1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 __u32 btf__type_cnt(const struct btf *btf) 452 { 453 return btf->start_id + btf->nr_types; 454 } 455 456 const struct btf *btf__base_btf(const struct btf *btf) 457 { 458 return btf->base_btf; 459 } 460 461 /* internal helper returning non-const pointer to a type */ 462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 463 { 464 if (type_id == 0) 465 return &btf_void; 466 if (type_id < btf->start_id) 467 return btf_type_by_id(btf->base_btf, type_id); 468 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 469 } 470 471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 472 { 473 if (type_id >= btf->start_id + btf->nr_types) 474 return errno = EINVAL, NULL; 475 return btf_type_by_id((struct btf *)btf, type_id); 476 } 477 478 static int determine_ptr_size(const struct btf *btf) 479 { 480 static const char * const long_aliases[] = { 481 "long", 482 "long int", 483 "int long", 484 "unsigned long", 485 "long unsigned", 486 "unsigned long int", 487 "unsigned int long", 488 "long unsigned int", 489 "long int unsigned", 490 "int unsigned long", 491 "int long unsigned", 492 }; 493 const struct btf_type *t; 494 const char *name; 495 int i, j, n; 496 497 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 498 return btf->base_btf->ptr_sz; 499 500 n = btf__type_cnt(btf); 501 for (i = 1; i < n; i++) { 502 t = btf__type_by_id(btf, i); 503 if (!btf_is_int(t)) 504 continue; 505 506 if (t->size != 4 && t->size != 8) 507 continue; 508 509 name = btf__name_by_offset(btf, t->name_off); 510 if (!name) 511 continue; 512 513 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 514 if (strcmp(name, long_aliases[j]) == 0) 515 return t->size; 516 } 517 } 518 519 return -1; 520 } 521 522 static size_t btf_ptr_sz(const struct btf *btf) 523 { 524 if (!btf->ptr_sz) 525 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 526 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 527 } 528 529 /* Return pointer size this BTF instance assumes. The size is heuristically 530 * determined by looking for 'long' or 'unsigned long' integer type and 531 * recording its size in bytes. If BTF type information doesn't have any such 532 * type, this function returns 0. In the latter case, native architecture's 533 * pointer size is assumed, so will be either 4 or 8, depending on 534 * architecture that libbpf was compiled for. It's possible to override 535 * guessed value by using btf__set_pointer_size() API. 536 */ 537 size_t btf__pointer_size(const struct btf *btf) 538 { 539 if (!btf->ptr_sz) 540 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 541 542 if (btf->ptr_sz < 0) 543 /* not enough BTF type info to guess */ 544 return 0; 545 546 return btf->ptr_sz; 547 } 548 549 /* Override or set pointer size in bytes. Only values of 4 and 8 are 550 * supported. 551 */ 552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 553 { 554 if (ptr_sz != 4 && ptr_sz != 8) 555 return libbpf_err(-EINVAL); 556 btf->ptr_sz = ptr_sz; 557 return 0; 558 } 559 560 static bool is_host_big_endian(void) 561 { 562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 563 return false; 564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 565 return true; 566 #else 567 # error "Unrecognized __BYTE_ORDER__" 568 #endif 569 } 570 571 enum btf_endianness btf__endianness(const struct btf *btf) 572 { 573 if (is_host_big_endian()) 574 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 575 else 576 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 577 } 578 579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 580 { 581 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 582 return libbpf_err(-EINVAL); 583 584 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 585 if (!btf->swapped_endian) { 586 free(btf->raw_data_swapped); 587 btf->raw_data_swapped = NULL; 588 } 589 return 0; 590 } 591 592 static bool btf_type_is_void(const struct btf_type *t) 593 { 594 return t == &btf_void || btf_is_fwd(t); 595 } 596 597 static bool btf_type_is_void_or_null(const struct btf_type *t) 598 { 599 return !t || btf_type_is_void(t); 600 } 601 602 #define MAX_RESOLVE_DEPTH 32 603 604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 605 { 606 const struct btf_array *array; 607 const struct btf_type *t; 608 __u32 nelems = 1; 609 __s64 size = -1; 610 int i; 611 612 t = btf__type_by_id(btf, type_id); 613 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 614 switch (btf_kind(t)) { 615 case BTF_KIND_INT: 616 case BTF_KIND_STRUCT: 617 case BTF_KIND_UNION: 618 case BTF_KIND_ENUM: 619 case BTF_KIND_ENUM64: 620 case BTF_KIND_DATASEC: 621 case BTF_KIND_FLOAT: 622 size = t->size; 623 goto done; 624 case BTF_KIND_PTR: 625 size = btf_ptr_sz(btf); 626 goto done; 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 case BTF_KIND_VAR: 632 case BTF_KIND_DECL_TAG: 633 case BTF_KIND_TYPE_TAG: 634 type_id = t->type; 635 break; 636 case BTF_KIND_ARRAY: 637 array = btf_array(t); 638 if (nelems && array->nelems > UINT32_MAX / nelems) 639 return libbpf_err(-E2BIG); 640 nelems *= array->nelems; 641 type_id = array->type; 642 break; 643 default: 644 return libbpf_err(-EINVAL); 645 } 646 647 t = btf__type_by_id(btf, type_id); 648 } 649 650 done: 651 if (size < 0) 652 return libbpf_err(-EINVAL); 653 if (nelems && size > UINT32_MAX / nelems) 654 return libbpf_err(-E2BIG); 655 656 return nelems * size; 657 } 658 659 int btf__align_of(const struct btf *btf, __u32 id) 660 { 661 const struct btf_type *t = btf__type_by_id(btf, id); 662 __u16 kind = btf_kind(t); 663 664 switch (kind) { 665 case BTF_KIND_INT: 666 case BTF_KIND_ENUM: 667 case BTF_KIND_ENUM64: 668 case BTF_KIND_FLOAT: 669 return min(btf_ptr_sz(btf), (size_t)t->size); 670 case BTF_KIND_PTR: 671 return btf_ptr_sz(btf); 672 case BTF_KIND_TYPEDEF: 673 case BTF_KIND_VOLATILE: 674 case BTF_KIND_CONST: 675 case BTF_KIND_RESTRICT: 676 case BTF_KIND_TYPE_TAG: 677 return btf__align_of(btf, t->type); 678 case BTF_KIND_ARRAY: 679 return btf__align_of(btf, btf_array(t)->type); 680 case BTF_KIND_STRUCT: 681 case BTF_KIND_UNION: { 682 const struct btf_member *m = btf_members(t); 683 __u16 vlen = btf_vlen(t); 684 int i, max_align = 1, align; 685 686 for (i = 0; i < vlen; i++, m++) { 687 align = btf__align_of(btf, m->type); 688 if (align <= 0) 689 return libbpf_err(align); 690 max_align = max(max_align, align); 691 692 /* if field offset isn't aligned according to field 693 * type's alignment, then struct must be packed 694 */ 695 if (btf_member_bitfield_size(t, i) == 0 && 696 (m->offset % (8 * align)) != 0) 697 return 1; 698 } 699 700 /* if struct/union size isn't a multiple of its alignment, 701 * then struct must be packed 702 */ 703 if ((t->size % max_align) != 0) 704 return 1; 705 706 return max_align; 707 } 708 default: 709 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 710 return errno = EINVAL, 0; 711 } 712 } 713 714 int btf__resolve_type(const struct btf *btf, __u32 type_id) 715 { 716 const struct btf_type *t; 717 int depth = 0; 718 719 t = btf__type_by_id(btf, type_id); 720 while (depth < MAX_RESOLVE_DEPTH && 721 !btf_type_is_void_or_null(t) && 722 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 723 type_id = t->type; 724 t = btf__type_by_id(btf, type_id); 725 depth++; 726 } 727 728 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 729 return libbpf_err(-EINVAL); 730 731 return type_id; 732 } 733 734 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 735 { 736 __u32 i, nr_types = btf__type_cnt(btf); 737 738 if (!strcmp(type_name, "void")) 739 return 0; 740 741 for (i = 1; i < nr_types; i++) { 742 const struct btf_type *t = btf__type_by_id(btf, i); 743 const char *name = btf__name_by_offset(btf, t->name_off); 744 745 if (name && !strcmp(type_name, name)) 746 return i; 747 } 748 749 return libbpf_err(-ENOENT); 750 } 751 752 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 753 const char *type_name, __u32 kind) 754 { 755 __u32 i, nr_types = btf__type_cnt(btf); 756 757 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 758 return 0; 759 760 for (i = start_id; i < nr_types; i++) { 761 const struct btf_type *t = btf__type_by_id(btf, i); 762 const char *name; 763 764 if (btf_kind(t) != kind) 765 continue; 766 name = btf__name_by_offset(btf, t->name_off); 767 if (name && !strcmp(type_name, name)) 768 return i; 769 } 770 771 return libbpf_err(-ENOENT); 772 } 773 774 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 775 __u32 kind) 776 { 777 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 778 } 779 780 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 781 __u32 kind) 782 { 783 return btf_find_by_name_kind(btf, 1, type_name, kind); 784 } 785 786 static bool btf_is_modifiable(const struct btf *btf) 787 { 788 return (void *)btf->hdr != btf->raw_data; 789 } 790 791 void btf__free(struct btf *btf) 792 { 793 if (IS_ERR_OR_NULL(btf)) 794 return; 795 796 if (btf->fd >= 0) 797 close(btf->fd); 798 799 if (btf_is_modifiable(btf)) { 800 /* if BTF was modified after loading, it will have a split 801 * in-memory representation for header, types, and strings 802 * sections, so we need to free all of them individually. It 803 * might still have a cached contiguous raw data present, 804 * which will be unconditionally freed below. 805 */ 806 free(btf->hdr); 807 free(btf->types_data); 808 strset__free(btf->strs_set); 809 } 810 free(btf->raw_data); 811 free(btf->raw_data_swapped); 812 free(btf->type_offs); 813 free(btf); 814 } 815 816 static struct btf *btf_new_empty(struct btf *base_btf) 817 { 818 struct btf *btf; 819 820 btf = calloc(1, sizeof(*btf)); 821 if (!btf) 822 return ERR_PTR(-ENOMEM); 823 824 btf->nr_types = 0; 825 btf->start_id = 1; 826 btf->start_str_off = 0; 827 btf->fd = -1; 828 btf->ptr_sz = sizeof(void *); 829 btf->swapped_endian = false; 830 831 if (base_btf) { 832 btf->base_btf = base_btf; 833 btf->start_id = btf__type_cnt(base_btf); 834 btf->start_str_off = base_btf->hdr->str_len; 835 } 836 837 /* +1 for empty string at offset 0 */ 838 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 839 btf->raw_data = calloc(1, btf->raw_size); 840 if (!btf->raw_data) { 841 free(btf); 842 return ERR_PTR(-ENOMEM); 843 } 844 845 btf->hdr = btf->raw_data; 846 btf->hdr->hdr_len = sizeof(struct btf_header); 847 btf->hdr->magic = BTF_MAGIC; 848 btf->hdr->version = BTF_VERSION; 849 850 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 851 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 852 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 853 854 return btf; 855 } 856 857 struct btf *btf__new_empty(void) 858 { 859 return libbpf_ptr(btf_new_empty(NULL)); 860 } 861 862 struct btf *btf__new_empty_split(struct btf *base_btf) 863 { 864 return libbpf_ptr(btf_new_empty(base_btf)); 865 } 866 867 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 868 { 869 struct btf *btf; 870 int err; 871 872 btf = calloc(1, sizeof(struct btf)); 873 if (!btf) 874 return ERR_PTR(-ENOMEM); 875 876 btf->nr_types = 0; 877 btf->start_id = 1; 878 btf->start_str_off = 0; 879 btf->fd = -1; 880 881 if (base_btf) { 882 btf->base_btf = base_btf; 883 btf->start_id = btf__type_cnt(base_btf); 884 btf->start_str_off = base_btf->hdr->str_len; 885 } 886 887 btf->raw_data = malloc(size); 888 if (!btf->raw_data) { 889 err = -ENOMEM; 890 goto done; 891 } 892 memcpy(btf->raw_data, data, size); 893 btf->raw_size = size; 894 895 btf->hdr = btf->raw_data; 896 err = btf_parse_hdr(btf); 897 if (err) 898 goto done; 899 900 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 901 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 902 903 err = btf_parse_str_sec(btf); 904 err = err ?: btf_parse_type_sec(btf); 905 if (err) 906 goto done; 907 908 done: 909 if (err) { 910 btf__free(btf); 911 return ERR_PTR(err); 912 } 913 914 return btf; 915 } 916 917 struct btf *btf__new(const void *data, __u32 size) 918 { 919 return libbpf_ptr(btf_new(data, size, NULL)); 920 } 921 922 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 923 struct btf_ext **btf_ext) 924 { 925 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 926 int err = 0, fd = -1, idx = 0; 927 struct btf *btf = NULL; 928 Elf_Scn *scn = NULL; 929 Elf *elf = NULL; 930 GElf_Ehdr ehdr; 931 size_t shstrndx; 932 933 if (elf_version(EV_CURRENT) == EV_NONE) { 934 pr_warn("failed to init libelf for %s\n", path); 935 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 936 } 937 938 fd = open(path, O_RDONLY | O_CLOEXEC); 939 if (fd < 0) { 940 err = -errno; 941 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 942 return ERR_PTR(err); 943 } 944 945 err = -LIBBPF_ERRNO__FORMAT; 946 947 elf = elf_begin(fd, ELF_C_READ, NULL); 948 if (!elf) { 949 pr_warn("failed to open %s as ELF file\n", path); 950 goto done; 951 } 952 if (!gelf_getehdr(elf, &ehdr)) { 953 pr_warn("failed to get EHDR from %s\n", path); 954 goto done; 955 } 956 957 if (elf_getshdrstrndx(elf, &shstrndx)) { 958 pr_warn("failed to get section names section index for %s\n", 959 path); 960 goto done; 961 } 962 963 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 964 pr_warn("failed to get e_shstrndx from %s\n", path); 965 goto done; 966 } 967 968 while ((scn = elf_nextscn(elf, scn)) != NULL) { 969 GElf_Shdr sh; 970 char *name; 971 972 idx++; 973 if (gelf_getshdr(scn, &sh) != &sh) { 974 pr_warn("failed to get section(%d) header from %s\n", 975 idx, path); 976 goto done; 977 } 978 name = elf_strptr(elf, shstrndx, sh.sh_name); 979 if (!name) { 980 pr_warn("failed to get section(%d) name from %s\n", 981 idx, path); 982 goto done; 983 } 984 if (strcmp(name, BTF_ELF_SEC) == 0) { 985 btf_data = elf_getdata(scn, 0); 986 if (!btf_data) { 987 pr_warn("failed to get section(%d, %s) data from %s\n", 988 idx, name, path); 989 goto done; 990 } 991 continue; 992 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 993 btf_ext_data = elf_getdata(scn, 0); 994 if (!btf_ext_data) { 995 pr_warn("failed to get section(%d, %s) data from %s\n", 996 idx, name, path); 997 goto done; 998 } 999 continue; 1000 } 1001 } 1002 1003 if (!btf_data) { 1004 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); 1005 err = -ENODATA; 1006 goto done; 1007 } 1008 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 1009 err = libbpf_get_error(btf); 1010 if (err) 1011 goto done; 1012 1013 switch (gelf_getclass(elf)) { 1014 case ELFCLASS32: 1015 btf__set_pointer_size(btf, 4); 1016 break; 1017 case ELFCLASS64: 1018 btf__set_pointer_size(btf, 8); 1019 break; 1020 default: 1021 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1022 break; 1023 } 1024 1025 if (btf_ext && btf_ext_data) { 1026 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1027 err = libbpf_get_error(*btf_ext); 1028 if (err) 1029 goto done; 1030 } else if (btf_ext) { 1031 *btf_ext = NULL; 1032 } 1033 done: 1034 if (elf) 1035 elf_end(elf); 1036 close(fd); 1037 1038 if (!err) 1039 return btf; 1040 1041 if (btf_ext) 1042 btf_ext__free(*btf_ext); 1043 btf__free(btf); 1044 1045 return ERR_PTR(err); 1046 } 1047 1048 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1049 { 1050 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1051 } 1052 1053 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1054 { 1055 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1056 } 1057 1058 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1059 { 1060 struct btf *btf = NULL; 1061 void *data = NULL; 1062 FILE *f = NULL; 1063 __u16 magic; 1064 int err = 0; 1065 long sz; 1066 1067 f = fopen(path, "rbe"); 1068 if (!f) { 1069 err = -errno; 1070 goto err_out; 1071 } 1072 1073 /* check BTF magic */ 1074 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1075 err = -EIO; 1076 goto err_out; 1077 } 1078 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1079 /* definitely not a raw BTF */ 1080 err = -EPROTO; 1081 goto err_out; 1082 } 1083 1084 /* get file size */ 1085 if (fseek(f, 0, SEEK_END)) { 1086 err = -errno; 1087 goto err_out; 1088 } 1089 sz = ftell(f); 1090 if (sz < 0) { 1091 err = -errno; 1092 goto err_out; 1093 } 1094 /* rewind to the start */ 1095 if (fseek(f, 0, SEEK_SET)) { 1096 err = -errno; 1097 goto err_out; 1098 } 1099 1100 /* pre-alloc memory and read all of BTF data */ 1101 data = malloc(sz); 1102 if (!data) { 1103 err = -ENOMEM; 1104 goto err_out; 1105 } 1106 if (fread(data, 1, sz, f) < sz) { 1107 err = -EIO; 1108 goto err_out; 1109 } 1110 1111 /* finally parse BTF data */ 1112 btf = btf_new(data, sz, base_btf); 1113 1114 err_out: 1115 free(data); 1116 if (f) 1117 fclose(f); 1118 return err ? ERR_PTR(err) : btf; 1119 } 1120 1121 struct btf *btf__parse_raw(const char *path) 1122 { 1123 return libbpf_ptr(btf_parse_raw(path, NULL)); 1124 } 1125 1126 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1127 { 1128 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1129 } 1130 1131 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1132 { 1133 struct btf *btf; 1134 int err; 1135 1136 if (btf_ext) 1137 *btf_ext = NULL; 1138 1139 btf = btf_parse_raw(path, base_btf); 1140 err = libbpf_get_error(btf); 1141 if (!err) 1142 return btf; 1143 if (err != -EPROTO) 1144 return ERR_PTR(err); 1145 return btf_parse_elf(path, base_btf, btf_ext); 1146 } 1147 1148 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1149 { 1150 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1151 } 1152 1153 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1154 { 1155 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1156 } 1157 1158 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1159 1160 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1161 { 1162 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1163 __u32 buf_sz = 0, raw_size; 1164 char *buf = NULL, *tmp; 1165 void *raw_data; 1166 int err = 0; 1167 1168 if (btf->fd >= 0) 1169 return libbpf_err(-EEXIST); 1170 if (log_sz && !log_buf) 1171 return libbpf_err(-EINVAL); 1172 1173 /* cache native raw data representation */ 1174 raw_data = btf_get_raw_data(btf, &raw_size, false); 1175 if (!raw_data) { 1176 err = -ENOMEM; 1177 goto done; 1178 } 1179 btf->raw_size = raw_size; 1180 btf->raw_data = raw_data; 1181 1182 retry_load: 1183 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1184 * initially. Only if BTF loading fails, we bump log_level to 1 and 1185 * retry, using either auto-allocated or custom log_buf. This way 1186 * non-NULL custom log_buf provides a buffer just in case, but hopes 1187 * for successful load and no need for log_buf. 1188 */ 1189 if (log_level) { 1190 /* if caller didn't provide custom log_buf, we'll keep 1191 * allocating our own progressively bigger buffers for BTF 1192 * verification log 1193 */ 1194 if (!log_buf) { 1195 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1196 tmp = realloc(buf, buf_sz); 1197 if (!tmp) { 1198 err = -ENOMEM; 1199 goto done; 1200 } 1201 buf = tmp; 1202 buf[0] = '\0'; 1203 } 1204 1205 opts.log_buf = log_buf ? log_buf : buf; 1206 opts.log_size = log_buf ? log_sz : buf_sz; 1207 opts.log_level = log_level; 1208 } 1209 1210 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1211 if (btf->fd < 0) { 1212 /* time to turn on verbose mode and try again */ 1213 if (log_level == 0) { 1214 log_level = 1; 1215 goto retry_load; 1216 } 1217 /* only retry if caller didn't provide custom log_buf, but 1218 * make sure we can never overflow buf_sz 1219 */ 1220 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1221 goto retry_load; 1222 1223 err = -errno; 1224 pr_warn("BTF loading error: %d\n", err); 1225 /* don't print out contents of custom log_buf */ 1226 if (!log_buf && buf[0]) 1227 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1228 } 1229 1230 done: 1231 free(buf); 1232 return libbpf_err(err); 1233 } 1234 1235 int btf__load_into_kernel(struct btf *btf) 1236 { 1237 return btf_load_into_kernel(btf, NULL, 0, 0); 1238 } 1239 1240 int btf__fd(const struct btf *btf) 1241 { 1242 return btf->fd; 1243 } 1244 1245 void btf__set_fd(struct btf *btf, int fd) 1246 { 1247 btf->fd = fd; 1248 } 1249 1250 static const void *btf_strs_data(const struct btf *btf) 1251 { 1252 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1253 } 1254 1255 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1256 { 1257 struct btf_header *hdr = btf->hdr; 1258 struct btf_type *t; 1259 void *data, *p; 1260 __u32 data_sz; 1261 int i; 1262 1263 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1264 if (data) { 1265 *size = btf->raw_size; 1266 return data; 1267 } 1268 1269 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1270 data = calloc(1, data_sz); 1271 if (!data) 1272 return NULL; 1273 p = data; 1274 1275 memcpy(p, hdr, hdr->hdr_len); 1276 if (swap_endian) 1277 btf_bswap_hdr(p); 1278 p += hdr->hdr_len; 1279 1280 memcpy(p, btf->types_data, hdr->type_len); 1281 if (swap_endian) { 1282 for (i = 0; i < btf->nr_types; i++) { 1283 t = p + btf->type_offs[i]; 1284 /* btf_bswap_type_rest() relies on native t->info, so 1285 * we swap base type info after we swapped all the 1286 * additional information 1287 */ 1288 if (btf_bswap_type_rest(t)) 1289 goto err_out; 1290 btf_bswap_type_base(t); 1291 } 1292 } 1293 p += hdr->type_len; 1294 1295 memcpy(p, btf_strs_data(btf), hdr->str_len); 1296 p += hdr->str_len; 1297 1298 *size = data_sz; 1299 return data; 1300 err_out: 1301 free(data); 1302 return NULL; 1303 } 1304 1305 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1306 { 1307 struct btf *btf = (struct btf *)btf_ro; 1308 __u32 data_sz; 1309 void *data; 1310 1311 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1312 if (!data) 1313 return errno = ENOMEM, NULL; 1314 1315 btf->raw_size = data_sz; 1316 if (btf->swapped_endian) 1317 btf->raw_data_swapped = data; 1318 else 1319 btf->raw_data = data; 1320 *size = data_sz; 1321 return data; 1322 } 1323 1324 __attribute__((alias("btf__raw_data"))) 1325 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1326 1327 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1328 { 1329 if (offset < btf->start_str_off) 1330 return btf__str_by_offset(btf->base_btf, offset); 1331 else if (offset - btf->start_str_off < btf->hdr->str_len) 1332 return btf_strs_data(btf) + (offset - btf->start_str_off); 1333 else 1334 return errno = EINVAL, NULL; 1335 } 1336 1337 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1338 { 1339 return btf__str_by_offset(btf, offset); 1340 } 1341 1342 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1343 { 1344 struct bpf_btf_info btf_info; 1345 __u32 len = sizeof(btf_info); 1346 __u32 last_size; 1347 struct btf *btf; 1348 void *ptr; 1349 int err; 1350 1351 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so 1352 * let's start with a sane default - 4KiB here - and resize it only if 1353 * bpf_btf_get_info_by_fd() needs a bigger buffer. 1354 */ 1355 last_size = 4096; 1356 ptr = malloc(last_size); 1357 if (!ptr) 1358 return ERR_PTR(-ENOMEM); 1359 1360 memset(&btf_info, 0, sizeof(btf_info)); 1361 btf_info.btf = ptr_to_u64(ptr); 1362 btf_info.btf_size = last_size; 1363 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1364 1365 if (!err && btf_info.btf_size > last_size) { 1366 void *temp_ptr; 1367 1368 last_size = btf_info.btf_size; 1369 temp_ptr = realloc(ptr, last_size); 1370 if (!temp_ptr) { 1371 btf = ERR_PTR(-ENOMEM); 1372 goto exit_free; 1373 } 1374 ptr = temp_ptr; 1375 1376 len = sizeof(btf_info); 1377 memset(&btf_info, 0, sizeof(btf_info)); 1378 btf_info.btf = ptr_to_u64(ptr); 1379 btf_info.btf_size = last_size; 1380 1381 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); 1382 } 1383 1384 if (err || btf_info.btf_size > last_size) { 1385 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1386 goto exit_free; 1387 } 1388 1389 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1390 1391 exit_free: 1392 free(ptr); 1393 return btf; 1394 } 1395 1396 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1397 { 1398 struct btf *btf; 1399 int btf_fd; 1400 1401 btf_fd = bpf_btf_get_fd_by_id(id); 1402 if (btf_fd < 0) 1403 return libbpf_err_ptr(-errno); 1404 1405 btf = btf_get_from_fd(btf_fd, base_btf); 1406 close(btf_fd); 1407 1408 return libbpf_ptr(btf); 1409 } 1410 1411 struct btf *btf__load_from_kernel_by_id(__u32 id) 1412 { 1413 return btf__load_from_kernel_by_id_split(id, NULL); 1414 } 1415 1416 static void btf_invalidate_raw_data(struct btf *btf) 1417 { 1418 if (btf->raw_data) { 1419 free(btf->raw_data); 1420 btf->raw_data = NULL; 1421 } 1422 if (btf->raw_data_swapped) { 1423 free(btf->raw_data_swapped); 1424 btf->raw_data_swapped = NULL; 1425 } 1426 } 1427 1428 /* Ensure BTF is ready to be modified (by splitting into a three memory 1429 * regions for header, types, and strings). Also invalidate cached 1430 * raw_data, if any. 1431 */ 1432 static int btf_ensure_modifiable(struct btf *btf) 1433 { 1434 void *hdr, *types; 1435 struct strset *set = NULL; 1436 int err = -ENOMEM; 1437 1438 if (btf_is_modifiable(btf)) { 1439 /* any BTF modification invalidates raw_data */ 1440 btf_invalidate_raw_data(btf); 1441 return 0; 1442 } 1443 1444 /* split raw data into three memory regions */ 1445 hdr = malloc(btf->hdr->hdr_len); 1446 types = malloc(btf->hdr->type_len); 1447 if (!hdr || !types) 1448 goto err_out; 1449 1450 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1451 memcpy(types, btf->types_data, btf->hdr->type_len); 1452 1453 /* build lookup index for all strings */ 1454 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1455 if (IS_ERR(set)) { 1456 err = PTR_ERR(set); 1457 goto err_out; 1458 } 1459 1460 /* only when everything was successful, update internal state */ 1461 btf->hdr = hdr; 1462 btf->types_data = types; 1463 btf->types_data_cap = btf->hdr->type_len; 1464 btf->strs_data = NULL; 1465 btf->strs_set = set; 1466 /* if BTF was created from scratch, all strings are guaranteed to be 1467 * unique and deduplicated 1468 */ 1469 if (btf->hdr->str_len == 0) 1470 btf->strs_deduped = true; 1471 if (!btf->base_btf && btf->hdr->str_len == 1) 1472 btf->strs_deduped = true; 1473 1474 /* invalidate raw_data representation */ 1475 btf_invalidate_raw_data(btf); 1476 1477 return 0; 1478 1479 err_out: 1480 strset__free(set); 1481 free(hdr); 1482 free(types); 1483 return err; 1484 } 1485 1486 /* Find an offset in BTF string section that corresponds to a given string *s*. 1487 * Returns: 1488 * - >0 offset into string section, if string is found; 1489 * - -ENOENT, if string is not in the string section; 1490 * - <0, on any other error. 1491 */ 1492 int btf__find_str(struct btf *btf, const char *s) 1493 { 1494 int off; 1495 1496 if (btf->base_btf) { 1497 off = btf__find_str(btf->base_btf, s); 1498 if (off != -ENOENT) 1499 return off; 1500 } 1501 1502 /* BTF needs to be in a modifiable state to build string lookup index */ 1503 if (btf_ensure_modifiable(btf)) 1504 return libbpf_err(-ENOMEM); 1505 1506 off = strset__find_str(btf->strs_set, s); 1507 if (off < 0) 1508 return libbpf_err(off); 1509 1510 return btf->start_str_off + off; 1511 } 1512 1513 /* Add a string s to the BTF string section. 1514 * Returns: 1515 * - > 0 offset into string section, on success; 1516 * - < 0, on error. 1517 */ 1518 int btf__add_str(struct btf *btf, const char *s) 1519 { 1520 int off; 1521 1522 if (btf->base_btf) { 1523 off = btf__find_str(btf->base_btf, s); 1524 if (off != -ENOENT) 1525 return off; 1526 } 1527 1528 if (btf_ensure_modifiable(btf)) 1529 return libbpf_err(-ENOMEM); 1530 1531 off = strset__add_str(btf->strs_set, s); 1532 if (off < 0) 1533 return libbpf_err(off); 1534 1535 btf->hdr->str_len = strset__data_size(btf->strs_set); 1536 1537 return btf->start_str_off + off; 1538 } 1539 1540 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1541 { 1542 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1543 btf->hdr->type_len, UINT_MAX, add_sz); 1544 } 1545 1546 static void btf_type_inc_vlen(struct btf_type *t) 1547 { 1548 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1549 } 1550 1551 static int btf_commit_type(struct btf *btf, int data_sz) 1552 { 1553 int err; 1554 1555 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1556 if (err) 1557 return libbpf_err(err); 1558 1559 btf->hdr->type_len += data_sz; 1560 btf->hdr->str_off += data_sz; 1561 btf->nr_types++; 1562 return btf->start_id + btf->nr_types - 1; 1563 } 1564 1565 struct btf_pipe { 1566 const struct btf *src; 1567 struct btf *dst; 1568 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1569 }; 1570 1571 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1572 { 1573 struct btf_pipe *p = ctx; 1574 long mapped_off; 1575 int off, err; 1576 1577 if (!*str_off) /* nothing to do for empty strings */ 1578 return 0; 1579 1580 if (p->str_off_map && 1581 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1582 *str_off = mapped_off; 1583 return 0; 1584 } 1585 1586 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1587 if (off < 0) 1588 return off; 1589 1590 /* Remember string mapping from src to dst. It avoids 1591 * performing expensive string comparisons. 1592 */ 1593 if (p->str_off_map) { 1594 err = hashmap__append(p->str_off_map, *str_off, off); 1595 if (err) 1596 return err; 1597 } 1598 1599 *str_off = off; 1600 return 0; 1601 } 1602 1603 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1604 { 1605 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1606 struct btf_type *t; 1607 int sz, err; 1608 1609 sz = btf_type_size(src_type); 1610 if (sz < 0) 1611 return libbpf_err(sz); 1612 1613 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1614 if (btf_ensure_modifiable(btf)) 1615 return libbpf_err(-ENOMEM); 1616 1617 t = btf_add_type_mem(btf, sz); 1618 if (!t) 1619 return libbpf_err(-ENOMEM); 1620 1621 memcpy(t, src_type, sz); 1622 1623 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1624 if (err) 1625 return libbpf_err(err); 1626 1627 return btf_commit_type(btf, sz); 1628 } 1629 1630 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1631 { 1632 struct btf *btf = ctx; 1633 1634 if (!*type_id) /* nothing to do for VOID references */ 1635 return 0; 1636 1637 /* we haven't updated btf's type count yet, so 1638 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1639 * add to all newly added BTF types 1640 */ 1641 *type_id += btf->start_id + btf->nr_types - 1; 1642 return 0; 1643 } 1644 1645 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1646 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1647 1648 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1649 { 1650 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1651 int data_sz, sz, cnt, i, err, old_strs_len; 1652 __u32 *off; 1653 void *t; 1654 1655 /* appending split BTF isn't supported yet */ 1656 if (src_btf->base_btf) 1657 return libbpf_err(-ENOTSUP); 1658 1659 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1660 if (btf_ensure_modifiable(btf)) 1661 return libbpf_err(-ENOMEM); 1662 1663 /* remember original strings section size if we have to roll back 1664 * partial strings section changes 1665 */ 1666 old_strs_len = btf->hdr->str_len; 1667 1668 data_sz = src_btf->hdr->type_len; 1669 cnt = btf__type_cnt(src_btf) - 1; 1670 1671 /* pre-allocate enough memory for new types */ 1672 t = btf_add_type_mem(btf, data_sz); 1673 if (!t) 1674 return libbpf_err(-ENOMEM); 1675 1676 /* pre-allocate enough memory for type offset index for new types */ 1677 off = btf_add_type_offs_mem(btf, cnt); 1678 if (!off) 1679 return libbpf_err(-ENOMEM); 1680 1681 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1682 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1683 if (IS_ERR(p.str_off_map)) 1684 return libbpf_err(-ENOMEM); 1685 1686 /* bulk copy types data for all types from src_btf */ 1687 memcpy(t, src_btf->types_data, data_sz); 1688 1689 for (i = 0; i < cnt; i++) { 1690 sz = btf_type_size(t); 1691 if (sz < 0) { 1692 /* unlikely, has to be corrupted src_btf */ 1693 err = sz; 1694 goto err_out; 1695 } 1696 1697 /* fill out type ID to type offset mapping for lookups by type ID */ 1698 *off = t - btf->types_data; 1699 1700 /* add, dedup, and remap strings referenced by this BTF type */ 1701 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1702 if (err) 1703 goto err_out; 1704 1705 /* remap all type IDs referenced from this BTF type */ 1706 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1707 if (err) 1708 goto err_out; 1709 1710 /* go to next type data and type offset index entry */ 1711 t += sz; 1712 off++; 1713 } 1714 1715 /* Up until now any of the copied type data was effectively invisible, 1716 * so if we exited early before this point due to error, BTF would be 1717 * effectively unmodified. There would be extra internal memory 1718 * pre-allocated, but it would not be available for querying. But now 1719 * that we've copied and rewritten all the data successfully, we can 1720 * update type count and various internal offsets and sizes to 1721 * "commit" the changes and made them visible to the outside world. 