1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 default: 308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 309 return -EINVAL; 310 } 311 } 312 313 static void btf_bswap_type_base(struct btf_type *t) 314 { 315 t->name_off = bswap_32(t->name_off); 316 t->info = bswap_32(t->info); 317 t->type = bswap_32(t->type); 318 } 319 320 static int btf_bswap_type_rest(struct btf_type *t) 321 { 322 struct btf_var_secinfo *v; 323 struct btf_member *m; 324 struct btf_array *a; 325 struct btf_param *p; 326 struct btf_enum *e; 327 __u16 vlen = btf_vlen(t); 328 int i; 329 330 switch (btf_kind(t)) { 331 case BTF_KIND_FWD: 332 case BTF_KIND_CONST: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_RESTRICT: 335 case BTF_KIND_PTR: 336 case BTF_KIND_TYPEDEF: 337 case BTF_KIND_FUNC: 338 case BTF_KIND_FLOAT: 339 return 0; 340 case BTF_KIND_INT: 341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 342 return 0; 343 case BTF_KIND_ENUM: 344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 345 e->name_off = bswap_32(e->name_off); 346 e->val = bswap_32(e->val); 347 } 348 return 0; 349 case BTF_KIND_ARRAY: 350 a = btf_array(t); 351 a->type = bswap_32(a->type); 352 a->index_type = bswap_32(a->index_type); 353 a->nelems = bswap_32(a->nelems); 354 return 0; 355 case BTF_KIND_STRUCT: 356 case BTF_KIND_UNION: 357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 358 m->name_off = bswap_32(m->name_off); 359 m->type = bswap_32(m->type); 360 m->offset = bswap_32(m->offset); 361 } 362 return 0; 363 case BTF_KIND_FUNC_PROTO: 364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 365 p->name_off = bswap_32(p->name_off); 366 p->type = bswap_32(p->type); 367 } 368 return 0; 369 case BTF_KIND_VAR: 370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 371 return 0; 372 case BTF_KIND_DATASEC: 373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 374 v->type = bswap_32(v->type); 375 v->offset = bswap_32(v->offset); 376 v->size = bswap_32(v->size); 377 } 378 return 0; 379 default: 380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 381 return -EINVAL; 382 } 383 } 384 385 static int btf_parse_type_sec(struct btf *btf) 386 { 387 struct btf_header *hdr = btf->hdr; 388 void *next_type = btf->types_data; 389 void *end_type = next_type + hdr->type_len; 390 int err, type_size; 391 392 while (next_type + sizeof(struct btf_type) <= end_type) { 393 if (btf->swapped_endian) 394 btf_bswap_type_base(next_type); 395 396 type_size = btf_type_size(next_type); 397 if (type_size < 0) 398 return type_size; 399 if (next_type + type_size > end_type) { 400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 401 return -EINVAL; 402 } 403 404 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 405 return -EINVAL; 406 407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 408 if (err) 409 return err; 410 411 next_type += type_size; 412 btf->nr_types++; 413 } 414 415 if (next_type != end_type) { 416 pr_warn("BTF types data is malformed\n"); 417 return -EINVAL; 418 } 419 420 return 0; 421 } 422 423 __u32 btf__get_nr_types(const struct btf *btf) 424 { 425 return btf->start_id + btf->nr_types - 1; 426 } 427 428 const struct btf *btf__base_btf(const struct btf *btf) 429 { 430 return btf->base_btf; 431 } 432 433 /* internal helper returning non-const pointer to a type */ 434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 435 { 436 if (type_id == 0) 437 return &btf_void; 438 if (type_id < btf->start_id) 439 return btf_type_by_id(btf->base_btf, type_id); 440 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 441 } 442 443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 444 { 445 if (type_id >= btf->start_id + btf->nr_types) 446 return errno = EINVAL, NULL; 447 return btf_type_by_id((struct btf *)btf, type_id); 448 } 449 450 static int determine_ptr_size(const struct btf *btf) 451 { 452 const struct btf_type *t; 453 const char *name; 454 int i, n; 455 456 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 457 return btf->base_btf->ptr_sz; 458 459 n = btf__get_nr_types(btf); 460 for (i = 1; i <= n; i++) { 461 t = btf__type_by_id(btf, i); 462 if (!btf_is_int(t)) 463 continue; 464 465 name = btf__name_by_offset(btf, t->name_off); 466 if (!name) 467 continue; 468 469 if (strcmp(name, "long int") == 0 || 470 strcmp(name, "long unsigned int") == 0) { 471 if (t->size != 4 && t->size != 8) 472 continue; 473 return t->size; 474 } 475 } 476 477 return -1; 478 } 479 480 static size_t btf_ptr_sz(const struct btf *btf) 481 { 482 if (!btf->ptr_sz) 483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 485 } 486 487 /* Return pointer size this BTF instance assumes. The size is heuristically 488 * determined by looking for 'long' or 'unsigned long' integer type and 489 * recording its size in bytes. If BTF type information doesn't have any such 490 * type, this function returns 0. In the latter case, native architecture's 491 * pointer size is assumed, so will be either 4 or 8, depending on 492 * architecture that libbpf was compiled for. It's possible to override 493 * guessed value by using btf__set_pointer_size() API. 494 */ 495 size_t btf__pointer_size(const struct btf *btf) 496 { 497 if (!btf->ptr_sz) 498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 499 500 if (btf->ptr_sz < 0) 501 /* not enough BTF type info to guess */ 502 return 0; 503 504 return btf->ptr_sz; 505 } 506 507 /* Override or set pointer size in bytes. Only values of 4 and 8 are 508 * supported. 509 */ 510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 511 { 512 if (ptr_sz != 4 && ptr_sz != 8) 513 return libbpf_err(-EINVAL); 514 btf->ptr_sz = ptr_sz; 515 return 0; 516 } 517 518 static bool is_host_big_endian(void) 519 { 520 #if __BYTE_ORDER == __LITTLE_ENDIAN 521 return false; 522 #elif __BYTE_ORDER == __BIG_ENDIAN 523 return true; 524 #else 525 # error "Unrecognized __BYTE_ORDER__" 526 #endif 527 } 528 529 enum btf_endianness btf__endianness(const struct btf *btf) 530 { 531 if (is_host_big_endian()) 532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 533 else 534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 535 } 536 537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 538 { 539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 540 return libbpf_err(-EINVAL); 541 542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 543 if (!btf->swapped_endian) { 544 free(btf->raw_data_swapped); 545 btf->raw_data_swapped = NULL; 546 } 547 return 0; 548 } 549 550 static bool btf_type_is_void(const struct btf_type *t) 551 { 552 return t == &btf_void || btf_is_fwd(t); 553 } 554 555 static bool btf_type_is_void_or_null(const struct btf_type *t) 556 { 557 return !t || btf_type_is_void(t); 558 } 559 560 #define MAX_RESOLVE_DEPTH 32 561 562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 563 { 564 const struct btf_array *array; 565 const struct btf_type *t; 566 __u32 nelems = 1; 567 __s64 size = -1; 568 int i; 569 570 t = btf__type_by_id(btf, type_id); 571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 572 switch (btf_kind(t)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 size = t->size; 580 goto done; 581 case BTF_KIND_PTR: 582 size = btf_ptr_sz(btf); 583 goto done; 584 case BTF_KIND_TYPEDEF: 585 case BTF_KIND_VOLATILE: 586 case BTF_KIND_CONST: 587 case BTF_KIND_RESTRICT: 588 case BTF_KIND_VAR: 589 type_id = t->type; 590 break; 591 case BTF_KIND_ARRAY: 592 array = btf_array(t); 593 if (nelems && array->nelems > UINT32_MAX / nelems) 594 return libbpf_err(-E2BIG); 595 nelems *= array->nelems; 596 type_id = array->type; 597 break; 598 default: 599 return libbpf_err(-EINVAL); 600 } 601 602 t = btf__type_by_id(btf, type_id); 603 } 604 605 done: 606 if (size < 0) 607 return libbpf_err(-EINVAL); 608 if (nelems && size > UINT32_MAX / nelems) 609 return libbpf_err(-E2BIG); 610 611 return nelems * size; 612 } 613 614 int btf__align_of(const struct btf *btf, __u32 id) 615 { 616 const struct btf_type *t = btf__type_by_id(btf, id); 617 __u16 kind = btf_kind(t); 618 619 switch (kind) { 620 case BTF_KIND_INT: 621 case BTF_KIND_ENUM: 622 case BTF_KIND_FLOAT: 623 return min(btf_ptr_sz(btf), (size_t)t->size); 624 case BTF_KIND_PTR: 625 return btf_ptr_sz(btf); 626 case BTF_KIND_TYPEDEF: 627 case BTF_KIND_VOLATILE: 628 case BTF_KIND_CONST: 629 case BTF_KIND_RESTRICT: 630 return btf__align_of(btf, t->type); 631 case BTF_KIND_ARRAY: 632 return btf__align_of(btf, btf_array(t)->type); 633 case BTF_KIND_STRUCT: 634 case BTF_KIND_UNION: { 635 const struct btf_member *m = btf_members(t); 636 __u16 vlen = btf_vlen(t); 637 int i, max_align = 1, align; 638 639 for (i = 0; i < vlen; i++, m++) { 640 align = btf__align_of(btf, m->type); 641 if (align <= 0) 642 return libbpf_err(align); 643 max_align = max(max_align, align); 644 } 645 646 return max_align; 647 } 648 default: 649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 650 return errno = EINVAL, 0; 651 } 652 } 653 654 int btf__resolve_type(const struct btf *btf, __u32 type_id) 655 { 656 const struct btf_type *t; 657 int depth = 0; 658 659 t = btf__type_by_id(btf, type_id); 660 while (depth < MAX_RESOLVE_DEPTH && 661 !btf_type_is_void_or_null(t) && 662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 663 type_id = t->type; 664 t = btf__type_by_id(btf, type_id); 665 depth++; 666 } 667 668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 669 return libbpf_err(-EINVAL); 670 671 return type_id; 672 } 673 674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 675 { 676 __u32 i, nr_types = btf__get_nr_types(btf); 677 678 if (!strcmp(type_name, "void")) 679 return 0; 680 681 for (i = 1; i <= nr_types; i++) { 682 const struct btf_type *t = btf__type_by_id(btf, i); 683 const char *name = btf__name_by_offset(btf, t->name_off); 684 685 if (name && !strcmp(type_name, name)) 686 return i; 687 } 688 689 return libbpf_err(-ENOENT); 690 } 691 692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 693 __u32 kind) 694 { 695 __u32 i, nr_types = btf__get_nr_types(btf); 696 697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 698 return 0; 699 700 for (i = 1; i <= nr_types; i++) { 701 const struct btf_type *t = btf__type_by_id(btf, i); 702 const char *name; 703 704 if (btf_kind(t) != kind) 705 continue; 706 name = btf__name_by_offset(btf, t->name_off); 707 if (name && !strcmp(type_name, name)) 708 return i; 709 } 710 711 return libbpf_err(-ENOENT); 712 } 713 714 static bool btf_is_modifiable(const struct btf *btf) 715 { 716 return (void *)btf->hdr != btf->raw_data; 717 } 718 719 void btf__free(struct btf *btf) 720 { 721 if (IS_ERR_OR_NULL(btf)) 722 return; 723 724 if (btf->fd >= 0) 725 close(btf->fd); 726 727 if (btf_is_modifiable(btf)) { 728 /* if BTF was modified after loading, it will have a split 729 * in-memory representation for header, types, and strings 730 * sections, so we need to free all of them individually. It 731 * might still have a cached contiguous raw data present, 732 * which will be unconditionally freed below. 733 */ 734 free(btf->hdr); 735 free(btf->types_data); 736 strset__free(btf->strs_set); 737 } 738 free(btf->raw_data); 739 free(btf->raw_data_swapped); 740 free(btf->type_offs); 741 free(btf); 742 } 743 744 static struct btf *btf_new_empty(struct btf *base_btf) 745 { 746 struct btf *btf; 747 748 btf = calloc(1, sizeof(*btf)); 749 if (!btf) 750 return ERR_PTR(-ENOMEM); 751 752 btf->nr_types = 0; 753 btf->start_id = 1; 754 btf->start_str_off = 0; 755 btf->fd = -1; 756 btf->ptr_sz = sizeof(void *); 757 btf->swapped_endian = false; 758 759 if (base_btf) { 760 btf->base_btf = base_btf; 761 btf->start_id = btf__get_nr_types(base_btf) + 1; 762 btf->start_str_off = base_btf->hdr->str_len; 763 } 764 765 /* +1 for empty string at offset 0 */ 766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 767 btf->raw_data = calloc(1, btf->raw_size); 768 if (!btf->raw_data) { 769 free(btf); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 btf->hdr = btf->raw_data; 774 btf->hdr->hdr_len = sizeof(struct btf_header); 775 btf->hdr->magic = BTF_MAGIC; 776 btf->hdr->version = BTF_VERSION; 777 778 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 781 782 return btf; 783 } 784 785 struct btf *btf__new_empty(void) 786 { 787 return libbpf_ptr(btf_new_empty(NULL)); 788 } 789 790 struct btf *btf__new_empty_split(struct btf *base_btf) 791 { 792 return libbpf_ptr(btf_new_empty(base_btf)); 793 } 794 795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 796 { 797 struct btf *btf; 798 int err; 799 800 btf = calloc(1, sizeof(struct btf)); 801 if (!btf) 802 return ERR_PTR(-ENOMEM); 803 804 btf->nr_types = 0; 805 btf->start_id = 1; 806 btf->start_str_off = 0; 807 btf->fd = -1; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 done: 837 if (err) { 838 btf__free(btf); 839 return ERR_PTR(err); 840 } 841 842 return btf; 843 } 844 845 struct btf *btf__new(const void *data, __u32 size) 846 { 847 return libbpf_ptr(btf_new(data, size, NULL)); 848 } 849 850 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 851 struct btf_ext **btf_ext) 852 { 853 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 854 int err = 0, fd = -1, idx = 0; 855 struct btf *btf = NULL; 856 Elf_Scn *scn = NULL; 857 Elf *elf = NULL; 858 GElf_Ehdr ehdr; 859 size_t shstrndx; 860 861 if (elf_version(EV_CURRENT) == EV_NONE) { 862 pr_warn("failed to init libelf for %s\n", path); 863 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 864 } 865 866 fd = open(path, O_RDONLY); 867 if (fd < 0) { 868 err = -errno; 869 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 870 return ERR_PTR(err); 871 } 872 873 err = -LIBBPF_ERRNO__FORMAT; 874 875 elf = elf_begin(fd, ELF_C_READ, NULL); 876 if (!elf) { 877 pr_warn("failed to open %s as ELF file\n", path); 878 goto done; 879 } 880 if (!gelf_getehdr(elf, &ehdr)) { 881 pr_warn("failed to get EHDR from %s\n", path); 882 goto done; 883 } 884 885 if (elf_getshdrstrndx(elf, &shstrndx)) { 886 pr_warn("failed to get section names section index for %s\n", 887 path); 888 goto done; 889 } 890 891 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 892 pr_warn("failed to get e_shstrndx from %s\n", path); 893 goto done; 894 } 895 896 while ((scn = elf_nextscn(elf, scn)) != NULL) { 897 GElf_Shdr sh; 898 char *name; 899 900 idx++; 901 if (gelf_getshdr(scn, &sh) != &sh) { 902 pr_warn("failed to get section(%d) header from %s\n", 903 idx, path); 904 goto done; 905 } 906 name = elf_strptr(elf, shstrndx, sh.sh_name); 907 if (!name) { 908 pr_warn("failed to get section(%d) name from %s\n", 909 idx, path); 910 goto done; 911 } 912 if (strcmp(name, BTF_ELF_SEC) == 0) { 913 btf_data = elf_getdata(scn, 0); 914 if (!btf_data) { 915 pr_warn("failed to get section(%d, %s) data from %s\n", 916 idx, name, path); 917 goto done; 918 } 919 continue; 920 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 921 btf_ext_data = elf_getdata(scn, 0); 922 if (!btf_ext_data) { 923 pr_warn("failed to get section(%d, %s) data from %s\n", 924 idx, name, path); 925 goto done; 926 } 927 continue; 928 } 929 } 930 931 err = 0; 932 933 if (!btf_data) { 934 err = -ENOENT; 935 goto done; 936 } 937 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 938 err = libbpf_get_error(btf); 939 if (err) 940 goto done; 941 942 switch (gelf_getclass(elf)) { 943 case ELFCLASS32: 944 btf__set_pointer_size(btf, 4); 945 break; 946 case ELFCLASS64: 947 btf__set_pointer_size(btf, 8); 948 break; 949 default: 950 pr_warn("failed to get ELF class (bitness) for %s\n", path); 951 break; 952 } 953 954 if (btf_ext && btf_ext_data) { 955 