 4704 */ 4705 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4706 { 4707 struct btf_type *cand_type, *t; 4708 struct hashmap_entry *hash_entry; 4709 /* if we don't find equivalent type, then we are canonical */ 4710 __u32 new_id = type_id; 4711 __u16 kind; 4712 long h; 4713 4714 /* already deduped or is in process of deduping (loop detected) */ 4715 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4716 return 0; 4717 4718 t = btf_type_by_id(d->btf, type_id); 4719 kind = btf_kind(t); 4720 4721 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4722 return 0; 4723 4724 h = btf_hash_struct(t); 4725 for_each_dedup_cand(d, hash_entry, h) { 4726 __u32 cand_id = hash_entry->value; 4727 int eq; 4728 4729 /* 4730 * Even though btf_dedup_is_equiv() checks for 4731 * btf_shallow_equal_struct() internally when checking two 4732 * structs (unions) for equivalence, we need to guard here 4733 * from picking matching FWD type as a dedup candidate. 4734 * This can happen due to hash collision. In such case just 4735 * relying on btf_dedup_is_equiv() would lead to potentially 4736 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4737 * FWD and compatible STRUCT/UNION are considered equivalent. 4738 */ 4739 cand_type = btf_type_by_id(d->btf, cand_id); 4740 if (!btf_shallow_equal_struct(t, cand_type)) 4741 continue; 4742 4743 btf_dedup_clear_hypot_map(d); 4744 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4745 if (eq < 0) 4746 return eq; 4747 if (!eq) 4748 continue; 4749 btf_dedup_merge_hypot_map(d); 4750 if (d->hypot_adjust_canon) /* not really equivalent */ 4751 continue; 4752 new_id = cand_id; 4753 break; 4754 } 4755 4756 d->map[type_id] = new_id; 4757 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4758 return -ENOMEM; 4759 4760 return 0; 4761 } 4762 4763 static int btf_dedup_struct_types(struct btf_dedup *d) 4764 { 4765 int i, err; 4766 4767 for (i = 0; i < d->btf->nr_types; i++) { 4768 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4769 if (err) 4770 return err; 4771 } 4772 return 0; 4773 } 4774 4775 /* 4776 * Deduplicate reference type. 4777 * 4778 * Once all primitive and struct/union types got deduplicated, we can easily 4779 * deduplicate all other (reference) BTF types. This is done in two steps: 4780 * 4781 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4782 * resolution can be done either immediately for primitive or struct/union types 4783 * (because they were deduped in previous two phases) or recursively for 4784 * reference types. Recursion will always terminate at either primitive or 4785 * struct/union type, at which point we can "unwind" chain of reference types 4786 * one by one. There is no danger of encountering cycles because in C type 4787 * system the only way to form type cycle is through struct/union, so any chain 4788 * of reference types, even those taking part in a type cycle, will inevitably 4789 * reach struct/union at some point. 4790 * 4791 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4792 * becomes "stable", in the sense that no further deduplication will cause 4793 * any changes to it. With that, it's now possible to calculate type's signature 4794 * hash (this time taking into account referenced type IDs) and loop over all 4795 * potential canonical representatives. If no match was found, current type 4796 * will become canonical representative of itself and will be added into 4797 * btf_dedup->dedup_table as another possible canonical representative. 