1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* whether base_btf should be freed in btf_free for this instance */ 120 bool owns_base; 121 122 /* BTF object FD, if loaded into kernel */ 123 int fd; 124 125 /* Pointer size (in bytes) for a target architecture of this BTF */ 126 int ptr_sz; 127 }; 128 129 static inline __u64 ptr_to_u64(const void *ptr) 130 { 131 return (__u64) (unsigned long) ptr; 132 } 133 134 /* Ensure given dynamically allocated memory region pointed to by *data* with 135 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 136 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 137 * are already used. At most *max_cnt* elements can be ever allocated. 138 * If necessary, memory is reallocated and all existing data is copied over, 139 * new pointer to the memory region is stored at *data, new memory region 140 * capacity (in number of elements) is stored in *cap. 141 * On success, memory pointer to the beginning of unused memory is returned. 142 * On error, NULL is returned. 143 */ 144 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 145 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 146 { 147 size_t new_cnt; 148 void *new_data; 149 150 if (cur_cnt + add_cnt <= *cap_cnt) 151 return *data + cur_cnt * elem_sz; 152 153 /* requested more than the set limit */ 154 if (cur_cnt + add_cnt > max_cnt) 155 return NULL; 156 157 new_cnt = *cap_cnt; 158 new_cnt += new_cnt / 4; /* expand by 25% */ 159 if (new_cnt < 16) /* but at least 16 elements */ 160 new_cnt = 16; 161 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 162 new_cnt = max_cnt; 163 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 164 new_cnt = cur_cnt + add_cnt; 165 166 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 167 if (!new_data) 168 return NULL; 169 170 /* zero out newly allocated portion of memory */ 171 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 172 173 *data = new_data; 174 *cap_cnt = new_cnt; 175 return new_data + cur_cnt * elem_sz; 176 } 177 178 /* Ensure given dynamically allocated memory region has enough allocated space 179 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 180 */ 181 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 182 { 183 void *p; 184 185 if (need_cnt <= *cap_cnt) 186 return 0; 187 188 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 189 if (!p) 190 return -ENOMEM; 191 192 return 0; 193 } 194 195 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 196 { 197 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 198 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 199 } 200 201 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 202 { 203 __u32 *p; 204 205 p = btf_add_type_offs_mem(btf, 1); 206 if (!p) 207 return -ENOMEM; 208 209 *p = type_off; 210 return 0; 211 } 212 213 static void btf_bswap_hdr(struct btf_header *h) 214 { 215 h->magic = bswap_16(h->magic); 216 h->hdr_len = bswap_32(h->hdr_len); 217 h->type_off = bswap_32(h->type_off); 218 h->type_len = bswap_32(h->type_len); 219 h->str_off = bswap_32(h->str_off); 220 h->str_len = bswap_32(h->str_len); 221 } 222 223 static int btf_parse_hdr(struct btf *btf) 224 { 225 struct btf_header *hdr = btf->hdr; 226 __u32 meta_left; 227 228 if (btf->raw_size < sizeof(struct btf_header)) { 229 pr_debug("BTF header not found\n"); 230 return -EINVAL; 231 } 232 233 if (hdr->magic == bswap_16(BTF_MAGIC)) { 234 btf->swapped_endian = true; 235 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 236 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 237 bswap_32(hdr->hdr_len)); 238 return -ENOTSUP; 239 } 240 btf_bswap_hdr(hdr); 241 } else if (hdr->magic != BTF_MAGIC) { 242 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 243 return -EINVAL; 244 } 245 246 if (btf->raw_size < hdr->hdr_len) { 247 pr_debug("BTF header len %u larger than data size %u\n", 248 hdr->hdr_len, btf->raw_size); 249 return -EINVAL; 250 } 251 252 meta_left = btf->raw_size - hdr->hdr_len; 253 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 254 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 255 return -EINVAL; 256 } 257 258 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 259 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 260 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 261 return -EINVAL; 262 } 263 264 if (hdr->type_off % 4) { 265 pr_debug("BTF type section is not aligned to 4 bytes\n"); 266 return -EINVAL; 267 } 268 269 return 0; 270 } 271 272 static int btf_parse_str_sec(struct btf *btf) 273 { 274 const struct btf_header *hdr = btf->hdr; 275 const char *start = btf->strs_data; 276 const char *end = start + btf->hdr->str_len; 277 278 if (btf->base_btf && hdr->str_len == 0) 279 return 0; 280 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 281 pr_debug("Invalid BTF string section\n"); 282 return -EINVAL; 283 } 284 if (!btf->base_btf && start[0]) { 285 pr_debug("Invalid BTF string section\n"); 286 return -EINVAL; 287 } 288 return 0; 289 } 290 291 static int btf_type_size(const struct btf_type *t) 292 { 293 const int base_size = sizeof(struct btf_type); 294 __u16 vlen = btf_vlen(t); 295 296 switch (btf_kind(t)) { 297 case BTF_KIND_FWD: 298 case BTF_KIND_CONST: 299 case BTF_KIND_VOLATILE: 300 case BTF_KIND_RESTRICT: 301 case BTF_KIND_PTR: 302 case BTF_KIND_TYPEDEF: 303 case BTF_KIND_FUNC: 304 case BTF_KIND_FLOAT: 305 case BTF_KIND_TYPE_TAG: 306 return base_size; 307 case BTF_KIND_INT: 308 return base_size + sizeof(__u32); 309 case BTF_KIND_ENUM: 310 return base_size + vlen * sizeof(struct btf_enum); 311 case BTF_KIND_ENUM64: 312 return base_size + vlen * sizeof(struct btf_enum64); 313 case BTF_KIND_ARRAY: 314 return base_size + sizeof(struct btf_array); 315 case BTF_KIND_STRUCT: 316 case BTF_KIND_UNION: 317 return base_size + vlen * sizeof(struct btf_member); 318 case BTF_KIND_FUNC_PROTO: 319 return base_size + vlen * sizeof(struct btf_param); 320 case BTF_KIND_VAR: 321 return base_size + sizeof(struct btf_var); 322 case BTF_KIND_DATASEC: 323 return base_size + vlen * sizeof(struct btf_var_secinfo); 324 case BTF_KIND_DECL_TAG: 325 return base_size + sizeof(struct btf_decl_tag); 326 default: 327 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 328 return -EINVAL; 329 } 330 } 331 332 static void btf_bswap_type_base(struct btf_type *t) 333 { 334 t->name_off = bswap_32(t->name_off); 335 t->info = bswap_32(t->info); 336 t->type = bswap_32(t->type); 337 } 338 339 static int btf_bswap_type_rest(struct btf_type *t) 340 { 341 struct btf_var_secinfo *v; 342 struct btf_enum64 *e64; 343 struct btf_member *m; 344 struct btf_array *a; 345 struct btf_param *p; 346 struct btf_enum *e; 347 __u16 vlen = btf_vlen(t); 348 int i; 349 350 switch (btf_kind(t)) { 351 case BTF_KIND_FWD: 352 case BTF_KIND_CONST: 353 case BTF_KIND_VOLATILE: 354 case BTF_KIND_RESTRICT: 355 case BTF_KIND_PTR: 356 case BTF_KIND_TYPEDEF: 357 case BTF_KIND_FUNC: 358 case BTF_KIND_FLOAT: 359 case BTF_KIND_TYPE_TAG: 360 return 0; 361 case BTF_KIND_INT: 362 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 363 return 0; 364 case BTF_KIND_ENUM: 365 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 366 e->name_off = bswap_32(e->name_off); 367 e->val = bswap_32(e->val); 368 } 369 return 0; 370 case BTF_KIND_ENUM64: 371 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 372 e64->name_off = bswap_32(e64->name_off); 373 e64->val_lo32 = bswap_32(e64->val_lo32); 374 e64->val_hi32 = bswap_32(e64->val_hi32); 375 } 376 return 0; 377 case BTF_KIND_ARRAY: 378 a = btf_array(t); 379 a->type = bswap_32(a->type); 380 a->index_type = bswap_32(a->index_type); 381 a->nelems = bswap_32(a->nelems); 382 return 0; 383 case BTF_KIND_STRUCT: 384 case BTF_KIND_UNION: 385 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 386 m->name_off = bswap_32(m->name_off); 387 m->type = bswap_32(m->type); 388 m->offset = bswap_32(m->offset); 389 } 390 return 0; 391 case BTF_KIND_FUNC_PROTO: 392 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 393 p->name_off = bswap_32(p->name_off); 394 p->type = bswap_32(p->type); 395 } 396 return 0; 397 case BTF_KIND_VAR: 398 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 399 return 0; 400 case BTF_KIND_DATASEC: 401 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 402 v->type = bswap_32(v->type); 403 v->offset = bswap_32(v->offset); 404 v->size = bswap_32(v->size); 405 } 406 return 0; 407 case BTF_KIND_DECL_TAG: 408 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 409 return 0; 410 default: 411 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 412 return -EINVAL; 413 } 414 } 415 416 static int btf_parse_type_sec(struct btf *btf) 417 { 418 struct btf_header *hdr = btf->hdr; 419 void *next_type = btf->types_data; 420 void *end_type = next_type + hdr->type_len; 421 int err, type_size; 422 423 while (next_type + sizeof(struct btf_type) <= end_type) { 424 if (btf->swapped_endian) 425 btf_bswap_type_base(next_type); 426 427 type_size = btf_type_size(next_type); 428 if (type_size < 0) 429 return type_size; 430 if (next_type + type_size > end_type) { 431 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 432 return -EINVAL; 433 } 434 435 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 436 return -EINVAL; 437 438 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 439 if (err) 440 return err; 441 442 next_type += type_size; 443 btf->nr_types++; 444 } 445 446 if (next_type != end_type) { 447 pr_warn("BTF types data is malformed\n"); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) 455 { 456 const char *s; 457 458 s = btf__str_by_offset(btf, str_off); 459 if (!s) { 460 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); 461 return -EINVAL; 462 } 463 464 return 0; 465 } 466 467 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) 468 { 469 const struct btf_type *t; 470 471 t = btf__type_by_id(btf, id); 472 if (!t) { 473 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); 474 return -EINVAL; 475 } 476 477 return 0; 478 } 479 480 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) 481 { 482 __u32 kind = btf_kind(t); 483 int err, i, n; 484 485 err = btf_validate_str(btf, t->name_off, "type name", id); 486 if (err) 487 return err; 488 489 switch (kind) { 490 case BTF_KIND_UNKN: 491 case BTF_KIND_INT: 492 case BTF_KIND_FWD: 493 case BTF_KIND_FLOAT: 494 break; 495 case BTF_KIND_PTR: 496 case BTF_KIND_TYPEDEF: 497 case BTF_KIND_VOLATILE: 498 case BTF_KIND_CONST: 499 case BTF_KIND_RESTRICT: 500 case BTF_KIND_VAR: 501 case BTF_KIND_DECL_TAG: 502 case BTF_KIND_TYPE_TAG: 503 err = btf_validate_id(btf, t->type, id); 504 if (err) 505 return err; 506 break; 507 case BTF_KIND_ARRAY: { 508 const struct btf_array *a = btf_array(t); 509 510 err = btf_validate_id(btf, a->type, id); 511 err = err ?: btf_validate_id(btf, a->index_type, id); 512 if (err) 513 return err; 514 break; 515 } 516 case BTF_KIND_STRUCT: 517 case BTF_KIND_UNION: { 518 const struct btf_member *m = btf_members(t); 519 520 n = btf_vlen(t); 521 for (i = 0; i < n; i++, m++) { 522 err = btf_validate_str(btf, m->name_off, "field name", id); 523 err = err ?: btf_validate_id(btf, m->type, id); 524 if (err) 525 return err; 526 } 527 break; 528 } 529 case BTF_KIND_ENUM: { 530 const struct btf_enum *m = btf_enum(t); 531 532 n = btf_vlen(t); 533 for (i = 0; i < n; i++, m++) { 534 err = btf_validate_str(btf, m->name_off, "enum name", id); 535 if (err) 536 return err; 537 } 538 break; 539 } 540 case BTF_KIND_ENUM64: { 541 const struct btf_enum64 *m = btf_enum64(t); 542 543 n = btf_vlen(t); 544 for (i = 0; i < n; i++, m++) { 545 err = btf_validate_str(btf, m->name_off, "enum name", id); 546 if (err) 547 return err; 548 } 549 break; 550 } 551 case BTF_KIND_FUNC: { 552 const struct btf_type *ft; 553 554 err = btf_validate_id(btf, t->type, id); 555 if (err) 556 return err; 557 ft = btf__type_by_id(btf, t->type); 558 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { 559 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); 560 return -EINVAL; 561 } 562 break; 563 } 564 case BTF_KIND_FUNC_PROTO: { 565 const struct btf_param *m = btf_params(t); 566 567 n = btf_vlen(t); 568 for (i = 0; i < n; i++, m++) { 569 err = btf_validate_str(btf, m->name_off, "param name", id); 570 err = err ?: btf_validate_id(btf, m->type, id); 571 if (err) 572 return err; 573 } 574 break; 575 } 576 case BTF_KIND_DATASEC: { 577 const struct btf_var_secinfo *m = btf_var_secinfos(t); 578 579 n = btf_vlen(t); 580 for (i = 0; i < n; i++, m++) { 581 err = btf_validate_id(btf, m->type, id); 582 if (err) 583 return err; 584 } 585 break; 586 } 587 default: 588 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); 589 return -EINVAL; 590 } 591 return 0; 592 } 593 594 /* Validate basic sanity of BTF. It's intentionally less thorough than 595 * kernel's validation and validates only properties of BTF that libbpf relies 596 * on to be correct (e.g., valid type IDs, valid string offsets, etc) 597 */ 598 static int btf_sanity_check(const struct btf *btf) 599 { 600 const struct btf_type *t; 601 __u32 i, n = btf__type_cnt(btf); 602 int err; 603 604 for (i = btf->start_id; i < n; i++) { 605 t = btf_type_by_id(btf, i); 606 err = btf_validate_type(btf, t, i); 607 if (err) 608 return err; 609 } 610 return 0; 611 } 612 613 __u32 btf__type_cnt(const struct btf *btf) 614 { 615 return btf->start_id + btf->nr_types; 616 } 617 618 const struct btf *btf__base_btf(const struct btf *btf) 619 { 620 return btf->base_btf; 621 } 622 623 /* internal helper returning non-const pointer to a type */ 624 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 625 { 626 if (type_id == 0) 627 return &btf_void; 628 if (type_id < btf->start_id) 629 return btf_type_by_id(btf->base_btf, type_id); 630 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 631 } 632 633 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 634 { 635 if (type_id >= btf->start_id + btf->nr_types) 636 return errno = EINVAL, NULL; 637 return btf_type_by_id((struct btf *)btf, type_id); 638 } 639 640 static int determine_ptr_size(const struct btf *btf) 641 { 642 static const char * const long_aliases[] = { 643 "long", 644 "long int", 645 "int long", 646 "unsigned long", 647 "long unsigned", 648 "unsigned long int", 649 "unsigned int long", 650 "long unsigned int", 651 "long int unsigned", 652 "int unsigned long", 653 "int long unsigned", 654 }; 655 const struct btf_type *t; 656 const char *name; 657 int i, j, n; 658 659 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 660 return btf->base_btf->ptr_sz; 661 662 n = btf__type_cnt(btf); 663 for (i = 1; i < n; i++) { 664 t = btf__type_by_id(btf, i); 665 if (!btf_is_int(t)) 666 continue; 667 668 if (t->size != 4 && t->size != 8) 669 continue; 670 671 name = btf__name_by_offset(btf, t->name_off); 672 if (!name) 673 continue; 674 675 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 676 if (strcmp(name, long_aliases[j]) == 0) 677 return t->size; 678 } 679 } 680 681 return -1; 682 } 683 684 static size_t btf_ptr_sz(const struct btf *btf) 685 { 686 if (!btf->ptr_sz) 687 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 688 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 689 } 690 691 /* Return pointer size this BTF instance assumes. The size is heuristically 692 * determined by looking for 'long' or 'unsigned long' integer type and 693 * recording its size in bytes. If BTF type information doesn't have any such 694 * type, this function returns 0. In the latter case, native architecture's 695 * pointer size is assumed, so will be either 4 or 8, depending on 696 * architecture that libbpf was compiled for. It's possible to override 697 * guessed value by using btf__set_pointer_size() API. 698 */ 699 size_t btf__pointer_size(const struct btf *btf) 700 { 701 if (!btf->ptr_sz) 702 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 703 704 if (btf->ptr_sz < 0) 705 /* not enough BTF type info to guess */ 706 return 0; 707 708 return btf->ptr_sz; 709 } 710 711 /* Override or set pointer size in bytes. Only values of 4 and 8 are 712 * supported. 713 */ 714 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 715 { 716 if (ptr_sz != 4 && ptr_sz != 8) 717 return libbpf_err(-EINVAL); 718 btf->ptr_sz = ptr_sz; 719 return 0; 720 } 721 722 static bool is_host_big_endian(void) 723 { 724 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 725 return false; 726 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 727 return true; 728 #else 729 # error "Unrecognized __BYTE_ORDER__" 730 #endif 731 } 732 733 enum btf_endianness btf__endianness(const struct btf *btf) 734 { 735 if (is_host_big_endian()) 736 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 737 else 738 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 739 } 740 741 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 742 { 743 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 744 return libbpf_err(-EINVAL); 745 746 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 747 if (!btf->swapped_endian) { 748 free(btf->raw_data_swapped); 749 btf->raw_data_swapped = NULL; 750 } 751 return 0; 752 } 753 754 static bool btf_type_is_void(const struct btf_type *t) 755 { 756 return t == &btf_void || btf_is_fwd(t); 757 } 758 759 static bool btf_type_is_void_or_null(const struct btf_type *t) 760 { 761 return !t || btf_type_is_void(t); 762 } 763 764 #define MAX_RESOLVE_DEPTH 32 765 766 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 767 { 768 const struct btf_array *array; 769 const struct btf_type *t; 770 __u32 nelems = 1; 771 __s64 size = -1; 772 int i; 773 774 t = btf__type_by_id(btf, type_id); 775 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 776 switch (btf_kind(t)) { 777 case BTF_KIND_INT: 778 case BTF_KIND_STRUCT: 779 case BTF_KIND_UNION: 780 case BTF_KIND_ENUM: 781 case BTF_KIND_ENUM64: 782 case BTF_KIND_DATASEC: 783 case BTF_KIND_FLOAT: 784 size = t->size; 785 goto done; 786 case BTF_KIND_PTR: 787 size = btf_ptr_sz(btf); 788 goto done; 789 case BTF_KIND_TYPEDEF: 790 case BTF_KIND_VOLATILE: 791 case BTF_KIND_CONST: 792 case BTF_KIND_RESTRICT: 793 case BTF_KIND_VAR: 794 case BTF_KIND_DECL_TAG: 795 case BTF_KIND_TYPE_TAG: 796 type_id = t->type; 797 break; 798 case BTF_KIND_ARRAY: 799 array = btf_array(t); 800 if (nelems && array->nelems > UINT32_MAX / nelems) 801 return libbpf_err(-E2BIG); 802 nelems *= array->nelems; 803 type_id = array->type; 804 break; 805 default: 806 return libbpf_err(-EINVAL); 807 } 808 809 t = btf__type_by_id(btf, type_id); 810 } 811 812 done: 813 if (size < 0) 814 return libbpf_err(-EINVAL); 815 if (nelems && size > UINT32_MAX / nelems) 816 return libbpf_err(-E2BIG); 817 818 return nelems * size; 819 } 820 821 int btf__align_of(const struct btf *btf, __u32 id) 822 { 823 const struct btf_type *t = btf__type_by_id(btf, id); 824 __u16 kind = btf_kind(t); 825 826 switch (kind) { 827 case BTF_KIND_INT: 828 case BTF_KIND_ENUM: 829 case BTF_KIND_ENUM64: 830 case BTF_KIND_FLOAT: 831 return min(btf_ptr_sz(btf), (size_t)t->size); 832 case BTF_KIND_PTR: 833 return btf_ptr_sz(btf); 834 case BTF_KIND_TYPEDEF: 835 case BTF_KIND_VOLATILE: 836 case BTF_KIND_CONST: 837 case BTF_KIND_RESTRICT: 838 case BTF_KIND_TYPE_TAG: 839 return btf__align_of(btf, t->type); 840 case BTF_KIND_ARRAY: 841 return btf__align_of(btf, btf_array(t)->type); 842 case BTF_KIND_STRUCT: 843 case BTF_KIND_UNION: { 844 const struct btf_member *m = btf_members(t); 845 __u16 vlen = btf_vlen(t); 846 int i, max_align = 1, align; 847 848 for (i = 0; i < vlen; i++, m++) { 849 align = btf__align_of(btf, m->type); 