xref: /linux/tools/lib/bpf/btf.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return errno = EINVAL, NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return libbpf_err(-EINVAL);
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return libbpf_err(-EINVAL);
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 		switch (btf_kind(t)) {
573 		case BTF_KIND_INT:
574 		case BTF_KIND_STRUCT:
575 		case BTF_KIND_UNION:
576 		case BTF_KIND_ENUM:
577 		case BTF_KIND_DATASEC:
578 		case BTF_KIND_FLOAT:
579 			size = t->size;
580 			goto done;
581 		case BTF_KIND_PTR:
582 			size = btf_ptr_sz(btf);
583 			goto done;
584 		case BTF_KIND_TYPEDEF:
585 		case BTF_KIND_VOLATILE:
586 		case BTF_KIND_CONST:
587 		case BTF_KIND_RESTRICT:
588 		case BTF_KIND_VAR:
589 			type_id = t->type;
590 			break;
591 		case BTF_KIND_ARRAY:
592 			array = btf_array(t);
593 			if (nelems && array->nelems > UINT32_MAX / nelems)
594 				return libbpf_err(-E2BIG);
595 			nelems *= array->nelems;
596 			type_id = array->type;
597 			break;
598 		default:
599 			return libbpf_err(-EINVAL);
600 		}
601 
602 		t = btf__type_by_id(btf, type_id);
603 	}
604 
605 done:
606 	if (size < 0)
607 		return libbpf_err(-EINVAL);
608 	if (nelems && size > UINT32_MAX / nelems)
609 		return libbpf_err(-E2BIG);
610 
611 	return nelems * size;
612 }
613 
614 int btf__align_of(const struct btf *btf, __u32 id)
615 {
616 	const struct btf_type *t = btf__type_by_id(btf, id);
617 	__u16 kind = btf_kind(t);
618 
619 	switch (kind) {
620 	case BTF_KIND_INT:
621 	case BTF_KIND_ENUM:
622 	case BTF_KIND_FLOAT:
623 		return min(btf_ptr_sz(btf), (size_t)t->size);
624 	case BTF_KIND_PTR:
625 		return btf_ptr_sz(btf);
626 	case BTF_KIND_TYPEDEF:
627 	case BTF_KIND_VOLATILE:
628 	case BTF_KIND_CONST:
629 	case BTF_KIND_RESTRICT:
630 		return btf__align_of(btf, t->type);
631 	case BTF_KIND_ARRAY:
632 		return btf__align_of(btf, btf_array(t)->type);
633 	case BTF_KIND_STRUCT:
634 	case BTF_KIND_UNION: {
635 		const struct btf_member *m = btf_members(t);
636 		__u16 vlen = btf_vlen(t);
637 		int i, max_align = 1, align;
638 
639 		for (i = 0; i < vlen; i++, m++) {
640 			align = btf__align_of(btf, m->type);
641 			if (align <= 0)
642 				return libbpf_err(align);
643 			max_align = max(max_align, align);
644 		}
645 
646 		return max_align;
647 	}
648 	default:
649 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 		return errno = EINVAL, 0;
651 	}
652 }
653 
654 int btf__resolve_type(const struct btf *btf, __u32 type_id)
655 {
656 	const struct btf_type *t;
657 	int depth = 0;
658 
659 	t = btf__type_by_id(btf, type_id);
660 	while (depth < MAX_RESOLVE_DEPTH &&
661 	       !btf_type_is_void_or_null(t) &&
662 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 		type_id = t->type;
664 		t = btf__type_by_id(btf, type_id);
665 		depth++;
666 	}
667 
668 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 		return libbpf_err(-EINVAL);
670 
671 	return type_id;
672 }
673 
674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675 {
676 	__u32 i, nr_types = btf__get_nr_types(btf);
677 
678 	if (!strcmp(type_name, "void"))
679 		return 0;
680 
681 	for (i = 1; i <= nr_types; i++) {
682 		const struct btf_type *t = btf__type_by_id(btf, i);
683 		const char *name = btf__name_by_offset(btf, t->name_off);
684 
685 		if (name && !strcmp(type_name, name))
686 			return i;
687 	}
688 
689 	return libbpf_err(-ENOENT);
690 }
691 
692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 			     __u32 kind)
694 {
695 	__u32 i, nr_types = btf__get_nr_types(btf);
696 
697 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 		return 0;
699 
700 	for (i = 1; i <= nr_types; i++) {
701 		const struct btf_type *t = btf__type_by_id(btf, i);
702 		const char *name;
703 
704 		if (btf_kind(t) != kind)
705 			continue;
706 		name = btf__name_by_offset(btf, t->name_off);
707 		if (name && !strcmp(type_name, name))
708 			return i;
709 	}
710 
711 	return libbpf_err(-ENOENT);
712 }
713 
714 static bool btf_is_modifiable(const struct btf *btf)
715 {
716 	return (void *)btf->hdr != btf->raw_data;
717 }
718 
719 void btf__free(struct btf *btf)
720 {
721 	if (IS_ERR_OR_NULL(btf))
722 		return;
723 
724 	if (btf->fd >= 0)
725 		close(btf->fd);
726 
727 	if (btf_is_modifiable(btf)) {
728 		/* if BTF was modified after loading, it will have a split
729 		 * in-memory representation for header, types, and strings
730 		 * sections, so we need to free all of them individually. It
731 		 * might still have a cached contiguous raw data present,
732 		 * which will be unconditionally freed below.
733 		 */
734 		free(btf->hdr);
735 		free(btf->types_data);
736 		strset__free(btf->strs_set);
737 	}
738 	free(btf->raw_data);
739 	free(btf->raw_data_swapped);
740 	free(btf->type_offs);
741 	free(btf);
742 }
743 
744 static struct btf *btf_new_empty(struct btf *base_btf)
745 {
746 	struct btf *btf;
747 
748 	btf = calloc(1, sizeof(*btf));
749 	if (!btf)
750 		return ERR_PTR(-ENOMEM);
751 
752 	btf->nr_types = 0;
753 	btf->start_id = 1;
754 	btf->start_str_off = 0;
755 	btf->fd = -1;
756 	btf->ptr_sz = sizeof(void *);
757 	btf->swapped_endian = false;
758 
759 	if (base_btf) {
760 		btf->base_btf = base_btf;
761 		btf->start_id = btf__get_nr_types(base_btf) + 1;
762 		btf->start_str_off = base_btf->hdr->str_len;
763 	}
764 
765 	/* +1 for empty string at offset 0 */
766 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 	btf->raw_data = calloc(1, btf->raw_size);
768 	if (!btf->raw_data) {
769 		free(btf);
770 		return ERR_PTR(-ENOMEM);
771 	}
772 
773 	btf->hdr = btf->raw_data;
774 	btf->hdr->hdr_len = sizeof(struct btf_header);
775 	btf->hdr->magic = BTF_MAGIC;
776 	btf->hdr->version = BTF_VERSION;
777 
778 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781 
782 	return btf;
783 }
784 
785 struct btf *btf__new_empty(void)
786 {
787 	return libbpf_ptr(btf_new_empty(NULL));
788 }
789 
790 struct btf *btf__new_empty_split(struct btf *base_btf)
791 {
792 	return libbpf_ptr(btf_new_empty(base_btf));
793 }
794 
795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796 {
797 	struct btf *btf;
798 	int err;
799 
800 	btf = calloc(1, sizeof(struct btf));
801 	if (!btf)
802 		return ERR_PTR(-ENOMEM);
803 
804 	btf->nr_types = 0;
805 	btf->start_id = 1;
806 	btf->start_str_off = 0;
807 	btf->fd = -1;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 done:
837 	if (err) {
838 		btf__free(btf);
839 		return ERR_PTR(err);
840 	}
841 
842 	return btf;
843 }
844 
845 struct btf *btf__new(const void *data, __u32 size)
846 {
847 	return libbpf_ptr(btf_new(data, size, NULL));
848 }
849 
850 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
851 				 struct btf_ext **btf_ext)
852 {
853 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
854 	int err = 0, fd = -1, idx = 0;
855 	struct btf *btf = NULL;
856 	Elf_Scn *scn = NULL;
857 	Elf *elf = NULL;
858 	GElf_Ehdr ehdr;
859 	size_t shstrndx;
860 
861 	if (elf_version(EV_CURRENT) == EV_NONE) {
862 		pr_warn("failed to init libelf for %s\n", path);
863 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
864 	}
865 
866 	fd = open(path, O_RDONLY);
867 	if (fd < 0) {
868 		err = -errno;
869 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
870 		return ERR_PTR(err);
871 	}
872 
873 	err = -LIBBPF_ERRNO__FORMAT;
874 
875 	elf = elf_begin(fd, ELF_C_READ, NULL);
876 	if (!elf) {
877 		pr_warn("failed to open %s as ELF file\n", path);
878 		goto done;
879 	}
880 	if (!gelf_getehdr(elf, &ehdr)) {
881 		pr_warn("failed to get EHDR from %s\n", path);
882 		goto done;
883 	}
884 
885 	if (elf_getshdrstrndx(elf, &shstrndx)) {
886 		pr_warn("failed to get section names section index for %s\n",
887 			path);
888 		goto done;
889 	}
890 
891 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
892 		pr_warn("failed to get e_shstrndx from %s\n", path);
893 		goto done;
894 	}
895 
896 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
897 		GElf_Shdr sh;
898 		char *name;
899 
900 		idx++;
901 		if (gelf_getshdr(scn, &sh) != &sh) {
902 			pr_warn("failed to get section(%d) header from %s\n",
903 				idx, path);
904 			goto done;
905 		}
906 		name = elf_strptr(elf, shstrndx, sh.sh_name);
907 		if (!name) {
908 			pr_warn("failed to get section(%d) name from %s\n",
909 				idx, path);
910 			goto done;
911 		}
912 		if (strcmp(name, BTF_ELF_SEC) == 0) {
913 			btf_data = elf_getdata(scn, 0);
914 			if (!btf_data) {
915 				pr_warn("failed to get section(%d, %s) data from %s\n",
916 					idx, name, path);
917 				goto done;
918 			}
919 			continue;
920 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
921 			btf_ext_data = elf_getdata(scn, 0);
922 			if (!btf_ext_data) {
923 				pr_warn("failed to get section(%d, %s) data from %s\n",
924 					idx, name, path);
925 				goto done;
926 			}
927 			continue;
928 		}
929 	}
930 
931 	err = 0;
932 
933 	if (!btf_data) {
934 		err = -ENOENT;
935 		goto done;
936 	}
937 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
938 	err = libbpf_get_error(btf);
939 	if (err)
940 		goto done;
941 
942 	switch (gelf_getclass(elf)) {
943 	case ELFCLASS32:
944 		btf__set_pointer_size(btf, 4);
945 		break;
946 	case ELFCLASS64:
947 		btf__set_pointer_size(btf, 8);
948 		break;
949 	default:
950 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
951 		break;
952 	}
953 
954 	if (btf_ext && btf_ext_data) {
955 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
956 		err = libbpf_get_error(*btf_ext);
957 		if (err)
958 			goto done;
959 	} else if (btf_ext) {
960 		*btf_ext = NULL;
961 	}
962 done:
963 	if (elf)
964 		elf_end(elf);
965 	close(fd);
966 
967 	if (!err)
968 		return btf;
969 
970 	if (btf_ext)
971 		btf_ext__free(*btf_ext);
972 	btf__free(btf);
973 
974 	return ERR_PTR(err);
975 }
976 
977 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
978 {
979 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
980 }
981 
982 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
983 {
984 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
985 }
986 
987 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
988 {
989 	struct btf *btf = NULL;
990 	void *data = NULL;
991 	FILE *f = NULL;
992 	__u16 magic;
993 	int err = 0;
994 	long sz;
995 
996 	f = fopen(path, "rb");
997 	if (!f) {
998 		err = -errno;
999 		goto err_out;
1000 	}
1001 
1002 	/* check BTF magic */
1003 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004 		err = -EIO;
1005 		goto err_out;
1006 	}
1007 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008 		/* definitely not a raw BTF */
1009 		err = -EPROTO;
1010 		goto err_out;
1011 	}
1012 
1013 	/* get file size */
1014 	if (fseek(f, 0, SEEK_END)) {
1015 		err = -errno;
1016 		goto err_out;
1017 	}
1018 	sz = ftell(f);
1019 	if (sz < 0) {
1020 		err = -errno;
1021 		goto err_out;
1022 	}
1023 	/* rewind to the start */
1024 	if (fseek(f, 0, SEEK_SET)) {
1025 		err = -errno;
1026 		goto err_out;
1027 	}
1028 
1029 	/* pre-alloc memory and read all of BTF data */
1030 	data = malloc(sz);
1031 	if (!data) {
1032 		err = -ENOMEM;
1033 		goto err_out;
1034 	}
1035 	if (fread(data, 1, sz, f) < sz) {
1036 		err = -EIO;
1037 		goto err_out;
1038 	}
1039 
1040 	/* finally parse BTF data */
1041 	btf = btf_new(data, sz, base_btf);
1042 
1043 err_out:
1044 	free(data);
1045 	if (f)
1046 		fclose(f);
1047 	return err ? ERR_PTR(err) : btf;
1048 }
1049 
1050 struct btf *btf__parse_raw(const char *path)
1051 {
1052 	return libbpf_ptr(btf_parse_raw(path, NULL));
1053 }
1054 
1055 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056 {
1057 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1058 }
1059 
1060 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061 {
1062 	struct btf *btf;
1063 	int err;
1064 
1065 	if (btf_ext)
1066 		*btf_ext = NULL;
1067 
1068 	btf = btf_parse_raw(path, base_btf);
1069 	err = libbpf_get_error(btf);
1070 	if (!err)
1071 		return btf;
1072 	if (err != -EPROTO)
1073 		return ERR_PTR(err);
1074 	return btf_parse_elf(path, base_btf, btf_ext);
1075 }
1076 
1077 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078 {
1079 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080 }
1081 
1082 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083 {
1084 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085 }
1086 
1087 static int compare_vsi_off(const void *_a, const void *_b)
1088 {
1089 	const struct btf_var_secinfo *a = _a;
1090 	const struct btf_var_secinfo *b = _b;
1091 
1092 	return a->offset - b->offset;
1093 }
1094 
1095 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096 			     struct btf_type *t)
1097 {
1098 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099 	const char *name = btf__name_by_offset(btf, t->name_off);
1100 	const struct btf_type *t_var;
1101 	struct btf_var_secinfo *vsi;
1102 	const struct btf_var *var;
1103 	int ret;
1104 
1105 	if (!name) {
1106 		pr_debug("No name found in string section for DATASEC kind.\n");
1107 		return -ENOENT;
1108 	}
1109 
1110 	/* .extern datasec size and var offsets were set correctly during
1111 	 * extern collection step, so just skip straight to sorting variables
1112 	 */
1113 	if (t->size)
1114 		goto sort_vars;
1115 
1116 	ret = bpf_object__section_size(obj, name, &size);
1117 	if (ret || !size || (t->size && t->size != size)) {
1118 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119 		return -ENOENT;
1120 	}
1121 
1122 	t->size = size;
1123 
1124 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125 		t_var = btf__type_by_id(btf, vsi->type);
1126 		var = btf_var(t_var);
1127 
1128 		if (!btf_is_var(t_var)) {
1129 			pr_debug("Non-VAR type seen in section %s\n", name);
1130 			return -EINVAL;
1131 		}
1132 
1133 		if (var->linkage == BTF_VAR_STATIC)
1134 			continue;
1135 
1136 		name = btf__name_by_offset(btf, t_var->name_off);
1137 		if (!name) {
1138 			pr_debug("No name found in string section for VAR kind\n");
1139 			return -ENOENT;
1140 		}
1141 
1142 		ret = bpf_object__variable_offset(obj, name, &off);
1143 		if (ret) {
1144 			pr_debug("No offset found in symbol table for VAR %s\n",
1145 				 name);
1146 			return -ENOENT;
1147 		}
1148 
1149 		vsi->offset = off;
1150 	}
1151 
1152 sort_vars:
1153 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154 	return 0;
1155 }
1156 
1157 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158 {
1159 	int err = 0;
1160 	__u32 i;
1161 
1162 	for (i = 1; i <= btf->nr_types; i++) {
1163 		struct btf_type *t = btf_type_by_id(btf, i);
1164 
1165 		/* Loader needs to fix up some of the things compiler
1166 		 * couldn't get its hands on while emitting BTF. This
1167 		 * is section size and global variable offset. We use
1168 		 * the info from the ELF itself for this purpose.