4798 */ 4799 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4800 { 4801 struct hashmap_entry *hash_entry; 4802 __u32 new_id = type_id, cand_id; 4803 struct btf_type *t, *cand; 4804 /* if we don't find equivalent type, then we are representative type */ 4805 int ref_type_id; 4806 long h; 4807 4808 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4809 return -ELOOP; 4810 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4811 return resolve_type_id(d, type_id); 4812 4813 t = btf_type_by_id(d->btf, type_id); 4814 d->map[type_id] = BTF_IN_PROGRESS_ID; 4815 4816 switch (btf_kind(t)) { 4817 case BTF_KIND_CONST: 4818 case BTF_KIND_VOLATILE: 4819 case BTF_KIND_RESTRICT: 4820 case BTF_KIND_PTR: 4821 case BTF_KIND_TYPEDEF: 4822 case BTF_KIND_FUNC: 4823 case BTF_KIND_TYPE_TAG: 4824 ref_type_id = btf_dedup_ref_type(d, t->type); 4825 if (ref_type_id < 0) 4826 return ref_type_id; 4827 t->type = ref_type_id; 4828 4829 h = btf_hash_common(t); 4830 for_each_dedup_cand(d, hash_entry, h) { 4831 cand_id = hash_entry->value; 4832 cand = btf_type_by_id(d->btf, cand_id); 4833 if (btf_equal_common(t, cand)) { 4834 new_id = cand_id; 4835 break; 4836 } 4837 } 4838 break; 4839 4840 case BTF_KIND_DECL_TAG: 4841 ref_type_id = btf_dedup_ref_type(d, t->type); 4842 if (ref_type_id < 0) 4843 return ref_type_id; 4844 t->type = ref_type_id; 4845 4846 h = btf_hash_int_decl_tag(t); 4847 for_each_dedup_cand(d, hash_entry, h) { 4848 cand_id = hash_entry->value; 4849 cand = btf_type_by_id(d->btf, cand_id); 4850 if (btf_equal_int_tag(t, cand)) { 4851 new_id = cand_id; 4852 break; 4853 } 4854 } 4855 break; 4856 4857 case BTF_KIND_ARRAY: { 4858 struct btf_array *info = btf_array(t); 4859 4860 ref_type_id = btf_dedup_ref_type(d, info->type); 4861 if (ref_type_id < 0) 4862 return ref_type_id; 4863 info->type = ref_type_id; 4864 4865 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4866 if (ref_type_id < 0) 4867 return ref_type_id; 4868 info->index_type = ref_type_id; 4869 4870 h = btf_hash_array(t); 4871 for_each_dedup_cand(d, hash_entry, h) { 4872 cand_id = hash_entry->value; 4873 cand = btf_type_by_id(d->btf, cand_id); 4874 if (btf_equal_array(t, cand)) { 4875 new_id = cand_id; 4876 break; 4877 } 4878 } 4879 break; 4880 } 4881 4882 case BTF_KIND_FUNC_PROTO: { 4883 struct btf_param *param; 4884 __u16 vlen; 4885 int i; 4886 4887 ref_type_id = btf_dedup_ref_type(d, t->type); 4888 if (ref_type_id < 0) 4889 return ref_type_id; 4890 t->type = ref_type_id; 4891 4892 vlen = btf_vlen(t); 4893 param = btf_params(t); 4894 for (i = 0; i < vlen; i++) { 4895 ref_type_id = btf_dedup_ref_type(d, param->type); 4896 if (ref_type_id < 0) 4897 return ref_type_id; 4898 param->type = ref_type_id; 4899 param++; 4900 } 4901 4902 h = btf_hash_fnproto(t); 4903 for_each_dedup_cand(d, hash_entry, h) { 4904 cand_id = hash_entry->value; 4905 cand = btf_type_by_id(d->btf, cand_id); 4906 if (btf_equal_fnproto(t, cand)) { 4907 new_id = cand_id; 4908 break; 4909 } 4910 } 4911 break; 4912 } 4913 4914 default: 4915 return -EINVAL; 4916 } 4917 4918 d->map[type_id] = new_id; 4919 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4920 return -ENOMEM; 4921 4922 return new_id; 4923 } 4924 4925 static int btf_dedup_ref_types(struct btf_dedup *d) 4926 { 4927 int i, err; 4928 4929 for (i = 0; i < d->btf->nr_types; i++) { 4930 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4931 if (err < 0) 4932 return err; 4933 } 4934 /* we won't need d->dedup_table anymore */ 4935 hashmap__free(d->dedup_table); 4936 d->dedup_table = NULL; 4937 return 0; 4938 } 4939 4940 /* 4941 * Collect a map from type names to type ids for all canonical structs 4942 * and unions. If the same name is shared by several canonical types 4943 * use a special value 0 to indicate this fact. 4944 */ 4945 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4946 { 4947 __u32 nr_types = btf__type_cnt(d->btf); 4948 struct btf_type *t; 4949 __u32 type_id; 4950 __u16 kind; 4951 int err; 4952 4953 /* 4954 * Iterate over base and split module ids in order to get all 4955 * available structs in the map. 4956 */ 4957 for (type_id = 1; type_id < nr_types; ++type_id) { 4958 t = btf_type_by_id(d->btf, type_id); 4959 kind = btf_kind(t); 4960 4961 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4962 continue; 4963 4964 /* Skip non-canonical types */ 4965 if (type_id != d->map[type_id]) 4966 continue; 4967 4968 err = hashmap__add(names_map, t->name_off, type_id); 4969 if (err == -EEXIST) 4970 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4971 4972 if (err) 4973 return err; 4974 } 4975 4976 return 0; 4977 } 4978 4979 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4980 { 4981 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4982 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4983 __u16 cand_kind, kind = btf_kind(t); 4984 struct btf_type *cand_t; 4985 uintptr_t cand_id; 4986 4987 if (kind != BTF_KIND_FWD) 4988 return 0; 4989 4990 /* Skip if this FWD already has a mapping */ 4991 if (type_id != d->map[type_id]) 4992 return 0; 4993 4994 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4995 return 0; 4996 4997 /* Zero is a special value indicating that name is not unique */ 4998 if (!cand_id) 4999 return 0; 5000 5001 cand_t = btf_type_by_id(d->btf, cand_id); 5002 cand_kind = btf_kind(cand_t); 5003 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 5004 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 5005 return 0; 5006 5007 d->map[type_id] = cand_id; 5008 5009 return 0; 5010 } 5011 5012 /* 5013 * Resolve unambiguous forward declarations. 5014 * 5015 * The lion's share of all FWD declarations is resolved during 5016 * `btf_dedup_struct_types` phase when different type graphs are 5017 * compared against each other. However, if in some compilation unit a 5018 * FWD declaration is not a part of a type graph compared against 5019 * another type graph that declaration's canonical type would not be 5020 * changed. Example: 5021 * 5022 * CU #1: 5023 * 5024 * struct foo; 5025 * struct foo *some_global; 5026 * 5027 * CU #2: 5028 * 5029 * struct foo { int u; }; 5030 * struct foo *another_global; 5031 * 5032 * After `btf_dedup_struct_types` the BTF looks as follows: 5033 * 5034 * [1] STRUCT 'foo' size=4 vlen=1 ... 5035 * [2] INT 'int' size=4 ... 5036 * [3] PTR '(anon)' type_id=1 5037 * [4] FWD 'foo' fwd_kind=struct 5038 * [5] PTR '(anon)' type_id=4 5039 * 5040 * This pass assumes that such FWD declarations should be mapped to 5041 * structs or unions with identical name in case if the name is not 5042 * ambiguous. 5043 */ 5044 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 5045 { 5046 int i, err; 5047 struct hashmap *names_map; 5048 5049 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 5050 if (IS_ERR(names_map)) 5051 return PTR_ERR(names_map); 5052 5053 err = btf_dedup_fill_unique_names_map(d, names_map); 5054 if (err < 0) 5055 goto exit; 5056 5057 for (i = 0; i < d->btf->nr_types; i++) { 5058 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 5059 if (err < 0) 5060 break; 5061 } 5062 5063 exit: 5064 hashmap__free(names_map); 5065 return err; 5066 } 5067 5068 /* 5069 * Compact types. 