850 if (align <= 0) 851 return libbpf_err(align); 852 max_align = max(max_align, align); 853 854 /* if field offset isn't aligned according to field 855 * type's alignment, then struct must be packed 856 */ 857 if (btf_member_bitfield_size(t, i) == 0 && 858 (m->offset % (8 * align)) != 0) 859 return 1; 860 } 861 862 /* if struct/union size isn't a multiple of its alignment, 863 * then struct must be packed 864 */ 865 if ((t->size % max_align) != 0) 866 return 1; 867 868 return max_align; 869 } 870 default: 871 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 872 return errno = EINVAL, 0; 873 } 874 } 875 876 int btf__resolve_type(const struct btf *btf, __u32 type_id) 877 { 878 const struct btf_type *t; 879 int depth = 0; 880 881 t = btf__type_by_id(btf, type_id); 882 while (depth < MAX_RESOLVE_DEPTH && 883 !btf_type_is_void_or_null(t) && 884 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 885 type_id = t->type; 886 t = btf__type_by_id(btf, type_id); 887 depth++; 888 } 889 890 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 891 return libbpf_err(-EINVAL); 892 893 return type_id; 894 } 895 896 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 897 { 898 __u32 i, nr_types = btf__type_cnt(btf); 899 900 if (!strcmp(type_name, "void")) 901 return 0; 902 903 for (i = 1; i < nr_types; i++) { 904 const struct btf_type *t = btf__type_by_id(btf, i); 905 const char *name = btf__name_by_offset(btf, t->name_off); 906 907 if (name && !strcmp(type_name, name)) 908 return i; 909 } 910 911 return libbpf_err(-ENOENT); 912 } 913 914 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 915 const char *type_name, __u32 kind) 916 { 917 __u32 i, nr_types = btf__type_cnt(btf); 918 919 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 920 return 0; 921 922 for (i = start_id; i < nr_types; i++) { 923 const struct btf_type *t = btf__type_by_id(btf, i); 924 const char *name; 925 926 if (btf_kind(t) != kind) 927 continue; 928 name = btf__name_by_offset(btf, t->name_off); 929 if (name && !strcmp(type_name, name)) 930 return i; 931 } 932 933 return libbpf_err(-ENOENT); 934 } 935 936 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 937 __u32 kind) 938 { 939 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 940 } 941 942 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 943 __u32 kind) 944 { 945 return btf_find_by_name_kind(btf, 1, type_name, kind); 946 } 947 948 static bool btf_is_modifiable(const struct btf *btf) 949 { 950 return (void *)btf->hdr != btf->raw_data; 951 } 952 953 void btf__free(struct btf *btf) 954 { 955 if (IS_ERR_OR_NULL(btf)) 956 return; 957 958 if (btf->fd >= 0) 959 close(btf->fd); 960 961 if (btf_is_modifiable(btf)) { 962 /* if BTF was modified after loading, it will have a split 963 * in-memory representation for header, types, and strings 964 * sections, so we need to free all of them individually. It 965 * might still have a cached contiguous raw data present, 966 * which will be unconditionally freed below. 967 */ 968 free(btf->hdr); 969 free(btf->types_data); 970 strset__free(btf->strs_set); 971 } 972 free(btf->raw_data); 973 free(btf->raw_data_swapped); 974 free(btf->type_offs); 975 if (btf->owns_base) 976 btf__free(btf->base_btf); 977 free(btf); 978 } 979 980 static struct btf *btf_new_empty(struct btf *base_btf) 981 { 982 struct btf *btf; 983 984 btf = calloc(1, sizeof(*btf)); 985 if (!btf) 986 return ERR_PTR(-ENOMEM); 987 988 btf->nr_types = 0; 989 btf->start_id = 1; 990 btf->start_str_off = 0; 991 btf->fd = -1; 992 btf->ptr_sz = sizeof(void *); 993 btf->swapped_endian = false; 994 995 if (base_btf) { 996 btf->base_btf = base_btf; 997 btf->start_id = btf__type_cnt(base_btf); 998 btf->start_str_off = base_btf->hdr->str_len; 999 btf->swapped_endian = base_btf->swapped_endian; 1000 } 1001 1002 /* +1 for empty string at offset 0 */ 1003 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 1004 btf->raw_data = calloc(1, btf->raw_size); 1005 if (!btf->raw_data) { 1006 free(btf); 1007 return ERR_PTR(-ENOMEM); 1008 } 1009 1010 btf->hdr = btf->raw_data; 1011 btf->hdr->hdr_len = sizeof(struct btf_header); 1012 btf->hdr->magic = BTF_MAGIC; 1013 btf->hdr->version = BTF_VERSION; 1014 1015 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 1016 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 1017 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 1018 1019 return btf; 1020 } 1021 1022 struct btf *btf__new_empty(void) 1023 { 1024 return libbpf_ptr(btf_new_empty(NULL)); 1025 } 1026 1027 struct btf *btf__new_empty_split(struct btf *base_btf) 1028 { 1029 return libbpf_ptr(btf_new_empty(base_btf)); 1030 } 1031 1032 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 1033 { 1034 struct btf *btf; 1035 int err; 1036 1037 btf = calloc(1, sizeof(struct btf)); 1038 if (!btf) 1039 return ERR_PTR(-ENOMEM); 1040 1041 btf->nr_types = 0; 1042 btf->start_id = 1; 1043 btf->start_str_off = 0; 1044 btf->fd = -1; 1045 1046 if (base_btf) { 1047 btf->base_btf = base_btf; 1048 btf->start_id = btf__type_cnt(base_btf); 1049 btf->start_str_off = base_btf->hdr->str_len; 1050 } 1051 1052 btf->raw_data = malloc(size); 1053 if (!btf->raw_data) { 1054 err = -ENOMEM; 1055 goto done; 1056 } 1057 memcpy(btf->raw_data, data, size); 1058 btf->raw_size = size; 1059 1060 btf->hdr = btf->raw_data; 1061 err = btf_parse_hdr(btf); 1062 if (err) 1063 goto done; 1064 1065 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 1066 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 1067 1068 err = btf_parse_str_sec(btf); 1069 err = err ?: btf_parse_type_sec(btf); 1070 err = err ?: btf_sanity_check(btf); 1071 if (err) 1072 goto done; 1073 1074 done: 1075 if (err) { 1076 btf__free(btf); 1077 return ERR_PTR(err); 1078 } 1079 1080 return btf; 1081 } 1082 1083 struct btf *btf__new(const void *data, __u32 size) 1084 { 1085 return libbpf_ptr(btf_new(data, size, NULL)); 1086 } 1087 1088 struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf) 1089 { 1090 return libbpf_ptr(btf_new(data, size, base_btf)); 1091 } 1092 1093 struct btf_elf_secs { 1094 Elf_Data *btf_data; 1095 Elf_Data *btf_ext_data; 1096 Elf_Data *btf_base_data; 1097 }; 1098 1099 static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs) 1100 { 1101 Elf_Scn *scn = NULL; 1102 Elf_Data *data; 1103 GElf_Ehdr ehdr; 1104 size_t shstrndx; 1105 int idx = 0; 1106 1107 if (!gelf_getehdr(elf, &ehdr)) { 1108 pr_warn("failed to get EHDR from %s\n", path); 1109 goto err; 1110 } 1111 1112 if (elf_getshdrstrndx(elf, &shstrndx)) { 1113 pr_warn("failed to get section names section index for %s\n", 1114 path); 1115 goto err; 1116 } 1117 1118 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 1119 pr_warn("failed to get e_shstrndx from %s\n", path); 1120 goto err; 1121 } 1122 1123 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1124 Elf_Data **field; 1125 GElf_Shdr sh; 1126 char *name; 1127 1128 idx++; 1129 if (gelf_getshdr(scn, &sh) != &sh) { 1130 pr_warn("failed to get section(%d) header from %s\n", 1131 idx, path); 1132 goto err; 1133 } 1134 name = elf_strptr(elf, shstrndx, sh.sh_name); 1135 if (!name) { 1136 pr_warn("failed to get section(%d) name from %s\n", 1137 idx, path); 1138 goto err; 1139 } 1140 1141 if (strcmp(name, BTF_ELF_SEC) == 0) 1142 field = &secs->btf_data; 1143 else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) 1144 field = &secs->btf_ext_data; 1145 else if (strcmp(name, BTF_BASE_ELF_SEC) == 0) 1146 field = &secs->btf_base_data; 1147 else 1148 continue; 1149 1150 data = elf_getdata(scn, 0); 1151 if (!data) { 1152 pr_warn("failed to get section(%d, %s) data from %s\n", 1153 idx, name, path); 1154 goto err; 1155 } 1156 *field = data; 1157 } 1158 1159 return 0; 1160 1161 err: 1162 return -LIBBPF_ERRNO__FORMAT; 1163 } 1164 1165 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 1166 struct btf_ext **btf_ext) 1167 { 1168 struct btf_elf_secs secs = {}; 1169 struct btf *dist_base_btf = NULL; 1170 struct btf *btf = NULL; 1171 int err = 0, fd = -1; 1172 Elf *elf = NULL; 1173 1174 if (elf_version(EV_CURRENT) == EV_NONE) { 1175 pr_warn("failed to init libelf for %s\n", path); 1176 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 1177 } 1178 1179 fd = open(path, O_RDONLY | O_CLOEXEC); 1180 if (fd < 0) { 1181 err = -errno; 1182 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 1183 return ERR_PTR(err); 1184 } 1185 1186 elf = elf_begin(fd, ELF_C_READ, NULL); 1187 if (!elf) { 1188 pr_warn("failed to open %s as ELF file\n", path); 1189 goto done; 1190 } 1191 1192 err = btf_find_elf_sections(elf, path, &secs); 1193 if (err) 1194 goto done; 1195 1196 if (!secs.btf_data) { 1197 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1198 err = -ENODATA; 1199 goto done; 1200 } 1201 1202 if (secs.btf_base_data) { 1203 dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size, 1204 NULL); 1205 if (IS_ERR(dist_base_btf)) { 1206 err = PTR_ERR(dist_base_btf); 1207 dist_base_btf = NULL; 1208 goto done; 1209 } 1210 } 1211 1212 btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size, 1213 dist_base_btf ?: base_btf); 1214 if (IS_ERR(btf)) { 1215 err = PTR_ERR(btf); 1216 goto done; 1217 } 1218 if (dist_base_btf && base_btf) { 1219 err = btf__relocate(btf, base_btf); 1220 if (err) 1221 goto done; 1222 btf__free(dist_base_btf); 1223 dist_base_btf = NULL; 1224 } 1225 1226 if (dist_base_btf) 1227 btf->owns_base = true; 1228 1229 switch (gelf_getclass(elf)) { 1230 case ELFCLASS32: 1231 btf__set_pointer_size(btf, 4); 1232 break; 1233 case ELFCLASS64: 1234 btf__set_pointer_size(btf, 8); 1235 break; 1236 default: 1237 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1238 break; 1239 } 1240 1241 if (btf_ext && secs.btf_ext_data) { 1242 *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size); 1243 if (IS_ERR(*btf_ext)) { 1244 err = PTR_ERR(*btf_ext); 1245 goto done; 1246 } 1247 } else if (btf_ext) { 1248 *btf_ext = NULL; 1249 } 1250 done: 1251 if (elf) 1252 elf_end(elf); 1253 close(fd); 1254 1255 if (!err) 1256 return btf; 1257 1258 if (btf_ext) 1259 btf_ext__free(*btf_ext); 1260 btf__free(dist_base_btf); 1261 btf__free(btf); 1262 1263 return ERR_PTR(err); 1264 } 1265 1266 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1267 { 1268 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1269 } 1270 1271 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1272 { 1273 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1274 } 1275 1276 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1277 { 1278 struct btf *btf = NULL; 1279 void *data = NULL; 1280 FILE *f = NULL; 1281 __u16 magic; 1282 int err = 0; 1283 long sz; 1284 1285 f = fopen(path, "rbe"); 1286 if (!f) { 1287 err = -errno; 1288 goto err_out; 1289 } 1290 1291 /* check BTF magic */ 1292 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1293 err = -EIO; 1294 goto err_out; 1295 } 1296 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1297 /* definitely not a raw BTF */ 1298 err = -EPROTO; 1299 goto err_out; 1300 } 1301 1302 /* get file size */ 1303 if (fseek(f, 0, SEEK_END)) { 1304 err = -errno; 1305 goto err_out; 1306 } 1307 sz = ftell(f); 1308 if (sz < 0) { 1309 err = -errno; 1310 goto err_out; 1311 } 1312 /* rewind to the start */ 1313 if (fseek(f, 0, SEEK_SET)) { 1314 err = -errno; 1315 goto err_out; 1316 } 1317 1318 /* pre-alloc memory and read all of BTF data */ 1319 data = malloc(sz); 1320 if (!data) { 1321 err = -ENOMEM; 1322 goto err_out; 1323 } 1324 if (fread(data, 1, sz, f) < sz) { 1325 err = -EIO; 1326 goto err_out; 1327 } 1328 1329 /* finally parse BTF data */ 1330 btf = btf_new(data, sz, base_btf); 1331 1332 err_out: 1333 free(data); 1334 if (f) 1335 fclose(f); 1336 return err ? ERR_PTR(err) : btf; 1337 } 1338 1339 struct btf *btf__parse_raw(const char *path) 1340 { 1341 return libbpf_ptr(btf_parse_raw(path, NULL)); 1342 } 1343 1344 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1345 { 1346 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1347 } 1348 1349 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1350 { 1351 struct btf *btf; 1352 int err; 1353 1354 if (btf_ext) 1355 *btf_ext = NULL; 1356 1357 btf = btf_parse_raw(path, base_btf); 1358 err = libbpf_get_error(btf); 1359 if (!err) 1360 return btf; 1361 if (err != -EPROTO) 1362 return ERR_PTR(err); 1363 return btf_parse_elf(path, base_btf, btf_ext); 1364 } 1365 1366 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1367 { 1368 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1369 } 1370 1371 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1372 { 1373 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1374 } 1375 1376 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1377 1378 int btf_load_into_kernel(struct btf *btf, 1379 char *log_buf, size_t log_sz, __u32 log_level, 1380 int token_fd) 1381 { 1382 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1383 __u32 buf_sz = 0, raw_size; 1384 char *buf = NULL, *tmp; 1385 void *raw_data; 1386 int err = 0; 1387 1388 if (btf->fd >= 0) 1389 return libbpf_err(-EEXIST); 1390 if (log_sz && !log_buf) 1391 return libbpf_err(-EINVAL); 1392 1393 /* cache native raw data representation */ 1394 raw_data = btf_get_raw_data(btf, &raw_size, false); 1395 if (!raw_data) { 1396 err = -ENOMEM; 1397 goto done; 1398 } 1399 btf->raw_size = raw_size; 1400 btf->raw_data = raw_data; 1401 1402 retry_load: 1403 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1404 * initially. Only if BTF loading fails, we bump log_level to 1 and 1405 * retry, using either auto-allocated or custom log_buf. This way 1406 * non-NULL custom log_buf provides a buffer just in case, but hopes 1407 * for successful load and no need for log_buf. 1408 */ 1409 if (log_level) { 1410 /* if caller didn't provide custom log_buf, we'll keep 1411 * allocating our own progressively bigger buffers for BTF 1412 * verification log 1413 */ 1414 if (!log_buf) { 1415 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1416 tmp = realloc(buf, buf_sz); 1417 if (!tmp) { 1418 err = -ENOMEM; 1419 goto done; 1420 } 1421 buf = tmp; 1422 buf[0] = '\0'; 1423 } 1424 1425 opts.log_buf = log_buf ? log_buf : buf; 1426 opts.log_size = log_buf ? log_sz : buf_sz; 1427 opts.log_level = log_level; 1428 } 1429 1430 opts.token_fd = token_fd; 1431 if (token_fd) 1432 opts.btf_flags |= BPF_F_TOKEN_FD; 1433 1434 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1435 if (btf->fd < 0) { 1436 /* time to turn on verbose mode and try again */ 1437 if (log_level == 0) { 1438 log_level = 1; 1439 goto retry_load; 1440 } 1441 /* only retry if caller didn't provide custom log_buf, but 1442 * make sure we can never overflow buf_sz 1443 */ 1444 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1445 goto retry_load; 1446 1447 err = -errno; 1448 pr_warn("BTF loading error: %d\n", err); 1449 /* don't print out contents of custom log_buf */ 1450 if (!log_buf && buf[0]) 1451 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1452 } 1453 1454 done: 1455 free(buf); 1456 return libbpf_err(err); 1457 } 1458 1459 int btf__load_into_kernel(struct btf *btf) 1460 { 1461 return btf_load_into_kernel(btf, NULL, 0, 0, 0); 1462 } 1463 1464 int btf__fd(const struct btf *btf) 1465 { 1466 return btf->fd; 1467 } 1468 1469 void btf__set_fd(struct btf *btf, int fd) 1470 { 1471 btf->fd = fd; 1472 } 1473 1474 static const void *btf_strs_data(const struct btf *btf) 1475 { 1476 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1477 } 1478 1479 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1480 { 1481 struct btf_header *hdr = btf->hdr; 1482 struct btf_type *t; 1483 void *data, *p; 1484 __u32 data_sz; 1485 int i; 1486 1487 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1488 if (data) { 1489 *size = btf->raw_size; 1490 return data; 1491 } 1492 1493 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1494 data = calloc(1, data_sz); 1495 if (!data) 1496 return NULL; 1497 p = data; 1498 1499 memcpy(p, hdr, hdr->hdr_len); 1500 if (swap_endian) 1501 btf_bswap_hdr(p); 1502 p += hdr->hdr_len; 1503 1504 memcpy(p, btf->types_data, hdr->type_len); 1505 if (swap_endian) { 1506 for (i = 0; i < btf->nr_types; i++) { 1507 t = p + btf->type_offs[i]; 1508 /* btf_bswap_type_rest() relies on native t->info, so 1509 * we swap base type info after we swapped all the 1510 * additional information 1511 */ 1512 if (btf_bswap_type_rest(t)) 1513 goto err_out; 1514 btf_bswap_type_base(t); 1515 } 1516 } 1517 p += hdr->type_len; 1518 1519 memcpy(p, btf_strs_data(btf), hdr->str_len); 1520 p += hdr->str_len; 1521 1522 *size = data_sz; 1523 return data; 1524 err_out: 1525 free(data); 1526 return NULL; 1527 } 1528 1529 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1530 { 1531 struct btf *btf = (struct btf *)btf_ro; 1532 __u32 data_sz; 1533 void *data; 1534 1535 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1536 if (!data) 1537 return errno = ENOMEM, NULL; 1538 1539 btf->raw_size = data_sz; 1540 if (btf->swapped_endian) 1541 btf->raw_data_swapped = data; 1542 else 1543 btf->raw_data = data; 1544 *size = data_sz; 1545 return data; 1546 } 1547 1548 __attribute__((alias("btf__raw_data"))) 1549 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1550 1551 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1552 { 1553 if (offset < btf->start_str_off) 1554 return btf__str_by_offset(btf->base_btf, offset); 1555 else if (offset - btf->start_str_off < btf->hdr->str_len) 1556 return btf_strs_data(btf) + (offset - btf->start_str_off); 1557 else 1558 return errno = EINVAL, NULL; 1559 } 1560 1561 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1562 { 1563 return btf__str_by_offset(btf, offset); 1564 } 1565 1566 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1567 { 1568 struct bpf_btf_info btf_info; 1569 __u32 len = sizeof(btf_info); 1570 __u32 last_size; 1571 struct btf *btf; 1572 void *ptr; 1573 int err; 1574 1575 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1576 * let's start with a sane default - 4KiB here - and resize it only if 1577 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1578 */ 1579 last_size = 4096; 1580 ptr = malloc(last_size); 1581 if (!ptr) 1582 return ERR_PTR(-ENOMEM); 1583 1584 memset(&btf_info, 0, sizeof(btf_info)); 1585 btf_info.btf = ptr_to_u64(ptr); 1586 btf_info.btf_size = last_size; 1587 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1588 1589 if (!err && btf_info.btf_size > last_size) { 1590 void *temp_ptr; 1591 1592 last_size = btf_info.btf_size; 1593 temp_ptr = realloc(ptr, last_size); 1594 if (!temp_ptr) { 1595 btf = ERR_PTR(-ENOMEM); 1596 goto exit_free; 1597 } 1598 ptr = temp_ptr; 1599 1600 len = sizeof(btf_info); 1601 memset(&btf_info, 0, sizeof(btf_info)); 1602 btf_info.btf = ptr_to_u64(ptr); 1603 btf_info.btf_size = last_size; 1604 1605 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1606 } 1607 1608 if (err || btf_info.btf_size > last_size) { 1609 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1610 goto exit_free; 1611 } 1612 1613 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1614 1615 exit_free: 1616 free(ptr); 1617 return btf; 1618 } 1619 1620 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1621 { 1622 struct btf *btf; 1623 int btf_fd; 1624 1625 btf_fd = bpf_btf_get_fd_by_id(id); 1626 if (btf_fd < 0) 1627 return libbpf_err_ptr(-errno); 1628 1629 btf = btf_get_from_fd(btf_fd, base_btf); 1630 close(btf_fd); 1631 1632 return libbpf_ptr(btf); 1633 } 1634 1635 struct btf *btf__load_from_kernel_by_id(__u32 id) 1636 { 1637 return btf__load_from_kernel_by_id_split(id, NULL); 1638 } 1639 1640 static void btf_invalidate_raw_data(struct btf *btf) 1641 { 1642 if (btf->raw_data) { 1643 free(btf->raw_data); 1644 btf->raw_data = NULL; 1645 } 1646 if (btf->raw_data_swapped) { 1647 free(btf->raw_data_swapped); 1648 btf->raw_data_swapped = NULL; 1649 } 1650 } 1651 1652 /* Ensure BTF is ready to be modified (by splitting into a three memory 1653 * regions for header, types, and strings). Also invalidate cached 1654 * raw_data, if any. 1655 */ 1656 static int btf_ensure_modifiable(struct btf *btf) 1657 { 1658 void *hdr, *types; 1659 struct strset *set = NULL; 1660 int err = -ENOMEM; 1661 1662 if (btf_is_modifiable(btf)) { 1663 /* any BTF modification invalidates raw_data */ 1664 btf_invalidate_raw_data(btf); 1665 return 0; 1666 } 1667 1668 /* split raw data into three memory regions */ 1669 hdr = malloc(btf->hdr->hdr_len); 1670 types = malloc(btf->hdr->type_len); 1671 if (!hdr || !types) 1672 goto err_out; 1673 1674 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1675 memcpy(types, btf->types_data, btf->hdr->type_len); 1676 1677 /* build lookup index for all strings */ 1678 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1679 if (IS_ERR(set)) { 1680 err = PTR_ERR(set); 1681 goto err_out; 1682 } 1683 1684 /* only when everything was successful, update internal state */ 1685 btf->hdr = hdr; 1686 btf->types_data = types; 1687 btf->types_data_cap = btf->hdr->type_len; 1688 btf->strs_data = NULL; 1689 btf->strs_set = set; 1690 /* if BTF was created from scratch, all strings are guaranteed to be 1691 * unique and deduplicated 1692 */ 1693 if (btf->hdr->str_len == 0) 1694 btf->strs_deduped = true; 1695 if (!btf->base_btf && btf->hdr->str_len == 1) 1696 btf->strs_deduped = true; 1697 1698 /* invalidate raw_data representation */ 1699 btf_invalidate_raw_data(btf); 1700 1701 return 0; 1702 1703 err_out: 1704 strset__free(set); 1705 free(hdr); 1706 free(types); 1707 return err; 1708 } 1709 1710 /* Find an offset in BTF string section that corresponds to a given string *s*. 