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 956 err = libbpf_get_error(*btf_ext); 957 if (err) 958 goto done; 959 } else if (btf_ext) { 960 *btf_ext = NULL; 961 } 962 done: 963 if (elf) 964 elf_end(elf); 965 close(fd); 966 967 if (!err) 968 return btf; 969 970 if (btf_ext) 971 btf_ext__free(*btf_ext); 972 btf__free(btf); 973 974 return ERR_PTR(err); 975 } 976 977 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 978 { 979 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 980 } 981 982 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 983 { 984 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 985 } 986 987 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 988 { 989 struct btf *btf = NULL; 990 void *data = NULL; 991 FILE *f = NULL; 992 __u16 magic; 993 int err = 0; 994 long sz; 995 996 f = fopen(path, "rb"); 997 if (!f) { 998 err = -errno; 999 goto err_out; 1000 } 1001 1002 /* check BTF magic */ 1003 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1004 err = -EIO; 1005 goto err_out; 1006 } 1007 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1008 /* definitely not a raw BTF */ 1009 err = -EPROTO; 1010 goto err_out; 1011 } 1012 1013 /* get file size */ 1014 if (fseek(f, 0, SEEK_END)) { 1015 err = -errno; 1016 goto err_out; 1017 } 1018 sz = ftell(f); 1019 if (sz < 0) { 1020 err = -errno; 1021 goto err_out; 1022 } 1023 /* rewind to the start */ 1024 if (fseek(f, 0, SEEK_SET)) { 1025 err = -errno; 1026 goto err_out; 1027 } 1028 1029 /* pre-alloc memory and read all of BTF data */ 1030 data = malloc(sz); 1031 if (!data) { 1032 err = -ENOMEM; 1033 goto err_out; 1034 } 1035 if (fread(data, 1, sz, f) < sz) { 1036 err = -EIO; 1037 goto err_out; 1038 } 1039 1040 /* finally parse BTF data */ 1041 btf = btf_new(data, sz, base_btf); 1042 1043 err_out: 1044 free(data); 1045 if (f) 1046 fclose(f); 1047 return err ? ERR_PTR(err) : btf; 1048 } 1049 1050 struct btf *btf__parse_raw(const char *path) 1051 { 1052 return libbpf_ptr(btf_parse_raw(path, NULL)); 1053 } 1054 1055 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1056 { 1057 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1058 } 1059 1060 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1061 { 1062 struct btf *btf; 1063 int err; 1064 1065 if (btf_ext) 1066 *btf_ext = NULL; 1067 1068 btf = btf_parse_raw(path, base_btf); 1069 err = libbpf_get_error(btf); 1070 if (!err) 1071 return btf; 1072 if (err != -EPROTO) 1073 return ERR_PTR(err); 1074 return btf_parse_elf(path, base_btf, btf_ext); 1075 } 1076 1077 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1078 { 1079 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1080 } 1081 1082 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1083 { 1084 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1085 } 1086 1087 static int compare_vsi_off(const void *_a, const void *_b) 1088 { 1089 const struct btf_var_secinfo *a = _a; 1090 const struct btf_var_secinfo *b = _b; 1091 1092 return a->offset - b->offset; 1093 } 1094 1095 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1096 struct btf_type *t) 1097 { 1098 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1099 const char *name = btf__name_by_offset(btf, t->name_off); 1100 const struct btf_type *t_var; 1101 struct btf_var_secinfo *vsi; 1102 const struct btf_var *var; 1103 int ret; 1104 1105 if (!name) { 1106 pr_debug("No name found in string section for DATASEC kind.\n"); 1107 return -ENOENT; 1108 } 1109 1110 /* .extern datasec size and var offsets were set correctly during 1111 * extern collection step, so just skip straight to sorting variables 1112 */ 1113 if (t->size) 1114 goto sort_vars; 1115 1116 ret = bpf_object__section_size(obj, name, &size); 1117 if (ret || !size || (t->size && t->size != size)) { 1118 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1119 return -ENOENT; 1120 } 1121 1122 t->size = size; 1123 1124 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1125 t_var = btf__type_by_id(btf, vsi->type); 1126 var = btf_var(t_var); 1127 1128 if (!btf_is_var(t_var)) { 1129 pr_debug("Non-VAR type seen in section %s\n", name); 1130 return -EINVAL; 1131 } 1132 1133 if (var->linkage == BTF_VAR_STATIC) 1134 continue; 1135 1136 name = btf__name_by_offset(btf, t_var->name_off); 1137 if (!name) { 1138 pr_debug("No name found in string section for VAR kind\n"); 1139 return -ENOENT; 1140 } 1141 1142 ret = bpf_object__variable_offset(obj, name, &off); 1143 if (ret) { 1144 pr_debug("No offset found in symbol table for VAR %s\n", 1145 name); 1146 return -ENOENT; 1147 } 1148 1149 vsi->offset = off; 1150 } 1151 1152 sort_vars: 1153 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1154 return 0; 1155 } 1156 1157 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1158 { 1159 int err = 0; 1160 __u32 i; 1161 1162 for (i = 1; i <= btf->nr_types; i++) { 1163 struct btf_type *t = btf_type_by_id(btf, i); 1164 1165 /* Loader needs to fix up some of the things compiler 1166 * couldn't get its hands on while emitting BTF. This 1167 * is section size and global variable offset. We use 1168 * the info from the ELF itself for this purpose. 1169 */ 1170 if (btf_is_datasec(t)) { 1171 err = btf_fixup_datasec(obj, btf, t); 1172 if (err) 1173 break; 1174 } 1175 } 1176 1177 return libbpf_err(err); 1178 } 1179 1180 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1181 1182 int btf__load_into_kernel(struct btf *btf) 1183 { 1184 __u32 log_buf_size = 0, raw_size; 1185 char *log_buf = NULL; 1186 void *raw_data; 1187 int err = 0; 1188 1189 if (btf->fd >= 0) 1190 return libbpf_err(-EEXIST); 1191 1192 retry_load: 1193 if (log_buf_size) { 1194 log_buf = malloc(log_buf_size); 1195 if (!log_buf) 1196 return libbpf_err(-ENOMEM); 1197 1198 *log_buf = 0; 1199 } 1200 1201 raw_data = btf_get_raw_data(btf, &raw_size, false); 1202 if (!raw_data) { 1203 err = -ENOMEM; 1204 goto done; 1205 } 1206 /* cache native raw data representation */ 1207 btf->raw_size = raw_size; 1208 btf->raw_data = raw_data; 1209 1210 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1211 if (btf->fd < 0) { 1212 if (!log_buf || errno == ENOSPC) { 1213 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1214 log_buf_size << 1); 1215 free(log_buf); 1216 goto retry_load; 1217 } 1218 1219 err = -errno; 1220 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1221 if (*log_buf) 1222 pr_warn("%s\n", log_buf); 1223 goto done; 1224 } 1225 1226 done: 1227 free(log_buf); 1228 return libbpf_err(err); 1229 } 1230 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1231 1232 int btf__fd(const struct btf *btf) 1233 { 1234 return btf->fd; 1235 } 1236 1237 void btf__set_fd(struct btf *btf, int fd) 1238 { 1239 btf->fd = fd; 1240 } 1241 1242 static const void *btf_strs_data(const struct btf *btf) 1243 { 1244 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1245 } 1246 1247 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1248 { 1249 struct btf_header *hdr = btf->hdr; 1250 struct btf_type *t; 1251 void *data, *p; 1252 __u32 data_sz; 1253 int i; 1254 1255 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1256 if (data) { 1257 *size = btf->raw_size; 1258 return data; 1259 } 1260 1261 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1262 data = calloc(1, data_sz); 1263 if (!data) 1264 return NULL; 1265 p = data; 1266 1267 memcpy(p, hdr, hdr->hdr_len); 1268 if (swap_endian) 1269 btf_bswap_hdr(p); 1270 p += hdr->hdr_len; 1271 1272 memcpy(p, btf->types_data, hdr->type_len); 1273 if (swap_endian) { 1274 for (i = 0; i < btf->nr_types; i++) { 1275 t = p + btf->type_offs[i]; 1276 /* btf_bswap_type_rest() relies on native t->info, so 1277 * we swap base type info after we swapped all the 1278 * additional information 1279 */ 1280 if (btf_bswap_type_rest(t)) 1281 goto err_out; 1282 btf_bswap_type_base(t); 1283 } 1284 } 1285 p += hdr->type_len; 1286 1287 memcpy(p, btf_strs_data(btf), hdr->str_len); 1288 p += hdr->str_len; 1289 1290 *size = data_sz; 1291 return data; 1292 err_out: 1293 free(data); 1294 return NULL; 1295 } 1296 1297 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1298 { 1299 struct btf *btf = (struct btf *)btf_ro; 1300 __u32 data_sz; 1301 void *data; 1302 1303 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1304 if (!data) 1305 return errno = -ENOMEM, NULL; 1306 1307 btf->raw_size = data_sz; 1308 if (btf->swapped_endian) 1309 btf->raw_data_swapped = data; 1310 else 1311 btf->raw_data = data; 1312 *size = data_sz; 1313 return data; 1314 } 1315 1316 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1317 { 1318 if (offset < btf->start_str_off) 1319 return btf__str_by_offset(btf->base_btf, offset); 1320 else if (offset - btf->start_str_off < btf->hdr->str_len) 1321 return btf_strs_data(btf) + (offset - btf->start_str_off); 1322 else 1323 return errno = EINVAL, NULL; 1324 } 1325 1326 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1327 { 1328 return btf__str_by_offset(btf, offset); 1329 } 1330 1331 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1332 { 1333 struct bpf_btf_info btf_info; 1334 __u32 len = sizeof(btf_info); 1335 __u32 last_size; 1336 struct btf *btf; 1337 void *ptr; 1338 int err; 1339 1340 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1341 * let's start with a sane default - 4KiB here - and resize it only if 1342 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1343 */ 1344 last_size = 4096; 1345 ptr = malloc(last_size); 1346 if (!ptr) 1347 return ERR_PTR(-ENOMEM); 1348 1349 memset(&btf_info, 0, sizeof(btf_info)); 1350 btf_info.btf = ptr_to_u64(ptr); 1351 btf_info.btf_size = last_size; 1352 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1353 1354 if (!err && btf_info.btf_size > last_size) { 1355 void *temp_ptr; 1356 1357 last_size = btf_info.btf_size; 1358 temp_ptr = realloc(ptr, last_size); 1359 if (!temp_ptr) { 1360 btf = ERR_PTR(-ENOMEM); 1361 goto exit_free; 1362 } 1363 ptr = temp_ptr; 1364 1365 len = sizeof(btf_info); 1366 memset(&btf_info, 0, sizeof(btf_info)); 1367 btf_info.btf = ptr_to_u64(ptr); 1368 btf_info.btf_size = last_size; 1369 1370 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1371 } 1372 1373 if (err || btf_info.btf_size > last_size) { 1374 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1375 goto exit_free; 1376 } 1377 1378 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1379 1380 exit_free: 1381 free(ptr); 1382 return btf; 1383 } 1384 1385 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1386 { 1387 struct btf *btf; 1388 int btf_fd; 1389 1390 btf_fd = bpf_btf_get_fd_by_id(id); 1391 if (btf_fd < 0) 1392 return libbpf_err_ptr(-errno); 1393 1394 btf = btf_get_from_fd(btf_fd, base_btf); 1395 close(btf_fd); 1396 1397 return libbpf_ptr(btf); 1398 } 1399 1400 struct btf *btf__load_from_kernel_by_id(__u32 id) 1401 { 1402 return btf__load_from_kernel_by_id_split(id, NULL); 1403 } 1404 1405 int btf__get_from_id(__u32 id, struct btf **btf) 1406 { 1407 struct btf *res; 1408 int err; 1409 1410 *btf = NULL; 1411 res = btf__load_from_kernel_by_id(id); 1412 err = libbpf_get_error(res); 1413 1414 if (err) 1415 return libbpf_err(err); 1416 1417 *btf = res; 1418 return 0; 1419 } 1420 1421 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1422 __u32 expected_key_size, __u32 expected_value_size, 1423 __u32 *key_type_id, __u32 *value_type_id) 1424 { 1425 const struct btf_type *container_type; 1426 const struct btf_member *key, *value; 1427 const size_t max_name = 256; 1428 char container_name[max_name]; 1429 __s64 key_size, value_size; 1430 __s32 container_id; 1431 1432 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1433 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1434 map_name, map_name); 1435 return libbpf_err(-EINVAL); 1436 } 1437 1438 container_id = btf__find_by_name(btf, container_name); 1439 if (container_id < 0) { 1440 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1441 map_name, container_name); 1442 return libbpf_err(container_id); 1443 } 1444 1445 container_type = btf__type_by_id(btf, container_id); 1446 if (!container_type) { 1447 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1448 map_name, container_id); 1449 return libbpf_err(-EINVAL); 1450 } 1451 1452 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1453 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1454 map_name, container_name); 1455 return libbpf_err(-EINVAL); 1456 } 1457 1458 key = btf_members(container_type); 1459 value = key + 1; 1460 1461 key_size = btf__resolve_size(btf, key->type); 1462 if (key_size < 0) { 1463 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1464 return libbpf_err(key_size); 1465 } 1466 1467 if (expected_key_size != key_size) { 1468 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1469 map_name, (__u32)key_size, expected_key_size); 1470 return libbpf_err(-EINVAL); 1471 } 1472 1473 value_size = btf__resolve_size(btf, value->type); 1474 if (value_size < 0) { 1475 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1476 return libbpf_err(value_size); 1477 } 1478 1479 if (expected_value_size != value_size) { 1480 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1481 map_name, (__u32)value_size, expected_value_size); 1482 return libbpf_err(-EINVAL); 1483 } 1484 1485 *key_type_id = key->type; 1486 *value_type_id = value->type; 1487 1488 return 0; 1489 } 1490 1491 static void btf_invalidate_raw_data(struct btf *btf) 1492 { 1493 if (btf->raw_data) { 1494 free(btf->raw_data); 1495 btf->raw_data = NULL; 1496 } 1497 if (btf->raw_data_swapped) { 1498 free(btf->raw_data_swapped); 1499 btf->raw_data_swapped = NULL; 1500 } 1501 } 1502 1503 /* Ensure BTF is ready to be modified (by splitting into a three memory 1504 * regions for header, types, and strings). Also invalidate cached 1505 * raw_data, if any. 1506 */ 1507 static int btf_ensure_modifiable(struct btf *btf) 1508 { 1509 void *hdr, *types; 1510 struct strset *set = NULL; 1511 int err = -ENOMEM; 1512 1513 if (btf_is_modifiable(btf)) { 1514 /* any BTF modification invalidates raw_data */ 1515 btf_invalidate_raw_data(btf); 1516 return 0; 1517 } 1518 1519 /* split raw data into three memory regions */ 1520 hdr = malloc(btf->hdr->hdr_len); 1521 types = malloc(btf->hdr->type_len); 1522 if (!hdr || !types) 1523 goto err_out; 1524 1525 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1526 memcpy(types, btf->types_data, btf->hdr->type_len); 1527 1528 /* build lookup index for all strings */ 1529 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1530 if (IS_ERR(set)) { 1531 err = PTR_ERR(set); 1532 goto err_out; 1533 } 1534 1535 /* only when everything was successful, update internal state */ 1536 btf->hdr = hdr; 1537 btf->types_data = types; 1538 btf->types_data_cap = btf->hdr->type_len; 1539 btf->strs_data = NULL; 1540 btf->strs_set = set; 1541 /* if BTF was created from scratch, all strings are guaranteed to be 1542 * unique and deduplicated 1543 */ 1544 if (btf->hdr->str_len == 0) 1545 btf->strs_deduped = true; 1546 if (!btf->base_btf && btf->hdr->str_len == 1) 1547 btf->strs_deduped = true; 1548 1549 /* invalidate raw_data representation */ 1550 btf_invalidate_raw_data(btf); 1551 1552 return 0; 1553 1554 err_out: 1555 strset__free(set); 1556 free(hdr); 1557 free(types); 1558 return err; 1559 } 1560 1561 /* Find an offset in BTF string section that corresponds to a given string *s*. 1562 * Returns: 1563 * - >0 offset into string section, if string is found; 1564 * - -ENOENT, if string is not in the string section; 1565 * - <0, on any other error. 