5070 * 5071 * After we established for each type its corresponding canonical representative 5072 * type, we now can eliminate types that are not canonical and leave only 5073 * canonical ones layed out sequentially in memory by copying them over 5074 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 5075 * a map from original type ID to a new compacted type ID, which will be used 5076 * during next phase to "fix up" type IDs, referenced from struct/union and 5077 * reference types. 5078 */ 5079 static int btf_dedup_compact_types(struct btf_dedup *d) 5080 { 5081 __u32 *new_offs; 5082 __u32 next_type_id = d->btf->start_id; 5083 const struct btf_type *t; 5084 void *p; 5085 int i, id, len; 5086 5087 /* we are going to reuse hypot_map to store compaction remapping */ 5088 d->hypot_map[0] = 0; 5089 /* base BTF types are not renumbered */ 5090 for (id = 1; id < d->btf->start_id; id++) 5091 d->hypot_map[id] = id; 5092 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 5093 d->hypot_map[id] = BTF_UNPROCESSED_ID; 5094 5095 p = d->btf->types_data; 5096 5097 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 5098 if (d->map[id] != id) 5099 continue; 5100 5101 t = btf__type_by_id(d->btf, id); 5102 len = btf_type_size(t); 5103 if (len < 0) 5104 return len; 5105 5106 memmove(p, t, len); 5107 d->hypot_map[id] = next_type_id; 5108 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 5109 p += len; 5110 next_type_id++; 5111 } 5112 5113 /* shrink struct btf's internal types index and update btf_header */ 5114 d->btf->nr_types = next_type_id - d->btf->start_id; 5115 d->btf->type_offs_cap = d->btf->nr_types; 5116 d->btf->hdr->type_len = p - d->btf->types_data; 5117 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 5118 sizeof(*new_offs)); 5119 if (d->btf->type_offs_cap && !new_offs) 5120 return -ENOMEM; 5121 d->btf->type_offs = new_offs; 5122 d->btf->hdr->str_off = d->btf->hdr->type_len; 5123 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 5124 return 0; 5125 } 5126 5127 /* 5128 * Figure out final (deduplicated and compacted) type ID for provided original 5129 * `type_id` by first resolving it into corresponding canonical type ID and 5130 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 5131 * which is populated during compaction phase. 5132 */ 5133 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 5134 { 5135 struct btf_dedup *d = ctx; 5136 __u32 resolved_type_id, new_type_id; 5137 5138 resolved_type_id = resolve_type_id(d, *type_id); 5139 new_type_id = d->hypot_map[resolved_type_id]; 5140 if (new_type_id > BTF_MAX_NR_TYPES) 5141 return -EINVAL; 5142 5143 *type_id = new_type_id; 5144 return 0; 5145 } 5146 5147 /* 5148 * Remap referenced type IDs into deduped type IDs. 5149 * 5150 * After BTF types are deduplicated and compacted, their final type IDs may 5151 * differ from original ones. The map from original to a corresponding 5152 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 5153 * compaction phase. During remapping phase we are rewriting all type IDs 5154 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 5155 * their final deduped type IDs. 5156 */ 5157 static int btf_dedup_remap_types(struct btf_dedup *d) 5158 { 5159 int i, r; 5160 5161 for (i = 0; i < d->btf->nr_types; i++) { 5162 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 5163 struct btf_field_iter it; 5164 __u32 *type_id; 5165 5166 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5167 if (r) 5168 return r; 5169 5170 