1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <sys/mman.h> 16 #include <linux/kernel.h> 17 #include <linux/err.h> 18 #include <linux/btf.h> 19 #include <gelf.h> 20 #include "btf.h" 21 #include "bpf.h" 22 #include "libbpf.h" 23 #include "libbpf_internal.h" 24 #include "hashmap.h" 25 #include "strset.h" 26 #include "str_error.h" 27 28 #define BTF_MAX_NR_TYPES 0x7fffffffU 29 #define BTF_MAX_STR_OFFSET 0x7fffffffU 30 31 static struct btf_type btf_void; 32 33 struct btf { 34 /* raw BTF data in native endianness */ 35 void *raw_data; 36 /* raw BTF data in non-native endianness */ 37 void *raw_data_swapped; 38 __u32 raw_size; 39 /* whether target endianness differs from the native one */ 40 bool swapped_endian; 41 42 /* 43 * When BTF is loaded from an ELF or raw memory it is stored 44 * in a contiguous memory block. The hdr, type_data, and, strs_data 45 * point inside that memory region to their respective parts of BTF 46 * representation: 47 * 48 * +--------------------------------+ 49 * | Header | Types | Strings | 50 * +--------------------------------+ 51 * ^ ^ ^ 52 * | | | 53 * hdr | | 54 * types_data-+ | 55 * strs_data------------+ 56 * 57 * If BTF data is later modified, e.g., due to types added or 58 * removed, BTF deduplication performed, etc, this contiguous 59 * representation is broken up into three independently allocated 60 * memory regions to be able to modify them independently. 61 * raw_data is nulled out at that point, but can be later allocated 62 * and cached again if user calls btf__raw_data(), at which point 63 * raw_data will contain a contiguous copy of header, types, and 64 * strings: 65 * 66 * +----------+ +---------+ +-----------+ 67 * | Header | | Types | | Strings | 68 * +----------+ +---------+ +-----------+ 69 * ^ ^ ^ 70 * | | | 71 * hdr | | 72 * types_data----+ | 73 * strset__data(strs_set)-----+ 74 * 75 * +----------+---------+-----------+ 76 * | Header | Types | Strings | 77 * raw_data----->+----------+---------+-----------+ 78 */ 79 struct btf_header *hdr; 80 81 void *types_data; 82 size_t types_data_cap; /* used size stored in hdr->type_len */ 83 84 /* type ID to `struct btf_type *` lookup index 85 * type_offs[0] corresponds to the first non-VOID type: 86 * - for base BTF it's type [1]; 87 * - for split BTF it's the first non-base BTF type. 88 */ 89 __u32 *type_offs; 90 size_t type_offs_cap; 91 /* number of types in this BTF instance: 92 * - doesn't include special [0] void type; 93 * - for split BTF counts number of types added on top of base BTF. 94 */ 95 __u32 nr_types; 96 /* if not NULL, points to the base BTF on top of which the current 97 * split BTF is based 98 */ 99 struct btf *base_btf; 100 /* BTF type ID of the first type in this BTF instance: 101 * - for base BTF it's equal to 1; 102 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 103 */ 104 int start_id; 105 /* logical string offset of this BTF instance: 106 * - for base BTF it's equal to 0; 107 * - for split BTF it's equal to total size of base BTF's string section size. 108 */ 109 int start_str_off; 110 111 /* only one of strs_data or strs_set can be non-NULL, depending on 112 * whether BTF is in a modifiable state (strs_set is used) or not 113 * (strs_data points inside raw_data) 114 */ 115 void *strs_data; 116 /* a set of unique strings */ 117 struct strset *strs_set; 118 /* whether strings are already deduplicated */ 119 bool strs_deduped; 120 121 /* whether base_btf should be freed in btf_free for this instance */ 122 bool owns_base; 123 124 /* whether raw_data is a (read-only) mmap */ 125 bool raw_data_is_mmap; 126 127 /* BTF object FD, if loaded into kernel */ 128 int fd; 129 130 /* Pointer size (in bytes) for a target architecture of this BTF */ 131 int ptr_sz; 132 }; 133 134 static inline __u64 ptr_to_u64(const void *ptr) 135 { 136 return (__u64) (unsigned long) ptr; 137 } 138 139 /* Ensure given dynamically allocated memory region pointed to by *data* with 140 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 141 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 142 * are already used. At most *max_cnt* elements can be ever allocated. 143 * If necessary, memory is reallocated and all existing data is copied over, 144 * new pointer to the memory region is stored at *data, new memory region 145 * capacity (in number of elements) is stored in *cap. 146 * On success, memory pointer to the beginning of unused memory is returned. 147 * On error, NULL is returned. 148 */ 149 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 150 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 151 { 152 size_t new_cnt; 153 void *new_data; 154 155 if (cur_cnt + add_cnt <= *cap_cnt) 156 return *data + cur_cnt * elem_sz; 157 158 /* requested more than the set limit */ 159 if (cur_cnt + add_cnt > max_cnt) 160 return NULL; 161 162 new_cnt = *cap_cnt; 163 new_cnt += new_cnt / 4; /* expand by 25% */ 164 if (new_cnt < 16) /* but at least 16 elements */ 165 new_cnt = 16; 166 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 167 new_cnt = max_cnt; 168 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 169 new_cnt = cur_cnt + add_cnt; 170 171 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 172 if (!new_data) 173 return NULL; 174 175 /* zero out newly allocated portion of memory */ 176 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 177 178 *data = new_data; 179 *cap_cnt = new_cnt; 180 return new_data + cur_cnt * elem_sz; 181 } 182 183 /* Ensure given dynamically allocated memory region has enough allocated space 184 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 185 */ 186 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 187 { 188 void *p; 189 190 if (need_cnt <= *cap_cnt) 191 return 0; 192 193 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 194 if (!p) 195 return -ENOMEM; 196 197 return 0; 198 } 199 200 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 201 { 202 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 203 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 204 } 205 206 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 207 { 208 __u32 *p; 209 210 p = btf_add_type_offs_mem(btf, 1); 211 if (!p) 212 return -ENOMEM; 213 214 *p = type_off; 215 return 0; 216 } 217 218 static void btf_bswap_hdr(struct btf_header *h) 219 { 220 h->magic = bswap_16(h->magic); 221 h->hdr_len = bswap_32(h->hdr_len); 222 h->type_off = bswap_32(h->type_off); 223 h->type_len = bswap_32(h->type_len); 224 h->str_off = bswap_32(h->str_off); 225 h->str_len = bswap_32(h->str_len); 226 } 227 228 static int btf_parse_hdr(struct btf *btf) 229 { 230 struct btf_header *hdr = btf->hdr; 231 __u32 meta_left; 232 233 if (btf->raw_size < sizeof(struct btf_header)) { 234 pr_debug("BTF header not found\n"); 235 return -EINVAL; 236 } 237 238 if (hdr->magic == bswap_16(BTF_MAGIC)) { 239 btf->swapped_endian = true; 240 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 241 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 242 bswap_32(hdr->hdr_len)); 243 return -ENOTSUP; 244 } 245 btf_bswap_hdr(hdr); 246 } else if (hdr->magic != BTF_MAGIC) { 247 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 248 return -EINVAL; 249 } 250 251 if (btf->raw_size < hdr->hdr_len) { 252 pr_debug("BTF header len %u larger than data size %u\n", 253 hdr->hdr_len, btf->raw_size); 254 return -EINVAL; 255 } 256 257 meta_left = btf->raw_size - hdr->hdr_len; 258 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 259 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 260 return -EINVAL; 261 } 262 263 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 264 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 265 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 266 return -EINVAL; 267 } 268 269 if (hdr->type_off % 4) { 270 pr_debug("BTF type section is not aligned to 4 bytes\n"); 271 return -EINVAL; 272 } 273 274 return 0; 275 } 276 277 static int btf_parse_str_sec(struct btf *btf) 278 { 279 const struct btf_header *hdr = btf->hdr; 280 const char *start = btf->strs_data; 281 const char *end = start + btf->hdr->str_len; 282 283 if (btf->base_btf && hdr->str_len == 0) 284 return 0; 285 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 286 pr_debug("Invalid BTF string section\n"); 287 return -EINVAL; 288 } 289 if (!btf->base_btf && start[0]) { 290 pr_debug("Malformed BTF string section, did you forget to provide base BTF?\n"); 291 return -EINVAL; 292 } 293 return 0; 294 } 295 296 static int btf_type_size(const struct btf_type *t) 297 { 298 const int base_size = sizeof(struct btf_type); 299 __u16 vlen = btf_vlen(t); 300 301 switch (btf_kind(t)) { 302 case BTF_KIND_FWD: 303 case BTF_KIND_CONST: 304 case BTF_KIND_VOLATILE: 305 case BTF_KIND_RESTRICT: 306 case BTF_KIND_PTR: 307 case BTF_KIND_TYPEDEF: 308 case BTF_KIND_FUNC: 309 case BTF_KIND_FLOAT: 310 case BTF_KIND_TYPE_TAG: 311 return base_size; 312 case BTF_KIND_INT: 313 return base_size + sizeof(__u32); 314 case BTF_KIND_ENUM: 315 return base_size + vlen * sizeof(struct btf_enum); 316 case BTF_KIND_ENUM64: 317 return base_size + vlen * sizeof(struct btf_enum64); 318 case BTF_KIND_ARRAY: 319 return base_size + sizeof(struct btf_array); 320 case BTF_KIND_STRUCT: 321 case BTF_KIND_UNION: 322 return base_size + vlen * sizeof(struct btf_member); 323 case BTF_KIND_FUNC_PROTO: 324 return base_size + vlen * sizeof(struct btf_param); 325 case BTF_KIND_VAR: 326 return base_size + sizeof(struct btf_var); 327 case BTF_KIND_DATASEC: 328 return base_size + vlen * sizeof(struct btf_var_secinfo); 329 case BTF_KIND_DECL_TAG: 330 return base_size + sizeof(struct btf_decl_tag); 331 default: 332 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 333 return -EINVAL; 334 } 335 } 336 337 static void btf_bswap_type_base(struct btf_type *t) 338 { 339 t->name_off = bswap_32(t->name_off); 340 t->info = bswap_32(t->info); 341 t->type = bswap_32(t->type); 342 } 343 344 static int btf_bswap_type_rest(struct btf_type *t) 345 { 346 struct btf_var_secinfo *v; 347 struct btf_enum64 *e64; 348 struct btf_member *m; 349 struct btf_array *a; 350 struct btf_param *p; 351 struct btf_enum *e; 352 __u16 vlen = btf_vlen(t); 353 int i; 354 355 switch (btf_kind(t)) { 356 case BTF_KIND_FWD: 357 case BTF_KIND_CONST: 358 case BTF_KIND_VOLATILE: 359 case BTF_KIND_RESTRICT: 360 case BTF_KIND_PTR: 361 case BTF_KIND_TYPEDEF: 362 case BTF_KIND_FUNC: 363 case BTF_KIND_FLOAT: 364 case BTF_KIND_TYPE_TAG: 365 return 0; 366 case BTF_KIND_INT: 367 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 368 return 0; 369 case BTF_KIND_ENUM: 370 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 371 e->name_off = bswap_32(e->name_off); 372 e->val = bswap_32(e->val); 373 } 374 return 0; 375 case BTF_KIND_ENUM64: 376 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 377 e64->name_off = bswap_32(e64->name_off); 378 e64->val_lo32 = bswap_32(e64->val_lo32); 379 e64->val_hi32 = bswap_32(e64->val_hi32); 380 } 381 return 0; 382 case BTF_KIND_ARRAY: 383 a = btf_array(t); 384 a->type = bswap_32(a->type); 385 a->index_type = bswap_32(a->index_type); 386 a->nelems = bswap_32(a->nelems); 387 return 0; 388 case BTF_KIND_STRUCT: 389 case BTF_KIND_UNION: 390 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 391 m->name_off = bswap_32(m->name_off); 392 m->type = bswap_32(m->type); 393 m->offset = bswap_32(m->offset); 394 } 395 return 0; 396 case BTF_KIND_FUNC_PROTO: 397 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 398 p->name_off = bswap_32(p->name_off); 399 p->type = bswap_32(p->type); 400 } 401 return 0; 402 case BTF_KIND_VAR: 403 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 404 return 0; 405 case BTF_KIND_DATASEC: 406 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 407 v->type = bswap_32(v->type); 408 v->offset = bswap_32(v->offset); 409 v->size = bswap_32(v->size); 410 } 411 return 0; 412 case BTF_KIND_DECL_TAG: 413 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 414 return 0; 415 default: 416 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 417 return -EINVAL; 418 } 419 } 420 421 static int btf_parse_type_sec(struct btf *btf) 422 { 423 struct btf_header *hdr = btf->hdr; 424 void *next_type = btf->types_data; 425 void *end_type = next_type + hdr->type_len; 426 int err, type_size; 427 428 while (next_type + sizeof(struct btf_type) <= end_type) { 429 if (btf->swapped_endian) 430 btf_bswap_type_base(next_type); 431 432 type_size = btf_type_size(next_type); 433 if (type_size < 0) 434 return type_size; 435 if (next_type + type_size > end_type) { 436 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 437 return -EINVAL; 438 } 439 440 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 441 return -EINVAL; 442 443 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 444 if (err) 445 return err; 446 447 next_type += type_size; 448 btf->nr_types++; 449 } 450 451 if (next_type != end_type) { 452 pr_warn("BTF types data is malformed\n"); 453 return -EINVAL; 454 } 455 456 return 0; 457 } 458 459 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) 460 { 461 const char *s; 462 463 s = btf__str_by_offset(btf, str_off); 464 if (!s) { 465 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); 466 return -EINVAL; 467 } 468 469 return 0; 470 } 471 472 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) 473 { 474 const struct btf_type *t; 475 476 t = btf__type_by_id(btf, id); 477 if (!t) { 478 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); 479 return -EINVAL; 480 } 481 482 return 0; 483 } 484 485 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) 486 { 487 __u32 kind = btf_kind(t); 488 int err, i, n; 489 490 err = btf_validate_str(btf, t->name_off, "type name", id); 491 if (err) 492 return err; 493 494 switch (kind) { 495 case BTF_KIND_UNKN: 496 case BTF_KIND_INT: 497 case BTF_KIND_FWD: 498 case BTF_KIND_FLOAT: 499 break; 500 case BTF_KIND_PTR: 501 case BTF_KIND_TYPEDEF: 502 case BTF_KIND_VOLATILE: 503 case BTF_KIND_CONST: 504 case BTF_KIND_RESTRICT: 505 case BTF_KIND_VAR: 506 case BTF_KIND_DECL_TAG: 507 case BTF_KIND_TYPE_TAG: 508 err = btf_validate_id(btf, t->type, id); 509 if (err) 510 return err; 511 break; 512 case BTF_KIND_ARRAY: { 513 const struct btf_array *a = btf_array(t); 514 515 err = btf_validate_id(btf, a->type, id); 516 err = err ?: btf_validate_id(btf, a->index_type, id); 517 if (err) 518 return err; 519 break; 520 } 521 case BTF_KIND_STRUCT: 522 case BTF_KIND_UNION: { 523 const struct btf_member *m = btf_members(t); 524 525 n = btf_vlen(t); 526 for (i = 0; i < n; i++, m++) { 527 err = btf_validate_str(btf, m->name_off, "field name", id); 528 err = err ?: btf_validate_id(btf, m->type, id); 529 if (err) 530 return err; 531 } 532 break; 533 } 534 case BTF_KIND_ENUM: { 535 const struct btf_enum *m = btf_enum(t); 536 537 n = btf_vlen(t); 538 for (i = 0; i < n; i++, m++) { 539 err = btf_validate_str(btf, m->name_off, "enum name", id); 540 if (err) 541 return err; 542 } 543 break; 544 } 545 case BTF_KIND_ENUM64: { 546 const struct btf_enum64 *m = btf_enum64(t); 547 548 n = btf_vlen(t); 549 for (i = 0; i < n; i++, m++) { 550 err = btf_validate_str(btf, m->name_off, "enum name", id); 551 if (err) 552 return err; 553 } 554 break; 555 } 556 case BTF_KIND_FUNC: { 557 const struct btf_type *ft; 558 559 err = btf_validate_id(btf, t->type, id); 560 if (err) 561 return err; 562 ft = btf__type_by_id(btf, t->type); 563 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { 564 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); 565 return -EINVAL; 566 } 567 break; 568 } 569 case BTF_KIND_FUNC_PROTO: { 570 const struct btf_param *m = btf_params(t); 571 572 n = btf_vlen(t); 573 for (i = 0; i < n; i++, m++) { 574 err = btf_validate_str(btf, m->name_off, "param name", id); 575 err = err ?: btf_validate_id(btf, m->type, id); 576 if (err) 577 return err; 578 } 579 break; 580 } 581 case BTF_KIND_DATASEC: { 582 const struct btf_var_secinfo *m = btf_var_secinfos(t); 583 584 n = btf_vlen(t); 585 for (i = 0; i < n; i++, m++) { 586 err = btf_validate_id(btf, m->type, id); 587 if (err) 588 return err; 589 } 590 break; 591 } 592 default: 593 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); 594 return -EINVAL; 595 } 596 return 0; 597 } 598 599 /* Validate basic sanity of BTF. It's intentionally less thorough than 600 * kernel's validation and validates only properties of BTF that libbpf relies 601 * on to be correct (e.g., valid type IDs, valid string offsets, etc) 602 */ 603 static int btf_sanity_check(const struct btf *btf) 604 { 605 const struct btf_type *t; 606 __u32 i, n = btf__type_cnt(btf); 607 int err; 608 609 for (i = btf->start_id; i < n; i++) { 610 t = btf_type_by_id(btf, i); 611 err = btf_validate_type(btf, t, i); 612 if (err) 613 return err; 614 } 615 return 0; 616 } 617 618 __u32 btf__type_cnt(const struct btf *btf) 619 { 620 return btf->start_id + btf->nr_types; 621 } 622 623 const struct btf *btf__base_btf(const struct btf *btf) 624 { 625 return btf->base_btf; 626 } 627 628 /* internal helper returning non-const pointer to a type */ 629 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 630 { 631 if (type_id == 0) 632 return &btf_void; 633 if (type_id < btf->start_id) 634 return btf_type_by_id(btf->base_btf, type_id); 635 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 636 } 637 638 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 639 { 640 if (type_id >= btf->start_id + btf->nr_types) 641 return errno = EINVAL, NULL; 642 return btf_type_by_id((struct btf *)btf, type_id); 643 } 644 645 static int determine_ptr_size(const struct btf *btf) 646 { 647 static const char * const long_aliases[] = { 648 "long", 649 "long int", 650 "int long", 651 "unsigned long", 652 "long unsigned", 653 "unsigned long int", 654 "unsigned int long", 655 "long unsigned int", 656 "long int unsigned", 657 "int unsigned long", 658 "int long unsigned", 659 }; 660 const struct btf_type *t; 661 const char *name; 662 int i, j, n; 663 664 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 665 return btf->base_btf->ptr_sz; 666 667 n = btf__type_cnt(btf); 668 for (i = 1; i < n; i++) { 669 t = btf__type_by_id(btf, i); 670 if (!btf_is_int(t)) 671 continue; 672 673 if (t->size != 4 && t->size != 8) 674 continue; 675 676 name = btf__name_by_offset(btf, t->name_off); 677 if (!name) 678 continue; 679 680 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 681 if (strcmp(name, long_aliases[j]) == 0) 682 return t->size; 683 } 684 } 685 686 return -1; 687 } 688 689 static size_t btf_ptr_sz(const struct btf *btf) 690 { 691 if (!btf->ptr_sz) 692 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 693 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 694 } 695 696 /* Return pointer size this BTF instance assumes. The size is heuristically 697 * determined by looking for 'long' or 'unsigned long' integer type and 698 * recording its size in bytes. If BTF type information doesn't have any such 699 * type, this function returns 0. In the latter case, native architecture's 700 * pointer size is assumed, so will be either 4 or 8, depending on 701 * architecture that libbpf was compiled for. It's possible to override 702 * guessed value by using btf__set_pointer_size() API. 703 */ 704 size_t btf__pointer_size(const struct btf *btf) 705 { 706 if (!btf->ptr_sz) 707 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 708 709 if (btf->ptr_sz < 0) 710 /* not enough BTF type info to guess */ 711 return 0; 712 713 return btf->ptr_sz; 714 } 715 716 /* Override or set pointer size in bytes. Only values of 4 and 8 are 717 * supported. 