1711 * Returns: 1712 * - >0 offset into string section, if string is found; 1713 * - -ENOENT, if string is not in the string section; 1714 * - <0, on any other error. 1715 */ 1716 int btf__find_str(struct btf *btf, const char *s) 1717 { 1718 int off; 1719 1720 if (btf->base_btf) { 1721 off = btf__find_str(btf->base_btf, s); 1722 if (off != -ENOENT) 1723 return off; 1724 } 1725 1726 /* BTF needs to be in a modifiable state to build string lookup index */ 1727 if (btf_ensure_modifiable(btf)) 1728 return libbpf_err(-ENOMEM); 1729 1730 off = strset__find_str(btf->strs_set, s); 1731 if (off < 0) 1732 return libbpf_err(off); 1733 1734 return btf->start_str_off + off; 1735 } 1736 1737 /* Add a string s to the BTF string section. 1738 * Returns: 1739 * - > 0 offset into string section, on success; 1740 * - < 0, on error. 1741 */ 1742 int btf__add_str(struct btf *btf, const char *s) 1743 { 1744 int off; 1745 1746 if (btf->base_btf) { 1747 off = btf__find_str(btf->base_btf, s); 1748 if (off != -ENOENT) 1749 return off; 1750 } 1751 1752 if (btf_ensure_modifiable(btf)) 1753 return libbpf_err(-ENOMEM); 1754 1755 off = strset__add_str(btf->strs_set, s); 1756 if (off < 0) 1757 return libbpf_err(off); 1758 1759 btf->hdr->str_len = strset__data_size(btf->strs_set); 1760 1761 return btf->start_str_off + off; 1762 } 1763 1764 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1765 { 1766 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1767 btf->hdr->type_len, UINT_MAX, add_sz); 1768 } 1769 1770 static void btf_type_inc_vlen(struct btf_type *t) 1771 { 1772 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1773 } 1774 1775 static int btf_commit_type(struct btf *btf, int data_sz) 1776 { 1777 int err; 1778 1779 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1780 if (err) 1781 return libbpf_err(err); 1782 1783 btf->hdr->type_len += data_sz; 1784 btf->hdr->str_off += data_sz; 1785 btf->nr_types++; 1786 return btf->start_id + btf->nr_types - 1; 1787 } 1788 1789 struct btf_pipe { 1790 const struct btf *src; 1791 struct btf *dst; 1792 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1793 }; 1794 1795 static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off) 1796 { 1797 long mapped_off; 1798 int off, err; 1799 1800 if (!*str_off) /* nothing to do for empty strings */ 1801 return 0; 1802 1803 if (p->str_off_map && 1804 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1805 *str_off = mapped_off; 1806 return 0; 1807 } 1808 1809 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1810 if (off < 0) 1811 return off; 1812 1813 /* Remember string mapping from src to dst. It avoids 1814 * performing expensive string comparisons. 1815 */ 1816 if (p->str_off_map) { 1817 err = hashmap__append(p->str_off_map, *str_off, off); 1818 if (err) 1819 return err; 1820 } 1821 1822 *str_off = off; 1823 return 0; 1824 } 1825 1826 static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type) 1827 { 1828 struct btf_field_iter it; 1829 struct btf_type *t; 1830 __u32 *str_off; 1831 int sz, err; 1832 1833 sz = btf_type_size(src_type); 1834 if (sz < 0) 1835 return libbpf_err(sz); 1836 1837 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1838 if (btf_ensure_modifiable(p->dst)) 1839 return libbpf_err(-ENOMEM); 1840 1841 t = btf_add_type_mem(p->dst, sz); 1842 if (!t) 1843 return libbpf_err(-ENOMEM); 1844 1845 memcpy(t, src_type, sz); 1846 1847 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1848 if (err) 1849 return libbpf_err(err); 1850 1851 while ((str_off = btf_field_iter_next(&it))) { 1852 err = btf_rewrite_str(p, str_off); 1853 if (err) 1854 return libbpf_err(err); 1855 } 1856 1857 return btf_commit_type(p->dst, sz); 1858 } 1859 1860 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1861 { 1862 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1863 1864 return btf_add_type(&p, src_type); 1865 } 1866 1867 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1868 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1869 1870 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1871 { 1872 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1873 int data_sz, sz, cnt, i, err, old_strs_len; 1874 __u32 *off; 1875 void *t; 1876 1877 /* appending split BTF isn't supported yet */ 1878 if (src_btf->base_btf) 1879 return libbpf_err(-ENOTSUP); 1880 1881 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1882 if (btf_ensure_modifiable(btf)) 1883 return libbpf_err(-ENOMEM); 1884 1885 /* remember original strings section size if we have to roll back 1886 * partial strings section changes 1887 */ 1888 old_strs_len = btf->hdr->str_len; 1889 1890 data_sz = src_btf->hdr->type_len; 1891 cnt = btf__type_cnt(src_btf) - 1; 1892 1893 /* pre-allocate enough memory for new types */ 1894 t = btf_add_type_mem(btf, data_sz); 1895 if (!t) 1896 return libbpf_err(-ENOMEM); 1897 1898 /* pre-allocate enough memory for type offset index for new types */ 1899 off = btf_add_type_offs_mem(btf, cnt); 1900 if (!off) 1901 return libbpf_err(-ENOMEM); 1902 1903 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1904 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1905 if (IS_ERR(p.str_off_map)) 1906 return libbpf_err(-ENOMEM); 1907 1908 /* bulk copy types data for all types from src_btf */ 1909 memcpy(t, src_btf->types_data, data_sz); 1910 1911 for (i = 0; i < cnt; i++) { 1912 struct btf_field_iter it; 1913 __u32 *type_id, *str_off; 1914 1915 sz = btf_type_size(t); 1916 if (sz < 0) { 1917 /* unlikely, has to be corrupted src_btf */ 1918 err = sz; 1919 goto err_out; 1920 } 1921 1922 /* fill out type ID to type offset mapping for lookups by type ID */ 1923 *off = t - btf->types_data; 1924 1925 /* add, dedup, and remap strings referenced by this BTF type */ 1926 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1927 if (err) 1928 goto err_out; 1929 while ((str_off = btf_field_iter_next(&it))) { 1930 err = btf_rewrite_str(&p, str_off); 1931 if (err) 1932 goto err_out; 1933 } 1934 1935 /* remap all type IDs referenced from this BTF type */ 1936 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 1937 if (err) 1938 goto err_out; 1939 1940 while ((type_id = btf_field_iter_next(&it))) { 1941 if (!*type_id) /* nothing to do for VOID references */ 1942 continue; 1943 1944 /* we haven't updated btf's type count yet, so 1945 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1946 * add to all newly added BTF types 1947 */ 1948 *type_id += btf->start_id + btf->nr_types - 1; 1949 } 1950 1951 /* go to next type data and type offset index entry */ 1952 t += sz; 1953 off++; 1954 } 1955 1956 /* Up until now any of the copied type data was effectively invisible, 1957 * so if we exited early before this point due to error, BTF would be 1958 * effectively unmodified. There would be extra internal memory 1959 * pre-allocated, but it would not be available for querying. But now 1960 * that we've copied and rewritten all the data successfully, we can 1961 * update type count and various internal offsets and sizes to 1962 * "commit" the changes and made them visible to the outside world. 1963 */ 1964 btf->hdr->type_len += data_sz; 1965 btf->hdr->str_off += data_sz; 1966 btf->nr_types += cnt; 1967 1968 hashmap__free(p.str_off_map); 1969 1970 /* return type ID of the first added BTF type */ 1971 return btf->start_id + btf->nr_types - cnt; 1972 err_out: 1973 /* zero out preallocated memory as if it was just allocated with 1974 * libbpf_add_mem() 1975 */ 1976 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1977 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1978 1979 /* and now restore original strings section size; types data size 1980 * wasn't modified, so doesn't need restoring, see big comment above 1981 */ 1982 btf->hdr->str_len = old_strs_len; 1983 1984 hashmap__free(p.str_off_map); 1985 1986 return libbpf_err(err); 1987 } 1988 1989 /* 1990 * Append new BTF_KIND_INT type with: 1991 * - *name* - non-empty, non-NULL type name; 1992 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1993 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1994 * Returns: 1995 * - >0, type ID of newly added BTF type; 1996 * - <0, on error. 1997 */ 1998 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1999 { 2000 struct btf_type *t; 2001 int sz, name_off; 2002 2003 /* non-empty name */ 2004 if (!name || !name[0]) 2005 return libbpf_err(-EINVAL); 2006 /* byte_sz must be power of 2 */ 2007 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 2008 return libbpf_err(-EINVAL); 2009 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 2010 return libbpf_err(-EINVAL); 2011 2012 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2013 if (btf_ensure_modifiable(btf)) 2014 return libbpf_err(-ENOMEM); 2015 2016 sz = sizeof(struct btf_type) + sizeof(int); 2017 t = btf_add_type_mem(btf, sz); 2018 if (!t) 2019 return libbpf_err(-ENOMEM); 2020 2021 /* if something goes wrong later, we might end up with an extra string, 2022 * but that shouldn't be a problem, because BTF can't be constructed 2023 * completely anyway and will most probably be just discarded 2024 */ 2025 name_off = btf__add_str(btf, name); 2026 if (name_off < 0) 2027 return name_off; 2028 2029 t->name_off = name_off; 2030 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 2031 t->size = byte_sz; 2032 /* set INT info, we don't allow setting legacy bit offset/size */ 2033 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 2034 2035 return btf_commit_type(btf, sz); 2036 } 2037 2038 /* 2039 * Append new BTF_KIND_FLOAT type with: 2040 * - *name* - non-empty, non-NULL type name; 2041 * - *sz* - size of the type, in bytes; 2042 * Returns: 2043 * - >0, type ID of newly added BTF type; 2044 * - <0, on error. 2045 */ 2046 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 2047 { 2048 struct btf_type *t; 2049 int sz, name_off; 2050 2051 /* non-empty name */ 2052 if (!name || !name[0]) 2053 return libbpf_err(-EINVAL); 2054 2055 /* byte_sz must be one of the explicitly allowed values */ 2056 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 2057 byte_sz != 16) 2058 return libbpf_err(-EINVAL); 2059 2060 if (btf_ensure_modifiable(btf)) 2061 return libbpf_err(-ENOMEM); 2062 2063 sz = sizeof(struct btf_type); 2064 t = btf_add_type_mem(btf, sz); 2065 if (!t) 2066 return libbpf_err(-ENOMEM); 2067 2068 name_off = btf__add_str(btf, name); 2069 if (name_off < 0) 2070 return name_off; 2071 2072 t->name_off = name_off; 2073 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 2074 t->size = byte_sz; 2075 2076 return btf_commit_type(btf, sz); 2077 } 2078 2079 /* it's completely legal to append BTF types with type IDs pointing forward to 2080 * types that haven't been appended yet, so we only make sure that id looks 2081 * sane, we can't guarantee that ID will always be valid 2082 */ 2083 static int validate_type_id(int id) 2084 { 2085 if (id < 0 || id > BTF_MAX_NR_TYPES) 2086 return -EINVAL; 2087 return 0; 2088 } 2089 2090 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 2091 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 2092 { 2093 struct btf_type *t; 2094 int sz, name_off = 0; 2095 2096 if (validate_type_id(ref_type_id)) 2097 return libbpf_err(-EINVAL); 2098 2099 if (btf_ensure_modifiable(btf)) 2100 return libbpf_err(-ENOMEM); 2101 2102 sz = sizeof(struct btf_type); 2103 t = btf_add_type_mem(btf, sz); 2104 if (!t) 2105 return libbpf_err(-ENOMEM); 2106 2107 if (name && name[0]) { 2108 name_off = btf__add_str(btf, name); 2109 if (name_off < 0) 2110 return name_off; 2111 } 2112 2113 t->name_off = name_off; 2114 t->info = btf_type_info(kind, 0, 0); 2115 t->type = ref_type_id; 2116 2117 return btf_commit_type(btf, sz); 2118 } 2119 2120 /* 2121 * Append new BTF_KIND_PTR type with: 2122 * - *ref_type_id* - referenced type ID, it might not exist yet; 2123 * Returns: 2124 * - >0, type ID of newly added BTF type; 2125 * - <0, on error. 2126 */ 2127 int btf__add_ptr(struct btf *btf, int ref_type_id) 2128 { 2129 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 2130 } 2131 2132 /* 2133 * Append new BTF_KIND_ARRAY type with: 2134 * - *index_type_id* - type ID of the type describing array index; 2135 * - *elem_type_id* - type ID of the type describing array element; 2136 * - *nr_elems* - the size of the array; 2137 * Returns: 2138 * - >0, type ID of newly added BTF type; 2139 * - <0, on error. 2140 */ 2141 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 2142 { 2143 struct btf_type *t; 2144 struct btf_array *a; 2145 int sz; 2146 2147 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 2148 return libbpf_err(-EINVAL); 2149 2150 if (btf_ensure_modifiable(btf)) 2151 return libbpf_err(-ENOMEM); 2152 2153 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 2154 t = btf_add_type_mem(btf, sz); 2155 if (!t) 2156 return libbpf_err(-ENOMEM); 2157 2158 t->name_off = 0; 2159 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 2160 t->size = 0; 2161 2162 a = btf_array(t); 2163 a->type = elem_type_id; 2164 a->index_type = index_type_id; 2165 a->nelems = nr_elems; 2166 2167 return btf_commit_type(btf, sz); 2168 } 2169 2170 /* generic STRUCT/UNION append function */ 2171 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 2172 { 2173 struct btf_type *t; 2174 int sz, name_off = 0; 2175 2176 if (btf_ensure_modifiable(btf)) 2177 return libbpf_err(-ENOMEM); 2178 2179 sz = sizeof(struct btf_type); 2180 t = btf_add_type_mem(btf, sz); 2181 if (!t) 2182 return libbpf_err(-ENOMEM); 2183 2184 if (name && name[0]) { 2185 name_off = btf__add_str(btf, name); 2186 if (name_off < 0) 2187 return name_off; 2188 } 2189 2190 /* start out with vlen=0 and no kflag; this will be adjusted when 2191 * adding each member 2192 */ 2193 t->name_off = name_off; 2194 t->info = btf_type_info(kind, 0, 0); 2195 t->size = bytes_sz; 2196 2197 return btf_commit_type(btf, sz); 2198 } 2199 2200 /* 2201 * Append new BTF_KIND_STRUCT type with: 2202 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2203 * - *byte_sz* - size of the struct, in bytes; 2204 * 2205 * Struct initially has no fields in it. Fields can be added by 2206 * btf__add_field() right after btf__add_struct() succeeds. 2207 * 2208 * Returns: 2209 * - >0, type ID of newly added BTF type; 2210 * - <0, on error. 2211 */ 2212 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2213 { 2214 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2215 } 2216 2217 /* 2218 * Append new BTF_KIND_UNION type with: 2219 * - *name* - name of the union, can be NULL or empty for anonymous union; 2220 * - *byte_sz* - size of the union, in bytes; 2221 * 2222 * Union initially has no fields in it. Fields can be added by 2223 * btf__add_field() right after btf__add_union() succeeds. All fields 2224 * should have *bit_offset* of 0. 2225 * 2226 * Returns: 2227 * - >0, type ID of newly added BTF type; 2228 * - <0, on error. 2229 */ 2230 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2231 { 2232 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2233 } 2234 2235 static struct btf_type *btf_last_type(struct btf *btf) 2236 { 2237 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2238 } 2239 2240 /* 2241 * Append new field for the current STRUCT/UNION type with: 2242 * - *name* - name of the field, can be NULL or empty for anonymous field; 2243 * - *type_id* - type ID for the type describing field type; 2244 * - *bit_offset* - bit offset of the start of the field within struct/union; 2245 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2246 * Returns: 2247 * - 0, on success; 2248 * - <0, on error. 2249 */ 2250 int btf__add_field(struct btf *btf, const char *name, int type_id, 2251 __u32 bit_offset, __u32 bit_size) 2252 { 2253 struct btf_type *t; 2254 struct btf_member *m; 2255 bool is_bitfield; 2256 int sz, name_off = 0; 2257 2258 /* last type should be union/struct */ 2259 if (btf->nr_types == 0) 2260 return libbpf_err(-EINVAL); 2261 t = btf_last_type(btf); 2262 if (!btf_is_composite(t)) 2263 return libbpf_err(-EINVAL); 2264 2265 if (validate_type_id(type_id)) 2266 return libbpf_err(-EINVAL); 2267 /* best-effort bit field offset/size enforcement */ 2268 is_bitfield = bit_size || (bit_offset % 8 != 0); 2269 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2270 return libbpf_err(-EINVAL); 2271 2272 /* only offset 0 is allowed for unions */ 2273 if (btf_is_union(t) && bit_offset) 2274 return libbpf_err(-EINVAL); 2275 2276 /* decompose and invalidate raw data */ 2277 if (btf_ensure_modifiable(btf)) 2278 return libbpf_err(-ENOMEM); 2279 2280 sz = sizeof(struct btf_member); 2281 m = btf_add_type_mem(btf, sz); 2282 if (!m) 2283 return libbpf_err(-ENOMEM); 2284 2285 if (name && name[0]) { 2286 name_off = btf__add_str(btf, name); 2287 if (name_off < 0) 2288 return name_off; 2289 } 2290 2291 m->name_off = name_off; 2292 m->type = type_id; 2293 m->offset = bit_offset | (bit_size << 24); 2294 2295 /* btf_add_type_mem can invalidate t pointer */ 2296 t = btf_last_type(btf); 2297 /* update parent type's vlen and kflag */ 2298 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2299 2300 btf->hdr->type_len += sz; 2301 btf->hdr->str_off += sz; 2302 return 0; 2303 } 2304 2305 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2306 bool is_signed, __u8 kind) 2307 { 2308 struct btf_type *t; 2309 int sz, name_off = 0; 2310 2311 /* byte_sz must be power of 2 */ 2312 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2313 return libbpf_err(-EINVAL); 2314 2315 if (btf_ensure_modifiable(btf)) 2316 return libbpf_err(-ENOMEM); 2317 2318 sz = sizeof(struct btf_type); 2319 t = btf_add_type_mem(btf, sz); 2320 if (!t) 2321 return libbpf_err(-ENOMEM); 2322 2323 if (name && name[0]) { 2324 name_off = btf__add_str(btf, name); 2325 if (name_off < 0) 2326 return name_off; 2327 } 2328 2329 /* start out with vlen=0; it will be adjusted when adding enum values */ 2330 t->name_off = name_off; 2331 t->info = btf_type_info(kind, 0, is_signed); 2332 t->size = byte_sz; 2333 2334 return btf_commit_type(btf, sz); 2335 } 2336 2337 /* 2338 * Append new BTF_KIND_ENUM type with: 2339 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2340 * - *byte_sz* - size of the enum, in bytes. 