1169 		 */
1170 		if (btf_is_datasec(t)) {
1171 			err = btf_fixup_datasec(obj, btf, t);
1172 			if (err)
1173 				break;
1174 		}
1175 	}
1176 
1177 	return libbpf_err(err);
1178 }
1179 
1180 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181 
1182 int btf__load_into_kernel(struct btf *btf)
1183 {
1184 	__u32 log_buf_size = 0, raw_size;
1185 	char *log_buf = NULL;
1186 	void *raw_data;
1187 	int err = 0;
1188 
1189 	if (btf->fd >= 0)
1190 		return libbpf_err(-EEXIST);
1191 
1192 retry_load:
1193 	if (log_buf_size) {
1194 		log_buf = malloc(log_buf_size);
1195 		if (!log_buf)
1196 			return libbpf_err(-ENOMEM);
1197 
1198 		*log_buf = 0;
1199 	}
1200 
1201 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1202 	if (!raw_data) {
1203 		err = -ENOMEM;
1204 		goto done;
1205 	}
1206 	/* cache native raw data representation */
1207 	btf->raw_size = raw_size;
1208 	btf->raw_data = raw_data;
1209 
1210 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1211 	if (btf->fd < 0) {
1212 		if (!log_buf || errno == ENOSPC) {
1213 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214 					   log_buf_size << 1);
1215 			free(log_buf);
1216 			goto retry_load;
1217 		}
1218 
1219 		err = -errno;
1220 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221 		if (*log_buf)
1222 			pr_warn("%s\n", log_buf);
1223 		goto done;
1224 	}
1225 
1226 done:
1227 	free(log_buf);
1228 	return libbpf_err(err);
1229 }
1230 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1231 
1232 int btf__fd(const struct btf *btf)
1233 {
1234 	return btf->fd;
1235 }
1236 
1237 void btf__set_fd(struct btf *btf, int fd)
1238 {
1239 	btf->fd = fd;
1240 }
1241 
1242 static const void *btf_strs_data(const struct btf *btf)
1243 {
1244 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1245 }
1246 
1247 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1248 {
1249 	struct btf_header *hdr = btf->hdr;
1250 	struct btf_type *t;
1251 	void *data, *p;
1252 	__u32 data_sz;
1253 	int i;
1254 
1255 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1256 	if (data) {
1257 		*size = btf->raw_size;
1258 		return data;
1259 	}
1260 
1261 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1262 	data = calloc(1, data_sz);
1263 	if (!data)
1264 		return NULL;
1265 	p = data;
1266 
1267 	memcpy(p, hdr, hdr->hdr_len);
1268 	if (swap_endian)
1269 		btf_bswap_hdr(p);
1270 	p += hdr->hdr_len;
1271 
1272 	memcpy(p, btf->types_data, hdr->type_len);
1273 	if (swap_endian) {
1274 		for (i = 0; i < btf->nr_types; i++) {
1275 			t = p + btf->type_offs[i];
1276 			/* btf_bswap_type_rest() relies on native t->info, so
1277 			 * we swap base type info after we swapped all the
1278 			 * additional information
1279 			 */
1280 			if (btf_bswap_type_rest(t))
1281 				goto err_out;
1282 			btf_bswap_type_base(t);
1283 		}
1284 	}
1285 	p += hdr->type_len;
1286 
1287 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1288 	p += hdr->str_len;
1289 
1290 	*size = data_sz;
1291 	return data;
1292 err_out:
1293 	free(data);
1294 	return NULL;
1295 }
1296 
1297 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1298 {
1299 	struct btf *btf = (struct btf *)btf_ro;
1300 	__u32 data_sz;
1301 	void *data;
1302 
1303 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1304 	if (!data)
1305 		return errno = -ENOMEM, NULL;
1306 
1307 	btf->raw_size = data_sz;
1308 	if (btf->swapped_endian)
1309 		btf->raw_data_swapped = data;
1310 	else
1311 		btf->raw_data = data;
1312 	*size = data_sz;
1313 	return data;
1314 }
1315 
1316 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1317 {
1318 	if (offset < btf->start_str_off)
1319 		return btf__str_by_offset(btf->base_btf, offset);
1320 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1321 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1322 	else
1323 		return errno = EINVAL, NULL;
1324 }
1325 
1326 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1327 {
1328 	return btf__str_by_offset(btf, offset);
1329 }
1330 
1331 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1332 {
1333 	struct bpf_btf_info btf_info;
1334 	__u32 len = sizeof(btf_info);
1335 	__u32 last_size;
1336 	struct btf *btf;
1337 	void *ptr;
1338 	int err;
1339 
1340 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1341 	 * let's start with a sane default - 4KiB here - and resize it only if
1342 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1343 	 */
1344 	last_size = 4096;
1345 	ptr = malloc(last_size);
1346 	if (!ptr)
1347 		return ERR_PTR(-ENOMEM);
1348 
1349 	memset(&btf_info, 0, sizeof(btf_info));
1350 	btf_info.btf = ptr_to_u64(ptr);
1351 	btf_info.btf_size = last_size;
1352 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1353 
1354 	if (!err && btf_info.btf_size > last_size) {
1355 		void *temp_ptr;
1356 
1357 		last_size = btf_info.btf_size;
1358 		temp_ptr = realloc(ptr, last_size);
1359 		if (!temp_ptr) {
1360 			btf = ERR_PTR(-ENOMEM);
1361 			goto exit_free;
1362 		}
1363 		ptr = temp_ptr;
1364 
1365 		len = sizeof(btf_info);
1366 		memset(&btf_info, 0, sizeof(btf_info));
1367 		btf_info.btf = ptr_to_u64(ptr);
1368 		btf_info.btf_size = last_size;
1369 
1370 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1371 	}
1372 
1373 	if (err || btf_info.btf_size > last_size) {
1374 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1375 		goto exit_free;
1376 	}
1377 
1378 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1379 
1380 exit_free:
1381 	free(ptr);
1382 	return btf;
1383 }
1384 
1385 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1386 {
1387 	struct btf *btf;
1388 	int btf_fd;
1389 
1390 	btf_fd = bpf_btf_get_fd_by_id(id);
1391 	if (btf_fd < 0)
1392 		return libbpf_err_ptr(-errno);
1393 
1394 	btf = btf_get_from_fd(btf_fd, base_btf);
1395 	close(btf_fd);
1396 
1397 	return libbpf_ptr(btf);
1398 }
1399 
1400 struct btf *btf__load_from_kernel_by_id(__u32 id)
1401 {
1402 	return btf__load_from_kernel_by_id_split(id, NULL);
1403 }
1404 
1405 int btf__get_from_id(__u32 id, struct btf **btf)
1406 {
1407 	struct btf *res;
1408 	int err;
1409 
1410 	*btf = NULL;
1411 	res = btf__load_from_kernel_by_id(id);
1412 	err = libbpf_get_error(res);
1413 
1414 	if (err)
1415 		return libbpf_err(err);
1416 
1417 	*btf = res;
1418 	return 0;
1419 }
1420 
1421 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1422 			 __u32 expected_key_size, __u32 expected_value_size,
1423 			 __u32 *key_type_id, __u32 *value_type_id)
1424 {
1425 	const struct btf_type *container_type;
1426 	const struct btf_member *key, *value;
1427 	const size_t max_name = 256;
1428 	char container_name[max_name];
1429 	__s64 key_size, value_size;
1430 	__s32 container_id;
1431 
1432 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1433 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1434 			map_name, map_name);
1435 		return libbpf_err(-EINVAL);
1436 	}
1437 
1438 	container_id = btf__find_by_name(btf, container_name);
1439 	if (container_id < 0) {
1440 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1441 			 map_name, container_name);
1442 		return libbpf_err(container_id);
1443 	}
1444 
1445 	container_type = btf__type_by_id(btf, container_id);
1446 	if (!container_type) {
1447 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1448 			map_name, container_id);
1449 		return libbpf_err(-EINVAL);
1450 	}
1451 
1452 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1453 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1454 			map_name, container_name);
1455 		return libbpf_err(-EINVAL);
1456 	}
1457 
1458 	key = btf_members(container_type);
1459 	value = key + 1;
1460 
1461 	key_size = btf__resolve_size(btf, key->type);
1462 	if (key_size < 0) {
1463 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1464 		return libbpf_err(key_size);
1465 	}
1466 
1467 	if (expected_key_size != key_size) {
1468 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1469 			map_name, (__u32)key_size, expected_key_size);
1470 		return libbpf_err(-EINVAL);
1471 	}
1472 
1473 	value_size = btf__resolve_size(btf, value->type);
1474 	if (value_size < 0) {
1475 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1476 		return libbpf_err(value_size);
1477 	}
1478 
1479 	if (expected_value_size != value_size) {
1480 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1481 			map_name, (__u32)value_size, expected_value_size);
1482 		return libbpf_err(-EINVAL);
1483 	}
1484 
1485 	*key_type_id = key->type;
1486 	*value_type_id = value->type;
1487 
1488 	return 0;
1489 }
1490 
1491 static void btf_invalidate_raw_data(struct btf *btf)
1492 {
1493 	if (btf->raw_data) {
1494 		free(btf->raw_data);
1495 		btf->raw_data = NULL;
1496 	}
1497 	if (btf->raw_data_swapped) {
1498 		free(btf->raw_data_swapped);
1499 		btf->raw_data_swapped = NULL;
1500 	}
1501 }
1502 
1503 /* Ensure BTF is ready to be modified (by splitting into a three memory
1504  * regions for header, types, and strings). Also invalidate cached
1505  * raw_data, if any.
1506  */
1507 static int btf_ensure_modifiable(struct btf *btf)
1508 {
1509 	void *hdr, *types;
1510 	struct strset *set = NULL;
1511 	int err = -ENOMEM;
1512 
1513 	if (btf_is_modifiable(btf)) {
1514 		/* any BTF modification invalidates raw_data */
1515 		btf_invalidate_raw_data(btf);
1516 		return 0;
1517 	}
1518 
1519 	/* split raw data into three memory regions */
1520 	hdr = malloc(btf->hdr->hdr_len);
1521 	types = malloc(btf->hdr->type_len);
1522 	if (!hdr || !types)
1523 		goto err_out;
1524 
1525 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1526 	memcpy(types, btf->types_data, btf->hdr->type_len);
1527 
1528 	/* build lookup index for all strings */
1529 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1530 	if (IS_ERR(set)) {
1531 		err = PTR_ERR(set);
1532 		goto err_out;
1533 	}
1534 
1535 	/* only when everything was successful, update internal state */
1536 	btf->hdr = hdr;
1537 	btf->types_data = types;
1538 	btf->types_data_cap = btf->hdr->type_len;
1539 	btf->strs_data = NULL;
1540 	btf->strs_set = set;
1541 	/* if BTF was created from scratch, all strings are guaranteed to be
1542 	 * unique and deduplicated
1543 	 */
1544 	if (btf->hdr->str_len == 0)
1545 		btf->strs_deduped = true;
1546 	if (!btf->base_btf && btf->hdr->str_len == 1)
1547 		btf->strs_deduped = true;
1548 
1549 	/* invalidate raw_data representation */
1550 	btf_invalidate_raw_data(btf);
1551 
1552 	return 0;
1553 
1554 err_out:
1555 	strset__free(set);
1556 	free(hdr);
1557 	free(types);
1558 	return err;
1559 }
1560 
1561 /* Find an offset in BTF string section that corresponds to a given string *s*.
1562  * Returns:
1563  *   - >0 offset into string section, if string is found;
1564  *   - -ENOENT, if string is not in the string section;
1565  *   - <0, on any other error.
1566  */
1567 int btf__find_str(struct btf *btf, const char *s)
1568 {
1569 	int off;
1570 
1571 	if (btf->base_btf) {
1572 		off = btf__find_str(btf->base_btf, s);
1573 		if (off != -ENOENT)
1574 			return off;
1575 	}
1576 
1577 	/* BTF needs to be in a modifiable state to build string lookup index */
1578 	if (btf_ensure_modifiable(btf))
1579 		return libbpf_err(-ENOMEM);
1580 
1581 	off = strset__find_str(btf->strs_set, s);
1582 	if (off < 0)
1583 		return libbpf_err(off);
1584 
1585 	return btf->start_str_off + off;
1586 }
1587 
1588 /* Add a string s to the BTF string section.
1589  * Returns:
1590  *   - > 0 offset into string section, on success;
1591  *   - < 0, on error.
1592  */
1593 int btf__add_str(struct btf *btf, const char *s)
1594 {
1595 	int off;
1596 
1597 	if (btf->base_btf) {
1598 		off = btf__find_str(btf->base_btf, s);
1599 		if (off != -ENOENT)
1600 			return off;
1601 	}
1602 
1603 	if (btf_ensure_modifiable(btf))
1604 		return libbpf_err(-ENOMEM);
1605 
1606 	off = strset__add_str(btf->strs_set, s);
1607 	if (off < 0)
1608 		return libbpf_err(off);
1609 
1610 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1611 
1612 	return btf->start_str_off + off;
1613 }
1614 
1615 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1616 {
1617 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1618 			      btf->hdr->type_len, UINT_MAX, add_sz);
1619 }
1620 
1621 static void btf_type_inc_vlen(struct btf_type *t)
1622 {
1623 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1624 }
1625 
1626 static int btf_commit_type(struct btf *btf, int data_sz)
1627 {
1628 	int err;
1629 
1630 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1631 	if (err)
1632 		return libbpf_err(err);
1633 
1634 	btf->hdr->type_len += data_sz;
1635 	btf->hdr->str_off += data_sz;
1636 	btf->nr_types++;
1637 	return btf->start_id + btf->nr_types - 1;
1638 }
1639 
1640 struct btf_pipe {
1641 	const struct btf *src;
1642 	struct btf *dst;
1643 };
1644 
1645 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1646 {
1647 	struct btf_pipe *p = ctx;
1648 	int off;
1649 
1650 	if (!*str_off) /* nothing to do for empty strings */
1651 		return 0;
1652 
1653 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1654 	if (off < 0)
1655 		return off;
1656 
1657 	*str_off = off;
1658 	return 0;
1659 }
1660 
1661 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1662 {
1663 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1664 	struct btf_type *t;
1665 	int sz, err;
1666 
1667 	sz = btf_type_size(src_type);
1668 	if (sz < 0)
1669 		return libbpf_err(sz);
1670 
1671 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1672 	if (btf_ensure_modifiable(btf))
1673 		return libbpf_err(-ENOMEM);
1674 
1675 	t = btf_add_type_mem(btf, sz);
1676 	if (!t)
1677 		return libbpf_err(-ENOMEM);
1678 
1679 	memcpy(t, src_type, sz);
1680 
1681 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1682 	if (err)
1683 		return libbpf_err(err);
1684 
1685 	return btf_commit_type(btf, sz);
1686 }
1687 
1688 /*
1689  * Append new BTF_KIND_INT type with:
1690  *   - *name* - non-empty, non-NULL type name;
1691  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1692  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1693  * Returns:
1694  *   - >0, type ID of newly added BTF type;
1695  *   - <0, on error.
