1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <stdio.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <errno.h> 9 #include <linux/err.h> 10 #include <linux/btf.h> 11 #include "btf.h" 12 #include "bpf.h" 13 #include "libbpf.h" 14 #include "libbpf_util.h" 15 16 #define max(a, b) ((a) > (b) ? (a) : (b)) 17 #define min(a, b) ((a) < (b) ? (a) : (b)) 18 19 #define BTF_MAX_NR_TYPES 0x7fffffff 20 #define BTF_MAX_STR_OFFSET 0x7fffffff 21 22 #define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \ 23 ((k) == BTF_KIND_VOLATILE) || \ 24 ((k) == BTF_KIND_CONST) || \ 25 ((k) == BTF_KIND_RESTRICT)) 26 27 static struct btf_type btf_void; 28 29 struct btf { 30 union { 31 struct btf_header *hdr; 32 void *data; 33 }; 34 struct btf_type **types; 35 const char *strings; 36 void *nohdr_data; 37 __u32 nr_types; 38 __u32 types_size; 39 __u32 data_size; 40 int fd; 41 }; 42 43 struct btf_ext_info { 44 /* 45 * info points to the individual info section (e.g. func_info and 46 * line_info) from the .BTF.ext. It does not include the __u32 rec_size. 47 */ 48 void *info; 49 __u32 rec_size; 50 __u32 len; 51 }; 52 53 struct btf_ext { 54 union { 55 struct btf_ext_header *hdr; 56 void *data; 57 }; 58 struct btf_ext_info func_info; 59 struct btf_ext_info line_info; 60 __u32 data_size; 61 }; 62 63 struct btf_ext_info_sec { 64 __u32 sec_name_off; 65 __u32 num_info; 66 /* Followed by num_info * record_size number of bytes */ 67 __u8 data[0]; 68 }; 69 70 /* The minimum bpf_func_info checked by the loader */ 71 struct bpf_func_info_min { 72 __u32 insn_off; 73 __u32 type_id; 74 }; 75 76 /* The minimum bpf_line_info checked by the loader */ 77 struct bpf_line_info_min { 78 __u32 insn_off; 79 __u32 file_name_off; 80 __u32 line_off; 81 __u32 line_col; 82 }; 83 84 static inline __u64 ptr_to_u64(const void *ptr) 85 { 86 return (__u64) (unsigned long) ptr; 87 } 88 89 static int btf_add_type(struct btf *btf, struct btf_type *t) 90 { 91 if (btf->types_size - btf->nr_types < 2) { 92 struct btf_type **new_types; 93 __u32 expand_by, new_size; 94 95 if (btf->types_size == BTF_MAX_NR_TYPES) 96 return -E2BIG; 97 98 expand_by = max(btf->types_size >> 2, 16); 99 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 100 101 new_types = realloc(btf->types, sizeof(*new_types) * new_size); 102 if (!new_types) 103 return -ENOMEM; 104 105 if (btf->nr_types == 0) 106 new_types[0] = &btf_void; 107 108 btf->types = new_types; 109 btf->types_size = new_size; 110 } 111 112 btf->types[++(btf->nr_types)] = t; 113 114 return 0; 115 } 116 117 static int btf_parse_hdr(struct btf *btf) 118 { 119 const struct btf_header *hdr = btf->hdr; 120 __u32 meta_left; 121 122 if (btf->data_size < sizeof(struct btf_header)) { 123 pr_debug("BTF header not found\n"); 124 return -EINVAL; 125 } 126 127 if (hdr->magic != BTF_MAGIC) { 128 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 129 return -EINVAL; 130 } 131 132 if (hdr->version != BTF_VERSION) { 133 pr_debug("Unsupported BTF version:%u\n", hdr->version); 134 return -ENOTSUP; 135 } 136 137 if (hdr->flags) { 138 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 139 return -ENOTSUP; 140 } 141 142 meta_left = btf->data_size - sizeof(*hdr); 143 if (!meta_left) { 144 pr_debug("BTF has no data\n"); 145 return -EINVAL; 146 } 147 148 if (meta_left < hdr->type_off) { 149 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 150 return -EINVAL; 151 } 152 153 if (meta_left < hdr->str_off) { 154 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 155 return -EINVAL; 156 } 157 158 if (hdr->type_off >= hdr->str_off) { 159 pr_debug("BTF type section offset >= string section offset. No type?\n"); 160 return -EINVAL; 161 } 162 163 if (hdr->type_off & 0x02) { 164 pr_debug("BTF type section is not aligned to 4 bytes\n"); 165 return -EINVAL; 166 } 167 168 btf->nohdr_data = btf->hdr + 1; 169 170 return 0; 171 } 172 173 static int btf_parse_str_sec(struct btf *btf) 174 { 175 const struct btf_header *hdr = btf->hdr; 176 const char *start = btf->nohdr_data + hdr->str_off; 177 const char *end = start + btf->hdr->str_len; 178 179 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 180 start[0] || end[-1]) { 181 pr_debug("Invalid BTF string section\n"); 182 return -EINVAL; 183 } 184 185 btf->strings = start; 186 187 return 0; 188 } 189 190 static int btf_type_size(struct btf_type *t) 191 { 192 int base_size = sizeof(struct btf_type); 193 __u16 vlen = BTF_INFO_VLEN(t->info); 194 195 switch (BTF_INFO_KIND(t->info)) { 196 case BTF_KIND_FWD: 197 case BTF_KIND_CONST: 198 case BTF_KIND_VOLATILE: 199 case BTF_KIND_RESTRICT: 200 case BTF_KIND_PTR: 201 case BTF_KIND_TYPEDEF: 202 case BTF_KIND_FUNC: 203 return base_size; 204 case BTF_KIND_INT: 205 return base_size + sizeof(__u32); 206 case BTF_KIND_ENUM: 207 return base_size + vlen * sizeof(struct btf_enum); 208 case BTF_KIND_ARRAY: 209 return base_size + sizeof(struct btf_array); 210 case BTF_KIND_STRUCT: 211 case BTF_KIND_UNION: 212 return base_size + vlen * sizeof(struct btf_member); 213 case BTF_KIND_FUNC_PROTO: 214 return base_size + vlen * sizeof(struct btf_param); 215 default: 216 pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info)); 217 return -EINVAL; 218 } 219 } 220 221 static int btf_parse_type_sec(struct btf *btf) 222 { 223 struct btf_header *hdr = btf->hdr; 224 void *nohdr_data = btf->nohdr_data; 225 void *next_type = nohdr_data + hdr->type_off; 226 void *end_type = nohdr_data + hdr->str_off; 227 228 while (next_type < end_type) { 229 struct btf_type *t = next_type; 230 int type_size; 231 int err; 232 233 type_size = btf_type_size(t); 234 if (type_size < 0) 235 return type_size; 236 next_type += type_size; 237 err = btf_add_type(btf, t); 238 if (err) 239 return err; 240 } 241 242 return 0; 243 } 244 245 __u32 btf__get_nr_types(const struct btf *btf) 246 { 247 return btf->nr_types; 248 } 249 250 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 251 { 252 if (type_id > btf->nr_types) 253 return NULL; 254 255 return btf->types[type_id]; 256 } 257 258 static bool btf_type_is_void(const struct btf_type *t) 259 { 260 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 261 } 262 263 static bool btf_type_is_void_or_null(const struct btf_type *t) 264 { 265 return !t || btf_type_is_void(t); 266 } 267 268 #define MAX_RESOLVE_DEPTH 32 269 270 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 271 { 272 const struct btf_array *array; 273 const struct btf_type *t; 274 __u32 nelems = 1; 275 __s64 size = -1; 276 int i; 277 278 t = btf__type_by_id(btf, type_id); 279 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 280 i++) { 281 switch (BTF_INFO_KIND(t->info)) { 282 case BTF_KIND_INT: 283 case BTF_KIND_STRUCT: 284 case BTF_KIND_UNION: 285 case BTF_KIND_ENUM: 286 size = t->size; 287 goto done; 288 case BTF_KIND_PTR: 289 size = sizeof(void *); 290 goto done; 291 case BTF_KIND_TYPEDEF: 292 case BTF_KIND_VOLATILE: 293 case BTF_KIND_CONST: 294 case BTF_KIND_RESTRICT: 295 type_id = t->type; 296 break; 297 case BTF_KIND_ARRAY: 298 array = (const struct btf_array *)(t + 1); 299 if (nelems && array->nelems > UINT32_MAX / nelems) 300 return -E2BIG; 301 nelems *= array->nelems; 302 type_id = array->type; 303 break; 304 default: 305 return -EINVAL; 306 } 307 308 t = btf__type_by_id(btf, type_id); 309 } 310 311 if (size < 0) 312 return -EINVAL; 313 314 done: 315 if (nelems && size > UINT32_MAX / nelems) 316 return -E2BIG; 317 318 return nelems * size; 319 } 320 321 int btf__resolve_type(const struct btf *btf, __u32 type_id) 322 { 323 const struct btf_type *t; 324 int depth = 0; 325 326 t = btf__type_by_id(btf, type_id); 327 while (depth < MAX_RESOLVE_DEPTH && 328 !btf_type_is_void_or_null(t) && 329 IS_MODIFIER(BTF_INFO_KIND(t->info))) { 330 type_id = t->type; 331 t = btf__type_by_id(btf, type_id); 332 depth++; 333 } 334 335 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 336 return -EINVAL; 337 338 return type_id; 339 } 340 341 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 342 { 343 __u32 i; 344 345 if (!strcmp(type_name, "void")) 346 return 0; 347 348 for (i = 1; i <= btf->nr_types; i++) { 349 const struct btf_type *t = btf->types[i]; 350 const char *name = btf__name_by_offset(btf, t->name_off); 351 352 if (name && !strcmp(type_name, name)) 353 return i; 354 } 355 356 return -ENOENT; 357 } 358 359 void btf__free(struct btf *btf) 360 { 361 if (!btf) 362 return; 363 364 if (btf->fd != -1) 365 close(btf->fd); 366 367 free(btf->data); 368 free(btf->types); 369 free(btf); 370 } 371 372 struct btf *btf__new(__u8 *data, __u32 size) 373 { 374 struct btf *btf; 375 int err; 376 377 btf = calloc(1, sizeof(struct btf)); 378 if (!btf) 379 return ERR_PTR(-ENOMEM); 380 381 btf->fd = -1; 382 383 btf->data = malloc(size); 384 if (!btf->data) { 385 err = -ENOMEM; 386 goto done; 387 } 388 389 memcpy(btf->data, data, size); 390 btf->data_size = size; 391 392 err = btf_parse_hdr(btf); 393 if (err) 394 goto done; 395 396 err = btf_parse_str_sec(btf); 397 if (err) 398 goto done; 399 400 err = btf_parse_type_sec(btf); 401 402 done: 403 if (err) { 404 btf__free(btf); 405 return ERR_PTR(err); 406 } 407 408 return btf; 409 } 410 411 int btf__load(struct btf *btf) 412 { 413 __u32 log_buf_size = BPF_LOG_BUF_SIZE; 414 char *log_buf = NULL; 415 int err = 0; 416 417 if (btf->fd >= 0) 418 return -EEXIST; 419 420 log_buf = malloc(log_buf_size); 421 if (!log_buf) 422 return -ENOMEM; 423 424 *log_buf = 0; 425 426 btf->fd = bpf_load_btf(btf->data, btf->data_size, 427 log_buf, log_buf_size, false); 428 if (btf->fd < 0) { 429 err = -errno; 430 pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno); 431 if (*log_buf) 432 pr_warning("%s\n", log_buf); 433 goto done; 434 } 435 436 done: 437 free(log_buf); 438 return err; 439 } 440 441 int btf__fd(const struct btf *btf) 442 { 443 return btf->fd; 444 } 445 446 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 447 { 448 *size = btf->data_size; 449 return btf->data; 450 } 451 452 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 453 { 454 if (offset < btf->hdr->str_len) 455 return &btf->strings[offset]; 456 else 457 return NULL; 458 } 459 460 int btf__get_from_id(__u32 id, struct btf **btf) 461 { 462 struct bpf_btf_info btf_info = { 0 }; 463 __u32 len = sizeof(btf_info); 464 __u32 last_size; 465 int btf_fd; 466 void *ptr; 467 int err; 468 469 err = 0; 470 *btf = NULL; 471 btf_fd = bpf_btf_get_fd_by_id(id); 472 if (btf_fd < 0) 473 return 0; 474 475 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 476 * let's start with a sane default - 4KiB here - and resize it only if 477 * bpf_obj_get_info_by_fd() needs a bigger buffer. 