718 */ 719 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 720 { 721 if (ptr_sz != 4 && ptr_sz != 8) 722 return libbpf_err(-EINVAL); 723 btf->ptr_sz = ptr_sz; 724 return 0; 725 } 726 727 static bool is_host_big_endian(void) 728 { 729 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 730 return false; 731 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 732 return true; 733 #else 734 # error "Unrecognized __BYTE_ORDER__" 735 #endif 736 } 737 738 enum btf_endianness btf__endianness(const struct btf *btf) 739 { 740 if (is_host_big_endian()) 741 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 742 else 743 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 744 } 745 746 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 747 { 748 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 749 return libbpf_err(-EINVAL); 750 751 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 752 if (!btf->swapped_endian) { 753 free(btf->raw_data_swapped); 754 btf->raw_data_swapped = NULL; 755 } 756 return 0; 757 } 758 759 static bool btf_type_is_void(const struct btf_type *t) 760 { 761 return t == &btf_void || btf_is_fwd(t); 762 } 763 764 static bool btf_type_is_void_or_null(const struct btf_type *t) 765 { 766 return !t || btf_type_is_void(t); 767 } 768 769 #define MAX_RESOLVE_DEPTH 32 770 771 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 772 { 773 const struct btf_array *array; 774 const struct btf_type *t; 775 __u32 nelems = 1; 776 __s64 size = -1; 777 int i; 778 779 t = btf__type_by_id(btf, type_id); 780 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 781 switch (btf_kind(t)) { 782 case BTF_KIND_INT: 783 case BTF_KIND_STRUCT: 784 case BTF_KIND_UNION: 785 case BTF_KIND_ENUM: 786 case BTF_KIND_ENUM64: 787 case BTF_KIND_DATASEC: 788 case BTF_KIND_FLOAT: 789 size = t->size; 790 goto done; 791 case BTF_KIND_PTR: 792 size = btf_ptr_sz(btf); 793 goto done; 794 case BTF_KIND_TYPEDEF: 795 case BTF_KIND_VOLATILE: 796 case BTF_KIND_CONST: 797 case BTF_KIND_RESTRICT: 798 case BTF_KIND_VAR: 799 case BTF_KIND_DECL_TAG: 800 case BTF_KIND_TYPE_TAG: 801 type_id = t->type; 802 break; 803 case BTF_KIND_ARRAY: 804 array = btf_array(t); 805 if (nelems && array->nelems > UINT32_MAX / nelems) 806 return libbpf_err(-E2BIG); 807 nelems *= array->nelems; 808 type_id = array->type; 809 break; 810 default: 811 return libbpf_err(-EINVAL); 812 } 813 814 t = btf__type_by_id(btf, type_id); 815 } 816 817 done: 818 if (size < 0) 819 return libbpf_err(-EINVAL); 820 if (nelems && size > UINT32_MAX / nelems) 821 return libbpf_err(-E2BIG); 822 823 return nelems * size; 824 } 825 826 int btf__align_of(const struct btf *btf, __u32 id) 827 { 828 const struct btf_type *t = btf__type_by_id(btf, id); 829 __u16 kind = btf_kind(t); 830 831 switch (kind) { 832 case BTF_KIND_INT: 833 case BTF_KIND_ENUM: 834 case BTF_KIND_ENUM64: 835 case BTF_KIND_FLOAT: 836 return min(btf_ptr_sz(btf), (size_t)t->size); 837 case BTF_KIND_PTR: 838 return btf_ptr_sz(btf); 839 case BTF_KIND_TYPEDEF: 840 case BTF_KIND_VOLATILE: 841 case BTF_KIND_CONST: 842 case BTF_KIND_RESTRICT: 843 case BTF_KIND_TYPE_TAG: 844 return btf__align_of(btf, t->type); 845 case BTF_KIND_ARRAY: 846 return btf__align_of(btf, btf_array(t)->type); 847 case BTF_KIND_STRUCT: 848 case BTF_KIND_UNION: { 849 const struct btf_member *m = btf_members(t); 850 __u16 vlen = btf_vlen(t); 851 int i, max_align = 1, align; 852 853 for (i = 0; i < vlen; i++, m++) { 854 align = btf__align_of(btf, m->type); 855 if (align <= 0) 856 return libbpf_err(align); 857 max_align = max(max_align, align); 858 859 /* if field offset isn't aligned according to field 860 * type's alignment, then struct must be packed 861 */ 862 if (btf_member_bitfield_size(t, i) == 0 && 863 (m->offset % (8 * align)) != 0) 864 return 1; 865 } 866 867 /* if struct/union size isn't a multiple of its alignment, 868 * then struct must be packed 869 */ 870 if ((t->size % max_align) != 0) 871 return 1; 872 873 return max_align; 874 } 875 default: 876 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 877 return errno = EINVAL, 0; 878 } 879 } 880 881 int btf__resolve_type(const struct btf *btf, __u32 type_id) 882 { 883 const struct btf_type *t; 884 int depth = 0; 885 886 t = btf__type_by_id(btf, type_id); 887 while (depth < MAX_RESOLVE_DEPTH && 888 !btf_type_is_void_or_null(t) && 889 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 890 type_id = t->type; 891 t = btf__type_by_id(btf, type_id); 892 depth++; 893 } 894 895 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 896 return libbpf_err(-EINVAL); 897 898 return type_id; 899 } 900 901 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 902 { 903 __u32 i, nr_types = btf__type_cnt(btf); 904 905 if (!strcmp(type_name, "void")) 906 return 0; 907 908 for (i = 1; i < nr_types; i++) { 909 const struct btf_type *t = btf__type_by_id(btf, i); 910 const char *name = btf__name_by_offset(btf, t->name_off); 911 912 if (name && !strcmp(type_name, name)) 913 return i; 914 } 915 916 return libbpf_err(-ENOENT); 917 } 918 919 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 920 const char *type_name, __u32 kind) 921 { 922 __u32 i, nr_types = btf__type_cnt(btf); 923 924 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 925 return 0; 926 927 for (i = start_id; i < nr_types; i++) { 928 const struct btf_type *t = btf__type_by_id(btf, i); 929 const char *name; 930 931 if (btf_kind(t) != kind) 932 continue; 933 name = btf__name_by_offset(btf, t->name_off); 934 if (name && !strcmp(type_name, name)) 935 return i; 936 } 937 938 return libbpf_err(-ENOENT); 939 } 940 941 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 942 __u32 kind) 943 { 944 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 945 } 946 947 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 948 __u32 kind) 949 { 950 return btf_find_by_name_kind(btf, 1, type_name, kind); 951 } 952 953 static bool btf_is_modifiable(const struct btf *btf) 954 { 955 return (void *)btf->hdr != btf->raw_data; 956 } 957 958 static void btf_free_raw_data(struct btf *btf) 959 { 960 if (btf->raw_data_is_mmap) { 961 munmap(btf->raw_data, btf->raw_size); 962 btf->raw_data_is_mmap = false; 963 } else { 964 free(btf->raw_data); 965 } 966 btf->raw_data = NULL; 967 } 968 969 void btf__free(struct btf *btf) 970 { 971 if (IS_ERR_OR_NULL(btf)) 972 return; 973 974 if (btf->fd >= 0) 975 close(btf->fd); 976 977 if (btf_is_modifiable(btf)) { 978 /* if BTF was modified after loading, it will have a split 979 * in-memory representation for header, types, and strings 980 * sections, so we need to free all of them individually. It 981 * might still have a cached contiguous raw data present, 982 * which will be unconditionally freed below. 983 */ 984 free(btf->hdr); 985 free(btf->types_data); 986 strset__free(btf->strs_set); 987 } 988 btf_free_raw_data(btf); 989 free(btf->raw_data_swapped); 990 free(btf->type_offs); 991 if (btf->owns_base) 992 btf__free(btf->base_btf); 993 free(btf); 994 } 995 996 static struct btf *btf_new_empty(struct btf *base_btf) 997 { 998 struct btf *btf; 999 1000 btf = calloc(1, sizeof(*btf)); 1001 if (!btf) 1002 return ERR_PTR(-ENOMEM); 1003 1004 btf->nr_types = 0; 1005 btf->start_id = 1; 1006 btf->start_str_off = 0; 1007 btf->fd = -1; 1008 btf->ptr_sz = sizeof(void *); 1009 btf->swapped_endian = false; 1010 1011 if (base_btf) { 1012 btf->base_btf = base_btf; 1013 btf->start_id = btf__type_cnt(base_btf); 1014 btf->start_str_off = base_btf->hdr->str_len + base_btf->start_str_off; 1015 btf->swapped_endian = base_btf->swapped_endian; 1016 } 1017 1018 /* +1 for empty string at offset 0 */ 1019 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 1020 btf->raw_data = calloc(1, btf->raw_size); 1021 if (!btf->raw_data) { 1022 free(btf); 1023 return ERR_PTR(-ENOMEM); 1024 } 1025 1026 btf->hdr = btf->raw_data; 1027 btf->hdr->hdr_len = sizeof(struct btf_header); 1028 btf->hdr->magic = BTF_MAGIC; 1029 btf->hdr->version = BTF_VERSION; 1030 1031 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 1032 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 1033 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 1034 1035 return btf; 1036 } 1037 1038 struct btf *btf__new_empty(void) 1039 { 1040 return libbpf_ptr(btf_new_empty(NULL)); 1041 } 1042 1043 struct btf *btf__new_empty_split(struct btf *base_btf) 1044 { 1045 return libbpf_ptr(btf_new_empty(base_btf)); 1046 } 1047 1048 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf, bool is_mmap) 1049 { 1050 struct btf *btf; 1051 int err; 1052 1053 btf = calloc(1, sizeof(struct btf)); 1054 if (!btf) 1055 return ERR_PTR(-ENOMEM); 1056 1057 btf->nr_types = 0; 1058 btf->start_id = 1; 1059 btf->start_str_off = 0; 1060 btf->fd = -1; 1061 1062 if (base_btf) { 1063 btf->base_btf = base_btf; 1064 btf->start_id = btf__type_cnt(base_btf); 1065 btf->start_str_off = base_btf->hdr->str_len; 1066 } 1067 1068 if (is_mmap) { 1069 btf->raw_data = (void *)data; 1070 btf->raw_data_is_mmap = true; 1071 } else { 1072 btf->raw_data = malloc(size); 1073 if (!btf->raw_data) { 1074 err = -ENOMEM; 1075 goto done; 1076 } 1077 memcpy(btf->raw_data, data, size); 1078 } 1079 1080 btf->raw_size = size; 1081 1082 btf->hdr = btf->raw_data; 1083 err = btf_parse_hdr(btf); 1084 if (err) 1085 goto done; 1086 1087 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 1088 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 1089 1090 err = btf_parse_str_sec(btf); 1091 err = err ?: btf_parse_type_sec(btf); 1092 err = err ?: btf_sanity_check(btf); 1093 if (err) 1094 goto done; 1095 1096 done: 1097 if (err) { 1098 btf__free(btf); 1099 return ERR_PTR(err); 1100 } 1101 1102 return btf; 1103 } 1104 1105 struct btf *btf__new(const void *data, __u32 size) 1106 { 1107 return libbpf_ptr(btf_new(data, size, NULL, false)); 1108 } 1109 1110 struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf) 1111 { 1112 return libbpf_ptr(btf_new(data, size, base_btf, false)); 1113 } 1114 1115 struct btf_elf_secs { 1116 Elf_Data *btf_data; 1117 Elf_Data *btf_ext_data; 1118 Elf_Data *btf_base_data; 1119 }; 1120 1121 static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs) 1122 { 1123 Elf_Scn *scn = NULL; 1124 Elf_Data *data; 1125 GElf_Ehdr ehdr; 1126 size_t shstrndx; 1127 int idx = 0; 1128 1129 if (!gelf_getehdr(elf, &ehdr)) { 1130 pr_warn("failed to get EHDR from %s\n", path); 1131 goto err; 1132 } 1133 1134 if (elf_getshdrstrndx(elf, &shstrndx)) { 1135 pr_warn("failed to get section names section index for %s\n", 1136 path); 1137 goto err; 1138 } 1139 1140 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 1141 pr_warn("failed to get e_shstrndx from %s\n", path); 1142 goto err; 1143 } 1144 1145 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1146 Elf_Data **field; 1147 GElf_Shdr sh; 1148 char *name; 1149 1150 idx++; 1151 if (gelf_getshdr(scn, &sh) != &sh) { 1152 pr_warn("failed to get section(%d) header from %s\n", 1153 idx, path); 1154 goto err; 1155 } 1156 name = elf_strptr(elf, shstrndx, sh.sh_name); 1157 if (!name) { 1158 pr_warn("failed to get section(%d) name from %s\n", 1159 idx, path); 1160 goto err; 1161 } 1162 1163 if (strcmp(name, BTF_ELF_SEC) == 0) 1164 field = &secs->btf_data; 1165 else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) 1166 field = &secs->btf_ext_data; 1167 else if (strcmp(name, BTF_BASE_ELF_SEC) == 0) 1168 field = &secs->btf_base_data; 1169 else 1170 continue; 1171 1172 if (sh.sh_type != SHT_PROGBITS) { 1173 pr_warn("unexpected section type (%d) of section(%d, %s) from %s\n", 1174 sh.sh_type, idx, name, path); 1175 goto err; 1176 } 1177 1178 data = elf_getdata(scn, 0); 1179 if (!data) { 1180 pr_warn("failed to get section(%d, %s) data from %s\n", 1181 idx, name, path); 1182 goto err; 1183 } 1184 *field = data; 1185 } 1186 1187 return 0; 1188 1189 err: 1190 return -LIBBPF_ERRNO__FORMAT; 1191 } 1192 1193 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 1194 struct btf_ext **btf_ext) 1195 { 1196 struct btf_elf_secs secs = {}; 1197 struct btf *dist_base_btf = NULL; 1198 struct btf *btf = NULL; 1199 int err = 0, fd = -1; 1200 Elf *elf = NULL; 1201 1202 if (elf_version(EV_CURRENT) == EV_NONE) { 1203 pr_warn("failed to init libelf for %s\n", path); 1204 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 1205 } 1206 1207 fd = open(path, O_RDONLY | O_CLOEXEC); 1208 if (fd < 0) { 1209 err = -errno; 1210 pr_warn("failed to open %s: %s\n", path, errstr(err)); 1211 return ERR_PTR(err); 1212 } 1213 1214 elf = elf_begin(fd, ELF_C_READ, NULL); 1215 if (!elf) { 1216 err = -LIBBPF_ERRNO__FORMAT; 1217 pr_warn("failed to open %s as ELF file\n", path); 1218 goto done; 1219 } 1220 1221 err = btf_find_elf_sections(elf, path, &secs); 1222 if (err) 1223 goto done; 1224 1225 if (!secs.btf_data) { 1226 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1227 err = -ENODATA; 1228 goto done; 1229 } 1230 1231 if (secs.btf_base_data) { 1232 dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size, 1233 NULL, false); 1234 if (IS_ERR(dist_base_btf)) { 1235 err = PTR_ERR(dist_base_btf); 1236 dist_base_btf = NULL; 1237 goto done; 1238 } 1239 } 1240 1241 btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size, 1242 dist_base_btf ?: base_btf, false); 1243 if (IS_ERR(btf)) { 1244 err = PTR_ERR(btf); 1245 goto done; 1246 } 1247 if (dist_base_btf && base_btf) { 1248 err = btf__relocate(btf, base_btf); 1249 if (err) 1250 goto done; 1251 btf__free(dist_base_btf); 1252 dist_base_btf = NULL; 1253 } 1254 1255 if (dist_base_btf) 1256 btf->owns_base = true; 1257 1258 switch (gelf_getclass(elf)) { 1259 case ELFCLASS32: 1260 btf__set_pointer_size(btf, 4); 1261 break; 1262 case ELFCLASS64: 1263 btf__set_pointer_size(btf, 8); 1264 break; 1265 default: 1266 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1267 break; 1268 } 1269 1270 if (btf_ext && secs.btf_ext_data) { 1271 *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size); 1272 if (IS_ERR(*btf_ext)) { 1273 err = PTR_ERR(*btf_ext); 1274 goto done; 1275 } 1276 } else if (btf_ext) { 1277 *btf_ext = NULL; 1278 } 1279 done: 1280 if (elf) 1281 elf_end(elf); 1282 close(fd); 1283 1284 if (!err) 1285 return btf; 1286 1287 if (btf_ext) 1288 btf_ext__free(*btf_ext); 1289 btf__free(dist_base_btf); 1290 btf__free(btf); 1291 1292 return ERR_PTR(err); 1293 } 1294 1295 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1296 { 1297 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1298 } 1299 1300 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1301 { 1302 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1303 } 1304 1305 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1306 { 1307 struct btf *btf = NULL; 1308 void *data = NULL; 1309 FILE *f = NULL; 1310 __u16 magic; 1311 int err = 0; 1312 long sz; 1313 1314 f = fopen(path, "rbe"); 1315 if (!f) { 1316 err = -errno; 1317 goto err_out; 1318 } 1319 1320 /* check BTF magic */ 1321 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1322 err = -EIO; 1323 goto err_out; 1324 } 1325 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1326 /* definitely not a raw BTF */ 1327 err = -EPROTO; 1328 goto err_out; 1329 } 1330 1331 /* get file size */ 1332 if (fseek(f, 0, SEEK_END)) { 1333 err = -errno; 1334 goto err_out; 1335 } 1336 sz = ftell(f); 1337 if (sz < 0) { 1338 err = -errno; 1339 goto err_out; 1340 } 1341 /* rewind to the start */ 1342 if (fseek(f, 0, SEEK_SET)) { 1343 err = -errno; 1344 goto err_out; 1345 } 1346 1347 /* pre-alloc memory and read all of BTF data */ 1348 data = malloc(sz); 1349 if (!data) { 1350 err = -ENOMEM; 1351 goto err_out; 1352 } 1353 if (fread(data, 1, sz, f) < sz) { 1354 err = -EIO; 1355 goto err_out; 1356 } 1357 1358 /* finally parse BTF data */ 1359 btf = btf_new(data, sz, base_btf, false); 1360 1361 err_out: 1362 free(data); 1363 if (f) 1364 fclose(f); 1365 return err ? ERR_PTR(err) : btf; 1366 } 1367 1368 struct btf *btf__parse_raw(const char *path) 1369 { 1370 return libbpf_ptr(btf_parse_raw(path, NULL)); 1371 } 1372 1373 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1374 { 1375 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1376 } 1377 1378 static struct btf *btf_parse_raw_mmap(const char *path, struct btf *base_btf) 1379 { 1380 struct stat st; 1381 void *data; 1382 struct btf *btf; 1383 int fd, err; 1384 1385 fd = open(path, O_RDONLY); 1386 if (fd < 0) 1387 return ERR_PTR(-errno); 1388 1389 if (fstat(fd, &st) < 0) { 1390 err = -errno; 1391 close(fd); 1392 return ERR_PTR(err); 1393 } 1394 1395 data = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0); 1396 err = -errno; 1397 close(fd); 1398 1399 if (data == MAP_FAILED) 1400 return ERR_PTR(err); 1401 1402 btf = btf_new(data, st.st_size, base_btf, true); 1403 if (IS_ERR(btf)) 1404 munmap(data, st.st_size); 1405 1406 return btf; 1407 } 1408 1409 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1410 { 1411 struct btf *btf; 1412 int err; 1413 1414 if (btf_ext) 1415 *btf_ext = NULL; 1416 1417 btf = btf_parse_raw(path, base_btf); 1418 err = libbpf_get_error(btf); 1419 if (!err) 1420 return btf; 1421 if (err != -EPROTO) 1422 return ERR_PTR(err); 1423 return btf_parse_elf(path, base_btf, btf_ext); 1424 } 1425 1426 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1427 { 1428 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1429 } 1430 1431 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1432 { 1433 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1434 } 1435 1436 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1437 1438 int btf_load_into_kernel(struct btf *btf, 1439 char *log_buf, size_t log_sz, __u32 log_level, 1440 int token_fd) 1441 { 1442 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1443 __u32 buf_sz = 0, raw_size; 1444 char *buf = NULL, *tmp; 1445 void *raw_data; 1446 int err = 0; 1447 1448 if (btf->fd >= 0) 1449 return libbpf_err(-EEXIST); 1450 if (log_sz && !log_buf) 1451 return libbpf_err(-EINVAL); 1452 1453 /* cache native raw data representation */ 1454 raw_data = btf_get_raw_data(btf, &raw_size, false); 1455 if (!raw_data) { 1456 err = -ENOMEM; 1457 goto done; 1458 } 1459 btf->raw_size = raw_size; 1460 btf->raw_data = raw_data; 1461 1462 retry_load: 1463 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1464 * initially. Only if BTF loading fails, we bump log_level to 1 and 1465 * retry, using either auto-allocated or custom log_buf. This way 1466 * non-NULL custom log_buf provides a buffer just in case, but hopes 1467 * for successful load and no need for log_buf. 1468 */ 1469 if (log_level) { 1470 /* if caller didn't provide custom log_buf, we'll keep 1471 * allocating our own progressively bigger buffers for BTF 1472 * verification log 1473 */ 1474 if (!log_buf) { 1475 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1476 tmp = realloc(buf, buf_sz); 1477 if (!tmp) { 1478 err = -ENOMEM; 1479 goto done; 1480 } 1481 buf = tmp; 1482 buf[0] = '\0'; 1483 } 1484 1485 opts.log_buf = log_buf ? log_buf : buf; 1486 opts.log_size = log_buf ? log_sz : buf_sz; 1487 opts.log_level = log_level; 1488 } 1489 1490 opts.token_fd = token_fd; 1491 if (token_fd) 1492 opts.btf_flags |= BPF_F_TOKEN_FD; 1493 1494 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1495 if (btf->fd < 0) { 1496 /* time to turn on verbose mode and try again */ 1497 if (log_level == 0) { 1498 log_level = 1; 1499 goto retry_load; 1500 } 1501 /* only retry if caller didn't provide custom log_buf, but 1502 * make sure we can never overflow buf_sz 1503 */ 1504 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1505 goto retry_load; 1506 1507 err = -errno; 1508 pr_warn("BTF loading error: %s\n", errstr(err)); 1509 /* don't print out contents of custom log_buf */ 1510 if (!log_buf && buf[0]) 1511 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1512 } 1513 1514 done: 1515 free(buf); 1516 return libbpf_err(err); 1517 } 1518 1519 int btf__load_into_kernel(struct btf *btf) 1520 { 1521 return btf_load_into_kernel(btf, NULL, 0, 0, 0); 1522 } 1523 1524 int btf__fd(const struct btf *btf) 1525 { 1526 return btf->fd; 1527 } 1528 1529 void btf__set_fd(struct btf *btf, int fd) 1530 { 1531 btf->fd = fd; 1532 } 1533 1534 static const void *btf_strs_data(const struct btf *btf) 1535 { 1536 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1537 } 1538 1539 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1540 { 1541 struct btf_header *hdr = btf->hdr; 1542 struct btf_type *t; 1543 void *data, *p; 1544 __u32 data_sz; 1545 int i; 1546 1547 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1548 if (data) { 1549 *size = btf->raw_size; 1550 return data; 1551 } 1552 1553 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1554 data = calloc(1, data_sz); 1555 if (!data) 1556 return NULL; 1557 p = data; 1558 1559 memcpy(p, hdr, hdr->hdr_len); 1560 if (swap_endian) 1561 btf_bswap_hdr(p); 1562 p += hdr->hdr_len; 1563 1564 memcpy(p, btf->types_data, hdr->type_len); 1565 if (swap_endian) { 1566 for (i = 0; i < btf->nr_types; i++) { 1567 t = p + btf->type_offs[i]; 1568 /* btf_bswap_type_rest() relies on native t->info, so 1569 * we swap base type info after we swapped all the 1570 * additional information 1571 */ 1572 if (btf_bswap_type_rest(t)) 1573 goto err_out; 1574 btf_bswap_type_base(t); 1575 } 1576 } 1577 p += hdr->type_len; 1578 1579 memcpy(p, btf_strs_data(btf), hdr->str_len); 1580 p += hdr->str_len; 1581 1582 *size = data_sz; 1583 return data; 1584 err_out: 1585 free(data); 1586 return NULL; 1587 } 1588 1589 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1590 { 1591 struct btf *btf = (struct btf *)btf_ro; 1592 __u32 data_sz; 1593 void *data; 1594 1595 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1596 if (!data) 1597 return errno = ENOMEM, NULL; 1598 1599 btf->raw_size = data_sz; 1600 if (btf->swapped_endian) 1601 btf->raw_data_swapped = data; 1602 else 1603 btf->raw_data = data; 1604 *size = data_sz; 1605 return data; 1606 } 1607 1608 __attribute__((alias("btf__raw_data"))) 1609 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1610 1611 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1612 { 1613 if (offset < btf->start_str_off) 1614 return btf__str_by_offset(btf->base_btf, offset); 1615 else if (offset - btf->start_str_off < btf->hdr->str_len) 1616 return btf_strs_data(btf) + (offset - btf->start_str_off); 1617 else 1618 return errno = EINVAL, NULL; 1619 } 1620 1621 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1622 { 1623 return btf__str_by_offset(btf, offset); 1624 } 1625 1626 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1627 { 1628 struct bpf_btf_info btf_info; 1629 __u32 len = sizeof(btf_info); 1630 __u32 last_size; 1631 struct btf *btf; 1632 void *ptr; 1633 int err; 1634 1635 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1636 * let's start with a sane default - 4KiB here - and resize it only if 1637 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1638 */ 1639 last_size = 4096; 1640 ptr = malloc(last_size); 1641 if (!ptr) 1642 return ERR_PTR(-ENOMEM); 1643 1644 memset(&btf_info, 0, sizeof(btf_info)); 1645 btf_info.btf = ptr_to_u64(ptr); 1646 btf_info.btf_size = last_size; 1647 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1648 1649 if (!err && btf_info.btf_size > last_size) { 1650 void *temp_ptr; 1651 1652 last_size = btf_info.btf_size; 1653 temp_ptr = realloc(ptr, last_size); 1654 if (!temp_ptr) { 1655 btf = ERR_PTR(-ENOMEM); 1656 goto exit_free; 1657 } 1658 ptr = temp_ptr; 1659 1660 len = sizeof(btf_info); 1661 memset(&btf_info, 0, sizeof(btf_info)); 1662 btf_info.btf = ptr_to_u64(ptr); 1663 btf_info.btf_size = last_size; 1664 1665 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1666 } 1667 1668 if (err || btf_info.btf_size > last_size) { 1669 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1670 goto exit_free; 1671 } 1672 1673 btf = btf_new(ptr, btf_info.btf_size, base_btf, false); 1674 1675 exit_free: 1676 free(ptr); 1677 return btf; 1678 } 1679 1680 struct btf *btf_load_from_kernel(__u32 id, struct btf *base_btf, int token_fd) 1681 { 1682 struct btf *btf; 1683 int btf_fd; 1684 LIBBPF_OPTS(bpf_get_fd_by_id_opts, opts); 1685 1686 if (token_fd) { 1687 opts.open_flags |= BPF_F_TOKEN_FD; 1688 opts.token_fd = token_fd; 1689 } 1690 1691 btf_fd = bpf_btf_get_fd_by_id_opts(id, &opts); 1692 if (btf_fd < 0) 1693 return libbpf_err_ptr(-errno); 1694 1695 btf = btf_get_from_fd(btf_fd, base_btf); 1696 close(btf_fd); 1697 1698 return libbpf_ptr(btf); 1699 } 1700 1701 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1702 { 1703 return btf_load_from_kernel(id, base_btf, 0); 1704 } 1705 1706 struct btf *btf__load_from_kernel_by_id(__u32 id) 1707 { 1708 return btf__load_from_kernel_by_id_split(id, NULL); 1709 } 1710 1711 static void btf_invalidate_raw_data(struct btf *btf) 1712 { 1713 if (btf->raw_data) 1714 btf_free_raw_data(btf); 1715 if (btf->raw_data_swapped) { 1716 free(btf->raw_data_swapped); 1717 btf->raw_data_swapped = NULL; 1718 } 1719 } 1720 1721 /* Ensure BTF is ready to be modified (by splitting into a three memory 1722 * regions for header, types, and strings). Also invalidate cached 1723 * raw_data, if any. 1724 */ 1725 static int btf_ensure_modifiable(struct btf *btf) 1726 { 1727 void *hdr, *types; 1728 struct strset *set = NULL; 1729 int err = -ENOMEM; 1730 1731 if (btf_is_modifiable(btf)) { 1732 /* any BTF modification invalidates raw_data */ 1733 btf_invalidate_raw_data(btf); 1734 return 0; 1735 } 1736 1737 /* split raw data into three memory regions */ 1738 hdr = malloc(btf->hdr->hdr_len); 1739 types = malloc(btf->hdr->type_len); 1740 if (!hdr || !types) 1741 goto err_out; 1742 1743 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1744 memcpy(types, btf->types_data, btf->hdr->type_len); 1745 1746 /* build lookup index for all strings */ 1747 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1748 if (IS_ERR(set)) { 1749 err = PTR_ERR(set); 1750 goto err_out; 1751 } 1752 1753 /* only when everything was successful, update internal state */ 1754 btf->hdr = hdr; 1755 btf->types_data = types; 1756 btf->types_data_cap = btf->hdr->type_len; 1757 btf->strs_data = NULL; 1758 btf->strs_set = set; 1759 /* if BTF was created from scratch, all strings are guaranteed to be 1760 * unique and deduplicated 1761 */ 1762 if (btf->hdr->str_len == 0) 1763 btf->strs_deduped = true; 1764 if (!btf->base_btf && btf->hdr->str_len == 1) 1765 btf->strs_deduped = true; 1766 1767 /* invalidate raw_data representation */ 1768 btf_invalidate_raw_data(btf); 1769 1770 return 0; 1771 1772 err_out: 1773 strset__free(set); 1774 free(hdr); 1775 free(types); 1776 return err; 1777 } 1778 1779 /* Find an offset in BTF string section that corresponds to a given string *s*. 1780 * Returns: 1781 * - >0 offset into string section, if string is found; 1782 * - -ENOENT, if string is not in the string section; 1783 * - <0, on any other error. 1784 */ 1785 int btf__find_str(struct btf *btf, const char *s) 1786 { 1787 int off; 1788 1789 if (btf->base_btf) { 1790 off = btf__find_str(btf->base_btf, s); 1791 if (off != -ENOENT) 1792 return off; 1793 } 1794 1795 /* BTF needs to be in a modifiable state to build string lookup index */ 1796 if (btf_ensure_modifiable(btf)) 1797 return libbpf_err(-ENOMEM); 1798 1799 off = strset__find_str(btf->strs_set, s); 1800 if (off < 0) 1801 return libbpf_err(off); 1802 1803 return btf->start_str_off + off; 1804 } 1805 1806 /* Add a string s to the BTF string section. 1807 * Returns: 1808 * - > 0 offset into string section, on success; 1809 * - < 0, on error. 1810 */ 1811 int btf__add_str(struct btf *btf, const char *s) 1812 { 1813 int off; 1814 1815 if (btf->base_btf) { 1816 off = btf__find_str(btf->base_btf, s); 1817 if (off != -ENOENT) 1818 return off; 1819 } 1820 1821 if (btf_ensure_modifiable(btf)) 1822 return libbpf_err(-ENOMEM); 1823 1824 off = strset__add_str(btf->strs_set, s); 1825 if (off < 0) 1826 return libbpf_err(off); 1827 1828 btf->hdr->str_len = strset__data_size(btf->strs_set); 1829 1830 return btf->start_str_off + off; 1831 } 1832 1833 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1834 { 1835 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1836 btf->hdr->type_len, UINT_MAX, add_sz); 1837 } 1838 1839 static void btf_type_inc_vlen(struct btf_type *t) 1840 { 1841 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1842 } 1843 1844 static int btf_commit_type(struct btf *btf, int data_sz) 1845 { 1846 int err; 1847 1848 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1849 if (err) 1850 return libbpf_err(err); 1851 1852 btf->hdr->type_len += data_sz; 1853 btf->hdr->str_off += data_sz; 1854 btf->nr_types++; 1855 return btf->start_id + btf->nr_types - 1; 1856 } 1857 1858 struct btf_pipe { 1859 const struct btf *src; 1860 struct btf *dst; 1861 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1862 }; 1863 1864 static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off) 1865 { 1866 long mapped_off; 1867 int off, err; 1868 1869 if (!*str_off) /* nothing to do for empty strings */ 1870 return 0; 1871 1872 if (p->str_off_map && 1873 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1874 *str_off = mapped_off; 1875 return 0; 1876 } 1877 1878 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1879 if (off < 0) 1880 return off; 1881 1882 /* Remember string mapping from src to dst. It avoids 1883 * performing expensive string comparisons. 1884 */ 1885 if (p->str_off_map) { 1886 err = hashmap__append(p->str_off_map, *str_off, off); 1887 if (err) 1888 return err; 1889 } 1890 1891 *str_off = off; 1892 return 0; 1893 } 1894 1895 static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type) 1896 { 1897 struct btf_field_iter it; 1898 struct btf_type *t; 1899 __u32 *str_off; 1900 int sz, err; 1901 1902 sz = btf_type_size(src_type); 1903 if (sz < 0) 1904 return libbpf_err(sz); 1905 1906 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1907 if (btf_ensure_modifiable(p->dst)) 1908 return libbpf_err(-ENOMEM); 1909 1910 t = btf_add_type_mem(p->dst, sz); 1911 if (!t) 1912 return libbpf_err(-ENOMEM); 1913 1914 memcpy(t, src_type, sz); 1915 1916 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1917 if (err) 1918 return libbpf_err(err); 1919 1920 while ((str_off = btf_field_iter_next(&it))) { 1921 err = btf_rewrite_str(p, str_off); 1922 if (err) 1923 return libbpf_err(err); 1924 } 1925 1926 return btf_commit_type(p->dst, sz); 1927 } 1928 1929 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1930 { 1931 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1932 1933 return btf_add_type(&p, src_type); 1934 } 1935 1936 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1937 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1938 1939 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1940 { 1941 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1942 int data_sz, sz, cnt, i, err, old_strs_len; 1943 __u32 *off; 1944 void *t; 1945 1946 /* appending split BTF isn't supported yet */ 1947 if (src_btf->base_btf) 1948 return libbpf_err(-ENOTSUP); 1949 1950 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1951 if (btf_ensure_modifiable(btf)) 1952 return libbpf_err(-ENOMEM); 1953 1954 /* remember original strings section size if we have to roll back 1955 * partial strings section changes 1956 */ 1957 old_strs_len = btf->hdr->str_len; 1958 1959 data_sz = src_btf->hdr->type_len; 1960 cnt = btf__type_cnt(src_btf) - 1; 1961 1962 /* pre-allocate enough memory for new types */ 1963 t = btf_add_type_mem(btf, data_sz); 1964 if (!t) 1965 return libbpf_err(-ENOMEM); 1966 1967 /* pre-allocate enough memory for type offset index for new types */ 1968 off = btf_add_type_offs_mem(btf, cnt); 1969 if (!off) 1970 return libbpf_err(-ENOMEM); 1971 1972 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1973 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1974 if (IS_ERR(p.str_off_map)) 1975 return libbpf_err(-ENOMEM); 1976 1977 /* bulk copy types data for all types from src_btf */ 1978 memcpy(t, src_btf->types_data, data_sz); 1979 1980 for (i = 0; i < cnt; i++) { 1981 struct btf_field_iter it; 1982 __u32 *type_id, *str_off; 1983 1984 sz = btf_type_size(t); 1985 if (sz < 0) { 1986 /* unlikely, has to be corrupted src_btf */ 1987 err = sz; 1988 goto err_out; 1989 } 1990 1991 /* fill out type ID to type offset mapping for lookups by type ID */ 1992 *off = t - btf->types_data; 1993 1994 /* add, dedup, and remap strings referenced by this BTF type */ 1995 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 1996 if (err) 1997 goto err_out; 1998 while ((str_off = btf_field_iter_next(&it))) { 1999 err = btf_rewrite_str(&p, str_off); 2000 if (err) 2001 goto err_out; 2002 } 2003 2004 /* remap all type IDs referenced from this BTF type */ 2005 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 2006 if (err) 2007 goto err_out; 2008 2009 while ((type_id = btf_field_iter_next(&it))) { 2010 if (!*type_id) /* nothing to do for VOID references */ 2011 continue; 2012 2013 /* we haven't updated btf's type count yet, so 2014 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 2015 * add to all newly added BTF types 2016 */ 2017 *type_id += btf->start_id + btf->nr_types - 1; 2018 } 2019 2020 /* go to next type data and type offset index entry */ 2021 t += sz; 2022 off++; 2023 } 2024 2025 /* Up until now any of the copied type data was effectively invisible, 2026 * so if we exited early before this point due to error, BTF would be 2027 * effectively unmodified. There would be extra internal memory 2028 * pre-allocated, but it would not be available for querying. But now 2029 * that we've copied and rewritten all the data successfully, we can 2030 * update type count and various internal offsets and sizes to 2031 * "commit" the changes and made them visible to the outside world. 2032 */ 2033 btf->hdr->type_len += data_sz; 2034 btf->hdr->str_off += data_sz; 2035 btf->nr_types += cnt; 2036 2037 hashmap__free(p.str_off_map); 2038 2039 /* return type ID of the first added BTF type */ 2040 return btf->start_id + btf->nr_types - cnt; 2041 err_out: 2042 /* zero out preallocated memory as if it was just allocated with 2043 * libbpf_add_mem() 2044 */ 2045 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 2046 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 2047 2048 /* and now restore original strings section size; types data size 2049 * wasn't modified, so doesn't need restoring, see big comment above 2050 */ 2051 btf->hdr->str_len = old_strs_len; 2052 2053 hashmap__free(p.str_off_map); 2054 2055 return libbpf_err(err); 2056 } 2057 2058 /* 2059 * Append new BTF_KIND_INT type with: 2060 * - *name* - non-empty, non-NULL type name; 2061 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 2062 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 2063 * Returns: 2064 * - >0, type ID of newly added BTF type; 2065 * - <0, on error. 2066 */ 2067 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 2068 { 2069 struct btf_type *t; 2070 int sz, name_off; 2071 2072 /* non-empty name */ 2073 if (!name || !name[0]) 2074 return libbpf_err(-EINVAL); 2075 /* byte_sz must be power of 2 */ 2076 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 2077 return libbpf_err(-EINVAL); 2078 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 2079 return libbpf_err(-EINVAL); 2080 2081 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2082 if (btf_ensure_modifiable(btf)) 2083 return libbpf_err(-ENOMEM); 2084 2085 sz = sizeof(struct btf_type) + sizeof(int); 2086 t = btf_add_type_mem(btf, sz); 2087 if (!t) 2088 return libbpf_err(-ENOMEM); 2089 2090 /* if something goes wrong later, we might end up with an extra string, 2091 * but that shouldn't be a problem, because BTF can't be constructed 2092 * completely anyway and will most probably be just discarded 2093 */ 2094 name_off = btf__add_str(btf, name); 2095 if (name_off < 0) 2096 return name_off; 2097 2098 t->name_off = name_off; 2099 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 2100 t->size = byte_sz; 2101 /* set INT info, we don't allow setting legacy bit offset/size */ 2102 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 2103 2104 return btf_commit_type(btf, sz); 2105 } 2106 2107 /* 2108 * Append new BTF_KIND_FLOAT type with: 2109 * - *name* - non-empty, non-NULL type name; 2110 * - *sz* - size of the type, in bytes; 2111 * Returns: 2112 * - >0, type ID of newly added BTF type; 2113 * - <0, on error. 2114 */ 2115 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 2116 { 2117 struct btf_type *t; 2118 int sz, name_off; 2119 2120 /* non-empty name */ 2121 if (!name || !name[0]) 2122 return libbpf_err(-EINVAL); 2123 2124 /* byte_sz must be one of the explicitly allowed values */ 2125 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 2126 byte_sz != 16) 2127 return libbpf_err(-EINVAL); 2128 2129 if (btf_ensure_modifiable(btf)) 2130 return libbpf_err(-ENOMEM); 2131 2132 sz = sizeof(struct btf_type); 2133 t = btf_add_type_mem(btf, sz); 2134 if (!t) 2135 return libbpf_err(-ENOMEM); 2136 2137 name_off = btf__add_str(btf, name); 2138 if (name_off < 0) 2139 return name_off; 2140 2141 t->name_off = name_off; 2142 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 2143 t->size = byte_sz; 2144 2145 return btf_commit_type(btf, sz); 2146 } 2147 2148 /* it's completely legal to append BTF types with type IDs pointing forward to 2149 * types that haven't been appended yet, so we only make sure that id looks 2150 * sane, we can't guarantee that ID will always be valid 2151 */ 2152 static int validate_type_id(int id) 2153 { 2154 if (id < 0 || id > BTF_MAX_NR_TYPES) 2155 return -EINVAL; 2156 return 0; 2157 } 2158 2159 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 2160 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id, int kflag) 2161 { 2162 struct btf_type *t; 2163 int sz, name_off = 0; 2164 2165 if (validate_type_id(ref_type_id)) 2166 return libbpf_err(-EINVAL); 2167 2168 if (btf_ensure_modifiable(btf)) 2169 return libbpf_err(-ENOMEM); 2170 2171 sz = sizeof(struct btf_type); 2172 t = btf_add_type_mem(btf, sz); 2173 if (!t) 2174 return libbpf_err(-ENOMEM); 2175 2176 if (name && name[0]) { 2177 name_off = btf__add_str(btf, name); 2178 if (name_off < 0) 2179 return name_off; 2180 } 2181 2182 t->name_off = name_off; 2183 t->info = btf_type_info(kind, 0, kflag); 2184 t->type = ref_type_id; 2185 2186 return btf_commit_type(btf, sz); 2187 } 2188 2189 /* 2190 * Append new BTF_KIND_PTR type with: 2191 * - *ref_type_id* - referenced type ID, it might not exist yet; 2192 * Returns: 2193 * - >0, type ID of newly added BTF type; 2194 * - <0, on error. 2195 */ 2196 int btf__add_ptr(struct btf *btf, int ref_type_id) 2197 { 2198 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id, 0); 2199 } 2200 2201 /* 2202 * Append new BTF_KIND_ARRAY type with: 2203 * - *index_type_id* - type ID of the type describing array index; 2204 * - *elem_type_id* - type ID of the type describing array element; 2205 * - *nr_elems* - the size of the array; 2206 * Returns: 2207 * - >0, type ID of newly added BTF type; 2208 * - <0, on error. 2209 */ 2210 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 2211 { 2212 struct btf_type *t; 2213 struct btf_array *a; 2214 int sz; 2215 2216 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 2217 return libbpf_err(-EINVAL); 2218 2219 if (btf_ensure_modifiable(btf)) 2220 return libbpf_err(-ENOMEM); 2221 2222 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 2223 t = btf_add_type_mem(btf, sz); 2224 if (!t) 2225 return libbpf_err(-ENOMEM); 2226 2227 t->name_off = 0; 2228 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 2229 t->size = 0; 2230 2231 a = btf_array(t); 2232 a->type = elem_type_id; 2233 a->index_type = index_type_id; 2234 a->nelems = nr_elems; 2235 2236 return btf_commit_type(btf, sz); 2237 } 2238 2239 /* generic STRUCT/UNION append function */ 2240 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 2241 { 2242 struct btf_type *t; 2243 int sz, name_off = 0; 2244 2245 if (btf_ensure_modifiable(btf)) 2246 return libbpf_err(-ENOMEM); 2247 2248 sz = sizeof(struct btf_type); 2249 t = btf_add_type_mem(btf, sz); 2250 if (!t) 2251 return libbpf_err(-ENOMEM); 2252 2253 if (name && name[0]) { 2254 name_off = btf__add_str(btf, name); 2255 if (name_off < 0) 2256 return name_off; 2257 } 2258 2259 /* start out with vlen=0 and no kflag; this will be adjusted when 2260 * adding each member 2261 */ 2262 t->name_off = name_off; 2263 t->info = btf_type_info(kind, 0, 0); 2264 t->size = bytes_sz; 2265 2266 return btf_commit_type(btf, sz); 2267 } 2268 2269 /* 2270 * Append new BTF_KIND_STRUCT type with: 2271 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2272 * - *byte_sz* - size of the struct, in bytes; 2273 * 2274 * Struct initially has no fields in it. Fields can be added by 2275 * btf__add_field() right after btf__add_struct() succeeds. 2276 * 2277 * Returns: 2278 * - >0, type ID of newly added BTF type; 2279 * - <0, on error. 2280 */ 2281 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2282 { 2283 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2284 } 2285 2286 /* 2287 * Append new BTF_KIND_UNION type with: 2288 * - *name* - name of the union, can be NULL or empty for anonymous union; 2289 * - *byte_sz* - size of the union, in bytes; 2290 * 2291 * Union initially has no fields in it. Fields can be added by 2292 * btf__add_field() right after btf__add_union() succeeds. All fields 2293 * should have *bit_offset* of 0. 2294 * 2295 * Returns: 2296 * - >0, type ID of newly added BTF type; 2297 * - <0, on error. 2298 */ 2299 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2300 { 2301 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2302 } 2303 2304 static struct btf_type *btf_last_type(struct btf *btf) 2305 { 2306 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2307 } 2308 2309 /* 2310 * Append new field for the current STRUCT/UNION type with: 2311 * - *name* - name of the field, can be NULL or empty for anonymous field; 2312 * - *type_id* - type ID for the type describing field type; 2313 * - *bit_offset* - bit offset of the start of the field within struct/union; 2314 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2315 * Returns: 2316 * - 0, on success; 2317 * - <0, on error. 2318 */ 2319 int btf__add_field(struct btf *btf, const char *name, int type_id, 2320 __u32 bit_offset, __u32 bit_size) 2321 { 2322 struct btf_type *t; 2323 struct btf_member *m; 2324 bool is_bitfield; 2325 int sz, name_off = 0; 2326 2327 /* last type should be union/struct */ 2328 if (btf->nr_types == 0) 2329 return libbpf_err(-EINVAL); 2330 t = btf_last_type(btf); 2331 if (!btf_is_composite(t)) 2332 return libbpf_err(-EINVAL); 2333 2334 if (validate_type_id(type_id)) 2335 return libbpf_err(-EINVAL); 2336 /* best-effort bit field offset/size enforcement */ 2337 is_bitfield = bit_size || (bit_offset % 8 != 0); 2338 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2339 return libbpf_err(-EINVAL); 2340 2341 /* only offset 0 is allowed for unions */ 2342 if (btf_is_union(t) && bit_offset) 2343 return libbpf_err(-EINVAL); 2344 2345 /* decompose and invalidate raw data */ 2346 if (btf_ensure_modifiable(btf)) 2347 return libbpf_err(-ENOMEM); 2348 2349 sz = sizeof(struct btf_member); 2350 m = btf_add_type_mem(btf, sz); 2351 if (!m) 2352 return libbpf_err(-ENOMEM); 2353 2354 if (name && name[0]) { 2355 name_off = btf__add_str(btf, name); 2356 if (name_off < 0) 2357 return name_off; 2358 } 2359 2360 m->name_off = name_off; 2361 m->type = type_id; 2362 m->offset = bit_offset | (bit_size << 24); 2363 2364 /* btf_add_type_mem can invalidate t pointer */ 2365 t = btf_last_type(btf); 2366 /* update parent type's vlen and kflag */ 2367 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2368 2369 btf->hdr->type_len += sz; 2370 btf->hdr->str_off += sz; 2371 return 0; 2372 } 2373 2374 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2375 bool is_signed, __u8 kind) 2376 { 2377 struct btf_type *t; 2378 int sz, name_off = 0; 2379 2380 /* byte_sz must be power of 2 */ 2381 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2382 return libbpf_err(-EINVAL); 2383 2384 if (btf_ensure_modifiable(btf)) 2385 return libbpf_err(-ENOMEM); 2386 2387 sz = sizeof(struct btf_type); 2388 t = btf_add_type_mem(btf, sz); 2389 if (!t) 2390 return libbpf_err(-ENOMEM); 2391 2392 if (name && name[0]) { 2393 name_off = btf__add_str(btf, name); 2394 if (name_off < 0) 2395 return name_off; 2396 } 2397 2398 /* start out with vlen=0; it will be adjusted when adding enum values */ 2399 t->name_off = name_off; 2400 t->info = btf_type_info(kind, 0, is_signed); 2401 t->size = byte_sz; 2402 2403 return btf_commit_type(btf, sz); 2404 } 2405 2406 /* 2407 * Append new BTF_KIND_ENUM type with: 2408 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2409 * - *byte_sz* - size of the enum, in bytes. 