1696  */
1697 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1698 {
1699 	struct btf_type *t;
1700 	int sz, name_off;
1701 
1702 	/* non-empty name */
1703 	if (!name || !name[0])
1704 		return libbpf_err(-EINVAL);
1705 	/* byte_sz must be power of 2 */
1706 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1707 		return libbpf_err(-EINVAL);
1708 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1709 		return libbpf_err(-EINVAL);
1710 
1711 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1712 	if (btf_ensure_modifiable(btf))
1713 		return libbpf_err(-ENOMEM);
1714 
1715 	sz = sizeof(struct btf_type) + sizeof(int);
1716 	t = btf_add_type_mem(btf, sz);
1717 	if (!t)
1718 		return libbpf_err(-ENOMEM);
1719 
1720 	/* if something goes wrong later, we might end up with an extra string,
1721 	 * but that shouldn't be a problem, because BTF can't be constructed
1722 	 * completely anyway and will most probably be just discarded
1723 	 */
1724 	name_off = btf__add_str(btf, name);
1725 	if (name_off < 0)
1726 		return name_off;
1727 
1728 	t->name_off = name_off;
1729 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1730 	t->size = byte_sz;
1731 	/* set INT info, we don't allow setting legacy bit offset/size */
1732 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1733 
1734 	return btf_commit_type(btf, sz);
1735 }
1736 
1737 /*
1738  * Append new BTF_KIND_FLOAT type with:
1739  *   - *name* - non-empty, non-NULL type name;
1740  *   - *sz* - size of the type, in bytes;
1741  * Returns:
1742  *   - >0, type ID of newly added BTF type;
1743  *   - <0, on error.
1744  */
1745 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1746 {
1747 	struct btf_type *t;
1748 	int sz, name_off;
1749 
1750 	/* non-empty name */
1751 	if (!name || !name[0])
1752 		return libbpf_err(-EINVAL);
1753 
1754 	/* byte_sz must be one of the explicitly allowed values */
1755 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1756 	    byte_sz != 16)
1757 		return libbpf_err(-EINVAL);
1758 
1759 	if (btf_ensure_modifiable(btf))
1760 		return libbpf_err(-ENOMEM);
1761 
1762 	sz = sizeof(struct btf_type);
1763 	t = btf_add_type_mem(btf, sz);
1764 	if (!t)
1765 		return libbpf_err(-ENOMEM);
1766 
1767 	name_off = btf__add_str(btf, name);
1768 	if (name_off < 0)
1769 		return name_off;
1770 
1771 	t->name_off = name_off;
1772 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1773 	t->size = byte_sz;
1774 
1775 	return btf_commit_type(btf, sz);
1776 }
1777 
1778 /* it's completely legal to append BTF types with type IDs pointing forward to
1779  * types that haven't been appended yet, so we only make sure that id looks
1780  * sane, we can't guarantee that ID will always be valid
1781  */
1782 static int validate_type_id(int id)
1783 {
1784 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1785 		return -EINVAL;
1786 	return 0;
1787 }
1788 
1789 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1790 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1791 {
1792 	struct btf_type *t;
1793 	int sz, name_off = 0;
1794 
1795 	if (validate_type_id(ref_type_id))
1796 		return libbpf_err(-EINVAL);
1797 
1798 	if (btf_ensure_modifiable(btf))
1799 		return libbpf_err(-ENOMEM);
1800 
1801 	sz = sizeof(struct btf_type);
1802 	t = btf_add_type_mem(btf, sz);
1803 	if (!t)
1804 		return libbpf_err(-ENOMEM);
1805 
1806 	if (name && name[0]) {
1807 		name_off = btf__add_str(btf, name);
1808 		if (name_off < 0)
1809 			return name_off;
1810 	}
1811 
1812 	t->name_off = name_off;
1813 	t->info = btf_type_info(kind, 0, 0);
1814 	t->type = ref_type_id;
1815 
1816 	return btf_commit_type(btf, sz);
1817 }
1818 
1819 /*
1820  * Append new BTF_KIND_PTR type with:
1821  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1822  * Returns:
1823  *   - >0, type ID of newly added BTF type;
1824  *   - <0, on error.
1825  */
1826 int btf__add_ptr(struct btf *btf, int ref_type_id)
1827 {
1828 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1829 }
1830 
1831 /*
1832  * Append new BTF_KIND_ARRAY type with:
1833  *   - *index_type_id* - type ID of the type describing array index;
1834  *   - *elem_type_id* - type ID of the type describing array element;
1835  *   - *nr_elems* - the size of the array;
1836  * Returns:
1837  *   - >0, type ID of newly added BTF type;
1838  *   - <0, on error.
1839  */
1840 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1841 {
1842 	struct btf_type *t;
1843 	struct btf_array *a;
1844 	int sz;
1845 
1846 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1847 		return libbpf_err(-EINVAL);
1848 
1849 	if (btf_ensure_modifiable(btf))
1850 		return libbpf_err(-ENOMEM);
1851 
1852 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1853 	t = btf_add_type_mem(btf, sz);
1854 	if (!t)
1855 		return libbpf_err(-ENOMEM);
1856 
1857 	t->name_off = 0;
1858 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1859 	t->size = 0;
1860 
1861 	a = btf_array(t);
1862 	a->type = elem_type_id;
1863 	a->index_type = index_type_id;
1864 	a->nelems = nr_elems;
1865 
1866 	return btf_commit_type(btf, sz);
1867 }
1868 
1869 /* generic STRUCT/UNION append function */
1870 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1871 {
1872 	struct btf_type *t;
1873 	int sz, name_off = 0;
1874 
1875 	if (btf_ensure_modifiable(btf))
1876 		return libbpf_err(-ENOMEM);
1877 
1878 	sz = sizeof(struct btf_type);
1879 	t = btf_add_type_mem(btf, sz);
1880 	if (!t)
1881 		return libbpf_err(-ENOMEM);
1882 
1883 	if (name && name[0]) {
1884 		name_off = btf__add_str(btf, name);
1885 		if (name_off < 0)
1886 			return name_off;
1887 	}
1888 
1889 	/* start out with vlen=0 and no kflag; this will be adjusted when
1890 	 * adding each member
1891 	 */
1892 	t->name_off = name_off;
1893 	t->info = btf_type_info(kind, 0, 0);
1894 	t->size = bytes_sz;
1895 
1896 	return btf_commit_type(btf, sz);
1897 }
1898 
1899 /*
1900  * Append new BTF_KIND_STRUCT type with:
1901  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1902  *   - *byte_sz* - size of the struct, in bytes;
1903  *
1904  * Struct initially has no fields in it. Fields can be added by
1905  * btf__add_field() right after btf__add_struct() succeeds.
1906  *
1907  * Returns:
1908  *   - >0, type ID of newly added BTF type;
1909  *   - <0, on error.
1910  */
1911 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1912 {
1913 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1914 }
1915 
1916 /*
1917  * Append new BTF_KIND_UNION type with:
1918  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1919  *   - *byte_sz* - size of the union, in bytes;
1920  *
1921  * Union initially has no fields in it. Fields can be added by
1922  * btf__add_field() right after btf__add_union() succeeds. All fields
1923  * should have *bit_offset* of 0.
1924  *
1925  * Returns:
1926  *   - >0, type ID of newly added BTF type;
1927  *   - <0, on error.
1928  */
1929 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1930 {
1931 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1932 }
1933 
1934 static struct btf_type *btf_last_type(struct btf *btf)
1935 {
1936 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1937 }
1938 
1939 /*
1940  * Append new field for the current STRUCT/UNION type with:
1941  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1942  *   - *type_id* - type ID for the type describing field type;
1943  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1944  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1945  * Returns:
1946  *   -  0, on success;
1947  *   - <0, on error.
1948  */
1949 int btf__add_field(struct btf *btf, const char *name, int type_id,
1950 		   __u32 bit_offset, __u32 bit_size)
1951 {
1952 	struct btf_type *t;
1953 	struct btf_member *m;
1954 	bool is_bitfield;
1955 	int sz, name_off = 0;
1956 
1957 	/* last type should be union/struct */
1958 	if (btf->nr_types == 0)
1959 		return libbpf_err(-EINVAL);
1960 	t = btf_last_type(btf);
1961 	if (!btf_is_composite(t))
1962 		return libbpf_err(-EINVAL);
1963 
1964 	if (validate_type_id(type_id))
1965 		return libbpf_err(-EINVAL);
1966 	/* best-effort bit field offset/size enforcement */
1967 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1968 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1969 		return libbpf_err(-EINVAL);
1970 
1971 	/* only offset 0 is allowed for unions */
1972 	if (btf_is_union(t) && bit_offset)
1973 		return libbpf_err(-EINVAL);
1974 
1975 	/* decompose and invalidate raw data */
1976 	if (btf_ensure_modifiable(btf))
1977 		return libbpf_err(-ENOMEM);
1978 
1979 	sz = sizeof(struct btf_member);
1980 	m = btf_add_type_mem(btf, sz);
1981 	if (!m)
1982 		return libbpf_err(-ENOMEM);
1983 
1984 	if (name && name[0]) {
1985 		name_off = btf__add_str(btf, name);
1986 		if (name_off < 0)
1987 			return name_off;
1988 	}
1989 
1990 	m->name_off = name_off;
1991 	m->type = type_id;
1992 	m->offset = bit_offset | (bit_size << 24);
1993 
1994 	/* btf_add_type_mem can invalidate t pointer */
1995 	t = btf_last_type(btf);
1996 	/* update parent type's vlen and kflag */
1997 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1998 
1999 	btf->hdr->type_len += sz;
2000 	btf->hdr->str_off += sz;
2001 	return 0;
2002 }
2003 
2004 /*
2005  * Append new BTF_KIND_ENUM type with:
2006  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2007  *   - *byte_sz* - size of the enum, in bytes.
2008  *
2009  * Enum initially has no enum values in it (and corresponds to enum forward
2010  * declaration). Enumerator values can be added by btf__add_enum_value()
2011  * immediately after btf__add_enum() succeeds.
2012  *
2013  * Returns:
2014  *   - >0, type ID of newly added BTF type;
2015  *   - <0, on error.
2016  */
2017 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2018 {
2019 	struct btf_type *t;
2020 	int sz, name_off = 0;
2021 
2022 	/* byte_sz must be power of 2 */
2023 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2024 		return libbpf_err(-EINVAL);
2025 
2026 	if (btf_ensure_modifiable(btf))
2027 		return libbpf_err(-ENOMEM);
2028 
2029 	sz = sizeof(struct btf_type);
2030 	t = btf_add_type_mem(btf, sz);
2031 	if (!t)
2032 		return libbpf_err(-ENOMEM);
2033 
2034 	if (name && name[0]) {
2035 		name_off = btf__add_str(btf, name);
2036 		if (name_off < 0)
2037 			return name_off;
2038 	}
2039 
2040 	/* start out with vlen=0; it will be adjusted when adding enum values */
2041 	t->name_off = name_off;
2042 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2043 	t->size = byte_sz;
2044 
2045 	return btf_commit_type(btf, sz);
2046 }
2047 
2048 /*
2049  * Append new enum value for the current ENUM type with:
2050  *   - *name* - name of the enumerator value, can't be NULL or empty;
2051  *   - *value* - integer value corresponding to enum value *name*;
2052  * Returns:
2053  *   -  0, on success;
2054  *   - <0, on error.
2055  */
2056 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2057 {
2058 	struct btf_type *t;
2059 	struct btf_enum *v;
2060 	int sz, name_off;
2061 
2062 	/* last type should be BTF_KIND_ENUM */
2063 	if (btf->nr_types == 0)
2064 		return libbpf_err(-EINVAL);
2065 	t = btf_last_type(btf);
2066 	if (!btf_is_enum(t))
2067 		return libbpf_err(-EINVAL);
2068 
2069 	/* non-empty name */
2070 	if (!name || !name[0])
2071 		return libbpf_err(-EINVAL);
2072 	if (value < INT_MIN || value > UINT_MAX)
2073 		return libbpf_err(-E2BIG);
2074 
2075 	/* decompose and invalidate raw data */
2076 	if (btf_ensure_modifiable(btf))
2077 		return libbpf_err(-ENOMEM);
2078 
2079 	sz = sizeof(struct btf_enum);
2080 	v = btf_add_type_mem(btf, sz);
2081 	if (!v)
2082 		return libbpf_err(-ENOMEM);
2083 
2084 	name_off = btf__add_str(btf, name);
2085 	if (name_off < 0)
2086 		return name_off;
2087 
2088 	v->name_off = name_off;
2089 	v->val = value;
2090 
2091 	/* update parent type's vlen */
2092 	t = btf_last_type(btf);
2093 	btf_type_inc_vlen(t);
2094 
2095 	btf->hdr->type_len += sz;
2096 	btf->hdr->str_off += sz;
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Append new BTF_KIND_FWD type with:
2102  *   - *name*, non-empty/non-NULL name;
2103  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2104  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2105  * Returns:
2106  *   - >0, type ID of newly added BTF type;
2107  *   - <0, on error.
2108  */
2109 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2110 {
2111 	if (!name || !name[0])
2112 		return libbpf_err(-EINVAL);
2113 
2114 	switch (fwd_kind) {
2115 	case BTF_FWD_STRUCT:
2116 	case BTF_FWD_UNION: {
2117 		struct btf_type *t;
2118 		int id;
2119 
2120 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2121 		if (id <= 0)
2122 			return id;
2123 		t = btf_type_by_id(btf, id);
2124 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2125 		return id;
2126 	}
2127 	case BTF_FWD_ENUM:
2128 		/* enum forward in BTF currently is just an enum with no enum
2129 		 * values; we also assume a standard 4-byte size for it
2130 		 */
2131 		return btf__add_enum(btf, name, sizeof(int));
2132 	default:
2133 		return libbpf_err(-EINVAL);
2134 	}
2135 }
2136 
2137 /*
2138  * Append new BTF_KING_TYPEDEF type with:
2139  *   - *name*, non-empty/non-NULL name;
2140  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141  * Returns:
2142  *   - >0, type ID of newly added BTF type;
2143  *   - <0, on error.
2144  */
2145 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2146 {
2147 	if (!name || !name[0])
2148 		return libbpf_err(-EINVAL);
2149 
2150 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2151 }
2152 
2153 /*
2154  * Append new BTF_KIND_VOLATILE type with:
2155  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2156  * Returns:
2157  *   - >0, type ID of newly added BTF type;
2158  *   - <0, on error.
2159  */
2160 int btf__add_volatile(struct btf *btf, int ref_type_id)
2161 {
2162 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2163 }
2164 
2165 /*
2166  * Append new BTF_KIND_CONST type with:
2167  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2168  * Returns:
2169  *   - >0, type ID of newly added BTF type;
2170  *   - <0, on error.
2171  */
2172 int btf__add_const(struct btf *btf, int ref_type_id)
2173 {
2174 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2175 }
2176 
2177 /*
2178  * Append new BTF_KIND_RESTRICT type with:
2179  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2180  * Returns:
2181  *   - >0, type ID of newly added BTF type;
2182  *   - <0, on error.
2183  */
2184 int btf__add_restrict(struct btf *btf, int ref_type_id)
2185 {
2186 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2187 }
2188 
2189 /*
2190  * Append new BTF_KIND_FUNC type with:
2191  *   - *name*, non-empty/non-NULL name;
2192  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2193  * Returns:
2194  *   - >0, type ID of newly added BTF type;
2195  *   - <0, on error.