2341 * 2342 * Enum initially has no enum values in it (and corresponds to enum forward 2343 * declaration). Enumerator values can be added by btf__add_enum_value() 2344 * immediately after btf__add_enum() succeeds. 2345 * 2346 * Returns: 2347 * - >0, type ID of newly added BTF type; 2348 * - <0, on error. 2349 */ 2350 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2351 { 2352 /* 2353 * set the signedness to be unsigned, it will change to signed 2354 * if any later enumerator is negative. 2355 */ 2356 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2357 } 2358 2359 /* 2360 * Append new enum value for the current ENUM type with: 2361 * - *name* - name of the enumerator value, can't be NULL or empty; 2362 * - *value* - integer value corresponding to enum value *name*; 2363 * Returns: 2364 * - 0, on success; 2365 * - <0, on error. 2366 */ 2367 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2368 { 2369 struct btf_type *t; 2370 struct btf_enum *v; 2371 int sz, name_off; 2372 2373 /* last type should be BTF_KIND_ENUM */ 2374 if (btf->nr_types == 0) 2375 return libbpf_err(-EINVAL); 2376 t = btf_last_type(btf); 2377 if (!btf_is_enum(t)) 2378 return libbpf_err(-EINVAL); 2379 2380 /* non-empty name */ 2381 if (!name || !name[0]) 2382 return libbpf_err(-EINVAL); 2383 if (value < INT_MIN || value > UINT_MAX) 2384 return libbpf_err(-E2BIG); 2385 2386 /* decompose and invalidate raw data */ 2387 if (btf_ensure_modifiable(btf)) 2388 return libbpf_err(-ENOMEM); 2389 2390 sz = sizeof(struct btf_enum); 2391 v = btf_add_type_mem(btf, sz); 2392 if (!v) 2393 return libbpf_err(-ENOMEM); 2394 2395 name_off = btf__add_str(btf, name); 2396 if (name_off < 0) 2397 return name_off; 2398 2399 v->name_off = name_off; 2400 v->val = value; 2401 2402 /* update parent type's vlen */ 2403 t = btf_last_type(btf); 2404 btf_type_inc_vlen(t); 2405 2406 /* if negative value, set signedness to signed */ 2407 if (value < 0) 2408 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2409 2410 btf->hdr->type_len += sz; 2411 btf->hdr->str_off += sz; 2412 return 0; 2413 } 2414 2415 /* 2416 * Append new BTF_KIND_ENUM64 type with: 2417 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2418 * - *byte_sz* - size of the enum, in bytes. 2419 * - *is_signed* - whether the enum values are signed or not; 2420 * 2421 * Enum initially has no enum values in it (and corresponds to enum forward 2422 * declaration). Enumerator values can be added by btf__add_enum64_value() 2423 * immediately after btf__add_enum64() succeeds. 2424 * 2425 * Returns: 2426 * - >0, type ID of newly added BTF type; 2427 * - <0, on error. 2428 */ 2429 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2430 bool is_signed) 2431 { 2432 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2433 BTF_KIND_ENUM64); 2434 } 2435 2436 /* 2437 * Append new enum value for the current ENUM64 type with: 2438 * - *name* - name of the enumerator value, can't be NULL or empty; 2439 * - *value* - integer value corresponding to enum value *name*; 2440 * Returns: 2441 * - 0, on success; 2442 * - <0, on error. 2443 */ 2444 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2445 { 2446 struct btf_enum64 *v; 2447 struct btf_type *t; 2448 int sz, name_off; 2449 2450 /* last type should be BTF_KIND_ENUM64 */ 2451 if (btf->nr_types == 0) 2452 return libbpf_err(-EINVAL); 2453 t = btf_last_type(btf); 2454 if (!btf_is_enum64(t)) 2455 return libbpf_err(-EINVAL); 2456 2457 /* non-empty name */ 2458 if (!name || !name[0]) 2459 return libbpf_err(-EINVAL); 2460 2461 /* decompose and invalidate raw data */ 2462 if (btf_ensure_modifiable(btf)) 2463 return libbpf_err(-ENOMEM); 2464 2465 sz = sizeof(struct btf_enum64); 2466 v = btf_add_type_mem(btf, sz); 2467 if (!v) 2468 return libbpf_err(-ENOMEM); 2469 2470 name_off = btf__add_str(btf, name); 2471 if (name_off < 0) 2472 return name_off; 2473 2474 v->name_off = name_off; 2475 v->val_lo32 = (__u32)value; 2476 v->val_hi32 = value >> 32; 2477 2478 /* update parent type's vlen */ 2479 t = btf_last_type(btf); 2480 btf_type_inc_vlen(t); 2481 2482 btf->hdr->type_len += sz; 2483 btf->hdr->str_off += sz; 2484 return 0; 2485 } 2486 2487 /* 2488 * Append new BTF_KIND_FWD type with: 2489 * - *name*, non-empty/non-NULL name; 2490 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2491 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2492 * Returns: 2493 * - >0, type ID of newly added BTF type; 2494 * - <0, on error. 2495 */ 2496 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2497 { 2498 if (!name || !name[0]) 2499 return libbpf_err(-EINVAL); 2500 2501 switch (fwd_kind) { 2502 case BTF_FWD_STRUCT: 2503 case BTF_FWD_UNION: { 2504 struct btf_type *t; 2505 int id; 2506 2507 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2508 if (id <= 0) 2509 return id; 2510 t = btf_type_by_id(btf, id); 2511 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2512 return id; 2513 } 2514 case BTF_FWD_ENUM: 2515 /* enum forward in BTF currently is just an enum with no enum 2516 * values; we also assume a standard 4-byte size for it 2517 */ 2518 return btf__add_enum(btf, name, sizeof(int)); 2519 default: 2520 return libbpf_err(-EINVAL); 2521 } 2522 } 2523 2524 /* 2525 * Append new BTF_KING_TYPEDEF type with: 2526 * - *name*, non-empty/non-NULL name; 2527 * - *ref_type_id* - referenced type ID, it might not exist yet; 2528 * Returns: 2529 * - >0, type ID of newly added BTF type; 2530 * - <0, on error. 2531 */ 2532 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2533 { 2534 if (!name || !name[0]) 2535 return libbpf_err(-EINVAL); 2536 2537 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2538 } 2539 2540 /* 2541 * Append new BTF_KIND_VOLATILE type with: 2542 * - *ref_type_id* - referenced type ID, it might not exist yet; 2543 * Returns: 2544 * - >0, type ID of newly added BTF type; 2545 * - <0, on error. 2546 */ 2547 int btf__add_volatile(struct btf *btf, int ref_type_id) 2548 { 2549 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2550 } 2551 2552 /* 2553 * Append new BTF_KIND_CONST type with: 2554 * - *ref_type_id* - referenced type ID, it might not exist yet; 2555 * Returns: 2556 * - >0, type ID of newly added BTF type; 2557 * - <0, on error. 2558 */ 2559 int btf__add_const(struct btf *btf, int ref_type_id) 2560 { 2561 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2562 } 2563 2564 /* 2565 * Append new BTF_KIND_RESTRICT type with: 2566 * - *ref_type_id* - referenced type ID, it might not exist yet; 2567 * Returns: 2568 * - >0, type ID of newly added BTF type; 2569 * - <0, on error. 2570 */ 2571 int btf__add_restrict(struct btf *btf, int ref_type_id) 2572 { 2573 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2574 } 2575 2576 /* 2577 * Append new BTF_KIND_TYPE_TAG type with: 2578 * - *value*, non-empty/non-NULL tag value; 2579 * - *ref_type_id* - referenced type ID, it might not exist yet; 2580 * Returns: 2581 * - >0, type ID of newly added BTF type; 2582 * - <0, on error. 2583 */ 2584 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2585 { 2586 if (!value || !value[0]) 2587 return libbpf_err(-EINVAL); 2588 2589 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2590 } 2591 2592 /* 2593 * Append new BTF_KIND_FUNC type with: 2594 * - *name*, non-empty/non-NULL name; 2595 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2596 * Returns: 2597 * - >0, type ID of newly added BTF type; 2598 * - <0, on error. 2599 */ 2600 int btf__add_func(struct btf *btf, const char *name, 2601 enum btf_func_linkage linkage, int proto_type_id) 2602 { 2603 int id; 2604 2605 if (!name || !name[0]) 2606 return libbpf_err(-EINVAL); 2607 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2608 linkage != BTF_FUNC_EXTERN) 2609 return libbpf_err(-EINVAL); 2610 2611 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2612 if (id > 0) { 2613 struct btf_type *t = btf_type_by_id(btf, id); 2614 2615 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2616 } 2617 return libbpf_err(id); 2618 } 2619 2620 /* 2621 * Append new BTF_KIND_FUNC_PROTO with: 2622 * - *ret_type_id* - type ID for return result of a function. 2623 * 2624 * Function prototype initially has no arguments, but they can be added by 2625 * btf__add_func_param() one by one, immediately after 2626 * btf__add_func_proto() succeeded. 2627 * 2628 * Returns: 2629 * - >0, type ID of newly added BTF type; 2630 * - <0, on error. 2631 */ 2632 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2633 { 2634 struct btf_type *t; 2635 int sz; 2636 2637 if (validate_type_id(ret_type_id)) 2638 return libbpf_err(-EINVAL); 2639 2640 if (btf_ensure_modifiable(btf)) 2641 return libbpf_err(-ENOMEM); 2642 2643 sz = sizeof(struct btf_type); 2644 t = btf_add_type_mem(btf, sz); 2645 if (!t) 2646 return libbpf_err(-ENOMEM); 2647 2648 /* start out with vlen=0; this will be adjusted when adding enum 2649 * values, if necessary 2650 */ 2651 t->name_off = 0; 2652 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2653 t->type = ret_type_id; 2654 2655 return btf_commit_type(btf, sz); 2656 } 2657 2658 /* 2659 * Append new function parameter for current FUNC_PROTO type with: 2660 * - *name* - parameter name, can be NULL or empty; 2661 * - *type_id* - type ID describing the type of the parameter. 2662 * Returns: 2663 * - 0, on success; 2664 * - <0, on error. 2665 */ 2666 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2667 { 2668 struct btf_type *t; 2669 struct btf_param *p; 2670 int sz, name_off = 0; 2671 2672 if (validate_type_id(type_id)) 2673 return libbpf_err(-EINVAL); 2674 2675 /* last type should be BTF_KIND_FUNC_PROTO */ 2676 if (btf->nr_types == 0) 2677 return libbpf_err(-EINVAL); 2678 t = btf_last_type(btf); 2679 if (!btf_is_func_proto(t)) 2680 return libbpf_err(-EINVAL); 2681 2682 /* decompose and invalidate raw data */ 2683 if (btf_ensure_modifiable(btf)) 2684 return libbpf_err(-ENOMEM); 2685 2686 sz = sizeof(struct btf_param); 2687 p = btf_add_type_mem(btf, sz); 2688 if (!p) 2689 return libbpf_err(-ENOMEM); 2690 2691 if (name && name[0]) { 2692 name_off = btf__add_str(btf, name); 2693 if (name_off < 0) 2694 return name_off; 2695 } 2696 2697 p->name_off = name_off; 2698 p->type = type_id; 2699 2700 /* update parent type's vlen */ 2701 t = btf_last_type(btf); 2702 btf_type_inc_vlen(t); 2703 2704 btf->hdr->type_len += sz; 2705 btf->hdr->str_off += sz; 2706 return 0; 2707 } 2708 2709 /* 2710 * Append new BTF_KIND_VAR type with: 2711 * - *name* - non-empty/non-NULL name; 2712 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2713 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2714 * - *type_id* - type ID of the type describing the type of the variable. 2715 * Returns: 2716 * - >0, type ID of newly added BTF type; 2717 * - <0, on error. 2718 */ 2719 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2720 { 2721 struct btf_type *t; 2722 struct btf_var *v; 2723 int sz, name_off; 2724 2725 /* non-empty name */ 2726 if (!name || !name[0]) 2727 return libbpf_err(-EINVAL); 2728 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2729 linkage != BTF_VAR_GLOBAL_EXTERN) 2730 return libbpf_err(-EINVAL); 2731 if (validate_type_id(type_id)) 2732 return libbpf_err(-EINVAL); 2733 2734 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2735 if (btf_ensure_modifiable(btf)) 2736 return libbpf_err(-ENOMEM); 2737 2738 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2739 t = btf_add_type_mem(btf, sz); 2740 if (!t) 2741 return libbpf_err(-ENOMEM); 2742 2743 name_off = btf__add_str(btf, name); 2744 if (name_off < 0) 2745 return name_off; 2746 2747 t->name_off = name_off; 2748 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2749 t->type = type_id; 2750 2751 v = btf_var(t); 2752 v->linkage = linkage; 2753 2754 return btf_commit_type(btf, sz); 2755 } 2756 2757 /* 2758 * Append new BTF_KIND_DATASEC type with: 2759 * - *name* - non-empty/non-NULL name; 2760 * - *byte_sz* - data section size, in bytes. 2761 * 2762 * Data section is initially empty. Variables info can be added with 2763 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2764 * 2765 * Returns: 2766 * - >0, type ID of newly added BTF type; 2767 * - <0, on error. 2768 */ 2769 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2770 { 2771 struct btf_type *t; 2772 int sz, name_off; 2773 2774 /* non-empty name */ 2775 if (!name || !name[0]) 2776 return libbpf_err(-EINVAL); 2777 2778 if (btf_ensure_modifiable(btf)) 2779 return libbpf_err(-ENOMEM); 2780 2781 sz = sizeof(struct btf_type); 2782 t = btf_add_type_mem(btf, sz); 2783 if (!t) 2784 return libbpf_err(-ENOMEM); 2785 2786 name_off = btf__add_str(btf, name); 2787 if (name_off < 0) 2788 return name_off; 2789 2790 /* start with vlen=0, which will be update as var_secinfos are added */ 2791 t->name_off = name_off; 2792 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2793 t->size = byte_sz; 2794 2795 return btf_commit_type(btf, sz); 2796 } 2797 2798 /* 2799 * Append new data section variable information entry for current DATASEC type: 2800 * - *var_type_id* - type ID, describing type of the variable; 2801 * - *offset* - variable offset within data section, in bytes; 2802 * - *byte_sz* - variable size, in bytes. 2803 * 2804 * Returns: 2805 * - 0, on success; 2806 * - <0, on error. 2807 */ 2808 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2809 { 2810 struct btf_type *t; 2811 struct btf_var_secinfo *v; 2812 int sz; 2813 2814 /* last type should be BTF_KIND_DATASEC */ 2815 if (btf->nr_types == 0) 2816 return libbpf_err(-EINVAL); 2817 t = btf_last_type(btf); 2818 if (!btf_is_datasec(t)) 2819 return libbpf_err(-EINVAL); 2820 2821 if (validate_type_id(var_type_id)) 2822 return libbpf_err(-EINVAL); 2823 2824 /* decompose and invalidate raw data */ 2825 if (btf_ensure_modifiable(btf)) 2826 return libbpf_err(-ENOMEM); 2827 2828 sz = sizeof(struct btf_var_secinfo); 2829 v = btf_add_type_mem(btf, sz); 2830 if (!v) 2831 return libbpf_err(-ENOMEM); 2832 2833 v->type = var_type_id; 2834 v->offset = offset; 2835 v->size = byte_sz; 2836 2837 /* update parent type's vlen */ 2838 t = btf_last_type(btf); 2839 btf_type_inc_vlen(t); 2840 2841 btf->hdr->type_len += sz; 2842 btf->hdr->str_off += sz; 2843 return 0; 2844 } 2845 2846 /* 2847 * Append new BTF_KIND_DECL_TAG type with: 2848 * - *value* - non-empty/non-NULL string; 2849 * - *ref_type_id* - referenced type ID, it might not exist yet; 2850 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2851 * member or function argument index; 2852 * Returns: 2853 * - >0, type ID of newly added BTF type; 2854 * - <0, on error. 2855 */ 2856 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2857 int component_idx) 2858 { 2859 struct btf_type *t; 2860 int sz, value_off; 2861 2862 if (!value || !value[0] || component_idx < -1) 2863 return libbpf_err(-EINVAL); 2864 2865 if (validate_type_id(ref_type_id)) 2866 return libbpf_err(-EINVAL); 2867 2868 if (btf_ensure_modifiable(btf)) 2869 return libbpf_err(-ENOMEM); 2870 2871 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2872 t = btf_add_type_mem(btf, sz); 2873 if (!t) 2874 return libbpf_err(-ENOMEM); 2875 2876 value_off = btf__add_str(btf, value); 2877 if (value_off < 0) 2878 return value_off; 2879 2880 t->name_off = value_off; 2881 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2882 t->type = ref_type_id; 2883 btf_decl_tag(t)->component_idx = component_idx; 2884 2885 return btf_commit_type(btf, sz); 2886 } 2887 2888 struct btf_ext_sec_setup_param { 2889 __u32 off; 2890 __u32 len; 2891 __u32 min_rec_size; 2892 struct btf_ext_info *ext_info; 2893 const char *desc; 2894 }; 2895 2896 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2897 struct btf_ext_sec_setup_param *ext_sec) 2898 { 2899 const struct btf_ext_info_sec *sinfo; 2900 struct btf_ext_info *ext_info; 2901 __u32 info_left, record_size; 2902 size_t sec_cnt = 0; 2903 /* The start of the info sec (including the __u32 record_size). */ 2904 void *info; 2905 2906 if (ext_sec->len == 0) 2907 return 0; 2908 2909 if (ext_sec->off & 0x03) { 2910 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2911 ext_sec->desc); 2912 return -EINVAL; 2913 } 2914 2915 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2916 info_left = ext_sec->len; 2917 2918 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2919 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2920 ext_sec->desc, ext_sec->off, ext_sec->len); 2921 return -EINVAL; 2922 } 2923 2924 /* At least a record size */ 2925 if (info_left < sizeof(__u32)) { 2926 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2927 return -EINVAL; 2928 } 2929 2930 /* The record size needs to meet the minimum standard */ 2931 record_size = *(__u32 *)info; 2932 if (record_size < ext_sec->min_rec_size || 2933 record_size & 0x03) { 2934 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2935 ext_sec->desc, record_size); 2936 return -EINVAL; 2937 } 2938 2939 sinfo = info + sizeof(__u32); 2940 info_left -= sizeof(__u32); 2941 2942 /* If no records, return failure now so .BTF.ext won't be used. */ 2943 if (!info_left) { 2944 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2945 return -EINVAL; 2946 } 2947 2948 while (info_left) { 2949 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2950 __u64 total_record_size; 2951 __u32 num_records; 2952 2953 if (info_left < sec_hdrlen) { 2954 pr_debug("%s section header is not found in .BTF.ext\n", 2955 ext_sec->desc); 2956 return -EINVAL; 2957 } 2958 2959 num_records = sinfo->num_info; 2960 if (num_records == 0) { 2961 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2962 ext_sec->desc); 2963 return -EINVAL; 2964 } 2965 2966 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2967 if (info_left < total_record_size) { 2968 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2969 ext_sec->desc); 2970 return -EINVAL; 2971 } 2972 2973 info_left -= total_record_size; 2974 sinfo = (void *)sinfo + total_record_size; 2975 sec_cnt++; 2976 } 2977 2978 ext_info = ext_sec->ext_info; 2979 ext_info->len = ext_sec->len - sizeof(__u32); 2980 ext_info->rec_size = record_size; 2981 ext_info->info = info + sizeof(__u32); 2982 ext_info->sec_cnt = sec_cnt; 2983 2984 return 0; 2985 } 2986 2987 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2988 { 2989 struct btf_ext_sec_setup_param param = { 2990 .off = btf_ext->hdr->func_info_off, 2991 .len = btf_ext->hdr->func_info_len, 2992 .min_rec_size = sizeof(struct bpf_func_info_min), 2993 .ext_info = &btf_ext->func_info, 2994 .desc = "func_info" 2995 }; 2996 2997 return btf_ext_setup_info(btf_ext, ¶m); 2998 } 2999 3000 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 3001 { 3002 struct btf_ext_sec_setup_param param = { 3003 .off = btf_ext->hdr->line_info_off, 3004 .len = btf_ext->hdr->line_info_len, 3005 .min_rec_size = sizeof(struct bpf_line_info_min), 3006 .ext_info = &btf_ext->line_info, 3007 .desc = "line_info", 3008 }; 3009 3010 return btf_ext_setup_info(btf_ext, ¶m); 3011 } 3012 3013 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 3014 { 3015 struct btf_ext_sec_setup_param param = { 3016 .off = btf_ext->hdr->core_relo_off, 3017 .len = btf_ext->hdr->core_relo_len, 3018 .min_rec_size = sizeof(struct bpf_core_relo), 3019 .ext_info = &btf_ext->core_relo_info, 3020 .desc = "core_relo", 3021 }; 3022 3023 return btf_ext_setup_info(btf_ext, ¶m); 3024 } 3025 3026 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 3027 { 3028 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 3029 3030 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 3031 data_size < hdr->hdr_len) { 3032 pr_debug("BTF.ext header not found"); 3033 return -EINVAL; 3034 } 3035 3036 if (hdr->magic == bswap_16(BTF_MAGIC)) { 3037 pr_warn("BTF.ext in non-native endianness is not supported\n"); 3038 return -ENOTSUP; 3039 } else if (hdr->magic != BTF_MAGIC) { 3040 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 3041 return -EINVAL; 3042 } 3043 3044 if (hdr->version != BTF_VERSION) { 3045 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 3046 return -ENOTSUP; 3047 } 3048 3049 if (hdr->flags) { 3050 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 3051 return -ENOTSUP; 3052 } 3053 3054 if (data_size == hdr->hdr_len) { 3055 pr_debug("BTF.ext has no data\n"); 3056 return -EINVAL; 3057 } 3058 3059 return 0; 3060 } 3061 3062 void btf_ext__free(struct btf_ext *btf_ext) 3063 { 3064 if (IS_ERR_OR_NULL(btf_ext)) 3065 return; 3066 free(btf_ext->func_info.sec_idxs); 3067 free(btf_ext->line_info.sec_idxs); 3068 free(btf_ext->core_relo_info.sec_idxs); 3069 free(btf_ext->data); 3070 free(btf_ext); 3071 } 3072 3073 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 3074 { 3075 struct btf_ext *btf_ext; 3076 int err; 3077 3078 btf_ext = calloc(1, sizeof(struct btf_ext)); 3079 if (!btf_ext) 3080 return libbpf_err_ptr(-ENOMEM); 3081 3082 btf_ext->data_size = size; 3083 btf_ext->data = malloc(size); 3084 if (!btf_ext->data) { 3085 err = -ENOMEM; 3086 goto done; 3087 } 3088 memcpy(btf_ext->data, data, size); 3089 3090 err = btf_ext_parse_hdr(btf_ext->data, size); 3091 if (err) 3092 goto done; 3093 3094 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 3095 err = -EINVAL; 3096 goto done; 3097 } 3098 3099 err = btf_ext_setup_func_info(btf_ext); 3100 if (err) 3101 goto done; 3102 3103 err = btf_ext_setup_line_info(btf_ext); 3104 if (err) 3105 goto done; 3106 3107 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3108 goto done; /* skip core relos parsing */ 3109 3110 err = btf_ext_setup_core_relos(btf_ext); 3111 if (err) 3112 goto done; 3113 3114 done: 3115 if (err) { 3116 btf_ext__free(btf_ext); 3117 return libbpf_err_ptr(err); 3118 } 3119 3120 return btf_ext; 3121 } 3122 3123 const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size) 3124 { 3125 *size = btf_ext->data_size; 3126 return btf_ext->data; 3127 } 3128 3129 __attribute__((alias("btf_ext__raw_data"))) 3130 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size); 3131 3132 3133 struct btf_dedup; 3134 3135 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 3136 static void btf_dedup_free(struct btf_dedup *d); 3137 static int btf_dedup_prep(struct btf_dedup *d); 3138 static int btf_dedup_strings(struct btf_dedup *d); 3139 static int btf_dedup_prim_types(struct btf_dedup *d); 3140 static int btf_dedup_struct_types(struct btf_dedup *d); 3141 static int btf_dedup_ref_types(struct btf_dedup *d); 3142 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 3143 static int btf_dedup_compact_types(struct btf_dedup *d); 3144 static int btf_dedup_remap_types(struct btf_dedup *d); 3145 3146 /* 3147 * Deduplicate BTF types and strings. 3148 * 3149 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 3150 * section with all BTF type descriptors and string data. It overwrites that 3151 * memory in-place with deduplicated types and strings without any loss of 3152 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 3153 * is provided, all the strings referenced from .BTF.ext section are honored 3154 * and updated to point to the right offsets after deduplication. 3155 * 3156 * If function returns with error, type/string data might be garbled and should 3157 * be discarded. 3158 * 3159 * More verbose and detailed description of both problem btf_dedup is solving, 3160 * as well as solution could be found at: 3161 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 3162 * 3163 * Problem description and justification 3164 * ===================================== 3165 * 3166 * BTF type information is typically emitted either as a result of conversion 3167 * from DWARF to BTF or directly by compiler. In both cases, each compilation 3168 * unit contains information about a subset of all the types that are used 3169 * in an application. These subsets are frequently overlapping and contain a lot 3170 * of duplicated information when later concatenated together into a single 3171 * binary. This algorithm ensures that each unique type is represented by single 3172 * BTF type descriptor, greatly reducing resulting size of BTF data. 3173 * 3174 * Compilation unit isolation and subsequent duplication of data is not the only 3175 * problem. The same type hierarchy (e.g., struct and all the type that struct 3176 * references) in different compilation units can be represented in BTF to 3177 * various degrees of completeness (or, rather, incompleteness) due to 3178 * struct/union forward declarations. 3179 * 3180 * Let's take a look at an example, that we'll use to better understand the 3181 * problem (and solution). Suppose we have two compilation units, each using 3182 * same `struct S`, but each of them having incomplete type information about 3183 * struct's fields: 3184 * 3185 * // CU #1: 3186 * struct S; 3187 * struct A { 3188 * int a; 3189 * struct A* self; 3190 * struct S* parent; 3191 * }; 3192 * struct B; 3193 * struct S { 3194 * struct A* a_ptr; 3195 * struct B* b_ptr; 3196 * }; 3197 * 3198 * // CU #2: 3199 * struct S; 3200 * struct A; 3201 * struct B { 3202 * int b; 3203 * struct B* self; 3204 * struct S* parent; 3205 * }; 3206 * struct S { 3207 * struct A* a_ptr; 3208 * struct B* b_ptr; 3209 * }; 3210 * 3211 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3212 * more), but will know the complete type information about `struct A`. While 3213 * for CU #2, it will know full type information about `struct B`, but will 3214 * only know about forward declaration of `struct A` (in BTF terms, it will 3215 * have `BTF_KIND_FWD` type descriptor with name `B`). 3216 * 3217 * This compilation unit isolation means that it's possible that there is no 3218 * single CU with complete type information describing structs `S`, `A`, and 3219 * `B`. Also, we might get tons of duplicated and redundant type information. 3220 * 3221 * Additional complication we need to keep in mind comes from the fact that 3222 * types, in general, can form graphs containing cycles, not just DAGs. 3223 * 3224 * While algorithm does deduplication, it also merges and resolves type 3225 * information (unless disabled throught `struct btf_opts`), whenever possible. 3226 * E.g., in the example above with two compilation units having partial type 3227 * information for structs `A` and `B`, the output of algorithm will emit 3228 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3229 * (as well as type information for `int` and pointers), as if they were defined 3230 * in a single compilation unit as: 3231 * 3232 * struct A { 3233 * int a; 3234 * struct A* self; 3235 * struct S* parent; 3236 * }; 3237 * struct B { 3238 * int b; 3239 * struct B* self; 3240 * struct S* parent; 3241 * }; 3242 * struct S { 3243 * struct A* a_ptr; 3244 * struct B* b_ptr; 3245 * }; 3246 * 3247 * Algorithm summary 3248 * ================= 3249 * 3250 * Algorithm completes its work in 7 separate passes: 3251 * 3252 * 1. Strings deduplication. 3253 * 2. Primitive types deduplication (int, enum, fwd). 3254 * 3. Struct/union types deduplication. 3255 * 4. Resolve unambiguous forward declarations. 3256 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3257 * protos, and const/volatile/restrict modifiers). 3258 * 6. Types compaction. 3259 * 7. Types remapping. 3260 * 3261 * Algorithm determines canonical type descriptor, which is a single 3262 * representative type for each truly unique type. This canonical type is the 3263 * one that will go into final deduplicated BTF type information. For 3264 * struct/unions, it is also the type that algorithm will merge additional type 3265 * information into (while resolving FWDs), as it discovers it from data in 3266 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3267 * that type is canonical, or to some other type, if that type is equivalent 3268 * and was chosen as canonical representative. This mapping is stored in 3269 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3270 * FWD type got resolved to. 3271 * 3272 * To facilitate fast discovery of canonical types, we also maintain canonical 3273 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3274 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3275 * that match that signature. With sufficiently good choice of type signature 3276 * hashing function, we can limit number of canonical types for each unique type 3277 * signature to a very small number, allowing to find canonical type for any 3278 * duplicated type very quickly. 3279 * 3280 * Struct/union deduplication is the most critical part and algorithm for 3281 * deduplicating structs/unions is described in greater details in comments for 3282 * `btf_dedup_is_equiv` function. 3283 */ 3284 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3285 { 3286 struct btf_dedup *d; 3287 int err; 3288 3289 if (!OPTS_VALID(opts, btf_dedup_opts)) 3290 return libbpf_err(-EINVAL); 3291 3292 d = btf_dedup_new(btf, opts); 3293 if (IS_ERR(d)) { 3294 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3295 return libbpf_err(-EINVAL); 3296 } 3297 3298 if (btf_ensure_modifiable(btf)) { 3299 err = -ENOMEM; 3300 goto done; 3301 } 3302 3303 err = btf_dedup_prep(d); 3304 if (err) { 3305 pr_debug("btf_dedup_prep failed:%d\n", err); 3306 goto done; 3307 } 3308 err = btf_dedup_strings(d); 3309 if (err < 0) { 3310 pr_debug("btf_dedup_strings failed:%d\n", err); 3311 goto done; 3312 } 3313 err = btf_dedup_prim_types(d); 3314 if (err < 0) { 3315 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3316 goto done; 3317 } 3318 err = btf_dedup_struct_types(d); 3319 if (err < 0) { 3320 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3321 goto done; 3322 } 3323 err = btf_dedup_resolve_fwds(d); 3324 if (err < 0) { 3325 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3326 goto done; 3327 } 3328 err = btf_dedup_ref_types(d); 3329 if (err < 0) { 3330 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3331 goto done; 3332 } 3333 err = btf_dedup_compact_types(d); 3334 if (err < 0) { 3335 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3336 goto done; 3337 } 3338 err = btf_dedup_remap_types(d); 3339 if (err < 0) { 3340 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3341 goto done; 3342 } 3343 3344 done: 3345 btf_dedup_free(d); 3346 return libbpf_err(err); 3347 } 3348 3349 #define BTF_UNPROCESSED_ID ((__u32)-1) 3350 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3351 3352 struct btf_dedup { 3353 /* .BTF section to be deduped in-place */ 3354 struct btf *btf; 3355 /* 3356 * Optional .BTF.ext section. When provided, any strings referenced 3357 * from it will be taken into account when deduping strings 3358 */ 3359 struct btf_ext *btf_ext; 3360 /* 3361 * This is a map from any type's signature hash to a list of possible 3362 * canonical representative type candidates. Hash collisions are 3363 * ignored, so even types of various kinds can share same list of 3364 * candidates, which is fine because we rely on subsequent 3365 * btf_xxx_equal() checks to authoritatively verify type equality. 3366 */ 3367 struct hashmap *dedup_table; 3368 /* Canonical types map */ 3369 __u32 *map; 3370 /* Hypothetical mapping, used during type graph equivalence checks */ 3371 __u32 *hypot_map; 3372 __u32 *hypot_list; 3373 size_t hypot_cnt; 3374 size_t hypot_cap; 3375 /* Whether hypothetical mapping, if successful, would need to adjust 3376 * already canonicalized types (due to a new forward declaration to 3377 * concrete type resolution). In such case, during split BTF dedup 3378 * candidate type would still be considered as different, because base 3379 * BTF is considered to be immutable. 3380 */ 3381 bool hypot_adjust_canon; 3382 /* Various option modifying behavior of algorithm */ 3383 struct btf_dedup_opts opts; 3384 /* temporary strings deduplication state */ 3385 struct strset *strs_set; 3386 }; 3387 3388 static long hash_combine(long h, long value) 3389 { 3390 return h * 31 + value; 3391 } 3392 3393 #define for_each_dedup_cand(d, node, hash) \ 3394 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3395 3396 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3397 { 3398 return hashmap__append(d->dedup_table, hash, type_id); 3399 } 3400 3401 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3402 __u32 from_id, __u32 to_id) 3403 { 3404 if (d->hypot_cnt == d->hypot_cap) { 3405 __u32 *new_list; 3406 3407 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3408 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3409 if (!new_list) 3410 return -ENOMEM; 3411 d->hypot_list = new_list; 3412 } 3413 d->hypot_list[d->hypot_cnt++] = from_id; 3414 d->hypot_map[from_id] = to_id; 3415 return 0; 3416 } 3417 3418 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3419 { 3420 int i; 3421 3422 for (i = 0; i < d->hypot_cnt; i++) 3423 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3424 d->hypot_cnt = 0; 3425 d->hypot_adjust_canon = false; 3426 } 3427 3428 static void btf_dedup_free(struct btf_dedup *d) 3429 { 3430 hashmap__free(d->dedup_table); 3431 d->dedup_table = NULL; 3432 3433 free(d->map); 3434 d->map = NULL; 3435 3436 free(d->hypot_map); 3437 d->hypot_map = NULL; 3438 3439 free(d->hypot_list); 3440 d->hypot_list = NULL; 3441 3442 free(d); 3443 } 3444 3445 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3446 { 3447 return key; 3448 } 3449 3450 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3451 { 3452 return 0; 3453 } 3454 3455 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3456 { 3457 return k1 == k2; 3458 } 3459 3460 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3461 { 3462 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3463 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3464 int i, err = 0, type_cnt; 3465 3466 if (!d) 3467 return ERR_PTR(-ENOMEM); 3468 3469 if (OPTS_GET(opts, force_collisions, false)) 3470 hash_fn = btf_dedup_collision_hash_fn; 3471 3472 d->btf = btf; 3473 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3474 3475 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3476 if (IS_ERR(d->dedup_table)) { 3477 err = PTR_ERR(d->dedup_table); 3478 d->dedup_table = NULL; 3479 goto done; 3480 } 3481 3482 type_cnt = btf__type_cnt(btf); 3483 d->map = malloc(sizeof(__u32) * type_cnt); 3484 if (!d->map) { 3485 err = -ENOMEM; 3486 goto done; 3487 } 3488 /* special BTF "void" type is made canonical immediately */ 3489 d->map[0] = 0; 3490 for (i = 1; i < type_cnt; i++) { 3491 struct btf_type *t = btf_type_by_id(d->btf, i); 3492 3493 /* VAR and DATASEC are never deduped and are self-canonical */ 3494 if (btf_is_var(t) || btf_is_datasec(t)) 3495 d->map[i] = i; 3496 else 3497 d->map[i] = BTF_UNPROCESSED_ID; 3498 } 3499 3500 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3501 if (!d->hypot_map) { 3502 err = -ENOMEM; 3503 goto done; 3504 } 3505 for (i = 0; i < type_cnt; i++) 3506 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3507 3508 done: 3509 if (err) { 3510 btf_dedup_free(d); 3511 return ERR_PTR(err); 3512 } 3513 3514 return d; 3515 } 3516 3517 /* 3518 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3519 * string and pass pointer to it to a provided callback `fn`. 3520 */ 3521 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3522 { 3523 int i, r; 3524 3525 for (i = 0; i < d->btf->nr_types; i++) { 3526 struct btf_field_iter it; 3527 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3528 __u32 *str_off; 3529 3530 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 3531 if (r) 3532 return r; 3533 3534 while ((str_off = btf_field_iter_next(&it))) { 3535 r = fn(str_off, ctx); 3536 if (r) 3537 return r; 3538 } 3539 } 3540 3541 if (!d->btf_ext) 3542 return 0; 3543 3544 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3545 if (r) 3546 return r; 3547 3548 return 0; 3549 } 3550 3551 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3552 { 3553 struct btf_dedup *d = ctx; 3554 __u32 str_off = *str_off_ptr; 3555 const char *s; 3556 int off, err; 3557 3558 /* don't touch empty string or string in main BTF */ 3559 if (str_off == 0 || str_off < d->btf->start_str_off) 3560 return 0; 3561 3562 s = btf__str_by_offset(d->btf, str_off); 3563 if (d->btf->base_btf) { 3564 err = btf__find_str(d->btf->base_btf, s); 3565 if (err >= 0) { 3566 *str_off_ptr = err; 3567 return 0; 3568 } 3569 if (err != -ENOENT) 3570 return err; 3571 } 3572 3573 off = strset__add_str(d->strs_set, s); 3574 if (off < 0) 3575 return off; 3576 3577 *str_off_ptr = d->btf->start_str_off + off; 3578 return 0; 3579 } 3580 3581 /* 3582 * Dedup string and filter out those that are not referenced from either .BTF 3583 * or .BTF.ext (if provided) sections. 3584 * 3585 * This is done by building index of all strings in BTF's string section, 3586 * then iterating over all entities that can reference strings (e.g., type 3587 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3588 * strings as used. After that all used strings are deduped and compacted into 3589 * sequential blob of memory and new offsets are calculated. Then all the string 3590 * references are iterated again and rewritten using new offsets. 