1566 */ 1567 int btf__find_str(struct btf *btf, const char *s) 1568 { 1569 int off; 1570 1571 if (btf->base_btf) { 1572 off = btf__find_str(btf->base_btf, s); 1573 if (off != -ENOENT) 1574 return off; 1575 } 1576 1577 /* BTF needs to be in a modifiable state to build string lookup index */ 1578 if (btf_ensure_modifiable(btf)) 1579 return libbpf_err(-ENOMEM); 1580 1581 off = strset__find_str(btf->strs_set, s); 1582 if (off < 0) 1583 return libbpf_err(off); 1584 1585 return btf->start_str_off + off; 1586 } 1587 1588 /* Add a string s to the BTF string section. 1589 * Returns: 1590 * - > 0 offset into string section, on success; 1591 * - < 0, on error. 1592 */ 1593 int btf__add_str(struct btf *btf, const char *s) 1594 { 1595 int off; 1596 1597 if (btf->base_btf) { 1598 off = btf__find_str(btf->base_btf, s); 1599 if (off != -ENOENT) 1600 return off; 1601 } 1602 1603 if (btf_ensure_modifiable(btf)) 1604 return libbpf_err(-ENOMEM); 1605 1606 off = strset__add_str(btf->strs_set, s); 1607 if (off < 0) 1608 return libbpf_err(off); 1609 1610 btf->hdr->str_len = strset__data_size(btf->strs_set); 1611 1612 return btf->start_str_off + off; 1613 } 1614 1615 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1616 { 1617 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1618 btf->hdr->type_len, UINT_MAX, add_sz); 1619 } 1620 1621 static void btf_type_inc_vlen(struct btf_type *t) 1622 { 1623 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1624 } 1625 1626 static int btf_commit_type(struct btf *btf, int data_sz) 1627 { 1628 int err; 1629 1630 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1631 if (err) 1632 return libbpf_err(err); 1633 1634 btf->hdr->type_len += data_sz; 1635 btf->hdr->str_off += data_sz; 1636 btf->nr_types++; 1637 return btf->start_id + btf->nr_types - 1; 1638 } 1639 1640 struct btf_pipe { 1641 const struct btf *src; 1642 struct btf *dst; 1643 }; 1644 1645 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1646 { 1647 struct btf_pipe *p = ctx; 1648 int off; 1649 1650 if (!*str_off) /* nothing to do for empty strings */ 1651 return 0; 1652 1653 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1654 if (off < 0) 1655 return off; 1656 1657 *str_off = off; 1658 return 0; 1659 } 1660 1661 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1662 { 1663 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1664 struct btf_type *t; 1665 int sz, err; 1666 1667 sz = btf_type_size(src_type); 1668 if (sz < 0) 1669 return libbpf_err(sz); 1670 1671 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1672 if (btf_ensure_modifiable(btf)) 1673 return libbpf_err(-ENOMEM); 1674 1675 t = btf_add_type_mem(btf, sz); 1676 if (!t) 1677 return libbpf_err(-ENOMEM); 1678 1679 memcpy(t, src_type, sz); 1680 1681 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1682 if (err) 1683 return libbpf_err(err); 1684 1685 return btf_commit_type(btf, sz); 1686 } 1687 1688 /* 1689 * Append new BTF_KIND_INT type with: 1690 * - *name* - non-empty, non-NULL type name; 1691 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1692 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1693 * Returns: 1694 * - >0, type ID of newly added BTF type; 1695 * - <0, on error. 1696 */ 1697 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1698 { 1699 struct btf_type *t; 1700 int sz, name_off; 1701 1702 /* non-empty name */ 1703 if (!name || !name[0]) 1704 return libbpf_err(-EINVAL); 1705 /* byte_sz must be power of 2 */ 1706 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1707 return libbpf_err(-EINVAL); 1708 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1709 return libbpf_err(-EINVAL); 1710 1711 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1712 if (btf_ensure_modifiable(btf)) 1713 return libbpf_err(-ENOMEM); 1714 1715 sz = sizeof(struct btf_type) + sizeof(int); 1716 t = btf_add_type_mem(btf, sz); 1717 if (!t) 1718 return libbpf_err(-ENOMEM); 1719 1720 /* if something goes wrong later, we might end up with an extra string, 1721 * but that shouldn't be a problem, because BTF can't be constructed 1722 * completely anyway and will most probably be just discarded 1723 */ 1724 name_off = btf__add_str(btf, name); 1725 if (name_off < 0) 1726 return name_off; 1727 1728 t->name_off = name_off; 1729 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1730 t->size = byte_sz; 1731 /* set INT info, we don't allow setting legacy bit offset/size */ 1732 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1733 1734 return btf_commit_type(btf, sz); 1735 } 1736 1737 /* 1738 * Append new BTF_KIND_FLOAT type with: 1739 * - *name* - non-empty, non-NULL type name; 1740 * - *sz* - size of the type, in bytes; 1741 * Returns: 1742 * - >0, type ID of newly added BTF type; 1743 * - <0, on error. 1744 */ 1745 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1746 { 1747 struct btf_type *t; 1748 int sz, name_off; 1749 1750 /* non-empty name */ 1751 if (!name || !name[0]) 1752 return libbpf_err(-EINVAL); 1753 1754 /* byte_sz must be one of the explicitly allowed values */ 1755 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1756 byte_sz != 16) 1757 return libbpf_err(-EINVAL); 1758 1759 if (btf_ensure_modifiable(btf)) 1760 return libbpf_err(-ENOMEM); 1761 1762 sz = sizeof(struct btf_type); 1763 t = btf_add_type_mem(btf, sz); 1764 if (!t) 1765 return libbpf_err(-ENOMEM); 1766 1767 name_off = btf__add_str(btf, name); 1768 if (name_off < 0) 1769 return name_off; 1770 1771 t->name_off = name_off; 1772 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1773 t->size = byte_sz; 1774 1775 return btf_commit_type(btf, sz); 1776 } 1777 1778 /* it's completely legal to append BTF types with type IDs pointing forward to 1779 * types that haven't been appended yet, so we only make sure that id looks 1780 * sane, we can't guarantee that ID will always be valid 1781 */ 1782 static int validate_type_id(int id) 1783 { 1784 if (id < 0 || id > BTF_MAX_NR_TYPES) 1785 return -EINVAL; 1786 return 0; 1787 } 1788 1789 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1790 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1791 { 1792 struct btf_type *t; 1793 int sz, name_off = 0; 1794 1795 if (validate_type_id(ref_type_id)) 1796 return libbpf_err(-EINVAL); 1797 1798 if (btf_ensure_modifiable(btf)) 1799 return libbpf_err(-ENOMEM); 1800 1801 sz = sizeof(struct btf_type); 1802 t = btf_add_type_mem(btf, sz); 1803 if (!t) 1804 return libbpf_err(-ENOMEM); 1805 1806 if (name && name[0]) { 1807 name_off = btf__add_str(btf, name); 1808 if (name_off < 0) 1809 return name_off; 1810 } 1811 1812 t->name_off = name_off; 1813 t->info = btf_type_info(kind, 0, 0); 1814 t->type = ref_type_id; 1815 1816 return btf_commit_type(btf, sz); 1817 } 1818 1819 /* 1820 * Append new BTF_KIND_PTR type with: 1821 * - *ref_type_id* - referenced type ID, it might not exist yet; 1822 * Returns: 1823 * - >0, type ID of newly added BTF type; 1824 * - <0, on error. 1825 */ 1826 int btf__add_ptr(struct btf *btf, int ref_type_id) 1827 { 1828 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1829 } 1830 1831 /* 1832 * Append new BTF_KIND_ARRAY type with: 1833 * - *index_type_id* - type ID of the type describing array index; 1834 * - *elem_type_id* - type ID of the type describing array element; 1835 * - *nr_elems* - the size of the array; 1836 * Returns: 1837 * - >0, type ID of newly added BTF type; 1838 * - <0, on error. 1839 */ 1840 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1841 { 1842 struct btf_type *t; 1843 struct btf_array *a; 1844 int sz; 1845 1846 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1847 return libbpf_err(-EINVAL); 1848 1849 if (btf_ensure_modifiable(btf)) 1850 return libbpf_err(-ENOMEM); 1851 1852 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1853 t = btf_add_type_mem(btf, sz); 1854 if (!t) 1855 return libbpf_err(-ENOMEM); 1856 1857 t->name_off = 0; 1858 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1859 t->size = 0; 1860 1861 a = btf_array(t); 1862 a->type = elem_type_id; 1863 a->index_type = index_type_id; 1864 a->nelems = nr_elems; 1865 1866 return btf_commit_type(btf, sz); 1867 } 1868 1869 /* generic STRUCT/UNION append function */ 1870 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1871 { 1872 struct btf_type *t; 1873 int sz, name_off = 0; 1874 1875 if (btf_ensure_modifiable(btf)) 1876 return libbpf_err(-ENOMEM); 1877 1878 sz = sizeof(struct btf_type); 1879 t = btf_add_type_mem(btf, sz); 1880 if (!t) 1881 return libbpf_err(-ENOMEM); 1882 1883 if (name && name[0]) { 1884 name_off = btf__add_str(btf, name); 1885 if (name_off < 0) 1886 return name_off; 1887 } 1888 1889 /* start out with vlen=0 and no kflag; this will be adjusted when 1890 * adding each member 1891 */ 1892 t->name_off = name_off; 1893 t->info = btf_type_info(kind, 0, 0); 1894 t->size = bytes_sz; 1895 1896 return btf_commit_type(btf, sz); 1897 } 1898 1899 /* 1900 * Append new BTF_KIND_STRUCT type with: 1901 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1902 * - *byte_sz* - size of the struct, in bytes; 1903 * 1904 * Struct initially has no fields in it. Fields can be added by 1905 * btf__add_field() right after btf__add_struct() succeeds. 1906 * 1907 * Returns: 1908 * - >0, type ID of newly added BTF type; 1909 * - <0, on error. 1910 */ 1911 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1912 { 1913 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1914 } 1915 1916 /* 1917 * Append new BTF_KIND_UNION type with: 1918 * - *name* - name of the union, can be NULL or empty for anonymous union; 1919 * - *byte_sz* - size of the union, in bytes; 1920 * 1921 * Union initially has no fields in it. Fields can be added by 1922 * btf__add_field() right after btf__add_union() succeeds. All fields 1923 * should have *bit_offset* of 0. 1924 * 1925 * Returns: 1926 * - >0, type ID of newly added BTF type; 1927 * - <0, on error. 1928 */ 1929 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1930 { 1931 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1932 } 1933 1934 static struct btf_type *btf_last_type(struct btf *btf) 1935 { 1936 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1937 } 1938 1939 /* 1940 * Append new field for the current STRUCT/UNION type with: 1941 * - *name* - name of the field, can be NULL or empty for anonymous field; 1942 * - *type_id* - type ID for the type describing field type; 1943 * - *bit_offset* - bit offset of the start of the field within struct/union; 1944 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1945 * Returns: 1946 * - 0, on success; 1947 * - <0, on error. 1948 */ 1949 int btf__add_field(struct btf *btf, const char *name, int type_id, 1950 __u32 bit_offset, __u32 bit_size) 1951 { 1952 struct btf_type *t; 1953 struct btf_member *m; 1954 bool is_bitfield; 1955 int sz, name_off = 0; 1956 1957 /* last type should be union/struct */ 1958 if (btf->nr_types == 0) 1959 return libbpf_err(-EINVAL); 1960 t = btf_last_type(btf); 1961 if (!btf_is_composite(t)) 1962 return libbpf_err(-EINVAL); 1963 1964 if (validate_type_id(type_id)) 1965 return libbpf_err(-EINVAL); 1966 /* best-effort bit field offset/size enforcement */ 1967 is_bitfield = bit_size || (bit_offset % 8 != 0); 1968 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1969 return libbpf_err(-EINVAL); 1970 1971 /* only offset 0 is allowed for unions */ 1972 if (btf_is_union(t) && bit_offset) 1973 return libbpf_err(-EINVAL); 1974 1975 /* decompose and invalidate raw data */ 1976 if (btf_ensure_modifiable(btf)) 1977 return libbpf_err(-ENOMEM); 1978 1979 sz = sizeof(struct btf_member); 1980 m = btf_add_type_mem(btf, sz); 1981 if (!m) 1982 return libbpf_err(-ENOMEM); 1983 1984 if (name && name[0]) { 1985 name_off = btf__add_str(btf, name); 1986 if (name_off < 0) 1987 return name_off; 1988 } 1989 1990 m->name_off = name_off; 1991 m->type = type_id; 1992 m->offset = bit_offset | (bit_size << 24); 1993 1994 /* btf_add_type_mem can invalidate t pointer */ 1995 t = btf_last_type(btf); 1996 /* update parent type's vlen and kflag */ 1997 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1998 1999 btf->hdr->type_len += sz; 2000 btf->hdr->str_off += sz; 2001 return 0; 2002 } 2003 2004 /* 2005 * Append new BTF_KIND_ENUM type with: 2006 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2007 * - *byte_sz* - size of the enum, in bytes. 2008 * 2009 * Enum initially has no enum values in it (and corresponds to enum forward 2010 * declaration). Enumerator values can be added by btf__add_enum_value() 2011 * immediately after btf__add_enum() succeeds. 2012 * 2013 * Returns: 2014 * - >0, type ID of newly added BTF type; 2015 * - <0, on error. 2016 */ 2017 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2018 { 2019 struct btf_type *t; 2020 int sz, name_off = 0; 2021 2022 /* byte_sz must be power of 2 */ 2023 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2024 return libbpf_err(-EINVAL); 2025 2026 if (btf_ensure_modifiable(btf)) 2027 return libbpf_err(-ENOMEM); 2028 2029 sz = sizeof(struct btf_type); 2030 t = btf_add_type_mem(btf, sz); 2031 if (!t) 2032 return libbpf_err(-ENOMEM); 2033 2034 if (name && name[0]) { 2035 name_off = btf__add_str(btf, name); 2036 if (name_off < 0) 2037 return name_off; 2038 } 2039 2040 /* start out with vlen=0; it will be adjusted when adding enum values */ 2041 t->name_off = name_off; 2042 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2043 t->size = byte_sz; 2044 2045 return btf_commit_type(btf, sz); 2046 } 2047 2048 /* 2049 * Append new enum value for the current ENUM type with: 2050 * - *name* - name of the enumerator value, can't be NULL or empty; 2051 * - *value* - integer value corresponding to enum value *name*; 2052 * Returns: 2053 * - 0, on success; 2054 * - <0, on error. 2055 */ 2056 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2057 { 2058 struct btf_type *t; 2059 struct btf_enum *v; 2060 int sz, name_off; 2061 2062 /* last type should be BTF_KIND_ENUM */ 2063 if (btf->nr_types == 0) 2064 return libbpf_err(-EINVAL); 2065 t = btf_last_type(btf); 2066 if (!btf_is_enum(t)) 2067 return libbpf_err(-EINVAL); 2068 2069 /* non-empty name */ 2070 if (!name || !name[0]) 2071 return libbpf_err(-EINVAL); 2072 if (value < INT_MIN || value > UINT_MAX) 2073 return libbpf_err(-E2BIG); 2074 2075 /* decompose and invalidate raw data */ 2076 if (btf_ensure_modifiable(btf)) 2077 return libbpf_err(-ENOMEM); 2078 2079 sz = sizeof(struct btf_enum); 2080 v = btf_add_type_mem(btf, sz); 2081 if (!v) 2082 return libbpf_err(-ENOMEM); 2083 2084 name_off = btf__add_str(btf, name); 2085 if (name_off < 0) 2086 return name_off; 2087 2088 v->name_off = name_off; 2089 v->val = value; 2090 2091 /* update parent type's vlen */ 2092 t = btf_last_type(btf); 2093 btf_type_inc_vlen(t); 2094 2095 btf->hdr->type_len += sz; 2096 btf->hdr->str_off += sz; 2097 return 0; 2098 } 2099 2100 /* 2101 * Append new BTF_KIND_FWD type with: 2102 * - *name*, non-empty/non-NULL name; 2103 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2104 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2105 * Returns: 2106 * - >0, type ID of newly added BTF type; 2107 * - <0, on error. 