while ((type_id = btf_field_iter_next(&it))) { 5171 __u32 resolved_id, new_id; 5172 5173 resolved_id = resolve_type_id(d, *type_id); 5174 new_id = d->hypot_map[resolved_id]; 5175 if (new_id > BTF_MAX_NR_TYPES) 5176 return -EINVAL; 5177 5178 *type_id = new_id; 5179 } 5180 } 5181 5182 if (!d->btf_ext) 5183 return 0; 5184 5185 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 5186 if (r) 5187 return r; 5188 5189 return 0; 5190 } 5191 5192 /* 5193 * Probe few well-known locations for vmlinux kernel image and try to load BTF 5194 * data out of it to use for target BTF. 5195 */ 5196 struct btf *btf__load_vmlinux_btf(void) 5197 { 5198 const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux"; 5199 /* fall back locations, trying to find vmlinux on disk */ 5200 const char *locations[] = { 5201 "/boot/vmlinux-%1$s", 5202 "/lib/modules/%1$s/vmlinux-%1$s", 5203 "/lib/modules/%1$s/build/vmlinux", 5204 "/usr/lib/modules/%1$s/kernel/vmlinux", 5205 "/usr/lib/debug/boot/vmlinux-%1$s", 5206 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 5207 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 5208 }; 5209 char path[PATH_MAX + 1]; 5210 struct utsname buf; 5211 struct btf *btf; 5212 int i, err; 5213 5214 /* is canonical sysfs location accessible? */ 5215 if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) { 5216 pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n", 5217 sysfs_btf_path); 5218 } else { 5219 btf = btf__parse(sysfs_btf_path, NULL); 5220 if (!btf) { 5221 err = -errno; 5222 pr_warn("failed to read kernel BTF from '%s': %s\n", 5223 sysfs_btf_path, errstr(err)); 5224 return libbpf_err_ptr(err); 5225 } 5226 pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path); 5227 return btf; 5228 } 5229 5230 /* try fallback locations */ 5231 uname(&buf); 5232 for (i = 0; i < ARRAY_SIZE(locations); i++) { 5233 snprintf(path, PATH_MAX, locations[i], buf.release); 5234 5235 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 5236 continue; 5237 5238 btf = btf__parse(path, NULL); 5239 err = libbpf_get_error(btf); 5240 pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err)); 5241 if (err) 5242 continue; 5243 5244 return btf; 5245 } 5246 5247 pr_warn("failed to find valid kernel BTF\n"); 5248 return libbpf_err_ptr(-ESRCH); 5249 } 5250 5251 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 5252 5253 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 5254 { 5255 char path[80]; 5256 5257 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 5258 return btf__parse_split(path, vmlinux_btf); 5259 } 5260 5261 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 5262 { 5263 const struct btf_ext_info *seg; 5264 struct btf_ext_info_sec *sec; 5265 int i, err; 5266 5267 seg = &btf_ext->func_info; 5268 for_each_btf_ext_sec(seg, sec) { 5269 struct bpf_func_info_min *rec; 5270 5271 for_each_btf_ext_rec(seg, sec, i, rec) { 5272 err = visit(&rec->type_id, ctx); 5273 if (err < 0) 5274 return err; 5275 } 5276 } 5277 5278 seg = &btf_ext->core_relo_info; 5279 for_each_btf_ext_sec(seg, sec) { 5280 struct bpf_core_relo *rec; 5281 5282 for_each_btf_ext_rec(seg, sec, i, rec) { 5283 err = visit(&rec->type_id, ctx); 5284 if (err < 0) 5285 return err; 5286 } 5287 } 5288 5289 return 0; 5290 } 5291 5292 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 5293 { 5294 const struct btf_ext_info *seg; 5295 struct btf_ext_info_sec *sec; 5296 int i, err; 5297 5298 seg = &btf_ext->func_info; 5299 for_each_btf_ext_sec(seg, sec) { 5300 err = visit(&sec->sec_name_off, ctx); 5301 if (err) 