2410 * 2411 * Enum initially has no enum values in it (and corresponds to enum forward 2412 * declaration). Enumerator values can be added by btf__add_enum_value() 2413 * immediately after btf__add_enum() succeeds. 2414 * 2415 * Returns: 2416 * - >0, type ID of newly added BTF type; 2417 * - <0, on error. 2418 */ 2419 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2420 { 2421 /* 2422 * set the signedness to be unsigned, it will change to signed 2423 * if any later enumerator is negative. 2424 */ 2425 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2426 } 2427 2428 /* 2429 * Append new enum value for the current ENUM type with: 2430 * - *name* - name of the enumerator value, can't be NULL or empty; 2431 * - *value* - integer value corresponding to enum value *name*; 2432 * Returns: 2433 * - 0, on success; 2434 * - <0, on error. 2435 */ 2436 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2437 { 2438 struct btf_type *t; 2439 struct btf_enum *v; 2440 int sz, name_off; 2441 2442 /* last type should be BTF_KIND_ENUM */ 2443 if (btf->nr_types == 0) 2444 return libbpf_err(-EINVAL); 2445 t = btf_last_type(btf); 2446 if (!btf_is_enum(t)) 2447 return libbpf_err(-EINVAL); 2448 2449 /* non-empty name */ 2450 if (!name || !name[0]) 2451 return libbpf_err(-EINVAL); 2452 if (value < INT_MIN || value > UINT_MAX) 2453 return libbpf_err(-E2BIG); 2454 2455 /* decompose and invalidate raw data */ 2456 if (btf_ensure_modifiable(btf)) 2457 return libbpf_err(-ENOMEM); 2458 2459 sz = sizeof(struct btf_enum); 2460 v = btf_add_type_mem(btf, sz); 2461 if (!v) 2462 return libbpf_err(-ENOMEM); 2463 2464 name_off = btf__add_str(btf, name); 2465 if (name_off < 0) 2466 return name_off; 2467 2468 v->name_off = name_off; 2469 v->val = value; 2470 2471 /* update parent type's vlen */ 2472 t = btf_last_type(btf); 2473 btf_type_inc_vlen(t); 2474 2475 /* if negative value, set signedness to signed */ 2476 if (value < 0) 2477 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2478 2479 btf->hdr->type_len += sz; 2480 btf->hdr->str_off += sz; 2481 return 0; 2482 } 2483 2484 /* 2485 * Append new BTF_KIND_ENUM64 type with: 2486 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2487 * - *byte_sz* - size of the enum, in bytes. 2488 * - *is_signed* - whether the enum values are signed or not; 2489 * 2490 * Enum initially has no enum values in it (and corresponds to enum forward 2491 * declaration). Enumerator values can be added by btf__add_enum64_value() 2492 * immediately after btf__add_enum64() succeeds. 2493 * 2494 * Returns: 2495 * - >0, type ID of newly added BTF type; 2496 * - <0, on error. 2497 */ 2498 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2499 bool is_signed) 2500 { 2501 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2502 BTF_KIND_ENUM64); 2503 } 2504 2505 /* 2506 * Append new enum value for the current ENUM64 type with: 2507 * - *name* - name of the enumerator value, can't be NULL or empty; 2508 * - *value* - integer value corresponding to enum value *name*; 2509 * Returns: 2510 * - 0, on success; 2511 * - <0, on error. 2512 */ 2513 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2514 { 2515 struct btf_enum64 *v; 2516 struct btf_type *t; 2517 int sz, name_off; 2518 2519 /* last type should be BTF_KIND_ENUM64 */ 2520 if (btf->nr_types == 0) 2521 return libbpf_err(-EINVAL); 2522 t = btf_last_type(btf); 2523 if (!btf_is_enum64(t)) 2524 return libbpf_err(-EINVAL); 2525 2526 /* non-empty name */ 2527 if (!name || !name[0]) 2528 return libbpf_err(-EINVAL); 2529 2530 /* decompose and invalidate raw data */ 2531 if (btf_ensure_modifiable(btf)) 2532 return libbpf_err(-ENOMEM); 2533 2534 sz = sizeof(struct btf_enum64); 2535 v = btf_add_type_mem(btf, sz); 2536 if (!v) 2537 return libbpf_err(-ENOMEM); 2538 2539 name_off = btf__add_str(btf, name); 2540 if (name_off < 0) 2541 return name_off; 2542 2543 v->name_off = name_off; 2544 v->val_lo32 = (__u32)value; 2545 v->val_hi32 = value >> 32; 2546 2547 /* update parent type's vlen */ 2548 t = btf_last_type(btf); 2549 btf_type_inc_vlen(t); 2550 2551 btf->hdr->type_len += sz; 2552 btf->hdr->str_off += sz; 2553 return 0; 2554 } 2555 2556 /* 2557 * Append new BTF_KIND_FWD type with: 2558 * - *name*, non-empty/non-NULL name; 2559 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2560 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2561 * Returns: 2562 * - >0, type ID of newly added BTF type; 2563 * - <0, on error. 2564 */ 2565 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2566 { 2567 if (!name || !name[0]) 2568 return libbpf_err(-EINVAL); 2569 2570 switch (fwd_kind) { 2571 case BTF_FWD_STRUCT: 2572 case BTF_FWD_UNION: { 2573 struct btf_type *t; 2574 int id; 2575 2576 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0, 0); 2577 if (id <= 0) 2578 return id; 2579 t = btf_type_by_id(btf, id); 2580 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2581 return id; 2582 } 2583 case BTF_FWD_ENUM: 2584 /* enum forward in BTF currently is just an enum with no enum 2585 * values; we also assume a standard 4-byte size for it 2586 */ 2587 return btf__add_enum(btf, name, sizeof(int)); 2588 default: 2589 return libbpf_err(-EINVAL); 2590 } 2591 } 2592 2593 /* 2594 * Append new BTF_KING_TYPEDEF type with: 2595 * - *name*, non-empty/non-NULL name; 2596 * - *ref_type_id* - referenced type ID, it might not exist yet; 2597 * Returns: 2598 * - >0, type ID of newly added BTF type; 2599 * - <0, on error. 2600 */ 2601 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2602 { 2603 if (!name || !name[0]) 2604 return libbpf_err(-EINVAL); 2605 2606 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id, 0); 2607 } 2608 2609 /* 2610 * Append new BTF_KIND_VOLATILE type with: 2611 * - *ref_type_id* - referenced type ID, it might not exist yet; 2612 * Returns: 2613 * - >0, type ID of newly added BTF type; 2614 * - <0, on error. 2615 */ 2616 int btf__add_volatile(struct btf *btf, int ref_type_id) 2617 { 2618 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id, 0); 2619 } 2620 2621 /* 2622 * Append new BTF_KIND_CONST type with: 2623 * - *ref_type_id* - referenced type ID, it might not exist yet; 2624 * Returns: 2625 * - >0, type ID of newly added BTF type; 2626 * - <0, on error. 2627 */ 2628 int btf__add_const(struct btf *btf, int ref_type_id) 2629 { 2630 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id, 0); 2631 } 2632 2633 /* 2634 * Append new BTF_KIND_RESTRICT type with: 2635 * - *ref_type_id* - referenced type ID, it might not exist yet; 2636 * Returns: 2637 * - >0, type ID of newly added BTF type; 2638 * - <0, on error. 2639 */ 2640 int btf__add_restrict(struct btf *btf, int ref_type_id) 2641 { 2642 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id, 0); 2643 } 2644 2645 /* 2646 * Append new BTF_KIND_TYPE_TAG type with: 2647 * - *value*, non-empty/non-NULL tag value; 2648 * - *ref_type_id* - referenced type ID, it might not exist yet; 2649 * Returns: 2650 * - >0, type ID of newly added BTF type; 2651 * - <0, on error. 2652 */ 2653 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2654 { 2655 if (!value || !value[0]) 2656 return libbpf_err(-EINVAL); 2657 2658 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id, 0); 2659 } 2660 2661 /* 2662 * Append new BTF_KIND_TYPE_TAG type with: 2663 * - *value*, non-empty/non-NULL tag value; 2664 * - *ref_type_id* - referenced type ID, it might not exist yet; 2665 * Set info->kflag to 1, indicating this tag is an __attribute__ 2666 * Returns: 2667 * - >0, type ID of newly added BTF type; 2668 * - <0, on error. 2669 */ 2670 int btf__add_type_attr(struct btf *btf, const char *value, int ref_type_id) 2671 { 2672 if (!value || !value[0]) 2673 return libbpf_err(-EINVAL); 2674 2675 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id, 1); 2676 } 2677 2678 /* 2679 * Append new BTF_KIND_FUNC type with: 2680 * - *name*, non-empty/non-NULL name; 2681 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2682 * Returns: 2683 * - >0, type ID of newly added BTF type; 2684 * - <0, on error. 2685 */ 2686 int btf__add_func(struct btf *btf, const char *name, 2687 enum btf_func_linkage linkage, int proto_type_id) 2688 { 2689 int id; 2690 2691 if (!name || !name[0]) 2692 return libbpf_err(-EINVAL); 2693 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2694 linkage != BTF_FUNC_EXTERN) 2695 return libbpf_err(-EINVAL); 2696 2697 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id, 0); 2698 if (id > 0) { 2699 struct btf_type *t = btf_type_by_id(btf, id); 2700 2701 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2702 } 2703 return libbpf_err(id); 2704 } 2705 2706 /* 2707 * Append new BTF_KIND_FUNC_PROTO with: 2708 * - *ret_type_id* - type ID for return result of a function. 2709 * 2710 * Function prototype initially has no arguments, but they can be added by 2711 * btf__add_func_param() one by one, immediately after 2712 * btf__add_func_proto() succeeded. 2713 * 2714 * Returns: 2715 * - >0, type ID of newly added BTF type; 2716 * - <0, on error. 2717 */ 2718 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2719 { 2720 struct btf_type *t; 2721 int sz; 2722 2723 if (validate_type_id(ret_type_id)) 2724 return libbpf_err(-EINVAL); 2725 2726 if (btf_ensure_modifiable(btf)) 2727 return libbpf_err(-ENOMEM); 2728 2729 sz = sizeof(struct btf_type); 2730 t = btf_add_type_mem(btf, sz); 2731 if (!t) 2732 return libbpf_err(-ENOMEM); 2733 2734 /* start out with vlen=0; this will be adjusted when adding enum 2735 * values, if necessary 2736 */ 2737 t->name_off = 0; 2738 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2739 t->type = ret_type_id; 2740 2741 return btf_commit_type(btf, sz); 2742 } 2743 2744 /* 2745 * Append new function parameter for current FUNC_PROTO type with: 2746 * - *name* - parameter name, can be NULL or empty; 2747 * - *type_id* - type ID describing the type of the parameter. 2748 * Returns: 2749 * - 0, on success; 2750 * - <0, on error. 2751 */ 2752 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2753 { 2754 struct btf_type *t; 2755 struct btf_param *p; 2756 int sz, name_off = 0; 2757 2758 if (validate_type_id(type_id)) 2759 return libbpf_err(-EINVAL); 2760 2761 /* last type should be BTF_KIND_FUNC_PROTO */ 2762 if (btf->nr_types == 0) 2763 return libbpf_err(-EINVAL); 2764 t = btf_last_type(btf); 2765 if (!btf_is_func_proto(t)) 2766 return libbpf_err(-EINVAL); 2767 2768 /* decompose and invalidate raw data */ 2769 if (btf_ensure_modifiable(btf)) 2770 return libbpf_err(-ENOMEM); 2771 2772 sz = sizeof(struct btf_param); 2773 p = btf_add_type_mem(btf, sz); 2774 if (!p) 2775 return libbpf_err(-ENOMEM); 2776 2777 if (name && name[0]) { 2778 name_off = btf__add_str(btf, name); 2779 if (name_off < 0) 2780 return name_off; 2781 } 2782 2783 p->name_off = name_off; 2784 p->type = type_id; 2785 2786 /* update parent type's vlen */ 2787 t = btf_last_type(btf); 2788 btf_type_inc_vlen(t); 2789 2790 btf->hdr->type_len += sz; 2791 btf->hdr->str_off += sz; 2792 return 0; 2793 } 2794 2795 /* 2796 * Append new BTF_KIND_VAR type with: 2797 * - *name* - non-empty/non-NULL name; 2798 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2799 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2800 * - *type_id* - type ID of the type describing the type of the variable. 2801 * Returns: 2802 * - >0, type ID of newly added BTF type; 2803 * - <0, on error. 2804 */ 2805 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2806 { 2807 struct btf_type *t; 2808 struct btf_var *v; 2809 int sz, name_off; 2810 2811 /* non-empty name */ 2812 if (!name || !name[0]) 2813 return libbpf_err(-EINVAL); 2814 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2815 linkage != BTF_VAR_GLOBAL_EXTERN) 2816 return libbpf_err(-EINVAL); 2817 if (validate_type_id(type_id)) 2818 return libbpf_err(-EINVAL); 2819 2820 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2821 if (btf_ensure_modifiable(btf)) 2822 return libbpf_err(-ENOMEM); 2823 2824 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2825 t = btf_add_type_mem(btf, sz); 2826 if (!t) 2827 return libbpf_err(-ENOMEM); 2828 2829 name_off = btf__add_str(btf, name); 2830 if (name_off < 0) 2831 return name_off; 2832 2833 t->name_off = name_off; 2834 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2835 t->type = type_id; 2836 2837 v = btf_var(t); 2838 v->linkage = linkage; 2839 2840 return btf_commit_type(btf, sz); 2841 } 2842 2843 /* 2844 * Append new BTF_KIND_DATASEC type with: 2845 * - *name* - non-empty/non-NULL name; 2846 * - *byte_sz* - data section size, in bytes. 2847 * 2848 * Data section is initially empty. Variables info can be added with 2849 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2850 * 2851 * Returns: 2852 * - >0, type ID of newly added BTF type; 2853 * - <0, on error. 2854 */ 2855 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2856 { 2857 struct btf_type *t; 2858 int sz, name_off; 2859 2860 /* non-empty name */ 2861 if (!name || !name[0]) 2862 return libbpf_err(-EINVAL); 2863 2864 if (btf_ensure_modifiable(btf)) 2865 return libbpf_err(-ENOMEM); 2866 2867 sz = sizeof(struct btf_type); 2868 t = btf_add_type_mem(btf, sz); 2869 if (!t) 2870 return libbpf_err(-ENOMEM); 2871 2872 name_off = btf__add_str(btf, name); 2873 if (name_off < 0) 2874 return name_off; 2875 2876 /* start with vlen=0, which will be update as var_secinfos are added */ 2877 t->name_off = name_off; 2878 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2879 t->size = byte_sz; 2880 2881 return btf_commit_type(btf, sz); 2882 } 2883 2884 /* 2885 * Append new data section variable information entry for current DATASEC type: 2886 * - *var_type_id* - type ID, describing type of the variable; 2887 * - *offset* - variable offset within data section, in bytes; 2888 * - *byte_sz* - variable size, in bytes. 2889 * 2890 * Returns: 2891 * - 0, on success; 2892 * - <0, on error. 2893 */ 2894 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2895 { 2896 struct btf_type *t; 2897 struct btf_var_secinfo *v; 2898 int sz; 2899 2900 /* last type should be BTF_KIND_DATASEC */ 2901 if (btf->nr_types == 0) 2902 return libbpf_err(-EINVAL); 2903 t = btf_last_type(btf); 2904 if (!btf_is_datasec(t)) 2905 return libbpf_err(-EINVAL); 2906 2907 if (validate_type_id(var_type_id)) 2908 return libbpf_err(-EINVAL); 2909 2910 /* decompose and invalidate raw data */ 2911 if (btf_ensure_modifiable(btf)) 2912 return libbpf_err(-ENOMEM); 2913 2914 sz = sizeof(struct btf_var_secinfo); 2915 v = btf_add_type_mem(btf, sz); 2916 if (!v) 2917 return libbpf_err(-ENOMEM); 2918 2919 v->type = var_type_id; 2920 v->offset = offset; 2921 v->size = byte_sz; 2922 2923 /* update parent type's vlen */ 2924 t = btf_last_type(btf); 2925 btf_type_inc_vlen(t); 2926 2927 btf->hdr->type_len += sz; 2928 btf->hdr->str_off += sz; 2929 return 0; 2930 } 2931 2932 static int btf_add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2933 int component_idx, int kflag) 2934 { 2935 struct btf_type *t; 2936 int sz, value_off; 2937 2938 if (!value || !value[0] || component_idx < -1) 2939 return libbpf_err(-EINVAL); 2940 2941 if (validate_type_id(ref_type_id)) 2942 return libbpf_err(-EINVAL); 2943 2944 if (btf_ensure_modifiable(btf)) 2945 return libbpf_err(-ENOMEM); 2946 2947 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2948 t = btf_add_type_mem(btf, sz); 2949 if (!t) 2950 return libbpf_err(-ENOMEM); 2951 2952 value_off = btf__add_str(btf, value); 2953 if (value_off < 0) 2954 return value_off; 2955 2956 t->name_off = value_off; 2957 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, kflag); 2958 t->type = ref_type_id; 2959 btf_decl_tag(t)->component_idx = component_idx; 2960 2961 return btf_commit_type(btf, sz); 2962 } 2963 2964 /* 2965 * Append new BTF_KIND_DECL_TAG type with: 2966 * - *value* - non-empty/non-NULL string; 2967 * - *ref_type_id* - referenced type ID, it might not exist yet; 2968 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2969 * member or function argument index; 2970 * Returns: 2971 * - >0, type ID of newly added BTF type; 2972 * - <0, on error. 2973 */ 2974 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2975 int component_idx) 2976 { 2977 return btf_add_decl_tag(btf, value, ref_type_id, component_idx, 0); 2978 } 2979 2980 /* 2981 * Append new BTF_KIND_DECL_TAG type with: 2982 * - *value* - non-empty/non-NULL string; 2983 * - *ref_type_id* - referenced type ID, it might not exist yet; 2984 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2985 * member or function argument index; 2986 * Set info->kflag to 1, indicating this tag is an __attribute__ 2987 * Returns: 2988 * - >0, type ID of newly added BTF type; 2989 * - <0, on error. 2990 */ 2991 int btf__add_decl_attr(struct btf *btf, const char *value, int ref_type_id, 2992 int component_idx) 2993 { 2994 return btf_add_decl_tag(btf, value, ref_type_id, component_idx, 1); 2995 } 2996 2997 struct btf_ext_sec_info_param { 2998 __u32 off; 2999 __u32 len; 3000 __u32 min_rec_size; 3001 struct btf_ext_info *ext_info; 3002 const char *desc; 3003 }; 3004 3005 /* 3006 * Parse a single info subsection of the BTF.ext info data: 3007 * - validate subsection structure and elements 3008 * - save info subsection start and sizing details in struct btf_ext 3009 * - endian-independent operation, for calling before byte-swapping 3010 */ 3011 static int btf_ext_parse_sec_info(struct btf_ext *btf_ext, 3012 struct btf_ext_sec_info_param *ext_sec, 3013 bool is_native) 3014 { 3015 const struct btf_ext_info_sec *sinfo; 3016 struct btf_ext_info *ext_info; 3017 __u32 info_left, record_size; 3018 size_t sec_cnt = 0; 3019 void *info; 3020 3021 if (ext_sec->len == 0) 3022 return 0; 3023 3024 if (ext_sec->off & 0x03) { 3025 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 3026 ext_sec->desc); 3027 return -EINVAL; 3028 } 3029 3030 /* The start of the info sec (including the __u32 record_size). */ 3031 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 3032 info_left = ext_sec->len; 3033 3034 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 3035 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 3036 ext_sec->desc, ext_sec->off, ext_sec->len); 3037 return -EINVAL; 3038 } 3039 3040 /* At least a record size */ 3041 if (info_left < sizeof(__u32)) { 3042 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 3043 return -EINVAL; 3044 } 3045 3046 /* The record size needs to meet either the minimum standard or, when 3047 * handling non-native endianness data, the exact standard so as 3048 * to allow safe byte-swapping. 