2108 */ 2109 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2110 { 2111 if (!name || !name[0]) 2112 return libbpf_err(-EINVAL); 2113 2114 switch (fwd_kind) { 2115 case BTF_FWD_STRUCT: 2116 case BTF_FWD_UNION: { 2117 struct btf_type *t; 2118 int id; 2119 2120 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2121 if (id <= 0) 2122 return id; 2123 t = btf_type_by_id(btf, id); 2124 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2125 return id; 2126 } 2127 case BTF_FWD_ENUM: 2128 /* enum forward in BTF currently is just an enum with no enum 2129 * values; we also assume a standard 4-byte size for it 2130 */ 2131 return btf__add_enum(btf, name, sizeof(int)); 2132 default: 2133 return libbpf_err(-EINVAL); 2134 } 2135 } 2136 2137 /* 2138 * Append new BTF_KING_TYPEDEF type with: 2139 * - *name*, non-empty/non-NULL name; 2140 * - *ref_type_id* - referenced type ID, it might not exist yet; 2141 * Returns: 2142 * - >0, type ID of newly added BTF type; 2143 * - <0, on error. 2144 */ 2145 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2146 { 2147 if (!name || !name[0]) 2148 return libbpf_err(-EINVAL); 2149 2150 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2151 } 2152 2153 /* 2154 * Append new BTF_KIND_VOLATILE type with: 2155 * - *ref_type_id* - referenced type ID, it might not exist yet; 2156 * Returns: 2157 * - >0, type ID of newly added BTF type; 2158 * - <0, on error. 2159 */ 2160 int btf__add_volatile(struct btf *btf, int ref_type_id) 2161 { 2162 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2163 } 2164 2165 /* 2166 * Append new BTF_KIND_CONST type with: 2167 * - *ref_type_id* - referenced type ID, it might not exist yet; 2168 * Returns: 2169 * - >0, type ID of newly added BTF type; 2170 * - <0, on error. 2171 */ 2172 int btf__add_const(struct btf *btf, int ref_type_id) 2173 { 2174 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2175 } 2176 2177 /* 2178 * Append new BTF_KIND_RESTRICT type with: 2179 * - *ref_type_id* - referenced type ID, it might not exist yet; 2180 * Returns: 2181 * - >0, type ID of newly added BTF type; 2182 * - <0, on error. 2183 */ 2184 int btf__add_restrict(struct btf *btf, int ref_type_id) 2185 { 2186 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2187 } 2188 2189 /* 2190 * Append new BTF_KIND_FUNC type with: 2191 * - *name*, non-empty/non-NULL name; 2192 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2193 * Returns: 2194 * - >0, type ID of newly added BTF type; 2195 * - <0, on error. 2196 */ 2197 int btf__add_func(struct btf *btf, const char *name, 2198 enum btf_func_linkage linkage, int proto_type_id) 2199 { 2200 int id; 2201 2202 if (!name || !name[0]) 2203 return libbpf_err(-EINVAL); 2204 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2205 linkage != BTF_FUNC_EXTERN) 2206 return libbpf_err(-EINVAL); 2207 2208 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2209 if (id > 0) { 2210 struct btf_type *t = btf_type_by_id(btf, id); 2211 2212 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2213 } 2214 return libbpf_err(id); 2215 } 2216 2217 /* 2218 * Append new BTF_KIND_FUNC_PROTO with: 2219 * - *ret_type_id* - type ID for return result of a function. 2220 * 2221 * Function prototype initially has no arguments, but they can be added by 2222 * btf__add_func_param() one by one, immediately after 2223 * btf__add_func_proto() succeeded. 2224 * 2225 * Returns: 2226 * - >0, type ID of newly added BTF type; 2227 * - <0, on error. 2228 */ 2229 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2230 { 2231 struct btf_type *t; 2232 int sz; 2233 2234 if (validate_type_id(ret_type_id)) 2235 return libbpf_err(-EINVAL); 2236 2237 if (btf_ensure_modifiable(btf)) 2238 return libbpf_err(-ENOMEM); 2239 2240 sz = sizeof(struct btf_type); 2241 t = btf_add_type_mem(btf, sz); 2242 if (!t) 2243 return libbpf_err(-ENOMEM); 2244 2245 /* start out with vlen=0; this will be adjusted when adding enum 2246 * values, if necessary 2247 */ 2248 t->name_off = 0; 2249 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2250 t->type = ret_type_id; 2251 2252 return btf_commit_type(btf, sz); 2253 } 2254 2255 /* 2256 * Append new function parameter for current FUNC_PROTO type with: 2257 * - *name* - parameter name, can be NULL or empty; 2258 * - *type_id* - type ID describing the type of the parameter. 2259 * Returns: 2260 * - 0, on success; 2261 * - <0, on error. 2262 */ 2263 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2264 { 2265 struct btf_type *t; 2266 struct btf_param *p; 2267 int sz, name_off = 0; 2268 2269 if (validate_type_id(type_id)) 2270 return libbpf_err(-EINVAL); 2271 2272 /* last type should be BTF_KIND_FUNC_PROTO */ 2273 if (btf->nr_types == 0) 2274 return libbpf_err(-EINVAL); 2275 t = btf_last_type(btf); 2276 if (!btf_is_func_proto(t)) 2277 return libbpf_err(-EINVAL); 2278 2279 /* decompose and invalidate raw data */ 2280 if (btf_ensure_modifiable(btf)) 2281 return libbpf_err(-ENOMEM); 2282 2283 sz = sizeof(struct btf_param); 2284 p = btf_add_type_mem(btf, sz); 2285 if (!p) 2286 return libbpf_err(-ENOMEM); 2287 2288 if (name && name[0]) { 2289 name_off = btf__add_str(btf, name); 2290 if (name_off < 0) 2291 return name_off; 2292 } 2293 2294 p->name_off = name_off; 2295 p->type = type_id; 2296 2297 /* update parent type's vlen */ 2298 t = btf_last_type(btf); 2299 btf_type_inc_vlen(t); 2300 2301 btf->hdr->type_len += sz; 2302 btf->hdr->str_off += sz; 2303 return 0; 2304 } 2305 2306 /* 2307 * Append new BTF_KIND_VAR type with: 2308 * - *name* - non-empty/non-NULL name; 2309 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2310 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2311 * - *type_id* - type ID of the type describing the type of the variable. 2312 * Returns: 2313 * - >0, type ID of newly added BTF type; 2314 * - <0, on error. 2315 */ 2316 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2317 { 2318 struct btf_type *t; 2319 struct btf_var *v; 2320 int sz, name_off; 2321 2322 /* non-empty name */ 2323 if (!name || !name[0]) 2324 return libbpf_err(-EINVAL); 2325 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2326 linkage != BTF_VAR_GLOBAL_EXTERN) 2327 return libbpf_err(-EINVAL); 2328 if (validate_type_id(type_id)) 2329 return libbpf_err(-EINVAL); 2330 2331 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2332 if (btf_ensure_modifiable(btf)) 2333 return libbpf_err(-ENOMEM); 2334 2335 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2336 t = btf_add_type_mem(btf, sz); 2337 if (!t) 2338 return libbpf_err(-ENOMEM); 2339 2340 name_off = btf__add_str(btf, name); 2341 if (name_off < 0) 2342 return name_off; 2343 2344 t->name_off = name_off; 2345 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2346 t->type = type_id; 2347 2348 v = btf_var(t); 2349 v->linkage = linkage; 2350 2351 return btf_commit_type(btf, sz); 2352 } 2353 2354 /* 2355 * Append new BTF_KIND_DATASEC type with: 2356 * - *name* - non-empty/non-NULL name; 2357 * - *byte_sz* - data section size, in bytes. 2358 * 2359 * Data section is initially empty. Variables info can be added with 2360 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2361 * 2362 * Returns: 2363 * - >0, type ID of newly added BTF type; 2364 * - <0, on error. 2365 */ 2366 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2367 { 2368 struct btf_type *t; 2369 int sz, name_off; 2370 2371 /* non-empty name */ 2372 if (!name || !name[0]) 2373 return libbpf_err(-EINVAL); 2374 2375 if (btf_ensure_modifiable(btf)) 2376 return libbpf_err(-ENOMEM); 2377 2378 sz = sizeof(struct btf_type); 2379 t = btf_add_type_mem(btf, sz); 2380 if (!t) 2381 return libbpf_err(-ENOMEM); 2382 2383 name_off = btf__add_str(btf, name); 2384 if (name_off < 0) 2385 return name_off; 2386 2387 /* start with vlen=0, which will be update as var_secinfos are added */ 2388 t->name_off = name_off; 2389 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2390 t->size = byte_sz; 2391 2392 return btf_commit_type(btf, sz); 2393 } 2394 2395 /* 2396 * Append new data section variable information entry for current DATASEC type: 2397 * - *var_type_id* - type ID, describing type of the variable; 2398 * - *offset* - variable offset within data section, in bytes; 2399 * - *byte_sz* - variable size, in bytes. 2400 * 2401 * Returns: 2402 * - 0, on success; 2403 * - <0, on error. 2404 */ 2405 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2406 { 2407 struct btf_type *t; 2408 struct btf_var_secinfo *v; 2409 int sz; 2410 2411 /* last type should be BTF_KIND_DATASEC */ 2412 if (btf->nr_types == 0) 2413 return libbpf_err(-EINVAL); 2414 t = btf_last_type(btf); 2415 if (!btf_is_datasec(t)) 2416 return libbpf_err(-EINVAL); 2417 2418 if (validate_type_id(var_type_id)) 2419 return libbpf_err(-EINVAL); 2420 2421 /* decompose and invalidate raw data */ 2422 if (btf_ensure_modifiable(btf)) 2423 return libbpf_err(-ENOMEM); 2424 2425 sz = sizeof(struct btf_var_secinfo); 2426 v = btf_add_type_mem(btf, sz); 2427 if (!v) 2428 return libbpf_err(-ENOMEM); 2429 2430 v->type = var_type_id; 2431 v->offset = offset; 2432 v->size = byte_sz; 2433 2434 /* update parent type's vlen */ 2435 t = btf_last_type(btf); 2436 btf_type_inc_vlen(t); 2437 2438 btf->hdr->type_len += sz; 2439 btf->hdr->str_off += sz; 2440 return 0; 2441 } 2442 2443 struct btf_ext_sec_setup_param { 2444 __u32 off; 2445 __u32 len; 2446 __u32 min_rec_size; 2447 struct btf_ext_info *ext_info; 2448 const char *desc; 2449 }; 2450 2451 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2452 struct btf_ext_sec_setup_param *ext_sec) 2453 { 2454 const struct btf_ext_info_sec *sinfo; 2455 struct btf_ext_info *ext_info; 2456 __u32 info_left, record_size; 2457 /* The start of the info sec (including the __u32 record_size). */ 2458 void *info; 2459 2460 if (ext_sec->len == 0) 2461 return 0; 2462 2463 if (ext_sec->off & 0x03) { 2464 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2465 ext_sec->desc); 2466 return -EINVAL; 2467 } 2468 2469 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2470 info_left = ext_sec->len; 2471 2472 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2473 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2474 ext_sec->desc, ext_sec->off, ext_sec->len); 2475 return -EINVAL; 2476 } 2477 2478 /* At least a record size */ 2479 if (info_left < sizeof(__u32)) { 2480 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2481 return -EINVAL; 2482 } 2483 2484 /* The record size needs to meet the minimum standard */ 2485 record_size = *(__u32 *)info; 2486 if (record_size < ext_sec->min_rec_size || 2487 record_size & 0x03) { 2488 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2489 ext_sec->desc, record_size); 2490 return -EINVAL; 2491 } 2492 2493 sinfo = info + sizeof(__u32); 2494 info_left -= sizeof(__u32); 2495 2496 /* If no records, return failure now so .BTF.ext won't be used. */ 2497 if (!info_left) { 2498 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2499 return -EINVAL; 2500 } 2501 2502 while (info_left) { 2503 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2504 __u64 total_record_size; 2505 __u32 num_records; 2506 2507 if (info_left < sec_hdrlen) { 2508 pr_debug("%s section header is not found in .BTF.ext\n", 2509 ext_sec->desc); 2510 return -EINVAL; 2511 } 2512 2513 num_records = sinfo->num_info; 2514 if (num_records == 0) { 2515 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2516 ext_sec->desc); 2517 return -EINVAL; 2518 } 2519 2520 total_record_size = sec_hdrlen + 2521 (__u64)num_records * record_size; 2522 if (info_left < total_record_size) { 2523 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2524 ext_sec->desc); 2525 return -EINVAL; 2526 } 2527 2528 info_left -= total_record_size; 2529 sinfo = (void *)sinfo + total_record_size; 2530 } 2531 2532 ext_info = ext_sec->ext_info; 2533 ext_info->len = ext_sec->len - sizeof(__u32); 2534 ext_info->rec_size = record_size; 2535 ext_info->info = info + sizeof(__u32); 2536 2537 return 0; 2538 } 2539 2540 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2541 { 2542 struct btf_ext_sec_setup_param param = { 2543 .off = btf_ext->hdr->func_info_off, 2544 .len = btf_ext->hdr->func_info_len, 2545 .min_rec_size = sizeof(struct bpf_func_info_min), 2546 .ext_info = &btf_ext->func_info, 2547 .desc = "func_info" 2548 }; 2549 2550 return btf_ext_setup_info(btf_ext, ¶m); 2551 } 2552 2553 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2554 { 2555 struct btf_ext_sec_setup_param param = { 2556 .off = btf_ext->hdr->line_info_off, 2557 .len = btf_ext->hdr->line_info_len, 2558 .min_rec_size = sizeof(struct bpf_line_info_min), 2559 .ext_info = &btf_ext->line_info, 2560 .desc = "line_info", 2561 }; 2562 2563 return btf_ext_setup_info(btf_ext, ¶m); 2564 } 2565 2566 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2567 { 2568 struct btf_ext_sec_setup_param param = { 2569 .off = btf_ext->hdr->core_relo_off, 2570 .len = btf_ext->hdr->core_relo_len, 2571 .min_rec_size = sizeof(struct bpf_core_relo), 2572 .ext_info = &btf_ext->core_relo_info, 2573 .desc = "core_relo", 2574 }; 2575 2576 return btf_ext_setup_info(btf_ext, ¶m); 2577 } 2578 2579 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2580 { 2581 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2582 2583 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2584 data_size < hdr->hdr_len) { 2585 pr_debug("BTF.ext header not found"); 2586 return -EINVAL; 2587 } 2588 2589 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2590 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2591 return -ENOTSUP; 2592 } else if (hdr->magic != BTF_MAGIC) { 2593 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2594 return -EINVAL; 2595 } 2596 2597 if (hdr->version != BTF_VERSION) { 2598 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2599 return -ENOTSUP; 2600 } 2601 2602 if (hdr->flags) { 2603 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2604 return -ENOTSUP; 2605 } 2606 2607 if (data_size == hdr->hdr_len) { 2608 pr_debug("BTF.ext has no data\n"); 2609 return -EINVAL; 2610 } 2611 2612 return 0; 2613 } 2614 2615 void btf_ext__free(struct btf_ext *btf_ext) 2616 { 2617 if (IS_ERR_OR_NULL(btf_ext)) 2618 return; 2619 free(btf_ext->data); 2620 free(btf_ext); 2621 } 2622 2623 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2624 { 2625 struct btf_ext *btf_ext; 2626 int err; 2627 2628 err = btf_ext_parse_hdr(data, size); 2629 if (err) 2630 return libbpf_err_ptr(err); 2631 2632 btf_ext = calloc(1, sizeof(struct btf_ext)); 2633 if (!btf_ext) 2634 return libbpf_err_ptr(-ENOMEM); 2635 2636 btf_ext->data_size = size; 2637 btf_ext->data = malloc(size); 2638 if (!btf_ext->data) { 2639 err = -ENOMEM; 2640 goto done; 2641 } 2642 memcpy(btf_ext->data, data, size); 2643 2644 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2645 err = -EINVAL; 2646 goto done; 2647 } 2648 2649 err = btf_ext_setup_func_info(btf_ext); 2650 if (err) 2651 goto done; 2652 2653 err = btf_ext_setup_line_info(btf_ext); 2654 if (err) 2655 goto done; 2656 2657 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2658 err = -EINVAL; 2659 goto done; 2660 } 2661 2662 err = btf_ext_setup_core_relos(btf_ext); 2663 if (err) 2664 goto done; 2665 2666 done: 2667 if (err) { 2668 btf_ext__free(btf_ext); 2669 return libbpf_err_ptr(err); 2670 } 2671 2672 return btf_ext; 2673 } 2674 2675 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2676 { 2677 *size = btf_ext->data_size; 2678 return btf_ext->data; 2679 } 2680 2681 static int btf_ext_reloc_info(const struct btf *btf, 2682 const struct btf_ext_info *ext_info, 2683 const char *sec_name, __u32 insns_cnt, 2684 void **info, __u32 *cnt) 2685 { 2686 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2687 __u32 i, record_size, existing_len, records_len; 2688 struct btf_ext_info_sec *sinfo; 2689 const char *info_sec_name; 2690 __u64 remain_len; 2691 void *data; 2692 2693 record_size = ext_info->rec_size; 2694 sinfo = ext_info->info; 2695 remain_len = ext_info->len; 2696 while (remain_len > 0) { 2697 records_len = sinfo->num_info * record_size; 2698 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2699 if (strcmp(info_sec_name, sec_name)) { 2700 remain_len -= sec_hdrlen + records_len; 2701 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2702 continue; 2703 } 2704 2705 existing_len = (*cnt) * record_size; 2706 data = realloc(*info, existing_len + records_len); 2707 if (!data) 2708 return libbpf_err(-ENOMEM); 2709 2710 memcpy(data + existing_len, sinfo->data, records_len); 2711 /* adjust insn_off only, the rest data will be passed 2712 * to the kernel. 