5302 return err; 5303 } 5304 5305 seg = &btf_ext->line_info; 5306 for_each_btf_ext_sec(seg, sec) { 5307 struct bpf_line_info_min *rec; 5308 5309 err = visit(&sec->sec_name_off, ctx); 5310 if (err) 5311 return err; 5312 5313 for_each_btf_ext_rec(seg, sec, i, rec) { 5314 err = visit(&rec->file_name_off, ctx); 5315 if (err) 5316 return err; 5317 err = visit(&rec->line_off, ctx); 5318 if (err) 5319 return err; 5320 } 5321 } 5322 5323 seg = &btf_ext->core_relo_info; 5324 for_each_btf_ext_sec(seg, sec) { 5325 struct bpf_core_relo *rec; 5326 5327 err = visit(&sec->sec_name_off, ctx); 5328 if (err) 5329 return err; 5330 5331 for_each_btf_ext_rec(seg, sec, i, rec) { 5332 err = visit(&rec->access_str_off, ctx); 5333 if (err) 5334 return err; 5335 } 5336 } 5337 5338 return 0; 5339 } 5340 5341 struct btf_distill { 5342 struct btf_pipe pipe; 5343 int *id_map; 5344 unsigned int split_start_id; 5345 unsigned int split_start_str; 5346 int diff_id; 5347 }; 5348 5349 static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i) 5350 { 5351 struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i); 5352 struct btf_field_iter it; 5353 __u32 *id; 5354 int err; 5355 5356 err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS); 5357 if (err) 5358 return err; 5359 while ((id = btf_field_iter_next(&it))) { 5360 struct btf_type *base_t; 5361 5362 if (!*id) 5363 continue; 5364 /* split BTF id, not needed */ 5365 if (*id >= dist->split_start_id) 5366 continue; 5367 /* already added ? */ 5368 if (dist->id_map[*id] > 0) 5369 continue; 5370 5371 /* only a subset of base BTF types should be referenced from 5372 * split BTF; ensure nothing unexpected is referenced. 5373 */ 5374 base_t = btf_type_by_id(dist->pipe.src, *id); 5375 switch (btf_kind(base_t)) { 5376 case BTF_KIND_INT: 5377 case BTF_KIND_FLOAT: 5378 case BTF_KIND_FWD: 5379 case BTF_KIND_ARRAY: 5380 case BTF_KIND_STRUCT: 5381 case BTF_KIND_UNION: 5382 case BTF_KIND_TYPEDEF: 5383 case BTF_KIND_ENUM: 5384 case BTF_KIND_ENUM64: 5385 case BTF_KIND_PTR: 5386 case BTF_KIND_CONST: 5387 case BTF_KIND_RESTRICT: 5388 case BTF_KIND_VOLATILE: 5389 case BTF_KIND_FUNC_PROTO: 5390 case BTF_KIND_TYPE_TAG: 5391 dist->id_map[*id] = *id; 5392 break; 5393 default: 5394 pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n", 5395 *id, btf_kind(base_t)); 5396 return -EINVAL; 5397 } 5398 /* If a base type is used, ensure types it refers to are 5399 * marked as used also; so for example if we find a PTR to INT 5400 * we need both the PTR and INT. 5401 * 5402 * The only exception is named struct/unions, since distilled 5403 * base BTF composite types have no members. 5404 */ 5405 if (btf_is_composite(base_t) && base_t->name_off) 5406 continue; 5407 err = btf_add_distilled_type_ids(dist, *id); 5408 if (err) 5409 return err; 5410 } 5411 return 0; 5412 } 5413 5414 static int btf_add_distilled_types(struct btf_distill *dist) 5415 { 5416 bool adding_to_base = dist->pipe.dst->start_id == 1; 5417 int id = btf__type_cnt(dist->pipe.dst); 5418 struct btf_type *t; 5419 int i, err = 0; 5420 5421 5422 /* Add types for each of the required references to either distilled 5423 * base or split BTF, depending on type characteristics. 