478 */ 479 btf_info.btf_size = 4096; 480 last_size = btf_info.btf_size; 481 ptr = malloc(last_size); 482 if (!ptr) { 483 err = -ENOMEM; 484 goto exit_free; 485 } 486 487 memset(ptr, 0, last_size); 488 btf_info.btf = ptr_to_u64(ptr); 489 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 490 491 if (!err && btf_info.btf_size > last_size) { 492 void *temp_ptr; 493 494 last_size = btf_info.btf_size; 495 temp_ptr = realloc(ptr, last_size); 496 if (!temp_ptr) { 497 err = -ENOMEM; 498 goto exit_free; 499 } 500 ptr = temp_ptr; 501 memset(ptr, 0, last_size); 502 btf_info.btf = ptr_to_u64(ptr); 503 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 504 } 505 506 if (err || btf_info.btf_size > last_size) { 507 err = errno; 508 goto exit_free; 509 } 510 511 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 512 if (IS_ERR(*btf)) { 513 err = PTR_ERR(*btf); 514 *btf = NULL; 515 } 516 517 exit_free: 518 close(btf_fd); 519 free(ptr); 520 521 return err; 522 } 523 524 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 525 __u32 expected_key_size, __u32 expected_value_size, 526 __u32 *key_type_id, __u32 *value_type_id) 527 { 528 const struct btf_type *container_type; 529 const struct btf_member *key, *value; 530 const size_t max_name = 256; 531 char container_name[max_name]; 532 __s64 key_size, value_size; 533 __s32 container_id; 534 535 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 536 max_name) { 537 pr_warning("map:%s length of '____btf_map_%s' is too long\n", 538 map_name, map_name); 539 return -EINVAL; 540 } 541 542 container_id = btf__find_by_name(btf, container_name); 543 if (container_id < 0) { 544 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 545 map_name, container_name); 546 return container_id; 547 } 548 549 container_type = btf__type_by_id(btf, container_id); 550 if (!container_type) { 551 pr_warning("map:%s cannot find BTF type for container_id:%u\n", 552 map_name, container_id); 553 return -EINVAL; 554 } 555 556 if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT || 557 BTF_INFO_VLEN(container_type->info) < 2) { 558 pr_warning("map:%s container_name:%s is an invalid container struct\n", 559 map_name, container_name); 560 return -EINVAL; 561 } 562 563 key = (struct btf_member *)(container_type + 1); 564 value = key + 1; 565 566 key_size = btf__resolve_size(btf, key->type); 567 if (key_size < 0) { 568 pr_warning("map:%s invalid BTF key_type_size\n", map_name); 569 return key_size; 570 } 571 572 if (expected_key_size != key_size) { 573 pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 574 map_name, (__u32)key_size, expected_key_size); 575 return -EINVAL; 576 } 577 578 value_size = btf__resolve_size(btf, value->type); 579 if (value_size < 0) { 580 pr_warning("map:%s invalid BTF value_type_size\n", map_name); 581 return value_size; 582 } 583 584 if (expected_value_size != value_size) { 585 pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 586 map_name, (__u32)value_size, expected_value_size); 587 return -EINVAL; 588 } 589 590 *key_type_id = key->type; 591 *value_type_id = value->type; 592 593 return 0; 594 } 595 596 struct btf_ext_sec_setup_param { 597 __u32 off; 598 __u32 len; 599 __u32 min_rec_size; 600 struct btf_ext_info *ext_info; 601 const char *desc; 602 }; 603 604 static int btf_ext_setup_info(struct btf_ext *btf_ext, 605 struct btf_ext_sec_setup_param *ext_sec) 606 { 607 const struct btf_ext_info_sec *sinfo; 608 struct btf_ext_info *ext_info; 609 __u32 info_left, record_size; 610 /* The start of the info sec (including the __u32 record_size). */ 611 void *info; 612 613 if (ext_sec->off & 0x03) { 614 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 615 ext_sec->desc); 616 return -EINVAL; 617 } 618 619 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 620 info_left = ext_sec->len; 621 622 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 623 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 624 ext_sec->desc, ext_sec->off, ext_sec->len); 625 return -EINVAL; 626 } 627 628 /* At least a record size */ 629 if (info_left < sizeof(__u32)) { 630 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 631 return -EINVAL; 632 } 633 634 /* The record size needs to meet the minimum standard */ 635 record_size = *(__u32 *)info; 636 if (record_size < ext_sec->min_rec_size || 637 record_size & 0x03) { 638 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 639 ext_sec->desc, record_size); 640 return -EINVAL; 641 } 642 643 sinfo = info + sizeof(__u32); 644 info_left -= sizeof(__u32); 645 646 /* If no records, return failure now so .BTF.ext won't be used. */ 647 if (!info_left) { 648 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 649 return -EINVAL; 650 } 651 652 while (info_left) { 653 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 654 __u64 total_record_size; 655 __u32 num_records; 656 657 if (info_left < sec_hdrlen) { 658 pr_debug("%s section header is not found in .BTF.ext\n", 659 ext_sec->desc); 660 return -EINVAL; 661 } 662 663 num_records = sinfo->num_info; 664 if (num_records == 0) { 665 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 666 ext_sec->desc); 667 return -EINVAL; 668 } 669 670 total_record_size = sec_hdrlen + 671 (__u64)num_records * record_size; 672 if (info_left < total_record_size) { 673 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 674 ext_sec->desc); 675 return -EINVAL; 676 } 677 678 info_left -= total_record_size; 679 sinfo = (void *)sinfo + total_record_size; 680 } 681 682 ext_info = ext_sec->ext_info; 683 ext_info->len = ext_sec->len - sizeof(__u32); 684 ext_info->rec_size = record_size; 685 ext_info->info = info + sizeof(__u32); 686 687 return 0; 688 } 689 690 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 691 { 692 struct btf_ext_sec_setup_param param = { 693 .off = btf_ext->hdr->func_info_off, 694 .len = btf_ext->hdr->func_info_len, 695 .min_rec_size = sizeof(struct bpf_func_info_min), 696 .ext_info = &btf_ext->func_info, 697 .desc = "func_info" 698 }; 699 700 return btf_ext_setup_info(btf_ext, ¶m); 701 } 702 703 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 704 { 705 struct btf_ext_sec_setup_param param = { 706 .off = btf_ext->hdr->line_info_off, 707 .len = btf_ext->hdr->line_info_len, 708 .min_rec_size = sizeof(struct bpf_line_info_min), 709 .ext_info = &btf_ext->line_info, 710 .desc = "line_info", 711 }; 712 713 return btf_ext_setup_info(btf_ext, ¶m); 714 } 715 716 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 717 { 718 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 719 720 if (data_size < offsetof(struct btf_ext_header, func_info_off) || 721 data_size < hdr->hdr_len) { 722 pr_debug("BTF.ext header not found"); 723 return -EINVAL; 724 } 725 726 if (hdr->magic != BTF_MAGIC) { 727 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 728 return -EINVAL; 729 } 730 731 if (hdr->version != BTF_VERSION) { 732 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 733 return -ENOTSUP; 734 } 735 736 if (hdr->flags) { 737 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 738 return -ENOTSUP; 739 } 740 741 if (data_size == hdr->hdr_len) { 742 pr_debug("BTF.ext has no data\n"); 743 return -EINVAL; 744 } 745 746 return 0; 747 } 748 749 void btf_ext__free(struct btf_ext *btf_ext) 750 { 751 if (!btf_ext) 752 return; 753 free(btf_ext->data); 754 free(btf_ext); 755 } 756 757 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 758 { 759 struct btf_ext *btf_ext; 760 int err; 761 762 err = btf_ext_parse_hdr(data, size); 763 if (err) 764 return ERR_PTR(err); 765 766 btf_ext = calloc(1, sizeof(struct btf_ext)); 767 if (!btf_ext) 768 return ERR_PTR(-ENOMEM); 769 770 btf_ext->data_size = size; 771 btf_ext->data = malloc(size); 772 if (!btf_ext->data) { 773 err = -ENOMEM; 774 goto done; 775 } 776 memcpy(btf_ext->data, data, size); 777 778 err = btf_ext_setup_func_info(btf_ext); 779 if (err) 780 goto done; 781 782 err = btf_ext_setup_line_info(btf_ext); 783 if (err) 784 goto done; 785 786 done: 787 if (err) { 788 btf_ext__free(btf_ext); 789 return ERR_PTR(err); 790 } 791 792 return btf_ext; 793 } 794 795 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 796 { 797 *size = btf_ext->data_size; 798 return btf_ext->data; 799 } 800 801 static int btf_ext_reloc_info(const struct btf *btf, 802 const struct btf_ext_info *ext_info, 803 const char *sec_name, __u32 insns_cnt, 804 void **info, __u32 *cnt) 805 { 806 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 807 __u32 i, record_size, existing_len, records_len; 808 struct btf_ext_info_sec *sinfo; 809 const char *info_sec_name; 810 __u64 remain_len; 811 void *data; 812 813 record_size = ext_info->rec_size; 814 sinfo = ext_info->info; 815 remain_len = ext_info->len; 816 while (remain_len > 0) { 817 records_len = sinfo->num_info * record_size; 818 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 819 if (strcmp(info_sec_name, sec_name)) { 820 remain_len -= sec_hdrlen + records_len; 821 sinfo = (void *)sinfo + sec_hdrlen + records_len; 822 continue; 823 } 824 825 existing_len = (*cnt) * record_size; 826 data = realloc(*info, existing_len + records_len); 827 if (!data) 828 return -ENOMEM; 829 830 memcpy(data + existing_len, sinfo->data, records_len); 831 /* adjust insn_off only, the rest data will be passed 832 * to the kernel. 