2196  */
2197 int btf__add_func(struct btf *btf, const char *name,
2198 		  enum btf_func_linkage linkage, int proto_type_id)
2199 {
2200 	int id;
2201 
2202 	if (!name || !name[0])
2203 		return libbpf_err(-EINVAL);
2204 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2205 	    linkage != BTF_FUNC_EXTERN)
2206 		return libbpf_err(-EINVAL);
2207 
2208 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2209 	if (id > 0) {
2210 		struct btf_type *t = btf_type_by_id(btf, id);
2211 
2212 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2213 	}
2214 	return libbpf_err(id);
2215 }
2216 
2217 /*
2218  * Append new BTF_KIND_FUNC_PROTO with:
2219  *   - *ret_type_id* - type ID for return result of a function.
2220  *
2221  * Function prototype initially has no arguments, but they can be added by
2222  * btf__add_func_param() one by one, immediately after
2223  * btf__add_func_proto() succeeded.
2224  *
2225  * Returns:
2226  *   - >0, type ID of newly added BTF type;
2227  *   - <0, on error.
2228  */
2229 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2230 {
2231 	struct btf_type *t;
2232 	int sz;
2233 
2234 	if (validate_type_id(ret_type_id))
2235 		return libbpf_err(-EINVAL);
2236 
2237 	if (btf_ensure_modifiable(btf))
2238 		return libbpf_err(-ENOMEM);
2239 
2240 	sz = sizeof(struct btf_type);
2241 	t = btf_add_type_mem(btf, sz);
2242 	if (!t)
2243 		return libbpf_err(-ENOMEM);
2244 
2245 	/* start out with vlen=0; this will be adjusted when adding enum
2246 	 * values, if necessary
2247 	 */
2248 	t->name_off = 0;
2249 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2250 	t->type = ret_type_id;
2251 
2252 	return btf_commit_type(btf, sz);
2253 }
2254 
2255 /*
2256  * Append new function parameter for current FUNC_PROTO type with:
2257  *   - *name* - parameter name, can be NULL or empty;
2258  *   - *type_id* - type ID describing the type of the parameter.
2259  * Returns:
2260  *   -  0, on success;
2261  *   - <0, on error.
2262  */
2263 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2264 {
2265 	struct btf_type *t;
2266 	struct btf_param *p;
2267 	int sz, name_off = 0;
2268 
2269 	if (validate_type_id(type_id))
2270 		return libbpf_err(-EINVAL);
2271 
2272 	/* last type should be BTF_KIND_FUNC_PROTO */
2273 	if (btf->nr_types == 0)
2274 		return libbpf_err(-EINVAL);
2275 	t = btf_last_type(btf);
2276 	if (!btf_is_func_proto(t))
2277 		return libbpf_err(-EINVAL);
2278 
2279 	/* decompose and invalidate raw data */
2280 	if (btf_ensure_modifiable(btf))
2281 		return libbpf_err(-ENOMEM);
2282 
2283 	sz = sizeof(struct btf_param);
2284 	p = btf_add_type_mem(btf, sz);
2285 	if (!p)
2286 		return libbpf_err(-ENOMEM);
2287 
2288 	if (name && name[0]) {
2289 		name_off = btf__add_str(btf, name);
2290 		if (name_off < 0)
2291 			return name_off;
2292 	}
2293 
2294 	p->name_off = name_off;
2295 	p->type = type_id;
2296 
2297 	/* update parent type's vlen */
2298 	t = btf_last_type(btf);
2299 	btf_type_inc_vlen(t);
2300 
2301 	btf->hdr->type_len += sz;
2302 	btf->hdr->str_off += sz;
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Append new BTF_KIND_VAR type with:
2308  *   - *name* - non-empty/non-NULL name;
2309  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2310  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2311  *   - *type_id* - type ID of the type describing the type of the variable.
2312  * Returns:
2313  *   - >0, type ID of newly added BTF type;
2314  *   - <0, on error.
2315  */
2316 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2317 {
2318 	struct btf_type *t;
2319 	struct btf_var *v;
2320 	int sz, name_off;
2321 
2322 	/* non-empty name */
2323 	if (!name || !name[0])
2324 		return libbpf_err(-EINVAL);
2325 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2326 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2327 		return libbpf_err(-EINVAL);
2328 	if (validate_type_id(type_id))
2329 		return libbpf_err(-EINVAL);
2330 
2331 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2332 	if (btf_ensure_modifiable(btf))
2333 		return libbpf_err(-ENOMEM);
2334 
2335 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2336 	t = btf_add_type_mem(btf, sz);
2337 	if (!t)
2338 		return libbpf_err(-ENOMEM);
2339 
2340 	name_off = btf__add_str(btf, name);
2341 	if (name_off < 0)
2342 		return name_off;
2343 
2344 	t->name_off = name_off;
2345 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2346 	t->type = type_id;
2347 
2348 	v = btf_var(t);
2349 	v->linkage = linkage;
2350 
2351 	return btf_commit_type(btf, sz);
2352 }
2353 
2354 /*
2355  * Append new BTF_KIND_DATASEC type with:
2356  *   - *name* - non-empty/non-NULL name;
2357  *   - *byte_sz* - data section size, in bytes.
2358  *
2359  * Data section is initially empty. Variables info can be added with
2360  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2361  *
2362  * Returns:
2363  *   - >0, type ID of newly added BTF type;
2364  *   - <0, on error.
2365  */
2366 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2367 {
2368 	struct btf_type *t;
2369 	int sz, name_off;
2370 
2371 	/* non-empty name */
2372 	if (!name || !name[0])
2373 		return libbpf_err(-EINVAL);
2374 
2375 	if (btf_ensure_modifiable(btf))
2376 		return libbpf_err(-ENOMEM);
2377 
2378 	sz = sizeof(struct btf_type);
2379 	t = btf_add_type_mem(btf, sz);
2380 	if (!t)
2381 		return libbpf_err(-ENOMEM);
2382 
2383 	name_off = btf__add_str(btf, name);
2384 	if (name_off < 0)
2385 		return name_off;
2386 
2387 	/* start with vlen=0, which will be update as var_secinfos are added */
2388 	t->name_off = name_off;
2389 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2390 	t->size = byte_sz;
2391 
2392 	return btf_commit_type(btf, sz);
2393 }
2394 
2395 /*
2396  * Append new data section variable information entry for current DATASEC type:
2397  *   - *var_type_id* - type ID, describing type of the variable;
2398  *   - *offset* - variable offset within data section, in bytes;
2399  *   - *byte_sz* - variable size, in bytes.
2400  *
2401  * Returns:
2402  *   -  0, on success;
2403  *   - <0, on error.
2404  */
2405 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2406 {
2407 	struct btf_type *t;
2408 	struct btf_var_secinfo *v;
2409 	int sz;
2410 
2411 	/* last type should be BTF_KIND_DATASEC */
2412 	if (btf->nr_types == 0)
2413 		return libbpf_err(-EINVAL);
2414 	t = btf_last_type(btf);
2415 	if (!btf_is_datasec(t))
2416 		return libbpf_err(-EINVAL);
2417 
2418 	if (validate_type_id(var_type_id))
2419 		return libbpf_err(-EINVAL);
2420 
2421 	/* decompose and invalidate raw data */
2422 	if (btf_ensure_modifiable(btf))
2423 		return libbpf_err(-ENOMEM);
2424 
2425 	sz = sizeof(struct btf_var_secinfo);
2426 	v = btf_add_type_mem(btf, sz);
2427 	if (!v)
2428 		return libbpf_err(-ENOMEM);
2429 
2430 	v->type = var_type_id;
2431 	v->offset = offset;
2432 	v->size = byte_sz;
2433 
2434 	/* update parent type's vlen */
2435 	t = btf_last_type(btf);
2436 	btf_type_inc_vlen(t);
2437 
2438 	btf->hdr->type_len += sz;
2439 	btf->hdr->str_off += sz;
2440 	return 0;
2441 }
2442 
2443 struct btf_ext_sec_setup_param {
2444 	__u32 off;
2445 	__u32 len;
2446 	__u32 min_rec_size;
2447 	struct btf_ext_info *ext_info;
2448 	const char *desc;
2449 };
2450 
2451 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2452 			      struct btf_ext_sec_setup_param *ext_sec)
2453 {
2454 	const struct btf_ext_info_sec *sinfo;
2455 	struct btf_ext_info *ext_info;
2456 	__u32 info_left, record_size;
2457 	/* The start of the info sec (including the __u32 record_size). */
2458 	void *info;
2459 
2460 	if (ext_sec->len == 0)
2461 		return 0;
2462 
2463 	if (ext_sec->off & 0x03) {
2464 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2465 		     ext_sec->desc);
2466 		return -EINVAL;
2467 	}
2468 
2469 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2470 	info_left = ext_sec->len;
2471 
2472 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2473 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2474 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2475 		return -EINVAL;
2476 	}
2477 
2478 	/* At least a record size */
2479 	if (info_left < sizeof(__u32)) {
2480 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2481 		return -EINVAL;
2482 	}
2483 
2484 	/* The record size needs to meet the minimum standard */
2485 	record_size = *(__u32 *)info;
2486 	if (record_size < ext_sec->min_rec_size ||
2487 	    record_size & 0x03) {
2488 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2489 			 ext_sec->desc, record_size);
2490 		return -EINVAL;
2491 	}
2492 
2493 	sinfo = info + sizeof(__u32);
2494 	info_left -= sizeof(__u32);
2495 
2496 	/* If no records, return failure now so .BTF.ext won't be used. */
2497 	if (!info_left) {
2498 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2499 		return -EINVAL;
2500 	}
2501 
2502 	while (info_left) {
2503 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2504 		__u64 total_record_size;
2505 		__u32 num_records;
2506 
2507 		if (info_left < sec_hdrlen) {
2508 			pr_debug("%s section header is not found in .BTF.ext\n",
2509 			     ext_sec->desc);
2510 			return -EINVAL;
2511 		}
2512 
2513 		num_records = sinfo->num_info;
2514 		if (num_records == 0) {
2515 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2516 			     ext_sec->desc);
2517 			return -EINVAL;
2518 		}
2519 
2520 		total_record_size = sec_hdrlen +
2521 				    (__u64)num_records * record_size;
2522 		if (info_left < total_record_size) {
2523 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2524 			     ext_sec->desc);
2525 			return -EINVAL;
2526 		}
2527 
2528 		info_left -= total_record_size;
2529 		sinfo = (void *)sinfo + total_record_size;
2530 	}
2531 
2532 	ext_info = ext_sec->ext_info;
2533 	ext_info->len = ext_sec->len - sizeof(__u32);
2534 	ext_info->rec_size = record_size;
2535 	ext_info->info = info + sizeof(__u32);
2536 
2537 	return 0;
2538 }
2539 
2540 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2541 {
2542 	struct btf_ext_sec_setup_param param = {
2543 		.off = btf_ext->hdr->func_info_off,
2544 		.len = btf_ext->hdr->func_info_len,
2545 		.min_rec_size = sizeof(struct bpf_func_info_min),
2546 		.ext_info = &btf_ext->func_info,
2547 		.desc = "func_info"
2548 	};
2549 
2550 	return btf_ext_setup_info(btf_ext, &param);
2551 }
2552 
2553 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2554 {
2555 	struct btf_ext_sec_setup_param param = {
2556 		.off = btf_ext->hdr->line_info_off,
2557 		.len = btf_ext->hdr->line_info_len,
2558 		.min_rec_size = sizeof(struct bpf_line_info_min),
2559 		.ext_info = &btf_ext->line_info,
2560 		.desc = "line_info",
2561 	};
2562 
2563 	return btf_ext_setup_info(btf_ext, &param);
2564 }
2565 
2566 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2567 {
2568 	struct btf_ext_sec_setup_param param = {
2569 		.off = btf_ext->hdr->core_relo_off,
2570 		.len = btf_ext->hdr->core_relo_len,
2571 		.min_rec_size = sizeof(struct bpf_core_relo),
2572 		.ext_info = &btf_ext->core_relo_info,
2573 		.desc = "core_relo",
2574 	};
2575 
2576 	return btf_ext_setup_info(btf_ext, &param);
2577 }
2578 
2579 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2580 {
2581 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2582 
2583 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2584 	    data_size < hdr->hdr_len) {
2585 		pr_debug("BTF.ext header not found");
2586 		return -EINVAL;
2587 	}
2588 
2589 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2590 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2591 		return -ENOTSUP;
2592 	} else if (hdr->magic != BTF_MAGIC) {
2593 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2594 		return -EINVAL;
2595 	}
2596 
2597 	if (hdr->version != BTF_VERSION) {
2598 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2599 		return -ENOTSUP;
2600 	}
2601 
2602 	if (hdr->flags) {
2603 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2604 		return -ENOTSUP;
2605 	}
2606 
2607 	if (data_size == hdr->hdr_len) {
2608 		pr_debug("BTF.ext has no data\n");
2609 		return -EINVAL;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 void btf_ext__free(struct btf_ext *btf_ext)
2616 {
2617 	if (IS_ERR_OR_NULL(btf_ext))
2618 		return;
2619 	free(btf_ext->data);
2620 	free(btf_ext);
2621 }
2622 
2623 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2624 {
2625 	struct btf_ext *btf_ext;
2626 	int err;
2627 
2628 	err = btf_ext_parse_hdr(data, size);
2629 	if (err)
2630 		return libbpf_err_ptr(err);
2631 
2632 	btf_ext = calloc(1, sizeof(struct btf_ext));
2633 	if (!btf_ext)
2634 		return libbpf_err_ptr(-ENOMEM);
2635 
2636 	btf_ext->data_size = size;
2637 	btf_ext->data = malloc(size);
2638 	if (!btf_ext->data) {
2639 		err = -ENOMEM;
2640 		goto done;
2641 	}
2642 	memcpy(btf_ext->data, data, size);
2643 
2644 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2645 		err = -EINVAL;
2646 		goto done;
2647 	}
2648 
2649 	err = btf_ext_setup_func_info(btf_ext);
2650 	if (err)
2651 		goto done;
2652 
2653 	err = btf_ext_setup_line_info(btf_ext);
2654 	if (err)
2655 		goto done;
2656 
2657 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2658 		err = -EINVAL;
2659 		goto done;
2660 	}
2661 
2662 	err = btf_ext_setup_core_relos(btf_ext);
2663 	if (err)
2664 		goto done;
2665 
2666 done:
2667 	if (err) {
2668 		btf_ext__free(btf_ext);
2669 		return libbpf_err_ptr(err);
2670 	}
2671 
2672 	return btf_ext;
2673 }
2674 
2675 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2676 {
2677 	*size = btf_ext->data_size;
2678 	return btf_ext->data;
2679 }
2680 
2681 static int btf_ext_reloc_info(const struct btf *btf,
2682 			      const struct btf_ext_info *ext_info,
2683 			      const char *sec_name, __u32 insns_cnt,
2684 			      void **info, __u32 *cnt)
2685 {
2686 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2687 	__u32 i, record_size, existing_len, records_len;
2688 	struct btf_ext_info_sec *sinfo;
2689 	const char *info_sec_name;
2690 	__u64 remain_len;
2691 	void *data;
2692 
2693 	record_size = ext_info->rec_size;
2694 	sinfo = ext_info->info;
2695 	remain_len = ext_info->len;
2696 	while (remain_len > 0) {
2697 		records_len = sinfo->num_info * record_size;
2698 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2699 		if (strcmp(info_sec_name, sec_name)) {
2700 			remain_len -= sec_hdrlen + records_len;
2701 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2702 			continue;
2703 		}
2704 
2705 		existing_len = (*cnt) * record_size;
2706 		data = realloc(*info, existing_len + records_len);
2707 		if (!data)
2708 			return libbpf_err(-ENOMEM);
2709 
2710 		memcpy(data + existing_len, sinfo->data, records_len);
2711 		/* adjust insn_off only, the rest data will be passed
2712 		 * to the kernel.