1722 */ 1723 btf->hdr->type_len += data_sz; 1724 btf->hdr->str_off += data_sz; 1725 btf->nr_types += cnt; 1726 1727 hashmap__free(p.str_off_map); 1728 1729 /* return type ID of the first added BTF type */ 1730 return btf->start_id + btf->nr_types - cnt; 1731 err_out: 1732 /* zero out preallocated memory as if it was just allocated with 1733 * libbpf_add_mem() 1734 */ 1735 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1736 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1737 1738 /* and now restore original strings section size; types data size 1739 * wasn't modified, so doesn't need restoring, see big comment above 1740 */ 1741 btf->hdr->str_len = old_strs_len; 1742 1743 hashmap__free(p.str_off_map); 1744 1745 return libbpf_err(err); 1746 } 1747 1748 /* 1749 * Append new BTF_KIND_INT type with: 1750 * - *name* - non-empty, non-NULL type name; 1751 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1752 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1753 * Returns: 1754 * - >0, type ID of newly added BTF type; 1755 * - <0, on error. 1756 */ 1757 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1758 { 1759 struct btf_type *t; 1760 int sz, name_off; 1761 1762 /* non-empty name */ 1763 if (!name || !name[0]) 1764 return libbpf_err(-EINVAL); 1765 /* byte_sz must be power of 2 */ 1766 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1767 return libbpf_err(-EINVAL); 1768 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1769 return libbpf_err(-EINVAL); 1770 1771 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1772 if (btf_ensure_modifiable(btf)) 1773 return libbpf_err(-ENOMEM); 1774 1775 sz = sizeof(struct btf_type) + sizeof(int); 1776 t = btf_add_type_mem(btf, sz); 1777 if (!t) 1778 return libbpf_err(-ENOMEM); 1779 1780 /* if something goes wrong later, we might end up with an extra string, 1781 * but that shouldn't be a problem, because BTF can't be constructed 1782 * completely anyway and will most probably be just discarded 1783 */ 1784 name_off = btf__add_str(btf, name); 1785 if (name_off < 0) 1786 return name_off; 1787 1788 t->name_off = name_off; 1789 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1790 t->size = byte_sz; 1791 /* set INT info, we don't allow setting legacy bit offset/size */ 1792 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1793 1794 return btf_commit_type(btf, sz); 1795 } 1796 1797 /* 1798 * Append new BTF_KIND_FLOAT type with: 1799 * - *name* - non-empty, non-NULL type name; 1800 * - *sz* - size of the type, in bytes; 1801 * Returns: 1802 * - >0, type ID of newly added BTF type; 1803 * - <0, on error. 1804 */ 1805 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1806 { 1807 struct btf_type *t; 1808 int sz, name_off; 1809 1810 /* non-empty name */ 1811 if (!name || !name[0]) 1812 return libbpf_err(-EINVAL); 1813 1814 /* byte_sz must be one of the explicitly allowed values */ 1815 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1816 byte_sz != 16) 1817 return libbpf_err(-EINVAL); 1818 1819 if (btf_ensure_modifiable(btf)) 1820 return libbpf_err(-ENOMEM); 1821 1822 sz = sizeof(struct btf_type); 1823 t = btf_add_type_mem(btf, sz); 1824 if (!t) 1825 return libbpf_err(-ENOMEM); 1826 1827 name_off = btf__add_str(btf, name); 1828 if (name_off < 0) 1829 return name_off; 1830 1831 t->name_off = name_off; 1832 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1833 t->size = byte_sz; 1834 1835 return btf_commit_type(btf, sz); 1836 } 1837 1838 /* it's completely legal to append BTF types with type IDs pointing forward to 1839 * types that haven't been appended yet, so we only make sure that id looks 1840 * sane, we can't guarantee that ID will always be valid 1841 */ 1842 static int validate_type_id(int id) 1843 { 1844 if (id < 0 || id > BTF_MAX_NR_TYPES) 1845 return -EINVAL; 1846 return 0; 1847 } 1848 1849 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1850 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1851 { 1852 struct btf_type *t; 1853 int sz, name_off = 0; 1854 1855 if (validate_type_id(ref_type_id)) 1856 return libbpf_err(-EINVAL); 1857 1858 if (btf_ensure_modifiable(btf)) 1859 return libbpf_err(-ENOMEM); 1860 1861 sz = sizeof(struct btf_type); 1862 t = btf_add_type_mem(btf, sz); 1863 if (!t) 1864 return libbpf_err(-ENOMEM); 1865 1866 if (name && name[0]) { 1867 name_off = btf__add_str(btf, name); 1868 if (name_off < 0) 1869 return name_off; 1870 } 1871 1872 t->name_off = name_off; 1873 t->info = btf_type_info(kind, 0, 0); 1874 t->type = ref_type_id; 1875 1876 return btf_commit_type(btf, sz); 1877 } 1878 1879 /* 1880 * Append new BTF_KIND_PTR type with: 1881 * - *ref_type_id* - referenced type ID, it might not exist yet; 1882 * Returns: 1883 * - >0, type ID of newly added BTF type; 1884 * - <0, on error. 1885 */ 1886 int btf__add_ptr(struct btf *btf, int ref_type_id) 1887 { 1888 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1889 } 1890 1891 /* 1892 * Append new BTF_KIND_ARRAY type with: 1893 * - *index_type_id* - type ID of the type describing array index; 1894 * - *elem_type_id* - type ID of the type describing array element; 1895 * - *nr_elems* - the size of the array; 1896 * Returns: 1897 * - >0, type ID of newly added BTF type; 1898 * - <0, on error. 1899 */ 1900 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1901 { 1902 struct btf_type *t; 1903 struct btf_array *a; 1904 int sz; 1905 1906 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1907 return libbpf_err(-EINVAL); 1908 1909 if (btf_ensure_modifiable(btf)) 1910 return libbpf_err(-ENOMEM); 1911 1912 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1913 t = btf_add_type_mem(btf, sz); 1914 if (!t) 1915 return libbpf_err(-ENOMEM); 1916 1917 t->name_off = 0; 1918 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1919 t->size = 0; 1920 1921 a = btf_array(t); 1922 a->type = elem_type_id; 1923 a->index_type = index_type_id; 1924 a->nelems = nr_elems; 1925 1926 return btf_commit_type(btf, sz); 1927 } 1928 1929 /* generic STRUCT/UNION append function */ 1930 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1931 { 1932 struct btf_type *t; 1933 int sz, name_off = 0; 1934 1935 if (btf_ensure_modifiable(btf)) 1936 return libbpf_err(-ENOMEM); 1937 1938 sz = sizeof(struct btf_type); 1939 t = btf_add_type_mem(btf, sz); 1940 if (!t) 1941 return libbpf_err(-ENOMEM); 1942 1943 if (name && name[0]) { 1944 name_off = btf__add_str(btf, name); 1945 if (name_off < 0) 1946 return name_off; 1947 } 1948 1949 /* start out with vlen=0 and no kflag; this will be adjusted when 1950 * adding each member 1951 */ 1952 t->name_off = name_off; 1953 t->info = btf_type_info(kind, 0, 0); 1954 t->size = bytes_sz; 1955 1956 return btf_commit_type(btf, sz); 1957 } 1958 1959 /* 1960 * Append new BTF_KIND_STRUCT type with: 1961 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1962 * - *byte_sz* - size of the struct, in bytes; 1963 * 1964 * Struct initially has no fields in it. Fields can be added by 1965 * btf__add_field() right after btf__add_struct() succeeds. 1966 * 1967 * Returns: 1968 * - >0, type ID of newly added BTF type; 1969 * - <0, on error. 1970 */ 1971 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1972 { 1973 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1974 } 1975 1976 /* 1977 * Append new BTF_KIND_UNION type with: 1978 * - *name* - name of the union, can be NULL or empty for anonymous union; 1979 * - *byte_sz* - size of the union, in bytes; 1980 * 1981 * Union initially has no fields in it. Fields can be added by 1982 * btf__add_field() right after btf__add_union() succeeds. All fields 1983 * should have *bit_offset* of 0. 1984 * 1985 * Returns: 1986 * - >0, type ID of newly added BTF type; 1987 * - <0, on error. 1988 */ 1989 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1990 { 1991 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1992 } 1993 1994 static struct btf_type *btf_last_type(struct btf *btf) 1995 { 1996 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1997 } 1998 1999 /* 2000 * Append new field for the current STRUCT/UNION type with: 2001 * - *name* - name of the field, can be NULL or empty for anonymous field; 2002 * - *type_id* - type ID for the type describing field type; 2003 * - *bit_offset* - bit offset of the start of the field within struct/union; 2004 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2005 * Returns: 2006 * - 0, on success; 2007 * - <0, on error. 2008 */ 2009 int btf__add_field(struct btf *btf, const char *name, int type_id, 2010 __u32 bit_offset, __u32 bit_size) 2011 { 2012 struct btf_type *t; 2013 struct btf_member *m; 2014 bool is_bitfield; 2015 int sz, name_off = 0; 2016 2017 /* last type should be union/struct */ 2018 if (btf->nr_types == 0) 2019 return libbpf_err(-EINVAL); 2020 t = btf_last_type(btf); 2021 if (!btf_is_composite(t)) 2022 return libbpf_err(-EINVAL); 2023 2024 if (validate_type_id(type_id)) 2025 return libbpf_err(-EINVAL); 2026 /* best-effort bit field offset/size enforcement */ 2027 is_bitfield = bit_size || (bit_offset % 8 != 0); 2028 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2029 return libbpf_err(-EINVAL); 2030 2031 /* only offset 0 is allowed for unions */ 2032 if (btf_is_union(t) && bit_offset) 2033 return libbpf_err(-EINVAL); 2034 2035 /* decompose and invalidate raw data */ 2036 if (btf_ensure_modifiable(btf)) 2037 return libbpf_err(-ENOMEM); 2038 2039 sz = sizeof(struct btf_member); 2040 m = btf_add_type_mem(btf, sz); 2041 if (!m) 2042 return libbpf_err(-ENOMEM); 2043 2044 if (name && name[0]) { 2045 name_off = btf__add_str(btf, name); 2046 if (name_off < 0) 2047 return name_off; 2048 } 2049 2050 m->name_off = name_off; 2051 m->type = type_id; 2052 m->offset = bit_offset | (bit_size << 24); 2053 2054 /* btf_add_type_mem can invalidate t pointer */ 2055 t = btf_last_type(btf); 2056 /* update parent type's vlen and kflag */ 2057 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2058 2059 btf->hdr->type_len += sz; 2060 btf->hdr->str_off += sz; 2061 return 0; 2062 } 2063 2064 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2065 bool is_signed, __u8 kind) 2066 { 2067 struct btf_type *t; 2068 int sz, name_off = 0; 2069 2070 /* byte_sz must be power of 2 */ 2071 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2072 return libbpf_err(-EINVAL); 2073 2074 if (btf_ensure_modifiable(btf)) 2075 return libbpf_err(-ENOMEM); 2076 2077 sz = sizeof(struct btf_type); 2078 t = btf_add_type_mem(btf, sz); 2079 if (!t) 2080 return libbpf_err(-ENOMEM); 2081 2082 if (name && name[0]) { 2083 name_off = btf__add_str(btf, name); 2084 if (name_off < 0) 2085 return name_off; 2086 } 2087 2088 /* start out with vlen=0; it will be adjusted when adding enum values */ 2089 t->name_off = name_off; 2090 t->info = btf_type_info(kind, 0, is_signed); 2091 t->size = byte_sz; 2092 2093 return btf_commit_type(btf, sz); 2094 } 2095 2096 /* 2097 * Append new BTF_KIND_ENUM type with: 2098 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2099 * - *byte_sz* - size of the enum, in bytes. 2100 * 2101 * Enum initially has no enum values in it (and corresponds to enum forward 2102 * declaration). Enumerator values can be added by btf__add_enum_value() 2103 * immediately after btf__add_enum() succeeds. 2104 * 2105 * Returns: 2106 * - >0, type ID of newly added BTF type; 2107 * - <0, on error. 2108 */ 2109 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2110 { 2111 /* 2112 * set the signedness to be unsigned, it will change to signed 2113 * if any later enumerator is negative. 2114 */ 2115 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2116 } 2117 2118 /* 2119 * Append new enum value for the current ENUM type with: 2120 * - *name* - name of the enumerator value, can't be NULL or empty; 2121 * - *value* - integer value corresponding to enum value *name*; 2122 * Returns: 2123 * - 0, on success; 2124 * - <0, on error. 2125 */ 2126 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2127 { 2128 struct btf_type *t; 2129 struct btf_enum *v; 2130 int sz, name_off; 2131 2132 /* last type should be BTF_KIND_ENUM */ 2133 if (btf->nr_types == 0) 2134 return libbpf_err(-EINVAL); 2135 t = btf_last_type(btf); 2136 if (!btf_is_enum(t)) 2137 return libbpf_err(-EINVAL); 2138 2139 /* non-empty name */ 2140 if (!name || !name[0]) 2141 return libbpf_err(-EINVAL); 2142 if (value < INT_MIN || value > UINT_MAX) 2143 return libbpf_err(-E2BIG); 2144 2145 /* decompose and invalidate raw data */ 2146 if (btf_ensure_modifiable(btf)) 2147 return libbpf_err(-ENOMEM); 2148 2149 sz = sizeof(struct btf_enum); 2150 v = btf_add_type_mem(btf, sz); 2151 if (!v) 2152 return libbpf_err(-ENOMEM); 2153 2154 name_off = btf__add_str(btf, name); 2155 if (name_off < 0) 2156 return name_off; 2157 2158 v->name_off = name_off; 2159 v->val = value; 2160 2161 /* update parent type's vlen */ 2162 t = btf_last_type(btf); 2163 btf_type_inc_vlen(t); 2164 2165 /* if negative value, set signedness to signed */ 2166 if (value < 0) 2167 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2168 2169 btf->hdr->type_len += sz; 2170 btf->hdr->str_off += sz; 2171 return 0; 2172 } 2173 2174 /* 2175 * Append new BTF_KIND_ENUM64 type with: 2176 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2177 * - *byte_sz* - size of the enum, in bytes. 2178 * - *is_signed* - whether the enum values are signed or not; 2179 * 2180 * Enum initially has no enum values in it (and corresponds to enum forward 2181 * declaration). Enumerator values can be added by btf__add_enum64_value() 2182 * immediately after btf__add_enum64() succeeds. 2183 * 2184 * Returns: 2185 * - >0, type ID of newly added BTF type; 2186 * - <0, on error. 2187 */ 2188 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2189 bool is_signed) 2190 { 2191 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2192 BTF_KIND_ENUM64); 2193 } 2194 2195 /* 2196 * Append new enum value for the current ENUM64 type with: 2197 * - *name* - name of the enumerator value, can't be NULL or empty; 2198 * - *value* - integer value corresponding to enum value *name*; 2199 * Returns: 2200 * - 0, on success; 2201 * - <0, on error. 2202 */ 2203 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2204 { 2205 struct btf_enum64 *v; 2206 struct btf_type *t; 2207 int sz, name_off; 2208 2209 /* last type should be BTF_KIND_ENUM64 */ 2210 if (btf->nr_types == 0) 2211 return libbpf_err(-EINVAL); 2212 t = btf_last_type(btf); 2213 if (!btf_is_enum64(t)) 2214 return libbpf_err(-EINVAL); 2215 2216 /* non-empty name */ 2217 if (!name || !name[0]) 2218 return libbpf_err(-EINVAL); 2219 2220 /* decompose and invalidate raw data */ 2221 if (btf_ensure_modifiable(btf)) 2222 return libbpf_err(-ENOMEM); 2223 2224 sz = sizeof(struct btf_enum64); 2225 v = btf_add_type_mem(btf, sz); 2226 if (!v) 2227 return libbpf_err(-ENOMEM); 2228 2229 name_off = btf__add_str(btf, name); 2230 if (name_off < 0) 2231 return name_off; 2232 2233 v->name_off = name_off; 2234 v->val_lo32 = (__u32)value; 2235 v->val_hi32 = value >> 32; 2236 2237 /* update parent type's vlen */ 2238 t = btf_last_type(btf); 2239 btf_type_inc_vlen(t); 2240 2241 btf->hdr->type_len += sz; 2242 btf->hdr->str_off += sz; 2243 return 0; 2244 } 2245 2246 /* 2247 * Append new BTF_KIND_FWD type with: 2248 * - *name*, non-empty/non-NULL name; 2249 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2250 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2251 * Returns: 2252 * - >0, type ID of newly added BTF type; 2253 * - <0, on error. 2254 */ 2255 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2256 { 2257 if (!name || !name[0]) 2258 return libbpf_err(-EINVAL); 2259 2260 switch (fwd_kind) { 2261 case BTF_FWD_STRUCT: 2262 case BTF_FWD_UNION: { 2263 struct btf_type *t; 2264 int id; 2265 2266 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2267 if (id <= 0) 2268 return id; 2269 t = btf_type_by_id(btf, id); 2270 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2271 return id; 2272 } 2273 case BTF_FWD_ENUM: 2274 /* enum forward in BTF currently is just an enum with no enum 2275 * values; we also assume a standard 4-byte size for it 2276 */ 2277 return btf__add_enum(btf, name, sizeof(int)); 2278 default: 2279 return libbpf_err(-EINVAL); 2280 } 2281 } 2282 2283 /* 2284 * Append new BTF_KING_TYPEDEF type with: 2285 * - *name*, non-empty/non-NULL name; 2286 * - *ref_type_id* - referenced type ID, it might not exist yet; 2287 * Returns: 2288 * - >0, type ID of newly added BTF type; 2289 * - <0, on error. 2290 */ 2291 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2292 { 2293 if (!name || !name[0]) 2294 return libbpf_err(-EINVAL); 2295 2296 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2297 } 2298 2299 /* 2300 * Append new BTF_KIND_VOLATILE type with: 2301 * - *ref_type_id* - referenced type ID, it might not exist yet; 2302 * Returns: 2303 * - >0, type ID of newly added BTF type; 2304 * - <0, on error. 