5424 */ 5425 for (i = 1; i < dist->split_start_id; i++) { 5426 const char *name; 5427 int kind; 5428 5429 if (!dist->id_map[i]) 5430 continue; 5431 t = btf_type_by_id(dist->pipe.src, i); 5432 kind = btf_kind(t); 5433 name = btf__name_by_offset(dist->pipe.src, t->name_off); 5434 5435 switch (kind) { 5436 case BTF_KIND_INT: 5437 case BTF_KIND_FLOAT: 5438 case BTF_KIND_FWD: 5439 /* Named int, float, fwd are added to base. */ 5440 if (!adding_to_base) 5441 continue; 5442 err = btf_add_type(&dist->pipe, t); 5443 break; 5444 case BTF_KIND_STRUCT: 5445 case BTF_KIND_UNION: 5446 /* Named struct/union are added to base as 0-vlen 5447 * struct/union of same size. Anonymous struct/unions 5448 * are added to split BTF as-is. 5449 */ 5450 if (adding_to_base) { 5451 if (!t->name_off) 5452 continue; 5453 err = btf_add_composite(dist->pipe.dst, kind, name, t->size); 5454 } else { 5455 if (t->name_off) 5456 continue; 5457 err = btf_add_type(&dist->pipe, t); 5458 } 5459 break; 5460 case BTF_KIND_ENUM: 5461 case BTF_KIND_ENUM64: 5462 /* Named enum[64]s are added to base as a sized 5463 * enum; relocation will match with appropriately-named 5464 * and sized enum or enum64. 5465 * 5466 * Anonymous enums are added to split BTF as-is. 5467 */ 5468 if (adding_to_base) { 5469 if (!t->name_off) 5470 continue; 5471 err = btf__add_enum(dist->pipe.dst, name, t->size); 5472 } else { 5473 if (t->name_off) 5474 continue; 5475 err = btf_add_type(&dist->pipe, t); 5476 } 5477 break; 5478 case BTF_KIND_ARRAY: 5479 case BTF_KIND_TYPEDEF: 5480 case BTF_KIND_PTR: 5481 case BTF_KIND_CONST: 5482 case BTF_KIND_RESTRICT: 5483 case BTF_KIND_VOLATILE: 5484 case BTF_KIND_FUNC_PROTO: 5485 case BTF_KIND_TYPE_TAG: 5486 /* All other types are added to split BTF. */ 5487 if (adding_to_base) 5488 continue; 5489 err = btf_add_type(&dist->pipe, t); 5490 break; 5491 default: 5492 pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n", 5493 name, i, kind); 5494 return -EINVAL; 5495 5496 } 5497 if (err < 0) 5498 break; 5499 dist->id_map[i] = id++; 5500 } 5501 return err; 5502 } 5503 5504 /* Split BTF ids without a mapping will be shifted downwards since distilled 5505 * base BTF is smaller than the original base BTF. For those that have a 5506 * mapping (either to base or updated split BTF), update the id based on 5507 * that mapping. 5508 */ 5509 static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i) 5510 { 5511 struct btf_type *t = btf_type_by_id(dist->pipe.dst, i); 5512 struct btf_field_iter it; 5513 __u32 *id; 5514 int err; 5515 5516 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5517 if (err) 5518 return err; 5519 while ((id = btf_field_iter_next(&it))) { 5520 if (dist->id_map[*id]) 5521 *id = dist->id_map[*id]; 5522 else if (*id >= dist->split_start_id) 5523 *id -= dist->diff_id; 5524 } 5525 return 0; 5526 } 5527 5528 /* Create updated split BTF with distilled base BTF; distilled base BTF 5529 * consists of BTF information required to clarify the types that split 5530 * BTF refers to, omitting unneeded details. Specifically it will contain 5531 * base types and memberless definitions of named structs, unions and enumerated 5532 * types. Associated reference types like pointers, arrays and anonymous 5533 * structs, unions and enumerated types will be added to split BTF. 5534 * Size is recorded for named struct/unions to help guide matching to the 5535 * target base BTF during later relocation. 5536 * 5537 * The only case where structs, unions or enumerated types are fully represented 5538 * is when they are anonymous; in such cases, the anonymous type is added to 5539 * split BTF in full. 5540 * 5541 * We return newly-created split BTF where the split BTF refers to a newly-created 5542 * distilled base BTF. Both must be freed separately by the caller. 