2713 		 */
2714 		for (i = 0; i < sinfo->num_info; i++) {
2715 			__u32 *insn_off;
2716 
2717 			insn_off = data + existing_len + (i * record_size);
2718 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2719 		}
2720 		*info = data;
2721 		*cnt += sinfo->num_info;
2722 		return 0;
2723 	}
2724 
2725 	return libbpf_err(-ENOENT);
2726 }
2727 
2728 int btf_ext__reloc_func_info(const struct btf *btf,
2729 			     const struct btf_ext *btf_ext,
2730 			     const char *sec_name, __u32 insns_cnt,
2731 			     void **func_info, __u32 *cnt)
2732 {
2733 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2734 				  insns_cnt, func_info, cnt);
2735 }
2736 
2737 int btf_ext__reloc_line_info(const struct btf *btf,
2738 			     const struct btf_ext *btf_ext,
2739 			     const char *sec_name, __u32 insns_cnt,
2740 			     void **line_info, __u32 *cnt)
2741 {
2742 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2743 				  insns_cnt, line_info, cnt);
2744 }
2745 
2746 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2747 {
2748 	return btf_ext->func_info.rec_size;
2749 }
2750 
2751 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2752 {
2753 	return btf_ext->line_info.rec_size;
2754 }
2755 
2756 struct btf_dedup;
2757 
2758 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2759 				       const struct btf_dedup_opts *opts);
2760 static void btf_dedup_free(struct btf_dedup *d);
2761 static int btf_dedup_prep(struct btf_dedup *d);
2762 static int btf_dedup_strings(struct btf_dedup *d);
2763 static int btf_dedup_prim_types(struct btf_dedup *d);
2764 static int btf_dedup_struct_types(struct btf_dedup *d);
2765 static int btf_dedup_ref_types(struct btf_dedup *d);
2766 static int btf_dedup_compact_types(struct btf_dedup *d);
2767 static int btf_dedup_remap_types(struct btf_dedup *d);
2768 
2769 /*
2770  * Deduplicate BTF types and strings.
2771  *
2772  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2773  * section with all BTF type descriptors and string data. It overwrites that
2774  * memory in-place with deduplicated types and strings without any loss of
2775  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2776  * is provided, all the strings referenced from .BTF.ext section are honored
2777  * and updated to point to the right offsets after deduplication.
2778  *
2779  * If function returns with error, type/string data might be garbled and should
2780  * be discarded.
2781  *
2782  * More verbose and detailed description of both problem btf_dedup is solving,
2783  * as well as solution could be found at:
2784  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2785  *
2786  * Problem description and justification
2787  * =====================================
2788  *
2789  * BTF type information is typically emitted either as a result of conversion
2790  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2791  * unit contains information about a subset of all the types that are used
2792  * in an application. These subsets are frequently overlapping and contain a lot
2793  * of duplicated information when later concatenated together into a single
2794  * binary. This algorithm ensures that each unique type is represented by single
2795  * BTF type descriptor, greatly reducing resulting size of BTF data.
2796  *
2797  * Compilation unit isolation and subsequent duplication of data is not the only
2798  * problem. The same type hierarchy (e.g., struct and all the type that struct
2799  * references) in different compilation units can be represented in BTF to
2800  * various degrees of completeness (or, rather, incompleteness) due to
2801  * struct/union forward declarations.
2802  *
2803  * Let's take a look at an example, that we'll use to better understand the
2804  * problem (and solution). Suppose we have two compilation units, each using
2805  * same `struct S`, but each of them having incomplete type information about
2806  * struct's fields:
2807  *
2808  * // CU #1:
2809  * struct S;
2810  * struct A {
2811  *	int a;
2812  *	struct A* self;
2813  *	struct S* parent;
2814  * };
2815  * struct B;
2816  * struct S {
2817  *	struct A* a_ptr;
2818  *	struct B* b_ptr;
2819  * };
2820  *
2821  * // CU #2:
2822  * struct S;
2823  * struct A;
2824  * struct B {
2825  *	int b;
2826  *	struct B* self;
2827  *	struct S* parent;
2828  * };
2829  * struct S {
2830  *	struct A* a_ptr;
2831  *	struct B* b_ptr;
2832  * };
2833  *
2834  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2835  * more), but will know the complete type information about `struct A`. While
2836  * for CU #2, it will know full type information about `struct B`, but will
2837  * only know about forward declaration of `struct A` (in BTF terms, it will
2838  * have `BTF_KIND_FWD` type descriptor with name `B`).
2839  *
2840  * This compilation unit isolation means that it's possible that there is no
2841  * single CU with complete type information describing structs `S`, `A`, and
2842  * `B`. Also, we might get tons of duplicated and redundant type information.
2843  *
2844  * Additional complication we need to keep in mind comes from the fact that
2845  * types, in general, can form graphs containing cycles, not just DAGs.
2846  *
2847  * While algorithm does deduplication, it also merges and resolves type
2848  * information (unless disabled throught `struct btf_opts`), whenever possible.
2849  * E.g., in the example above with two compilation units having partial type
2850  * information for structs `A` and `B`, the output of algorithm will emit
2851  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2852  * (as well as type information for `int` and pointers), as if they were defined
2853  * in a single compilation unit as:
2854  *
2855  * struct A {
2856  *	int a;
2857  *	struct A* self;
2858  *	struct S* parent;
2859  * };
2860  * struct B {
2861  *	int b;
2862  *	struct B* self;
2863  *	struct S* parent;
2864  * };
2865  * struct S {
2866  *	struct A* a_ptr;
2867  *	struct B* b_ptr;
2868  * };
2869  *
2870  * Algorithm summary
2871  * =================
2872  *
2873  * Algorithm completes its work in 6 separate passes:
2874  *
2875  * 1. Strings deduplication.
2876  * 2. Primitive types deduplication (int, enum, fwd).
2877  * 3. Struct/union types deduplication.
2878  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2879  *    protos, and const/volatile/restrict modifiers).
2880  * 5. Types compaction.
2881  * 6. Types remapping.
2882  *
2883  * Algorithm determines canonical type descriptor, which is a single
2884  * representative type for each truly unique type. This canonical type is the
2885  * one that will go into final deduplicated BTF type information. For
2886  * struct/unions, it is also the type that algorithm will merge additional type
2887  * information into (while resolving FWDs), as it discovers it from data in
2888  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2889  * that type is canonical, or to some other type, if that type is equivalent
2890  * and was chosen as canonical representative. This mapping is stored in
2891  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2892  * FWD type got resolved to.
2893  *
2894  * To facilitate fast discovery of canonical types, we also maintain canonical
2895  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2896  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2897  * that match that signature. With sufficiently good choice of type signature
2898  * hashing function, we can limit number of canonical types for each unique type
2899  * signature to a very small number, allowing to find canonical type for any
2900  * duplicated type very quickly.
2901  *
2902  * Struct/union deduplication is the most critical part and algorithm for
2903  * deduplicating structs/unions is described in greater details in comments for
2904  * `btf_dedup_is_equiv` function.
2905  */
2906 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2907 	       const struct btf_dedup_opts *opts)
2908 {
2909 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2910 	int err;
2911 
2912 	if (IS_ERR(d)) {
2913 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2914 		return libbpf_err(-EINVAL);
2915 	}
2916 
2917 	if (btf_ensure_modifiable(btf))
2918 		return libbpf_err(-ENOMEM);
2919 
2920 	err = btf_dedup_prep(d);
2921 	if (err) {
2922 		pr_debug("btf_dedup_prep failed:%d\n", err);
2923 		goto done;
2924 	}
2925 	err = btf_dedup_strings(d);
2926 	if (err < 0) {
2927 		pr_debug("btf_dedup_strings failed:%d\n", err);
2928 		goto done;
2929 	}
2930 	err = btf_dedup_prim_types(d);
2931 	if (err < 0) {
2932 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2933 		goto done;
2934 	}
2935 	err = btf_dedup_struct_types(d);
2936 	if (err < 0) {
2937 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2938 		goto done;
2939 	}
2940 	err = btf_dedup_ref_types(d);
2941 	if (err < 0) {
2942 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2943 		goto done;
2944 	}
2945 	err = btf_dedup_compact_types(d);
2946 	if (err < 0) {
2947 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2948 		goto done;
2949 	}
2950 	err = btf_dedup_remap_types(d);
2951 	if (err < 0) {
2952 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2953 		goto done;
2954 	}
2955 
2956 done:
2957 	btf_dedup_free(d);
2958 	return libbpf_err(err);
2959 }
2960 
2961 #define BTF_UNPROCESSED_ID ((__u32)-1)
2962 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2963 
2964 struct btf_dedup {
2965 	/* .BTF section to be deduped in-place */
2966 	struct btf *btf;
2967 	/*
2968 	 * Optional .BTF.ext section. When provided, any strings referenced
2969 	 * from it will be taken into account when deduping strings
2970 	 */
2971 	struct btf_ext *btf_ext;
2972 	/*
2973 	 * This is a map from any type's signature hash to a list of possible
2974 	 * canonical representative type candidates. Hash collisions are
2975 	 * ignored, so even types of various kinds can share same list of
2976 	 * candidates, which is fine because we rely on subsequent
2977 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2978 	 */
2979 	struct hashmap *dedup_table;
2980 	/* Canonical types map */
2981 	__u32 *map;
2982 	/* Hypothetical mapping, used during type graph equivalence checks */
2983 	__u32 *hypot_map;
2984 	__u32 *hypot_list;
2985 	size_t hypot_cnt;
2986 	size_t hypot_cap;
2987 	/* Whether hypothetical mapping, if successful, would need to adjust
2988 	 * already canonicalized types (due to a new forward declaration to
2989 	 * concrete type resolution). In such case, during split BTF dedup
2990 	 * candidate type would still be considered as different, because base
2991 	 * BTF is considered to be immutable.
2992 	 */
2993 	bool hypot_adjust_canon;
2994 	/* Various option modifying behavior of algorithm */
2995 	struct btf_dedup_opts opts;
2996 	/* temporary strings deduplication state */
2997 	struct strset *strs_set;
2998 };
2999 
3000 static long hash_combine(long h, long value)
3001 {
3002 	return h * 31 + value;
3003 }
3004 
3005 #define for_each_dedup_cand(d, node, hash) \
3006 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3007 
3008 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3009 {
3010 	return hashmap__append(d->dedup_table,
3011 			       (void *)hash, (void *)(long)type_id);
3012 }
3013 
3014 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3015 				   __u32 from_id, __u32 to_id)
3016 {
3017 	if (d->hypot_cnt == d->hypot_cap) {
3018 		__u32 *new_list;
3019 
3020 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3021 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3022 		if (!new_list)
3023 			return -ENOMEM;
3024 		d->hypot_list = new_list;
3025 	}
3026 	d->hypot_list[d->hypot_cnt++] = from_id;
3027 	d->hypot_map[from_id] = to_id;
3028 	return 0;
3029 }
3030 
3031 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3032 {
3033 	int i;
3034 
3035 	for (i = 0; i < d->hypot_cnt; i++)
3036 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3037 	d->hypot_cnt = 0;
3038 	d->hypot_adjust_canon = false;
3039 }
3040 
3041 static void btf_dedup_free(struct btf_dedup *d)
3042 {
3043 	hashmap__free(d->dedup_table);
3044 	d->dedup_table = NULL;
3045 
3046 	free(d->map);
3047 	d->map = NULL;
3048 
3049 	free(d->hypot_map);
3050 	d->hypot_map = NULL;
3051 
3052 	free(d->hypot_list);
3053 	d->hypot_list = NULL;
3054 
3055 	free(d);
3056 }
3057 
3058 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3059 {
3060 	return (size_t)key;
3061 }
3062 
3063 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3064 {
3065 	return 0;
3066 }
3067 
3068 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3069 {
3070 	return k1 == k2;
3071 }
3072 
3073 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3074 				       const struct btf_dedup_opts *opts)
3075 {
3076 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3077 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3078 	int i, err = 0, type_cnt;
3079 
3080 	if (!d)
3081 		return ERR_PTR(-ENOMEM);
3082 
3083 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3084 	/* dedup_table_size is now used only to force collisions in tests */
3085 	if (opts && opts->dedup_table_size == 1)
3086 		hash_fn = btf_dedup_collision_hash_fn;
3087 
3088 	d->btf = btf;
3089 	d->btf_ext = btf_ext;
3090 
3091 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3092 	if (IS_ERR(d->dedup_table)) {
3093 		err = PTR_ERR(d->dedup_table);
3094 		d->dedup_table = NULL;
3095 		goto done;
3096 	}
3097 
3098 	type_cnt = btf__get_nr_types(btf) + 1;
3099 	d->map = malloc(sizeof(__u32) * type_cnt);
3100 	if (!d->map) {
3101 		err = -ENOMEM;
3102 		goto done;
3103 	}
3104 	/* special BTF "void" type is made canonical immediately */
3105 	d->map[0] = 0;
3106 	for (i = 1; i < type_cnt; i++) {
3107 		struct btf_type *t = btf_type_by_id(d->btf, i);
3108 
3109 		/* VAR and DATASEC are never deduped and are self-canonical */
3110 		if (btf_is_var(t) || btf_is_datasec(t))
3111 			d->map[i] = i;
3112 		else
3113 			d->map[i] = BTF_UNPROCESSED_ID;
3114 	}
3115 
3116 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3117 	if (!d->hypot_map) {
3118 		err = -ENOMEM;
3119 		goto done;
3120 	}
3121 	for (i = 0; i < type_cnt; i++)
3122 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3123 
3124 done:
3125 	if (err) {
3126 		btf_dedup_free(d);
3127 		return ERR_PTR(err);
3128 	}
3129 
3130 	return d;
3131 }
3132 
3133 /*
3134  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3135  * string and pass pointer to it to a provided callback `fn`.
3136  */
3137 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3138 {
3139 	int i, r;
3140 
3141 	for (i = 0; i < d->btf->nr_types; i++) {
3142 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3143 
3144 		r = btf_type_visit_str_offs(t, fn, ctx);
3145 		if (r)
3146 			return r;
3147 	}
3148 
3149 	if (!d->btf_ext)
3150 		return 0;
3151 
3152 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3153 	if (r)
3154 		return r;
3155 
3156 	return 0;
3157 }
3158 
3159 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3160 {
3161 	struct btf_dedup *d = ctx;
3162 	__u32 str_off = *str_off_ptr;
3163 	const char *s;
3164 	int off, err;
3165 
3166 	/* don't touch empty string or string in main BTF */
3167 	if (str_off == 0 || str_off < d->btf->start_str_off)
3168 		return 0;
3169 
3170 	s = btf__str_by_offset(d->btf, str_off);
3171 	if (d->btf->base_btf) {
3172 		err = btf__find_str(d->btf->base_btf, s);
3173 		if (err >= 0) {
3174 			*str_off_ptr = err;
3175 			return 0;
3176 		}
3177 		if (err != -ENOENT)
3178 			return err;
3179 	}
3180 
3181 	off = strset__add_str(d->strs_set, s);
3182 	if (off < 0)
3183 		return off;
3184 
3185 	*str_off_ptr = d->btf->start_str_off + off;
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Dedup string and filter out those that are not referenced from either .BTF
3191  * or .BTF.ext (if provided) sections.
3192  *
3193  * This is done by building index of all strings in BTF's string section,
3194  * then iterating over all entities that can reference strings (e.g., type
3195  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3196  * strings as used. After that all used strings are deduped and compacted into
3197  * sequential blob of memory and new offsets are calculated. Then all the string
3198  * references are iterated again and rewritten using new offsets.