3591 */ 3592 static int btf_dedup_strings(struct btf_dedup *d) 3593 { 3594 int err; 3595 3596 if (d->btf->strs_deduped) 3597 return 0; 3598 3599 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3600 if (IS_ERR(d->strs_set)) { 3601 err = PTR_ERR(d->strs_set); 3602 goto err_out; 3603 } 3604 3605 if (!d->btf->base_btf) { 3606 /* insert empty string; we won't be looking it up during strings 3607 * dedup, but it's good to have it for generic BTF string lookups 3608 */ 3609 err = strset__add_str(d->strs_set, ""); 3610 if (err < 0) 3611 goto err_out; 3612 } 3613 3614 /* remap string offsets */ 3615 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3616 if (err) 3617 goto err_out; 3618 3619 /* replace BTF string data and hash with deduped ones */ 3620 strset__free(d->btf->strs_set); 3621 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3622 d->btf->strs_set = d->strs_set; 3623 d->strs_set = NULL; 3624 d->btf->strs_deduped = true; 3625 return 0; 3626 3627 err_out: 3628 strset__free(d->strs_set); 3629 d->strs_set = NULL; 3630 3631 return err; 3632 } 3633 3634 static long btf_hash_common(struct btf_type *t) 3635 { 3636 long h; 3637 3638 h = hash_combine(0, t->name_off); 3639 h = hash_combine(h, t->info); 3640 h = hash_combine(h, t->size); 3641 return h; 3642 } 3643 3644 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3645 { 3646 return t1->name_off == t2->name_off && 3647 t1->info == t2->info && 3648 t1->size == t2->size; 3649 } 3650 3651 /* Calculate type signature hash of INT or TAG. */ 3652 static long btf_hash_int_decl_tag(struct btf_type *t) 3653 { 3654 __u32 info = *(__u32 *)(t + 1); 3655 long h; 3656 3657 h = btf_hash_common(t); 3658 h = hash_combine(h, info); 3659 return h; 3660 } 3661 3662 /* Check structural equality of two INTs or TAGs. */ 3663 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3664 { 3665 __u32 info1, info2; 3666 3667 if (!btf_equal_common(t1, t2)) 3668 return false; 3669 info1 = *(__u32 *)(t1 + 1); 3670 info2 = *(__u32 *)(t2 + 1); 3671 return info1 == info2; 3672 } 3673 3674 /* Calculate type signature hash of ENUM/ENUM64. */ 3675 static long btf_hash_enum(struct btf_type *t) 3676 { 3677 long h; 3678 3679 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3680 h = hash_combine(0, t->name_off); 3681 return h; 3682 } 3683 3684 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3685 { 3686 const struct btf_enum *m1, *m2; 3687 __u16 vlen; 3688 int i; 3689 3690 vlen = btf_vlen(t1); 3691 m1 = btf_enum(t1); 3692 m2 = btf_enum(t2); 3693 for (i = 0; i < vlen; i++) { 3694 if (m1->name_off != m2->name_off || m1->val != m2->val) 3695 return false; 3696 m1++; 3697 m2++; 3698 } 3699 return true; 3700 } 3701 3702 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3703 { 3704 const struct btf_enum64 *m1, *m2; 3705 __u16 vlen; 3706 int i; 3707 3708 vlen = btf_vlen(t1); 3709 m1 = btf_enum64(t1); 3710 m2 = btf_enum64(t2); 3711 for (i = 0; i < vlen; i++) { 3712 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3713 m1->val_hi32 != m2->val_hi32) 3714 return false; 3715 m1++; 3716 m2++; 3717 } 3718 return true; 3719 } 3720 3721 /* Check structural equality of two ENUMs or ENUM64s. */ 3722 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3723 { 3724 if (!btf_equal_common(t1, t2)) 3725 return false; 3726 3727 /* t1 & t2 kinds are identical because of btf_equal_common */ 3728 if (btf_kind(t1) == BTF_KIND_ENUM) 3729 return btf_equal_enum_members(t1, t2); 3730 else 3731 return btf_equal_enum64_members(t1, t2); 3732 } 3733 3734 static inline bool btf_is_enum_fwd(struct btf_type *t) 3735 { 3736 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3737 } 3738 3739 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3740 { 3741 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3742 return btf_equal_enum(t1, t2); 3743 /* At this point either t1 or t2 or both are forward declarations, thus: 3744 * - skip comparing vlen because it is zero for forward declarations; 3745 * - skip comparing size to allow enum forward declarations 3746 * to be compatible with enum64 full declarations; 3747 * - skip comparing kind for the same reason. 3748 */ 3749 return t1->name_off == t2->name_off && 3750 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3751 } 3752 3753 /* 3754 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3755 * as referenced type IDs equivalence is established separately during type 3756 * graph equivalence check algorithm. 3757 */ 3758 static long btf_hash_struct(struct btf_type *t) 3759 { 3760 const struct btf_member *member = btf_members(t); 3761 __u32 vlen = btf_vlen(t); 3762 long h = btf_hash_common(t); 3763 int i; 3764 3765 for (i = 0; i < vlen; i++) { 3766 h = hash_combine(h, member->name_off); 3767 h = hash_combine(h, member->offset); 3768 /* no hashing of referenced type ID, it can be unresolved yet */ 3769 member++; 3770 } 3771 return h; 3772 } 3773 3774 /* 3775 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3776 * type IDs. This check is performed during type graph equivalence check and 3777 * referenced types equivalence is checked separately. 3778 */ 3779 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3780 { 3781 const struct btf_member *m1, *m2; 3782 __u16 vlen; 3783 int i; 3784 3785 if (!btf_equal_common(t1, t2)) 3786 return false; 3787 3788 vlen = btf_vlen(t1); 3789 m1 = btf_members(t1); 3790 m2 = btf_members(t2); 3791 for (i = 0; i < vlen; i++) { 3792 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3793 return false; 3794 m1++; 3795 m2++; 3796 } 3797 return true; 3798 } 3799 3800 /* 3801 * Calculate type signature hash of ARRAY, including referenced type IDs, 3802 * under assumption that they were already resolved to canonical type IDs and 3803 * are not going to change. 3804 */ 3805 static long btf_hash_array(struct btf_type *t) 3806 { 3807 const struct btf_array *info = btf_array(t); 3808 long h = btf_hash_common(t); 3809 3810 h = hash_combine(h, info->type); 3811 h = hash_combine(h, info->index_type); 3812 h = hash_combine(h, info->nelems); 3813 return h; 3814 } 3815 3816 /* 3817 * Check exact equality of two ARRAYs, taking into account referenced 3818 * type IDs, under assumption that they were already resolved to canonical 3819 * type IDs and are not going to change. 3820 * This function is called during reference types deduplication to compare 3821 * ARRAY to potential canonical representative. 3822 */ 3823 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3824 { 3825 const struct btf_array *info1, *info2; 3826 3827 if (!btf_equal_common(t1, t2)) 3828 return false; 3829 3830 info1 = btf_array(t1); 3831 info2 = btf_array(t2); 3832 return info1->type == info2->type && 3833 info1->index_type == info2->index_type && 3834 info1->nelems == info2->nelems; 3835 } 3836 3837 /* 3838 * Check structural compatibility of two ARRAYs, ignoring referenced type 3839 * IDs. This check is performed during type graph equivalence check and 3840 * referenced types equivalence is checked separately. 3841 */ 3842 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3843 { 3844 if (!btf_equal_common(t1, t2)) 3845 return false; 3846 3847 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3848 } 3849 3850 /* 3851 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3852 * under assumption that they were already resolved to canonical type IDs and 3853 * are not going to change. 3854 */ 3855 static long btf_hash_fnproto(struct btf_type *t) 3856 { 3857 const struct btf_param *member = btf_params(t); 3858 __u16 vlen = btf_vlen(t); 3859 long h = btf_hash_common(t); 3860 int i; 3861 3862 for (i = 0; i < vlen; i++) { 3863 h = hash_combine(h, member->name_off); 3864 h = hash_combine(h, member->type); 3865 member++; 3866 } 3867 return h; 3868 } 3869 3870 /* 3871 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3872 * type IDs, under assumption that they were already resolved to canonical 3873 * type IDs and are not going to change. 3874 * This function is called during reference types deduplication to compare 3875 * FUNC_PROTO to potential canonical representative. 3876 */ 3877 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3878 { 3879 const struct btf_param *m1, *m2; 3880 __u16 vlen; 3881 int i; 3882 3883 if (!btf_equal_common(t1, t2)) 3884 return false; 3885 3886 vlen = btf_vlen(t1); 3887 m1 = btf_params(t1); 3888 m2 = btf_params(t2); 3889 for (i = 0; i < vlen; i++) { 3890 if (m1->name_off != m2->name_off || m1->type != m2->type) 3891 return false; 3892 m1++; 3893 m2++; 3894 } 3895 return true; 3896 } 3897 3898 /* 3899 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3900 * IDs. This check is performed during type graph equivalence check and 3901 * referenced types equivalence is checked separately. 3902 */ 3903 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3904 { 3905 const struct btf_param *m1, *m2; 3906 __u16 vlen; 3907 int i; 3908 3909 /* skip return type ID */ 3910 if (t1->name_off != t2->name_off || t1->info != t2->info) 3911 return false; 3912 3913 vlen = btf_vlen(t1); 3914 m1 = btf_params(t1); 3915 m2 = btf_params(t2); 3916 for (i = 0; i < vlen; i++) { 3917 if (m1->name_off != m2->name_off) 3918 return false; 3919 m1++; 3920 m2++; 3921 } 3922 return true; 3923 } 3924 3925 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3926 * types and initializing the rest of the state (canonical type mapping) for 3927 * the fixed base BTF part. 3928 */ 3929 static int btf_dedup_prep(struct btf_dedup *d) 3930 { 3931 struct btf_type *t; 3932 int type_id; 3933 long h; 3934 3935 if (!d->btf->base_btf) 3936 return 0; 3937 3938 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3939 t = btf_type_by_id(d->btf, type_id); 3940 3941 /* all base BTF types are self-canonical by definition */ 3942 d->map[type_id] = type_id; 3943 3944 switch (btf_kind(t)) { 3945 case BTF_KIND_VAR: 3946 case BTF_KIND_DATASEC: 3947 /* VAR and DATASEC are never hash/deduplicated */ 3948 continue; 3949 case BTF_KIND_CONST: 3950 case BTF_KIND_VOLATILE: 3951 case BTF_KIND_RESTRICT: 3952 case BTF_KIND_PTR: 3953 case BTF_KIND_FWD: 3954 case BTF_KIND_TYPEDEF: 3955 case BTF_KIND_FUNC: 3956 case BTF_KIND_FLOAT: 3957 case BTF_KIND_TYPE_TAG: 3958 h = btf_hash_common(t); 3959 break; 3960 case BTF_KIND_INT: 3961 case BTF_KIND_DECL_TAG: 3962 h = btf_hash_int_decl_tag(t); 3963 break; 3964 case BTF_KIND_ENUM: 3965 case BTF_KIND_ENUM64: 3966 h = btf_hash_enum(t); 3967 break; 3968 case BTF_KIND_STRUCT: 3969 case BTF_KIND_UNION: 3970 h = btf_hash_struct(t); 3971 break; 3972 case BTF_KIND_ARRAY: 3973 h = btf_hash_array(t); 3974 break; 3975 case BTF_KIND_FUNC_PROTO: 3976 h = btf_hash_fnproto(t); 3977 break; 3978 default: 3979 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3980 return -EINVAL; 3981 } 3982 if (btf_dedup_table_add(d, h, type_id)) 3983 return -ENOMEM; 3984 } 3985 3986 return 0; 3987 } 3988 3989 /* 3990 * Deduplicate primitive types, that can't reference other types, by calculating 3991 * their type signature hash and comparing them with any possible canonical 3992 * candidate. If no canonical candidate matches, type itself is marked as 3993 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3994 */ 3995 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3996 { 3997 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3998 struct hashmap_entry *hash_entry; 3999 struct btf_type *cand; 4000 /* if we don't find equivalent type, then we are canonical */ 4001 __u32 new_id = type_id; 4002 __u32 cand_id; 4003 long h; 4004 4005 switch (btf_kind(t)) { 4006 case BTF_KIND_CONST: 4007 case BTF_KIND_VOLATILE: 4008 case BTF_KIND_RESTRICT: 4009 case BTF_KIND_PTR: 4010 case BTF_KIND_TYPEDEF: 4011 case BTF_KIND_ARRAY: 4012 case BTF_KIND_STRUCT: 4013 case BTF_KIND_UNION: 4014 case BTF_KIND_FUNC: 4015 case BTF_KIND_FUNC_PROTO: 4016 case BTF_KIND_VAR: 4017 case BTF_KIND_DATASEC: 4018 case BTF_KIND_DECL_TAG: 4019 case BTF_KIND_TYPE_TAG: 4020 return 0; 4021 4022 case BTF_KIND_INT: 4023 h = btf_hash_int_decl_tag(t); 4024 for_each_dedup_cand(d, hash_entry, h) { 4025 cand_id = hash_entry->value; 4026 cand = btf_type_by_id(d->btf, cand_id); 4027 if (btf_equal_int_tag(t, cand)) { 4028 new_id = cand_id; 4029 break; 4030 } 4031 } 4032 break; 4033 4034 case BTF_KIND_ENUM: 4035 case BTF_KIND_ENUM64: 4036 h = btf_hash_enum(t); 4037 for_each_dedup_cand(d, hash_entry, h) { 4038 cand_id = hash_entry->value; 4039 cand = btf_type_by_id(d->btf, cand_id); 4040 if (btf_equal_enum(t, cand)) { 4041 new_id = cand_id; 4042 break; 4043 } 4044 if (btf_compat_enum(t, cand)) { 4045 if (btf_is_enum_fwd(t)) { 4046 /* resolve fwd to full enum */ 4047 new_id = cand_id; 4048 break; 4049 } 4050 /* resolve canonical enum fwd to full enum */ 4051 d->map[cand_id] = type_id; 4052 } 4053 } 4054 break; 4055 4056 case BTF_KIND_FWD: 4057 case BTF_KIND_FLOAT: 4058 h = btf_hash_common(t); 4059 for_each_dedup_cand(d, hash_entry, h) { 4060 cand_id = hash_entry->value; 4061 cand = btf_type_by_id(d->btf, cand_id); 4062 if (btf_equal_common(t, cand)) { 4063 new_id = cand_id; 4064 break; 4065 } 4066 } 4067 break; 4068 4069 default: 4070 return -EINVAL; 4071 } 4072 4073 d->map[type_id] = new_id; 4074 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4075 return -ENOMEM; 4076 4077 return 0; 4078 } 4079 4080 static int btf_dedup_prim_types(struct btf_dedup *d) 4081 { 4082 int i, err; 4083 4084 for (i = 0; i < d->btf->nr_types; i++) { 4085 err = btf_dedup_prim_type(d, d->btf->start_id + i); 4086 if (err) 4087 return err; 4088 } 4089 return 0; 4090 } 4091 4092 /* 4093 * Check whether type is already mapped into canonical one (could be to itself). 4094 */ 4095 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 4096 { 4097 return d->map[type_id] <= BTF_MAX_NR_TYPES; 4098 } 4099 4100 /* 4101 * Resolve type ID into its canonical type ID, if any; otherwise return original 4102 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 4103 * STRUCT/UNION link and resolve it into canonical type ID as well. 4104 */ 4105 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 4106 { 4107 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4108 type_id = d->map[type_id]; 4109 return type_id; 4110 } 4111 4112 /* 4113 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 4114 * type ID. 4115 */ 4116 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 4117 { 4118 __u32 orig_type_id = type_id; 4119 4120 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4121 return type_id; 4122 4123 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4124 type_id = d->map[type_id]; 4125 4126 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4127 return type_id; 4128 4129 return orig_type_id; 4130 } 4131 4132 4133 static inline __u16 btf_fwd_kind(struct btf_type *t) 4134 { 4135 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 4136 } 4137 4138 /* Check if given two types are identical ARRAY definitions */ 4139 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 4140 { 4141 struct btf_type *t1, *t2; 4142 4143 t1 = btf_type_by_id(d->btf, id1); 4144 t2 = btf_type_by_id(d->btf, id2); 4145 if (!btf_is_array(t1) || !btf_is_array(t2)) 4146 return false; 4147 4148 return btf_equal_array(t1, t2); 4149 } 4150 4151 /* Check if given two types are identical STRUCT/UNION definitions */ 4152 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 4153 { 4154 const struct btf_member *m1, *m2; 4155 struct btf_type *t1, *t2; 4156 int n, i; 4157 4158 t1 = btf_type_by_id(d->btf, id1); 4159 t2 = btf_type_by_id(d->btf, id2); 4160 4161 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 4162 return false; 4163 4164 if (!btf_shallow_equal_struct(t1, t2)) 4165 return false; 4166 4167 m1 = btf_members(t1); 4168 m2 = btf_members(t2); 4169 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 4170 if (m1->type != m2->type && 4171 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 4172 !btf_dedup_identical_structs(d, m1->type, m2->type)) 4173 return false; 4174 } 4175 return true; 4176 } 4177 4178 /* 4179 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 4180 * call it "candidate graph" in this description for brevity) to a type graph 4181 * formed by (potential) canonical struct/union ("canonical graph" for brevity 4182 * here, though keep in mind that not all types in canonical graph are 4183 * necessarily canonical representatives themselves, some of them might be 4184 * duplicates or its uniqueness might not have been established yet). 4185 * Returns: 4186 * - >0, if type graphs are equivalent; 4187 * - 0, if not equivalent; 4188 * - <0, on error. 4189 * 4190 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 4191 * equivalence of BTF types at each step. If at any point BTF types in candidate 4192 * and canonical graphs are not compatible structurally, whole graphs are 4193 * incompatible. If types are structurally equivalent (i.e., all information 4194 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 4195 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`). 4196 * If a type references other types, then those referenced types are checked 4197 * for equivalence recursively. 4198 * 4199 * During DFS traversal, if we find that for current `canon_id` type we 4200 * already have some mapping in hypothetical map, we check for two possible 4201 * situations: 4202 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 4203 * happen when type graphs have cycles. In this case we assume those two 4204 * types are equivalent. 4205 * - `canon_id` is mapped to different type. This is contradiction in our 4206 * hypothetical mapping, because same graph in canonical graph corresponds 4207 * to two different types in candidate graph, which for equivalent type 4208 * graphs shouldn't happen. This condition terminates equivalence check 4209 * with negative result. 4210 * 4211 * If type graphs traversal exhausts types to check and find no contradiction, 4212 * then type graphs are equivalent. 4213 * 4214 * When checking types for equivalence, there is one special case: FWD types. 4215 * If FWD type resolution is allowed and one of the types (either from canonical 4216 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 4217 * flag) and their names match, hypothetical mapping is updated to point from 4218 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 4219 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 4220 * 4221 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 4222 * if there are two exactly named (or anonymous) structs/unions that are 4223 * compatible structurally, one of which has FWD field, while other is concrete 4224 * STRUCT/UNION, but according to C sources they are different structs/unions 4225 * that are referencing different types with the same name. This is extremely 4226 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 4227 * this logic is causing problems. 4228 * 4229 * Doing FWD resolution means that both candidate and/or canonical graphs can 4230 * consists of portions of the graph that come from multiple compilation units. 4231 * This is due to the fact that types within single compilation unit are always 4232 * deduplicated and FWDs are already resolved, if referenced struct/union 4233 * definition is available. So, if we had unresolved FWD and found corresponding 4234 * STRUCT/UNION, they will be from different compilation units. This 4235 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 4236 * type graph will likely have at least two different BTF types that describe 4237 * same type (e.g., most probably there will be two different BTF types for the 4238 * same 'int' primitive type) and could even have "overlapping" parts of type 4239 * graph that describe same subset of types. 4240 * 4241 * This in turn means that our assumption that each type in canonical graph 4242 * must correspond to exactly one type in candidate graph might not hold 4243 * anymore and will make it harder to detect contradictions using hypothetical 4244 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4245 * resolution only in canonical graph. FWDs in candidate graphs are never 4246 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4247 * that can occur: 4248 * - Both types in canonical and candidate graphs are FWDs. If they are 4249 * structurally equivalent, then they can either be both resolved to the 4250 * same STRUCT/UNION or not resolved at all. In both cases they are 4251 * equivalent and there is no need to resolve FWD on candidate side. 4252 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4253 * so nothing to resolve as well, algorithm will check equivalence anyway. 