833 */ 834 for (i = 0; i < sinfo->num_info; i++) { 835 __u32 *insn_off; 836 837 insn_off = data + existing_len + (i * record_size); 838 *insn_off = *insn_off / sizeof(struct bpf_insn) + 839 insns_cnt; 840 } 841 *info = data; 842 *cnt += sinfo->num_info; 843 return 0; 844 } 845 846 return -ENOENT; 847 } 848 849 int btf_ext__reloc_func_info(const struct btf *btf, 850 const struct btf_ext *btf_ext, 851 const char *sec_name, __u32 insns_cnt, 852 void **func_info, __u32 *cnt) 853 { 854 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 855 insns_cnt, func_info, cnt); 856 } 857 858 int btf_ext__reloc_line_info(const struct btf *btf, 859 const struct btf_ext *btf_ext, 860 const char *sec_name, __u32 insns_cnt, 861 void **line_info, __u32 *cnt) 862 { 863 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 864 insns_cnt, line_info, cnt); 865 } 866 867 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 868 { 869 return btf_ext->func_info.rec_size; 870 } 871 872 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 873 { 874 return btf_ext->line_info.rec_size; 875 } 876 877 struct btf_dedup; 878 879 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 880 const struct btf_dedup_opts *opts); 881 static void btf_dedup_free(struct btf_dedup *d); 882 static int btf_dedup_strings(struct btf_dedup *d); 883 static int btf_dedup_prim_types(struct btf_dedup *d); 884 static int btf_dedup_struct_types(struct btf_dedup *d); 885 static int btf_dedup_ref_types(struct btf_dedup *d); 886 static int btf_dedup_compact_types(struct btf_dedup *d); 887 static int btf_dedup_remap_types(struct btf_dedup *d); 888 889 /* 890 * Deduplicate BTF types and strings. 891 * 892 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 893 * section with all BTF type descriptors and string data. It overwrites that 894 * memory in-place with deduplicated types and strings without any loss of 895 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 896 * is provided, all the strings referenced from .BTF.ext section are honored 897 * and updated to point to the right offsets after deduplication. 898 * 899 * If function returns with error, type/string data might be garbled and should 900 * be discarded. 901 * 902 * More verbose and detailed description of both problem btf_dedup is solving, 903 * as well as solution could be found at: 904 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 905 * 906 * Problem description and justification 907 * ===================================== 908 * 909 * BTF type information is typically emitted either as a result of conversion 910 * from DWARF to BTF or directly by compiler. In both cases, each compilation 911 * unit contains information about a subset of all the types that are used 912 * in an application. These subsets are frequently overlapping and contain a lot 913 * of duplicated information when later concatenated together into a single 914 * binary. This algorithm ensures that each unique type is represented by single 915 * BTF type descriptor, greatly reducing resulting size of BTF data. 916 * 917 * Compilation unit isolation and subsequent duplication of data is not the only 918 * problem. The same type hierarchy (e.g., struct and all the type that struct 919 * references) in different compilation units can be represented in BTF to 920 * various degrees of completeness (or, rather, incompleteness) due to 921 * struct/union forward declarations. 922 * 923 * Let's take a look at an example, that we'll use to better understand the 924 * problem (and solution). Suppose we have two compilation units, each using 925 * same `struct S`, but each of them having incomplete type information about 926 * struct's fields: 927 * 928 * // CU #1: 929 * struct S; 930 * struct A { 931 * int a; 932 * struct A* self; 933 * struct S* parent; 934 * }; 935 * struct B; 936 * struct S { 937 * struct A* a_ptr; 938 * struct B* b_ptr; 939 * }; 940 * 941 * // CU #2: 942 * struct S; 943 * struct A; 944 * struct B { 945 * int b; 946 * struct B* self; 947 * struct S* parent; 948 * }; 949 * struct S { 950 * struct A* a_ptr; 951 * struct B* b_ptr; 952 * }; 953 * 954 * In case of CU #1, BTF data will know only that `struct B` exist (but no 955 * more), but will know the complete type information about `struct A`. While 956 * for CU #2, it will know full type information about `struct B`, but will 957 * only know about forward declaration of `struct A` (in BTF terms, it will 958 * have `BTF_KIND_FWD` type descriptor with name `B`). 959 * 960 * This compilation unit isolation means that it's possible that there is no 961 * single CU with complete type information describing structs `S`, `A`, and 962 * `B`. Also, we might get tons of duplicated and redundant type information. 963 * 964 * Additional complication we need to keep in mind comes from the fact that 965 * types, in general, can form graphs containing cycles, not just DAGs. 966 * 967 * While algorithm does deduplication, it also merges and resolves type 968 * information (unless disabled throught `struct btf_opts`), whenever possible. 969 * E.g., in the example above with two compilation units having partial type 970 * information for structs `A` and `B`, the output of algorithm will emit 971 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 972 * (as well as type information for `int` and pointers), as if they were defined 973 * in a single compilation unit as: 974 * 975 * struct A { 976 * int a; 977 * struct A* self; 978 * struct S* parent; 979 * }; 980 * struct B { 981 * int b; 982 * struct B* self; 983 * struct S* parent; 984 * }; 985 * struct S { 986 * struct A* a_ptr; 987 * struct B* b_ptr; 988 * }; 989 * 990 * Algorithm summary 991 * ================= 992 * 993 * Algorithm completes its work in 6 separate passes: 994 * 995 * 1. Strings deduplication. 996 * 2. Primitive types deduplication (int, enum, fwd). 997 * 3. Struct/union types deduplication. 998 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 999 * protos, and const/volatile/restrict modifiers). 1000 * 5. Types compaction. 1001 * 6. Types remapping. 1002 * 1003 * Algorithm determines canonical type descriptor, which is a single 1004 * representative type for each truly unique type. This canonical type is the 1005 * one that will go into final deduplicated BTF type information. For 1006 * struct/unions, it is also the type that algorithm will merge additional type 1007 * information into (while resolving FWDs), as it discovers it from data in 1008 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1009 * that type is canonical, or to some other type, if that type is equivalent 1010 * and was chosen as canonical representative. This mapping is stored in 1011 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1012 * FWD type got resolved to. 1013 * 1014 * To facilitate fast discovery of canonical types, we also maintain canonical 1015 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1016 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1017 * that match that signature. With sufficiently good choice of type signature 1018 * hashing function, we can limit number of canonical types for each unique type 1019 * signature to a very small number, allowing to find canonical type for any 1020 * duplicated type very quickly. 1021 * 1022 * Struct/union deduplication is the most critical part and algorithm for 1023 * deduplicating structs/unions is described in greater details in comments for 1024 * `btf_dedup_is_equiv` function. 1025 */ 1026 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1027 const struct btf_dedup_opts *opts) 1028 { 1029 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1030 int err; 1031 1032 if (IS_ERR(d)) { 1033 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1034 return -EINVAL; 1035 } 1036 1037 err = btf_dedup_strings(d); 1038 if (err < 0) { 1039 pr_debug("btf_dedup_strings failed:%d\n", err); 1040 goto done; 1041 } 1042 err = btf_dedup_prim_types(d); 1043 if (err < 0) { 1044 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1045 goto done; 1046 } 1047 err = btf_dedup_struct_types(d); 1048 if (err < 0) { 1049 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1050 goto done; 1051 } 1052 err = btf_dedup_ref_types(d); 1053 if (err < 0) { 1054 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1055 goto done; 1056 } 1057 err = btf_dedup_compact_types(d); 1058 if (err < 0) { 1059 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1060 goto done; 1061 } 1062 err = btf_dedup_remap_types(d); 1063 if (err < 0) { 1064 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1065 goto done; 1066 } 1067 1068 done: 1069 btf_dedup_free(d); 1070 return err; 1071 } 1072 1073 #define BTF_DEDUP_TABLE_DEFAULT_SIZE (1 << 14) 1074 #define BTF_DEDUP_TABLE_MAX_SIZE_LOG 31 1075 #define BTF_UNPROCESSED_ID ((__u32)-1) 1076 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1077 1078 struct btf_dedup_node { 1079 struct btf_dedup_node *next; 1080 __u32 type_id; 1081 }; 1082 1083 struct btf_dedup { 1084 /* .BTF section to be deduped in-place */ 1085 struct btf *btf; 1086 /* 1087 * Optional .BTF.ext section. When provided, any strings referenced 1088 * from it will be taken into account when deduping strings 1089 */ 1090 struct btf_ext *btf_ext; 1091 /* 1092 * This is a map from any type's signature hash to a list of possible 1093 * canonical representative type candidates. Hash collisions are 1094 * ignored, so even types of various kinds can share same list of 1095 * candidates, which is fine because we rely on subsequent 1096 * btf_xxx_equal() checks to authoritatively verify type equality. 