3199  */
3200 static int btf_dedup_strings(struct btf_dedup *d)
3201 {
3202 	int err;
3203 
3204 	if (d->btf->strs_deduped)
3205 		return 0;
3206 
3207 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3208 	if (IS_ERR(d->strs_set)) {
3209 		err = PTR_ERR(d->strs_set);
3210 		goto err_out;
3211 	}
3212 
3213 	if (!d->btf->base_btf) {
3214 		/* insert empty string; we won't be looking it up during strings
3215 		 * dedup, but it's good to have it for generic BTF string lookups
3216 		 */
3217 		err = strset__add_str(d->strs_set, "");
3218 		if (err < 0)
3219 			goto err_out;
3220 	}
3221 
3222 	/* remap string offsets */
3223 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3224 	if (err)
3225 		goto err_out;
3226 
3227 	/* replace BTF string data and hash with deduped ones */
3228 	strset__free(d->btf->strs_set);
3229 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3230 	d->btf->strs_set = d->strs_set;
3231 	d->strs_set = NULL;
3232 	d->btf->strs_deduped = true;
3233 	return 0;
3234 
3235 err_out:
3236 	strset__free(d->strs_set);
3237 	d->strs_set = NULL;
3238 
3239 	return err;
3240 }
3241 
3242 static long btf_hash_common(struct btf_type *t)
3243 {
3244 	long h;
3245 
3246 	h = hash_combine(0, t->name_off);
3247 	h = hash_combine(h, t->info);
3248 	h = hash_combine(h, t->size);
3249 	return h;
3250 }
3251 
3252 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3253 {
3254 	return t1->name_off == t2->name_off &&
3255 	       t1->info == t2->info &&
3256 	       t1->size == t2->size;
3257 }
3258 
3259 /* Calculate type signature hash of INT. */
3260 static long btf_hash_int(struct btf_type *t)
3261 {
3262 	__u32 info = *(__u32 *)(t + 1);
3263 	long h;
3264 
3265 	h = btf_hash_common(t);
3266 	h = hash_combine(h, info);
3267 	return h;
3268 }
3269 
3270 /* Check structural equality of two INTs. */
3271 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3272 {
3273 	__u32 info1, info2;
3274 
3275 	if (!btf_equal_common(t1, t2))
3276 		return false;
3277 	info1 = *(__u32 *)(t1 + 1);
3278 	info2 = *(__u32 *)(t2 + 1);
3279 	return info1 == info2;
3280 }
3281 
3282 /* Calculate type signature hash of ENUM. */
3283 static long btf_hash_enum(struct btf_type *t)
3284 {
3285 	long h;
3286 
3287 	/* don't hash vlen and enum members to support enum fwd resolving */
3288 	h = hash_combine(0, t->name_off);
3289 	h = hash_combine(h, t->info & ~0xffff);
3290 	h = hash_combine(h, t->size);
3291 	return h;
3292 }
3293 
3294 /* Check structural equality of two ENUMs. */
3295 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3296 {
3297 	const struct btf_enum *m1, *m2;
3298 	__u16 vlen;
3299 	int i;
3300 
3301 	if (!btf_equal_common(t1, t2))
3302 		return false;
3303 
3304 	vlen = btf_vlen(t1);
3305 	m1 = btf_enum(t1);
3306 	m2 = btf_enum(t2);
3307 	for (i = 0; i < vlen; i++) {
3308 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3309 			return false;
3310 		m1++;
3311 		m2++;
3312 	}
3313 	return true;
3314 }
3315 
3316 static inline bool btf_is_enum_fwd(struct btf_type *t)
3317 {
3318 	return btf_is_enum(t) && btf_vlen(t) == 0;
3319 }
3320 
3321 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3322 {
3323 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3324 		return btf_equal_enum(t1, t2);
3325 	/* ignore vlen when comparing */
3326 	return t1->name_off == t2->name_off &&
3327 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3328 	       t1->size == t2->size;
3329 }
3330 
3331 /*
3332  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3333  * as referenced type IDs equivalence is established separately during type
3334  * graph equivalence check algorithm.
3335  */
3336 static long btf_hash_struct(struct btf_type *t)
3337 {
3338 	const struct btf_member *member = btf_members(t);
3339 	__u32 vlen = btf_vlen(t);
3340 	long h = btf_hash_common(t);
3341 	int i;
3342 
3343 	for (i = 0; i < vlen; i++) {
3344 		h = hash_combine(h, member->name_off);
3345 		h = hash_combine(h, member->offset);
3346 		/* no hashing of referenced type ID, it can be unresolved yet */
3347 		member++;
3348 	}
3349 	return h;
3350 }
3351 
3352 /*
3353  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3354  * IDs. This check is performed during type graph equivalence check and
3355  * referenced types equivalence is checked separately.
3356  */
3357 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3358 {
3359 	const struct btf_member *m1, *m2;
3360 	__u16 vlen;
3361 	int i;
3362 
3363 	if (!btf_equal_common(t1, t2))
3364 		return false;
3365 
3366 	vlen = btf_vlen(t1);
3367 	m1 = btf_members(t1);
3368 	m2 = btf_members(t2);
3369 	for (i = 0; i < vlen; i++) {
3370 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3371 			return false;
3372 		m1++;
3373 		m2++;
3374 	}
3375 	return true;
3376 }
3377 
3378 /*
3379  * Calculate type signature hash of ARRAY, including referenced type IDs,
3380  * under assumption that they were already resolved to canonical type IDs and
3381  * are not going to change.
3382  */
3383 static long btf_hash_array(struct btf_type *t)
3384 {
3385 	const struct btf_array *info = btf_array(t);
3386 	long h = btf_hash_common(t);
3387 
3388 	h = hash_combine(h, info->type);
3389 	h = hash_combine(h, info->index_type);
3390 	h = hash_combine(h, info->nelems);
3391 	return h;
3392 }
3393 
3394 /*
3395  * Check exact equality of two ARRAYs, taking into account referenced
3396  * type IDs, under assumption that they were already resolved to canonical
3397  * type IDs and are not going to change.
3398  * This function is called during reference types deduplication to compare
3399  * ARRAY to potential canonical representative.
3400  */
3401 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3402 {
3403 	const struct btf_array *info1, *info2;
3404 
3405 	if (!btf_equal_common(t1, t2))
3406 		return false;
3407 
3408 	info1 = btf_array(t1);
3409 	info2 = btf_array(t2);
3410 	return info1->type == info2->type &&
3411 	       info1->index_type == info2->index_type &&
3412 	       info1->nelems == info2->nelems;
3413 }
3414 
3415 /*
3416  * Check structural compatibility of two ARRAYs, ignoring referenced type
3417  * IDs. This check is performed during type graph equivalence check and
3418  * referenced types equivalence is checked separately.
3419  */
3420 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3421 {
3422 	if (!btf_equal_common(t1, t2))
3423 		return false;
3424 
3425 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3426 }
3427 
3428 /*
3429  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3430  * under assumption that they were already resolved to canonical type IDs and
3431  * are not going to change.
3432  */
3433 static long btf_hash_fnproto(struct btf_type *t)
3434 {
3435 	const struct btf_param *member = btf_params(t);
3436 	__u16 vlen = btf_vlen(t);
3437 	long h = btf_hash_common(t);
3438 	int i;
3439 
3440 	for (i = 0; i < vlen; i++) {
3441 		h = hash_combine(h, member->name_off);
3442 		h = hash_combine(h, member->type);
3443 		member++;
3444 	}
3445 	return h;
3446 }
3447 
3448 /*
3449  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3450  * type IDs, under assumption that they were already resolved to canonical
3451  * type IDs and are not going to change.
3452  * This function is called during reference types deduplication to compare
3453  * FUNC_PROTO to potential canonical representative.
3454  */
3455 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3456 {
3457 	const struct btf_param *m1, *m2;
3458 	__u16 vlen;
3459 	int i;
3460 
3461 	if (!btf_equal_common(t1, t2))
3462 		return false;
3463 
3464 	vlen = btf_vlen(t1);
3465 	m1 = btf_params(t1);
3466 	m2 = btf_params(t2);
3467 	for (i = 0; i < vlen; i++) {
3468 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3469 			return false;
3470 		m1++;
3471 		m2++;
3472 	}
3473 	return true;
3474 }
3475 
3476 /*
3477  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3478  * IDs. This check is performed during type graph equivalence check and
3479  * referenced types equivalence is checked separately.
3480  */
3481 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3482 {
3483 	const struct btf_param *m1, *m2;
3484 	__u16 vlen;
3485 	int i;
3486 
3487 	/* skip return type ID */
3488 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3489 		return false;
3490 
3491 	vlen = btf_vlen(t1);
3492 	m1 = btf_params(t1);
3493 	m2 = btf_params(t2);
3494 	for (i = 0; i < vlen; i++) {
3495 		if (m1->name_off != m2->name_off)
3496 			return false;
3497 		m1++;
3498 		m2++;
3499 	}
3500 	return true;
3501 }
3502 
3503 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3504  * types and initializing the rest of the state (canonical type mapping) for
3505  * the fixed base BTF part.
3506  */
3507 static int btf_dedup_prep(struct btf_dedup *d)
3508 {
3509 	struct btf_type *t;
3510 	int type_id;
3511 	long h;
3512 
3513 	if (!d->btf->base_btf)
3514 		return 0;
3515 
3516 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3517 		t = btf_type_by_id(d->btf, type_id);
3518 
3519 		/* all base BTF types are self-canonical by definition */
3520 		d->map[type_id] = type_id;
3521 
3522 		switch (btf_kind(t)) {
3523 		case BTF_KIND_VAR:
3524 		case BTF_KIND_DATASEC:
3525 			/* VAR and DATASEC are never hash/deduplicated */
3526 			continue;
3527 		case BTF_KIND_CONST:
3528 		case BTF_KIND_VOLATILE:
3529 		case BTF_KIND_RESTRICT:
3530 		case BTF_KIND_PTR:
3531 		case BTF_KIND_FWD:
3532 		case BTF_KIND_TYPEDEF:
3533 		case BTF_KIND_FUNC:
3534 		case BTF_KIND_FLOAT:
3535 			h = btf_hash_common(t);
3536 			break;
3537 		case BTF_KIND_INT:
3538 			h = btf_hash_int(t);
3539 			break;
3540 		case BTF_KIND_ENUM:
3541 			h = btf_hash_enum(t);
3542 			break;
3543 		case BTF_KIND_STRUCT:
3544 		case BTF_KIND_UNION:
3545 			h = btf_hash_struct(t);
3546 			break;
3547 		case BTF_KIND_ARRAY:
3548 			h = btf_hash_array(t);
3549 			break;
3550 		case BTF_KIND_FUNC_PROTO:
3551 			h = btf_hash_fnproto(t);
3552 			break;
3553 		default:
3554 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3555 			return -EINVAL;
3556 		}
3557 		if (btf_dedup_table_add(d, h, type_id))
3558 			return -ENOMEM;
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 /*
3565  * Deduplicate primitive types, that can't reference other types, by calculating
3566  * their type signature hash and comparing them with any possible canonical
3567  * candidate. If no canonical candidate matches, type itself is marked as
3568  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3569  */
3570 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3571 {
3572 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3573 	struct hashmap_entry *hash_entry;
3574 	struct btf_type *cand;
3575 	/* if we don't find equivalent type, then we are canonical */
3576 	__u32 new_id = type_id;
3577 	__u32 cand_id;
3578 	long h;
3579 
3580 	switch (btf_kind(t)) {
3581 	case BTF_KIND_CONST:
3582 	case BTF_KIND_VOLATILE:
3583 	case BTF_KIND_RESTRICT:
3584 	case BTF_KIND_PTR:
3585 	case BTF_KIND_TYPEDEF:
3586 	case BTF_KIND_ARRAY:
3587 	case BTF_KIND_STRUCT:
3588 	case BTF_KIND_UNION:
3589 	case BTF_KIND_FUNC:
3590 	case BTF_KIND_FUNC_PROTO:
3591 	case BTF_KIND_VAR:
3592 	case BTF_KIND_DATASEC:
3593 		return 0;
3594 
3595 	case BTF_KIND_INT:
3596 		h = btf_hash_int(t);
3597 		for_each_dedup_cand(d, hash_entry, h) {
3598 			cand_id = (__u32)(long)hash_entry->value;
3599 			cand = btf_type_by_id(d->btf, cand_id);
3600 			if (btf_equal_int(t, cand)) {
3601 				new_id = cand_id;
3602 				break;
3603 			}
3604 		}
3605 		break;
3606 
3607 	case BTF_KIND_ENUM:
3608 		h = btf_hash_enum(t);
3609 		for_each_dedup_cand(d, hash_entry, h) {
3610 			cand_id = (__u32)(long)hash_entry->value;
3611 			cand = btf_type_by_id(d->btf, cand_id);
3612 			if (btf_equal_enum(t, cand)) {
3613 				new_id = cand_id;
3614 				break;
3615 			}
3616 			if (d->opts.dont_resolve_fwds)
3617 				continue;
3618 			if (btf_compat_enum(t, cand)) {
3619 				if (btf_is_enum_fwd(t)) {
3620 					/* resolve fwd to full enum */
3621 					new_id = cand_id;
3622 					break;
3623 				}
3624 				/* resolve canonical enum fwd to full enum */
3625 				d->map[cand_id] = type_id;
3626 			}
3627 		}
3628 		break;
3629 
3630 	case BTF_KIND_FWD:
3631 	case BTF_KIND_FLOAT:
3632 		h = btf_hash_common(t);
3633 		for_each_dedup_cand(d, hash_entry, h) {
3634 			cand_id = (__u32)(long)hash_entry->value;
3635 			cand = btf_type_by_id(d->btf, cand_id);
3636 			if (btf_equal_common(t, cand)) {
3637 				new_id = cand_id;
3638 				break;
3639 			}
3640 		}
3641 		break;
3642 
3643 	default:
3644 		return -EINVAL;
3645 	}
3646 
3647 	d->map[type_id] = new_id;
3648 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3649 		return -ENOMEM;
3650 
3651 	return 0;
3652 }
3653 
3654 static int btf_dedup_prim_types(struct btf_dedup *d)
3655 {
3656 	int i, err;
3657 
3658 	for (i = 0; i < d->btf->nr_types; i++) {
3659 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3660 		if (err)
3661 			return err;
3662 	}
3663 	return 0;
3664 }
3665 
3666 /*
3667  * Check whether type is already mapped into canonical one (could be to itself).
3668  */
3669 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3670 {
3671 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3672 }
3673 
3674 /*
3675  * Resolve type ID into its canonical type ID, if any; otherwise return original
3676  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3677  * STRUCT/UNION link and resolve it into canonical type ID as well.
3678  */
3679 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3680 {
3681 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3682 		type_id = d->map[type_id];
3683 	return type_id;
3684 }
3685 
3686 /*
3687  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3688  * type ID.
3689  */
3690 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3691 {
3692 	__u32 orig_type_id = type_id;
3693 
3694 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3695 		return type_id;
3696 
3697 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3698 		type_id = d->map[type_id];
3699 
3700 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3701 		return type_id;
3702 
3703 	return orig_type_id;
3704 }
3705 
3706 
3707 static inline __u16 btf_fwd_kind(struct btf_type *t)
3708 {
3709 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3710 }
3711 
3712 /* Check if given two types are identical ARRAY definitions */
3713 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3714 {
3715 	struct btf_type *t1, *t2;
3716 
3717 	t1 = btf_type_by_id(d->btf, id1);
3718 	t2 = btf_type_by_id(d->btf, id2);
3719 	if (!btf_is_array(t1) || !btf_is_array(t2))
3720 		return 0;
3721 
3722 	return btf_equal_array(t1, t2);
3723 }
3724 
3725 /*
3726  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3727  * call it "candidate graph" in this description for brevity) to a type graph
3728  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3729  * here, though keep in mind that not all types in canonical graph are
3730  * necessarily canonical representatives themselves, some of them might be
3731  * duplicates or its uniqueness might not have been established yet).