2305 */ 2306 int btf__add_volatile(struct btf *btf, int ref_type_id) 2307 { 2308 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2309 } 2310 2311 /* 2312 * Append new BTF_KIND_CONST type with: 2313 * - *ref_type_id* - referenced type ID, it might not exist yet; 2314 * Returns: 2315 * - >0, type ID of newly added BTF type; 2316 * - <0, on error. 2317 */ 2318 int btf__add_const(struct btf *btf, int ref_type_id) 2319 { 2320 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2321 } 2322 2323 /* 2324 * Append new BTF_KIND_RESTRICT type with: 2325 * - *ref_type_id* - referenced type ID, it might not exist yet; 2326 * Returns: 2327 * - >0, type ID of newly added BTF type; 2328 * - <0, on error. 2329 */ 2330 int btf__add_restrict(struct btf *btf, int ref_type_id) 2331 { 2332 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2333 } 2334 2335 /* 2336 * Append new BTF_KIND_TYPE_TAG type with: 2337 * - *value*, non-empty/non-NULL tag value; 2338 * - *ref_type_id* - referenced type ID, it might not exist yet; 2339 * Returns: 2340 * - >0, type ID of newly added BTF type; 2341 * - <0, on error. 2342 */ 2343 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2344 { 2345 if (!value || !value[0]) 2346 return libbpf_err(-EINVAL); 2347 2348 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2349 } 2350 2351 /* 2352 * Append new BTF_KIND_FUNC type with: 2353 * - *name*, non-empty/non-NULL name; 2354 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2355 * Returns: 2356 * - >0, type ID of newly added BTF type; 2357 * - <0, on error. 2358 */ 2359 int btf__add_func(struct btf *btf, const char *name, 2360 enum btf_func_linkage linkage, int proto_type_id) 2361 { 2362 int id; 2363 2364 if (!name || !name[0]) 2365 return libbpf_err(-EINVAL); 2366 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2367 linkage != BTF_FUNC_EXTERN) 2368 return libbpf_err(-EINVAL); 2369 2370 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2371 if (id > 0) { 2372 struct btf_type *t = btf_type_by_id(btf, id); 2373 2374 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2375 } 2376 return libbpf_err(id); 2377 } 2378 2379 /* 2380 * Append new BTF_KIND_FUNC_PROTO with: 2381 * - *ret_type_id* - type ID for return result of a function. 2382 * 2383 * Function prototype initially has no arguments, but they can be added by 2384 * btf__add_func_param() one by one, immediately after 2385 * btf__add_func_proto() succeeded. 2386 * 2387 * Returns: 2388 * - >0, type ID of newly added BTF type; 2389 * - <0, on error. 2390 */ 2391 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2392 { 2393 struct btf_type *t; 2394 int sz; 2395 2396 if (validate_type_id(ret_type_id)) 2397 return libbpf_err(-EINVAL); 2398 2399 if (btf_ensure_modifiable(btf)) 2400 return libbpf_err(-ENOMEM); 2401 2402 sz = sizeof(struct btf_type); 2403 t = btf_add_type_mem(btf, sz); 2404 if (!t) 2405 return libbpf_err(-ENOMEM); 2406 2407 /* start out with vlen=0; this will be adjusted when adding enum 2408 * values, if necessary 2409 */ 2410 t->name_off = 0; 2411 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2412 t->type = ret_type_id; 2413 2414 return btf_commit_type(btf, sz); 2415 } 2416 2417 /* 2418 * Append new function parameter for current FUNC_PROTO type with: 2419 * - *name* - parameter name, can be NULL or empty; 2420 * - *type_id* - type ID describing the type of the parameter. 2421 * Returns: 2422 * - 0, on success; 2423 * - <0, on error. 2424 */ 2425 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2426 { 2427 struct btf_type *t; 2428 struct btf_param *p; 2429 int sz, name_off = 0; 2430 2431 if (validate_type_id(type_id)) 2432 return libbpf_err(-EINVAL); 2433 2434 /* last type should be BTF_KIND_FUNC_PROTO */ 2435 if (btf->nr_types == 0) 2436 return libbpf_err(-EINVAL); 2437 t = btf_last_type(btf); 2438 if (!btf_is_func_proto(t)) 2439 return libbpf_err(-EINVAL); 2440 2441 /* decompose and invalidate raw data */ 2442 if (btf_ensure_modifiable(btf)) 2443 return libbpf_err(-ENOMEM); 2444 2445 sz = sizeof(struct btf_param); 2446 p = btf_add_type_mem(btf, sz); 2447 if (!p) 2448 return libbpf_err(-ENOMEM); 2449 2450 if (name && name[0]) { 2451 name_off = btf__add_str(btf, name); 2452 if (name_off < 0) 2453 return name_off; 2454 } 2455 2456 p->name_off = name_off; 2457 p->type = type_id; 2458 2459 /* update parent type's vlen */ 2460 t = btf_last_type(btf); 2461 btf_type_inc_vlen(t); 2462 2463 btf->hdr->type_len += sz; 2464 btf->hdr->str_off += sz; 2465 return 0; 2466 } 2467 2468 /* 2469 * Append new BTF_KIND_VAR type with: 2470 * - *name* - non-empty/non-NULL name; 2471 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2472 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2473 * - *type_id* - type ID of the type describing the type of the variable. 2474 * Returns: 2475 * - >0, type ID of newly added BTF type; 2476 * - <0, on error. 2477 */ 2478 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2479 { 2480 struct btf_type *t; 2481 struct btf_var *v; 2482 int sz, name_off; 2483 2484 /* non-empty name */ 2485 if (!name || !name[0]) 2486 return libbpf_err(-EINVAL); 2487 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2488 linkage != BTF_VAR_GLOBAL_EXTERN) 2489 return libbpf_err(-EINVAL); 2490 if (validate_type_id(type_id)) 2491 return libbpf_err(-EINVAL); 2492 2493 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2494 if (btf_ensure_modifiable(btf)) 2495 return libbpf_err(-ENOMEM); 2496 2497 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2498 t = btf_add_type_mem(btf, sz); 2499 if (!t) 2500 return libbpf_err(-ENOMEM); 2501 2502 name_off = btf__add_str(btf, name); 2503 if (name_off < 0) 2504 return name_off; 2505 2506 t->name_off = name_off; 2507 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2508 t->type = type_id; 2509 2510 v = btf_var(t); 2511 v->linkage = linkage; 2512 2513 return btf_commit_type(btf, sz); 2514 } 2515 2516 /* 2517 * Append new BTF_KIND_DATASEC type with: 2518 * - *name* - non-empty/non-NULL name; 2519 * - *byte_sz* - data section size, in bytes. 2520 * 2521 * Data section is initially empty. Variables info can be added with 2522 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2523 * 2524 * Returns: 2525 * - >0, type ID of newly added BTF type; 2526 * - <0, on error. 2527 */ 2528 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2529 { 2530 struct btf_type *t; 2531 int sz, name_off; 2532 2533 /* non-empty name */ 2534 if (!name || !name[0]) 2535 return libbpf_err(-EINVAL); 2536 2537 if (btf_ensure_modifiable(btf)) 2538 return libbpf_err(-ENOMEM); 2539 2540 sz = sizeof(struct btf_type); 2541 t = btf_add_type_mem(btf, sz); 2542 if (!t) 2543 return libbpf_err(-ENOMEM); 2544 2545 name_off = btf__add_str(btf, name); 2546 if (name_off < 0) 2547 return name_off; 2548 2549 /* start with vlen=0, which will be update as var_secinfos are added */ 2550 t->name_off = name_off; 2551 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2552 t->size = byte_sz; 2553 2554 return btf_commit_type(btf, sz); 2555 } 2556 2557 /* 2558 * Append new data section variable information entry for current DATASEC type: 2559 * - *var_type_id* - type ID, describing type of the variable; 2560 * - *offset* - variable offset within data section, in bytes; 2561 * - *byte_sz* - variable size, in bytes. 2562 * 2563 * Returns: 2564 * - 0, on success; 2565 * - <0, on error. 2566 */ 2567 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2568 { 2569 struct btf_type *t; 2570 struct btf_var_secinfo *v; 2571 int sz; 2572 2573 /* last type should be BTF_KIND_DATASEC */ 2574 if (btf->nr_types == 0) 2575 return libbpf_err(-EINVAL); 2576 t = btf_last_type(btf); 2577 if (!btf_is_datasec(t)) 2578 return libbpf_err(-EINVAL); 2579 2580 if (validate_type_id(var_type_id)) 2581 return libbpf_err(-EINVAL); 2582 2583 /* decompose and invalidate raw data */ 2584 if (btf_ensure_modifiable(btf)) 2585 return libbpf_err(-ENOMEM); 2586 2587 sz = sizeof(struct btf_var_secinfo); 2588 v = btf_add_type_mem(btf, sz); 2589 if (!v) 2590 return libbpf_err(-ENOMEM); 2591 2592 v->type = var_type_id; 2593 v->offset = offset; 2594 v->size = byte_sz; 2595 2596 /* update parent type's vlen */ 2597 t = btf_last_type(btf); 2598 btf_type_inc_vlen(t); 2599 2600 btf->hdr->type_len += sz; 2601 btf->hdr->str_off += sz; 2602 return 0; 2603 } 2604 2605 /* 2606 * Append new BTF_KIND_DECL_TAG type with: 2607 * - *value* - non-empty/non-NULL string; 2608 * - *ref_type_id* - referenced type ID, it might not exist yet; 2609 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2610 * member or function argument index; 2611 * Returns: 2612 * - >0, type ID of newly added BTF type; 2613 * - <0, on error. 2614 */ 2615 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2616 int component_idx) 2617 { 2618 struct btf_type *t; 2619 int sz, value_off; 2620 2621 if (!value || !value[0] || component_idx < -1) 2622 return libbpf_err(-EINVAL); 2623 2624 if (validate_type_id(ref_type_id)) 2625 return libbpf_err(-EINVAL); 2626 2627 if (btf_ensure_modifiable(btf)) 2628 return libbpf_err(-ENOMEM); 2629 2630 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2631 t = btf_add_type_mem(btf, sz); 2632 if (!t) 2633 return libbpf_err(-ENOMEM); 2634 2635 value_off = btf__add_str(btf, value); 2636 if (value_off < 0) 2637 return value_off; 2638 2639 t->name_off = value_off; 2640 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2641 t->type = ref_type_id; 2642 btf_decl_tag(t)->component_idx = component_idx; 2643 2644 return btf_commit_type(btf, sz); 2645 } 2646 2647 struct btf_ext_sec_setup_param { 2648 __u32 off; 2649 __u32 len; 2650 __u32 min_rec_size; 2651 struct btf_ext_info *ext_info; 2652 const char *desc; 2653 }; 2654 2655 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2656 struct btf_ext_sec_setup_param *ext_sec) 2657 { 2658 const struct btf_ext_info_sec *sinfo; 2659 struct btf_ext_info *ext_info; 2660 __u32 info_left, record_size; 2661 size_t sec_cnt = 0; 2662 /* The start of the info sec (including the __u32 record_size). */ 2663 void *info; 2664 2665 if (ext_sec->len == 0) 2666 return 0; 2667 2668 if (ext_sec->off & 0x03) { 2669 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2670 ext_sec->desc); 2671 return -EINVAL; 2672 } 2673 2674 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2675 info_left = ext_sec->len; 2676 2677 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2678 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2679 ext_sec->desc, ext_sec->off, ext_sec->len); 2680 return -EINVAL; 2681 } 2682 2683 /* At least a record size */ 2684 if (info_left < sizeof(__u32)) { 2685 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2686 return -EINVAL; 2687 } 2688 2689 /* The record size needs to meet the minimum standard */ 2690 record_size = *(__u32 *)info; 2691 if (record_size < ext_sec->min_rec_size || 2692 record_size & 0x03) { 2693 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2694 ext_sec->desc, record_size); 2695 return -EINVAL; 2696 } 2697 2698 sinfo = info + sizeof(__u32); 2699 info_left -= sizeof(__u32); 2700 2701 /* If no records, return failure now so .BTF.ext won't be used. */ 2702 if (!info_left) { 2703 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2704 return -EINVAL; 2705 } 2706 2707 while (info_left) { 2708 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2709 __u64 total_record_size; 2710 __u32 num_records; 2711 2712 if (info_left < sec_hdrlen) { 2713 pr_debug("%s section header is not found in .BTF.ext\n", 2714 ext_sec->desc); 2715 return -EINVAL; 2716 } 2717 2718 num_records = sinfo->num_info; 2719 if (num_records == 0) { 2720 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2721 ext_sec->desc); 2722 return -EINVAL; 2723 } 2724 2725 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2726 if (info_left < total_record_size) { 2727 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2728 ext_sec->desc); 2729 return -EINVAL; 2730 } 2731 2732 info_left -= total_record_size; 2733 sinfo = (void *)sinfo + total_record_size; 2734 sec_cnt++; 2735 } 2736 2737 ext_info = ext_sec->ext_info; 2738 ext_info->len = ext_sec->len - sizeof(__u32); 2739 ext_info->rec_size = record_size; 2740 ext_info->info = info + sizeof(__u32); 2741 ext_info->sec_cnt = sec_cnt; 2742 2743 return 0; 2744 } 2745 2746 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2747 { 2748 struct btf_ext_sec_setup_param param = { 2749 .off = btf_ext->hdr->func_info_off, 2750 .len = btf_ext->hdr->func_info_len, 2751 .min_rec_size = sizeof(struct bpf_func_info_min), 2752 .ext_info = &btf_ext->func_info, 2753 .desc = "func_info" 2754 }; 2755 2756 return btf_ext_setup_info(btf_ext, ¶m); 2757 } 2758 2759 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2760 { 2761 struct btf_ext_sec_setup_param param = { 2762 .off = btf_ext->hdr->line_info_off, 2763 .len = btf_ext->hdr->line_info_len, 2764 .min_rec_size = sizeof(struct bpf_line_info_min), 2765 .ext_info = &btf_ext->line_info, 2766 .desc = "line_info", 2767 }; 2768 2769 return btf_ext_setup_info(btf_ext, ¶m); 2770 } 2771 2772 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2773 { 2774 struct btf_ext_sec_setup_param param = { 2775 .off = btf_ext->hdr->core_relo_off, 2776 .len = btf_ext->hdr->core_relo_len, 2777 .min_rec_size = sizeof(struct bpf_core_relo), 2778 .ext_info = &btf_ext->core_relo_info, 2779 .desc = "core_relo", 2780 }; 2781 2782 return btf_ext_setup_info(btf_ext, ¶m); 2783 } 2784 2785 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2786 { 2787 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2788 2789 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2790 data_size < hdr->hdr_len) { 2791 pr_debug("BTF.ext header not found"); 2792 return -EINVAL; 2793 } 2794 2795 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2796 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2797 return -ENOTSUP; 2798 } else if (hdr->magic != BTF_MAGIC) { 2799 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2800 return -EINVAL; 2801 } 2802 2803 if (hdr->version != BTF_VERSION) { 2804 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2805 return -ENOTSUP; 2806 } 2807 2808 if (hdr->flags) { 2809 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2810 return -ENOTSUP; 2811 } 2812 2813 if (data_size == hdr->hdr_len) { 2814 pr_debug("BTF.ext has no data\n"); 2815 return -EINVAL; 2816 } 2817 2818 return 0; 2819 } 2820 2821 void btf_ext__free(struct btf_ext *btf_ext) 2822 { 2823 if (IS_ERR_OR_NULL(btf_ext)) 2824 return; 2825 free(btf_ext->func_info.sec_idxs); 2826 free(btf_ext->line_info.sec_idxs); 2827 free(btf_ext->core_relo_info.sec_idxs); 2828 free(btf_ext->data); 2829 free(btf_ext); 2830 } 2831 2832 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2833 { 2834 struct btf_ext *btf_ext; 2835 int err; 2836 2837 btf_ext = calloc(1, sizeof(struct btf_ext)); 2838 if (!btf_ext) 2839 return libbpf_err_ptr(-ENOMEM); 2840 2841 btf_ext->data_size = size; 2842 btf_ext->data = malloc(size); 2843 if (!btf_ext->data) { 2844 err = -ENOMEM; 2845 goto done; 2846 } 2847 memcpy(btf_ext->data, data, size); 2848 2849 err = btf_ext_parse_hdr(btf_ext->data, size); 2850 if (err) 2851 goto done; 2852 2853 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2854 err = -EINVAL; 2855 goto done; 2856 } 2857 2858 err = btf_ext_setup_func_info(btf_ext); 2859 if (err) 2860 goto done; 2861 2862 err = btf_ext_setup_line_info(btf_ext); 2863 if (err) 2864 goto done; 2865 2866 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2867 goto done; /* skip core relos parsing */ 2868 2869 err = btf_ext_setup_core_relos(btf_ext); 2870 if (err) 2871 goto done; 2872 2873 done: 2874 if (err) { 2875 btf_ext__free(btf_ext); 2876 return libbpf_err_ptr(err); 2877 } 2878 2879 return btf_ext; 2880 } 2881 2882 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2883 { 2884 *size = btf_ext->data_size; 2885 return btf_ext->data; 2886 } 2887 2888 struct btf_dedup; 2889 2890 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2891 static void btf_dedup_free(struct btf_dedup *d); 2892 static int btf_dedup_prep(struct btf_dedup *d); 2893 static int btf_dedup_strings(struct btf_dedup *d); 2894 static int btf_dedup_prim_types(struct btf_dedup *d); 2895 static int btf_dedup_struct_types(struct btf_dedup *d); 2896 static int btf_dedup_ref_types(struct btf_dedup *d); 2897 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 2898 static int btf_dedup_compact_types(struct btf_dedup *d); 2899 static int btf_dedup_remap_types(struct btf_dedup *d); 2900 2901 /* 2902 * Deduplicate BTF types and strings. 