1097 */ 1098 struct btf_dedup_node **dedup_table; 1099 /* Canonical types map */ 1100 __u32 *map; 1101 /* Hypothetical mapping, used during type graph equivalence checks */ 1102 __u32 *hypot_map; 1103 __u32 *hypot_list; 1104 size_t hypot_cnt; 1105 size_t hypot_cap; 1106 /* Various option modifying behavior of algorithm */ 1107 struct btf_dedup_opts opts; 1108 }; 1109 1110 struct btf_str_ptr { 1111 const char *str; 1112 __u32 new_off; 1113 bool used; 1114 }; 1115 1116 struct btf_str_ptrs { 1117 struct btf_str_ptr *ptrs; 1118 const char *data; 1119 __u32 cnt; 1120 __u32 cap; 1121 }; 1122 1123 static inline __u32 hash_combine(__u32 h, __u32 value) 1124 { 1125 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ 1126 #define GOLDEN_RATIO_PRIME 0x9e370001UL 1127 return h * 37 + value * GOLDEN_RATIO_PRIME; 1128 #undef GOLDEN_RATIO_PRIME 1129 } 1130 1131 #define for_each_dedup_cand(d, hash, node) \ 1132 for (node = d->dedup_table[hash & (d->opts.dedup_table_size - 1)]; \ 1133 node; \ 1134 node = node->next) 1135 1136 static int btf_dedup_table_add(struct btf_dedup *d, __u32 hash, __u32 type_id) 1137 { 1138 struct btf_dedup_node *node = malloc(sizeof(struct btf_dedup_node)); 1139 int bucket = hash & (d->opts.dedup_table_size - 1); 1140 1141 if (!node) 1142 return -ENOMEM; 1143 node->type_id = type_id; 1144 node->next = d->dedup_table[bucket]; 1145 d->dedup_table[bucket] = node; 1146 return 0; 1147 } 1148 1149 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1150 __u32 from_id, __u32 to_id) 1151 { 1152 if (d->hypot_cnt == d->hypot_cap) { 1153 __u32 *new_list; 1154 1155 d->hypot_cap += max(16, d->hypot_cap / 2); 1156 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); 1157 if (!new_list) 1158 return -ENOMEM; 1159 d->hypot_list = new_list; 1160 } 1161 d->hypot_list[d->hypot_cnt++] = from_id; 1162 d->hypot_map[from_id] = to_id; 1163 return 0; 1164 } 1165 1166 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1167 { 1168 int i; 1169 1170 for (i = 0; i < d->hypot_cnt; i++) 1171 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1172 d->hypot_cnt = 0; 1173 } 1174 1175 static void btf_dedup_table_free(struct btf_dedup *d) 1176 { 1177 struct btf_dedup_node *head, *tmp; 1178 int i; 1179 1180 if (!d->dedup_table) 1181 return; 1182 1183 for (i = 0; i < d->opts.dedup_table_size; i++) { 1184 while (d->dedup_table[i]) { 1185 tmp = d->dedup_table[i]; 1186 d->dedup_table[i] = tmp->next; 1187 free(tmp); 1188 } 1189 1190 head = d->dedup_table[i]; 1191 while (head) { 1192 tmp = head; 1193 head = head->next; 1194 free(tmp); 1195 } 1196 } 1197 1198 free(d->dedup_table); 1199 d->dedup_table = NULL; 1200 } 1201 1202 static void btf_dedup_free(struct btf_dedup *d) 1203 { 1204 btf_dedup_table_free(d); 1205 1206 free(d->map); 1207 d->map = NULL; 1208 1209 free(d->hypot_map); 1210 d->hypot_map = NULL; 1211 1212 free(d->hypot_list); 1213 d->hypot_list = NULL; 1214 1215 free(d); 1216 } 1217 1218 /* Find closest power of two >= to size, capped at 2^max_size_log */ 1219 static __u32 roundup_pow2_max(__u32 size, int max_size_log) 1220 { 1221 int i; 1222 1223 for (i = 0; i < max_size_log && (1U << i) < size; i++) 1224 ; 1225 return 1U << i; 1226 } 1227 1228 1229 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1230 const struct btf_dedup_opts *opts) 1231 { 1232 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1233 int i, err = 0; 1234 __u32 sz; 1235 1236 if (!d) 1237 return ERR_PTR(-ENOMEM); 1238 1239 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1240 sz = opts && opts->dedup_table_size ? opts->dedup_table_size 1241 : BTF_DEDUP_TABLE_DEFAULT_SIZE; 1242 sz = roundup_pow2_max(sz, BTF_DEDUP_TABLE_MAX_SIZE_LOG); 1243 d->opts.dedup_table_size = sz; 1244 1245 d->btf = btf; 1246 d->btf_ext = btf_ext; 1247 1248 d->dedup_table = calloc(d->opts.dedup_table_size, 1249 sizeof(struct btf_dedup_node *)); 1250 if (!d->dedup_table) { 1251 err = -ENOMEM; 1252 goto done; 1253 } 1254 1255 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1256 if (!d->map) { 1257 err = -ENOMEM; 1258 goto done; 1259 } 1260 /* special BTF "void" type is made canonical immediately */ 1261 d->map[0] = 0; 1262 for (i = 1; i <= btf->nr_types; i++) 1263 d->map[i] = BTF_UNPROCESSED_ID; 1264 1265 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1266 if (!d->hypot_map) { 1267 err = -ENOMEM; 1268 goto done; 1269 } 1270 for (i = 0; i <= btf->nr_types; i++) 1271 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1272 1273 done: 1274 if (err) { 1275 btf_dedup_free(d); 1276 return ERR_PTR(err); 1277 } 1278 1279 return d; 1280 } 1281 1282 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1283 1284 /* 1285 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1286 * string and pass pointer to it to a provided callback `fn`. 1287 */ 1288 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1289 { 1290 void *line_data_cur, *line_data_end; 1291 int i, j, r, rec_size; 1292 struct btf_type *t; 1293 1294 for (i = 1; i <= d->btf->nr_types; i++) { 1295 t = d->btf->types[i]; 1296 r = fn(&t->name_off, ctx); 1297 if (r) 1298 return r; 1299 1300 switch (BTF_INFO_KIND(t->info)) { 1301 case BTF_KIND_STRUCT: 1302 case BTF_KIND_UNION: { 1303 struct btf_member *m = (struct btf_member *)(t + 1); 1304 __u16 vlen = BTF_INFO_VLEN(t->info); 1305 1306 for (j = 0; j < vlen; j++) { 1307 r = fn(&m->name_off, ctx); 1308 if (r) 1309 return r; 1310 m++; 1311 } 1312 break; 1313 } 1314 case BTF_KIND_ENUM: { 1315 struct btf_enum *m = (struct btf_enum *)(t + 1); 1316 __u16 vlen = BTF_INFO_VLEN(t->info); 1317 1318 for (j = 0; j < vlen; j++) { 1319 r = fn(&m->name_off, ctx); 1320 if (r) 1321 return r; 1322 m++; 1323 } 1324 break; 1325 } 1326 case BTF_KIND_FUNC_PROTO: { 1327 struct btf_param *m = (struct btf_param *)(t + 1); 1328 __u16 vlen = BTF_INFO_VLEN(t->info); 1329 1330 for (j = 0; j < vlen; j++) { 1331 r = fn(&m->name_off, ctx); 1332 if (r) 1333 return r; 1334 m++; 1335 } 1336 break; 1337 } 1338 default: 1339 break; 1340 } 1341 } 1342 1343 if (!d->btf_ext) 1344 return 0; 1345 1346 line_data_cur = d->btf_ext->line_info.info; 1347 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1348 rec_size = d->btf_ext->line_info.rec_size; 1349 1350 while (line_data_cur < line_data_end) { 1351 struct btf_ext_info_sec *sec = line_data_cur; 1352 struct bpf_line_info_min *line_info; 1353 __u32 num_info = sec->num_info; 1354 1355 r = fn(&sec->sec_name_off, ctx); 1356 if (r) 1357 return r; 1358 1359 line_data_cur += sizeof(struct btf_ext_info_sec); 1360 for (i = 0; i < num_info; i++) { 1361 line_info = line_data_cur; 1362 r = fn(&line_info->file_name_off, ctx); 1363 if (r) 1364 return r; 1365 r = fn(&line_info->line_off, ctx); 1366 if (r) 1367 return r; 1368 line_data_cur += rec_size; 1369 } 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int str_sort_by_content(const void *a1, const void *a2) 1376 { 1377 const struct btf_str_ptr *p1 = a1; 1378 const struct btf_str_ptr *p2 = a2; 1379 1380 return strcmp(p1->str, p2->str); 1381 } 1382 1383 static int str_sort_by_offset(const void *a1, const void *a2) 1384 { 1385 const struct btf_str_ptr *p1 = a1; 1386 const struct btf_str_ptr *p2 = a2; 1387 1388 if (p1->str != p2->str) 1389 return p1->str < p2->str ? -1 : 1; 1390 return 0; 1391 } 1392 1393 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1394 { 1395 const struct btf_str_ptr *p = pelem; 1396 1397 if (str_ptr != p->str) 1398 return (const char *)str_ptr < p->str ? -1 : 1; 1399 return 0; 1400 } 1401 1402 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1403 { 1404 struct btf_str_ptrs *strs; 1405 struct btf_str_ptr *s; 1406 1407 if (*str_off_ptr == 0) 1408 return 0; 1409 1410 strs = ctx; 1411 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1412 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1413 if (!s) 1414 return -EINVAL; 1415 s->used = true; 1416 return 0; 1417 } 1418 1419 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1420 { 1421 struct btf_str_ptrs *strs; 1422 struct btf_str_ptr *s; 1423 1424 if (*str_off_ptr == 0) 1425 return 0; 1426 1427 strs = ctx; 1428 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1429 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1430 if (!s) 1431 return -EINVAL; 1432 *str_off_ptr = s->new_off; 1433 return 0; 1434 } 1435 1436 /* 1437 * Dedup string and filter out those that are not referenced from either .BTF 1438 * or .BTF.ext (if provided) sections. 1439 * 1440 * This is done by building index of all strings in BTF's string section, 1441 * then iterating over all entities that can reference strings (e.g., type 1442 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1443 * strings as used. After that all used strings are deduped and compacted into 1444 * sequential blob of memory and new offsets are calculated. Then all the string 1445 * references are iterated again and rewritten using new offsets. 