3732  * Returns:
3733  *  - >0, if type graphs are equivalent;
3734  *  -  0, if not equivalent;
3735  *  - <0, on error.
3736  *
3737  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3738  * equivalence of BTF types at each step. If at any point BTF types in candidate
3739  * and canonical graphs are not compatible structurally, whole graphs are
3740  * incompatible. If types are structurally equivalent (i.e., all information
3741  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3742  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3743  * If a type references other types, then those referenced types are checked
3744  * for equivalence recursively.
3745  *
3746  * During DFS traversal, if we find that for current `canon_id` type we
3747  * already have some mapping in hypothetical map, we check for two possible
3748  * situations:
3749  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3750  *     happen when type graphs have cycles. In this case we assume those two
3751  *     types are equivalent.
3752  *   - `canon_id` is mapped to different type. This is contradiction in our
3753  *     hypothetical mapping, because same graph in canonical graph corresponds
3754  *     to two different types in candidate graph, which for equivalent type
3755  *     graphs shouldn't happen. This condition terminates equivalence check
3756  *     with negative result.
3757  *
3758  * If type graphs traversal exhausts types to check and find no contradiction,
3759  * then type graphs are equivalent.
3760  *
3761  * When checking types for equivalence, there is one special case: FWD types.
3762  * If FWD type resolution is allowed and one of the types (either from canonical
3763  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3764  * flag) and their names match, hypothetical mapping is updated to point from
3765  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3766  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3767  *
3768  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3769  * if there are two exactly named (or anonymous) structs/unions that are
3770  * compatible structurally, one of which has FWD field, while other is concrete
3771  * STRUCT/UNION, but according to C sources they are different structs/unions
3772  * that are referencing different types with the same name. This is extremely
3773  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3774  * this logic is causing problems.
3775  *
3776  * Doing FWD resolution means that both candidate and/or canonical graphs can
3777  * consists of portions of the graph that come from multiple compilation units.
3778  * This is due to the fact that types within single compilation unit are always
3779  * deduplicated and FWDs are already resolved, if referenced struct/union
3780  * definiton is available. So, if we had unresolved FWD and found corresponding
3781  * STRUCT/UNION, they will be from different compilation units. This
3782  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3783  * type graph will likely have at least two different BTF types that describe
3784  * same type (e.g., most probably there will be two different BTF types for the
3785  * same 'int' primitive type) and could even have "overlapping" parts of type
3786  * graph that describe same subset of types.
3787  *
3788  * This in turn means that our assumption that each type in canonical graph
3789  * must correspond to exactly one type in candidate graph might not hold
3790  * anymore and will make it harder to detect contradictions using hypothetical
3791  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3792  * resolution only in canonical graph. FWDs in candidate graphs are never
3793  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3794  * that can occur:
3795  *   - Both types in canonical and candidate graphs are FWDs. If they are
3796  *     structurally equivalent, then they can either be both resolved to the
3797  *     same STRUCT/UNION or not resolved at all. In both cases they are
3798  *     equivalent and there is no need to resolve FWD on candidate side.
3799  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3800  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3801  *   - Type in canonical graph is FWD, while type in candidate is concrete
3802  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3803  *     unit, so there is exactly one BTF type for each unique C type. After
3804  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3805  *     in canonical graph mapping to single BTF type in candidate graph, but
3806  *     because hypothetical mapping maps from canonical to candidate types, it's
3807  *     alright, and we still maintain the property of having single `canon_id`
3808  *     mapping to single `cand_id` (there could be two different `canon_id`
3809  *     mapped to the same `cand_id`, but it's not contradictory).
3810  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3811  *     graph is FWD. In this case we are just going to check compatibility of
3812  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3813  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3814  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3815  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3816  *     canonical graph.
3817  */
3818 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3819 			      __u32 canon_id)
3820 {
3821 	struct btf_type *cand_type;
3822 	struct btf_type *canon_type;
3823 	__u32 hypot_type_id;
3824 	__u16 cand_kind;
3825 	__u16 canon_kind;
3826 	int i, eq;
3827 
3828 	/* if both resolve to the same canonical, they must be equivalent */
3829 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3830 		return 1;
3831 
3832 	canon_id = resolve_fwd_id(d, canon_id);
3833 
3834 	hypot_type_id = d->hypot_map[canon_id];
3835 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3836 		/* In some cases compiler will generate different DWARF types
3837 		 * for *identical* array type definitions and use them for
3838 		 * different fields within the *same* struct. This breaks type
3839 		 * equivalence check, which makes an assumption that candidate
3840 		 * types sub-graph has a consistent and deduped-by-compiler
3841 		 * types within a single CU. So work around that by explicitly
3842 		 * allowing identical array types here.
3843 		 */
3844 		return hypot_type_id == cand_id ||
3845 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3846 	}
3847 
3848 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3849 		return -ENOMEM;
3850 
3851 	cand_type = btf_type_by_id(d->btf, cand_id);
3852 	canon_type = btf_type_by_id(d->btf, canon_id);
3853 	cand_kind = btf_kind(cand_type);
3854 	canon_kind = btf_kind(canon_type);
3855 
3856 	if (cand_type->name_off != canon_type->name_off)
3857 		return 0;
3858 
3859 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3860 	if (!d->opts.dont_resolve_fwds
3861 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3862 	    && cand_kind != canon_kind) {
3863 		__u16 real_kind;
3864 		__u16 fwd_kind;
3865 
3866 		if (cand_kind == BTF_KIND_FWD) {
3867 			real_kind = canon_kind;
3868 			fwd_kind = btf_fwd_kind(cand_type);
3869 		} else {
3870 			real_kind = cand_kind;
3871 			fwd_kind = btf_fwd_kind(canon_type);
3872 			/* we'd need to resolve base FWD to STRUCT/UNION */
3873 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3874 				d->hypot_adjust_canon = true;
3875 		}
3876 		return fwd_kind == real_kind;
3877 	}
3878 
3879 	if (cand_kind != canon_kind)
3880 		return 0;
3881 
3882 	switch (cand_kind) {
3883 	case BTF_KIND_INT:
3884 		return btf_equal_int(cand_type, canon_type);
3885 
3886 	case BTF_KIND_ENUM:
3887 		if (d->opts.dont_resolve_fwds)
3888 			return btf_equal_enum(cand_type, canon_type);
3889 		else
3890 			return btf_compat_enum(cand_type, canon_type);
3891 
3892 	case BTF_KIND_FWD:
3893 	case BTF_KIND_FLOAT:
3894 		return btf_equal_common(cand_type, canon_type);
3895 
3896 	case BTF_KIND_CONST:
3897 	case BTF_KIND_VOLATILE:
3898 	case BTF_KIND_RESTRICT:
3899 	case BTF_KIND_PTR:
3900 	case BTF_KIND_TYPEDEF:
3901 	case BTF_KIND_FUNC:
3902 		if (cand_type->info != canon_type->info)
3903 			return 0;
3904 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3905 
3906 	case BTF_KIND_ARRAY: {
3907 		const struct btf_array *cand_arr, *canon_arr;
3908 
3909 		if (!btf_compat_array(cand_type, canon_type))
3910 			return 0;
3911 		cand_arr = btf_array(cand_type);
3912 		canon_arr = btf_array(canon_type);
3913 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3914 		if (eq <= 0)
3915 			return eq;
3916 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3917 	}
3918 
3919 	case BTF_KIND_STRUCT:
3920 	case BTF_KIND_UNION: {
3921 		const struct btf_member *cand_m, *canon_m;
3922 		__u16 vlen;
3923 
3924 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3925 			return 0;
3926 		vlen = btf_vlen(cand_type);
3927 		cand_m = btf_members(cand_type);
3928 		canon_m = btf_members(canon_type);
3929 		for (i = 0; i < vlen; i++) {
3930 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3931 			if (eq <= 0)
3932 				return eq;
3933 			cand_m++;
3934 			canon_m++;
3935 		}
3936 
3937 		return 1;
3938 	}
3939 
3940 	case BTF_KIND_FUNC_PROTO: {
3941 		const struct btf_param *cand_p, *canon_p;
3942 		__u16 vlen;
3943 
3944 		if (!btf_compat_fnproto(cand_type, canon_type))
3945 			return 0;
3946 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3947 		if (eq <= 0)
3948 			return eq;
3949 		vlen = btf_vlen(cand_type);
3950 		cand_p = btf_params(cand_type);
3951 		canon_p = btf_params(canon_type);
3952 		for (i = 0; i < vlen; i++) {
3953 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3954 			if (eq <= 0)
3955 				return eq;
3956 			cand_p++;
3957 			canon_p++;
3958 		}
3959 		return 1;
3960 	}
3961 
3962 	default:
3963 		return -EINVAL;
3964 	}
3965 	return 0;
3966 }
3967 
3968 /*
3969  * Use hypothetical mapping, produced by successful type graph equivalence
3970  * check, to augment existing struct/union canonical mapping, where possible.
3971  *
3972  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3973  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3974  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3975  * we are recording the mapping anyway. As opposed to carefulness required
3976  * for struct/union correspondence mapping (described below), for FWD resolution
3977  * it's not important, as by the time that FWD type (reference type) will be
3978  * deduplicated all structs/unions will be deduped already anyway.
3979  *
3980  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3981  * not required for correctness. It needs to be done carefully to ensure that
3982  * struct/union from candidate's type graph is not mapped into corresponding
3983  * struct/union from canonical type graph that itself hasn't been resolved into
3984  * canonical representative. The only guarantee we have is that canonical
3985  * struct/union was determined as canonical and that won't change. But any
3986  * types referenced through that struct/union fields could have been not yet
3987  * resolved, so in case like that it's too early to establish any kind of
3988  * correspondence between structs/unions.
3989  *
3990  * No canonical correspondence is derived for primitive types (they are already
3991  * deduplicated completely already anyway) or reference types (they rely on
3992  * stability of struct/union canonical relationship for equivalence checks).
3993  */
3994 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3995 {
3996 	__u32 canon_type_id, targ_type_id;
3997 	__u16 t_kind, c_kind;
3998 	__u32 t_id, c_id;
3999 	int i;
4000 
4001 	for (i = 0; i < d->hypot_cnt; i++) {
4002 		canon_type_id = d->hypot_list[i];
4003 		targ_type_id = d->hypot_map[canon_type_id];
4004 		t_id = resolve_type_id(d, targ_type_id);
4005 		c_id = resolve_type_id(d, canon_type_id);
4006 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4007 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4008 		/*
4009 		 * Resolve FWD into STRUCT/UNION.
4010 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4011 		 * mapped to canonical representative (as opposed to
4012 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4013 		 * eventually that struct is going to be mapped and all resolved
4014 		 * FWDs will automatically resolve to correct canonical
4015 		 * representative. This will happen before ref type deduping,
4016 		 * which critically depends on stability of these mapping. This
4017 		 * stability is not a requirement for STRUCT/UNION equivalence
4018 		 * checks, though.
4019 		 */
4020 
4021 		/* if it's the split BTF case, we still need to point base FWD
4022 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4023 		 * will be resolved against base FWD. If we don't point base
4024 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4025 		 * FWDs in split BTF won't be correctly resolved to a proper
4026 		 * STRUCT/UNION.
4027 		 */
4028 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4029 			d->map[c_id] = t_id;
4030 
4031 		/* if graph equivalence determined that we'd need to adjust
4032 		 * base canonical types, then we need to only point base FWDs
4033 		 * to STRUCTs/UNIONs and do no more modifications. For all
4034 		 * other purposes the type graphs were not equivalent.
4035 		 */
4036 		if (d->hypot_adjust_canon)
4037 			continue;
4038 
4039 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4040 			d->map[t_id] = c_id;
4041 
4042 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4043 		    c_kind != BTF_KIND_FWD &&
4044 		    is_type_mapped(d, c_id) &&
4045 		    !is_type_mapped(d, t_id)) {
4046 			/*
4047 			 * as a perf optimization, we can map struct/union
4048 			 * that's part of type graph we just verified for
4049 			 * equivalence. We can do that for struct/union that has
4050 			 * canonical representative only, though.
4051 			 */
4052 			d->map[t_id] = c_id;
4053 		}
4054 	}
4055 }
4056 
4057 /*
4058  * Deduplicate struct/union types.
4059  *
4060  * For each struct/union type its type signature hash is calculated, taking
4061  * into account type's name, size, number, order and names of fields, but
4062  * ignoring type ID's referenced from fields, because they might not be deduped
4063  * completely until after reference types deduplication phase. This type hash
4064  * is used to iterate over all potential canonical types, sharing same hash.
4065  * For each canonical candidate we check whether type graphs that they form
4066  * (through referenced types in fields and so on) are equivalent using algorithm
4067  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4068  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4069  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4070  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4071  * potentially map other structs/unions to their canonical representatives,
4072  * if such relationship hasn't yet been established. This speeds up algorithm
4073  * by eliminating some of the duplicate work.
4074  *
4075  * If no matching canonical representative was found, struct/union is marked
4076  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4077  * for further look ups.
4078  */
4079 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4080 {
4081 	struct btf_type *cand_type, *t;
4082 	struct hashmap_entry *hash_entry;
4083 	/* if we don't find equivalent type, then we are canonical */
4084 	__u32 new_id = type_id;
4085 	__u16 kind;
4086 	long h;
4087 
4088 	/* already deduped or is in process of deduping (loop detected) */
4089 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4090 		return 0;
4091 
4092 	t = btf_type_by_id(d->btf, type_id);
4093 	kind = btf_kind(t);
4094 
4095 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4096 		return 0;
4097 
4098 	h = btf_hash_struct(t);
4099 	for_each_dedup_cand(d, hash_entry, h) {
4100 		__u32 cand_id = (__u32)(long)hash_entry->value;
4101 		int eq;
4102 
4103 		/*
4104 		 * Even though btf_dedup_is_equiv() checks for
4105 		 * btf_shallow_equal_struct() internally when checking two
4106 		 * structs (unions) for equivalence, we need to guard here
4107 		 * from picking matching FWD type as a dedup candidate.
4108 		 * This can happen due to hash collision. In such case just
4109 		 * relying on btf_dedup_is_equiv() would lead to potentially
4110 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4111 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4112 		 */
4113 		cand_type = btf_type_by_id(d->btf, cand_id);
4114 		if (!btf_shallow_equal_struct(t, cand_type))
4115 			continue;
4116 
4117 		btf_dedup_clear_hypot_map(d);
4118 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4119 		if (eq < 0)
4120 			return eq;
4121 		if (!eq)
4122 			continue;
4123 		btf_dedup_merge_hypot_map(d);
4124 		if (d->hypot_adjust_canon) /* not really equivalent */
4125 			continue;
4126 		new_id = cand_id;
4127 		break;
4128 	}
4129 
4130 	d->map[type_id] = new_id;
4131 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4132 		return -ENOMEM;
4133 
4134 	return 0;
4135 }
4136 
4137 static int btf_dedup_struct_types(struct btf_dedup *d)
4138 {
4139 	int i, err;
4140 
4141 	for (i = 0; i < d->btf->nr_types; i++) {
4142 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4143 		if (err)
4144 			return err;
4145 	}
4146 	return 0;
4147 }
4148 
4149 /*
4150  * Deduplicate reference type.