2903 * 2904 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2905 * section with all BTF type descriptors and string data. It overwrites that 2906 * memory in-place with deduplicated types and strings without any loss of 2907 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2908 * is provided, all the strings referenced from .BTF.ext section are honored 2909 * and updated to point to the right offsets after deduplication. 2910 * 2911 * If function returns with error, type/string data might be garbled and should 2912 * be discarded. 2913 * 2914 * More verbose and detailed description of both problem btf_dedup is solving, 2915 * as well as solution could be found at: 2916 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2917 * 2918 * Problem description and justification 2919 * ===================================== 2920 * 2921 * BTF type information is typically emitted either as a result of conversion 2922 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2923 * unit contains information about a subset of all the types that are used 2924 * in an application. These subsets are frequently overlapping and contain a lot 2925 * of duplicated information when later concatenated together into a single 2926 * binary. This algorithm ensures that each unique type is represented by single 2927 * BTF type descriptor, greatly reducing resulting size of BTF data. 2928 * 2929 * Compilation unit isolation and subsequent duplication of data is not the only 2930 * problem. The same type hierarchy (e.g., struct and all the type that struct 2931 * references) in different compilation units can be represented in BTF to 2932 * various degrees of completeness (or, rather, incompleteness) due to 2933 * struct/union forward declarations. 2934 * 2935 * Let's take a look at an example, that we'll use to better understand the 2936 * problem (and solution). Suppose we have two compilation units, each using 2937 * same `struct S`, but each of them having incomplete type information about 2938 * struct's fields: 2939 * 2940 * // CU #1: 2941 * struct S; 2942 * struct A { 2943 * int a; 2944 * struct A* self; 2945 * struct S* parent; 2946 * }; 2947 * struct B; 2948 * struct S { 2949 * struct A* a_ptr; 2950 * struct B* b_ptr; 2951 * }; 2952 * 2953 * // CU #2: 2954 * struct S; 2955 * struct A; 2956 * struct B { 2957 * int b; 2958 * struct B* self; 2959 * struct S* parent; 2960 * }; 2961 * struct S { 2962 * struct A* a_ptr; 2963 * struct B* b_ptr; 2964 * }; 2965 * 2966 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2967 * more), but will know the complete type information about `struct A`. While 2968 * for CU #2, it will know full type information about `struct B`, but will 2969 * only know about forward declaration of `struct A` (in BTF terms, it will 2970 * have `BTF_KIND_FWD` type descriptor with name `B`). 2971 * 2972 * This compilation unit isolation means that it's possible that there is no 2973 * single CU with complete type information describing structs `S`, `A`, and 2974 * `B`. Also, we might get tons of duplicated and redundant type information. 2975 * 2976 * Additional complication we need to keep in mind comes from the fact that 2977 * types, in general, can form graphs containing cycles, not just DAGs. 2978 * 2979 * While algorithm does deduplication, it also merges and resolves type 2980 * information (unless disabled throught `struct btf_opts`), whenever possible. 2981 * E.g., in the example above with two compilation units having partial type 2982 * information for structs `A` and `B`, the output of algorithm will emit 2983 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2984 * (as well as type information for `int` and pointers), as if they were defined 2985 * in a single compilation unit as: 2986 * 2987 * struct A { 2988 * int a; 2989 * struct A* self; 2990 * struct S* parent; 2991 * }; 2992 * struct B { 2993 * int b; 2994 * struct B* self; 2995 * struct S* parent; 2996 * }; 2997 * struct S { 2998 * struct A* a_ptr; 2999 * struct B* b_ptr; 3000 * }; 3001 * 3002 * Algorithm summary 3003 * ================= 3004 * 3005 * Algorithm completes its work in 7 separate passes: 3006 * 3007 * 1. Strings deduplication. 3008 * 2. Primitive types deduplication (int, enum, fwd). 3009 * 3. Struct/union types deduplication. 3010 * 4. Resolve unambiguous forward declarations. 3011 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3012 * protos, and const/volatile/restrict modifiers). 3013 * 6. Types compaction. 3014 * 7. Types remapping. 3015 * 3016 * Algorithm determines canonical type descriptor, which is a single 3017 * representative type for each truly unique type. This canonical type is the 3018 * one that will go into final deduplicated BTF type information. For 3019 * struct/unions, it is also the type that algorithm will merge additional type 3020 * information into (while resolving FWDs), as it discovers it from data in 3021 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3022 * that type is canonical, or to some other type, if that type is equivalent 3023 * and was chosen as canonical representative. This mapping is stored in 3024 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3025 * FWD type got resolved to. 3026 * 3027 * To facilitate fast discovery of canonical types, we also maintain canonical 3028 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3029 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3030 * that match that signature. With sufficiently good choice of type signature 3031 * hashing function, we can limit number of canonical types for each unique type 3032 * signature to a very small number, allowing to find canonical type for any 3033 * duplicated type very quickly. 3034 * 3035 * Struct/union deduplication is the most critical part and algorithm for 3036 * deduplicating structs/unions is described in greater details in comments for 3037 * `btf_dedup_is_equiv` function. 3038 */ 3039 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3040 { 3041 struct btf_dedup *d; 3042 int err; 3043 3044 if (!OPTS_VALID(opts, btf_dedup_opts)) 3045 return libbpf_err(-EINVAL); 3046 3047 d = btf_dedup_new(btf, opts); 3048 if (IS_ERR(d)) { 3049 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3050 return libbpf_err(-EINVAL); 3051 } 3052 3053 if (btf_ensure_modifiable(btf)) { 3054 err = -ENOMEM; 3055 goto done; 3056 } 3057 3058 err = btf_dedup_prep(d); 3059 if (err) { 3060 pr_debug("btf_dedup_prep failed:%d\n", err); 3061 goto done; 3062 } 3063 err = btf_dedup_strings(d); 3064 if (err < 0) { 3065 pr_debug("btf_dedup_strings failed:%d\n", err); 3066 goto done; 3067 } 3068 err = btf_dedup_prim_types(d); 3069 if (err < 0) { 3070 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3071 goto done; 3072 } 3073 err = btf_dedup_struct_types(d); 3074 if (err < 0) { 3075 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3076 goto done; 3077 } 3078 err = btf_dedup_resolve_fwds(d); 3079 if (err < 0) { 3080 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3081 goto done; 3082 } 3083 err = btf_dedup_ref_types(d); 3084 if (err < 0) { 3085 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3086 goto done; 3087 } 3088 err = btf_dedup_compact_types(d); 3089 if (err < 0) { 3090 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3091 goto done; 3092 } 3093 err = btf_dedup_remap_types(d); 3094 if (err < 0) { 3095 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3096 goto done; 3097 } 3098 3099 done: 3100 btf_dedup_free(d); 3101 return libbpf_err(err); 3102 } 3103 3104 #define BTF_UNPROCESSED_ID ((__u32)-1) 3105 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3106 3107 struct btf_dedup { 3108 /* .BTF section to be deduped in-place */ 3109 struct btf *btf; 3110 /* 3111 * Optional .BTF.ext section. When provided, any strings referenced 3112 * from it will be taken into account when deduping strings 3113 */ 3114 struct btf_ext *btf_ext; 3115 /* 3116 * This is a map from any type's signature hash to a list of possible 3117 * canonical representative type candidates. Hash collisions are 3118 * ignored, so even types of various kinds can share same list of 3119 * candidates, which is fine because we rely on subsequent 3120 * btf_xxx_equal() checks to authoritatively verify type equality. 3121 */ 3122 struct hashmap *dedup_table; 3123 /* Canonical types map */ 3124 __u32 *map; 3125 /* Hypothetical mapping, used during type graph equivalence checks */ 3126 __u32 *hypot_map; 3127 __u32 *hypot_list; 3128 size_t hypot_cnt; 3129 size_t hypot_cap; 3130 /* Whether hypothetical mapping, if successful, would need to adjust 3131 * already canonicalized types (due to a new forward declaration to 3132 * concrete type resolution). In such case, during split BTF dedup 3133 * candidate type would still be considered as different, because base 3134 * BTF is considered to be immutable. 3135 */ 3136 bool hypot_adjust_canon; 3137 /* Various option modifying behavior of algorithm */ 3138 struct btf_dedup_opts opts; 3139 /* temporary strings deduplication state */ 3140 struct strset *strs_set; 3141 }; 3142 3143 static long hash_combine(long h, long value) 3144 { 3145 return h * 31 + value; 3146 } 3147 3148 #define for_each_dedup_cand(d, node, hash) \ 3149 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3150 3151 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3152 { 3153 return hashmap__append(d->dedup_table, hash, type_id); 3154 } 3155 3156 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3157 __u32 from_id, __u32 to_id) 3158 { 3159 if (d->hypot_cnt == d->hypot_cap) { 3160 __u32 *new_list; 3161 3162 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3163 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3164 if (!new_list) 3165 return -ENOMEM; 3166 d->hypot_list = new_list; 3167 } 3168 d->hypot_list[d->hypot_cnt++] = from_id; 3169 d->hypot_map[from_id] = to_id; 3170 return 0; 3171 } 3172 3173 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3174 { 3175 int i; 3176 3177 for (i = 0; i < d->hypot_cnt; i++) 3178 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3179 d->hypot_cnt = 0; 3180 d->hypot_adjust_canon = false; 3181 } 3182 3183 static void btf_dedup_free(struct btf_dedup *d) 3184 { 3185 hashmap__free(d->dedup_table); 3186 d->dedup_table = NULL; 3187 3188 free(d->map); 3189 d->map = NULL; 3190 3191 free(d->hypot_map); 3192 d->hypot_map = NULL; 3193 3194 free(d->hypot_list); 3195 d->hypot_list = NULL; 3196 3197 free(d); 3198 } 3199 3200 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3201 { 3202 return key; 3203 } 3204 3205 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3206 { 3207 return 0; 3208 } 3209 3210 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3211 { 3212 return k1 == k2; 3213 } 3214 3215 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3216 { 3217 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3218 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3219 int i, err = 0, type_cnt; 3220 3221 if (!d) 3222 return ERR_PTR(-ENOMEM); 3223 3224 if (OPTS_GET(opts, force_collisions, false)) 3225 hash_fn = btf_dedup_collision_hash_fn; 3226 3227 d->btf = btf; 3228 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3229 3230 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3231 if (IS_ERR(d->dedup_table)) { 3232 err = PTR_ERR(d->dedup_table); 3233 d->dedup_table = NULL; 3234 goto done; 3235 } 3236 3237 type_cnt = btf__type_cnt(btf); 3238 d->map = malloc(sizeof(__u32) * type_cnt); 3239 if (!d->map) { 3240 err = -ENOMEM; 3241 goto done; 3242 } 3243 /* special BTF "void" type is made canonical immediately */ 3244 d->map[0] = 0; 3245 for (i = 1; i < type_cnt; i++) { 3246 struct btf_type *t = btf_type_by_id(d->btf, i); 3247 3248 /* VAR and DATASEC are never deduped and are self-canonical */ 3249 if (btf_is_var(t) || btf_is_datasec(t)) 3250 d->map[i] = i; 3251 else 3252 d->map[i] = BTF_UNPROCESSED_ID; 3253 } 3254 3255 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3256 if (!d->hypot_map) { 3257 err = -ENOMEM; 3258 goto done; 3259 } 3260 for (i = 0; i < type_cnt; i++) 3261 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3262 3263 done: 3264 if (err) { 3265 btf_dedup_free(d); 3266 return ERR_PTR(err); 3267 } 3268 3269 return d; 3270 } 3271 3272 /* 3273 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3274 * string and pass pointer to it to a provided callback `fn`. 3275 */ 3276 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3277 { 3278 int i, r; 3279 3280 for (i = 0; i < d->btf->nr_types; i++) { 3281 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3282 3283 r = btf_type_visit_str_offs(t, fn, ctx); 3284 if (r) 3285 return r; 3286 } 3287 3288 if (!d->btf_ext) 3289 return 0; 3290 3291 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3292 if (r) 3293 return r; 3294 3295 return 0; 3296 } 3297 3298 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3299 { 3300 struct btf_dedup *d = ctx; 3301 __u32 str_off = *str_off_ptr; 3302 const char *s; 3303 int off, err; 3304 3305 /* don't touch empty string or string in main BTF */ 3306 if (str_off == 0 || str_off < d->btf->start_str_off) 3307 return 0; 3308 3309 s = btf__str_by_offset(d->btf, str_off); 3310 if (d->btf->base_btf) { 3311 err = btf__find_str(d->btf->base_btf, s); 3312 if (err >= 0) { 3313 *str_off_ptr = err; 3314 return 0; 3315 } 3316 if (err != -ENOENT) 3317 return err; 3318 } 3319 3320 off = strset__add_str(d->strs_set, s); 3321 if (off < 0) 3322 return off; 3323 3324 *str_off_ptr = d->btf->start_str_off + off; 3325 return 0; 3326 } 3327 3328 /* 3329 * Dedup string and filter out those that are not referenced from either .BTF 3330 * or .BTF.ext (if provided) sections. 3331 * 3332 * This is done by building index of all strings in BTF's string section, 3333 * then iterating over all entities that can reference strings (e.g., type 3334 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3335 * strings as used. After that all used strings are deduped and compacted into 3336 * sequential blob of memory and new offsets are calculated. Then all the string 3337 * references are iterated again and rewritten using new offsets. 3338 */ 3339 static int btf_dedup_strings(struct btf_dedup *d) 3340 { 3341 int err; 3342 3343 if (d->btf->strs_deduped) 3344 return 0; 3345 3346 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3347 if (IS_ERR(d->strs_set)) { 3348 err = PTR_ERR(d->strs_set); 3349 goto err_out; 3350 } 3351 3352 if (!d->btf->base_btf) { 3353 /* insert empty string; we won't be looking it up during strings 3354 * dedup, but it's good to have it for generic BTF string lookups 3355 */ 3356 err = strset__add_str(d->strs_set, ""); 3357 if (err < 0) 3358 goto err_out; 3359 } 3360 3361 /* remap string offsets */ 3362 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3363 if (err) 3364 goto err_out; 3365 3366 /* replace BTF string data and hash with deduped ones */ 3367 strset__free(d->btf->strs_set); 3368 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3369 d->btf->strs_set = d->strs_set; 3370 d->strs_set = NULL; 3371 d->btf->strs_deduped = true; 3372 return 0; 3373 3374 err_out: 3375 strset__free(d->strs_set); 3376 d->strs_set = NULL; 3377 3378 return err; 3379 } 3380 3381 static long btf_hash_common(struct btf_type *t) 3382 { 3383 long h; 3384 3385 h = hash_combine(0, t->name_off); 3386 h = hash_combine(h, t->info); 3387 h = hash_combine(h, t->size); 3388 return h; 3389 } 3390 3391 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3392 { 3393 return t1->name_off == t2->name_off && 3394 t1->info == t2->info && 3395 t1->size == t2->size; 3396 } 3397 3398 /* Calculate type signature hash of INT or TAG. */ 3399 static long btf_hash_int_decl_tag(struct btf_type *t) 3400 { 3401 __u32 info = *(__u32 *)(t + 1); 3402 long h; 3403 3404 h = btf_hash_common(t); 3405 h = hash_combine(h, info); 3406 return h; 3407 } 3408 3409 /* Check structural equality of two INTs or TAGs. */ 3410 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3411 { 3412 __u32 info1, info2; 3413 3414 if (!btf_equal_common(t1, t2)) 3415 return false; 3416 info1 = *(__u32 *)(t1 + 1); 3417 info2 = *(__u32 *)(t2 + 1); 3418 return info1 == info2; 3419 } 3420 3421 /* Calculate type signature hash of ENUM/ENUM64. */ 3422 static long btf_hash_enum(struct btf_type *t) 3423 { 3424 long h; 3425 3426 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3427 h = hash_combine(0, t->name_off); 3428 return h; 3429 } 3430 3431 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3432 { 3433 const struct btf_enum *m1, *m2; 3434 __u16 vlen; 3435 int i; 3436 3437 vlen = btf_vlen(t1); 3438 m1 = btf_enum(t1); 3439 m2 = btf_enum(t2); 3440 for (i = 0; i < vlen; i++) { 3441 if (m1->name_off != m2->name_off || m1->val != m2->val) 3442 return false; 3443 m1++; 3444 m2++; 3445 } 3446 return true; 3447 } 3448 3449 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3450 { 3451 const struct btf_enum64 *m1, *m2; 3452 __u16 vlen; 3453 int i; 3454 3455 vlen = btf_vlen(t1); 3456 m1 = btf_enum64(t1); 3457 m2 = btf_enum64(t2); 3458 for (i = 0; i < vlen; i++) { 3459 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3460 m1->val_hi32 != m2->val_hi32) 3461 return false; 3462 m1++; 3463 m2++; 3464 } 3465 return true; 3466 } 3467 3468 /* Check structural equality of two ENUMs or ENUM64s. */ 3469 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3470 { 3471 if (!btf_equal_common(t1, t2)) 3472 return false; 3473 3474 /* t1 & t2 kinds are identical because of btf_equal_common */ 3475 if (btf_kind(t1) == BTF_KIND_ENUM) 3476 return btf_equal_enum_members(t1, t2); 3477 else 3478 return btf_equal_enum64_members(t1, t2); 3479 } 3480 3481 static inline bool btf_is_enum_fwd(struct btf_type *t) 3482 { 3483 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3484 } 3485 3486 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3487 { 3488 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3489 return btf_equal_enum(t1, t2); 3490 /* At this point either t1 or t2 or both are forward declarations, thus: 3491 * - skip comparing vlen because it is zero for forward declarations; 3492 * - skip comparing size to allow enum forward declarations 3493 * to be compatible with enum64 full declarations; 3494 * - skip comparing kind for the same reason. 