4254 * - Type in canonical graph is FWD, while type in candidate is concrete 4255 * STRUCT/UNION. In this case candidate graph comes from single compilation 4256 * unit, so there is exactly one BTF type for each unique C type. After 4257 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4258 * in canonical graph mapping to single BTF type in candidate graph, but 4259 * because hypothetical mapping maps from canonical to candidate types, it's 4260 * alright, and we still maintain the property of having single `canon_id` 4261 * mapping to single `cand_id` (there could be two different `canon_id` 4262 * mapped to the same `cand_id`, but it's not contradictory). 4263 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4264 * graph is FWD. In this case we are just going to check compatibility of 4265 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4266 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4267 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4268 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4269 * canonical graph. 4270 */ 4271 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4272 __u32 canon_id) 4273 { 4274 struct btf_type *cand_type; 4275 struct btf_type *canon_type; 4276 __u32 hypot_type_id; 4277 __u16 cand_kind; 4278 __u16 canon_kind; 4279 int i, eq; 4280 4281 /* if both resolve to the same canonical, they must be equivalent */ 4282 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4283 return 1; 4284 4285 canon_id = resolve_fwd_id(d, canon_id); 4286 4287 hypot_type_id = d->hypot_map[canon_id]; 4288 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4289 if (hypot_type_id == cand_id) 4290 return 1; 4291 /* In some cases compiler will generate different DWARF types 4292 * for *identical* array type definitions and use them for 4293 * different fields within the *same* struct. This breaks type 4294 * equivalence check, which makes an assumption that candidate 4295 * types sub-graph has a consistent and deduped-by-compiler 4296 * types within a single CU. So work around that by explicitly 4297 * allowing identical array types here. 4298 */ 4299 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4300 return 1; 4301 /* It turns out that similar situation can happen with 4302 * struct/union sometimes, sigh... Handle the case where 4303 * structs/unions are exactly the same, down to the referenced 4304 * type IDs. Anything more complicated (e.g., if referenced 4305 * types are different, but equivalent) is *way more* 4306 * complicated and requires a many-to-many equivalence mapping. 4307 */ 4308 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4309 return 1; 4310 return 0; 4311 } 4312 4313 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4314 return -ENOMEM; 4315 4316 cand_type = btf_type_by_id(d->btf, cand_id); 4317 canon_type = btf_type_by_id(d->btf, canon_id); 4318 cand_kind = btf_kind(cand_type); 4319 canon_kind = btf_kind(canon_type); 4320 4321 if (cand_type->name_off != canon_type->name_off) 4322 return 0; 4323 4324 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4325 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4326 && cand_kind != canon_kind) { 4327 __u16 real_kind; 4328 __u16 fwd_kind; 4329 4330 if (cand_kind == BTF_KIND_FWD) { 4331 real_kind = canon_kind; 4332 fwd_kind = btf_fwd_kind(cand_type); 4333 } else { 4334 real_kind = cand_kind; 4335 fwd_kind = btf_fwd_kind(canon_type); 4336 /* we'd need to resolve base FWD to STRUCT/UNION */ 4337 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4338 d->hypot_adjust_canon = true; 4339 } 4340 return fwd_kind == real_kind; 4341 } 4342 4343 if (cand_kind != canon_kind) 4344 return 0; 4345 4346 switch (cand_kind) { 4347 case BTF_KIND_INT: 4348 return btf_equal_int_tag(cand_type, canon_type); 4349 4350 case BTF_KIND_ENUM: 4351 case BTF_KIND_ENUM64: 4352 return btf_compat_enum(cand_type, canon_type); 4353 4354 case BTF_KIND_FWD: 4355 case BTF_KIND_FLOAT: 4356 return btf_equal_common(cand_type, canon_type); 4357 4358 case BTF_KIND_CONST: 4359 case BTF_KIND_VOLATILE: 4360 case BTF_KIND_RESTRICT: 4361 case BTF_KIND_PTR: 4362 case BTF_KIND_TYPEDEF: 4363 case BTF_KIND_FUNC: 4364 case BTF_KIND_TYPE_TAG: 4365 if (cand_type->info != canon_type->info) 4366 return 0; 4367 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4368 4369 case BTF_KIND_ARRAY: { 4370 const struct btf_array *cand_arr, *canon_arr; 4371 4372 if (!btf_compat_array(cand_type, canon_type)) 4373 return 0; 4374 cand_arr = btf_array(cand_type); 4375 canon_arr = btf_array(canon_type); 4376 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4377 if (eq <= 0) 4378 return eq; 4379 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4380 } 4381 4382 case BTF_KIND_STRUCT: 4383 case BTF_KIND_UNION: { 4384 const struct btf_member *cand_m, *canon_m; 4385 __u16 vlen; 4386 4387 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4388 return 0; 4389 vlen = btf_vlen(cand_type); 4390 cand_m = btf_members(cand_type); 4391 canon_m = btf_members(canon_type); 4392 for (i = 0; i < vlen; i++) { 4393 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4394 if (eq <= 0) 4395 return eq; 4396 cand_m++; 4397 canon_m++; 4398 } 4399 4400 return 1; 4401 } 4402 4403 case BTF_KIND_FUNC_PROTO: { 4404 const struct btf_param *cand_p, *canon_p; 4405 __u16 vlen; 4406 4407 if (!btf_compat_fnproto(cand_type, canon_type)) 4408 return 0; 4409 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4410 if (eq <= 0) 4411 return eq; 4412 vlen = btf_vlen(cand_type); 4413 cand_p = btf_params(cand_type); 4414 canon_p = btf_params(canon_type); 4415 for (i = 0; i < vlen; i++) { 4416 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4417 if (eq <= 0) 4418 return eq; 4419 cand_p++; 4420 canon_p++; 4421 } 4422 return 1; 4423 } 4424 4425 default: 4426 return -EINVAL; 4427 } 4428 return 0; 4429 } 4430 4431 /* 4432 * Use hypothetical mapping, produced by successful type graph equivalence 4433 * check, to augment existing struct/union canonical mapping, where possible. 4434 * 4435 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4436 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4437 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4438 * we are recording the mapping anyway. As opposed to carefulness required 4439 * for struct/union correspondence mapping (described below), for FWD resolution 4440 * it's not important, as by the time that FWD type (reference type) will be 4441 * deduplicated all structs/unions will be deduped already anyway. 4442 * 4443 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4444 * not required for correctness. It needs to be done carefully to ensure that 4445 * struct/union from candidate's type graph is not mapped into corresponding 4446 * struct/union from canonical type graph that itself hasn't been resolved into 4447 * canonical representative. The only guarantee we have is that canonical 4448 * struct/union was determined as canonical and that won't change. But any 4449 * types referenced through that struct/union fields could have been not yet 4450 * resolved, so in case like that it's too early to establish any kind of 4451 * correspondence between structs/unions. 4452 * 4453 * No canonical correspondence is derived for primitive types (they are already 4454 * deduplicated completely already anyway) or reference types (they rely on 4455 * stability of struct/union canonical relationship for equivalence checks). 4456 */ 4457 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4458 { 4459 __u32 canon_type_id, targ_type_id; 4460 __u16 t_kind, c_kind; 4461 __u32 t_id, c_id; 4462 int i; 4463 4464 for (i = 0; i < d->hypot_cnt; i++) { 4465 canon_type_id = d->hypot_list[i]; 4466 targ_type_id = d->hypot_map[canon_type_id]; 4467 t_id = resolve_type_id(d, targ_type_id); 4468 c_id = resolve_type_id(d, canon_type_id); 4469 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4470 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4471 /* 4472 * Resolve FWD into STRUCT/UNION. 4473 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4474 * mapped to canonical representative (as opposed to 4475 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4476 * eventually that struct is going to be mapped and all resolved 4477 * FWDs will automatically resolve to correct canonical 4478 * representative. This will happen before ref type deduping, 4479 * which critically depends on stability of these mapping. This 4480 * stability is not a requirement for STRUCT/UNION equivalence 4481 * checks, though. 4482 */ 4483 4484 /* if it's the split BTF case, we still need to point base FWD 4485 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4486 * will be resolved against base FWD. If we don't point base 4487 * canonical FWD to the resolved STRUCT/UNION, then all the 4488 * FWDs in split BTF won't be correctly resolved to a proper 4489 * STRUCT/UNION. 4490 */ 4491 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4492 d->map[c_id] = t_id; 4493 4494 /* if graph equivalence determined that we'd need to adjust 4495 * base canonical types, then we need to only point base FWDs 4496 * to STRUCTs/UNIONs and do no more modifications. For all 4497 * other purposes the type graphs were not equivalent. 4498 */ 4499 if (d->hypot_adjust_canon) 4500 continue; 4501 4502 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4503 d->map[t_id] = c_id; 4504 4505 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4506 c_kind != BTF_KIND_FWD && 4507 is_type_mapped(d, c_id) && 4508 !is_type_mapped(d, t_id)) { 4509 /* 4510 * as a perf optimization, we can map struct/union 4511 * that's part of type graph we just verified for 4512 * equivalence. We can do that for struct/union that has 4513 * canonical representative only, though. 4514 */ 4515 d->map[t_id] = c_id; 4516 } 4517 } 4518 } 4519 4520 /* 4521 * Deduplicate struct/union types. 4522 * 4523 * For each struct/union type its type signature hash is calculated, taking 4524 * into account type's name, size, number, order and names of fields, but 4525 * ignoring type ID's referenced from fields, because they might not be deduped 4526 * completely until after reference types deduplication phase. This type hash 4527 * is used to iterate over all potential canonical types, sharing same hash. 4528 * For each canonical candidate we check whether type graphs that they form 4529 * (through referenced types in fields and so on) are equivalent using algorithm 4530 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4531 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4532 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4533 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4534 * potentially map other structs/unions to their canonical representatives, 4535 * if such relationship hasn't yet been established. This speeds up algorithm 4536 * by eliminating some of the duplicate work. 4537 * 4538 * If no matching canonical representative was found, struct/union is marked 4539 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4540 * for further look ups. 4541 */ 4542 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4543 { 4544 struct btf_type *cand_type, *t; 4545 struct hashmap_entry *hash_entry; 4546 /* if we don't find equivalent type, then we are canonical */ 4547 __u32 new_id = type_id; 4548 __u16 kind; 4549 long h; 4550 4551 /* already deduped or is in process of deduping (loop detected) */ 4552 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4553 return 0; 4554 4555 t = btf_type_by_id(d->btf, type_id); 4556 kind = btf_kind(t); 4557 4558 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4559 return 0; 4560 4561 h = btf_hash_struct(t); 4562 for_each_dedup_cand(d, hash_entry, h) { 4563 __u32 cand_id = hash_entry->value; 4564 int eq; 4565 4566 /* 4567 * Even though btf_dedup_is_equiv() checks for 4568 * btf_shallow_equal_struct() internally when checking two 4569 * structs (unions) for equivalence, we need to guard here 4570 * from picking matching FWD type as a dedup candidate. 4571 * This can happen due to hash collision. In such case just 4572 * relying on btf_dedup_is_equiv() would lead to potentially 4573 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4574 * FWD and compatible STRUCT/UNION are considered equivalent. 4575 */ 4576 cand_type = btf_type_by_id(d->btf, cand_id); 4577 if (!btf_shallow_equal_struct(t, cand_type)) 4578 continue; 4579 4580 btf_dedup_clear_hypot_map(d); 4581 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4582 if (eq < 0) 4583 return eq; 4584 if (!eq) 4585 continue; 4586 btf_dedup_merge_hypot_map(d); 4587 if (d->hypot_adjust_canon) /* not really equivalent */ 4588 continue; 4589 new_id = cand_id; 4590 break; 4591 } 4592 4593 d->map[type_id] = new_id; 4594 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4595 return -ENOMEM; 4596 4597 return 0; 4598 } 4599 4600 static int btf_dedup_struct_types(struct btf_dedup *d) 4601 { 4602 int i, err; 4603 4604 for (i = 0; i < d->btf->nr_types; i++) { 4605 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4606 if (err) 4607 return err; 4608 } 4609 return 0; 4610 } 4611 4612 /* 4613 * Deduplicate reference type. 4614 * 4615 * Once all primitive and struct/union types got deduplicated, we can easily 4616 * deduplicate all other (reference) BTF types. This is done in two steps: 4617 * 4618 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4619 * resolution can be done either immediately for primitive or struct/union types 4620 * (because they were deduped in previous two phases) or recursively for 4621 * reference types. Recursion will always terminate at either primitive or 4622 * struct/union type, at which point we can "unwind" chain of reference types 4623 * one by one. There is no danger of encountering cycles because in C type 4624 * system the only way to form type cycle is through struct/union, so any chain 4625 * of reference types, even those taking part in a type cycle, will inevitably 4626 * reach struct/union at some point. 4627 * 4628 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4629 * becomes "stable", in the sense that no further deduplication will cause 4630 * any changes to it. With that, it's now possible to calculate type's signature 4631 * hash (this time taking into account referenced type IDs) and loop over all 4632 * potential canonical representatives. If no match was found, current type 4633 * will become canonical representative of itself and will be added into 4634 * btf_dedup->dedup_table as another possible canonical representative. 4635 */ 4636 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4637 { 4638 struct hashmap_entry *hash_entry; 4639 __u32 new_id = type_id, cand_id; 4640 struct btf_type *t, *cand; 4641 /* if we don't find equivalent type, then we are representative type */ 4642 int ref_type_id; 4643 long h; 4644 4645 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4646 return -ELOOP; 4647 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4648 return resolve_type_id(d, type_id); 4649 4650 t = btf_type_by_id(d->btf, type_id); 4651 d->map[type_id] = BTF_IN_PROGRESS_ID; 4652 4653 switch (btf_kind(t)) { 4654 case BTF_KIND_CONST: 4655 case BTF_KIND_VOLATILE: 4656 case BTF_KIND_RESTRICT: 4657 case BTF_KIND_PTR: 4658 case BTF_KIND_TYPEDEF: 4659 case BTF_KIND_FUNC: 4660 case BTF_KIND_TYPE_TAG: 4661 ref_type_id = btf_dedup_ref_type(d, t->type); 4662 if (ref_type_id < 0) 4663 return ref_type_id; 4664 t->type = ref_type_id; 4665 4666 h = btf_hash_common(t); 4667 for_each_dedup_cand(d, hash_entry, h) { 4668 cand_id = hash_entry->value; 4669 cand = btf_type_by_id(d->btf, cand_id); 4670 if (btf_equal_common(t, cand)) { 4671 new_id = cand_id; 4672 break; 4673 } 4674 } 4675 break; 4676 4677 case BTF_KIND_DECL_TAG: 4678 ref_type_id = btf_dedup_ref_type(d, t->type); 4679 if (ref_type_id < 0) 4680 return ref_type_id; 4681 t->type = ref_type_id; 4682 4683 h = btf_hash_int_decl_tag(t); 4684 for_each_dedup_cand(d, hash_entry, h) { 4685 cand_id = hash_entry->value; 4686 cand = btf_type_by_id(d->btf, cand_id); 4687 if (btf_equal_int_tag(t, cand)) { 4688 new_id = cand_id; 4689 break; 4690 } 4691 } 4692 break; 4693 4694 case BTF_KIND_ARRAY: { 4695 struct btf_array *info = btf_array(t); 4696 4697 ref_type_id = btf_dedup_ref_type(d, info->type); 4698 if (ref_type_id < 0) 4699 return ref_type_id; 4700 info->type = ref_type_id; 4701 4702 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4703 if (ref_type_id < 0) 4704 return ref_type_id; 4705 info->index_type = ref_type_id; 4706 4707 h = btf_hash_array(t); 4708 for_each_dedup_cand(d, hash_entry, h) { 4709 cand_id = hash_entry->value; 4710 cand = btf_type_by_id(d->btf, cand_id); 4711 if (btf_equal_array(t, cand)) { 4712 new_id = cand_id; 4713 break; 4714 } 4715 } 4716 break; 4717 } 4718 4719 case BTF_KIND_FUNC_PROTO: { 4720 struct btf_param *param; 4721 __u16 vlen; 4722 int i; 4723 4724 ref_type_id = btf_dedup_ref_type(d, t->type); 4725 if (ref_type_id < 0) 4726 return ref_type_id; 4727 t->type = ref_type_id; 4728 4729 vlen = btf_vlen(t); 4730 param = btf_params(t); 4731 for (i = 0; i < vlen; i++) { 4732 ref_type_id = btf_dedup_ref_type(d, param->type); 4733 if (ref_type_id < 0) 4734 return ref_type_id; 4735 param->type = ref_type_id; 4736 param++; 4737 } 4738 4739 h = btf_hash_fnproto(t); 4740 for_each_dedup_cand(d, hash_entry, h) { 4741 cand_id = hash_entry->value; 4742 cand = btf_type_by_id(d->btf, cand_id); 4743 if (btf_equal_fnproto(t, cand)) { 4744 new_id = cand_id; 4745 break; 4746 } 4747 } 4748 break; 4749 } 4750 4751 default: 4752 return -EINVAL; 4753 } 4754 4755 d->map[type_id] = new_id; 4756 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4757 return -ENOMEM; 4758 4759 return new_id; 4760 } 4761 4762 static int btf_dedup_ref_types(struct btf_dedup *d) 4763 { 4764 int i, err; 4765 4766 for (i = 0; i < d->btf->nr_types; i++) { 4767 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4768 if (err < 0) 4769 return err; 4770 } 4771 /* we won't need d->dedup_table anymore */ 4772 hashmap__free(d->dedup_table); 4773 d->dedup_table = NULL; 4774 return 0; 4775 } 4776 4777 /* 4778 * Collect a map from type names to type ids for all canonical structs 4779 * and unions. If the same name is shared by several canonical types 4780 * use a special value 0 to indicate this fact. 4781 */ 4782 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4783 { 4784 __u32 nr_types = btf__type_cnt(d->btf); 4785 struct btf_type *t; 4786 __u32 type_id; 4787 __u16 kind; 4788 int err; 4789 4790 /* 4791 * Iterate over base and split module ids in order to get all 4792 * available structs in the map. 4793 */ 4794 for (type_id = 1; type_id < nr_types; ++type_id) { 4795 t = btf_type_by_id(d->btf, type_id); 4796 kind = btf_kind(t); 4797 4798 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4799 continue; 4800 4801 /* Skip non-canonical types */ 4802 if (type_id != d->map[type_id]) 4803 continue; 4804 4805 err = hashmap__add(names_map, t->name_off, type_id); 4806 if (err == -EEXIST) 4807 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4808 4809 if (err) 4810 return err; 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4817 { 4818 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4819 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4820 __u16 cand_kind, kind = btf_kind(t); 4821 struct btf_type *cand_t; 4822 uintptr_t cand_id; 4823 4824 if (kind != BTF_KIND_FWD) 4825 return 0; 4826 4827 /* Skip if this FWD already has a mapping */ 4828 if (type_id != d->map[type_id]) 4829 return 0; 4830 4831 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4832 return 0; 4833 4834 /* Zero is a special value indicating that name is not unique */ 4835 if (!cand_id) 4836 return 0; 4837 4838 cand_t = btf_type_by_id(d->btf, cand_id); 4839 cand_kind = btf_kind(cand_t); 4840 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4841 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4842 return 0; 4843 4844 d->map[type_id] = cand_id; 4845 4846 return 0; 4847 } 4848 4849 /* 4850 * Resolve unambiguous forward declarations. 