4151  *
4152  * Once all primitive and struct/union types got deduplicated, we can easily
4153  * deduplicate all other (reference) BTF types. This is done in two steps:
4154  *
4155  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4156  * resolution can be done either immediately for primitive or struct/union types
4157  * (because they were deduped in previous two phases) or recursively for
4158  * reference types. Recursion will always terminate at either primitive or
4159  * struct/union type, at which point we can "unwind" chain of reference types
4160  * one by one. There is no danger of encountering cycles because in C type
4161  * system the only way to form type cycle is through struct/union, so any chain
4162  * of reference types, even those taking part in a type cycle, will inevitably
4163  * reach struct/union at some point.
4164  *
4165  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4166  * becomes "stable", in the sense that no further deduplication will cause
4167  * any changes to it. With that, it's now possible to calculate type's signature
4168  * hash (this time taking into account referenced type IDs) and loop over all
4169  * potential canonical representatives. If no match was found, current type
4170  * will become canonical representative of itself and will be added into
4171  * btf_dedup->dedup_table as another possible canonical representative.
4172  */
4173 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4174 {
4175 	struct hashmap_entry *hash_entry;
4176 	__u32 new_id = type_id, cand_id;
4177 	struct btf_type *t, *cand;
4178 	/* if we don't find equivalent type, then we are representative type */
4179 	int ref_type_id;
4180 	long h;
4181 
4182 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4183 		return -ELOOP;
4184 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4185 		return resolve_type_id(d, type_id);
4186 
4187 	t = btf_type_by_id(d->btf, type_id);
4188 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4189 
4190 	switch (btf_kind(t)) {
4191 	case BTF_KIND_CONST:
4192 	case BTF_KIND_VOLATILE:
4193 	case BTF_KIND_RESTRICT:
4194 	case BTF_KIND_PTR:
4195 	case BTF_KIND_TYPEDEF:
4196 	case BTF_KIND_FUNC:
4197 		ref_type_id = btf_dedup_ref_type(d, t->type);
4198 		if (ref_type_id < 0)
4199 			return ref_type_id;
4200 		t->type = ref_type_id;
4201 
4202 		h = btf_hash_common(t);
4203 		for_each_dedup_cand(d, hash_entry, h) {
4204 			cand_id = (__u32)(long)hash_entry->value;
4205 			cand = btf_type_by_id(d->btf, cand_id);
4206 			if (btf_equal_common(t, cand)) {
4207 				new_id = cand_id;
4208 				break;
4209 			}
4210 		}
4211 		break;
4212 
4213 	case BTF_KIND_ARRAY: {
4214 		struct btf_array *info = btf_array(t);
4215 
4216 		ref_type_id = btf_dedup_ref_type(d, info->type);
4217 		if (ref_type_id < 0)
4218 			return ref_type_id;
4219 		info->type = ref_type_id;
4220 
4221 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4222 		if (ref_type_id < 0)
4223 			return ref_type_id;
4224 		info->index_type = ref_type_id;
4225 
4226 		h = btf_hash_array(t);
4227 		for_each_dedup_cand(d, hash_entry, h) {
4228 			cand_id = (__u32)(long)hash_entry->value;
4229 			cand = btf_type_by_id(d->btf, cand_id);
4230 			if (btf_equal_array(t, cand)) {
4231 				new_id = cand_id;
4232 				break;
4233 			}
4234 		}
4235 		break;
4236 	}
4237 
4238 	case BTF_KIND_FUNC_PROTO: {
4239 		struct btf_param *param;
4240 		__u16 vlen;
4241 		int i;
4242 
4243 		ref_type_id = btf_dedup_ref_type(d, t->type);
4244 		if (ref_type_id < 0)
4245 			return ref_type_id;
4246 		t->type = ref_type_id;
4247 
4248 		vlen = btf_vlen(t);
4249 		param = btf_params(t);
4250 		for (i = 0; i < vlen; i++) {
4251 			ref_type_id = btf_dedup_ref_type(d, param->type);
4252 			if (ref_type_id < 0)
4253 				return ref_type_id;
4254 			param->type = ref_type_id;
4255 			param++;
4256 		}
4257 
4258 		h = btf_hash_fnproto(t);
4259 		for_each_dedup_cand(d, hash_entry, h) {
4260 			cand_id = (__u32)(long)hash_entry->value;
4261 			cand = btf_type_by_id(d->btf, cand_id);
4262 			if (btf_equal_fnproto(t, cand)) {
4263 				new_id = cand_id;
4264 				break;
4265 			}
4266 		}
4267 		break;
4268 	}
4269 
4270 	default:
4271 		return -EINVAL;
4272 	}
4273 
4274 	d->map[type_id] = new_id;
4275 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4276 		return -ENOMEM;
4277 
4278 	return new_id;
4279 }
4280 
4281 static int btf_dedup_ref_types(struct btf_dedup *d)
4282 {
4283 	int i, err;
4284 
4285 	for (i = 0; i < d->btf->nr_types; i++) {
4286 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4287 		if (err < 0)
4288 			return err;
4289 	}
4290 	/* we won't need d->dedup_table anymore */
4291 	hashmap__free(d->dedup_table);
4292 	d->dedup_table = NULL;
4293 	return 0;
4294 }
4295 
4296 /*
4297  * Compact types.
4298  *
4299  * After we established for each type its corresponding canonical representative
4300  * type, we now can eliminate types that are not canonical and leave only
4301  * canonical ones layed out sequentially in memory by copying them over
4302  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4303  * a map from original type ID to a new compacted type ID, which will be used
4304  * during next phase to "fix up" type IDs, referenced from struct/union and
4305  * reference types.
4306  */
4307 static int btf_dedup_compact_types(struct btf_dedup *d)
4308 {
4309 	__u32 *new_offs;
4310 	__u32 next_type_id = d->btf->start_id;
4311 	const struct btf_type *t;
4312 	void *p;
4313 	int i, id, len;
4314 
4315 	/* we are going to reuse hypot_map to store compaction remapping */
4316 	d->hypot_map[0] = 0;
4317 	/* base BTF types are not renumbered */
4318 	for (id = 1; id < d->btf->start_id; id++)
4319 		d->hypot_map[id] = id;
4320 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4321 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4322 
4323 	p = d->btf->types_data;
4324 
4325 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4326 		if (d->map[id] != id)
4327 			continue;
4328 
4329 		t = btf__type_by_id(d->btf, id);
4330 		len = btf_type_size(t);
4331 		if (len < 0)
4332 			return len;
4333 
4334 		memmove(p, t, len);
4335 		d->hypot_map[id] = next_type_id;
4336 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4337 		p += len;
4338 		next_type_id++;
4339 	}
4340 
4341 	/* shrink struct btf's internal types index and update btf_header */
4342 	d->btf->nr_types = next_type_id - d->btf->start_id;
4343 	d->btf->type_offs_cap = d->btf->nr_types;
4344 	d->btf->hdr->type_len = p - d->btf->types_data;
4345 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4346 				       sizeof(*new_offs));
4347 	if (d->btf->type_offs_cap && !new_offs)
4348 		return -ENOMEM;
4349 	d->btf->type_offs = new_offs;
4350 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4351 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4352 	return 0;
4353 }
4354 
4355 /*
4356  * Figure out final (deduplicated and compacted) type ID for provided original
4357  * `type_id` by first resolving it into corresponding canonical type ID and
4358  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4359  * which is populated during compaction phase.
4360  */
4361 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4362 {
4363 	struct btf_dedup *d = ctx;
4364 	__u32 resolved_type_id, new_type_id;
4365 
4366 	resolved_type_id = resolve_type_id(d, *type_id);
4367 	new_type_id = d->hypot_map[resolved_type_id];
4368 	if (new_type_id > BTF_MAX_NR_TYPES)
4369 		return -EINVAL;
4370 
4371 	*type_id = new_type_id;
4372 	return 0;
4373 }
4374 
4375 /*
4376  * Remap referenced type IDs into deduped type IDs.
4377  *
4378  * After BTF types are deduplicated and compacted, their final type IDs may
4379  * differ from original ones. The map from original to a corresponding
4380  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4381  * compaction phase. During remapping phase we are rewriting all type IDs
4382  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4383  * their final deduped type IDs.
4384  */
4385 static int btf_dedup_remap_types(struct btf_dedup *d)
4386 {
4387 	int i, r;
4388 
4389 	for (i = 0; i < d->btf->nr_types; i++) {
4390 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4391 
4392 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4393 		if (r)
4394 			return r;
4395 	}
4396 
4397 	if (!d->btf_ext)
4398 		return 0;
4399 
4400 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4401 	if (r)
4402 		return r;
4403 
4404 	return 0;
4405 }
4406 
4407 /*
4408  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4409  * data out of it to use for target BTF.
4410  */
4411 struct btf *btf__load_vmlinux_btf(void)
4412 {
4413 	struct {
4414 		const char *path_fmt;
4415 		bool raw_btf;
4416 	} locations[] = {
4417 		/* try canonical vmlinux BTF through sysfs first */
4418 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4419 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4420 		{ "/boot/vmlinux-%1$s" },
4421 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4422 		{ "/lib/modules/%1$s/build/vmlinux" },
4423 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4424 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4425 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4426 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4427 	};
4428 	char path[PATH_MAX + 1];
4429 	struct utsname buf;
4430 	struct btf *btf;
4431 	int i, err;
4432 
4433 	uname(&buf);
4434 
4435 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4436 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4437 
4438 		if (access(path, R_OK))
4439 			continue;
4440 
4441 		if (locations[i].raw_btf)
4442 			btf = btf__parse_raw(path);
4443 		else
4444 			btf = btf__parse_elf(path, NULL);
4445 		err = libbpf_get_error(btf);
4446 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4447 		if (err)
4448 			continue;
4449 
4450 		return btf;
4451 	}
4452 
4453 	pr_warn("failed to find valid kernel BTF\n");
4454 	return libbpf_err_ptr(-ESRCH);
4455 }
4456 
4457 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4458 
4459 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4460 {
4461 	char path[80];
4462 
4463 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4464 	return btf__parse_split(path, vmlinux_btf);
4465 }
4466 
4467 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4468 {
4469 	int i, n, err;
4470 
4471 	switch (btf_kind(t)) {
4472 	case BTF_KIND_INT:
4473 	case BTF_KIND_FLOAT:
4474 	case BTF_KIND_ENUM:
4475 		return 0;
4476 
4477 	case BTF_KIND_FWD:
4478 	case BTF_KIND_CONST:
4479 	case BTF_KIND_VOLATILE:
4480 	case BTF_KIND_RESTRICT:
4481 	case BTF_KIND_PTR:
4482 	case BTF_KIND_TYPEDEF:
4483 	case BTF_KIND_FUNC:
4484 	case BTF_KIND_VAR:
4485 		return visit(&t->type, ctx);
4486 
4487 	case BTF_KIND_ARRAY: {
4488 		struct btf_array *a = btf_array(t);
4489 
4490 		err = visit(&a->type, ctx);
4491 		err = err ?: visit(&a->index_type, ctx);
4492 		return err;
4493 	}
4494 
4495 	case BTF_KIND_STRUCT:
4496 	case BTF_KIND_UNION: {
4497 		struct btf_member *m = btf_members(t);
4498 
4499 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500 			err = visit(&m->type, ctx);
4501 			if (err)
4502 				return err;
4503 		}
4504 		return 0;
4505 	}
4506 
4507 	case BTF_KIND_FUNC_PROTO: {
4508 		struct btf_param *m = btf_params(t);
4509 
4510 		err = visit(&t->type, ctx);
4511 		if (err)
4512 			return err;
4513 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4514 			err = visit(&m->type, ctx);
4515 			if (err)
4516 				return err;
4517 		}
4518 		return 0;
4519 	}
4520 
4521 	case BTF_KIND_DATASEC: {
4522 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4523 
4524 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4525 			err = visit(&m->type, ctx);
4526 			if (err)
4527 				return err;
4528 		}
4529 		return 0;
4530 	}
4531 
4532 	default:
4533 		return -EINVAL;
4534 	}
4535 }
4536 
4537 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4538 {
4539 	int i, n, err;
4540 
4541 	err = visit(&t->name_off, ctx);
4542 	if (err)
4543 		return err;
4544 
4545 	switch (btf_kind(t)) {
4546 	case BTF_KIND_STRUCT:
4547 	case BTF_KIND_UNION: {
4548 		struct btf_member *m = btf_members(t);
4549 
4550 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4551 			err = visit(&m->name_off, ctx);
4552 			if (err)
4553 				return err;
4554 		}
4555 		break;
4556 	}
4557 	case BTF_KIND_ENUM: {
4558 		struct btf_enum *m = btf_enum(t);
4559 
4560 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4561 			err = visit(&m->name_off, ctx);
4562 			if (err)
4563 				return err;
4564 		}
4565 		break;
4566 	}
4567 	case BTF_KIND_FUNC_PROTO: {
4568 		struct btf_param *m = btf_params(t);
4569 
4570 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4571 			err = visit(&m->name_off, ctx);
4572 			if (err)
4573 				return err;
4574 		}
4575 		break;
4576 	}
4577 	default:
4578 		break;
4579 	}
4580 
4581 	return 0;
4582 }
4583 
4584 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4585 {
4586 	const struct btf_ext_info *seg;
4587 	struct btf_ext_info_sec *sec;
4588 	int i, err;
4589 
4590 	seg = &btf_ext->func_info;
4591 	for_each_btf_ext_sec(seg, sec) {
4592 		struct bpf_func_info_min *rec;
4593 
4594 		for_each_btf_ext_rec(seg, sec, i, rec) {
4595 			err = visit(&rec->type_id, ctx);
4596 			if (err < 0)
4597 				return err;
4598 		}
4599 	}
4600 
4601 	seg = &btf_ext->core_relo_info;
4602 	for_each_btf_ext_sec(seg, sec) {
4603 		struct bpf_core_relo *rec;
4604 
4605 		for_each_btf_ext_rec(seg, sec, i, rec) {
4606 			err = visit(&rec->type_id, ctx);
4607 			if (err < 0)
4608 				return err;
4609 		}
4610 	}
4611 
4612 	return 0;
4613 }
4614 
4615 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4616 {
4617 	const struct btf_ext_info *seg;
4618 	struct btf_ext_info_sec *sec;
4619 	int i, err;
4620 
4621 	seg = &btf_ext->func_info;
4622 	for_each_btf_ext_sec(seg, sec) {
4623 		err = visit(&sec->sec_name_off, ctx);
4624 		if (err)
4625 			return err;
4626 	}
4627 
4628 	seg = &btf_ext->line_info;
4629 	for_each_btf_ext_sec(seg, sec) {
4630 		struct bpf_line_info_min *rec;
4631 
4632 		err = visit(&sec->sec_name_off, ctx);
4633 		if (err)
4634 			return err;
4635 
4636 		for_each_btf_ext_rec(seg, sec, i, rec) {
4637 			err = visit(&rec->file_name_off, ctx);
4638 			if (err)
4639 				return err;
4640 			err = visit(&rec->line_off, ctx);
4641 			if (err)
4642 				return err;
4643 		}
4644 	}
4645 
4646 	seg = &btf_ext->core_relo_info;
4647 	for_each_btf_ext_sec(seg, sec) {
4648 		struct bpf_core_relo *rec;
4649 
4650 		err = visit(&sec->sec_name_off, ctx);
4651 		if (err)
4652 			return err;
4653 
4654 		for_each_btf_ext_rec(seg, sec, i, rec) {
4655 			err = visit(&rec->access_str_off, ctx);
4656 			if (err)
4657 				return err;
4658 		}
4659 	}
4660 
4661 	return 0;
4662 }
4663