3495 */ 3496 return t1->name_off == t2->name_off && 3497 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3498 } 3499 3500 /* 3501 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3502 * as referenced type IDs equivalence is established separately during type 3503 * graph equivalence check algorithm. 3504 */ 3505 static long btf_hash_struct(struct btf_type *t) 3506 { 3507 const struct btf_member *member = btf_members(t); 3508 __u32 vlen = btf_vlen(t); 3509 long h = btf_hash_common(t); 3510 int i; 3511 3512 for (i = 0; i < vlen; i++) { 3513 h = hash_combine(h, member->name_off); 3514 h = hash_combine(h, member->offset); 3515 /* no hashing of referenced type ID, it can be unresolved yet */ 3516 member++; 3517 } 3518 return h; 3519 } 3520 3521 /* 3522 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3523 * type IDs. This check is performed during type graph equivalence check and 3524 * referenced types equivalence is checked separately. 3525 */ 3526 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3527 { 3528 const struct btf_member *m1, *m2; 3529 __u16 vlen; 3530 int i; 3531 3532 if (!btf_equal_common(t1, t2)) 3533 return false; 3534 3535 vlen = btf_vlen(t1); 3536 m1 = btf_members(t1); 3537 m2 = btf_members(t2); 3538 for (i = 0; i < vlen; i++) { 3539 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3540 return false; 3541 m1++; 3542 m2++; 3543 } 3544 return true; 3545 } 3546 3547 /* 3548 * Calculate type signature hash of ARRAY, including referenced type IDs, 3549 * under assumption that they were already resolved to canonical type IDs and 3550 * are not going to change. 3551 */ 3552 static long btf_hash_array(struct btf_type *t) 3553 { 3554 const struct btf_array *info = btf_array(t); 3555 long h = btf_hash_common(t); 3556 3557 h = hash_combine(h, info->type); 3558 h = hash_combine(h, info->index_type); 3559 h = hash_combine(h, info->nelems); 3560 return h; 3561 } 3562 3563 /* 3564 * Check exact equality of two ARRAYs, taking into account referenced 3565 * type IDs, under assumption that they were already resolved to canonical 3566 * type IDs and are not going to change. 3567 * This function is called during reference types deduplication to compare 3568 * ARRAY to potential canonical representative. 3569 */ 3570 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3571 { 3572 const struct btf_array *info1, *info2; 3573 3574 if (!btf_equal_common(t1, t2)) 3575 return false; 3576 3577 info1 = btf_array(t1); 3578 info2 = btf_array(t2); 3579 return info1->type == info2->type && 3580 info1->index_type == info2->index_type && 3581 info1->nelems == info2->nelems; 3582 } 3583 3584 /* 3585 * Check structural compatibility of two ARRAYs, ignoring referenced type 3586 * IDs. This check is performed during type graph equivalence check and 3587 * referenced types equivalence is checked separately. 3588 */ 3589 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3590 { 3591 if (!btf_equal_common(t1, t2)) 3592 return false; 3593 3594 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3595 } 3596 3597 /* 3598 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3599 * under assumption that they were already resolved to canonical type IDs and 3600 * are not going to change. 3601 */ 3602 static long btf_hash_fnproto(struct btf_type *t) 3603 { 3604 const struct btf_param *member = btf_params(t); 3605 __u16 vlen = btf_vlen(t); 3606 long h = btf_hash_common(t); 3607 int i; 3608 3609 for (i = 0; i < vlen; i++) { 3610 h = hash_combine(h, member->name_off); 3611 h = hash_combine(h, member->type); 3612 member++; 3613 } 3614 return h; 3615 } 3616 3617 /* 3618 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3619 * type IDs, under assumption that they were already resolved to canonical 3620 * type IDs and are not going to change. 3621 * This function is called during reference types deduplication to compare 3622 * FUNC_PROTO to potential canonical representative. 3623 */ 3624 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3625 { 3626 const struct btf_param *m1, *m2; 3627 __u16 vlen; 3628 int i; 3629 3630 if (!btf_equal_common(t1, t2)) 3631 return false; 3632 3633 vlen = btf_vlen(t1); 3634 m1 = btf_params(t1); 3635 m2 = btf_params(t2); 3636 for (i = 0; i < vlen; i++) { 3637 if (m1->name_off != m2->name_off || m1->type != m2->type) 3638 return false; 3639 m1++; 3640 m2++; 3641 } 3642 return true; 3643 } 3644 3645 /* 3646 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3647 * IDs. This check is performed during type graph equivalence check and 3648 * referenced types equivalence is checked separately. 3649 */ 3650 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3651 { 3652 const struct btf_param *m1, *m2; 3653 __u16 vlen; 3654 int i; 3655 3656 /* skip return type ID */ 3657 if (t1->name_off != t2->name_off || t1->info != t2->info) 3658 return false; 3659 3660 vlen = btf_vlen(t1); 3661 m1 = btf_params(t1); 3662 m2 = btf_params(t2); 3663 for (i = 0; i < vlen; i++) { 3664 if (m1->name_off != m2->name_off) 3665 return false; 3666 m1++; 3667 m2++; 3668 } 3669 return true; 3670 } 3671 3672 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3673 * types and initializing the rest of the state (canonical type mapping) for 3674 * the fixed base BTF part. 3675 */ 3676 static int btf_dedup_prep(struct btf_dedup *d) 3677 { 3678 struct btf_type *t; 3679 int type_id; 3680 long h; 3681 3682 if (!d->btf->base_btf) 3683 return 0; 3684 3685 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3686 t = btf_type_by_id(d->btf, type_id); 3687 3688 /* all base BTF types are self-canonical by definition */ 3689 d->map[type_id] = type_id; 3690 3691 switch (btf_kind(t)) { 3692 case BTF_KIND_VAR: 3693 case BTF_KIND_DATASEC: 3694 /* VAR and DATASEC are never hash/deduplicated */ 3695 continue; 3696 case BTF_KIND_CONST: 3697 case BTF_KIND_VOLATILE: 3698 case BTF_KIND_RESTRICT: 3699 case BTF_KIND_PTR: 3700 case BTF_KIND_FWD: 3701 case BTF_KIND_TYPEDEF: 3702 case BTF_KIND_FUNC: 3703 case BTF_KIND_FLOAT: 3704 case BTF_KIND_TYPE_TAG: 3705 h = btf_hash_common(t); 3706 break; 3707 case BTF_KIND_INT: 3708 case BTF_KIND_DECL_TAG: 3709 h = btf_hash_int_decl_tag(t); 3710 break; 3711 case BTF_KIND_ENUM: 3712 case BTF_KIND_ENUM64: 3713 h = btf_hash_enum(t); 3714 break; 3715 case BTF_KIND_STRUCT: 3716 case BTF_KIND_UNION: 3717 h = btf_hash_struct(t); 3718 break; 3719 case BTF_KIND_ARRAY: 3720 h = btf_hash_array(t); 3721 break; 3722 case BTF_KIND_FUNC_PROTO: 3723 h = btf_hash_fnproto(t); 3724 break; 3725 default: 3726 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3727 return -EINVAL; 3728 } 3729 if (btf_dedup_table_add(d, h, type_id)) 3730 return -ENOMEM; 3731 } 3732 3733 return 0; 3734 } 3735 3736 /* 3737 * Deduplicate primitive types, that can't reference other types, by calculating 3738 * their type signature hash and comparing them with any possible canonical 3739 * candidate. If no canonical candidate matches, type itself is marked as 3740 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3741 */ 3742 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3743 { 3744 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3745 struct hashmap_entry *hash_entry; 3746 struct btf_type *cand; 3747 /* if we don't find equivalent type, then we are canonical */ 3748 __u32 new_id = type_id; 3749 __u32 cand_id; 3750 long h; 3751 3752 switch (btf_kind(t)) { 3753 case BTF_KIND_CONST: 3754 case BTF_KIND_VOLATILE: 3755 case BTF_KIND_RESTRICT: 3756 case BTF_KIND_PTR: 3757 case BTF_KIND_TYPEDEF: 3758 case BTF_KIND_ARRAY: 3759 case BTF_KIND_STRUCT: 3760 case BTF_KIND_UNION: 3761 case BTF_KIND_FUNC: 3762 case BTF_KIND_FUNC_PROTO: 3763 case BTF_KIND_VAR: 3764 case BTF_KIND_DATASEC: 3765 case BTF_KIND_DECL_TAG: 3766 case BTF_KIND_TYPE_TAG: 3767 return 0; 3768 3769 case BTF_KIND_INT: 3770 h = btf_hash_int_decl_tag(t); 3771 for_each_dedup_cand(d, hash_entry, h) { 3772 cand_id = hash_entry->value; 3773 cand = btf_type_by_id(d->btf, cand_id); 3774 if (btf_equal_int_tag(t, cand)) { 3775 new_id = cand_id; 3776 break; 3777 } 3778 } 3779 break; 3780 3781 case BTF_KIND_ENUM: 3782 case BTF_KIND_ENUM64: 3783 h = btf_hash_enum(t); 3784 for_each_dedup_cand(d, hash_entry, h) { 3785 cand_id = hash_entry->value; 3786 cand = btf_type_by_id(d->btf, cand_id); 3787 if (btf_equal_enum(t, cand)) { 3788 new_id = cand_id; 3789 break; 3790 } 3791 if (btf_compat_enum(t, cand)) { 3792 if (btf_is_enum_fwd(t)) { 3793 /* resolve fwd to full enum */ 3794 new_id = cand_id; 3795 break; 3796 } 3797 /* resolve canonical enum fwd to full enum */ 3798 d->map[cand_id] = type_id; 3799 } 3800 } 3801 break; 3802 3803 case BTF_KIND_FWD: 3804 case BTF_KIND_FLOAT: 3805 h = btf_hash_common(t); 3806 for_each_dedup_cand(d, hash_entry, h) { 3807 cand_id = hash_entry->value; 3808 cand = btf_type_by_id(d->btf, cand_id); 3809 if (btf_equal_common(t, cand)) { 3810 new_id = cand_id; 3811 break; 3812 } 3813 } 3814 break; 3815 3816 default: 3817 return -EINVAL; 3818 } 3819 3820 d->map[type_id] = new_id; 3821 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3822 return -ENOMEM; 3823 3824 return 0; 3825 } 3826 3827 static int btf_dedup_prim_types(struct btf_dedup *d) 3828 { 3829 int i, err; 3830 3831 for (i = 0; i < d->btf->nr_types; i++) { 3832 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3833 if (err) 3834 return err; 3835 } 3836 return 0; 3837 } 3838 3839 /* 3840 * Check whether type is already mapped into canonical one (could be to itself). 3841 */ 3842 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3843 { 3844 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3845 } 3846 3847 /* 3848 * Resolve type ID into its canonical type ID, if any; otherwise return original 3849 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3850 * STRUCT/UNION link and resolve it into canonical type ID as well. 3851 */ 3852 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3853 { 3854 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3855 type_id = d->map[type_id]; 3856 return type_id; 3857 } 3858 3859 /* 3860 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3861 * type ID. 3862 */ 3863 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3864 { 3865 __u32 orig_type_id = type_id; 3866 3867 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3868 return type_id; 3869 3870 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3871 type_id = d->map[type_id]; 3872 3873 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3874 return type_id; 3875 3876 return orig_type_id; 3877 } 3878 3879 3880 static inline __u16 btf_fwd_kind(struct btf_type *t) 3881 { 3882 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3883 } 3884 3885 /* Check if given two types are identical ARRAY definitions */ 3886 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3887 { 3888 struct btf_type *t1, *t2; 3889 3890 t1 = btf_type_by_id(d->btf, id1); 3891 t2 = btf_type_by_id(d->btf, id2); 3892 if (!btf_is_array(t1) || !btf_is_array(t2)) 3893 return false; 3894 3895 return btf_equal_array(t1, t2); 3896 } 3897 3898 /* Check if given two types are identical STRUCT/UNION definitions */ 3899 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3900 { 3901 const struct btf_member *m1, *m2; 3902 struct btf_type *t1, *t2; 3903 int n, i; 3904 3905 t1 = btf_type_by_id(d->btf, id1); 3906 t2 = btf_type_by_id(d->btf, id2); 3907 3908 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3909 return false; 3910 3911 if (!btf_shallow_equal_struct(t1, t2)) 3912 return false; 3913 3914 m1 = btf_members(t1); 3915 m2 = btf_members(t2); 3916 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3917 if (m1->type != m2->type && 3918 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 3919 !btf_dedup_identical_structs(d, m1->type, m2->type)) 3920 return false; 3921 } 3922 return true; 3923 } 3924 3925 /* 3926 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3927 * call it "candidate graph" in this description for brevity) to a type graph 3928 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3929 * here, though keep in mind that not all types in canonical graph are 3930 * necessarily canonical representatives themselves, some of them might be 3931 * duplicates or its uniqueness might not have been established yet). 3932 * Returns: 3933 * - >0, if type graphs are equivalent; 3934 * - 0, if not equivalent; 3935 * - <0, on error. 3936 * 3937 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3938 * equivalence of BTF types at each step. If at any point BTF types in candidate 3939 * and canonical graphs are not compatible structurally, whole graphs are 3940 * incompatible. If types are structurally equivalent (i.e., all information 3941 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3942 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3943 * If a type references other types, then those referenced types are checked 3944 * for equivalence recursively. 3945 * 3946 * During DFS traversal, if we find that for current `canon_id` type we 3947 * already have some mapping in hypothetical map, we check for two possible 3948 * situations: 3949 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3950 * happen when type graphs have cycles. In this case we assume those two 3951 * types are equivalent. 3952 * - `canon_id` is mapped to different type. This is contradiction in our 3953 * hypothetical mapping, because same graph in canonical graph corresponds 3954 * to two different types in candidate graph, which for equivalent type 3955 * graphs shouldn't happen. This condition terminates equivalence check 3956 * with negative result. 3957 * 3958 * If type graphs traversal exhausts types to check and find no contradiction, 3959 * then type graphs are equivalent. 3960 * 3961 * When checking types for equivalence, there is one special case: FWD types. 3962 * If FWD type resolution is allowed and one of the types (either from canonical 3963 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3964 * flag) and their names match, hypothetical mapping is updated to point from 3965 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3966 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3967 * 3968 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3969 * if there are two exactly named (or anonymous) structs/unions that are 3970 * compatible structurally, one of which has FWD field, while other is concrete 3971 * STRUCT/UNION, but according to C sources they are different structs/unions 3972 * that are referencing different types with the same name. This is extremely 3973 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3974 * this logic is causing problems. 