2713 */ 2714 for (i = 0; i < sinfo->num_info; i++) { 2715 __u32 *insn_off; 2716 2717 insn_off = data + existing_len + (i * record_size); 2718 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2719 } 2720 *info = data; 2721 *cnt += sinfo->num_info; 2722 return 0; 2723 } 2724 2725 return libbpf_err(-ENOENT); 2726 } 2727 2728 int btf_ext__reloc_func_info(const struct btf *btf, 2729 const struct btf_ext *btf_ext, 2730 const char *sec_name, __u32 insns_cnt, 2731 void **func_info, __u32 *cnt) 2732 { 2733 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2734 insns_cnt, func_info, cnt); 2735 } 2736 2737 int btf_ext__reloc_line_info(const struct btf *btf, 2738 const struct btf_ext *btf_ext, 2739 const char *sec_name, __u32 insns_cnt, 2740 void **line_info, __u32 *cnt) 2741 { 2742 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2743 insns_cnt, line_info, cnt); 2744 } 2745 2746 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2747 { 2748 return btf_ext->func_info.rec_size; 2749 } 2750 2751 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2752 { 2753 return btf_ext->line_info.rec_size; 2754 } 2755 2756 struct btf_dedup; 2757 2758 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2759 const struct btf_dedup_opts *opts); 2760 static void btf_dedup_free(struct btf_dedup *d); 2761 static int btf_dedup_prep(struct btf_dedup *d); 2762 static int btf_dedup_strings(struct btf_dedup *d); 2763 static int btf_dedup_prim_types(struct btf_dedup *d); 2764 static int btf_dedup_struct_types(struct btf_dedup *d); 2765 static int btf_dedup_ref_types(struct btf_dedup *d); 2766 static int btf_dedup_compact_types(struct btf_dedup *d); 2767 static int btf_dedup_remap_types(struct btf_dedup *d); 2768 2769 /* 2770 * Deduplicate BTF types and strings. 2771 * 2772 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2773 * section with all BTF type descriptors and string data. It overwrites that 2774 * memory in-place with deduplicated types and strings without any loss of 2775 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2776 * is provided, all the strings referenced from .BTF.ext section are honored 2777 * and updated to point to the right offsets after deduplication. 2778 * 2779 * If function returns with error, type/string data might be garbled and should 2780 * be discarded. 2781 * 2782 * More verbose and detailed description of both problem btf_dedup is solving, 2783 * as well as solution could be found at: 2784 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2785 * 2786 * Problem description and justification 2787 * ===================================== 2788 * 2789 * BTF type information is typically emitted either as a result of conversion 2790 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2791 * unit contains information about a subset of all the types that are used 2792 * in an application. These subsets are frequently overlapping and contain a lot 2793 * of duplicated information when later concatenated together into a single 2794 * binary. This algorithm ensures that each unique type is represented by single 2795 * BTF type descriptor, greatly reducing resulting size of BTF data. 2796 * 2797 * Compilation unit isolation and subsequent duplication of data is not the only 2798 * problem. The same type hierarchy (e.g., struct and all the type that struct 2799 * references) in different compilation units can be represented in BTF to 2800 * various degrees of completeness (or, rather, incompleteness) due to 2801 * struct/union forward declarations. 2802 * 2803 * Let's take a look at an example, that we'll use to better understand the 2804 * problem (and solution). Suppose we have two compilation units, each using 2805 * same `struct S`, but each of them having incomplete type information about 2806 * struct's fields: 2807 * 2808 * // CU #1: 2809 * struct S; 2810 * struct A { 2811 * int a; 2812 * struct A* self; 2813 * struct S* parent; 2814 * }; 2815 * struct B; 2816 * struct S { 2817 * struct A* a_ptr; 2818 * struct B* b_ptr; 2819 * }; 2820 * 2821 * // CU #2: 2822 * struct S; 2823 * struct A; 2824 * struct B { 2825 * int b; 2826 * struct B* self; 2827 * struct S* parent; 2828 * }; 2829 * struct S { 2830 * struct A* a_ptr; 2831 * struct B* b_ptr; 2832 * }; 2833 * 2834 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2835 * more), but will know the complete type information about `struct A`. While 2836 * for CU #2, it will know full type information about `struct B`, but will 2837 * only know about forward declaration of `struct A` (in BTF terms, it will 2838 * have `BTF_KIND_FWD` type descriptor with name `B`). 2839 * 2840 * This compilation unit isolation means that it's possible that there is no 2841 * single CU with complete type information describing structs `S`, `A`, and 2842 * `B`. Also, we might get tons of duplicated and redundant type information. 2843 * 2844 * Additional complication we need to keep in mind comes from the fact that 2845 * types, in general, can form graphs containing cycles, not just DAGs. 2846 * 2847 * While algorithm does deduplication, it also merges and resolves type 2848 * information (unless disabled throught `struct btf_opts`), whenever possible. 2849 * E.g., in the example above with two compilation units having partial type 2850 * information for structs `A` and `B`, the output of algorithm will emit 2851 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2852 * (as well as type information for `int` and pointers), as if they were defined 2853 * in a single compilation unit as: 2854 * 2855 * struct A { 2856 * int a; 2857 * struct A* self; 2858 * struct S* parent; 2859 * }; 2860 * struct B { 2861 * int b; 2862 * struct B* self; 2863 * struct S* parent; 2864 * }; 2865 * struct S { 2866 * struct A* a_ptr; 2867 * struct B* b_ptr; 2868 * }; 2869 * 2870 * Algorithm summary 2871 * ================= 2872 * 2873 * Algorithm completes its work in 6 separate passes: 2874 * 2875 * 1. Strings deduplication. 2876 * 2. Primitive types deduplication (int, enum, fwd). 2877 * 3. Struct/union types deduplication. 2878 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2879 * protos, and const/volatile/restrict modifiers). 2880 * 5. Types compaction. 2881 * 6. Types remapping. 2882 * 2883 * Algorithm determines canonical type descriptor, which is a single 2884 * representative type for each truly unique type. This canonical type is the 2885 * one that will go into final deduplicated BTF type information. For 2886 * struct/unions, it is also the type that algorithm will merge additional type 2887 * information into (while resolving FWDs), as it discovers it from data in 2888 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2889 * that type is canonical, or to some other type, if that type is equivalent 2890 * and was chosen as canonical representative. This mapping is stored in 2891 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2892 * FWD type got resolved to. 2893 * 2894 * To facilitate fast discovery of canonical types, we also maintain canonical 2895 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2896 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2897 * that match that signature. With sufficiently good choice of type signature 2898 * hashing function, we can limit number of canonical types for each unique type 2899 * signature to a very small number, allowing to find canonical type for any 2900 * duplicated type very quickly. 2901 * 2902 * Struct/union deduplication is the most critical part and algorithm for 2903 * deduplicating structs/unions is described in greater details in comments for 2904 * `btf_dedup_is_equiv` function. 2905 */ 2906 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2907 const struct btf_dedup_opts *opts) 2908 { 2909 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2910 int err; 2911 2912 if (IS_ERR(d)) { 2913 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2914 return libbpf_err(-EINVAL); 2915 } 2916 2917 if (btf_ensure_modifiable(btf)) 2918 return libbpf_err(-ENOMEM); 2919 2920 err = btf_dedup_prep(d); 2921 if (err) { 2922 pr_debug("btf_dedup_prep failed:%d\n", err); 2923 goto done; 2924 } 2925 err = btf_dedup_strings(d); 2926 if (err < 0) { 2927 pr_debug("btf_dedup_strings failed:%d\n", err); 2928 goto done; 2929 } 2930 err = btf_dedup_prim_types(d); 2931 if (err < 0) { 2932 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2933 goto done; 2934 } 2935 err = btf_dedup_struct_types(d); 2936 if (err < 0) { 2937 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2938 goto done; 2939 } 2940 err = btf_dedup_ref_types(d); 2941 if (err < 0) { 2942 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2943 goto done; 2944 } 2945 err = btf_dedup_compact_types(d); 2946 if (err < 0) { 2947 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2948 goto done; 2949 } 2950 err = btf_dedup_remap_types(d); 2951 if (err < 0) { 2952 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2953 goto done; 2954 } 2955 2956 done: 2957 btf_dedup_free(d); 2958 return libbpf_err(err); 2959 } 2960 2961 #define BTF_UNPROCESSED_ID ((__u32)-1) 2962 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2963 2964 struct btf_dedup { 2965 /* .BTF section to be deduped in-place */ 2966 struct btf *btf; 2967 /* 2968 * Optional .BTF.ext section. When provided, any strings referenced 2969 * from it will be taken into account when deduping strings 2970 */ 2971 struct btf_ext *btf_ext; 2972 /* 2973 * This is a map from any type's signature hash to a list of possible 2974 * canonical representative type candidates. Hash collisions are 2975 * ignored, so even types of various kinds can share same list of 2976 * candidates, which is fine because we rely on subsequent 2977 * btf_xxx_equal() checks to authoritatively verify type equality. 2978 */ 2979 struct hashmap *dedup_table; 2980 /* Canonical types map */ 2981 __u32 *map; 2982 /* Hypothetical mapping, used during type graph equivalence checks */ 2983 __u32 *hypot_map; 2984 __u32 *hypot_list; 2985 size_t hypot_cnt; 2986 size_t hypot_cap; 2987 /* Whether hypothetical mapping, if successful, would need to adjust 2988 * already canonicalized types (due to a new forward declaration to 2989 * concrete type resolution). In such case, during split BTF dedup 2990 * candidate type would still be considered as different, because base 2991 * BTF is considered to be immutable. 2992 */ 2993 bool hypot_adjust_canon; 2994 /* Various option modifying behavior of algorithm */ 2995 struct btf_dedup_opts opts; 2996 /* temporary strings deduplication state */ 2997 struct strset *strs_set; 2998 }; 2999 3000 static long hash_combine(long h, long value) 3001 { 3002 return h * 31 + value; 3003 } 3004 3005 #define for_each_dedup_cand(d, node, hash) \ 3006 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3007 3008 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3009 { 3010 return hashmap__append(d->dedup_table, 3011 (void *)hash, (void *)(long)type_id); 3012 } 3013 3014 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3015 __u32 from_id, __u32 to_id) 3016 { 3017 if (d->hypot_cnt == d->hypot_cap) { 3018 __u32 *new_list; 3019 3020 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3021 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3022 if (!new_list) 3023 return -ENOMEM; 3024 d->hypot_list = new_list; 3025 } 3026 d->hypot_list[d->hypot_cnt++] = from_id; 3027 d->hypot_map[from_id] = to_id; 3028 return 0; 3029 } 3030 3031 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3032 { 3033 int i; 3034 3035 for (i = 0; i < d->hypot_cnt; i++) 3036 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3037 d->hypot_cnt = 0; 3038 d->hypot_adjust_canon = false; 3039 } 3040 3041 static void btf_dedup_free(struct btf_dedup *d) 3042 { 3043 hashmap__free(d->dedup_table); 3044 d->dedup_table = NULL; 3045 3046 free(d->map); 3047 d->map = NULL; 3048 3049 free(d->hypot_map); 3050 d->hypot_map = NULL; 3051 3052 free(d->hypot_list); 3053 d->hypot_list = NULL; 3054 3055 free(d); 3056 } 3057 3058 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3059 { 3060 return (size_t)key; 3061 } 3062 3063 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3064 { 3065 return 0; 3066 } 3067 3068 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3069 { 3070 return k1 == k2; 3071 } 3072 3073 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3074 const struct btf_dedup_opts *opts) 3075 { 3076 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3077 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3078 int i, err = 0, type_cnt; 3079 3080 if (!d) 3081 return ERR_PTR(-ENOMEM); 3082 3083 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3084 /* dedup_table_size is now used only to force collisions in tests */ 3085 if (opts && opts->dedup_table_size == 1) 3086 hash_fn = btf_dedup_collision_hash_fn; 3087 3088 d->btf = btf; 3089 d->btf_ext = btf_ext; 3090 3091 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3092 if (IS_ERR(d->dedup_table)) { 3093 err = PTR_ERR(d->dedup_table); 3094 d->dedup_table = NULL; 3095 goto done; 3096 } 3097 3098 type_cnt = btf__get_nr_types(btf) + 1; 3099 d->map = malloc(sizeof(__u32) * type_cnt); 3100 if (!d->map) { 3101 err = -ENOMEM; 3102 goto done; 3103 } 3104 /* special BTF "void" type is made canonical immediately */ 3105 d->map[0] = 0; 3106 for (i = 1; i < type_cnt; i++) { 3107 struct btf_type *t = btf_type_by_id(d->btf, i); 3108 3109 /* VAR and DATASEC are never deduped and are self-canonical */ 3110 if (btf_is_var(t) || btf_is_datasec(t)) 3111 d->map[i] = i; 3112 else 3113 d->map[i] = BTF_UNPROCESSED_ID; 3114 } 3115 3116 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3117 if (!d->hypot_map) { 3118 err = -ENOMEM; 3119 goto done; 3120 } 3121 for (i = 0; i < type_cnt; i++) 3122 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3123 3124 done: 3125 if (err) { 3126 btf_dedup_free(d); 3127 return ERR_PTR(err); 3128 } 3129 3130 return d; 3131 } 3132 3133 /* 3134 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3135 * string and pass pointer to it to a provided callback `fn`. 3136 */ 3137 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3138 { 3139 int i, r; 3140 3141 for (i = 0; i < d->btf->nr_types; i++) { 3142 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3143 3144 r = btf_type_visit_str_offs(t, fn, ctx); 3145 if (r) 3146 return r; 3147 } 3148 3149 if (!d->btf_ext) 3150 return 0; 3151 3152 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3153 if (r) 3154 return r; 3155 3156 return 0; 3157 } 3158 3159 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3160 { 3161 struct btf_dedup *d = ctx; 3162 __u32 str_off = *str_off_ptr; 3163 const char *s; 3164 int off, err; 3165 3166 /* don't touch empty string or string in main BTF */ 3167 if (str_off == 0 || str_off < d->btf->start_str_off) 3168 return 0; 3169 3170 s = btf__str_by_offset(d->btf, str_off); 3171 if (d->btf->base_btf) { 3172 err = btf__find_str(d->btf->base_btf, s); 3173 if (err >= 0) { 3174 *str_off_ptr = err; 3175 return 0; 3176 } 3177 if (err != -ENOENT) 3178 return err; 3179 } 3180 3181 off = strset__add_str(d->strs_set, s); 3182 if (off < 0) 3183 return off; 3184 3185 *str_off_ptr = d->btf->start_str_off + off; 3186 return 0; 3187 } 3188 3189 /* 3190 * Dedup string and filter out those that are not referenced from either .BTF 3191 * or .BTF.ext (if provided) sections. 