3049 */ 3050 record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info); 3051 if (record_size < ext_sec->min_rec_size || 3052 (!is_native && record_size != ext_sec->min_rec_size) || 3053 record_size & 0x03) { 3054 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 3055 ext_sec->desc, record_size); 3056 return -EINVAL; 3057 } 3058 3059 sinfo = info + sizeof(__u32); 3060 info_left -= sizeof(__u32); 3061 3062 /* If no records, return failure now so .BTF.ext won't be used. */ 3063 if (!info_left) { 3064 pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc); 3065 return -EINVAL; 3066 } 3067 3068 while (info_left) { 3069 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 3070 __u64 total_record_size; 3071 __u32 num_records; 3072 3073 if (info_left < sec_hdrlen) { 3074 pr_debug("%s section header is not found in .BTF.ext\n", 3075 ext_sec->desc); 3076 return -EINVAL; 3077 } 3078 3079 num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info); 3080 if (num_records == 0) { 3081 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 3082 ext_sec->desc); 3083 return -EINVAL; 3084 } 3085 3086 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 3087 if (info_left < total_record_size) { 3088 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 3089 ext_sec->desc); 3090 return -EINVAL; 3091 } 3092 3093 info_left -= total_record_size; 3094 sinfo = (void *)sinfo + total_record_size; 3095 sec_cnt++; 3096 } 3097 3098 ext_info = ext_sec->ext_info; 3099 ext_info->len = ext_sec->len - sizeof(__u32); 3100 ext_info->rec_size = record_size; 3101 ext_info->info = info + sizeof(__u32); 3102 ext_info->sec_cnt = sec_cnt; 3103 3104 return 0; 3105 } 3106 3107 /* Parse all info secs in the BTF.ext info data */ 3108 static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native) 3109 { 3110 struct btf_ext_sec_info_param func_info = { 3111 .off = btf_ext->hdr->func_info_off, 3112 .len = btf_ext->hdr->func_info_len, 3113 .min_rec_size = sizeof(struct bpf_func_info_min), 3114 .ext_info = &btf_ext->func_info, 3115 .desc = "func_info" 3116 }; 3117 struct btf_ext_sec_info_param line_info = { 3118 .off = btf_ext->hdr->line_info_off, 3119 .len = btf_ext->hdr->line_info_len, 3120 .min_rec_size = sizeof(struct bpf_line_info_min), 3121 .ext_info = &btf_ext->line_info, 3122 .desc = "line_info", 3123 }; 3124 struct btf_ext_sec_info_param core_relo = { 3125 .min_rec_size = sizeof(struct bpf_core_relo), 3126 .ext_info = &btf_ext->core_relo_info, 3127 .desc = "core_relo", 3128 }; 3129 int err; 3130 3131 err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native); 3132 if (err) 3133 return err; 3134 3135 err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native); 3136 if (err) 3137 return err; 3138 3139 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3140 return 0; /* skip core relos parsing */ 3141 3142 core_relo.off = btf_ext->hdr->core_relo_off; 3143 core_relo.len = btf_ext->hdr->core_relo_len; 3144 err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native); 3145 if (err) 3146 return err; 3147 3148 return 0; 3149 } 3150 3151 /* Swap byte-order of BTF.ext header with any endianness */ 3152 static void btf_ext_bswap_hdr(struct btf_ext_header *h) 3153 { 3154 bool is_native = h->magic == BTF_MAGIC; 3155 __u32 hdr_len; 3156 3157 hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len); 3158 3159 h->magic = bswap_16(h->magic); 3160 h->hdr_len = bswap_32(h->hdr_len); 3161 h->func_info_off = bswap_32(h->func_info_off); 3162 h->func_info_len = bswap_32(h->func_info_len); 3163 h->line_info_off = bswap_32(h->line_info_off); 3164 h->line_info_len = bswap_32(h->line_info_len); 3165 3166 if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3167 return; 3168 3169 h->core_relo_off = bswap_32(h->core_relo_off); 3170 h->core_relo_len = bswap_32(h->core_relo_len); 3171 } 3172 3173 /* Swap byte-order of generic info subsection */ 3174 static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native, 3175 info_rec_bswap_fn bswap_fn) 3176 { 3177 struct btf_ext_info_sec *sec; 3178 __u32 info_left, rec_size, *rs; 3179 3180 if (len == 0) 3181 return; 3182 3183 rs = info; /* info record size */ 3184 rec_size = is_native ? *rs : bswap_32(*rs); 3185 *rs = bswap_32(*rs); 3186 3187 sec = info + sizeof(__u32); /* info sec #1 */ 3188 info_left = len - sizeof(__u32); 3189 while (info_left) { 3190 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 3191 __u32 i, num_recs; 3192 void *p; 3193 3194 num_recs = is_native ? sec->num_info : bswap_32(sec->num_info); 3195 sec->sec_name_off = bswap_32(sec->sec_name_off); 3196 sec->num_info = bswap_32(sec->num_info); 3197 p = sec->data; /* info rec #1 */ 3198 for (i = 0; i < num_recs; i++, p += rec_size) 3199 bswap_fn(p); 3200 sec = p; 3201 info_left -= sec_hdrlen + (__u64)rec_size * num_recs; 3202 } 3203 } 3204 3205 /* 3206 * Swap byte-order of all info data in a BTF.ext section 3207 * - requires BTF.ext hdr in native endianness 3208 */ 3209 static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data) 3210 { 3211 const bool is_native = btf_ext->swapped_endian; 3212 const struct btf_ext_header *h = data; 3213 void *info; 3214 3215 /* Swap func_info subsection byte-order */ 3216 info = data + h->hdr_len + h->func_info_off; 3217 btf_ext_bswap_info_sec(info, h->func_info_len, is_native, 3218 (info_rec_bswap_fn)bpf_func_info_bswap); 3219 3220 /* Swap line_info subsection byte-order */ 3221 info = data + h->hdr_len + h->line_info_off; 3222 btf_ext_bswap_info_sec(info, h->line_info_len, is_native, 3223 (info_rec_bswap_fn)bpf_line_info_bswap); 3224 3225 /* Swap core_relo subsection byte-order (if present) */ 3226 if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 3227 return; 3228 3229 info = data + h->hdr_len + h->core_relo_off; 3230 btf_ext_bswap_info_sec(info, h->core_relo_len, is_native, 3231 (info_rec_bswap_fn)bpf_core_relo_bswap); 3232 } 3233 3234 /* Parse hdr data and info sections: check and convert to native endianness */ 3235 static int btf_ext_parse(struct btf_ext *btf_ext) 3236 { 3237 __u32 hdr_len, data_size = btf_ext->data_size; 3238 struct btf_ext_header *hdr = btf_ext->hdr; 3239 bool swapped_endian = false; 3240 int err; 3241 3242 if (data_size < offsetofend(struct btf_ext_header, hdr_len)) { 3243 pr_debug("BTF.ext header too short\n"); 3244 return -EINVAL; 3245 } 3246 3247 hdr_len = hdr->hdr_len; 3248 if (hdr->magic == bswap_16(BTF_MAGIC)) { 3249 swapped_endian = true; 3250 hdr_len = bswap_32(hdr_len); 3251 } else if (hdr->magic != BTF_MAGIC) { 3252 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 3253 return -EINVAL; 3254 } 3255 3256 /* Ensure known version of structs, current BTF_VERSION == 1 */ 3257 if (hdr->version != 1) { 3258 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 3259 return -ENOTSUP; 3260 } 3261 3262 if (hdr->flags) { 3263 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 3264 return -ENOTSUP; 3265 } 3266 3267 if (data_size < hdr_len) { 3268 pr_debug("BTF.ext header not found\n"); 3269 return -EINVAL; 3270 } else if (data_size == hdr_len) { 3271 pr_debug("BTF.ext has no data\n"); 3272 return -EINVAL; 3273 } 3274 3275 /* Verify mandatory hdr info details present */ 3276 if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 3277 pr_warn("BTF.ext header missing func_info, line_info\n"); 3278 return -EINVAL; 3279 } 3280 3281 /* Keep hdr native byte-order in memory for introspection */ 3282 if (swapped_endian) 3283 btf_ext_bswap_hdr(btf_ext->hdr); 3284 3285 /* Validate info subsections and cache key metadata */ 3286 err = btf_ext_parse_info(btf_ext, !swapped_endian); 3287 if (err) 3288 return err; 3289 3290 /* Keep infos native byte-order in memory for introspection */ 3291 if (swapped_endian) 3292 btf_ext_bswap_info(btf_ext, btf_ext->data); 3293 3294 /* 3295 * Set btf_ext->swapped_endian only after all header and info data has 3296 * been swapped, helping bswap functions determine if their data are 3297 * in native byte-order when called. 3298 */ 3299 btf_ext->swapped_endian = swapped_endian; 3300 return 0; 3301 } 3302 3303 void btf_ext__free(struct btf_ext *btf_ext) 3304 { 3305 if (IS_ERR_OR_NULL(btf_ext)) 3306 return; 3307 free(btf_ext->func_info.sec_idxs); 3308 free(btf_ext->line_info.sec_idxs); 3309 free(btf_ext->core_relo_info.sec_idxs); 3310 free(btf_ext->data); 3311 free(btf_ext->data_swapped); 3312 free(btf_ext); 3313 } 3314 3315 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 3316 { 3317 struct btf_ext *btf_ext; 3318 int err; 3319 3320 btf_ext = calloc(1, sizeof(struct btf_ext)); 3321 if (!btf_ext) 3322 return libbpf_err_ptr(-ENOMEM); 3323 3324 btf_ext->data_size = size; 3325 btf_ext->data = malloc(size); 3326 if (!btf_ext->data) { 3327 err = -ENOMEM; 3328 goto done; 3329 } 3330 memcpy(btf_ext->data, data, size); 3331 3332 err = btf_ext_parse(btf_ext); 3333 3334 done: 3335 if (err) { 3336 btf_ext__free(btf_ext); 3337 return libbpf_err_ptr(err); 3338 } 3339 3340 return btf_ext; 3341 } 3342 3343 static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian) 3344 { 3345 struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro; 3346 const __u32 data_sz = btf_ext->data_size; 3347 void *data; 3348 3349 /* Return native data (always present) or swapped data if present */ 3350 if (!swap_endian) 3351 return btf_ext->data; 3352 else if (btf_ext->data_swapped) 3353 return btf_ext->data_swapped; 3354 3355 /* Recreate missing swapped data, then cache and return */ 3356 data = calloc(1, data_sz); 3357 if (!data) 3358 return NULL; 3359 memcpy(data, btf_ext->data, data_sz); 3360 3361 btf_ext_bswap_info(btf_ext, data); 3362 btf_ext_bswap_hdr(data); 3363 btf_ext->data_swapped = data; 3364 return data; 3365 } 3366 3367 const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size) 3368 { 3369 void *data; 3370 3371 data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian); 3372 if (!data) 3373 return errno = ENOMEM, NULL; 3374 3375 *size = btf_ext->data_size; 3376 return data; 3377 } 3378 3379 __attribute__((alias("btf_ext__raw_data"))) 3380 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size); 3381 3382 enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext) 3383 { 3384 if (is_host_big_endian()) 3385 return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 3386 else 3387 return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 3388 } 3389 3390 int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian) 3391 { 3392 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 3393 return libbpf_err(-EINVAL); 3394 3395 btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 3396 3397 if (!btf_ext->swapped_endian) { 3398 free(btf_ext->data_swapped); 3399 btf_ext->data_swapped = NULL; 3400 } 3401 return 0; 3402 } 3403 3404 struct btf_dedup; 3405 3406 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 3407 static void btf_dedup_free(struct btf_dedup *d); 3408 static int btf_dedup_prep(struct btf_dedup *d); 3409 static int btf_dedup_strings(struct btf_dedup *d); 3410 static int btf_dedup_prim_types(struct btf_dedup *d); 3411 static int btf_dedup_struct_types(struct btf_dedup *d); 3412 static int btf_dedup_ref_types(struct btf_dedup *d); 3413 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 3414 static int btf_dedup_compact_types(struct btf_dedup *d); 3415 static int btf_dedup_remap_types(struct btf_dedup *d); 3416 3417 /* 3418 * Deduplicate BTF types and strings. 3419 * 3420 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 3421 * section with all BTF type descriptors and string data. It overwrites that 3422 * memory in-place with deduplicated types and strings without any loss of 3423 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 3424 * is provided, all the strings referenced from .BTF.ext section are honored 3425 * and updated to point to the right offsets after deduplication. 3426 * 3427 * If function returns with error, type/string data might be garbled and should 3428 * be discarded. 3429 * 3430 * More verbose and detailed description of both problem btf_dedup is solving, 3431 * as well as solution could be found at: 3432 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 3433 * 3434 * Problem description and justification 3435 * ===================================== 3436 * 3437 * BTF type information is typically emitted either as a result of conversion 3438 * from DWARF to BTF or directly by compiler. In both cases, each compilation 3439 * unit contains information about a subset of all the types that are used 3440 * in an application. These subsets are frequently overlapping and contain a lot 3441 * of duplicated information when later concatenated together into a single 3442 * binary. This algorithm ensures that each unique type is represented by single 3443 * BTF type descriptor, greatly reducing resulting size of BTF data. 3444 * 3445 * Compilation unit isolation and subsequent duplication of data is not the only 3446 * problem. The same type hierarchy (e.g., struct and all the type that struct 3447 * references) in different compilation units can be represented in BTF to 3448 * various degrees of completeness (or, rather, incompleteness) due to 3449 * struct/union forward declarations. 3450 * 3451 * Let's take a look at an example, that we'll use to better understand the 3452 * problem (and solution). Suppose we have two compilation units, each using 3453 * same `struct S`, but each of them having incomplete type information about 3454 * struct's fields: 3455 * 3456 * // CU #1: 3457 * struct S; 3458 * struct A { 3459 * int a; 3460 * struct A* self; 3461 * struct S* parent; 3462 * }; 3463 * struct B; 3464 * struct S { 3465 * struct A* a_ptr; 3466 * struct B* b_ptr; 3467 * }; 3468 * 3469 * // CU #2: 3470 * struct S; 3471 * struct A; 3472 * struct B { 3473 * int b; 3474 * struct B* self; 3475 * struct S* parent; 3476 * }; 3477 * struct S { 3478 * struct A* a_ptr; 3479 * struct B* b_ptr; 3480 * }; 3481 * 3482 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3483 * more), but will know the complete type information about `struct A`. While 3484 * for CU #2, it will know full type information about `struct B`, but will 3485 * only know about forward declaration of `struct A` (in BTF terms, it will 3486 * have `BTF_KIND_FWD` type descriptor with name `B`). 3487 * 3488 * This compilation unit isolation means that it's possible that there is no 3489 * single CU with complete type information describing structs `S`, `A`, and 3490 * `B`. Also, we might get tons of duplicated and redundant type information. 3491 * 3492 * Additional complication we need to keep in mind comes from the fact that 3493 * types, in general, can form graphs containing cycles, not just DAGs. 3494 * 3495 * While algorithm does deduplication, it also merges and resolves type 3496 * information (unless disabled throught `struct btf_opts`), whenever possible. 3497 * E.g., in the example above with two compilation units having partial type 3498 * information for structs `A` and `B`, the output of algorithm will emit 3499 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3500 * (as well as type information for `int` and pointers), as if they were defined 3501 * in a single compilation unit as: 3502 * 3503 * struct A { 3504 * int a; 3505 * struct A* self; 3506 * struct S* parent; 3507 * }; 3508 * struct B { 3509 * int b; 3510 * struct B* self; 3511 * struct S* parent; 3512 * }; 3513 * struct S { 3514 * struct A* a_ptr; 3515 * struct B* b_ptr; 3516 * }; 3517 * 3518 * Algorithm summary 3519 * ================= 3520 * 3521 * Algorithm completes its work in 7 separate passes: 3522 * 3523 * 1. Strings deduplication. 3524 * 2. Primitive types deduplication (int, enum, fwd). 3525 * 3. Struct/union types deduplication. 3526 * 4. Resolve unambiguous forward declarations. 3527 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3528 * protos, and const/volatile/restrict modifiers). 3529 * 6. Types compaction. 3530 * 7. Types remapping. 3531 * 3532 * Algorithm determines canonical type descriptor, which is a single 3533 * representative type for each truly unique type. This canonical type is the 3534 * one that will go into final deduplicated BTF type information. For 3535 * struct/unions, it is also the type that algorithm will merge additional type 3536 * information into (while resolving FWDs), as it discovers it from data in 3537 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3538 * that type is canonical, or to some other type, if that type is equivalent 3539 * and was chosen as canonical representative. This mapping is stored in 3540 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3541 * FWD type got resolved to. 3542 * 3543 * To facilitate fast discovery of canonical types, we also maintain canonical 3544 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3545 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3546 * that match that signature. With sufficiently good choice of type signature 3547 * hashing function, we can limit number of canonical types for each unique type 3548 * signature to a very small number, allowing to find canonical type for any 3549 * duplicated type very quickly. 3550 * 3551 * Struct/union deduplication is the most critical part and algorithm for 3552 * deduplicating structs/unions is described in greater details in comments for 3553 * `btf_dedup_is_equiv` function. 3554 */ 3555 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3556 { 3557 struct btf_dedup *d; 3558 int err; 3559 3560 if (!OPTS_VALID(opts, btf_dedup_opts)) 3561 return libbpf_err(-EINVAL); 3562 3563 d = btf_dedup_new(btf, opts); 3564 if (IS_ERR(d)) { 3565 pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d)); 3566 return libbpf_err(-EINVAL); 3567 } 3568 3569 if (btf_ensure_modifiable(btf)) { 3570 err = -ENOMEM; 3571 goto done; 3572 } 3573 3574 err = btf_dedup_prep(d); 3575 if (err) { 3576 pr_debug("btf_dedup_prep failed: %s\n", errstr(err)); 3577 goto done; 3578 } 3579 err = btf_dedup_strings(d); 3580 if (err < 0) { 3581 pr_debug("btf_dedup_strings failed: %s\n", errstr(err)); 3582 goto done; 3583 } 3584 err = btf_dedup_prim_types(d); 3585 if (err < 0) { 3586 pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err)); 3587 goto done; 3588 } 3589 err = btf_dedup_struct_types(d); 3590 if (err < 0) { 3591 pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err)); 3592 goto done; 3593 } 3594 err = btf_dedup_resolve_fwds(d); 3595 if (err < 0) { 3596 pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err)); 3597 goto done; 3598 } 3599 err = btf_dedup_ref_types(d); 3600 if (err < 0) { 3601 pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err)); 3602 goto done; 3603 } 3604 err = btf_dedup_compact_types(d); 3605 if (err < 0) { 3606 pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err)); 3607 goto done; 3608 } 3609 err = btf_dedup_remap_types(d); 3610 if (err < 0) { 3611 pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err)); 3612 goto done; 3613 } 3614 3615 done: 3616 btf_dedup_free(d); 3617 return libbpf_err(err); 3618 } 3619 3620 #define BTF_UNPROCESSED_ID ((__u32)-1) 3621 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3622 3623 struct btf_dedup { 3624 /* .BTF section to be deduped in-place */ 3625 struct btf *btf; 3626 /* 3627 * Optional .BTF.ext section. When provided, any strings referenced 3628 * from it will be taken into account when deduping strings 3629 */ 3630 struct btf_ext *btf_ext; 3631 /* 3632 * This is a map from any type's signature hash to a list of possible 3633 * canonical representative type candidates. Hash collisions are 3634 * ignored, so even types of various kinds can share same list of 3635 * candidates, which is fine because we rely on subsequent 3636 * btf_xxx_equal() checks to authoritatively verify type equality. 3637 */ 3638 struct hashmap *dedup_table; 3639 /* Canonical types map */ 3640 __u32 *map; 3641 /* Hypothetical mapping, used during type graph equivalence checks */ 3642 __u32 *hypot_map; 3643 __u32 *hypot_list; 3644 size_t hypot_cnt; 3645 size_t hypot_cap; 3646 /* Whether hypothetical mapping, if successful, would need to adjust 3647 * already canonicalized types (due to a new forward declaration to 3648 * concrete type resolution). In such case, during split BTF dedup 3649 * candidate type would still be considered as different, because base 3650 * BTF is considered to be immutable. 3651 */ 3652 bool hypot_adjust_canon; 3653 /* Various option modifying behavior of algorithm */ 3654 struct btf_dedup_opts opts; 3655 /* temporary strings deduplication state */ 3656 struct strset *strs_set; 3657 }; 3658 3659 static unsigned long hash_combine(unsigned long h, unsigned long value) 3660 { 3661 return h * 31 + value; 3662 } 3663 3664 #define for_each_dedup_cand(d, node, hash) \ 3665 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3666 3667 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3668 { 3669 return hashmap__append(d->dedup_table, hash, type_id); 3670 } 3671 3672 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3673 __u32 from_id, __u32 to_id) 3674 { 3675 if (d->hypot_cnt == d->hypot_cap) { 3676 __u32 *new_list; 3677 3678 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3679 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3680 if (!new_list) 3681 return -ENOMEM; 3682 d->hypot_list = new_list; 3683 } 3684 d->hypot_list[d->hypot_cnt++] = from_id; 3685 d->hypot_map[from_id] = to_id; 3686 return 0; 3687 } 3688 3689 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3690 { 3691 int i; 3692 3693 for (i = 0; i < d->hypot_cnt; i++) 3694 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3695 d->hypot_cnt = 0; 3696 d->hypot_adjust_canon = false; 3697 } 3698 3699 static void btf_dedup_free(struct btf_dedup *d) 3700 { 3701 hashmap__free(d->dedup_table); 3702 d->dedup_table = NULL; 3703 3704 free(d->map); 3705 d->map = NULL; 3706 3707 free(d->hypot_map); 3708 d->hypot_map = NULL; 3709 3710 free(d->hypot_list); 3711 d->hypot_list = NULL; 3712 3713 free(d); 3714 } 3715 3716 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3717 { 3718 return key; 3719 } 3720 3721 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3722 { 3723 return 0; 3724 } 3725 3726 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3727 { 3728 return k1 == k2; 3729 } 3730 3731 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3732 { 3733 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3734 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3735 int i, err = 0, type_cnt; 3736 3737 if (!d) 3738 return ERR_PTR(-ENOMEM); 3739 3740 if (OPTS_GET(opts, force_collisions, false)) 3741 hash_fn = btf_dedup_collision_hash_fn; 3742 3743 d->btf = btf; 3744 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3745 3746 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3747 if (IS_ERR(d->dedup_table)) { 3748 err = PTR_ERR(d->dedup_table); 3749 d->dedup_table = NULL; 3750 goto done; 3751 } 3752 3753 type_cnt = btf__type_cnt(btf); 3754 d->map = malloc(sizeof(__u32) * type_cnt); 3755 if (!d->map) { 3756 err = -ENOMEM; 3757 goto done; 3758 } 3759 /* special BTF "void" type is made canonical immediately */ 3760 d->map[0] = 0; 3761 for (i = 1; i < type_cnt; i++) { 3762 struct btf_type *t = btf_type_by_id(d->btf, i); 3763 3764 /* VAR and DATASEC are never deduped and are self-canonical */ 3765 if (btf_is_var(t) || btf_is_datasec(t)) 3766 d->map[i] = i; 3767 else 3768 d->map[i] = BTF_UNPROCESSED_ID; 3769 } 3770 3771 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3772 if (!d->hypot_map) { 3773 err = -ENOMEM; 3774 goto done; 3775 } 3776 for (i = 0; i < type_cnt; i++) 3777 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3778 3779 done: 3780 if (err) { 3781 btf_dedup_free(d); 3782 return ERR_PTR(err); 3783 } 3784 3785 return d; 3786 } 3787 3788 /* 3789 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3790 * string and pass pointer to it to a provided callback `fn`. 