3975 * 3976 * Doing FWD resolution means that both candidate and/or canonical graphs can 3977 * consists of portions of the graph that come from multiple compilation units. 3978 * This is due to the fact that types within single compilation unit are always 3979 * deduplicated and FWDs are already resolved, if referenced struct/union 3980 * definiton is available. So, if we had unresolved FWD and found corresponding 3981 * STRUCT/UNION, they will be from different compilation units. This 3982 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3983 * type graph will likely have at least two different BTF types that describe 3984 * same type (e.g., most probably there will be two different BTF types for the 3985 * same 'int' primitive type) and could even have "overlapping" parts of type 3986 * graph that describe same subset of types. 3987 * 3988 * This in turn means that our assumption that each type in canonical graph 3989 * must correspond to exactly one type in candidate graph might not hold 3990 * anymore and will make it harder to detect contradictions using hypothetical 3991 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3992 * resolution only in canonical graph. FWDs in candidate graphs are never 3993 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3994 * that can occur: 3995 * - Both types in canonical and candidate graphs are FWDs. If they are 3996 * structurally equivalent, then they can either be both resolved to the 3997 * same STRUCT/UNION or not resolved at all. In both cases they are 3998 * equivalent and there is no need to resolve FWD on candidate side. 3999 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4000 * so nothing to resolve as well, algorithm will check equivalence anyway. 4001 * - Type in canonical graph is FWD, while type in candidate is concrete 4002 * STRUCT/UNION. In this case candidate graph comes from single compilation 4003 * unit, so there is exactly one BTF type for each unique C type. After 4004 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4005 * in canonical graph mapping to single BTF type in candidate graph, but 4006 * because hypothetical mapping maps from canonical to candidate types, it's 4007 * alright, and we still maintain the property of having single `canon_id` 4008 * mapping to single `cand_id` (there could be two different `canon_id` 4009 * mapped to the same `cand_id`, but it's not contradictory). 4010 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4011 * graph is FWD. In this case we are just going to check compatibility of 4012 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4013 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4014 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4015 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4016 * canonical graph. 4017 */ 4018 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4019 __u32 canon_id) 4020 { 4021 struct btf_type *cand_type; 4022 struct btf_type *canon_type; 4023 __u32 hypot_type_id; 4024 __u16 cand_kind; 4025 __u16 canon_kind; 4026 int i, eq; 4027 4028 /* if both resolve to the same canonical, they must be equivalent */ 4029 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4030 return 1; 4031 4032 canon_id = resolve_fwd_id(d, canon_id); 4033 4034 hypot_type_id = d->hypot_map[canon_id]; 4035 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4036 if (hypot_type_id == cand_id) 4037 return 1; 4038 /* In some cases compiler will generate different DWARF types 4039 * for *identical* array type definitions and use them for 4040 * different fields within the *same* struct. This breaks type 4041 * equivalence check, which makes an assumption that candidate 4042 * types sub-graph has a consistent and deduped-by-compiler 4043 * types within a single CU. So work around that by explicitly 4044 * allowing identical array types here. 4045 */ 4046 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4047 return 1; 4048 /* It turns out that similar situation can happen with 4049 * struct/union sometimes, sigh... Handle the case where 4050 * structs/unions are exactly the same, down to the referenced 4051 * type IDs. Anything more complicated (e.g., if referenced 4052 * types are different, but equivalent) is *way more* 4053 * complicated and requires a many-to-many equivalence mapping. 4054 */ 4055 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4056 return 1; 4057 return 0; 4058 } 4059 4060 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4061 return -ENOMEM; 4062 4063 cand_type = btf_type_by_id(d->btf, cand_id); 4064 canon_type = btf_type_by_id(d->btf, canon_id); 4065 cand_kind = btf_kind(cand_type); 4066 canon_kind = btf_kind(canon_type); 4067 4068 if (cand_type->name_off != canon_type->name_off) 4069 return 0; 4070 4071 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4072 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4073 && cand_kind != canon_kind) { 4074 __u16 real_kind; 4075 __u16 fwd_kind; 4076 4077 if (cand_kind == BTF_KIND_FWD) { 4078 real_kind = canon_kind; 4079 fwd_kind = btf_fwd_kind(cand_type); 4080 } else { 4081 real_kind = cand_kind; 4082 fwd_kind = btf_fwd_kind(canon_type); 4083 /* we'd need to resolve base FWD to STRUCT/UNION */ 4084 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4085 d->hypot_adjust_canon = true; 4086 } 4087 return fwd_kind == real_kind; 4088 } 4089 4090 if (cand_kind != canon_kind) 4091 return 0; 4092 4093 switch (cand_kind) { 4094 case BTF_KIND_INT: 4095 return btf_equal_int_tag(cand_type, canon_type); 4096 4097 case BTF_KIND_ENUM: 4098 case BTF_KIND_ENUM64: 4099 return btf_compat_enum(cand_type, canon_type); 4100 4101 case BTF_KIND_FWD: 4102 case BTF_KIND_FLOAT: 4103 return btf_equal_common(cand_type, canon_type); 4104 4105 case BTF_KIND_CONST: 4106 case BTF_KIND_VOLATILE: 4107 case BTF_KIND_RESTRICT: 4108 case BTF_KIND_PTR: 4109 case BTF_KIND_TYPEDEF: 4110 case BTF_KIND_FUNC: 4111 case BTF_KIND_TYPE_TAG: 4112 if (cand_type->info != canon_type->info) 4113 return 0; 4114 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4115 4116 case BTF_KIND_ARRAY: { 4117 const struct btf_array *cand_arr, *canon_arr; 4118 4119 if (!btf_compat_array(cand_type, canon_type)) 4120 return 0; 4121 cand_arr = btf_array(cand_type); 4122 canon_arr = btf_array(canon_type); 4123 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4124 if (eq <= 0) 4125 return eq; 4126 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4127 } 4128 4129 case BTF_KIND_STRUCT: 4130 case BTF_KIND_UNION: { 4131 const struct btf_member *cand_m, *canon_m; 4132 __u16 vlen; 4133 4134 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4135 return 0; 4136 vlen = btf_vlen(cand_type); 4137 cand_m = btf_members(cand_type); 4138 canon_m = btf_members(canon_type); 4139 for (i = 0; i < vlen; i++) { 4140 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4141 if (eq <= 0) 4142 return eq; 4143 cand_m++; 4144 canon_m++; 4145 } 4146 4147 return 1; 4148 } 4149 4150 case BTF_KIND_FUNC_PROTO: { 4151 const struct btf_param *cand_p, *canon_p; 4152 __u16 vlen; 4153 4154 if (!btf_compat_fnproto(cand_type, canon_type)) 4155 return 0; 4156 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4157 if (eq <= 0) 4158 return eq; 4159 vlen = btf_vlen(cand_type); 4160 cand_p = btf_params(cand_type); 4161 canon_p = btf_params(canon_type); 4162 for (i = 0; i < vlen; i++) { 4163 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4164 if (eq <= 0) 4165 return eq; 4166 cand_p++; 4167 canon_p++; 4168 } 4169 return 1; 4170 } 4171 4172 default: 4173 return -EINVAL; 4174 } 4175 return 0; 4176 } 4177 4178 /* 4179 * Use hypothetical mapping, produced by successful type graph equivalence 4180 * check, to augment existing struct/union canonical mapping, where possible. 4181 * 4182 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4183 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4184 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4185 * we are recording the mapping anyway. As opposed to carefulness required 4186 * for struct/union correspondence mapping (described below), for FWD resolution 4187 * it's not important, as by the time that FWD type (reference type) will be 4188 * deduplicated all structs/unions will be deduped already anyway. 4189 * 4190 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4191 * not required for correctness. It needs to be done carefully to ensure that 4192 * struct/union from candidate's type graph is not mapped into corresponding 4193 * struct/union from canonical type graph that itself hasn't been resolved into 4194 * canonical representative. The only guarantee we have is that canonical 4195 * struct/union was determined as canonical and that won't change. But any 4196 * types referenced through that struct/union fields could have been not yet 4197 * resolved, so in case like that it's too early to establish any kind of 4198 * correspondence between structs/unions. 4199 * 4200 * No canonical correspondence is derived for primitive types (they are already 4201 * deduplicated completely already anyway) or reference types (they rely on 4202 * stability of struct/union canonical relationship for equivalence checks). 4203 */ 4204 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4205 { 4206 __u32 canon_type_id, targ_type_id; 4207 __u16 t_kind, c_kind; 4208 __u32 t_id, c_id; 4209 int i; 4210 4211 for (i = 0; i < d->hypot_cnt; i++) { 4212 canon_type_id = d->hypot_list[i]; 4213 targ_type_id = d->hypot_map[canon_type_id]; 4214 t_id = resolve_type_id(d, targ_type_id); 4215 c_id = resolve_type_id(d, canon_type_id); 4216 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4217 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4218 /* 4219 * Resolve FWD into STRUCT/UNION. 4220 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4221 * mapped to canonical representative (as opposed to 4222 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4223 * eventually that struct is going to be mapped and all resolved 4224 * FWDs will automatically resolve to correct canonical 4225 * representative. This will happen before ref type deduping, 4226 * which critically depends on stability of these mapping. This 4227 * stability is not a requirement for STRUCT/UNION equivalence 4228 * checks, though. 4229 */ 4230 4231 /* if it's the split BTF case, we still need to point base FWD 4232 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4233 * will be resolved against base FWD. If we don't point base 4234 * canonical FWD to the resolved STRUCT/UNION, then all the 4235 * FWDs in split BTF won't be correctly resolved to a proper 4236 * STRUCT/UNION. 4237 */ 4238 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4239 d->map[c_id] = t_id; 4240 4241 /* if graph equivalence determined that we'd need to adjust 4242 * base canonical types, then we need to only point base FWDs 4243 * to STRUCTs/UNIONs and do no more modifications. For all 4244 * other purposes the type graphs were not equivalent. 4245 */ 4246 if (d->hypot_adjust_canon) 4247 continue; 4248 4249 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4250 d->map[t_id] = c_id; 4251 4252 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4253 c_kind != BTF_KIND_FWD && 4254 is_type_mapped(d, c_id) && 4255 !is_type_mapped(d, t_id)) { 4256 /* 4257 * as a perf optimization, we can map struct/union 4258 * that's part of type graph we just verified for 4259 * equivalence. We can do that for struct/union that has 4260 * canonical representative only, though. 4261 */ 4262 d->map[t_id] = c_id; 4263 } 4264 } 4265 } 4266 4267 /* 4268 * Deduplicate struct/union types. 4269 * 4270 * For each struct/union type its type signature hash is calculated, taking 4271 * into account type's name, size, number, order and names of fields, but 4272 * ignoring type ID's referenced from fields, because they might not be deduped 4273 * completely until after reference types deduplication phase. This type hash 4274 * is used to iterate over all potential canonical types, sharing same hash. 4275 * For each canonical candidate we check whether type graphs that they form 4276 * (through referenced types in fields and so on) are equivalent using algorithm 4277 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4278 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4279 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4280 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4281 * potentially map other structs/unions to their canonical representatives, 4282 * if such relationship hasn't yet been established. This speeds up algorithm 4283 * by eliminating some of the duplicate work. 4284 * 4285 * If no matching canonical representative was found, struct/union is marked 4286 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4287 * for further look ups. 4288 */ 4289 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4290 { 4291 struct btf_type *cand_type, *t; 4292 struct hashmap_entry *hash_entry; 4293 /* if we don't find equivalent type, then we are canonical */ 4294 __u32 new_id = type_id; 4295 __u16 kind; 4296 long h; 4297 4298 /* already deduped or is in process of deduping (loop detected) */ 4299 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4300 return 0; 4301 4302 t = btf_type_by_id(d->btf, type_id); 4303 kind = btf_kind(t); 4304 4305 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4306 return 0; 4307 4308 h = btf_hash_struct(t); 4309 for_each_dedup_cand(d, hash_entry, h) { 4310 __u32 cand_id = hash_entry->value; 4311 int eq; 4312 4313 /* 4314 * Even though btf_dedup_is_equiv() checks for 4315 * btf_shallow_equal_struct() internally when checking two 4316 * structs (unions) for equivalence, we need to guard here 4317 * from picking matching FWD type as a dedup candidate. 4318 * This can happen due to hash collision. In such case just 4319 * relying on btf_dedup_is_equiv() would lead to potentially 4320 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4321 * FWD and compatible STRUCT/UNION are considered equivalent. 4322 */ 4323 cand_type = btf_type_by_id(d->btf, cand_id); 4324 if (!btf_shallow_equal_struct(t, cand_type)) 4325 continue; 4326 4327 btf_dedup_clear_hypot_map(d); 4328 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4329 if (eq < 0) 4330 return eq; 4331 if (!eq) 4332 continue; 4333 btf_dedup_merge_hypot_map(d); 4334 if (d->hypot_adjust_canon) /* not really equivalent */ 4335 continue; 4336 new_id = cand_id; 4337 break; 4338 } 4339 4340 d->map[type_id] = new_id; 4341 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4342 return -ENOMEM; 4343 4344 return 0; 4345 } 4346 4347 static int btf_dedup_struct_types(struct btf_dedup *d) 4348 { 4349 int i, err; 4350 4351 for (i = 0; i < d->btf->nr_types; i++) { 4352 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4353 if (err) 4354 return err; 4355 } 4356 return 0; 4357 } 4358 4359 /* 4360 * Deduplicate reference type. 4361 * 4362 * Once all primitive and struct/union types got deduplicated, we can easily 4363 * deduplicate all other (reference) BTF types. This is done in two steps: 4364 * 4365 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4366 * resolution can be done either immediately for primitive or struct/union types 4367 * (because they were deduped in previous two phases) or recursively for 4368 * reference types. Recursion will always terminate at either primitive or 4369 * struct/union type, at which point we can "unwind" chain of reference types 4370 * one by one. There is no danger of encountering cycles because in C type 4371 * system the only way to form type cycle is through struct/union, so any chain 4372 * of reference types, even those taking part in a type cycle, will inevitably 4373 * reach struct/union at some point. 4374 * 4375 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4376 * becomes "stable", in the sense that no further deduplication will cause 4377 * any changes to it. With that, it's now possible to calculate type's signature 4378 * hash (this time taking into account referenced type IDs) and loop over all 4379 * potential canonical representatives. If no match was found, current type 4380 * will become canonical representative of itself and will be added into 4381 * btf_dedup->dedup_table as another possible canonical representative. 