3192 * 3193 * This is done by building index of all strings in BTF's string section, 3194 * then iterating over all entities that can reference strings (e.g., type 3195 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3196 * strings as used. After that all used strings are deduped and compacted into 3197 * sequential blob of memory and new offsets are calculated. Then all the string 3198 * references are iterated again and rewritten using new offsets. 3199 */ 3200 static int btf_dedup_strings(struct btf_dedup *d) 3201 { 3202 int err; 3203 3204 if (d->btf->strs_deduped) 3205 return 0; 3206 3207 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3208 if (IS_ERR(d->strs_set)) { 3209 err = PTR_ERR(d->strs_set); 3210 goto err_out; 3211 } 3212 3213 if (!d->btf->base_btf) { 3214 /* insert empty string; we won't be looking it up during strings 3215 * dedup, but it's good to have it for generic BTF string lookups 3216 */ 3217 err = strset__add_str(d->strs_set, ""); 3218 if (err < 0) 3219 goto err_out; 3220 } 3221 3222 /* remap string offsets */ 3223 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3224 if (err) 3225 goto err_out; 3226 3227 /* replace BTF string data and hash with deduped ones */ 3228 strset__free(d->btf->strs_set); 3229 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3230 d->btf->strs_set = d->strs_set; 3231 d->strs_set = NULL; 3232 d->btf->strs_deduped = true; 3233 return 0; 3234 3235 err_out: 3236 strset__free(d->strs_set); 3237 d->strs_set = NULL; 3238 3239 return err; 3240 } 3241 3242 static long btf_hash_common(struct btf_type *t) 3243 { 3244 long h; 3245 3246 h = hash_combine(0, t->name_off); 3247 h = hash_combine(h, t->info); 3248 h = hash_combine(h, t->size); 3249 return h; 3250 } 3251 3252 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3253 { 3254 return t1->name_off == t2->name_off && 3255 t1->info == t2->info && 3256 t1->size == t2->size; 3257 } 3258 3259 /* Calculate type signature hash of INT. */ 3260 static long btf_hash_int(struct btf_type *t) 3261 { 3262 __u32 info = *(__u32 *)(t + 1); 3263 long h; 3264 3265 h = btf_hash_common(t); 3266 h = hash_combine(h, info); 3267 return h; 3268 } 3269 3270 /* Check structural equality of two INTs. */ 3271 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3272 { 3273 __u32 info1, info2; 3274 3275 if (!btf_equal_common(t1, t2)) 3276 return false; 3277 info1 = *(__u32 *)(t1 + 1); 3278 info2 = *(__u32 *)(t2 + 1); 3279 return info1 == info2; 3280 } 3281 3282 /* Calculate type signature hash of ENUM. */ 3283 static long btf_hash_enum(struct btf_type *t) 3284 { 3285 long h; 3286 3287 /* don't hash vlen and enum members to support enum fwd resolving */ 3288 h = hash_combine(0, t->name_off); 3289 h = hash_combine(h, t->info & ~0xffff); 3290 h = hash_combine(h, t->size); 3291 return h; 3292 } 3293 3294 /* Check structural equality of two ENUMs. */ 3295 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3296 { 3297 const struct btf_enum *m1, *m2; 3298 __u16 vlen; 3299 int i; 3300 3301 if (!btf_equal_common(t1, t2)) 3302 return false; 3303 3304 vlen = btf_vlen(t1); 3305 m1 = btf_enum(t1); 3306 m2 = btf_enum(t2); 3307 for (i = 0; i < vlen; i++) { 3308 if (m1->name_off != m2->name_off || m1->val != m2->val) 3309 return false; 3310 m1++; 3311 m2++; 3312 } 3313 return true; 3314 } 3315 3316 static inline bool btf_is_enum_fwd(struct btf_type *t) 3317 { 3318 return btf_is_enum(t) && btf_vlen(t) == 0; 3319 } 3320 3321 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3322 { 3323 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3324 return btf_equal_enum(t1, t2); 3325 /* ignore vlen when comparing */ 3326 return t1->name_off == t2->name_off && 3327 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3328 t1->size == t2->size; 3329 } 3330 3331 /* 3332 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3333 * as referenced type IDs equivalence is established separately during type 3334 * graph equivalence check algorithm. 3335 */ 3336 static long btf_hash_struct(struct btf_type *t) 3337 { 3338 const struct btf_member *member = btf_members(t); 3339 __u32 vlen = btf_vlen(t); 3340 long h = btf_hash_common(t); 3341 int i; 3342 3343 for (i = 0; i < vlen; i++) { 3344 h = hash_combine(h, member->name_off); 3345 h = hash_combine(h, member->offset); 3346 /* no hashing of referenced type ID, it can be unresolved yet */ 3347 member++; 3348 } 3349 return h; 3350 } 3351 3352 /* 3353 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3354 * IDs. This check is performed during type graph equivalence check and 3355 * referenced types equivalence is checked separately. 3356 */ 3357 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3358 { 3359 const struct btf_member *m1, *m2; 3360 __u16 vlen; 3361 int i; 3362 3363 if (!btf_equal_common(t1, t2)) 3364 return false; 3365 3366 vlen = btf_vlen(t1); 3367 m1 = btf_members(t1); 3368 m2 = btf_members(t2); 3369 for (i = 0; i < vlen; i++) { 3370 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3371 return false; 3372 m1++; 3373 m2++; 3374 } 3375 return true; 3376 } 3377 3378 /* 3379 * Calculate type signature hash of ARRAY, including referenced type IDs, 3380 * under assumption that they were already resolved to canonical type IDs and 3381 * are not going to change. 3382 */ 3383 static long btf_hash_array(struct btf_type *t) 3384 { 3385 const struct btf_array *info = btf_array(t); 3386 long h = btf_hash_common(t); 3387 3388 h = hash_combine(h, info->type); 3389 h = hash_combine(h, info->index_type); 3390 h = hash_combine(h, info->nelems); 3391 return h; 3392 } 3393 3394 /* 3395 * Check exact equality of two ARRAYs, taking into account referenced 3396 * type IDs, under assumption that they were already resolved to canonical 3397 * type IDs and are not going to change. 3398 * This function is called during reference types deduplication to compare 3399 * ARRAY to potential canonical representative. 3400 */ 3401 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3402 { 3403 const struct btf_array *info1, *info2; 3404 3405 if (!btf_equal_common(t1, t2)) 3406 return false; 3407 3408 info1 = btf_array(t1); 3409 info2 = btf_array(t2); 3410 return info1->type == info2->type && 3411 info1->index_type == info2->index_type && 3412 info1->nelems == info2->nelems; 3413 } 3414 3415 /* 3416 * Check structural compatibility of two ARRAYs, ignoring referenced type 3417 * IDs. This check is performed during type graph equivalence check and 3418 * referenced types equivalence is checked separately. 3419 */ 3420 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3421 { 3422 if (!btf_equal_common(t1, t2)) 3423 return false; 3424 3425 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3426 } 3427 3428 /* 3429 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3430 * under assumption that they were already resolved to canonical type IDs and 3431 * are not going to change. 3432 */ 3433 static long btf_hash_fnproto(struct btf_type *t) 3434 { 3435 const struct btf_param *member = btf_params(t); 3436 __u16 vlen = btf_vlen(t); 3437 long h = btf_hash_common(t); 3438 int i; 3439 3440 for (i = 0; i < vlen; i++) { 3441 h = hash_combine(h, member->name_off); 3442 h = hash_combine(h, member->type); 3443 member++; 3444 } 3445 return h; 3446 } 3447 3448 /* 3449 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3450 * type IDs, under assumption that they were already resolved to canonical 3451 * type IDs and are not going to change. 3452 * This function is called during reference types deduplication to compare 3453 * FUNC_PROTO to potential canonical representative. 3454 */ 3455 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3456 { 3457 const struct btf_param *m1, *m2; 3458 __u16 vlen; 3459 int i; 3460 3461 if (!btf_equal_common(t1, t2)) 3462 return false; 3463 3464 vlen = btf_vlen(t1); 3465 m1 = btf_params(t1); 3466 m2 = btf_params(t2); 3467 for (i = 0; i < vlen; i++) { 3468 if (m1->name_off != m2->name_off || m1->type != m2->type) 3469 return false; 3470 m1++; 3471 m2++; 3472 } 3473 return true; 3474 } 3475 3476 /* 3477 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3478 * IDs. This check is performed during type graph equivalence check and 3479 * referenced types equivalence is checked separately. 3480 */ 3481 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3482 { 3483 const struct btf_param *m1, *m2; 3484 __u16 vlen; 3485 int i; 3486 3487 /* skip return type ID */ 3488 if (t1->name_off != t2->name_off || t1->info != t2->info) 3489 return false; 3490 3491 vlen = btf_vlen(t1); 3492 m1 = btf_params(t1); 3493 m2 = btf_params(t2); 3494 for (i = 0; i < vlen; i++) { 3495 if (m1->name_off != m2->name_off) 3496 return false; 3497 m1++; 3498 m2++; 3499 } 3500 return true; 3501 } 3502 3503 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3504 * types and initializing the rest of the state (canonical type mapping) for 3505 * the fixed base BTF part. 3506 */ 3507 static int btf_dedup_prep(struct btf_dedup *d) 3508 { 3509 struct btf_type *t; 3510 int type_id; 3511 long h; 3512 3513 if (!d->btf->base_btf) 3514 return 0; 3515 3516 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3517 t = btf_type_by_id(d->btf, type_id); 3518 3519 /* all base BTF types are self-canonical by definition */ 3520 d->map[type_id] = type_id; 3521 3522 switch (btf_kind(t)) { 3523 case BTF_KIND_VAR: 3524 case BTF_KIND_DATASEC: 3525 /* VAR and DATASEC are never hash/deduplicated */ 3526 continue; 3527 case BTF_KIND_CONST: 3528 case BTF_KIND_VOLATILE: 3529 case BTF_KIND_RESTRICT: 3530 case BTF_KIND_PTR: 3531 case BTF_KIND_FWD: 3532 case BTF_KIND_TYPEDEF: 3533 case BTF_KIND_FUNC: 3534 case BTF_KIND_FLOAT: 3535 h = btf_hash_common(t); 3536 break; 3537 case BTF_KIND_INT: 3538 h = btf_hash_int(t); 3539 break; 3540 case BTF_KIND_ENUM: 3541 h = btf_hash_enum(t); 3542 break; 3543 case BTF_KIND_STRUCT: 3544 case BTF_KIND_UNION: 3545 h = btf_hash_struct(t); 3546 break; 3547 case BTF_KIND_ARRAY: 3548 h = btf_hash_array(t); 3549 break; 3550 case BTF_KIND_FUNC_PROTO: 3551 h = btf_hash_fnproto(t); 3552 break; 3553 default: 3554 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3555 return -EINVAL; 3556 } 3557 if (btf_dedup_table_add(d, h, type_id)) 3558 return -ENOMEM; 3559 } 3560 3561 return 0; 3562 } 3563 3564 /* 3565 * Deduplicate primitive types, that can't reference other types, by calculating 3566 * their type signature hash and comparing them with any possible canonical 3567 * candidate. If no canonical candidate matches, type itself is marked as 3568 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3569 */ 3570 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3571 { 3572 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3573 struct hashmap_entry *hash_entry; 3574 struct btf_type *cand; 3575 /* if we don't find equivalent type, then we are canonical */ 3576 __u32 new_id = type_id; 3577 __u32 cand_id; 3578 long h; 3579 3580 switch (btf_kind(t)) { 3581 case BTF_KIND_CONST: 3582 case BTF_KIND_VOLATILE: 3583 case BTF_KIND_RESTRICT: 3584 case BTF_KIND_PTR: 3585 case BTF_KIND_TYPEDEF: 3586 case BTF_KIND_ARRAY: 3587 case BTF_KIND_STRUCT: 3588 case BTF_KIND_UNION: 3589 case BTF_KIND_FUNC: 3590 case BTF_KIND_FUNC_PROTO: 3591 case BTF_KIND_VAR: 3592 case BTF_KIND_DATASEC: 3593 return 0; 3594 3595 case BTF_KIND_INT: 3596 h = btf_hash_int(t); 3597 for_each_dedup_cand(d, hash_entry, h) { 3598 cand_id = (__u32)(long)hash_entry->value; 3599 cand = btf_type_by_id(d->btf, cand_id); 3600 if (btf_equal_int(t, cand)) { 3601 new_id = cand_id; 3602 break; 3603 } 3604 } 3605 break; 3606 3607 case BTF_KIND_ENUM: 3608 h = btf_hash_enum(t); 3609 for_each_dedup_cand(d, hash_entry, h) { 3610 cand_id = (__u32)(long)hash_entry->value; 3611 cand = btf_type_by_id(d->btf, cand_id); 3612 if (btf_equal_enum(t, cand)) { 3613 new_id = cand_id; 3614 break; 3615 } 3616 if (d->opts.dont_resolve_fwds) 3617 continue; 3618 if (btf_compat_enum(t, cand)) { 3619 if (btf_is_enum_fwd(t)) { 3620 /* resolve fwd to full enum */ 3621 new_id = cand_id; 3622 break; 3623 } 3624 /* resolve canonical enum fwd to full enum */ 3625 d->map[cand_id] = type_id; 3626 } 3627 } 3628 break; 3629 3630 case BTF_KIND_FWD: 3631 case BTF_KIND_FLOAT: 3632 h = btf_hash_common(t); 3633 for_each_dedup_cand(d, hash_entry, h) { 3634 cand_id = (__u32)(long)hash_entry->value; 3635 cand = btf_type_by_id(d->btf, cand_id); 3636 if (btf_equal_common(t, cand)) { 3637 new_id = cand_id; 3638 break; 3639 } 3640 } 3641 break; 3642 3643 default: 3644 return -EINVAL; 3645 } 3646 3647 d->map[type_id] = new_id; 3648 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3649 return -ENOMEM; 3650 3651 return 0; 3652 } 3653 3654 static int btf_dedup_prim_types(struct btf_dedup *d) 3655 { 3656 int i, err; 3657 3658 for (i = 0; i < d->btf->nr_types; i++) { 3659 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3660 if (err) 3661 return err; 3662 } 3663 return 0; 3664 } 3665 3666 /* 3667 * Check whether type is already mapped into canonical one (could be to itself). 3668 */ 3669 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3670 { 3671 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3672 } 3673 3674 /* 3675 * Resolve type ID into its canonical type ID, if any; otherwise return original 3676 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3677 * STRUCT/UNION link and resolve it into canonical type ID as well. 3678 */ 3679 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3680 { 3681 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3682 type_id = d->map[type_id]; 3683 return type_id; 3684 } 3685 3686 /* 3687 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3688 * type ID. 3689 */ 3690 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3691 { 3692 __u32 orig_type_id = type_id; 3693 3694 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3695 return type_id; 3696 3697 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3698 type_id = d->map[type_id]; 3699 3700 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3701 return type_id; 3702 3703 return orig_type_id; 3704 } 3705 3706 3707 static inline __u16 btf_fwd_kind(struct btf_type *t) 3708 { 3709 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3710 } 3711 3712 /* Check if given two types are identical ARRAY definitions */ 3713 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3714 { 3715 struct btf_type *t1, *t2; 3716 3717 t1 = btf_type_by_id(d->btf, id1); 3718 t2 = btf_type_by_id(d->btf, id2); 3719 if (!btf_is_array(t1) || !btf_is_array(t2)) 3720 return 0; 3721 3722 return btf_equal_array(t1, t2); 3723 } 3724 3725 /* 3726 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3727 * call it "candidate graph" in this description for brevity) to a type graph 3728 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3729 * here, though keep in mind that not all types in canonical graph are 3730 * necessarily canonical representatives themselves, some of them might be 3731 * duplicates or its uniqueness might not have been established yet). 