5543 */ 5544 int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, 5545 struct btf **new_split_btf) 5546 { 5547 struct btf *new_base = NULL, *new_split = NULL; 5548 const struct btf *old_base; 5549 unsigned int n = btf__type_cnt(src_btf); 5550 struct btf_distill dist = {}; 5551 struct btf_type *t; 5552 int i, err = 0; 5553 5554 /* src BTF must be split BTF. */ 5555 old_base = btf__base_btf(src_btf); 5556 if (!new_base_btf || !new_split_btf || !old_base) 5557 return libbpf_err(-EINVAL); 5558 5559 new_base = btf__new_empty(); 5560 if (!new_base) 5561 return libbpf_err(-ENOMEM); 5562 5563 btf__set_endianness(new_base, btf__endianness(src_btf)); 5564 5565 dist.id_map = calloc(n, sizeof(*dist.id_map)); 5566 if (!dist.id_map) { 5567 err = -ENOMEM; 5568 goto done; 5569 } 5570 dist.pipe.src = src_btf; 5571 dist.pipe.dst = new_base; 5572 dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 5573 if (IS_ERR(dist.pipe.str_off_map)) { 5574 err = -ENOMEM; 5575 goto done; 5576 } 5577 dist.split_start_id = btf__type_cnt(old_base); 5578 dist.split_start_str = old_base->hdr->str_len; 5579 5580 /* Pass over src split BTF; generate the list of base BTF type ids it 5581 * references; these will constitute our distilled BTF set to be 5582 * distributed over base and split BTF as appropriate. 5583 */ 5584 for (i = src_btf->start_id; i < n; i++) { 5585 err = btf_add_distilled_type_ids(&dist, i); 5586 if (err < 0) 5587 goto done; 5588 } 5589 /* Next add types for each of the required references to base BTF and split BTF 5590 * in turn. 5591 */ 5592 err = btf_add_distilled_types(&dist); 5593 if (err < 0) 5594 goto done; 5595 5596 /* Create new split BTF with distilled base BTF as its base; the final 5597 * state is split BTF with distilled base BTF that represents enough 5598 * about its base references to allow it to be relocated with the base 5599 * BTF available. 5600 */ 5601 new_split = btf__new_empty_split(new_base); 5602 if (!new_split) { 5603 err = -errno; 5604 goto done; 5605 } 5606 dist.pipe.dst = new_split; 5607 /* First add all split types */ 5608 for (i = src_btf->start_id; i < n; i++) { 5609 t = btf_type_by_id(src_btf, i); 5610 err = btf_add_type(&dist.pipe, t); 5611 if (err < 0) 5612 goto done; 5613 } 5614 /* Now add distilled types to split BTF that are not added to base. */ 5615 err = btf_add_distilled_types(&dist); 5616 if (err < 0) 5617 goto done; 5618 5619 /* All split BTF ids will be shifted downwards since there are less base 5620 * BTF ids in distilled base BTF. 5621 */ 5622 dist.diff_id = dist.split_start_id - btf__type_cnt(new_base); 5623 5624 n = btf__type_cnt(new_split); 5625 /* Now update base/split BTF ids. */ 5626 for (i = 1; i < n; i++) { 5627 err = btf_update_distilled_type_ids(&dist, i); 5628 if (err < 0) 5629 break; 5630 } 5631 done: 5632 free(dist.id_map); 5633 hashmap__free(dist.pipe.str_off_map); 5634 if (err) { 5635 btf__free(new_split); 5636 btf__free(new_base); 5637 return libbpf_err(err); 5638 } 5639 *new_base_btf = new_base; 5640 *new_split_btf = new_split; 5641 5642 return 0; 5643 } 5644 5645 const struct btf_header *btf_header(const struct btf *btf) 5646 { 5647 return btf->hdr; 5648 } 5649 5650 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 5651 { 5652 btf->base_btf = (struct btf *)base_btf; 5653 btf->start_id = btf__type_cnt(base_btf); 5654 btf->start_str_off = base_btf->hdr->str_len; 5655 } 5656 5657 int btf__relocate(struct btf *btf, const struct btf *base_btf) 5658 { 5659 int err = btf_relocate(btf, base_btf, NULL); 5660 5661 if (!err) 5662 btf->owns_base = false; 5663 return libbpf_err(err); 5664 } 5665