1446 */ 1447 static int btf_dedup_strings(struct btf_dedup *d) 1448 { 1449 const struct btf_header *hdr = d->btf->hdr; 1450 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1451 char *end = start + d->btf->hdr->str_len; 1452 char *p = start, *tmp_strs = NULL; 1453 struct btf_str_ptrs strs = { 1454 .cnt = 0, 1455 .cap = 0, 1456 .ptrs = NULL, 1457 .data = start, 1458 }; 1459 int i, j, err = 0, grp_idx; 1460 bool grp_used; 1461 1462 /* build index of all strings */ 1463 while (p < end) { 1464 if (strs.cnt + 1 > strs.cap) { 1465 struct btf_str_ptr *new_ptrs; 1466 1467 strs.cap += max(strs.cnt / 2, 16); 1468 new_ptrs = realloc(strs.ptrs, 1469 sizeof(strs.ptrs[0]) * strs.cap); 1470 if (!new_ptrs) { 1471 err = -ENOMEM; 1472 goto done; 1473 } 1474 strs.ptrs = new_ptrs; 1475 } 1476 1477 strs.ptrs[strs.cnt].str = p; 1478 strs.ptrs[strs.cnt].used = false; 1479 1480 p += strlen(p) + 1; 1481 strs.cnt++; 1482 } 1483 1484 /* temporary storage for deduplicated strings */ 1485 tmp_strs = malloc(d->btf->hdr->str_len); 1486 if (!tmp_strs) { 1487 err = -ENOMEM; 1488 goto done; 1489 } 1490 1491 /* mark all used strings */ 1492 strs.ptrs[0].used = true; 1493 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1494 if (err) 1495 goto done; 1496 1497 /* sort strings by context, so that we can identify duplicates */ 1498 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1499 1500 /* 1501 * iterate groups of equal strings and if any instance in a group was 1502 * referenced, emit single instance and remember new offset 1503 */ 1504 p = tmp_strs; 1505 grp_idx = 0; 1506 grp_used = strs.ptrs[0].used; 1507 /* iterate past end to avoid code duplication after loop */ 1508 for (i = 1; i <= strs.cnt; i++) { 1509 /* 1510 * when i == strs.cnt, we want to skip string comparison and go 1511 * straight to handling last group of strings (otherwise we'd 1512 * need to handle last group after the loop w/ duplicated code) 1513 */ 1514 if (i < strs.cnt && 1515 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1516 grp_used = grp_used || strs.ptrs[i].used; 1517 continue; 1518 } 1519 1520 /* 1521 * this check would have been required after the loop to handle 1522 * last group of strings, but due to <= condition in a loop 1523 * we avoid that duplication 1524 */ 1525 if (grp_used) { 1526 int new_off = p - tmp_strs; 1527 __u32 len = strlen(strs.ptrs[grp_idx].str); 1528 1529 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1530 for (j = grp_idx; j < i; j++) 1531 strs.ptrs[j].new_off = new_off; 1532 p += len + 1; 1533 } 1534 1535 if (i < strs.cnt) { 1536 grp_idx = i; 1537 grp_used = strs.ptrs[i].used; 1538 } 1539 } 1540 1541 /* replace original strings with deduped ones */ 1542 d->btf->hdr->str_len = p - tmp_strs; 1543 memmove(start, tmp_strs, d->btf->hdr->str_len); 1544 end = start + d->btf->hdr->str_len; 1545 1546 /* restore original order for further binary search lookups */ 1547 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1548 1549 /* remap string offsets */ 1550 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1551 if (err) 1552 goto done; 1553 1554 d->btf->hdr->str_len = end - start; 1555 1556 done: 1557 free(tmp_strs); 1558 free(strs.ptrs); 1559 return err; 1560 } 1561 1562 static __u32 btf_hash_common(struct btf_type *t) 1563 { 1564 __u32 h; 1565 1566 h = hash_combine(0, t->name_off); 1567 h = hash_combine(h, t->info); 1568 h = hash_combine(h, t->size); 1569 return h; 1570 } 1571 1572 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1573 { 1574 return t1->name_off == t2->name_off && 1575 t1->info == t2->info && 1576 t1->size == t2->size; 1577 } 1578 1579 /* Calculate type signature hash of INT. */ 1580 static __u32 btf_hash_int(struct btf_type *t) 1581 { 1582 __u32 info = *(__u32 *)(t + 1); 1583 __u32 h; 1584 1585 h = btf_hash_common(t); 1586 h = hash_combine(h, info); 1587 return h; 1588 } 1589 1590 /* Check structural equality of two INTs. */ 1591 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1592 { 1593 __u32 info1, info2; 1594 1595 if (!btf_equal_common(t1, t2)) 1596 return false; 1597 info1 = *(__u32 *)(t1 + 1); 1598 info2 = *(__u32 *)(t2 + 1); 1599 return info1 == info2; 1600 } 1601 1602 /* Calculate type signature hash of ENUM. */ 1603 static __u32 btf_hash_enum(struct btf_type *t) 1604 { 1605 struct btf_enum *member = (struct btf_enum *)(t + 1); 1606 __u32 vlen = BTF_INFO_VLEN(t->info); 1607 __u32 h = btf_hash_common(t); 1608 int i; 1609 1610 for (i = 0; i < vlen; i++) { 1611 h = hash_combine(h, member->name_off); 1612 h = hash_combine(h, member->val); 1613 member++; 1614 } 1615 return h; 1616 } 1617 1618 /* Check structural equality of two ENUMs. */ 1619 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 1620 { 1621 struct btf_enum *m1, *m2; 1622 __u16 vlen; 1623 int i; 1624 1625 if (!btf_equal_common(t1, t2)) 1626 return false; 1627 1628 vlen = BTF_INFO_VLEN(t1->info); 1629 m1 = (struct btf_enum *)(t1 + 1); 1630 m2 = (struct btf_enum *)(t2 + 1); 1631 for (i = 0; i < vlen; i++) { 1632 if (m1->name_off != m2->name_off || m1->val != m2->val) 1633 return false; 1634 m1++; 1635 m2++; 1636 } 1637 return true; 1638 } 1639 1640 /* 1641 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 1642 * as referenced type IDs equivalence is established separately during type 1643 * graph equivalence check algorithm. 1644 */ 1645 static __u32 btf_hash_struct(struct btf_type *t) 1646 { 1647 struct btf_member *member = (struct btf_member *)(t + 1); 1648 __u32 vlen = BTF_INFO_VLEN(t->info); 1649 __u32 h = btf_hash_common(t); 1650 int i; 1651 1652 for (i = 0; i < vlen; i++) { 1653 h = hash_combine(h, member->name_off); 1654 h = hash_combine(h, member->offset); 1655 /* no hashing of referenced type ID, it can be unresolved yet */ 1656 member++; 1657 } 1658 return h; 1659 } 1660 1661 /* 1662 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1663 * IDs. This check is performed during type graph equivalence check and 1664 * referenced types equivalence is checked separately. 1665 */ 1666 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 1667 { 1668 struct btf_member *m1, *m2; 1669 __u16 vlen; 1670 int i; 1671 1672 if (!btf_equal_common(t1, t2)) 1673 return false; 1674 1675 vlen = BTF_INFO_VLEN(t1->info); 1676 m1 = (struct btf_member *)(t1 + 1); 1677 m2 = (struct btf_member *)(t2 + 1); 1678 for (i = 0; i < vlen; i++) { 1679 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 1680 return false; 1681 m1++; 1682 m2++; 1683 } 1684 return true; 1685 } 1686 1687 /* 1688 * Calculate type signature hash of ARRAY, including referenced type IDs, 1689 * under assumption that they were already resolved to canonical type IDs and 1690 * are not going to change. 1691 */ 1692 static __u32 btf_hash_array(struct btf_type *t) 1693 { 1694 struct btf_array *info = (struct btf_array *)(t + 1); 1695 __u32 h = btf_hash_common(t); 1696 1697 h = hash_combine(h, info->type); 1698 h = hash_combine(h, info->index_type); 1699 h = hash_combine(h, info->nelems); 1700 return h; 1701 } 1702 1703 /* 1704 * Check exact equality of two ARRAYs, taking into account referenced 1705 * type IDs, under assumption that they were already resolved to canonical 1706 * type IDs and are not going to change. 1707 * This function is called during reference types deduplication to compare 1708 * ARRAY to potential canonical representative. 1709 */ 1710 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 1711 { 1712 struct btf_array *info1, *info2; 1713 1714 if (!btf_equal_common(t1, t2)) 1715 return false; 1716 1717 info1 = (struct btf_array *)(t1 + 1); 1718 info2 = (struct btf_array *)(t2 + 1); 1719 return info1->type == info2->type && 1720 info1->index_type == info2->index_type && 1721 info1->nelems == info2->nelems; 1722 } 1723 1724 /* 1725 * Check structural compatibility of two ARRAYs, ignoring referenced type 1726 * IDs. This check is performed during type graph equivalence check and 1727 * referenced types equivalence is checked separately. 1728 */ 1729 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 1730 { 1731 struct btf_array *info1, *info2; 1732 1733 if (!btf_equal_common(t1, t2)) 1734 return false; 1735 1736 info1 = (struct btf_array *)(t1 + 1); 1737 info2 = (struct btf_array *)(t2 + 1); 1738 return info1->nelems == info2->nelems; 1739 } 1740 1741 /* 1742 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 1743 * under assumption that they were already resolved to canonical type IDs and 1744 * are not going to change. 1745 */ 1746 static inline __u32 btf_hash_fnproto(struct btf_type *t) 1747 { 1748 struct btf_param *member = (struct btf_param *)(t + 1); 1749 __u16 vlen = BTF_INFO_VLEN(t->info); 1750 __u32 h = btf_hash_common(t); 1751 int i; 1752 1753 for (i = 0; i < vlen; i++) { 1754 h = hash_combine(h, member->name_off); 1755 h = hash_combine(h, member->type); 1756 member++; 1757 } 1758 return h; 1759 } 1760 1761 /* 1762 * Check exact equality of two FUNC_PROTOs, taking into account referenced 1763 * type IDs, under assumption that they were already resolved to canonical 1764 * type IDs and are not going to change. 1765 * This function is called during reference types deduplication to compare 1766 * FUNC_PROTO to potential canonical representative. 1767 */ 1768 static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 1769 { 1770 struct btf_param *m1, *m2; 1771 __u16 vlen; 1772 int i; 1773 1774 if (!btf_equal_common(t1, t2)) 1775 return false; 1776 1777 vlen = BTF_INFO_VLEN(t1->info); 1778 m1 = (struct btf_param *)(t1 + 1); 1779 m2 = (struct btf_param *)(t2 + 1); 1780 for (i = 0; i < vlen; i++) { 1781 if (m1->name_off != m2->name_off || m1->type != m2->type) 1782 return false; 1783 m1++; 1784 m2++; 1785 } 1786 return true; 1787 } 1788 1789 /* 1790 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1791 * IDs. This check is performed during type graph equivalence check and 1792 * referenced types equivalence is checked separately. 