3732 * Returns: 3733 * - >0, if type graphs are equivalent; 3734 * - 0, if not equivalent; 3735 * - <0, on error. 3736 * 3737 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3738 * equivalence of BTF types at each step. If at any point BTF types in candidate 3739 * and canonical graphs are not compatible structurally, whole graphs are 3740 * incompatible. If types are structurally equivalent (i.e., all information 3741 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3742 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3743 * If a type references other types, then those referenced types are checked 3744 * for equivalence recursively. 3745 * 3746 * During DFS traversal, if we find that for current `canon_id` type we 3747 * already have some mapping in hypothetical map, we check for two possible 3748 * situations: 3749 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3750 * happen when type graphs have cycles. In this case we assume those two 3751 * types are equivalent. 3752 * - `canon_id` is mapped to different type. This is contradiction in our 3753 * hypothetical mapping, because same graph in canonical graph corresponds 3754 * to two different types in candidate graph, which for equivalent type 3755 * graphs shouldn't happen. This condition terminates equivalence check 3756 * with negative result. 3757 * 3758 * If type graphs traversal exhausts types to check and find no contradiction, 3759 * then type graphs are equivalent. 3760 * 3761 * When checking types for equivalence, there is one special case: FWD types. 3762 * If FWD type resolution is allowed and one of the types (either from canonical 3763 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3764 * flag) and their names match, hypothetical mapping is updated to point from 3765 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3766 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3767 * 3768 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3769 * if there are two exactly named (or anonymous) structs/unions that are 3770 * compatible structurally, one of which has FWD field, while other is concrete 3771 * STRUCT/UNION, but according to C sources they are different structs/unions 3772 * that are referencing different types with the same name. This is extremely 3773 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3774 * this logic is causing problems. 3775 * 3776 * Doing FWD resolution means that both candidate and/or canonical graphs can 3777 * consists of portions of the graph that come from multiple compilation units. 3778 * This is due to the fact that types within single compilation unit are always 3779 * deduplicated and FWDs are already resolved, if referenced struct/union 3780 * definiton is available. So, if we had unresolved FWD and found corresponding 3781 * STRUCT/UNION, they will be from different compilation units. This 3782 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3783 * type graph will likely have at least two different BTF types that describe 3784 * same type (e.g., most probably there will be two different BTF types for the 3785 * same 'int' primitive type) and could even have "overlapping" parts of type 3786 * graph that describe same subset of types. 3787 * 3788 * This in turn means that our assumption that each type in canonical graph 3789 * must correspond to exactly one type in candidate graph might not hold 3790 * anymore and will make it harder to detect contradictions using hypothetical 3791 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3792 * resolution only in canonical graph. FWDs in candidate graphs are never 3793 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3794 * that can occur: 3795 * - Both types in canonical and candidate graphs are FWDs. If they are 3796 * structurally equivalent, then they can either be both resolved to the 3797 * same STRUCT/UNION or not resolved at all. In both cases they are 3798 * equivalent and there is no need to resolve FWD on candidate side. 3799 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3800 * so nothing to resolve as well, algorithm will check equivalence anyway. 3801 * - Type in canonical graph is FWD, while type in candidate is concrete 3802 * STRUCT/UNION. In this case candidate graph comes from single compilation 3803 * unit, so there is exactly one BTF type for each unique C type. After 3804 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3805 * in canonical graph mapping to single BTF type in candidate graph, but 3806 * because hypothetical mapping maps from canonical to candidate types, it's 3807 * alright, and we still maintain the property of having single `canon_id` 3808 * mapping to single `cand_id` (there could be two different `canon_id` 3809 * mapped to the same `cand_id`, but it's not contradictory). 3810 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3811 * graph is FWD. In this case we are just going to check compatibility of 3812 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3813 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3814 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3815 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3816 * canonical graph. 3817 */ 3818 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3819 __u32 canon_id) 3820 { 3821 struct btf_type *cand_type; 3822 struct btf_type *canon_type; 3823 __u32 hypot_type_id; 3824 __u16 cand_kind; 3825 __u16 canon_kind; 3826 int i, eq; 3827 3828 /* if both resolve to the same canonical, they must be equivalent */ 3829 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3830 return 1; 3831 3832 canon_id = resolve_fwd_id(d, canon_id); 3833 3834 hypot_type_id = d->hypot_map[canon_id]; 3835 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3836 /* In some cases compiler will generate different DWARF types 3837 * for *identical* array type definitions and use them for 3838 * different fields within the *same* struct. This breaks type 3839 * equivalence check, which makes an assumption that candidate 3840 * types sub-graph has a consistent and deduped-by-compiler 3841 * types within a single CU. So work around that by explicitly 3842 * allowing identical array types here. 3843 */ 3844 return hypot_type_id == cand_id || 3845 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3846 } 3847 3848 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3849 return -ENOMEM; 3850 3851 cand_type = btf_type_by_id(d->btf, cand_id); 3852 canon_type = btf_type_by_id(d->btf, canon_id); 3853 cand_kind = btf_kind(cand_type); 3854 canon_kind = btf_kind(canon_type); 3855 3856 if (cand_type->name_off != canon_type->name_off) 3857 return 0; 3858 3859 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3860 if (!d->opts.dont_resolve_fwds 3861 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3862 && cand_kind != canon_kind) { 3863 __u16 real_kind; 3864 __u16 fwd_kind; 3865 3866 if (cand_kind == BTF_KIND_FWD) { 3867 real_kind = canon_kind; 3868 fwd_kind = btf_fwd_kind(cand_type); 3869 } else { 3870 real_kind = cand_kind; 3871 fwd_kind = btf_fwd_kind(canon_type); 3872 /* we'd need to resolve base FWD to STRUCT/UNION */ 3873 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3874 d->hypot_adjust_canon = true; 3875 } 3876 return fwd_kind == real_kind; 3877 } 3878 3879 if (cand_kind != canon_kind) 3880 return 0; 3881 3882 switch (cand_kind) { 3883 case BTF_KIND_INT: 3884 return btf_equal_int(cand_type, canon_type); 3885 3886 case BTF_KIND_ENUM: 3887 if (d->opts.dont_resolve_fwds) 3888 return btf_equal_enum(cand_type, canon_type); 3889 else 3890 return btf_compat_enum(cand_type, canon_type); 3891 3892 case BTF_KIND_FWD: 3893 case BTF_KIND_FLOAT: 3894 return btf_equal_common(cand_type, canon_type); 3895 3896 case BTF_KIND_CONST: 3897 case BTF_KIND_VOLATILE: 3898 case BTF_KIND_RESTRICT: 3899 case BTF_KIND_PTR: 3900 case BTF_KIND_TYPEDEF: 3901 case BTF_KIND_FUNC: 3902 if (cand_type->info != canon_type->info) 3903 return 0; 3904 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3905 3906 case BTF_KIND_ARRAY: { 3907 const struct btf_array *cand_arr, *canon_arr; 3908 3909 if (!btf_compat_array(cand_type, canon_type)) 3910 return 0; 3911 cand_arr = btf_array(cand_type); 3912 canon_arr = btf_array(canon_type); 3913 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3914 if (eq <= 0) 3915 return eq; 3916 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3917 } 3918 3919 case BTF_KIND_STRUCT: 3920 case BTF_KIND_UNION: { 3921 const struct btf_member *cand_m, *canon_m; 3922 __u16 vlen; 3923 3924 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3925 return 0; 3926 vlen = btf_vlen(cand_type); 3927 cand_m = btf_members(cand_type); 3928 canon_m = btf_members(canon_type); 3929 for (i = 0; i < vlen; i++) { 3930 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3931 if (eq <= 0) 3932 return eq; 3933 cand_m++; 3934 canon_m++; 3935 } 3936 3937 return 1; 3938 } 3939 3940 case BTF_KIND_FUNC_PROTO: { 3941 const struct btf_param *cand_p, *canon_p; 3942 __u16 vlen; 3943 3944 if (!btf_compat_fnproto(cand_type, canon_type)) 3945 return 0; 3946 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3947 if (eq <= 0) 3948 return eq; 3949 vlen = btf_vlen(cand_type); 3950 cand_p = btf_params(cand_type); 3951 canon_p = btf_params(canon_type); 3952 for (i = 0; i < vlen; i++) { 3953 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3954 if (eq <= 0) 3955 return eq; 3956 cand_p++; 3957 canon_p++; 3958 } 3959 return 1; 3960 } 3961 3962 default: 3963 return -EINVAL; 3964 } 3965 return 0; 3966 } 3967 3968 /* 3969 * Use hypothetical mapping, produced by successful type graph equivalence 3970 * check, to augment existing struct/union canonical mapping, where possible. 3971 * 3972 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3973 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3974 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3975 * we are recording the mapping anyway. As opposed to carefulness required 3976 * for struct/union correspondence mapping (described below), for FWD resolution 3977 * it's not important, as by the time that FWD type (reference type) will be 3978 * deduplicated all structs/unions will be deduped already anyway. 3979 * 3980 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3981 * not required for correctness. It needs to be done carefully to ensure that 3982 * struct/union from candidate's type graph is not mapped into corresponding 3983 * struct/union from canonical type graph that itself hasn't been resolved into 3984 * canonical representative. The only guarantee we have is that canonical 3985 * struct/union was determined as canonical and that won't change. But any 3986 * types referenced through that struct/union fields could have been not yet 3987 * resolved, so in case like that it's too early to establish any kind of 3988 * correspondence between structs/unions. 3989 * 3990 * No canonical correspondence is derived for primitive types (they are already 3991 * deduplicated completely already anyway) or reference types (they rely on 3992 * stability of struct/union canonical relationship for equivalence checks). 3993 */ 3994 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3995 { 3996 __u32 canon_type_id, targ_type_id; 3997 __u16 t_kind, c_kind; 3998 __u32 t_id, c_id; 3999 int i; 4000 4001 for (i = 0; i < d->hypot_cnt; i++) { 4002 canon_type_id = d->hypot_list[i]; 4003 targ_type_id = d->hypot_map[canon_type_id]; 4004 t_id = resolve_type_id(d, targ_type_id); 4005 c_id = resolve_type_id(d, canon_type_id); 4006 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4007 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4008 /* 4009 * Resolve FWD into STRUCT/UNION. 4010 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4011 * mapped to canonical representative (as opposed to 4012 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4013 * eventually that struct is going to be mapped and all resolved 4014 * FWDs will automatically resolve to correct canonical 4015 * representative. This will happen before ref type deduping, 4016 * which critically depends on stability of these mapping. This 4017 * stability is not a requirement for STRUCT/UNION equivalence 4018 * checks, though. 4019 */ 4020 4021 /* if it's the split BTF case, we still need to point base FWD 4022 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4023 * will be resolved against base FWD. If we don't point base 4024 * canonical FWD to the resolved STRUCT/UNION, then all the 4025 * FWDs in split BTF won't be correctly resolved to a proper 4026 * STRUCT/UNION. 4027 */ 4028 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4029 d->map[c_id] = t_id; 4030 4031 /* if graph equivalence determined that we'd need to adjust 4032 * base canonical types, then we need to only point base FWDs 4033 * to STRUCTs/UNIONs and do no more modifications. For all 4034 * other purposes the type graphs were not equivalent. 4035 */ 4036 if (d->hypot_adjust_canon) 4037 continue; 4038 4039 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4040 d->map[t_id] = c_id; 4041 4042 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4043 c_kind != BTF_KIND_FWD && 4044 is_type_mapped(d, c_id) && 4045 !is_type_mapped(d, t_id)) { 4046 /* 4047 * as a perf optimization, we can map struct/union 4048 * that's part of type graph we just verified for 4049 * equivalence. We can do that for struct/union that has 4050 * canonical representative only, though. 4051 */ 4052 d->map[t_id] = c_id; 4053 } 4054 } 4055 } 4056 4057 /* 4058 * Deduplicate struct/union types. 4059 * 4060 * For each struct/union type its type signature hash is calculated, taking 4061 * into account type's name, size, number, order and names of fields, but 4062 * ignoring type ID's referenced from fields, because they might not be deduped 4063 * completely until after reference types deduplication phase. This type hash 4064 * is used to iterate over all potential canonical types, sharing same hash. 4065 * For each canonical candidate we check whether type graphs that they form 4066 * (through referenced types in fields and so on) are equivalent using algorithm 4067 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4068 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4069 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4070 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4071 * potentially map other structs/unions to their canonical representatives, 4072 * if such relationship hasn't yet been established. This speeds up algorithm 4073 * by eliminating some of the duplicate work. 4074 * 4075 * If no matching canonical representative was found, struct/union is marked 4076 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4077 * for further look ups. 4078 */ 4079 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4080 { 4081 struct btf_type *cand_type, *t; 4082 struct hashmap_entry *hash_entry; 4083 /* if we don't find equivalent type, then we are canonical */ 4084 __u32 new_id = type_id; 4085 __u16 kind; 4086 long h; 4087 4088 /* already deduped or is in process of deduping (loop detected) */ 4089 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4090 return 0; 4091 4092 t = btf_type_by_id(d->btf, type_id); 4093 kind = btf_kind(t); 4094 4095 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4096 return 0; 4097 4098 h = btf_hash_struct(t); 4099 for_each_dedup_cand(d, hash_entry, h) { 4100 __u32 cand_id = (__u32)(long)hash_entry->value; 4101 int eq; 4102 4103 /* 4104 * Even though btf_dedup_is_equiv() checks for 4105 * btf_shallow_equal_struct() internally when checking two 4106 * structs (unions) for equivalence, we need to guard here 4107 * from picking matching FWD type as a dedup candidate. 