4851 * 4852 * The lion's share of all FWD declarations is resolved during 4853 * `btf_dedup_struct_types` phase when different type graphs are 4854 * compared against each other. However, if in some compilation unit a 4855 * FWD declaration is not a part of a type graph compared against 4856 * another type graph that declaration's canonical type would not be 4857 * changed. Example: 4858 * 4859 * CU #1: 4860 * 4861 * struct foo; 4862 * struct foo *some_global; 4863 * 4864 * CU #2: 4865 * 4866 * struct foo { int u; }; 4867 * struct foo *another_global; 4868 * 4869 * After `btf_dedup_struct_types` the BTF looks as follows: 4870 * 4871 * [1] STRUCT 'foo' size=4 vlen=1 ... 4872 * [2] INT 'int' size=4 ... 4873 * [3] PTR '(anon)' type_id=1 4874 * [4] FWD 'foo' fwd_kind=struct 4875 * [5] PTR '(anon)' type_id=4 4876 * 4877 * This pass assumes that such FWD declarations should be mapped to 4878 * structs or unions with identical name in case if the name is not 4879 * ambiguous. 4880 */ 4881 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4882 { 4883 int i, err; 4884 struct hashmap *names_map; 4885 4886 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4887 if (IS_ERR(names_map)) 4888 return PTR_ERR(names_map); 4889 4890 err = btf_dedup_fill_unique_names_map(d, names_map); 4891 if (err < 0) 4892 goto exit; 4893 4894 for (i = 0; i < d->btf->nr_types; i++) { 4895 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4896 if (err < 0) 4897 break; 4898 } 4899 4900 exit: 4901 hashmap__free(names_map); 4902 return err; 4903 } 4904 4905 /* 4906 * Compact types. 4907 * 4908 * After we established for each type its corresponding canonical representative 4909 * type, we now can eliminate types that are not canonical and leave only 4910 * canonical ones layed out sequentially in memory by copying them over 4911 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4912 * a map from original type ID to a new compacted type ID, which will be used 4913 * during next phase to "fix up" type IDs, referenced from struct/union and 4914 * reference types. 4915 */ 4916 static int btf_dedup_compact_types(struct btf_dedup *d) 4917 { 4918 __u32 *new_offs; 4919 __u32 next_type_id = d->btf->start_id; 4920 const struct btf_type *t; 4921 void *p; 4922 int i, id, len; 4923 4924 /* we are going to reuse hypot_map to store compaction remapping */ 4925 d->hypot_map[0] = 0; 4926 /* base BTF types are not renumbered */ 4927 for (id = 1; id < d->btf->start_id; id++) 4928 d->hypot_map[id] = id; 4929 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4930 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4931 4932 p = d->btf->types_data; 4933 4934 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4935 if (d->map[id] != id) 4936 continue; 4937 4938 t = btf__type_by_id(d->btf, id); 4939 len = btf_type_size(t); 4940 if (len < 0) 4941 return len; 4942 4943 memmove(p, t, len); 4944 d->hypot_map[id] = next_type_id; 4945 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4946 p += len; 4947 next_type_id++; 4948 } 4949 4950 /* shrink struct btf's internal types index and update btf_header */ 4951 d->btf->nr_types = next_type_id - d->btf->start_id; 4952 d->btf->type_offs_cap = d->btf->nr_types; 4953 d->btf->hdr->type_len = p - d->btf->types_data; 4954 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4955 sizeof(*new_offs)); 4956 if (d->btf->type_offs_cap && !new_offs) 4957 return -ENOMEM; 4958 d->btf->type_offs = new_offs; 4959 d->btf->hdr->str_off = d->btf->hdr->type_len; 4960 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4961 return 0; 4962 } 4963 4964 /* 4965 * Figure out final (deduplicated and compacted) type ID for provided original 4966 * `type_id` by first resolving it into corresponding canonical type ID and 4967 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4968 * which is populated during compaction phase. 4969 */ 4970 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4971 { 4972 struct btf_dedup *d = ctx; 4973 __u32 resolved_type_id, new_type_id; 4974 4975 resolved_type_id = resolve_type_id(d, *type_id); 4976 new_type_id = d->hypot_map[resolved_type_id]; 4977 if (new_type_id > BTF_MAX_NR_TYPES) 4978 return -EINVAL; 4979 4980 *type_id = new_type_id; 4981 return 0; 4982 } 4983 4984 /* 4985 * Remap referenced type IDs into deduped type IDs. 4986 * 4987 * After BTF types are deduplicated and compacted, their final type IDs may 4988 * differ from original ones. The map from original to a corresponding 4989 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4990 * compaction phase. During remapping phase we are rewriting all type IDs 4991 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4992 * their final deduped type IDs. 4993 */ 4994 static int btf_dedup_remap_types(struct btf_dedup *d) 4995 { 4996 int i, r; 4997 4998 for (i = 0; i < d->btf->nr_types; i++) { 4999 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 5000 struct btf_field_iter it; 5001 __u32 *type_id; 5002 5003 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5004 if (r) 5005 return r; 5006 5007 while ((type_id = btf_field_iter_next(&it))) { 5008 __u32 resolved_id, new_id; 5009 5010 resolved_id = resolve_type_id(d, *type_id); 5011 new_id = d->hypot_map[resolved_id]; 5012 if (new_id > BTF_MAX_NR_TYPES) 5013 return -EINVAL; 5014 5015 *type_id = new_id; 5016 } 5017 } 5018 5019 if (!d->btf_ext) 5020 return 0; 5021 5022 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 5023 if (r) 5024 return r; 5025 5026 return 0; 5027 } 5028 5029 /* 5030 * Probe few well-known locations for vmlinux kernel image and try to load BTF 5031 * data out of it to use for target BTF. 5032 */ 5033 struct btf *btf__load_vmlinux_btf(void) 5034 { 5035 const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux"; 5036 /* fall back locations, trying to find vmlinux on disk */ 5037 const char *locations[] = { 5038 "/boot/vmlinux-%1$s", 5039 "/lib/modules/%1$s/vmlinux-%1$s", 5040 "/lib/modules/%1$s/build/vmlinux", 5041 "/usr/lib/modules/%1$s/kernel/vmlinux", 5042 "/usr/lib/debug/boot/vmlinux-%1$s", 5043 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 5044 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 5045 }; 5046 char path[PATH_MAX + 1]; 5047 struct utsname buf; 5048 struct btf *btf; 5049 int i, err; 5050 5051 /* is canonical sysfs location accessible? */ 5052 if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) { 5053 pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n", 5054 sysfs_btf_path); 5055 } else { 5056 btf = btf__parse(sysfs_btf_path, NULL); 5057 if (!btf) { 5058 err = -errno; 5059 pr_warn("failed to read kernel BTF from '%s': %d\n", sysfs_btf_path, err); 5060 return libbpf_err_ptr(err); 5061 } 5062 pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path); 5063 return btf; 5064 } 5065 5066 /* try fallback locations */ 5067 uname(&buf); 5068 for (i = 0; i < ARRAY_SIZE(locations); i++) { 5069 snprintf(path, PATH_MAX, locations[i], buf.release); 5070 5071 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 5072 continue; 5073 5074 btf = btf__parse(path, NULL); 5075 err = libbpf_get_error(btf); 5076 pr_debug("loading kernel BTF '%s': %d\n", path, err); 5077 if (err) 5078 continue; 5079 5080 return btf; 5081 } 5082 5083 pr_warn("failed to find valid kernel BTF\n"); 5084 return libbpf_err_ptr(-ESRCH); 5085 } 5086 5087 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 5088 5089 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 5090 { 5091 char path[80]; 5092 5093 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 5094 return btf__parse_split(path, vmlinux_btf); 5095 } 5096 5097 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 5098 { 5099 const struct btf_ext_info *seg; 5100 struct btf_ext_info_sec *sec; 5101 int i, err; 5102 5103 seg = &btf_ext->func_info; 5104 for_each_btf_ext_sec(seg, sec) { 5105 struct bpf_func_info_min *rec; 5106 5107 for_each_btf_ext_rec(seg, sec, i, rec) { 5108 err = visit(&rec->type_id, ctx); 5109 if (err < 0) 5110 return err; 5111 } 5112 } 5113 5114 seg = &btf_ext->core_relo_info; 5115 for_each_btf_ext_sec(seg, sec) { 5116 struct bpf_core_relo *rec; 5117 5118 for_each_btf_ext_rec(seg, sec, i, rec) { 5119 err = visit(&rec->type_id, ctx); 5120 if (err < 0) 5121 return err; 5122 } 5123 } 5124 5125 return 0; 5126 } 5127 5128 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 5129 { 5130 const struct btf_ext_info *seg; 5131 struct btf_ext_info_sec *sec; 5132 int i, err; 5133 5134 seg = &btf_ext->func_info; 5135 for_each_btf_ext_sec(seg, sec) { 5136 err = visit(&sec->sec_name_off, ctx); 5137 if (err) 5138 return err; 5139 } 5140 5141 seg = &btf_ext->line_info; 5142 for_each_btf_ext_sec(seg, sec) { 5143 struct bpf_line_info_min *rec; 5144 5145 err = visit(&sec->sec_name_off, ctx); 5146 if (err) 5147 return err; 5148 5149 for_each_btf_ext_rec(seg, sec, i, rec) { 5150 err = visit(&rec->file_name_off, ctx); 5151 if (err) 5152 return err; 5153 err = visit(&rec->line_off, ctx); 5154 if (err) 5155 return err; 5156 } 5157 } 5158 5159 seg = &btf_ext->core_relo_info; 5160 for_each_btf_ext_sec(seg, sec) { 5161 struct bpf_core_relo *rec; 5162 5163 err = visit(&sec->sec_name_off, ctx); 5164 if (err) 5165 return err; 5166 5167 for_each_btf_ext_rec(seg, sec, i, rec) { 5168 err = visit(&rec->access_str_off, ctx); 5169 if (err) 5170 return err; 5171 } 5172 } 5173 5174 return 0; 5175 } 5176 5177 struct btf_distill { 5178 struct btf_pipe pipe; 5179 int *id_map; 5180 unsigned int split_start_id; 5181 unsigned int split_start_str; 5182 int diff_id; 5183 }; 5184 5185 static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i) 5186 { 5187 struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i); 5188 struct btf_field_iter it; 5189 __u32 *id; 5190 int err; 5191 5192 err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS); 5193 if (err) 5194 return err; 5195 while ((id = btf_field_iter_next(&it))) { 5196 struct btf_type *base_t; 5197 5198 if (!*id) 5199 continue; 5200 /* split BTF id, not needed */ 5201 if (*id >= dist->split_start_id) 5202 continue; 5203 /* already added ? */ 5204 if (dist->id_map[*id] > 0) 5205 continue; 5206 5207 /* only a subset of base BTF types should be referenced from 5208 * split BTF; ensure nothing unexpected is referenced. 5209 */ 5210 base_t = btf_type_by_id(dist->pipe.src, *id); 5211 switch (btf_kind(base_t)) { 5212 case BTF_KIND_INT: 5213 case BTF_KIND_FLOAT: 5214 case BTF_KIND_FWD: 5215 case BTF_KIND_ARRAY: 5216 case BTF_KIND_STRUCT: 5217 case BTF_KIND_UNION: 5218 case BTF_KIND_TYPEDEF: 5219 case BTF_KIND_ENUM: 5220 case BTF_KIND_ENUM64: 5221 case BTF_KIND_PTR: 5222 case BTF_KIND_CONST: 5223 case BTF_KIND_RESTRICT: 5224 case BTF_KIND_VOLATILE: 5225 case BTF_KIND_FUNC_PROTO: 5226 case BTF_KIND_TYPE_TAG: 5227 dist->id_map[*id] = *id; 5228 break; 5229 default: 5230 pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n", 5231 *id, btf_kind(base_t)); 5232 return -EINVAL; 5233 } 5234 /* If a base type is used, ensure types it refers to are 5235 * marked as used also; so for example if we find a PTR to INT 5236 * we need both the PTR and INT. 5237 * 5238 * The only exception is named struct/unions, since distilled 5239 * base BTF composite types have no members. 5240 */ 5241 if (btf_is_composite(base_t) && base_t->name_off) 5242 continue; 5243 err = btf_add_distilled_type_ids(dist, *id); 5244 if (err) 5245 return err; 5246 } 5247 return 0; 5248 } 5249 5250 static int btf_add_distilled_types(struct btf_distill *dist) 5251 { 5252 bool adding_to_base = dist->pipe.dst->start_id == 1; 5253 int id = btf__type_cnt(dist->pipe.dst); 5254 struct btf_type *t; 5255 int i, err = 0; 5256 5257 5258 /* Add types for each of the required references to either distilled 5259 * base or split BTF, depending on type characteristics. 5260 */ 5261 for (i = 1; i < dist->split_start_id; i++) { 5262 const char *name; 5263 int kind; 5264 5265 if (!dist->id_map[i]) 5266 continue; 5267 t = btf_type_by_id(dist->pipe.src, i); 5268 kind = btf_kind(t); 5269 name = btf__name_by_offset(dist->pipe.src, t->name_off); 5270 5271 switch (kind) { 5272 case BTF_KIND_INT: 5273 case BTF_KIND_FLOAT: 5274 case BTF_KIND_FWD: 5275 /* Named int, float, fwd are added to base. */ 5276 if (!adding_to_base) 5277 continue; 5278 err = btf_add_type(&dist->pipe, t); 5279 break; 5280 case BTF_KIND_STRUCT: 5281 case BTF_KIND_UNION: 5282 /* Named struct/union are added to base as 0-vlen 5283 * struct/union of same size. Anonymous struct/unions 5284 * are added to split BTF as-is. 5285 */ 5286 if (adding_to_base) { 5287 if (!t->name_off) 5288 continue; 5289 err = btf_add_composite(dist->pipe.dst, kind, name, t->size); 5290 } else { 5291 if (t->name_off) 5292 continue; 5293 err = btf_add_type(&dist->pipe, t); 5294 } 5295 break; 5296 case BTF_KIND_ENUM: 5297 case BTF_KIND_ENUM64: 5298 /* Named enum[64]s are added to base as a sized 5299 * enum; relocation will match with appropriately-named 5300 * and sized enum or enum64. 5301 * 5302 * Anonymous enums are added to split BTF as-is. 5303 */ 5304 if (adding_to_base) { 5305 if (!t->name_off) 5306 continue; 5307 err = btf__add_enum(dist->pipe.dst, name, t->size); 5308 } else { 5309 if (t->name_off) 5310 continue; 5311 err = btf_add_type(&dist->pipe, t); 5312 } 5313 break; 5314 case BTF_KIND_ARRAY: 5315 case BTF_KIND_TYPEDEF: 5316 case BTF_KIND_PTR: 5317 case BTF_KIND_CONST: 5318 case BTF_KIND_RESTRICT: 5319 case BTF_KIND_VOLATILE: 5320 case BTF_KIND_FUNC_PROTO: 5321 case BTF_KIND_TYPE_TAG: 5322 /* All other types are added to split BTF. */ 5323 if (adding_to_base) 5324 continue; 5325 err = btf_add_type(&dist->pipe, t); 5326 break; 5327 default: 5328 pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n", 5329 name, i, kind); 5330 return -EINVAL; 5331 5332 } 5333 if (err < 0) 5334 break; 5335 dist->id_map[i] = id++; 5336 } 5337 return err; 5338 } 5339 5340 /* Split BTF ids without a mapping will be shifted downwards since distilled 5341 * base BTF is smaller than the original base BTF. For those that have a 5342 * mapping (either to base or updated split BTF), update the id based on 5343 * that mapping. 5344 */ 5345 static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i) 5346 { 5347 struct btf_type *t = btf_type_by_id(dist->pipe.dst, i); 5348 struct btf_field_iter it; 5349 __u32 *id; 5350 int err; 5351 5352 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5353 if (err) 5354 return err; 5355 while ((id = btf_field_iter_next(&it))) { 5356 if (dist->id_map[*id]) 5357 *id = dist->id_map[*id]; 5358 else if (*id >= dist->split_start_id) 5359 *id -= dist->diff_id; 5360 } 5361 return 0; 5362 } 5363 5364 /* Create updated split BTF with distilled base BTF; distilled base BTF 5365 * consists of BTF information required to clarify the types that split 5366 * BTF refers to, omitting unneeded details. Specifically it will contain 5367 * base types and memberless definitions of named structs, unions and enumerated 5368 * types. Associated reference types like pointers, arrays and anonymous 5369 * structs, unions and enumerated types will be added to split BTF. 5370 * Size is recorded for named struct/unions to help guide matching to the 5371 * target base BTF during later relocation. 5372 * 5373 * The only case where structs, unions or enumerated types are fully represented 5374 * is when they are anonymous; in such cases, the anonymous type is added to 5375 * split BTF in full. 5376 * 5377 * We return newly-created split BTF where the split BTF refers to a newly-created 5378 * distilled base BTF. Both must be freed separately by the caller. 5379 */ 5380 int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, 5381 struct btf **new_split_btf) 5382 { 5383 struct btf *new_base = NULL, *new_split = NULL; 5384 const struct btf *old_base; 5385 unsigned int n = btf__type_cnt(src_btf); 5386 struct btf_distill dist = {}; 5387 struct btf_type *t; 5388 int i, err = 0; 5389 5390 /* src BTF must be split BTF. */ 5391 old_base = btf__base_btf(src_btf); 5392 if (!new_base_btf || !new_split_btf || !old_base) 5393 return libbpf_err(-EINVAL); 5394 5395 new_base = btf__new_empty(); 5396 if (!new_base) 5397 return libbpf_err(-ENOMEM); 5398 5399 btf__set_endianness(new_base, btf__endianness(src_btf)); 5400 5401 dist.id_map = calloc(n, sizeof(*dist.id_map)); 5402 if (!dist.id_map) { 5403 err = -ENOMEM; 5404 goto done; 5405 } 5406 dist.pipe.src = src_btf; 5407 dist.pipe.dst = new_base; 5408 dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 5409 if (IS_ERR(dist.pipe.str_off_map)) { 5410 err = -ENOMEM; 5411 goto done; 5412 } 5413 dist.split_start_id = btf__type_cnt(old_base); 5414 dist.split_start_str = old_base->hdr->str_len; 5415 5416 /* Pass over src split BTF; generate the list of base BTF type ids it 5417 * references; these will constitute our distilled BTF set to be 5418 * distributed over base and split BTF as appropriate. 5419 */ 5420 for (i = src_btf->start_id; i < n; i++) { 5421 err = btf_add_distilled_type_ids(&dist, i); 5422 if (err < 0) 5423 goto done; 5424 } 5425 /* Next add types for each of the required references to base BTF and split BTF 5426 * in turn. 5427 */ 5428 err = btf_add_distilled_types(&dist); 5429 if (err < 0) 5430 goto done; 5431 5432 /* Create new split BTF with distilled base BTF as its base; the final 5433 * state is split BTF with distilled base BTF that represents enough 5434 * about its base references to allow it to be relocated with the base 5435 * BTF available. 5436 */ 5437 new_split = btf__new_empty_split(new_base); 5438 if (!new_split) { 5439 err = -errno; 5440 goto done; 5441 } 5442 dist.pipe.dst = new_split; 5443 /* First add all split types */ 5444 for (i = src_btf->start_id; i < n; i++) { 5445 t = btf_type_by_id(src_btf, i); 5446 err = btf_add_type(&dist.pipe, t); 5447 if (err < 0) 5448 goto done; 5449 } 5450 /* Now add distilled types to split BTF that are not added to base. */ 5451 err = btf_add_distilled_types(&dist); 5452 if (err < 0) 5453 goto done; 5454 5455 /* All split BTF ids will be shifted downwards since there are less base 5456 * BTF ids in distilled base BTF. 5457 */ 5458 dist.diff_id = dist.split_start_id - btf__type_cnt(new_base); 5459 5460 n = btf__type_cnt(new_split); 5461 /* Now update base/split BTF ids. */ 5462 for (i = 1; i < n; i++) { 5463 err = btf_update_distilled_type_ids(&dist, i); 5464 if (err < 0) 5465 break; 5466 } 5467 done: 5468 free(dist.id_map); 5469 hashmap__free(dist.pipe.str_off_map); 5470 if (err) { 5471 btf__free(new_split); 5472 btf__free(new_base); 5473 return libbpf_err(err); 5474 } 5475 *new_base_btf = new_base; 5476 *new_split_btf = new_split; 5477 5478 return 0; 5479 } 5480 5481 const struct btf_header *btf_header(const struct btf *btf) 5482 { 5483 return btf->hdr; 5484 } 5485 5486 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 5487 { 5488 btf->base_btf = (struct btf *)base_btf; 5489 btf->start_id = btf__type_cnt(base_btf); 5490 btf->start_str_off = base_btf->hdr->str_len; 5491 } 5492 5493 int btf__relocate(struct btf *btf, const struct btf *base_btf) 5494 { 5495 int err = btf_relocate(btf, base_btf, NULL); 5496 5497 if (!err) 5498 btf->owns_base = false; 5499 return libbpf_err(err); 5500 } 5501