1793 */ 1794 static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 1795 { 1796 struct btf_param *m1, *m2; 1797 __u16 vlen; 1798 int i; 1799 1800 /* skip return type ID */ 1801 if (t1->name_off != t2->name_off || t1->info != t2->info) 1802 return false; 1803 1804 vlen = BTF_INFO_VLEN(t1->info); 1805 m1 = (struct btf_param *)(t1 + 1); 1806 m2 = (struct btf_param *)(t2 + 1); 1807 for (i = 0; i < vlen; i++) { 1808 if (m1->name_off != m2->name_off) 1809 return false; 1810 m1++; 1811 m2++; 1812 } 1813 return true; 1814 } 1815 1816 /* 1817 * Deduplicate primitive types, that can't reference other types, by calculating 1818 * their type signature hash and comparing them with any possible canonical 1819 * candidate. If no canonical candidate matches, type itself is marked as 1820 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 1821 */ 1822 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 1823 { 1824 struct btf_type *t = d->btf->types[type_id]; 1825 struct btf_type *cand; 1826 struct btf_dedup_node *cand_node; 1827 /* if we don't find equivalent type, then we are canonical */ 1828 __u32 new_id = type_id; 1829 __u32 h; 1830 1831 switch (BTF_INFO_KIND(t->info)) { 1832 case BTF_KIND_CONST: 1833 case BTF_KIND_VOLATILE: 1834 case BTF_KIND_RESTRICT: 1835 case BTF_KIND_PTR: 1836 case BTF_KIND_TYPEDEF: 1837 case BTF_KIND_ARRAY: 1838 case BTF_KIND_STRUCT: 1839 case BTF_KIND_UNION: 1840 case BTF_KIND_FUNC: 1841 case BTF_KIND_FUNC_PROTO: 1842 return 0; 1843 1844 case BTF_KIND_INT: 1845 h = btf_hash_int(t); 1846 for_each_dedup_cand(d, h, cand_node) { 1847 cand = d->btf->types[cand_node->type_id]; 1848 if (btf_equal_int(t, cand)) { 1849 new_id = cand_node->type_id; 1850 break; 1851 } 1852 } 1853 break; 1854 1855 case BTF_KIND_ENUM: 1856 h = btf_hash_enum(t); 1857 for_each_dedup_cand(d, h, cand_node) { 1858 cand = d->btf->types[cand_node->type_id]; 1859 if (btf_equal_enum(t, cand)) { 1860 new_id = cand_node->type_id; 1861 break; 1862 } 1863 } 1864 break; 1865 1866 case BTF_KIND_FWD: 1867 h = btf_hash_common(t); 1868 for_each_dedup_cand(d, h, cand_node) { 1869 cand = d->btf->types[cand_node->type_id]; 1870 if (btf_equal_common(t, cand)) { 1871 new_id = cand_node->type_id; 1872 break; 1873 } 1874 } 1875 break; 1876 1877 default: 1878 return -EINVAL; 1879 } 1880 1881 d->map[type_id] = new_id; 1882 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 1883 return -ENOMEM; 1884 1885 return 0; 1886 } 1887 1888 static int btf_dedup_prim_types(struct btf_dedup *d) 1889 { 1890 int i, err; 1891 1892 for (i = 1; i <= d->btf->nr_types; i++) { 1893 err = btf_dedup_prim_type(d, i); 1894 if (err) 1895 return err; 1896 } 1897 return 0; 1898 } 1899 1900 /* 1901 * Check whether type is already mapped into canonical one (could be to itself). 1902 */ 1903 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 1904 { 1905 return d->map[type_id] <= BTF_MAX_NR_TYPES; 1906 } 1907 1908 /* 1909 * Resolve type ID into its canonical type ID, if any; otherwise return original 1910 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 1911 * STRUCT/UNION link and resolve it into canonical type ID as well. 1912 */ 1913 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 1914 { 1915 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 1916 type_id = d->map[type_id]; 1917 return type_id; 1918 } 1919 1920 /* 1921 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 1922 * type ID. 1923 */ 1924 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 1925 { 1926 __u32 orig_type_id = type_id; 1927 1928 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD) 1929 return type_id; 1930 1931 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 1932 type_id = d->map[type_id]; 1933 1934 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD) 1935 return type_id; 1936 1937 return orig_type_id; 1938 } 1939 1940 1941 static inline __u16 btf_fwd_kind(struct btf_type *t) 1942 { 1943 return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 1944 } 1945 1946 /* 1947 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 1948 * call it "candidate graph" in this description for brevity) to a type graph 1949 * formed by (potential) canonical struct/union ("canonical graph" for brevity 1950 * here, though keep in mind that not all types in canonical graph are 1951 * necessarily canonical representatives themselves, some of them might be 1952 * duplicates or its uniqueness might not have been established yet). 1953 * Returns: 1954 * - >0, if type graphs are equivalent; 1955 * - 0, if not equivalent; 1956 * - <0, on error. 1957 * 1958 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 1959 * equivalence of BTF types at each step. If at any point BTF types in candidate 1960 * and canonical graphs are not compatible structurally, whole graphs are 1961 * incompatible. If types are structurally equivalent (i.e., all information 1962 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 1963 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 1964 * If a type references other types, then those referenced types are checked 1965 * for equivalence recursively. 1966 * 1967 * During DFS traversal, if we find that for current `canon_id` type we 1968 * already have some mapping in hypothetical map, we check for two possible 1969 * situations: 1970 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 1971 * happen when type graphs have cycles. In this case we assume those two 1972 * types are equivalent. 1973 * - `canon_id` is mapped to different type. This is contradiction in our 1974 * hypothetical mapping, because same graph in canonical graph corresponds 1975 * to two different types in candidate graph, which for equivalent type 1976 * graphs shouldn't happen. This condition terminates equivalence check 1977 * with negative result. 1978 * 1979 * If type graphs traversal exhausts types to check and find no contradiction, 1980 * then type graphs are equivalent. 1981 * 1982 * When checking types for equivalence, there is one special case: FWD types. 1983 * If FWD type resolution is allowed and one of the types (either from canonical 1984 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 1985 * flag) and their names match, hypothetical mapping is updated to point from 1986 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 1987 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 1988 * 1989 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 1990 * if there are two exactly named (or anonymous) structs/unions that are 1991 * compatible structurally, one of which has FWD field, while other is concrete 1992 * STRUCT/UNION, but according to C sources they are different structs/unions 1993 * that are referencing different types with the same name. This is extremely 1994 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 1995 * this logic is causing problems. 1996 * 1997 * Doing FWD resolution means that both candidate and/or canonical graphs can 1998 * consists of portions of the graph that come from multiple compilation units. 1999 * This is due to the fact that types within single compilation unit are always 2000 * deduplicated and FWDs are already resolved, if referenced struct/union 2001 * definiton is available. So, if we had unresolved FWD and found corresponding 2002 * STRUCT/UNION, they will be from different compilation units. This 2003 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2004 * type graph will likely have at least two different BTF types that describe 2005 * same type (e.g., most probably there will be two different BTF types for the 2006 * same 'int' primitive type) and could even have "overlapping" parts of type 2007 * graph that describe same subset of types. 2008 * 2009 * This in turn means that our assumption that each type in canonical graph 2010 * must correspond to exactly one type in candidate graph might not hold 2011 * anymore and will make it harder to detect contradictions using hypothetical 2012 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2013 * resolution only in canonical graph. FWDs in candidate graphs are never 2014 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2015 * that can occur: 2016 * - Both types in canonical and candidate graphs are FWDs. If they are 2017 * structurally equivalent, then they can either be both resolved to the 2018 * same STRUCT/UNION or not resolved at all. In both cases they are 2019 * equivalent and there is no need to resolve FWD on candidate side. 2020 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2021 * so nothing to resolve as well, algorithm will check equivalence anyway. 2022 * - Type in canonical graph is FWD, while type in candidate is concrete 2023 * STRUCT/UNION. In this case candidate graph comes from single compilation 2024 * unit, so there is exactly one BTF type for each unique C type. After 2025 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2026 * in canonical graph mapping to single BTF type in candidate graph, but 2027 * because hypothetical mapping maps from canonical to candidate types, it's 2028 * alright, and we still maintain the property of having single `canon_id` 2029 * mapping to single `cand_id` (there could be two different `canon_id` 2030 * mapped to the same `cand_id`, but it's not contradictory). 2031 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2032 * graph is FWD. In this case we are just going to check compatibility of 2033 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2034 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2035 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2036 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2037 * canonical graph. 