4108 * This can happen due to hash collision. In such case just 4109 * relying on btf_dedup_is_equiv() would lead to potentially 4110 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4111 * FWD and compatible STRUCT/UNION are considered equivalent. 4112 */ 4113 cand_type = btf_type_by_id(d->btf, cand_id); 4114 if (!btf_shallow_equal_struct(t, cand_type)) 4115 continue; 4116 4117 btf_dedup_clear_hypot_map(d); 4118 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4119 if (eq < 0) 4120 return eq; 4121 if (!eq) 4122 continue; 4123 btf_dedup_merge_hypot_map(d); 4124 if (d->hypot_adjust_canon) /* not really equivalent */ 4125 continue; 4126 new_id = cand_id; 4127 break; 4128 } 4129 4130 d->map[type_id] = new_id; 4131 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4132 return -ENOMEM; 4133 4134 return 0; 4135 } 4136 4137 static int btf_dedup_struct_types(struct btf_dedup *d) 4138 { 4139 int i, err; 4140 4141 for (i = 0; i < d->btf->nr_types; i++) { 4142 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4143 if (err) 4144 return err; 4145 } 4146 return 0; 4147 } 4148 4149 /* 4150 * Deduplicate reference type. 4151 * 4152 * Once all primitive and struct/union types got deduplicated, we can easily 4153 * deduplicate all other (reference) BTF types. This is done in two steps: 4154 * 4155 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4156 * resolution can be done either immediately for primitive or struct/union types 4157 * (because they were deduped in previous two phases) or recursively for 4158 * reference types. Recursion will always terminate at either primitive or 4159 * struct/union type, at which point we can "unwind" chain of reference types 4160 * one by one. There is no danger of encountering cycles because in C type 4161 * system the only way to form type cycle is through struct/union, so any chain 4162 * of reference types, even those taking part in a type cycle, will inevitably 4163 * reach struct/union at some point. 4164 * 4165 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4166 * becomes "stable", in the sense that no further deduplication will cause 4167 * any changes to it. With that, it's now possible to calculate type's signature 4168 * hash (this time taking into account referenced type IDs) and loop over all 4169 * potential canonical representatives. If no match was found, current type 4170 * will become canonical representative of itself and will be added into 4171 * btf_dedup->dedup_table as another possible canonical representative. 4172 */ 4173 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4174 { 4175 struct hashmap_entry *hash_entry; 4176 __u32 new_id = type_id, cand_id; 4177 struct btf_type *t, *cand; 4178 /* if we don't find equivalent type, then we are representative type */ 4179 int ref_type_id; 4180 long h; 4181 4182 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4183 return -ELOOP; 4184 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4185 return resolve_type_id(d, type_id); 4186 4187 t = btf_type_by_id(d->btf, type_id); 4188 d->map[type_id] = BTF_IN_PROGRESS_ID; 4189 4190 switch (btf_kind(t)) { 4191 case BTF_KIND_CONST: 4192 case BTF_KIND_VOLATILE: 4193 case BTF_KIND_RESTRICT: 4194 case BTF_KIND_PTR: 4195 case BTF_KIND_TYPEDEF: 4196 case BTF_KIND_FUNC: 4197 ref_type_id = btf_dedup_ref_type(d, t->type); 4198 if (ref_type_id < 0) 4199 return ref_type_id; 4200 t->type = ref_type_id; 4201 4202 h = btf_hash_common(t); 4203 for_each_dedup_cand(d, hash_entry, h) { 4204 cand_id = (__u32)(long)hash_entry->value; 4205 cand = btf_type_by_id(d->btf, cand_id); 4206 if (btf_equal_common(t, cand)) { 4207 new_id = cand_id; 4208 break; 4209 } 4210 } 4211 break; 4212 4213 case BTF_KIND_ARRAY: { 4214 struct btf_array *info = btf_array(t); 4215 4216 ref_type_id = btf_dedup_ref_type(d, info->type); 4217 if (ref_type_id < 0) 4218 return ref_type_id; 4219 info->type = ref_type_id; 4220 4221 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4222 if (ref_type_id < 0) 4223 return ref_type_id; 4224 info->index_type = ref_type_id; 4225 4226 h = btf_hash_array(t); 4227 for_each_dedup_cand(d, hash_entry, h) { 4228 cand_id = (__u32)(long)hash_entry->value; 4229 cand = btf_type_by_id(d->btf, cand_id); 4230 if (btf_equal_array(t, cand)) { 4231 new_id = cand_id; 4232 break; 4233 } 4234 } 4235 break; 4236 } 4237 4238 case BTF_KIND_FUNC_PROTO: { 4239 struct btf_param *param; 4240 __u16 vlen; 4241 int i; 4242 4243 ref_type_id = btf_dedup_ref_type(d, t->type); 4244 if (ref_type_id < 0) 4245 return ref_type_id; 4246 t->type = ref_type_id; 4247 4248 vlen = btf_vlen(t); 4249 param = btf_params(t); 4250 for (i = 0; i < vlen; i++) { 4251 ref_type_id = btf_dedup_ref_type(d, param->type); 4252 if (ref_type_id < 0) 4253 return ref_type_id; 4254 param->type = ref_type_id; 4255 param++; 4256 } 4257 4258 h = btf_hash_fnproto(t); 4259 for_each_dedup_cand(d, hash_entry, h) { 4260 cand_id = (__u32)(long)hash_entry->value; 4261 cand = btf_type_by_id(d->btf, cand_id); 4262 if (btf_equal_fnproto(t, cand)) { 4263 new_id = cand_id; 4264 break; 4265 } 4266 } 4267 break; 4268 } 4269 4270 default: 4271 return -EINVAL; 4272 } 4273 4274 d->map[type_id] = new_id; 4275 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4276 return -ENOMEM; 4277 4278 return new_id; 4279 } 4280 4281 static int btf_dedup_ref_types(struct btf_dedup *d) 4282 { 4283 int i, err; 4284 4285 for (i = 0; i < d->btf->nr_types; i++) { 4286 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4287 if (err < 0) 4288 return err; 4289 } 4290 /* we won't need d->dedup_table anymore */ 4291 hashmap__free(d->dedup_table); 4292 d->dedup_table = NULL; 4293 return 0; 4294 } 4295 4296 /* 4297 * Compact types. 4298 * 4299 * After we established for each type its corresponding canonical representative 4300 * type, we now can eliminate types that are not canonical and leave only 4301 * canonical ones layed out sequentially in memory by copying them over 4302 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4303 * a map from original type ID to a new compacted type ID, which will be used 4304 * during next phase to "fix up" type IDs, referenced from struct/union and 4305 * reference types. 4306 */ 4307 static int btf_dedup_compact_types(struct btf_dedup *d) 4308 { 4309 __u32 *new_offs; 4310 __u32 next_type_id = d->btf->start_id; 4311 const struct btf_type *t; 4312 void *p; 4313 int i, id, len; 4314 4315 /* we are going to reuse hypot_map to store compaction remapping */ 4316 d->hypot_map[0] = 0; 4317 /* base BTF types are not renumbered */ 4318 for (id = 1; id < d->btf->start_id; id++) 4319 d->hypot_map[id] = id; 4320 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4321 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4322 4323 p = d->btf->types_data; 4324 4325 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4326 if (d->map[id] != id) 4327 continue; 4328 4329 t = btf__type_by_id(d->btf, id); 4330 len = btf_type_size(t); 4331 if (len < 0) 4332 return len; 4333 4334 memmove(p, t, len); 4335 d->hypot_map[id] = next_type_id; 4336 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4337 p += len; 4338 next_type_id++; 4339 } 4340 4341 /* shrink struct btf's internal types index and update btf_header */ 4342 d->btf->nr_types = next_type_id - d->btf->start_id; 4343 d->btf->type_offs_cap = d->btf->nr_types; 4344 d->btf->hdr->type_len = p - d->btf->types_data; 4345 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4346 sizeof(*new_offs)); 4347 if (d->btf->type_offs_cap && !new_offs) 4348 return -ENOMEM; 4349 d->btf->type_offs = new_offs; 4350 d->btf->hdr->str_off = d->btf->hdr->type_len; 4351 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4352 return 0; 4353 } 4354 4355 /* 4356 * Figure out final (deduplicated and compacted) type ID for provided original 4357 * `type_id` by first resolving it into corresponding canonical type ID and 4358 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4359 * which is populated during compaction phase. 4360 */ 4361 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4362 { 4363 struct btf_dedup *d = ctx; 4364 __u32 resolved_type_id, new_type_id; 4365 4366 resolved_type_id = resolve_type_id(d, *type_id); 4367 new_type_id = d->hypot_map[resolved_type_id]; 4368 if (new_type_id > BTF_MAX_NR_TYPES) 4369 return -EINVAL; 4370 4371 *type_id = new_type_id; 4372 return 0; 4373 } 4374 4375 /* 4376 * Remap referenced type IDs into deduped type IDs. 4377 * 4378 * After BTF types are deduplicated and compacted, their final type IDs may 4379 * differ from original ones. The map from original to a corresponding 4380 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4381 * compaction phase. During remapping phase we are rewriting all type IDs 4382 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4383 * their final deduped type IDs. 4384 */ 4385 static int btf_dedup_remap_types(struct btf_dedup *d) 4386 { 4387 int i, r; 4388 4389 for (i = 0; i < d->btf->nr_types; i++) { 4390 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4391 4392 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4393 if (r) 4394 return r; 4395 } 4396 4397 if (!d->btf_ext) 4398 return 0; 4399 4400 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4401 if (r) 4402 return r; 4403 4404 return 0; 4405 } 4406 4407 /* 4408 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4409 * data out of it to use for target BTF. 4410 */ 4411 struct btf *btf__load_vmlinux_btf(void) 4412 { 4413 struct { 4414 const char *path_fmt; 4415 bool raw_btf; 4416 } locations[] = { 4417 /* try canonical vmlinux BTF through sysfs first */ 4418 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4419 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4420 { "/boot/vmlinux-%1$s" }, 4421 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4422 { "/lib/modules/%1$s/build/vmlinux" }, 4423 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4424 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4425 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4426 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4427 }; 4428 char path[PATH_MAX + 1]; 4429 struct utsname buf; 4430 struct btf *btf; 4431 int i, err; 4432 4433 uname(&buf); 4434 4435 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4436 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4437 4438 if (access(path, R_OK)) 4439 continue; 4440 4441 if (locations[i].raw_btf) 4442 btf = btf__parse_raw(path); 4443 else 4444 btf = btf__parse_elf(path, NULL); 4445 err = libbpf_get_error(btf); 4446 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4447 if (err) 4448 continue; 4449 4450 return btf; 4451 } 4452 4453 pr_warn("failed to find valid kernel BTF\n"); 4454 return libbpf_err_ptr(-ESRCH); 4455 } 4456 4457 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4458 4459 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4460 { 4461 char path[80]; 4462 4463 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4464 return btf__parse_split(path, vmlinux_btf); 4465 } 4466 4467 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4468 { 4469 int i, n, err; 4470 4471 switch (btf_kind(t)) { 4472 case BTF_KIND_INT: 4473 case BTF_KIND_FLOAT: 4474 case BTF_KIND_ENUM: 4475 return 0; 4476 4477 case BTF_KIND_FWD: 4478 case BTF_KIND_CONST: 4479 case BTF_KIND_VOLATILE: 4480 case BTF_KIND_RESTRICT: 4481 case BTF_KIND_PTR: 4482 case BTF_KIND_TYPEDEF: 4483 case BTF_KIND_FUNC: 4484 case BTF_KIND_VAR: 4485 return visit(&t->type, ctx); 4486 4487 case BTF_KIND_ARRAY: { 4488 struct btf_array *a = btf_array(t); 4489 4490 err = visit(&a->type, ctx); 4491 err = err ?: visit(&a->index_type, ctx); 4492 return err; 4493 } 4494 4495 case BTF_KIND_STRUCT: 4496 case BTF_KIND_UNION: { 4497 struct btf_member *m = btf_members(t); 4498 4499 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4500 err = visit(&m->type, ctx); 4501 if (err) 4502 return err; 4503 } 4504 return 0; 4505 } 4506 4507 case BTF_KIND_FUNC_PROTO: { 4508 struct btf_param *m = btf_params(t); 4509 4510 err = visit(&t->type, ctx); 4511 if (err) 4512 return err; 4513 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4514 err = visit(&m->type, ctx); 4515 if (err) 4516 return err; 4517 } 4518 return 0; 4519 } 4520 4521 case BTF_KIND_DATASEC: { 4522 struct btf_var_secinfo *m = btf_var_secinfos(t); 4523 4524 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4525 err = visit(&m->type, ctx); 4526 if (err) 4527 return err; 4528 } 4529 return 0; 4530 } 4531 4532 default: 4533 return -EINVAL; 4534 } 4535 } 4536 4537 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4538 { 4539 int i, n, err; 4540 4541 err = visit(&t->name_off, ctx); 4542 if (err) 4543 return err; 4544 4545 switch (btf_kind(t)) { 4546 case BTF_KIND_STRUCT: 4547 case BTF_KIND_UNION: { 4548 struct btf_member *m = btf_members(t); 4549 4550 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4551 err = visit(&m->name_off, ctx); 4552 if (err) 4553 return err; 4554 } 4555 break; 4556 } 4557 case BTF_KIND_ENUM: { 4558 struct btf_enum *m = btf_enum(t); 4559 4560 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4561 err = visit(&m->name_off, ctx); 4562 if (err) 4563 return err; 4564 } 4565 break; 4566 } 4567 case BTF_KIND_FUNC_PROTO: { 4568 struct btf_param *m = btf_params(t); 4569 4570 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4571 err = visit(&m->name_off, ctx); 4572 if (err) 4573 return err; 4574 } 4575 break; 4576 } 4577 default: 4578 break; 4579 } 4580 4581 return 0; 4582 } 4583 4584 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4585 { 4586 const struct btf_ext_info *seg; 4587 struct btf_ext_info_sec *sec; 4588 int i, err; 4589 4590 seg = &btf_ext->func_info; 4591 for_each_btf_ext_sec(seg, sec) { 4592 struct bpf_func_info_min *rec; 4593 4594 for_each_btf_ext_rec(seg, sec, i, rec) { 4595 err = visit(&rec->type_id, ctx); 4596 if (err < 0) 4597 return err; 4598 } 4599 } 4600 4601 seg = &btf_ext->core_relo_info; 4602 for_each_btf_ext_sec(seg, sec) { 4603 struct bpf_core_relo *rec; 4604 4605 for_each_btf_ext_rec(seg, sec, i, rec) { 4606 err = visit(&rec->type_id, ctx); 4607 if (err < 0) 4608 return err; 4609 } 4610 } 4611 4612 return 0; 4613 } 4614 4615 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4616 { 4617 const struct btf_ext_info *seg; 4618 struct btf_ext_info_sec *sec; 4619 int i, err; 4620 4621 seg = &btf_ext->func_info; 4622 for_each_btf_ext_sec(seg, sec) { 4623 err = visit(&sec->sec_name_off, ctx); 4624 if (err) 4625 return err; 4626 } 4627 4628 seg = &btf_ext->line_info; 4629 for_each_btf_ext_sec(seg, sec) { 4630 struct bpf_line_info_min *rec; 4631 4632 err = visit(&sec->sec_name_off, ctx); 4633 if (err) 4634 return err; 4635 4636 for_each_btf_ext_rec(seg, sec, i, rec) { 4637 err = visit(&rec->file_name_off, ctx); 4638 if (err) 4639 return err; 4640 err = visit(&rec->line_off, ctx); 4641 if (err) 4642 return err; 4643 } 4644 } 4645 4646 seg = &btf_ext->core_relo_info; 4647 for_each_btf_ext_sec(seg, sec) { 4648 struct bpf_core_relo *rec; 4649 4650 err = visit(&sec->sec_name_off, ctx); 4651 if (err) 4652 return err; 4653 4654 for_each_btf_ext_rec(seg, sec, i, rec) { 4655 err = visit(&rec->access_str_off, ctx); 4656 if (err) 4657 return err; 4658 } 4659 } 4660 4661 return 0; 4662 } 4663