4382 */ 4383 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4384 { 4385 struct hashmap_entry *hash_entry; 4386 __u32 new_id = type_id, cand_id; 4387 struct btf_type *t, *cand; 4388 /* if we don't find equivalent type, then we are representative type */ 4389 int ref_type_id; 4390 long h; 4391 4392 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4393 return -ELOOP; 4394 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4395 return resolve_type_id(d, type_id); 4396 4397 t = btf_type_by_id(d->btf, type_id); 4398 d->map[type_id] = BTF_IN_PROGRESS_ID; 4399 4400 switch (btf_kind(t)) { 4401 case BTF_KIND_CONST: 4402 case BTF_KIND_VOLATILE: 4403 case BTF_KIND_RESTRICT: 4404 case BTF_KIND_PTR: 4405 case BTF_KIND_TYPEDEF: 4406 case BTF_KIND_FUNC: 4407 case BTF_KIND_TYPE_TAG: 4408 ref_type_id = btf_dedup_ref_type(d, t->type); 4409 if (ref_type_id < 0) 4410 return ref_type_id; 4411 t->type = ref_type_id; 4412 4413 h = btf_hash_common(t); 4414 for_each_dedup_cand(d, hash_entry, h) { 4415 cand_id = hash_entry->value; 4416 cand = btf_type_by_id(d->btf, cand_id); 4417 if (btf_equal_common(t, cand)) { 4418 new_id = cand_id; 4419 break; 4420 } 4421 } 4422 break; 4423 4424 case BTF_KIND_DECL_TAG: 4425 ref_type_id = btf_dedup_ref_type(d, t->type); 4426 if (ref_type_id < 0) 4427 return ref_type_id; 4428 t->type = ref_type_id; 4429 4430 h = btf_hash_int_decl_tag(t); 4431 for_each_dedup_cand(d, hash_entry, h) { 4432 cand_id = hash_entry->value; 4433 cand = btf_type_by_id(d->btf, cand_id); 4434 if (btf_equal_int_tag(t, cand)) { 4435 new_id = cand_id; 4436 break; 4437 } 4438 } 4439 break; 4440 4441 case BTF_KIND_ARRAY: { 4442 struct btf_array *info = btf_array(t); 4443 4444 ref_type_id = btf_dedup_ref_type(d, info->type); 4445 if (ref_type_id < 0) 4446 return ref_type_id; 4447 info->type = ref_type_id; 4448 4449 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4450 if (ref_type_id < 0) 4451 return ref_type_id; 4452 info->index_type = ref_type_id; 4453 4454 h = btf_hash_array(t); 4455 for_each_dedup_cand(d, hash_entry, h) { 4456 cand_id = hash_entry->value; 4457 cand = btf_type_by_id(d->btf, cand_id); 4458 if (btf_equal_array(t, cand)) { 4459 new_id = cand_id; 4460 break; 4461 } 4462 } 4463 break; 4464 } 4465 4466 case BTF_KIND_FUNC_PROTO: { 4467 struct btf_param *param; 4468 __u16 vlen; 4469 int i; 4470 4471 ref_type_id = btf_dedup_ref_type(d, t->type); 4472 if (ref_type_id < 0) 4473 return ref_type_id; 4474 t->type = ref_type_id; 4475 4476 vlen = btf_vlen(t); 4477 param = btf_params(t); 4478 for (i = 0; i < vlen; i++) { 4479 ref_type_id = btf_dedup_ref_type(d, param->type); 4480 if (ref_type_id < 0) 4481 return ref_type_id; 4482 param->type = ref_type_id; 4483 param++; 4484 } 4485 4486 h = btf_hash_fnproto(t); 4487 for_each_dedup_cand(d, hash_entry, h) { 4488 cand_id = hash_entry->value; 4489 cand = btf_type_by_id(d->btf, cand_id); 4490 if (btf_equal_fnproto(t, cand)) { 4491 new_id = cand_id; 4492 break; 4493 } 4494 } 4495 break; 4496 } 4497 4498 default: 4499 return -EINVAL; 4500 } 4501 4502 d->map[type_id] = new_id; 4503 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4504 return -ENOMEM; 4505 4506 return new_id; 4507 } 4508 4509 static int btf_dedup_ref_types(struct btf_dedup *d) 4510 { 4511 int i, err; 4512 4513 for (i = 0; i < d->btf->nr_types; i++) { 4514 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4515 if (err < 0) 4516 return err; 4517 } 4518 /* we won't need d->dedup_table anymore */ 4519 hashmap__free(d->dedup_table); 4520 d->dedup_table = NULL; 4521 return 0; 4522 } 4523 4524 /* 4525 * Collect a map from type names to type ids for all canonical structs 4526 * and unions. If the same name is shared by several canonical types 4527 * use a special value 0 to indicate this fact. 4528 */ 4529 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4530 { 4531 __u32 nr_types = btf__type_cnt(d->btf); 4532 struct btf_type *t; 4533 __u32 type_id; 4534 __u16 kind; 4535 int err; 4536 4537 /* 4538 * Iterate over base and split module ids in order to get all 4539 * available structs in the map. 4540 */ 4541 for (type_id = 1; type_id < nr_types; ++type_id) { 4542 t = btf_type_by_id(d->btf, type_id); 4543 kind = btf_kind(t); 4544 4545 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4546 continue; 4547 4548 /* Skip non-canonical types */ 4549 if (type_id != d->map[type_id]) 4550 continue; 4551 4552 err = hashmap__add(names_map, t->name_off, type_id); 4553 if (err == -EEXIST) 4554 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4555 4556 if (err) 4557 return err; 4558 } 4559 4560 return 0; 4561 } 4562 4563 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4564 { 4565 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4566 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4567 __u16 cand_kind, kind = btf_kind(t); 4568 struct btf_type *cand_t; 4569 uintptr_t cand_id; 4570 4571 if (kind != BTF_KIND_FWD) 4572 return 0; 4573 4574 /* Skip if this FWD already has a mapping */ 4575 if (type_id != d->map[type_id]) 4576 return 0; 4577 4578 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4579 return 0; 4580 4581 /* Zero is a special value indicating that name is not unique */ 4582 if (!cand_id) 4583 return 0; 4584 4585 cand_t = btf_type_by_id(d->btf, cand_id); 4586 cand_kind = btf_kind(cand_t); 4587 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4588 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4589 return 0; 4590 4591 d->map[type_id] = cand_id; 4592 4593 return 0; 4594 } 4595 4596 /* 4597 * Resolve unambiguous forward declarations. 4598 * 4599 * The lion's share of all FWD declarations is resolved during 4600 * `btf_dedup_struct_types` phase when different type graphs are 4601 * compared against each other. However, if in some compilation unit a 4602 * FWD declaration is not a part of a type graph compared against 4603 * another type graph that declaration's canonical type would not be 4604 * changed. Example: 4605 * 4606 * CU #1: 4607 * 4608 * struct foo; 4609 * struct foo *some_global; 4610 * 4611 * CU #2: 4612 * 4613 * struct foo { int u; }; 4614 * struct foo *another_global; 4615 * 4616 * After `btf_dedup_struct_types` the BTF looks as follows: 4617 * 4618 * [1] STRUCT 'foo' size=4 vlen=1 ... 4619 * [2] INT 'int' size=4 ... 4620 * [3] PTR '(anon)' type_id=1 4621 * [4] FWD 'foo' fwd_kind=struct 4622 * [5] PTR '(anon)' type_id=4 4623 * 4624 * This pass assumes that such FWD declarations should be mapped to 4625 * structs or unions with identical name in case if the name is not 4626 * ambiguous. 4627 */ 4628 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4629 { 4630 int i, err; 4631 struct hashmap *names_map; 4632 4633 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4634 if (IS_ERR(names_map)) 4635 return PTR_ERR(names_map); 4636 4637 err = btf_dedup_fill_unique_names_map(d, names_map); 4638 if (err < 0) 4639 goto exit; 4640 4641 for (i = 0; i < d->btf->nr_types; i++) { 4642 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4643 if (err < 0) 4644 break; 4645 } 4646 4647 exit: 4648 hashmap__free(names_map); 4649 return err; 4650 } 4651 4652 /* 4653 * Compact types. 4654 * 4655 * After we established for each type its corresponding canonical representative 4656 * type, we now can eliminate types that are not canonical and leave only 4657 * canonical ones layed out sequentially in memory by copying them over 4658 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4659 * a map from original type ID to a new compacted type ID, which will be used 4660 * during next phase to "fix up" type IDs, referenced from struct/union and 4661 * reference types. 4662 */ 4663 static int btf_dedup_compact_types(struct btf_dedup *d) 4664 { 4665 __u32 *new_offs; 4666 __u32 next_type_id = d->btf->start_id; 4667 const struct btf_type *t; 4668 void *p; 4669 int i, id, len; 4670 4671 /* we are going to reuse hypot_map to store compaction remapping */ 4672 d->hypot_map[0] = 0; 4673 /* base BTF types are not renumbered */ 4674 for (id = 1; id < d->btf->start_id; id++) 4675 d->hypot_map[id] = id; 4676 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4677 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4678 4679 p = d->btf->types_data; 4680 4681 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4682 if (d->map[id] != id) 4683 continue; 4684 4685 t = btf__type_by_id(d->btf, id); 4686 len = btf_type_size(t); 4687 if (len < 0) 4688 return len; 4689 4690 memmove(p, t, len); 4691 d->hypot_map[id] = next_type_id; 4692 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4693 p += len; 4694 next_type_id++; 4695 } 4696 4697 /* shrink struct btf's internal types index and update btf_header */ 4698 d->btf->nr_types = next_type_id - d->btf->start_id; 4699 d->btf->type_offs_cap = d->btf->nr_types; 4700 d->btf->hdr->type_len = p - d->btf->types_data; 4701 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4702 sizeof(*new_offs)); 4703 if (d->btf->type_offs_cap && !new_offs) 4704 return -ENOMEM; 4705 d->btf->type_offs = new_offs; 4706 d->btf->hdr->str_off = d->btf->hdr->type_len; 4707 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4708 return 0; 4709 } 4710 4711 /* 4712 * Figure out final (deduplicated and compacted) type ID for provided original 4713 * `type_id` by first resolving it into corresponding canonical type ID and 4714 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4715 * which is populated during compaction phase. 4716 */ 4717 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4718 { 4719 struct btf_dedup *d = ctx; 4720 __u32 resolved_type_id, new_type_id; 4721 4722 resolved_type_id = resolve_type_id(d, *type_id); 4723 new_type_id = d->hypot_map[resolved_type_id]; 4724 if (new_type_id > BTF_MAX_NR_TYPES) 4725 return -EINVAL; 4726 4727 *type_id = new_type_id; 4728 return 0; 4729 } 4730 4731 /* 4732 * Remap referenced type IDs into deduped type IDs. 4733 * 4734 * After BTF types are deduplicated and compacted, their final type IDs may 4735 * differ from original ones. The map from original to a corresponding 4736 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4737 * compaction phase. During remapping phase we are rewriting all type IDs 4738 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4739 * their final deduped type IDs. 4740 */ 4741 static int btf_dedup_remap_types(struct btf_dedup *d) 4742 { 4743 int i, r; 4744 4745 for (i = 0; i < d->btf->nr_types; i++) { 4746 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4747 4748 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4749 if (r) 4750 return r; 4751 } 4752 4753 if (!d->btf_ext) 4754 return 0; 4755 4756 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4757 if (r) 4758 return r; 4759 4760 return 0; 4761 } 4762 4763 /* 4764 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4765 * data out of it to use for target BTF. 4766 */ 4767 struct btf *btf__load_vmlinux_btf(void) 4768 { 4769 const char *locations[] = { 4770 /* try canonical vmlinux BTF through sysfs first */ 4771 "/sys/kernel/btf/vmlinux", 4772 /* fall back to trying to find vmlinux on disk otherwise */ 4773 "/boot/vmlinux-%1$s", 4774 "/lib/modules/%1$s/vmlinux-%1$s", 4775 "/lib/modules/%1$s/build/vmlinux", 4776 "/usr/lib/modules/%1$s/kernel/vmlinux", 4777 "/usr/lib/debug/boot/vmlinux-%1$s", 4778 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 4779 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 4780 }; 4781 char path[PATH_MAX + 1]; 4782 struct utsname buf; 4783 struct btf *btf; 4784 int i, err; 4785 4786 uname(&buf); 4787 4788 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4789 snprintf(path, PATH_MAX, locations[i], buf.release); 4790 4791 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 4792 continue; 4793 4794 btf = btf__parse(path, NULL); 4795 err = libbpf_get_error(btf); 4796 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4797 if (err) 4798 continue; 4799 4800 return btf; 4801 } 4802 4803 pr_warn("failed to find valid kernel BTF\n"); 4804 return libbpf_err_ptr(-ESRCH); 4805 } 4806 4807 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4808 4809 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4810 { 4811 char path[80]; 4812 4813 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4814 return btf__parse_split(path, vmlinux_btf); 4815 } 4816 4817 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4818 { 4819 int i, n, err; 4820 4821 switch (btf_kind(t)) { 4822 case BTF_KIND_INT: 4823 case BTF_KIND_FLOAT: 4824 case BTF_KIND_ENUM: 4825 case BTF_KIND_ENUM64: 4826 return 0; 4827 4828 case BTF_KIND_FWD: 4829 case BTF_KIND_CONST: 4830 case BTF_KIND_VOLATILE: 4831 case BTF_KIND_RESTRICT: 4832 case BTF_KIND_PTR: 4833 case BTF_KIND_TYPEDEF: 4834 case BTF_KIND_FUNC: 4835 case BTF_KIND_VAR: 4836 case BTF_KIND_DECL_TAG: 4837 case BTF_KIND_TYPE_TAG: 4838 return visit(&t->type, ctx); 4839 4840 case BTF_KIND_ARRAY: { 4841 struct btf_array *a = btf_array(t); 4842 4843 err = visit(&a->type, ctx); 4844 err = err ?: visit(&a->index_type, ctx); 4845 return err; 4846 } 4847 4848 case BTF_KIND_STRUCT: 4849 case BTF_KIND_UNION: { 4850 struct btf_member *m = btf_members(t); 4851 4852 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4853 err = visit(&m->type, ctx); 4854 if (err) 4855 return err; 4856 } 4857 return 0; 4858 } 4859 4860 case BTF_KIND_FUNC_PROTO: { 4861 struct btf_param *m = btf_params(t); 4862 4863 err = visit(&t->type, ctx); 4864 if (err) 4865 return err; 4866 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4867 err = visit(&m->type, ctx); 4868 if (err) 4869 return err; 4870 } 4871 return 0; 4872 } 4873 4874 case BTF_KIND_DATASEC: { 4875 struct btf_var_secinfo *m = btf_var_secinfos(t); 4876 4877 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4878 err = visit(&m->type, ctx); 4879 if (err) 4880 return err; 4881 } 4882 return 0; 4883 } 4884 4885 default: 4886 return -EINVAL; 4887 } 4888 } 4889 4890 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4891 { 4892 int i, n, err; 4893 4894 err = visit(&t->name_off, ctx); 4895 if (err) 4896 return err; 4897 4898 switch (btf_kind(t)) { 4899 case BTF_KIND_STRUCT: 4900 case BTF_KIND_UNION: { 4901 struct btf_member *m = btf_members(t); 4902 4903 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4904 err = visit(&m->name_off, ctx); 4905 if (err) 4906 return err; 4907 } 4908 break; 4909 } 4910 case BTF_KIND_ENUM: { 4911 struct btf_enum *m = btf_enum(t); 4912 4913 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4914 err = visit(&m->name_off, ctx); 4915 if (err) 4916 return err; 4917 } 4918 break; 4919 } 4920 case BTF_KIND_ENUM64: { 4921 struct btf_enum64 *m = btf_enum64(t); 4922 4923 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4924 err = visit(&m->name_off, ctx); 4925 if (err) 4926 return err; 4927 } 4928 break; 4929 } 4930 case BTF_KIND_FUNC_PROTO: { 4931 struct btf_param *m = btf_params(t); 4932 4933 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4934 err = visit(&m->name_off, ctx); 4935 if (err) 4936 return err; 4937 } 4938 break; 4939 } 4940 default: 4941 break; 4942 } 4943 4944 return 0; 4945 } 4946 4947 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4948 { 4949 const struct btf_ext_info *seg; 4950 struct btf_ext_info_sec *sec; 4951 int i, err; 4952 4953 seg = &btf_ext->func_info; 4954 for_each_btf_ext_sec(seg, sec) { 4955 struct bpf_func_info_min *rec; 4956 4957 for_each_btf_ext_rec(seg, sec, i, rec) { 4958 err = visit(&rec->type_id, ctx); 4959 if (err < 0) 4960 return err; 4961 } 4962 } 4963 4964 seg = &btf_ext->core_relo_info; 4965 for_each_btf_ext_sec(seg, sec) { 4966 struct bpf_core_relo *rec; 4967 4968 for_each_btf_ext_rec(seg, sec, i, rec) { 4969 err = visit(&rec->type_id, ctx); 4970 if (err < 0) 4971 return err; 4972 } 4973 } 4974 4975 return 0; 4976 } 4977 4978 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4979 { 4980 const struct btf_ext_info *seg; 4981 struct btf_ext_info_sec *sec; 4982 int i, err; 4983 4984 seg = &btf_ext->func_info; 4985 for_each_btf_ext_sec(seg, sec) { 4986 err = visit(&sec->sec_name_off, ctx); 4987 if (err) 4988 return err; 4989 } 4990 4991 seg = &btf_ext->line_info; 4992 for_each_btf_ext_sec(seg, sec) { 4993 struct bpf_line_info_min *rec; 4994 4995 err = visit(&sec->sec_name_off, ctx); 4996 if (err) 4997 return err; 4998 4999 for_each_btf_ext_rec(seg, sec, i, rec) { 5000 err = visit(&rec->file_name_off, ctx); 5001 if (err) 5002 return err; 5003 err = visit(&rec->line_off, ctx); 5004 if (err) 5005 return err; 5006 } 5007 } 5008 5009 seg = &btf_ext->core_relo_info; 5010 for_each_btf_ext_sec(seg, sec) { 5011 struct bpf_core_relo *rec; 5012 5013 err = visit(&sec->sec_name_off, ctx); 5014 if (err) 5015 return err; 5016 5017 for_each_btf_ext_rec(seg, sec, i, rec) { 5018 err = visit(&rec->access_str_off, ctx); 5019 if (err) 5020 return err; 5021 } 5022 } 5023 5024 return 0; 5025 } 5026