3791 */ 3792 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3793 { 3794 int i, r; 3795 3796 for (i = 0; i < d->btf->nr_types; i++) { 3797 struct btf_field_iter it; 3798 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3799 __u32 *str_off; 3800 3801 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); 3802 if (r) 3803 return r; 3804 3805 while ((str_off = btf_field_iter_next(&it))) { 3806 r = fn(str_off, ctx); 3807 if (r) 3808 return r; 3809 } 3810 } 3811 3812 if (!d->btf_ext) 3813 return 0; 3814 3815 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3816 if (r) 3817 return r; 3818 3819 return 0; 3820 } 3821 3822 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3823 { 3824 struct btf_dedup *d = ctx; 3825 __u32 str_off = *str_off_ptr; 3826 const char *s; 3827 int off, err; 3828 3829 /* don't touch empty string or string in main BTF */ 3830 if (str_off == 0 || str_off < d->btf->start_str_off) 3831 return 0; 3832 3833 s = btf__str_by_offset(d->btf, str_off); 3834 if (d->btf->base_btf) { 3835 err = btf__find_str(d->btf->base_btf, s); 3836 if (err >= 0) { 3837 *str_off_ptr = err; 3838 return 0; 3839 } 3840 if (err != -ENOENT) 3841 return err; 3842 } 3843 3844 off = strset__add_str(d->strs_set, s); 3845 if (off < 0) 3846 return off; 3847 3848 *str_off_ptr = d->btf->start_str_off + off; 3849 return 0; 3850 } 3851 3852 /* 3853 * Dedup string and filter out those that are not referenced from either .BTF 3854 * or .BTF.ext (if provided) sections. 3855 * 3856 * This is done by building index of all strings in BTF's string section, 3857 * then iterating over all entities that can reference strings (e.g., type 3858 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3859 * strings as used. After that all used strings are deduped and compacted into 3860 * sequential blob of memory and new offsets are calculated. Then all the string 3861 * references are iterated again and rewritten using new offsets. 3862 */ 3863 static int btf_dedup_strings(struct btf_dedup *d) 3864 { 3865 int err; 3866 3867 if (d->btf->strs_deduped) 3868 return 0; 3869 3870 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3871 if (IS_ERR(d->strs_set)) { 3872 err = PTR_ERR(d->strs_set); 3873 goto err_out; 3874 } 3875 3876 if (!d->btf->base_btf) { 3877 /* insert empty string; we won't be looking it up during strings 3878 * dedup, but it's good to have it for generic BTF string lookups 3879 */ 3880 err = strset__add_str(d->strs_set, ""); 3881 if (err < 0) 3882 goto err_out; 3883 } 3884 3885 /* remap string offsets */ 3886 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3887 if (err) 3888 goto err_out; 3889 3890 /* replace BTF string data and hash with deduped ones */ 3891 strset__free(d->btf->strs_set); 3892 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3893 d->btf->strs_set = d->strs_set; 3894 d->strs_set = NULL; 3895 d->btf->strs_deduped = true; 3896 return 0; 3897 3898 err_out: 3899 strset__free(d->strs_set); 3900 d->strs_set = NULL; 3901 3902 return err; 3903 } 3904 3905 static long btf_hash_common(struct btf_type *t) 3906 { 3907 long h; 3908 3909 h = hash_combine(0, t->name_off); 3910 h = hash_combine(h, t->info); 3911 h = hash_combine(h, t->size); 3912 return h; 3913 } 3914 3915 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3916 { 3917 return t1->name_off == t2->name_off && 3918 t1->info == t2->info && 3919 t1->size == t2->size; 3920 } 3921 3922 /* Calculate type signature hash of INT or TAG. */ 3923 static long btf_hash_int_decl_tag(struct btf_type *t) 3924 { 3925 __u32 info = *(__u32 *)(t + 1); 3926 long h; 3927 3928 h = btf_hash_common(t); 3929 h = hash_combine(h, info); 3930 return h; 3931 } 3932 3933 /* Check structural equality of two INTs or TAGs. */ 3934 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3935 { 3936 __u32 info1, info2; 3937 3938 if (!btf_equal_common(t1, t2)) 3939 return false; 3940 info1 = *(__u32 *)(t1 + 1); 3941 info2 = *(__u32 *)(t2 + 1); 3942 return info1 == info2; 3943 } 3944 3945 /* Calculate type signature hash of ENUM/ENUM64. */ 3946 static long btf_hash_enum(struct btf_type *t) 3947 { 3948 long h; 3949 3950 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3951 h = hash_combine(0, t->name_off); 3952 return h; 3953 } 3954 3955 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3956 { 3957 const struct btf_enum *m1, *m2; 3958 __u16 vlen; 3959 int i; 3960 3961 vlen = btf_vlen(t1); 3962 m1 = btf_enum(t1); 3963 m2 = btf_enum(t2); 3964 for (i = 0; i < vlen; i++) { 3965 if (m1->name_off != m2->name_off || m1->val != m2->val) 3966 return false; 3967 m1++; 3968 m2++; 3969 } 3970 return true; 3971 } 3972 3973 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3974 { 3975 const struct btf_enum64 *m1, *m2; 3976 __u16 vlen; 3977 int i; 3978 3979 vlen = btf_vlen(t1); 3980 m1 = btf_enum64(t1); 3981 m2 = btf_enum64(t2); 3982 for (i = 0; i < vlen; i++) { 3983 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3984 m1->val_hi32 != m2->val_hi32) 3985 return false; 3986 m1++; 3987 m2++; 3988 } 3989 return true; 3990 } 3991 3992 /* Check structural equality of two ENUMs or ENUM64s. */ 3993 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3994 { 3995 if (!btf_equal_common(t1, t2)) 3996 return false; 3997 3998 /* t1 & t2 kinds are identical because of btf_equal_common */ 3999 if (btf_kind(t1) == BTF_KIND_ENUM) 4000 return btf_equal_enum_members(t1, t2); 4001 else 4002 return btf_equal_enum64_members(t1, t2); 4003 } 4004 4005 static inline bool btf_is_enum_fwd(struct btf_type *t) 4006 { 4007 return btf_is_any_enum(t) && btf_vlen(t) == 0; 4008 } 4009 4010 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 4011 { 4012 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 4013 return btf_equal_enum(t1, t2); 4014 /* At this point either t1 or t2 or both are forward declarations, thus: 4015 * - skip comparing vlen because it is zero for forward declarations; 4016 * - skip comparing size to allow enum forward declarations 4017 * to be compatible with enum64 full declarations; 4018 * - skip comparing kind for the same reason. 4019 */ 4020 return t1->name_off == t2->name_off && 4021 btf_is_any_enum(t1) && btf_is_any_enum(t2); 4022 } 4023 4024 /* 4025 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 4026 * as referenced type IDs equivalence is established separately during type 4027 * graph equivalence check algorithm. 4028 */ 4029 static long btf_hash_struct(struct btf_type *t) 4030 { 4031 const struct btf_member *member = btf_members(t); 4032 __u32 vlen = btf_vlen(t); 4033 long h = btf_hash_common(t); 4034 int i; 4035 4036 for (i = 0; i < vlen; i++) { 4037 h = hash_combine(h, member->name_off); 4038 h = hash_combine(h, member->offset); 4039 /* no hashing of referenced type ID, it can be unresolved yet */ 4040 member++; 4041 } 4042 return h; 4043 } 4044 4045 /* 4046 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 4047 * type IDs. This check is performed during type graph equivalence check and 4048 * referenced types equivalence is checked separately. 4049 */ 4050 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 4051 { 4052 const struct btf_member *m1, *m2; 4053 __u16 vlen; 4054 int i; 4055 4056 if (!btf_equal_common(t1, t2)) 4057 return false; 4058 4059 vlen = btf_vlen(t1); 4060 m1 = btf_members(t1); 4061 m2 = btf_members(t2); 4062 for (i = 0; i < vlen; i++) { 4063 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 4064 return false; 4065 m1++; 4066 m2++; 4067 } 4068 return true; 4069 } 4070 4071 /* 4072 * Calculate type signature hash of ARRAY, including referenced type IDs, 4073 * under assumption that they were already resolved to canonical type IDs and 4074 * are not going to change. 4075 */ 4076 static long btf_hash_array(struct btf_type *t) 4077 { 4078 const struct btf_array *info = btf_array(t); 4079 long h = btf_hash_common(t); 4080 4081 h = hash_combine(h, info->type); 4082 h = hash_combine(h, info->index_type); 4083 h = hash_combine(h, info->nelems); 4084 return h; 4085 } 4086 4087 /* 4088 * Check exact equality of two ARRAYs, taking into account referenced 4089 * type IDs, under assumption that they were already resolved to canonical 4090 * type IDs and are not going to change. 4091 * This function is called during reference types deduplication to compare 4092 * ARRAY to potential canonical representative. 4093 */ 4094 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 4095 { 4096 const struct btf_array *info1, *info2; 4097 4098 if (!btf_equal_common(t1, t2)) 4099 return false; 4100 4101 info1 = btf_array(t1); 4102 info2 = btf_array(t2); 4103 return info1->type == info2->type && 4104 info1->index_type == info2->index_type && 4105 info1->nelems == info2->nelems; 4106 } 4107 4108 /* 4109 * Check structural compatibility of two ARRAYs, ignoring referenced type 4110 * IDs. This check is performed during type graph equivalence check and 4111 * referenced types equivalence is checked separately. 4112 */ 4113 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 4114 { 4115 if (!btf_equal_common(t1, t2)) 4116 return false; 4117 4118 return btf_array(t1)->nelems == btf_array(t2)->nelems; 4119 } 4120 4121 /* 4122 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 4123 * under assumption that they were already resolved to canonical type IDs and 4124 * are not going to change. 4125 */ 4126 static long btf_hash_fnproto(struct btf_type *t) 4127 { 4128 const struct btf_param *member = btf_params(t); 4129 __u16 vlen = btf_vlen(t); 4130 long h = btf_hash_common(t); 4131 int i; 4132 4133 for (i = 0; i < vlen; i++) { 4134 h = hash_combine(h, member->name_off); 4135 h = hash_combine(h, member->type); 4136 member++; 4137 } 4138 return h; 4139 } 4140 4141 /* 4142 * Check exact equality of two FUNC_PROTOs, taking into account referenced 4143 * type IDs, under assumption that they were already resolved to canonical 4144 * type IDs and are not going to change. 4145 * This function is called during reference types deduplication to compare 4146 * FUNC_PROTO to potential canonical representative. 4147 */ 4148 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 4149 { 4150 const struct btf_param *m1, *m2; 4151 __u16 vlen; 4152 int i; 4153 4154 if (!btf_equal_common(t1, t2)) 4155 return false; 4156 4157 vlen = btf_vlen(t1); 4158 m1 = btf_params(t1); 4159 m2 = btf_params(t2); 4160 for (i = 0; i < vlen; i++) { 4161 if (m1->name_off != m2->name_off || m1->type != m2->type) 4162 return false; 4163 m1++; 4164 m2++; 4165 } 4166 return true; 4167 } 4168 4169 /* 4170 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 4171 * IDs. This check is performed during type graph equivalence check and 4172 * referenced types equivalence is checked separately. 4173 */ 4174 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 4175 { 4176 const struct btf_param *m1, *m2; 4177 __u16 vlen; 4178 int i; 4179 4180 /* skip return type ID */ 4181 if (t1->name_off != t2->name_off || t1->info != t2->info) 4182 return false; 4183 4184 vlen = btf_vlen(t1); 4185 m1 = btf_params(t1); 4186 m2 = btf_params(t2); 4187 for (i = 0; i < vlen; i++) { 4188 if (m1->name_off != m2->name_off) 4189 return false; 4190 m1++; 4191 m2++; 4192 } 4193 return true; 4194 } 4195 4196 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 4197 * types and initializing the rest of the state (canonical type mapping) for 4198 * the fixed base BTF part. 4199 */ 4200 static int btf_dedup_prep(struct btf_dedup *d) 4201 { 4202 struct btf_type *t; 4203 int type_id; 4204 long h; 4205 4206 if (!d->btf->base_btf) 4207 return 0; 4208 4209 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 4210 t = btf_type_by_id(d->btf, type_id); 4211 4212 /* all base BTF types are self-canonical by definition */ 4213 d->map[type_id] = type_id; 4214 4215 switch (btf_kind(t)) { 4216 case BTF_KIND_VAR: 4217 case BTF_KIND_DATASEC: 4218 /* VAR and DATASEC are never hash/deduplicated */ 4219 continue; 4220 case BTF_KIND_CONST: 4221 case BTF_KIND_VOLATILE: 4222 case BTF_KIND_RESTRICT: 4223 case BTF_KIND_PTR: 4224 case BTF_KIND_FWD: 4225 case BTF_KIND_TYPEDEF: 4226 case BTF_KIND_FUNC: 4227 case BTF_KIND_FLOAT: 4228 case BTF_KIND_TYPE_TAG: 4229 h = btf_hash_common(t); 4230 break; 4231 case BTF_KIND_INT: 4232 case BTF_KIND_DECL_TAG: 4233 h = btf_hash_int_decl_tag(t); 4234 break; 4235 case BTF_KIND_ENUM: 4236 case BTF_KIND_ENUM64: 4237 h = btf_hash_enum(t); 4238 break; 4239 case BTF_KIND_STRUCT: 4240 case BTF_KIND_UNION: 4241 h = btf_hash_struct(t); 4242 break; 4243 case BTF_KIND_ARRAY: 4244 h = btf_hash_array(t); 4245 break; 4246 case BTF_KIND_FUNC_PROTO: 4247 h = btf_hash_fnproto(t); 4248 break; 4249 default: 4250 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 4251 return -EINVAL; 4252 } 4253 if (btf_dedup_table_add(d, h, type_id)) 4254 return -ENOMEM; 4255 } 4256 4257 return 0; 4258 } 4259 4260 /* 4261 * Deduplicate primitive types, that can't reference other types, by calculating 4262 * their type signature hash and comparing them with any possible canonical 4263 * candidate. If no canonical candidate matches, type itself is marked as 4264 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 4265 */ 4266 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 4267 { 4268 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4269 struct hashmap_entry *hash_entry; 4270 struct btf_type *cand; 4271 /* if we don't find equivalent type, then we are canonical */ 4272 __u32 new_id = type_id; 4273 __u32 cand_id; 4274 long h; 4275 4276 switch (btf_kind(t)) { 4277 case BTF_KIND_CONST: 4278 case BTF_KIND_VOLATILE: 4279 case BTF_KIND_RESTRICT: 4280 case BTF_KIND_PTR: 4281 case BTF_KIND_TYPEDEF: 4282 case BTF_KIND_ARRAY: 4283 case BTF_KIND_STRUCT: 4284 case BTF_KIND_UNION: 4285 case BTF_KIND_FUNC: 4286 case BTF_KIND_FUNC_PROTO: 4287 case BTF_KIND_VAR: 4288 case BTF_KIND_DATASEC: 4289 case BTF_KIND_DECL_TAG: 4290 case BTF_KIND_TYPE_TAG: 4291 return 0; 4292 4293 case BTF_KIND_INT: 4294 h = btf_hash_int_decl_tag(t); 4295 for_each_dedup_cand(d, hash_entry, h) { 4296 cand_id = hash_entry->value; 4297 cand = btf_type_by_id(d->btf, cand_id); 4298 if (btf_equal_int_tag(t, cand)) { 4299 new_id = cand_id; 4300 break; 4301 } 4302 } 4303 break; 4304 4305 case BTF_KIND_ENUM: 4306 case BTF_KIND_ENUM64: 4307 h = btf_hash_enum(t); 4308 for_each_dedup_cand(d, hash_entry, h) { 4309 cand_id = hash_entry->value; 4310 cand = btf_type_by_id(d->btf, cand_id); 4311 if (btf_equal_enum(t, cand)) { 4312 new_id = cand_id; 4313 break; 4314 } 4315 if (btf_compat_enum(t, cand)) { 4316 if (btf_is_enum_fwd(t)) { 4317 /* resolve fwd to full enum */ 4318 new_id = cand_id; 4319 break; 4320 } 4321 /* resolve canonical enum fwd to full enum */ 4322 d->map[cand_id] = type_id; 4323 } 4324 } 4325 break; 4326 4327 case BTF_KIND_FWD: 4328 case BTF_KIND_FLOAT: 4329 h = btf_hash_common(t); 4330 for_each_dedup_cand(d, hash_entry, h) { 4331 cand_id = hash_entry->value; 4332 cand = btf_type_by_id(d->btf, cand_id); 4333 if (btf_equal_common(t, cand)) { 4334 new_id = cand_id; 4335 break; 4336 } 4337 } 4338 break; 4339 4340 default: 4341 return -EINVAL; 4342 } 4343 4344 d->map[type_id] = new_id; 4345 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4346 return -ENOMEM; 4347 4348 return 0; 4349 } 4350 4351 static int btf_dedup_prim_types(struct btf_dedup *d) 4352 { 4353 int i, err; 4354 4355 for (i = 0; i < d->btf->nr_types; i++) { 4356 err = btf_dedup_prim_type(d, d->btf->start_id + i); 4357 if (err) 4358 return err; 4359 } 4360 return 0; 4361 } 4362 4363 /* 4364 * Check whether type is already mapped into canonical one (could be to itself). 4365 */ 4366 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 4367 { 4368 return d->map[type_id] <= BTF_MAX_NR_TYPES; 4369 } 4370 4371 /* 4372 * Resolve type ID into its canonical type ID, if any; otherwise return original 4373 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 4374 * STRUCT/UNION link and resolve it into canonical type ID as well. 4375 */ 4376 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 4377 { 4378 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4379 type_id = d->map[type_id]; 4380 return type_id; 4381 } 4382 4383 /* 4384 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 4385 * type ID. 4386 */ 4387 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 4388 { 4389 __u32 orig_type_id = type_id; 4390 4391 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4392 return type_id; 4393 4394 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 4395 type_id = d->map[type_id]; 4396 4397 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 4398 return type_id; 4399 4400 return orig_type_id; 4401 } 4402 4403 4404 static inline __u16 btf_fwd_kind(struct btf_type *t) 4405 { 4406 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 4407 } 4408 4409 static bool btf_dedup_identical_types(struct btf_dedup *d, __u32 id1, __u32 id2, int depth) 4410 { 4411 struct btf_type *t1, *t2; 4412 int k1, k2; 4413 recur: 4414 if (depth <= 0) 4415 return false; 4416 4417 t1 = btf_type_by_id(d->btf, id1); 4418 t2 = btf_type_by_id(d->btf, id2); 4419 4420 k1 = btf_kind(t1); 4421 k2 = btf_kind(t2); 4422 if (k1 != k2) 4423 return false; 4424 4425 switch (k1) { 4426 case BTF_KIND_UNKN: /* VOID */ 4427 return true; 4428 case BTF_KIND_INT: 4429 return btf_equal_int_tag(t1, t2); 4430 case BTF_KIND_ENUM: 4431 case BTF_KIND_ENUM64: 4432 return btf_compat_enum(t1, t2); 4433 case BTF_KIND_FWD: 4434 case BTF_KIND_FLOAT: 4435 return btf_equal_common(t1, t2); 4436 case BTF_KIND_CONST: 4437 case BTF_KIND_VOLATILE: 4438 case BTF_KIND_RESTRICT: 4439 case BTF_KIND_PTR: 4440 case BTF_KIND_TYPEDEF: 4441 case BTF_KIND_FUNC: 4442 case BTF_KIND_TYPE_TAG: 4443 if (t1->info != t2->info || t1->name_off != t2->name_off) 4444 return false; 4445 id1 = t1->type; 4446 id2 = t2->type; 4447 goto recur; 4448 case BTF_KIND_ARRAY: { 4449 struct btf_array *a1, *a2; 4450 4451 if (!btf_compat_array(t1, t2)) 4452 return false; 4453 4454 a1 = btf_array(t1); 4455 a2 = btf_array(t1); 4456 4457 if (a1->index_type != a2->index_type && 4458 !btf_dedup_identical_types(d, a1->index_type, a2->index_type, depth - 1)) 4459 return false; 4460 4461 if (a1->type != a2->type && 4462 !btf_dedup_identical_types(d, a1->type, a2->type, depth - 1)) 4463 return false; 4464 4465 return true; 4466 } 4467 case BTF_KIND_STRUCT: 4468 case BTF_KIND_UNION: { 4469 const struct btf_member *m1, *m2; 4470 int i, n; 4471 4472 if (!btf_shallow_equal_struct(t1, t2)) 4473 return false; 4474 4475 m1 = btf_members(t1); 4476 m2 = btf_members(t2); 4477 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 4478 if (m1->type == m2->type) 4479 continue; 4480 if (!btf_dedup_identical_types(d, m1->type, m2->type, depth - 1)) 4481 return false; 4482 } 4483 return true; 4484 } 4485 case BTF_KIND_FUNC_PROTO: { 4486 const struct btf_param *p1, *p2; 4487 int i, n; 4488 4489 if (!btf_compat_fnproto(t1, t2)) 4490 return false; 4491 4492 if (t1->type != t2->type && 4493 !btf_dedup_identical_types(d, t1->type, t2->type, depth - 1)) 4494 return false; 4495 4496 p1 = btf_params(t1); 4497 p2 = btf_params(t2); 4498 for (i = 0, n = btf_vlen(t1); i < n; i++, p1++, p2++) { 4499 if (p1->type == p2->type) 4500 continue; 4501 if (!btf_dedup_identical_types(d, p1->type, p2->type, depth - 1)) 4502 return false; 4503 } 4504 return true; 4505 } 4506 default: 4507 return false; 4508 } 4509 } 4510 4511 4512 /* 4513 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 4514 * call it "candidate graph" in this description for brevity) to a type graph 4515 * formed by (potential) canonical struct/union ("canonical graph" for brevity 4516 * here, though keep in mind that not all types in canonical graph are 4517 * necessarily canonical representatives themselves, some of them might be 4518 * duplicates or its uniqueness might not have been established yet). 4519 * Returns: 4520 * - >0, if type graphs are equivalent; 4521 * - 0, if not equivalent; 4522 * - <0, on error. 4523 * 4524 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 4525 * equivalence of BTF types at each step. If at any point BTF types in candidate 4526 * and canonical graphs are not compatible structurally, whole graphs are 4527 * incompatible. If types are structurally equivalent (i.e., all information 4528 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 4529 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`). 4530 * If a type references other types, then those referenced types are checked 4531 * for equivalence recursively. 