2038 */ 2039 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2040 __u32 canon_id) 2041 { 2042 struct btf_type *cand_type; 2043 struct btf_type *canon_type; 2044 __u32 hypot_type_id; 2045 __u16 cand_kind; 2046 __u16 canon_kind; 2047 int i, eq; 2048 2049 /* if both resolve to the same canonical, they must be equivalent */ 2050 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2051 return 1; 2052 2053 canon_id = resolve_fwd_id(d, canon_id); 2054 2055 hypot_type_id = d->hypot_map[canon_id]; 2056 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2057 return hypot_type_id == cand_id; 2058 2059 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2060 return -ENOMEM; 2061 2062 cand_type = d->btf->types[cand_id]; 2063 canon_type = d->btf->types[canon_id]; 2064 cand_kind = BTF_INFO_KIND(cand_type->info); 2065 canon_kind = BTF_INFO_KIND(canon_type->info); 2066 2067 if (cand_type->name_off != canon_type->name_off) 2068 return 0; 2069 2070 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2071 if (!d->opts.dont_resolve_fwds 2072 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2073 && cand_kind != canon_kind) { 2074 __u16 real_kind; 2075 __u16 fwd_kind; 2076 2077 if (cand_kind == BTF_KIND_FWD) { 2078 real_kind = canon_kind; 2079 fwd_kind = btf_fwd_kind(cand_type); 2080 } else { 2081 real_kind = cand_kind; 2082 fwd_kind = btf_fwd_kind(canon_type); 2083 } 2084 return fwd_kind == real_kind; 2085 } 2086 2087 if (cand_type->info != canon_type->info) 2088 return 0; 2089 2090 switch (cand_kind) { 2091 case BTF_KIND_INT: 2092 return btf_equal_int(cand_type, canon_type); 2093 2094 case BTF_KIND_ENUM: 2095 return btf_equal_enum(cand_type, canon_type); 2096 2097 case BTF_KIND_FWD: 2098 return btf_equal_common(cand_type, canon_type); 2099 2100 case BTF_KIND_CONST: 2101 case BTF_KIND_VOLATILE: 2102 case BTF_KIND_RESTRICT: 2103 case BTF_KIND_PTR: 2104 case BTF_KIND_TYPEDEF: 2105 case BTF_KIND_FUNC: 2106 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2107 2108 case BTF_KIND_ARRAY: { 2109 struct btf_array *cand_arr, *canon_arr; 2110 2111 if (!btf_compat_array(cand_type, canon_type)) 2112 return 0; 2113 cand_arr = (struct btf_array *)(cand_type + 1); 2114 canon_arr = (struct btf_array *)(canon_type + 1); 2115 eq = btf_dedup_is_equiv(d, 2116 cand_arr->index_type, canon_arr->index_type); 2117 if (eq <= 0) 2118 return eq; 2119 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2120 } 2121 2122 case BTF_KIND_STRUCT: 2123 case BTF_KIND_UNION: { 2124 struct btf_member *cand_m, *canon_m; 2125 __u16 vlen; 2126 2127 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2128 return 0; 2129 vlen = BTF_INFO_VLEN(cand_type->info); 2130 cand_m = (struct btf_member *)(cand_type + 1); 2131 canon_m = (struct btf_member *)(canon_type + 1); 2132 for (i = 0; i < vlen; i++) { 2133 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2134 if (eq <= 0) 2135 return eq; 2136 cand_m++; 2137 canon_m++; 2138 } 2139 2140 return 1; 2141 } 2142 2143 case BTF_KIND_FUNC_PROTO: { 2144 struct btf_param *cand_p, *canon_p; 2145 __u16 vlen; 2146 2147 if (!btf_compat_fnproto(cand_type, canon_type)) 2148 return 0; 2149 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2150 if (eq <= 0) 2151 return eq; 2152 vlen = BTF_INFO_VLEN(cand_type->info); 2153 cand_p = (struct btf_param *)(cand_type + 1); 2154 canon_p = (struct btf_param *)(canon_type + 1); 2155 for (i = 0; i < vlen; i++) { 2156 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2157 if (eq <= 0) 2158 return eq; 2159 cand_p++; 2160 canon_p++; 2161 } 2162 return 1; 2163 } 2164 2165 default: 2166 return -EINVAL; 2167 } 2168 return 0; 2169 } 2170 2171 /* 2172 * Use hypothetical mapping, produced by successful type graph equivalence 2173 * check, to augment existing struct/union canonical mapping, where possible. 2174 * 2175 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2176 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2177 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2178 * we are recording the mapping anyway. As opposed to carefulness required 2179 * for struct/union correspondence mapping (described below), for FWD resolution 2180 * it's not important, as by the time that FWD type (reference type) will be 2181 * deduplicated all structs/unions will be deduped already anyway. 2182 * 2183 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2184 * not required for correctness. It needs to be done carefully to ensure that 2185 * struct/union from candidate's type graph is not mapped into corresponding 2186 * struct/union from canonical type graph that itself hasn't been resolved into 2187 * canonical representative. The only guarantee we have is that canonical 2188 * struct/union was determined as canonical and that won't change. But any 2189 * types referenced through that struct/union fields could have been not yet 2190 * resolved, so in case like that it's too early to establish any kind of 2191 * correspondence between structs/unions. 2192 * 2193 * No canonical correspondence is derived for primitive types (they are already 2194 * deduplicated completely already anyway) or reference types (they rely on 2195 * stability of struct/union canonical relationship for equivalence checks). 2196 */ 2197 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2198 { 2199 __u32 cand_type_id, targ_type_id; 2200 __u16 t_kind, c_kind; 2201 __u32 t_id, c_id; 2202 int i; 2203 2204 for (i = 0; i < d->hypot_cnt; i++) { 2205 cand_type_id = d->hypot_list[i]; 2206 targ_type_id = d->hypot_map[cand_type_id]; 2207 t_id = resolve_type_id(d, targ_type_id); 2208 c_id = resolve_type_id(d, cand_type_id); 2209 t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info); 2210 c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info); 2211 /* 2212 * Resolve FWD into STRUCT/UNION. 2213 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2214 * mapped to canonical representative (as opposed to 2215 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2216 * eventually that struct is going to be mapped and all resolved 2217 * FWDs will automatically resolve to correct canonical 2218 * representative. This will happen before ref type deduping, 2219 * which critically depends on stability of these mapping. This 2220 * stability is not a requirement for STRUCT/UNION equivalence 2221 * checks, though. 2222 */ 2223 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2224 d->map[c_id] = t_id; 2225 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2226 d->map[t_id] = c_id; 2227 2228 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2229 c_kind != BTF_KIND_FWD && 2230 is_type_mapped(d, c_id) && 2231 !is_type_mapped(d, t_id)) { 2232 /* 2233 * as a perf optimization, we can map struct/union 2234 * that's part of type graph we just verified for 2235 * equivalence. We can do that for struct/union that has 2236 * canonical representative only, though. 2237 */ 2238 d->map[t_id] = c_id; 2239 } 2240 } 2241 } 2242 2243 /* 2244 * Deduplicate struct/union types. 2245 * 2246 * For each struct/union type its type signature hash is calculated, taking 2247 * into account type's name, size, number, order and names of fields, but 2248 * ignoring type ID's referenced from fields, because they might not be deduped 2249 * completely until after reference types deduplication phase. This type hash 2250 * is used to iterate over all potential canonical types, sharing same hash. 2251 * For each canonical candidate we check whether type graphs that they form 2252 * (through referenced types in fields and so on) are equivalent using algorithm 2253 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2254 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2255 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2256 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2257 * potentially map other structs/unions to their canonical representatives, 2258 * if such relationship hasn't yet been established. This speeds up algorithm 2259 * by eliminating some of the duplicate work. 2260 * 2261 * If no matching canonical representative was found, struct/union is marked 2262 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2263 * for further look ups. 2264 */ 2265 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2266 { 2267 struct btf_dedup_node *cand_node; 2268 struct btf_type *cand_type, *t; 2269 /* if we don't find equivalent type, then we are canonical */ 2270 __u32 new_id = type_id; 2271 __u16 kind; 2272 __u32 h; 2273 2274 /* already deduped or is in process of deduping (loop detected) */ 2275 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2276 return 0; 2277 2278 t = d->btf->types[type_id]; 2279 kind = BTF_INFO_KIND(t->info); 2280 2281 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2282 return 0; 2283 2284 h = btf_hash_struct(t); 2285 for_each_dedup_cand(d, h, cand_node) { 2286 int eq; 2287 2288 /* 2289 * Even though btf_dedup_is_equiv() checks for 2290 * btf_shallow_equal_struct() internally when checking two 2291 * structs (unions) for equivalence, we need to guard here 2292 * from picking matching FWD type as a dedup candidate. 2293 * This can happen due to hash collision. In such case just 2294 * relying on btf_dedup_is_equiv() would lead to potentially 2295 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2296 * FWD and compatible STRUCT/UNION are considered equivalent. 