4532 * 4533 * During DFS traversal, if we find that for current `canon_id` type we 4534 * already have some mapping in hypothetical map, we check for two possible 4535 * situations: 4536 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 4537 * happen when type graphs have cycles. In this case we assume those two 4538 * types are equivalent. 4539 * - `canon_id` is mapped to different type. This is contradiction in our 4540 * hypothetical mapping, because same graph in canonical graph corresponds 4541 * to two different types in candidate graph, which for equivalent type 4542 * graphs shouldn't happen. This condition terminates equivalence check 4543 * with negative result. 4544 * 4545 * If type graphs traversal exhausts types to check and find no contradiction, 4546 * then type graphs are equivalent. 4547 * 4548 * When checking types for equivalence, there is one special case: FWD types. 4549 * If FWD type resolution is allowed and one of the types (either from canonical 4550 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 4551 * flag) and their names match, hypothetical mapping is updated to point from 4552 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 4553 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 4554 * 4555 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 4556 * if there are two exactly named (or anonymous) structs/unions that are 4557 * compatible structurally, one of which has FWD field, while other is concrete 4558 * STRUCT/UNION, but according to C sources they are different structs/unions 4559 * that are referencing different types with the same name. This is extremely 4560 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 4561 * this logic is causing problems. 4562 * 4563 * Doing FWD resolution means that both candidate and/or canonical graphs can 4564 * consists of portions of the graph that come from multiple compilation units. 4565 * This is due to the fact that types within single compilation unit are always 4566 * deduplicated and FWDs are already resolved, if referenced struct/union 4567 * definition is available. So, if we had unresolved FWD and found corresponding 4568 * STRUCT/UNION, they will be from different compilation units. This 4569 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 4570 * type graph will likely have at least two different BTF types that describe 4571 * same type (e.g., most probably there will be two different BTF types for the 4572 * same 'int' primitive type) and could even have "overlapping" parts of type 4573 * graph that describe same subset of types. 4574 * 4575 * This in turn means that our assumption that each type in canonical graph 4576 * must correspond to exactly one type in candidate graph might not hold 4577 * anymore and will make it harder to detect contradictions using hypothetical 4578 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4579 * resolution only in canonical graph. FWDs in candidate graphs are never 4580 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4581 * that can occur: 4582 * - Both types in canonical and candidate graphs are FWDs. If they are 4583 * structurally equivalent, then they can either be both resolved to the 4584 * same STRUCT/UNION or not resolved at all. In both cases they are 4585 * equivalent and there is no need to resolve FWD on candidate side. 4586 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4587 * so nothing to resolve as well, algorithm will check equivalence anyway. 4588 * - Type in canonical graph is FWD, while type in candidate is concrete 4589 * STRUCT/UNION. In this case candidate graph comes from single compilation 4590 * unit, so there is exactly one BTF type for each unique C type. After 4591 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4592 * in canonical graph mapping to single BTF type in candidate graph, but 4593 * because hypothetical mapping maps from canonical to candidate types, it's 4594 * alright, and we still maintain the property of having single `canon_id` 4595 * mapping to single `cand_id` (there could be two different `canon_id` 4596 * mapped to the same `cand_id`, but it's not contradictory). 4597 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4598 * graph is FWD. In this case we are just going to check compatibility of 4599 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4600 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4601 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4602 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4603 * canonical graph. 4604 */ 4605 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4606 __u32 canon_id) 4607 { 4608 struct btf_type *cand_type; 4609 struct btf_type *canon_type; 4610 __u32 hypot_type_id; 4611 __u16 cand_kind; 4612 __u16 canon_kind; 4613 int i, eq; 4614 4615 /* if both resolve to the same canonical, they must be equivalent */ 4616 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4617 return 1; 4618 4619 canon_id = resolve_fwd_id(d, canon_id); 4620 4621 hypot_type_id = d->hypot_map[canon_id]; 4622 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4623 if (hypot_type_id == cand_id) 4624 return 1; 4625 /* In some cases compiler will generate different DWARF types 4626 * for *identical* array type definitions and use them for 4627 * different fields within the *same* struct. This breaks type 4628 * equivalence check, which makes an assumption that candidate 4629 * types sub-graph has a consistent and deduped-by-compiler 4630 * types within a single CU. And similar situation can happen 4631 * with struct/union sometimes, and event with pointers. 4632 * So accommodate cases like this doing a structural 4633 * comparison recursively, but avoiding being stuck in endless 4634 * loops by limiting the depth up to which we check. 4635 */ 4636 if (btf_dedup_identical_types(d, hypot_type_id, cand_id, 16)) 4637 return 1; 4638 return 0; 4639 } 4640 4641 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4642 return -ENOMEM; 4643 4644 cand_type = btf_type_by_id(d->btf, cand_id); 4645 canon_type = btf_type_by_id(d->btf, canon_id); 4646 cand_kind = btf_kind(cand_type); 4647 canon_kind = btf_kind(canon_type); 4648 4649 if (cand_type->name_off != canon_type->name_off) 4650 return 0; 4651 4652 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4653 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4654 && cand_kind != canon_kind) { 4655 __u16 real_kind; 4656 __u16 fwd_kind; 4657 4658 if (cand_kind == BTF_KIND_FWD) { 4659 real_kind = canon_kind; 4660 fwd_kind = btf_fwd_kind(cand_type); 4661 } else { 4662 real_kind = cand_kind; 4663 fwd_kind = btf_fwd_kind(canon_type); 4664 /* we'd need to resolve base FWD to STRUCT/UNION */ 4665 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4666 d->hypot_adjust_canon = true; 4667 } 4668 return fwd_kind == real_kind; 4669 } 4670 4671 if (cand_kind != canon_kind) 4672 return 0; 4673 4674 switch (cand_kind) { 4675 case BTF_KIND_INT: 4676 return btf_equal_int_tag(cand_type, canon_type); 4677 4678 case BTF_KIND_ENUM: 4679 case BTF_KIND_ENUM64: 4680 return btf_compat_enum(cand_type, canon_type); 4681 4682 case BTF_KIND_FWD: 4683 case BTF_KIND_FLOAT: 4684 return btf_equal_common(cand_type, canon_type); 4685 4686 case BTF_KIND_CONST: 4687 case BTF_KIND_VOLATILE: 4688 case BTF_KIND_RESTRICT: 4689 case BTF_KIND_PTR: 4690 case BTF_KIND_TYPEDEF: 4691 case BTF_KIND_FUNC: 4692 case BTF_KIND_TYPE_TAG: 4693 if (cand_type->info != canon_type->info) 4694 return 0; 4695 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4696 4697 case BTF_KIND_ARRAY: { 4698 const struct btf_array *cand_arr, *canon_arr; 4699 4700 if (!btf_compat_array(cand_type, canon_type)) 4701 return 0; 4702 cand_arr = btf_array(cand_type); 4703 canon_arr = btf_array(canon_type); 4704 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4705 if (eq <= 0) 4706 return eq; 4707 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4708 } 4709 4710 case BTF_KIND_STRUCT: 4711 case BTF_KIND_UNION: { 4712 const struct btf_member *cand_m, *canon_m; 4713 __u16 vlen; 4714 4715 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4716 return 0; 4717 vlen = btf_vlen(cand_type); 4718 cand_m = btf_members(cand_type); 4719 canon_m = btf_members(canon_type); 4720 for (i = 0; i < vlen; i++) { 4721 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4722 if (eq <= 0) 4723 return eq; 4724 cand_m++; 4725 canon_m++; 4726 } 4727 4728 return 1; 4729 } 4730 4731 case BTF_KIND_FUNC_PROTO: { 4732 const struct btf_param *cand_p, *canon_p; 4733 __u16 vlen; 4734 4735 if (!btf_compat_fnproto(cand_type, canon_type)) 4736 return 0; 4737 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4738 if (eq <= 0) 4739 return eq; 4740 vlen = btf_vlen(cand_type); 4741 cand_p = btf_params(cand_type); 4742 canon_p = btf_params(canon_type); 4743 for (i = 0; i < vlen; i++) { 4744 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4745 if (eq <= 0) 4746 return eq; 4747 cand_p++; 4748 canon_p++; 4749 } 4750 return 1; 4751 } 4752 4753 default: 4754 return -EINVAL; 4755 } 4756 return 0; 4757 } 4758 4759 /* 4760 * Use hypothetical mapping, produced by successful type graph equivalence 4761 * check, to augment existing struct/union canonical mapping, where possible. 4762 * 4763 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4764 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4765 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4766 * we are recording the mapping anyway. As opposed to carefulness required 4767 * for struct/union correspondence mapping (described below), for FWD resolution 4768 * it's not important, as by the time that FWD type (reference type) will be 4769 * deduplicated all structs/unions will be deduped already anyway. 4770 * 4771 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4772 * not required for correctness. It needs to be done carefully to ensure that 4773 * struct/union from candidate's type graph is not mapped into corresponding 4774 * struct/union from canonical type graph that itself hasn't been resolved into 4775 * canonical representative. The only guarantee we have is that canonical 4776 * struct/union was determined as canonical and that won't change. But any 4777 * types referenced through that struct/union fields could have been not yet 4778 * resolved, so in case like that it's too early to establish any kind of 4779 * correspondence between structs/unions. 4780 * 4781 * No canonical correspondence is derived for primitive types (they are already 4782 * deduplicated completely already anyway) or reference types (they rely on 4783 * stability of struct/union canonical relationship for equivalence checks). 4784 */ 4785 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4786 { 4787 __u32 canon_type_id, targ_type_id; 4788 __u16 t_kind, c_kind; 4789 __u32 t_id, c_id; 4790 int i; 4791 4792 for (i = 0; i < d->hypot_cnt; i++) { 4793 canon_type_id = d->hypot_list[i]; 4794 targ_type_id = d->hypot_map[canon_type_id]; 4795 t_id = resolve_type_id(d, targ_type_id); 4796 c_id = resolve_type_id(d, canon_type_id); 4797 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4798 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4799 /* 4800 * Resolve FWD into STRUCT/UNION. 4801 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4802 * mapped to canonical representative (as opposed to 4803 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4804 * eventually that struct is going to be mapped and all resolved 4805 * FWDs will automatically resolve to correct canonical 4806 * representative. This will happen before ref type deduping, 4807 * which critically depends on stability of these mapping. This 4808 * stability is not a requirement for STRUCT/UNION equivalence 4809 * checks, though. 4810 */ 4811 4812 /* if it's the split BTF case, we still need to point base FWD 4813 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4814 * will be resolved against base FWD. If we don't point base 4815 * canonical FWD to the resolved STRUCT/UNION, then all the 4816 * FWDs in split BTF won't be correctly resolved to a proper 4817 * STRUCT/UNION. 4818 */ 4819 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4820 d->map[c_id] = t_id; 4821 4822 /* if graph equivalence determined that we'd need to adjust 4823 * base canonical types, then we need to only point base FWDs 4824 * to STRUCTs/UNIONs and do no more modifications. For all 4825 * other purposes the type graphs were not equivalent. 4826 */ 4827 if (d->hypot_adjust_canon) 4828 continue; 4829 4830 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4831 d->map[t_id] = c_id; 4832 4833 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4834 c_kind != BTF_KIND_FWD && 4835 is_type_mapped(d, c_id) && 4836 !is_type_mapped(d, t_id)) { 4837 /* 4838 * as a perf optimization, we can map struct/union 4839 * that's part of type graph we just verified for 4840 * equivalence. We can do that for struct/union that has 4841 * canonical representative only, though. 4842 */ 4843 d->map[t_id] = c_id; 4844 } 4845 } 4846 } 4847 4848 /* 4849 * Deduplicate struct/union types. 4850 * 4851 * For each struct/union type its type signature hash is calculated, taking 4852 * into account type's name, size, number, order and names of fields, but 4853 * ignoring type ID's referenced from fields, because they might not be deduped 4854 * completely until after reference types deduplication phase. This type hash 4855 * is used to iterate over all potential canonical types, sharing same hash. 4856 * For each canonical candidate we check whether type graphs that they form 4857 * (through referenced types in fields and so on) are equivalent using algorithm 4858 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4859 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4860 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4861 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4862 * potentially map other structs/unions to their canonical representatives, 4863 * if such relationship hasn't yet been established. This speeds up algorithm 4864 * by eliminating some of the duplicate work. 4865 * 4866 * If no matching canonical representative was found, struct/union is marked 4867 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4868 * for further look ups. 4869 */ 4870 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4871 { 4872 struct btf_type *cand_type, *t; 4873 struct hashmap_entry *hash_entry; 4874 /* if we don't find equivalent type, then we are canonical */ 4875 __u32 new_id = type_id; 4876 __u16 kind; 4877 long h; 4878 4879 /* already deduped or is in process of deduping (loop detected) */ 4880 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4881 return 0; 4882 4883 t = btf_type_by_id(d->btf, type_id); 4884 kind = btf_kind(t); 4885 4886 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4887 return 0; 4888 4889 h = btf_hash_struct(t); 4890 for_each_dedup_cand(d, hash_entry, h) { 4891 __u32 cand_id = hash_entry->value; 4892 int eq; 4893 4894 /* 4895 * Even though btf_dedup_is_equiv() checks for 4896 * btf_shallow_equal_struct() internally when checking two 4897 * structs (unions) for equivalence, we need to guard here 4898 * from picking matching FWD type as a dedup candidate. 4899 * This can happen due to hash collision. In such case just 4900 * relying on btf_dedup_is_equiv() would lead to potentially 4901 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4902 * FWD and compatible STRUCT/UNION are considered equivalent. 4903 */ 4904 cand_type = btf_type_by_id(d->btf, cand_id); 4905 if (!btf_shallow_equal_struct(t, cand_type)) 4906 continue; 4907 4908 btf_dedup_clear_hypot_map(d); 4909 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4910 if (eq < 0) 4911 return eq; 4912 if (!eq) 4913 continue; 4914 btf_dedup_merge_hypot_map(d); 4915 if (d->hypot_adjust_canon) /* not really equivalent */ 4916 continue; 4917 new_id = cand_id; 4918 break; 4919 } 4920 4921 d->map[type_id] = new_id; 4922 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4923 return -ENOMEM; 4924 4925 return 0; 4926 } 4927 4928 static int btf_dedup_struct_types(struct btf_dedup *d) 4929 { 4930 int i, err; 4931 4932 for (i = 0; i < d->btf->nr_types; i++) { 4933 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4934 if (err) 4935 return err; 4936 } 4937 return 0; 4938 } 4939 4940 /* 4941 * Deduplicate reference type. 4942 * 4943 * Once all primitive and struct/union types got deduplicated, we can easily 4944 * deduplicate all other (reference) BTF types. This is done in two steps: 4945 * 4946 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4947 * resolution can be done either immediately for primitive or struct/union types 4948 * (because they were deduped in previous two phases) or recursively for 4949 * reference types. Recursion will always terminate at either primitive or 4950 * struct/union type, at which point we can "unwind" chain of reference types 4951 * one by one. There is no danger of encountering cycles because in C type 4952 * system the only way to form type cycle is through struct/union, so any chain 4953 * of reference types, even those taking part in a type cycle, will inevitably 4954 * reach struct/union at some point. 4955 * 4956 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4957 * becomes "stable", in the sense that no further deduplication will cause 4958 * any changes to it. With that, it's now possible to calculate type's signature 4959 * hash (this time taking into account referenced type IDs) and loop over all 4960 * potential canonical representatives. If no match was found, current type 4961 * will become canonical representative of itself and will be added into 4962 * btf_dedup->dedup_table as another possible canonical representative. 4963 */ 4964 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4965 { 4966 struct hashmap_entry *hash_entry; 4967 __u32 new_id = type_id, cand_id; 4968 struct btf_type *t, *cand; 4969 /* if we don't find equivalent type, then we are representative type */ 4970 int ref_type_id; 4971 long h; 4972 4973 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4974 return -ELOOP; 4975 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4976 return resolve_type_id(d, type_id); 4977 4978 t = btf_type_by_id(d->btf, type_id); 4979 d->map[type_id] = BTF_IN_PROGRESS_ID; 4980 4981 switch (btf_kind(t)) { 4982 case BTF_KIND_CONST: 4983 case BTF_KIND_VOLATILE: 4984 case BTF_KIND_RESTRICT: 4985 case BTF_KIND_PTR: 4986 case BTF_KIND_TYPEDEF: 4987 case BTF_KIND_FUNC: 4988 case BTF_KIND_TYPE_TAG: 4989 ref_type_id = btf_dedup_ref_type(d, t->type); 4990 if (ref_type_id < 0) 4991 return ref_type_id; 4992 t->type = ref_type_id; 4993 4994 h = btf_hash_common(t); 4995 for_each_dedup_cand(d, hash_entry, h) { 4996 cand_id = hash_entry->value; 4997 cand = btf_type_by_id(d->btf, cand_id); 4998 if (btf_equal_common(t, cand)) { 4999 new_id = cand_id; 5000 break; 5001 } 5002 } 5003 break; 5004 5005 case BTF_KIND_DECL_TAG: 5006 ref_type_id = btf_dedup_ref_type(d, t->type); 5007 if (ref_type_id < 0) 5008 return ref_type_id; 5009 t->type = ref_type_id; 5010 5011 h = btf_hash_int_decl_tag(t); 5012 for_each_dedup_cand(d, hash_entry, h) { 5013 cand_id = hash_entry->value; 5014 cand = btf_type_by_id(d->btf, cand_id); 5015 if (btf_equal_int_tag(t, cand)) { 5016 new_id = cand_id; 5017 break; 5018 } 5019 } 5020 break; 5021 5022 case BTF_KIND_ARRAY: { 5023 struct btf_array *info = btf_array(t); 5024 5025 ref_type_id = btf_dedup_ref_type(d, info->type); 5026 if (ref_type_id < 0) 5027 return ref_type_id; 5028 info->type = ref_type_id; 5029 5030 ref_type_id = btf_dedup_ref_type(d, info->index_type); 5031 if (ref_type_id < 0) 5032 return ref_type_id; 5033 info->index_type = ref_type_id; 5034 5035 h = btf_hash_array(t); 5036 for_each_dedup_cand(d, hash_entry, h) { 5037 cand_id = hash_entry->value; 5038 cand = btf_type_by_id(d->btf, cand_id); 5039 if (btf_equal_array(t, cand)) { 5040 new_id = cand_id; 5041 break; 5042 } 5043 } 5044 break; 5045 } 5046 5047 case BTF_KIND_FUNC_PROTO: { 5048 struct btf_param *param; 5049 __u16 vlen; 5050 int i; 5051 5052 ref_type_id = btf_dedup_ref_type(d, t->type); 5053 if (ref_type_id < 0) 5054 return ref_type_id; 5055 t->type = ref_type_id; 5056 5057 vlen = btf_vlen(t); 5058 param = btf_params(t); 5059 for (i = 0; i < vlen; i++) { 5060 ref_type_id = btf_dedup_ref_type(d, param->type); 5061 if (ref_type_id < 0) 5062 return ref_type_id; 5063 param->type = ref_type_id; 5064 param++; 5065 } 5066 5067 h = btf_hash_fnproto(t); 5068 for_each_dedup_cand(d, hash_entry, h) { 5069 cand_id = hash_entry->value; 5070 cand = btf_type_by_id(d->btf, cand_id); 5071 if (btf_equal_fnproto(t, cand)) { 5072 new_id = cand_id; 5073 break; 5074 } 5075 } 5076 break; 5077 } 5078 5079 default: 5080 return -EINVAL; 5081 } 5082 5083 d->map[type_id] = new_id; 5084 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 5085 return -ENOMEM; 5086 5087 return new_id; 5088 } 5089 5090 static int btf_dedup_ref_types(struct btf_dedup *d) 5091 { 5092 int i, err; 5093 5094 for (i = 0; i < d->btf->nr_types; i++) { 5095 err = btf_dedup_ref_type(d, d->btf->start_id + i); 5096 if (err < 0) 5097 return err; 5098 } 5099 /* we won't need d->dedup_table anymore */ 5100 hashmap__free(d->dedup_table); 5101 d->dedup_table = NULL; 5102 return 0; 5103 } 5104 5105 /* 5106 * Collect a map from type names to type ids for all canonical structs 5107 * and unions. If the same name is shared by several canonical types 5108 * use a special value 0 to indicate this fact. 5109 */ 5110 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 5111 { 5112 __u32 nr_types = btf__type_cnt(d->btf); 5113 struct btf_type *t; 5114 __u32 type_id; 5115 __u16 kind; 5116 int err; 5117 5118 /* 5119 * Iterate over base and split module ids in order to get all 5120 * available structs in the map. 5121 */ 5122 for (type_id = 1; type_id < nr_types; ++type_id) { 5123 t = btf_type_by_id(d->btf, type_id); 5124 kind = btf_kind(t); 5125 5126 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 5127 continue; 5128 5129 /* Skip non-canonical types */ 5130 if (type_id != d->map[type_id]) 5131 continue; 5132 5133 err = hashmap__add(names_map, t->name_off, type_id); 5134 if (err == -EEXIST) 5135 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 5136 5137 if (err) 5138 return err; 5139 } 5140 5141 return 0; 5142 } 5143 5144 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 5145 { 5146 struct btf_type *t = btf_type_by_id(d->btf, type_id); 5147 enum btf_fwd_kind fwd_kind = btf_kflag(t); 5148 __u16 cand_kind, kind = btf_kind(t); 5149 struct btf_type *cand_t; 5150 uintptr_t cand_id; 5151 5152 if (kind != BTF_KIND_FWD) 5153 return 0; 5154 5155 /* Skip if this FWD already has a mapping */ 5156 if (type_id != d->map[type_id]) 5157 return 0; 5158 5159 if (!hashmap__find(names_map, t->name_off, &cand_id)) 5160 return 0; 5161 5162 /* Zero is a special value indicating that name is not unique */ 5163 if (!cand_id) 5164 return 0; 5165 5166 cand_t = btf_type_by_id(d->btf, cand_id); 5167 cand_kind = btf_kind(cand_t); 5168 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 5169 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 5170 return 0; 5171 5172 d->map[type_id] = cand_id; 5173 5174 return 0; 5175 } 5176 5177 /* 5178 * Resolve unambiguous forward declarations. 