2297 */ 2298 cand_type = d->btf->types[cand_node->type_id]; 2299 if (!btf_shallow_equal_struct(t, cand_type)) 2300 continue; 2301 2302 btf_dedup_clear_hypot_map(d); 2303 eq = btf_dedup_is_equiv(d, type_id, cand_node->type_id); 2304 if (eq < 0) 2305 return eq; 2306 if (!eq) 2307 continue; 2308 new_id = cand_node->type_id; 2309 btf_dedup_merge_hypot_map(d); 2310 break; 2311 } 2312 2313 d->map[type_id] = new_id; 2314 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2315 return -ENOMEM; 2316 2317 return 0; 2318 } 2319 2320 static int btf_dedup_struct_types(struct btf_dedup *d) 2321 { 2322 int i, err; 2323 2324 for (i = 1; i <= d->btf->nr_types; i++) { 2325 err = btf_dedup_struct_type(d, i); 2326 if (err) 2327 return err; 2328 } 2329 return 0; 2330 } 2331 2332 /* 2333 * Deduplicate reference type. 2334 * 2335 * Once all primitive and struct/union types got deduplicated, we can easily 2336 * deduplicate all other (reference) BTF types. This is done in two steps: 2337 * 2338 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2339 * resolution can be done either immediately for primitive or struct/union types 2340 * (because they were deduped in previous two phases) or recursively for 2341 * reference types. Recursion will always terminate at either primitive or 2342 * struct/union type, at which point we can "unwind" chain of reference types 2343 * one by one. There is no danger of encountering cycles because in C type 2344 * system the only way to form type cycle is through struct/union, so any chain 2345 * of reference types, even those taking part in a type cycle, will inevitably 2346 * reach struct/union at some point. 2347 * 2348 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2349 * becomes "stable", in the sense that no further deduplication will cause 2350 * any changes to it. With that, it's now possible to calculate type's signature 2351 * hash (this time taking into account referenced type IDs) and loop over all 2352 * potential canonical representatives. If no match was found, current type 2353 * will become canonical representative of itself and will be added into 2354 * btf_dedup->dedup_table as another possible canonical representative. 2355 */ 2356 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2357 { 2358 struct btf_dedup_node *cand_node; 2359 struct btf_type *t, *cand; 2360 /* if we don't find equivalent type, then we are representative type */ 2361 __u32 new_id = type_id; 2362 int ref_type_id; 2363 __u32 h; 2364 2365 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2366 return -ELOOP; 2367 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2368 return resolve_type_id(d, type_id); 2369 2370 t = d->btf->types[type_id]; 2371 d->map[type_id] = BTF_IN_PROGRESS_ID; 2372 2373 switch (BTF_INFO_KIND(t->info)) { 2374 case BTF_KIND_CONST: 2375 case BTF_KIND_VOLATILE: 2376 case BTF_KIND_RESTRICT: 2377 case BTF_KIND_PTR: 2378 case BTF_KIND_TYPEDEF: 2379 case BTF_KIND_FUNC: 2380 ref_type_id = btf_dedup_ref_type(d, t->type); 2381 if (ref_type_id < 0) 2382 return ref_type_id; 2383 t->type = ref_type_id; 2384 2385 h = btf_hash_common(t); 2386 for_each_dedup_cand(d, h, cand_node) { 2387 cand = d->btf->types[cand_node->type_id]; 2388 if (btf_equal_common(t, cand)) { 2389 new_id = cand_node->type_id; 2390 break; 2391 } 2392 } 2393 break; 2394 2395 case BTF_KIND_ARRAY: { 2396 struct btf_array *info = (struct btf_array *)(t + 1); 2397 2398 ref_type_id = btf_dedup_ref_type(d, info->type); 2399 if (ref_type_id < 0) 2400 return ref_type_id; 2401 info->type = ref_type_id; 2402 2403 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2404 if (ref_type_id < 0) 2405 return ref_type_id; 2406 info->index_type = ref_type_id; 2407 2408 h = btf_hash_array(t); 2409 for_each_dedup_cand(d, h, cand_node) { 2410 cand = d->btf->types[cand_node->type_id]; 2411 if (btf_equal_array(t, cand)) { 2412 new_id = cand_node->type_id; 2413 break; 2414 } 2415 } 2416 break; 2417 } 2418 2419 case BTF_KIND_FUNC_PROTO: { 2420 struct btf_param *param; 2421 __u16 vlen; 2422 int i; 2423 2424 ref_type_id = btf_dedup_ref_type(d, t->type); 2425 if (ref_type_id < 0) 2426 return ref_type_id; 2427 t->type = ref_type_id; 2428 2429 vlen = BTF_INFO_VLEN(t->info); 2430 param = (struct btf_param *)(t + 1); 2431 for (i = 0; i < vlen; i++) { 2432 ref_type_id = btf_dedup_ref_type(d, param->type); 2433 if (ref_type_id < 0) 2434 return ref_type_id; 2435 param->type = ref_type_id; 2436 param++; 2437 } 2438 2439 h = btf_hash_fnproto(t); 2440 for_each_dedup_cand(d, h, cand_node) { 2441 cand = d->btf->types[cand_node->type_id]; 2442 if (btf_equal_fnproto(t, cand)) { 2443 new_id = cand_node->type_id; 2444 break; 2445 } 2446 } 2447 break; 2448 } 2449 2450 default: 2451 return -EINVAL; 2452 } 2453 2454 d->map[type_id] = new_id; 2455 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2456 return -ENOMEM; 2457 2458 return new_id; 2459 } 2460 2461 static int btf_dedup_ref_types(struct btf_dedup *d) 2462 { 2463 int i, err; 2464 2465 for (i = 1; i <= d->btf->nr_types; i++) { 2466 err = btf_dedup_ref_type(d, i); 2467 if (err < 0) 2468 return err; 2469 } 2470 btf_dedup_table_free(d); 2471 return 0; 2472 } 2473 2474 /* 2475 * Compact types. 2476 * 2477 * After we established for each type its corresponding canonical representative 2478 * type, we now can eliminate types that are not canonical and leave only 2479 * canonical ones layed out sequentially in memory by copying them over 2480 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2481 * a map from original type ID to a new compacted type ID, which will be used 2482 * during next phase to "fix up" type IDs, referenced from struct/union and 2483 * reference types. 2484 */ 2485 static int btf_dedup_compact_types(struct btf_dedup *d) 2486 { 2487 struct btf_type **new_types; 2488 __u32 next_type_id = 1; 2489 char *types_start, *p; 2490 int i, len; 2491 2492 /* we are going to reuse hypot_map to store compaction remapping */ 2493 d->hypot_map[0] = 0; 2494 for (i = 1; i <= d->btf->nr_types; i++) 2495 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2496 2497 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2498 p = types_start; 2499 2500 for (i = 1; i <= d->btf->nr_types; i++) { 2501 if (d->map[i] != i) 2502 continue; 2503 2504 len = btf_type_size(d->btf->types[i]); 2505 if (len < 0) 2506 return len; 2507 2508 memmove(p, d->btf->types[i], len); 2509 d->hypot_map[i] = next_type_id; 2510 d->btf->types[next_type_id] = (struct btf_type *)p; 2511 p += len; 2512 next_type_id++; 2513 } 2514 2515 /* shrink struct btf's internal types index and update btf_header */ 2516 d->btf->nr_types = next_type_id - 1; 2517 d->btf->types_size = d->btf->nr_types; 2518 d->btf->hdr->type_len = p - types_start; 2519 new_types = realloc(d->btf->types, 2520 (1 + d->btf->nr_types) * sizeof(struct btf_type *)); 2521 if (!new_types) 2522 return -ENOMEM; 2523 d->btf->types = new_types; 2524 2525 /* make sure string section follows type information without gaps */ 2526 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2527 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2528 d->btf->strings = p; 2529 p += d->btf->hdr->str_len; 2530 2531 d->btf->data_size = p - (char *)d->btf->data; 2532 return 0; 2533 } 2534 2535 /* 2536 * Figure out final (deduplicated and compacted) type ID for provided original 2537 * `type_id` by first resolving it into corresponding canonical type ID and 2538 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2539 * which is populated during compaction phase. 2540 */ 2541 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2542 { 2543 __u32 resolved_type_id, new_type_id; 2544 2545 resolved_type_id = resolve_type_id(d, type_id); 2546 new_type_id = d->hypot_map[resolved_type_id]; 2547 if (new_type_id > BTF_MAX_NR_TYPES) 2548 return -EINVAL; 2549 return new_type_id; 2550 } 2551 2552 /* 2553 * Remap referenced type IDs into deduped type IDs. 2554 * 2555 * After BTF types are deduplicated and compacted, their final type IDs may 2556 * differ from original ones. The map from original to a corresponding 2557 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2558 * compaction phase. During remapping phase we are rewriting all type IDs 2559 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2560 * their final deduped type IDs. 2561 */ 2562 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2563 { 2564 struct btf_type *t = d->btf->types[type_id]; 2565 int i, r; 2566 2567 switch (BTF_INFO_KIND(t->info)) { 2568 case BTF_KIND_INT: 2569 case BTF_KIND_ENUM: 2570 break; 2571 2572 case BTF_KIND_FWD: 2573 case BTF_KIND_CONST: 2574 case BTF_KIND_VOLATILE: 2575 case BTF_KIND_RESTRICT: 2576 case BTF_KIND_PTR: 2577 case BTF_KIND_TYPEDEF: 2578 case BTF_KIND_FUNC: 2579 r = btf_dedup_remap_type_id(d, t->type); 2580 if (r < 0) 2581 return r; 2582 t->type = r; 2583 break; 2584 2585 case BTF_KIND_ARRAY: { 2586 struct btf_array *arr_info = (struct btf_array *)(t + 1); 2587 2588 r = btf_dedup_remap_type_id(d, arr_info->type); 2589 if (r < 0) 2590 return r; 2591 arr_info->type = r; 2592 r = btf_dedup_remap_type_id(d, arr_info->index_type); 2593 if (r < 0) 2594 return r; 2595 arr_info->index_type = r; 2596 break; 2597 } 2598 2599 case BTF_KIND_STRUCT: 2600 case BTF_KIND_UNION: { 2601 struct btf_member *member = (struct btf_member *)(t + 1); 2602 __u16 vlen = BTF_INFO_VLEN(t->info); 2603 2604 for (i = 0; i < vlen; i++) { 2605 r = btf_dedup_remap_type_id(d, member->type); 2606 if (r < 0) 2607 return r; 2608 member->type = r; 2609 member++; 2610 } 2611 break; 2612 } 2613 2614 case BTF_KIND_FUNC_PROTO: { 2615 struct btf_param *param = (struct btf_param *)(t + 1); 2616 __u16 vlen = BTF_INFO_VLEN(t->info); 2617 2618 r = btf_dedup_remap_type_id(d, t->type); 2619 if (r < 0) 2620 return r; 2621 t->type = r; 2622 2623 for (i = 0; i < vlen; i++) { 2624 r = btf_dedup_remap_type_id(d, param->type); 2625 if (r < 0) 2626 return r; 2627 param->type = r; 2628 param++; 2629 } 2630 break; 2631 } 2632 2633 default: 2634 return -EINVAL; 2635 } 2636 2637 return 0; 2638 } 2639 2640 static int btf_dedup_remap_types(struct btf_dedup *d) 2641 { 2642 int i, r; 2643 2644 for (i = 1; i <= d->btf->nr_types; i++) { 2645 r = btf_dedup_remap_type(d, i); 2646 if (r < 0) 2647 return r; 2648 } 2649 return 0; 2650 } 2651