5179 * 5180 * The lion's share of all FWD declarations is resolved during 5181 * `btf_dedup_struct_types` phase when different type graphs are 5182 * compared against each other. However, if in some compilation unit a 5183 * FWD declaration is not a part of a type graph compared against 5184 * another type graph that declaration's canonical type would not be 5185 * changed. Example: 5186 * 5187 * CU #1: 5188 * 5189 * struct foo; 5190 * struct foo *some_global; 5191 * 5192 * CU #2: 5193 * 5194 * struct foo { int u; }; 5195 * struct foo *another_global; 5196 * 5197 * After `btf_dedup_struct_types` the BTF looks as follows: 5198 * 5199 * [1] STRUCT 'foo' size=4 vlen=1 ... 5200 * [2] INT 'int' size=4 ... 5201 * [3] PTR '(anon)' type_id=1 5202 * [4] FWD 'foo' fwd_kind=struct 5203 * [5] PTR '(anon)' type_id=4 5204 * 5205 * This pass assumes that such FWD declarations should be mapped to 5206 * structs or unions with identical name in case if the name is not 5207 * ambiguous. 5208 */ 5209 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 5210 { 5211 int i, err; 5212 struct hashmap *names_map; 5213 5214 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 5215 if (IS_ERR(names_map)) 5216 return PTR_ERR(names_map); 5217 5218 err = btf_dedup_fill_unique_names_map(d, names_map); 5219 if (err < 0) 5220 goto exit; 5221 5222 for (i = 0; i < d->btf->nr_types; i++) { 5223 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 5224 if (err < 0) 5225 break; 5226 } 5227 5228 exit: 5229 hashmap__free(names_map); 5230 return err; 5231 } 5232 5233 /* 5234 * Compact types. 5235 * 5236 * After we established for each type its corresponding canonical representative 5237 * type, we now can eliminate types that are not canonical and leave only 5238 * canonical ones layed out sequentially in memory by copying them over 5239 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 5240 * a map from original type ID to a new compacted type ID, which will be used 5241 * during next phase to "fix up" type IDs, referenced from struct/union and 5242 * reference types. 5243 */ 5244 static int btf_dedup_compact_types(struct btf_dedup *d) 5245 { 5246 __u32 *new_offs; 5247 __u32 next_type_id = d->btf->start_id; 5248 const struct btf_type *t; 5249 void *p; 5250 int i, id, len; 5251 5252 /* we are going to reuse hypot_map to store compaction remapping */ 5253 d->hypot_map[0] = 0; 5254 /* base BTF types are not renumbered */ 5255 for (id = 1; id < d->btf->start_id; id++) 5256 d->hypot_map[id] = id; 5257 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 5258 d->hypot_map[id] = BTF_UNPROCESSED_ID; 5259 5260 p = d->btf->types_data; 5261 5262 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 5263 if (d->map[id] != id) 5264 continue; 5265 5266 t = btf__type_by_id(d->btf, id); 5267 len = btf_type_size(t); 5268 if (len < 0) 5269 return len; 5270 5271 memmove(p, t, len); 5272 d->hypot_map[id] = next_type_id; 5273 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 5274 p += len; 5275 next_type_id++; 5276 } 5277 5278 /* shrink struct btf's internal types index and update btf_header */ 5279 d->btf->nr_types = next_type_id - d->btf->start_id; 5280 d->btf->type_offs_cap = d->btf->nr_types; 5281 d->btf->hdr->type_len = p - d->btf->types_data; 5282 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 5283 sizeof(*new_offs)); 5284 if (d->btf->type_offs_cap && !new_offs) 5285 return -ENOMEM; 5286 d->btf->type_offs = new_offs; 5287 d->btf->hdr->str_off = d->btf->hdr->type_len; 5288 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 5289 return 0; 5290 } 5291 5292 /* 5293 * Figure out final (deduplicated and compacted) type ID for provided original 5294 * `type_id` by first resolving it into corresponding canonical type ID and 5295 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 5296 * which is populated during compaction phase. 5297 */ 5298 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 5299 { 5300 struct btf_dedup *d = ctx; 5301 __u32 resolved_type_id, new_type_id; 5302 5303 resolved_type_id = resolve_type_id(d, *type_id); 5304 new_type_id = d->hypot_map[resolved_type_id]; 5305 if (new_type_id > BTF_MAX_NR_TYPES) 5306 return -EINVAL; 5307 5308 *type_id = new_type_id; 5309 return 0; 5310 } 5311 5312 /* 5313 * Remap referenced type IDs into deduped type IDs. 5314 * 5315 * After BTF types are deduplicated and compacted, their final type IDs may 5316 * differ from original ones. The map from original to a corresponding 5317 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 5318 * compaction phase. During remapping phase we are rewriting all type IDs 5319 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 5320 * their final deduped type IDs. 5321 */ 5322 static int btf_dedup_remap_types(struct btf_dedup *d) 5323 { 5324 int i, r; 5325 5326 for (i = 0; i < d->btf->nr_types; i++) { 5327 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 5328 struct btf_field_iter it; 5329 __u32 *type_id; 5330 5331 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5332 if (r) 5333 return r; 5334 5335 while ((type_id = btf_field_iter_next(&it))) { 5336 __u32 resolved_id, new_id; 5337 5338 resolved_id = resolve_type_id(d, *type_id); 5339 new_id = d->hypot_map[resolved_id]; 5340 if (new_id > BTF_MAX_NR_TYPES) 5341 return -EINVAL; 5342 5343 *type_id = new_id; 5344 } 5345 } 5346 5347 if (!d->btf_ext) 5348 return 0; 5349 5350 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 5351 if (r) 5352 return r; 5353 5354 return 0; 5355 } 5356 5357 /* 5358 * Probe few well-known locations for vmlinux kernel image and try to load BTF 5359 * data out of it to use for target BTF. 5360 */ 5361 struct btf *btf__load_vmlinux_btf(void) 5362 { 5363 const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux"; 5364 /* fall back locations, trying to find vmlinux on disk */ 5365 const char *locations[] = { 5366 "/boot/vmlinux-%1$s", 5367 "/lib/modules/%1$s/vmlinux-%1$s", 5368 "/lib/modules/%1$s/build/vmlinux", 5369 "/usr/lib/modules/%1$s/kernel/vmlinux", 5370 "/usr/lib/debug/boot/vmlinux-%1$s", 5371 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 5372 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 5373 }; 5374 char path[PATH_MAX + 1]; 5375 struct utsname buf; 5376 struct btf *btf; 5377 int i, err; 5378 5379 /* is canonical sysfs location accessible? */ 5380 if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) { 5381 pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n", 5382 sysfs_btf_path); 5383 } else { 5384 btf = btf_parse_raw_mmap(sysfs_btf_path, NULL); 5385 if (IS_ERR(btf)) 5386 btf = btf__parse(sysfs_btf_path, NULL); 5387 5388 if (!btf) { 5389 err = -errno; 5390 pr_warn("failed to read kernel BTF from '%s': %s\n", 5391 sysfs_btf_path, errstr(err)); 5392 return libbpf_err_ptr(err); 5393 } 5394 pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path); 5395 return btf; 5396 } 5397 5398 /* try fallback locations */ 5399 uname(&buf); 5400 for (i = 0; i < ARRAY_SIZE(locations); i++) { 5401 snprintf(path, PATH_MAX, locations[i], buf.release); 5402 5403 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 5404 continue; 5405 5406 btf = btf__parse(path, NULL); 5407 err = libbpf_get_error(btf); 5408 pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err)); 5409 if (err) 5410 continue; 5411 5412 return btf; 5413 } 5414 5415 pr_warn("failed to find valid kernel BTF\n"); 5416 return libbpf_err_ptr(-ESRCH); 5417 } 5418 5419 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 5420 5421 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 5422 { 5423 char path[80]; 5424 5425 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 5426 return btf__parse_split(path, vmlinux_btf); 5427 } 5428 5429 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 5430 { 5431 const struct btf_ext_info *seg; 5432 struct btf_ext_info_sec *sec; 5433 int i, err; 5434 5435 seg = &btf_ext->func_info; 5436 for_each_btf_ext_sec(seg, sec) { 5437 struct bpf_func_info_min *rec; 5438 5439 for_each_btf_ext_rec(seg, sec, i, rec) { 5440 err = visit(&rec->type_id, ctx); 5441 if (err < 0) 5442 return err; 5443 } 5444 } 5445 5446 seg = &btf_ext->core_relo_info; 5447 for_each_btf_ext_sec(seg, sec) { 5448 struct bpf_core_relo *rec; 5449 5450 for_each_btf_ext_rec(seg, sec, i, rec) { 5451 err = visit(&rec->type_id, ctx); 5452 if (err < 0) 5453 return err; 5454 } 5455 } 5456 5457 return 0; 5458 } 5459 5460 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 5461 { 5462 const struct btf_ext_info *seg; 5463 struct btf_ext_info_sec *sec; 5464 int i, err; 5465 5466 seg = &btf_ext->func_info; 5467 for_each_btf_ext_sec(seg, sec) { 5468 err = visit(&sec->sec_name_off, ctx); 5469 if (err) 5470 return err; 5471 } 5472 5473 seg = &btf_ext->line_info; 5474 for_each_btf_ext_sec(seg, sec) { 5475 struct bpf_line_info_min *rec; 5476 5477 err = visit(&sec->sec_name_off, ctx); 5478 if (err) 5479 return err; 5480 5481 for_each_btf_ext_rec(seg, sec, i, rec) { 5482 err = visit(&rec->file_name_off, ctx); 5483 if (err) 5484 return err; 5485 err = visit(&rec->line_off, ctx); 5486 if (err) 5487 return err; 5488 } 5489 } 5490 5491 seg = &btf_ext->core_relo_info; 5492 for_each_btf_ext_sec(seg, sec) { 5493 struct bpf_core_relo *rec; 5494 5495 err = visit(&sec->sec_name_off, ctx); 5496 if (err) 5497 return err; 5498 5499 for_each_btf_ext_rec(seg, sec, i, rec) { 5500 err = visit(&rec->access_str_off, ctx); 5501 if (err) 5502 return err; 5503 } 5504 } 5505 5506 return 0; 5507 } 5508 5509 struct btf_distill { 5510 struct btf_pipe pipe; 5511 int *id_map; 5512 unsigned int split_start_id; 5513 unsigned int split_start_str; 5514 int diff_id; 5515 }; 5516 5517 static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i) 5518 { 5519 struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i); 5520 struct btf_field_iter it; 5521 __u32 *id; 5522 int err; 5523 5524 err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS); 5525 if (err) 5526 return err; 5527 while ((id = btf_field_iter_next(&it))) { 5528 struct btf_type *base_t; 5529 5530 if (!*id) 5531 continue; 5532 /* split BTF id, not needed */ 5533 if (*id >= dist->split_start_id) 5534 continue; 5535 /* already added ? */ 5536 if (dist->id_map[*id] > 0) 5537 continue; 5538 5539 /* only a subset of base BTF types should be referenced from 5540 * split BTF; ensure nothing unexpected is referenced. 5541 */ 5542 base_t = btf_type_by_id(dist->pipe.src, *id); 5543 switch (btf_kind(base_t)) { 5544 case BTF_KIND_INT: 5545 case BTF_KIND_FLOAT: 5546 case BTF_KIND_FWD: 5547 case BTF_KIND_ARRAY: 5548 case BTF_KIND_STRUCT: 5549 case BTF_KIND_UNION: 5550 case BTF_KIND_TYPEDEF: 5551 case BTF_KIND_ENUM: 5552 case BTF_KIND_ENUM64: 5553 case BTF_KIND_PTR: 5554 case BTF_KIND_CONST: 5555 case BTF_KIND_RESTRICT: 5556 case BTF_KIND_VOLATILE: 5557 case BTF_KIND_FUNC_PROTO: 5558 case BTF_KIND_TYPE_TAG: 5559 dist->id_map[*id] = *id; 5560 break; 5561 default: 5562 pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n", 5563 *id, btf_kind(base_t)); 5564 return -EINVAL; 5565 } 5566 /* If a base type is used, ensure types it refers to are 5567 * marked as used also; so for example if we find a PTR to INT 5568 * we need both the PTR and INT. 5569 * 5570 * The only exception is named struct/unions, since distilled 5571 * base BTF composite types have no members. 5572 */ 5573 if (btf_is_composite(base_t) && base_t->name_off) 5574 continue; 5575 err = btf_add_distilled_type_ids(dist, *id); 5576 if (err) 5577 return err; 5578 } 5579 return 0; 5580 } 5581 5582 static int btf_add_distilled_types(struct btf_distill *dist) 5583 { 5584 bool adding_to_base = dist->pipe.dst->start_id == 1; 5585 int id = btf__type_cnt(dist->pipe.dst); 5586 struct btf_type *t; 5587 int i, err = 0; 5588 5589 5590 /* Add types for each of the required references to either distilled 5591 * base or split BTF, depending on type characteristics. 5592 */ 5593 for (i = 1; i < dist->split_start_id; i++) { 5594 const char *name; 5595 int kind; 5596 5597 if (!dist->id_map[i]) 5598 continue; 5599 t = btf_type_by_id(dist->pipe.src, i); 5600 kind = btf_kind(t); 5601 name = btf__name_by_offset(dist->pipe.src, t->name_off); 5602 5603 switch (kind) { 5604 case BTF_KIND_INT: 5605 case BTF_KIND_FLOAT: 5606 case BTF_KIND_FWD: 5607 /* Named int, float, fwd are added to base. */ 5608 if (!adding_to_base) 5609 continue; 5610 err = btf_add_type(&dist->pipe, t); 5611 break; 5612 case BTF_KIND_STRUCT: 5613 case BTF_KIND_UNION: 5614 /* Named struct/union are added to base as 0-vlen 5615 * struct/union of same size. Anonymous struct/unions 5616 * are added to split BTF as-is. 5617 */ 5618 if (adding_to_base) { 5619 if (!t->name_off) 5620 continue; 5621 err = btf_add_composite(dist->pipe.dst, kind, name, t->size); 5622 } else { 5623 if (t->name_off) 5624 continue; 5625 err = btf_add_type(&dist->pipe, t); 5626 } 5627 break; 5628 case BTF_KIND_ENUM: 5629 case BTF_KIND_ENUM64: 5630 /* Named enum[64]s are added to base as a sized 5631 * enum; relocation will match with appropriately-named 5632 * and sized enum or enum64. 5633 * 5634 * Anonymous enums are added to split BTF as-is. 5635 */ 5636 if (adding_to_base) { 5637 if (!t->name_off) 5638 continue; 5639 err = btf__add_enum(dist->pipe.dst, name, t->size); 5640 } else { 5641 if (t->name_off) 5642 continue; 5643 err = btf_add_type(&dist->pipe, t); 5644 } 5645 break; 5646 case BTF_KIND_ARRAY: 5647 case BTF_KIND_TYPEDEF: 5648 case BTF_KIND_PTR: 5649 case BTF_KIND_CONST: 5650 case BTF_KIND_RESTRICT: 5651 case BTF_KIND_VOLATILE: 5652 case BTF_KIND_FUNC_PROTO: 5653 case BTF_KIND_TYPE_TAG: 5654 /* All other types are added to split BTF. */ 5655 if (adding_to_base) 5656 continue; 5657 err = btf_add_type(&dist->pipe, t); 5658 break; 5659 default: 5660 pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n", 5661 name, i, kind); 5662 return -EINVAL; 5663 5664 } 5665 if (err < 0) 5666 break; 5667 dist->id_map[i] = id++; 5668 } 5669 return err; 5670 } 5671 5672 /* Split BTF ids without a mapping will be shifted downwards since distilled 5673 * base BTF is smaller than the original base BTF. For those that have a 5674 * mapping (either to base or updated split BTF), update the id based on 5675 * that mapping. 5676 */ 5677 static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i) 5678 { 5679 struct btf_type *t = btf_type_by_id(dist->pipe.dst, i); 5680 struct btf_field_iter it; 5681 __u32 *id; 5682 int err; 5683 5684 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); 5685 if (err) 5686 return err; 5687 while ((id = btf_field_iter_next(&it))) { 5688 if (dist->id_map[*id]) 5689 *id = dist->id_map[*id]; 5690 else if (*id >= dist->split_start_id) 5691 *id -= dist->diff_id; 5692 } 5693 return 0; 5694 } 5695 5696 /* Create updated split BTF with distilled base BTF; distilled base BTF 5697 * consists of BTF information required to clarify the types that split 5698 * BTF refers to, omitting unneeded details. Specifically it will contain 5699 * base types and memberless definitions of named structs, unions and enumerated 5700 * types. Associated reference types like pointers, arrays and anonymous 5701 * structs, unions and enumerated types will be added to split BTF. 5702 * Size is recorded for named struct/unions to help guide matching to the 5703 * target base BTF during later relocation. 5704 * 5705 * The only case where structs, unions or enumerated types are fully represented 5706 * is when they are anonymous; in such cases, the anonymous type is added to 5707 * split BTF in full. 5708 * 5709 * We return newly-created split BTF where the split BTF refers to a newly-created 5710 * distilled base BTF. Both must be freed separately by the caller. 5711 */ 5712 int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, 5713 struct btf **new_split_btf) 5714 { 5715 struct btf *new_base = NULL, *new_split = NULL; 5716 const struct btf *old_base; 5717 unsigned int n = btf__type_cnt(src_btf); 5718 struct btf_distill dist = {}; 5719 struct btf_type *t; 5720 int i, err = 0; 5721 5722 /* src BTF must be split BTF. */ 5723 old_base = btf__base_btf(src_btf); 5724 if (!new_base_btf || !new_split_btf || !old_base) 5725 return libbpf_err(-EINVAL); 5726 5727 new_base = btf__new_empty(); 5728 if (!new_base) 5729 return libbpf_err(-ENOMEM); 5730 5731 btf__set_endianness(new_base, btf__endianness(src_btf)); 5732 5733 dist.id_map = calloc(n, sizeof(*dist.id_map)); 5734 if (!dist.id_map) { 5735 err = -ENOMEM; 5736 goto done; 5737 } 5738 dist.pipe.src = src_btf; 5739 dist.pipe.dst = new_base; 5740 dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 5741 if (IS_ERR(dist.pipe.str_off_map)) { 5742 err = -ENOMEM; 5743 goto done; 5744 } 5745 dist.split_start_id = btf__type_cnt(old_base); 5746 dist.split_start_str = old_base->hdr->str_len; 5747 5748 /* Pass over src split BTF; generate the list of base BTF type ids it 5749 * references; these will constitute our distilled BTF set to be 5750 * distributed over base and split BTF as appropriate. 5751 */ 5752 for (i = src_btf->start_id; i < n; i++) { 5753 err = btf_add_distilled_type_ids(&dist, i); 5754 if (err < 0) 5755 goto done; 5756 } 5757 /* Next add types for each of the required references to base BTF and split BTF 5758 * in turn. 5759 */ 5760 err = btf_add_distilled_types(&dist); 5761 if (err < 0) 5762 goto done; 5763 5764 /* Create new split BTF with distilled base BTF as its base; the final 5765 * state is split BTF with distilled base BTF that represents enough 5766 * about its base references to allow it to be relocated with the base 5767 * BTF available. 5768 */ 5769 new_split = btf__new_empty_split(new_base); 5770 if (!new_split) { 5771 err = -errno; 5772 goto done; 5773 } 5774 dist.pipe.dst = new_split; 5775 /* First add all split types */ 5776 for (i = src_btf->start_id; i < n; i++) { 5777 t = btf_type_by_id(src_btf, i); 5778 err = btf_add_type(&dist.pipe, t); 5779 if (err < 0) 5780 goto done; 5781 } 5782 /* Now add distilled types to split BTF that are not added to base. */ 5783 err = btf_add_distilled_types(&dist); 5784 if (err < 0) 5785 goto done; 5786 5787 /* All split BTF ids will be shifted downwards since there are less base 5788 * BTF ids in distilled base BTF. 5789 */ 5790 dist.diff_id = dist.split_start_id - btf__type_cnt(new_base); 5791 5792 n = btf__type_cnt(new_split); 5793 /* Now update base/split BTF ids. */ 5794 for (i = 1; i < n; i++) { 5795 err = btf_update_distilled_type_ids(&dist, i); 5796 if (err < 0) 5797 break; 5798 } 5799 done: 5800 free(dist.id_map); 5801 hashmap__free(dist.pipe.str_off_map); 5802 if (err) { 5803 btf__free(new_split); 5804 btf__free(new_base); 5805 return libbpf_err(err); 5806 } 5807 *new_base_btf = new_base; 5808 *new_split_btf = new_split; 5809 5810 return 0; 5811 } 5812 5813 const struct btf_header *btf_header(const struct btf *btf) 5814 { 5815 return btf->hdr; 5816 } 5817 5818 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 5819 { 5820 btf->base_btf = (struct btf *)base_btf; 5821 btf->start_id = btf__type_cnt(base_btf); 5822 btf->start_str_off = base_btf->hdr->str_len; 5823 } 5824 5825 int btf__relocate(struct btf *btf, const struct btf *base_btf) 5826 { 5827 int err = btf_relocate(btf, base_btf, NULL); 5828 5829 if (!err) 5830 btf->owns_base = false; 5831 return libbpf_err(err); 5832 } 5833