xref: /linux/tools/lib/bpf/btf.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <sys/utsname.h>
12 #include <sys/param.h>
13 #include <sys/stat.h>
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/btf.h>
17 #include <gelf.h>
18 #include "btf.h"
19 #include "bpf.h"
20 #include "libbpf.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 
24 /* make sure libbpf doesn't use kernel-only integer typedefs */
25 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
26 
27 #define BTF_MAX_NR_TYPES 0x7fffffffU
28 #define BTF_MAX_STR_OFFSET 0x7fffffffU
29 
30 static struct btf_type btf_void;
31 
32 struct btf {
33 	union {
34 		struct btf_header *hdr;
35 		void *data;
36 	};
37 	struct btf_type **types;
38 	const char *strings;
39 	void *nohdr_data;
40 	__u32 nr_types;
41 	__u32 types_size;
42 	__u32 data_size;
43 	int fd;
44 };
45 
46 static inline __u64 ptr_to_u64(const void *ptr)
47 {
48 	return (__u64) (unsigned long) ptr;
49 }
50 
51 static int btf_add_type(struct btf *btf, struct btf_type *t)
52 {
53 	if (btf->types_size - btf->nr_types < 2) {
54 		struct btf_type **new_types;
55 		__u32 expand_by, new_size;
56 
57 		if (btf->types_size == BTF_MAX_NR_TYPES)
58 			return -E2BIG;
59 
60 		expand_by = max(btf->types_size >> 2, 16U);
61 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
62 
63 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
64 		if (!new_types)
65 			return -ENOMEM;
66 
67 		if (btf->nr_types == 0)
68 			new_types[0] = &btf_void;
69 
70 		btf->types = new_types;
71 		btf->types_size = new_size;
72 	}
73 
74 	btf->types[++(btf->nr_types)] = t;
75 
76 	return 0;
77 }
78 
79 static int btf_parse_hdr(struct btf *btf)
80 {
81 	const struct btf_header *hdr = btf->hdr;
82 	__u32 meta_left;
83 
84 	if (btf->data_size < sizeof(struct btf_header)) {
85 		pr_debug("BTF header not found\n");
86 		return -EINVAL;
87 	}
88 
89 	if (hdr->magic != BTF_MAGIC) {
90 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
91 		return -EINVAL;
92 	}
93 
94 	if (hdr->version != BTF_VERSION) {
95 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
96 		return -ENOTSUP;
97 	}
98 
99 	if (hdr->flags) {
100 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
101 		return -ENOTSUP;
102 	}
103 
104 	meta_left = btf->data_size - sizeof(*hdr);
105 	if (!meta_left) {
106 		pr_debug("BTF has no data\n");
107 		return -EINVAL;
108 	}
109 
110 	if (meta_left < hdr->type_off) {
111 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
112 		return -EINVAL;
113 	}
114 
115 	if (meta_left < hdr->str_off) {
116 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
117 		return -EINVAL;
118 	}
119 
120 	if (hdr->type_off >= hdr->str_off) {
121 		pr_debug("BTF type section offset >= string section offset. No type?\n");
122 		return -EINVAL;
123 	}
124 
125 	if (hdr->type_off & 0x02) {
126 		pr_debug("BTF type section is not aligned to 4 bytes\n");
127 		return -EINVAL;
128 	}
129 
130 	btf->nohdr_data = btf->hdr + 1;
131 
132 	return 0;
133 }
134 
135 static int btf_parse_str_sec(struct btf *btf)
136 {
137 	const struct btf_header *hdr = btf->hdr;
138 	const char *start = btf->nohdr_data + hdr->str_off;
139 	const char *end = start + btf->hdr->str_len;
140 
141 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
142 	    start[0] || end[-1]) {
143 		pr_debug("Invalid BTF string section\n");
144 		return -EINVAL;
145 	}
146 
147 	btf->strings = start;
148 
149 	return 0;
150 }
151 
152 static int btf_type_size(struct btf_type *t)
153 {
154 	int base_size = sizeof(struct btf_type);
155 	__u16 vlen = btf_vlen(t);
156 
157 	switch (btf_kind(t)) {
158 	case BTF_KIND_FWD:
159 	case BTF_KIND_CONST:
160 	case BTF_KIND_VOLATILE:
161 	case BTF_KIND_RESTRICT:
162 	case BTF_KIND_PTR:
163 	case BTF_KIND_TYPEDEF:
164 	case BTF_KIND_FUNC:
165 		return base_size;
166 	case BTF_KIND_INT:
167 		return base_size + sizeof(__u32);
168 	case BTF_KIND_ENUM:
169 		return base_size + vlen * sizeof(struct btf_enum);
170 	case BTF_KIND_ARRAY:
171 		return base_size + sizeof(struct btf_array);
172 	case BTF_KIND_STRUCT:
173 	case BTF_KIND_UNION:
174 		return base_size + vlen * sizeof(struct btf_member);
175 	case BTF_KIND_FUNC_PROTO:
176 		return base_size + vlen * sizeof(struct btf_param);
177 	case BTF_KIND_VAR:
178 		return base_size + sizeof(struct btf_var);
179 	case BTF_KIND_DATASEC:
180 		return base_size + vlen * sizeof(struct btf_var_secinfo);
181 	default:
182 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
183 		return -EINVAL;
184 	}
185 }
186 
187 static int btf_parse_type_sec(struct btf *btf)
188 {
189 	struct btf_header *hdr = btf->hdr;
190 	void *nohdr_data = btf->nohdr_data;
191 	void *next_type = nohdr_data + hdr->type_off;
192 	void *end_type = nohdr_data + hdr->str_off;
193 
194 	while (next_type < end_type) {
195 		struct btf_type *t = next_type;
196 		int type_size;
197 		int err;
198 
199 		type_size = btf_type_size(t);
200 		if (type_size < 0)
201 			return type_size;
202 		next_type += type_size;
203 		err = btf_add_type(btf, t);
204 		if (err)
205 			return err;
206 	}
207 
208 	return 0;
209 }
210 
211 __u32 btf__get_nr_types(const struct btf *btf)
212 {
213 	return btf->nr_types;
214 }
215 
216 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
217 {
218 	if (type_id > btf->nr_types)
219 		return NULL;
220 
221 	return btf->types[type_id];
222 }
223 
224 static bool btf_type_is_void(const struct btf_type *t)
225 {
226 	return t == &btf_void || btf_is_fwd(t);
227 }
228 
229 static bool btf_type_is_void_or_null(const struct btf_type *t)
230 {
231 	return !t || btf_type_is_void(t);
232 }
233 
234 #define MAX_RESOLVE_DEPTH 32
235 
236 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
237 {
238 	const struct btf_array *array;
239 	const struct btf_type *t;
240 	__u32 nelems = 1;
241 	__s64 size = -1;
242 	int i;
243 
244 	t = btf__type_by_id(btf, type_id);
245 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
246 	     i++) {
247 		switch (btf_kind(t)) {
248 		case BTF_KIND_INT:
249 		case BTF_KIND_STRUCT:
250 		case BTF_KIND_UNION:
251 		case BTF_KIND_ENUM:
252 		case BTF_KIND_DATASEC:
253 			size = t->size;
254 			goto done;
255 		case BTF_KIND_PTR:
256 			size = sizeof(void *);
257 			goto done;
258 		case BTF_KIND_TYPEDEF:
259 		case BTF_KIND_VOLATILE:
260 		case BTF_KIND_CONST:
261 		case BTF_KIND_RESTRICT:
262 		case BTF_KIND_VAR:
263 			type_id = t->type;
264 			break;
265 		case BTF_KIND_ARRAY:
266 			array = btf_array(t);
267 			if (nelems && array->nelems > UINT32_MAX / nelems)
268 				return -E2BIG;
269 			nelems *= array->nelems;
270 			type_id = array->type;
271 			break;
272 		default:
273 			return -EINVAL;
274 		}
275 
276 		t = btf__type_by_id(btf, type_id);
277 	}
278 
279 done:
280 	if (size < 0)
281 		return -EINVAL;
282 	if (nelems && size > UINT32_MAX / nelems)
283 		return -E2BIG;
284 
285 	return nelems * size;
286 }
287 
288 int btf__align_of(const struct btf *btf, __u32 id)
289 {
290 	const struct btf_type *t = btf__type_by_id(btf, id);
291 	__u16 kind = btf_kind(t);
292 
293 	switch (kind) {
294 	case BTF_KIND_INT:
295 	case BTF_KIND_ENUM:
296 		return min(sizeof(void *), (size_t)t->size);
297 	case BTF_KIND_PTR:
298 		return sizeof(void *);
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_VOLATILE:
301 	case BTF_KIND_CONST:
302 	case BTF_KIND_RESTRICT:
303 		return btf__align_of(btf, t->type);
304 	case BTF_KIND_ARRAY:
305 		return btf__align_of(btf, btf_array(t)->type);
306 	case BTF_KIND_STRUCT:
307 	case BTF_KIND_UNION: {
308 		const struct btf_member *m = btf_members(t);
309 		__u16 vlen = btf_vlen(t);
310 		int i, max_align = 1, align;
311 
312 		for (i = 0; i < vlen; i++, m++) {
313 			align = btf__align_of(btf, m->type);
314 			if (align <= 0)
315 				return align;
316 			max_align = max(max_align, align);
317 		}
318 
319 		return max_align;
320 	}
321 	default:
322 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
323 		return 0;
324 	}
325 }
326 
327 int btf__resolve_type(const struct btf *btf, __u32 type_id)
328 {
329 	const struct btf_type *t;
330 	int depth = 0;
331 
332 	t = btf__type_by_id(btf, type_id);
333 	while (depth < MAX_RESOLVE_DEPTH &&
334 	       !btf_type_is_void_or_null(t) &&
335 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
336 		type_id = t->type;
337 		t = btf__type_by_id(btf, type_id);
338 		depth++;
339 	}
340 
341 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
342 		return -EINVAL;
343 
344 	return type_id;
345 }
346 
347 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
348 {
349 	__u32 i;
350 
351 	if (!strcmp(type_name, "void"))
352 		return 0;
353 
354 	for (i = 1; i <= btf->nr_types; i++) {
355 		const struct btf_type *t = btf->types[i];
356 		const char *name = btf__name_by_offset(btf, t->name_off);
357 
358 		if (name && !strcmp(type_name, name))
359 			return i;
360 	}
361 
362 	return -ENOENT;
363 }
364 
365 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
366 			     __u32 kind)
367 {
368 	__u32 i;
369 
370 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
371 		return 0;
372 
373 	for (i = 1; i <= btf->nr_types; i++) {
374 		const struct btf_type *t = btf->types[i];
375 		const char *name;
376 
377 		if (btf_kind(t) != kind)
378 			continue;
379 		name = btf__name_by_offset(btf, t->name_off);
380 		if (name && !strcmp(type_name, name))
381 			return i;
382 	}
383 
384 	return -ENOENT;
385 }
386 
387 void btf__free(struct btf *btf)
388 {
389 	if (!btf)
390 		return;
391 
392 	if (btf->fd != -1)
393 		close(btf->fd);
394 
395 	free(btf->data);
396 	free(btf->types);
397 	free(btf);
398 }
399 
400 struct btf *btf__new(__u8 *data, __u32 size)
401 {
402 	struct btf *btf;
403 	int err;
404 
405 	btf = calloc(1, sizeof(struct btf));
406 	if (!btf)
407 		return ERR_PTR(-ENOMEM);
408 
409 	btf->fd = -1;
410 
411 	btf->data = malloc(size);
412 	if (!btf->data) {
413 		err = -ENOMEM;
414 		goto done;
415 	}
416 
417 	memcpy(btf->data, data, size);
418 	btf->data_size = size;
419 
420 	err = btf_parse_hdr(btf);
421 	if (err)
422 		goto done;
423 
424 	err = btf_parse_str_sec(btf);
425 	if (err)
426 		goto done;
427 
428 	err = btf_parse_type_sec(btf);
429 
430 done:
431 	if (err) {
432 		btf__free(btf);
433 		return ERR_PTR(err);
434 	}
435 
436 	return btf;
437 }
438 
439 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
440 {
441 #if __BYTE_ORDER == __LITTLE_ENDIAN
442 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
443 #elif __BYTE_ORDER == __BIG_ENDIAN
444 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
445 #else
446 # error "Unrecognized __BYTE_ORDER__"
447 #endif
448 }
449 
450 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
451 {
452 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
453 	int err = 0, fd = -1, idx = 0;
454 	struct btf *btf = NULL;
455 	Elf_Scn *scn = NULL;
456 	Elf *elf = NULL;
457 	GElf_Ehdr ehdr;
458 
459 	if (elf_version(EV_CURRENT) == EV_NONE) {
460 		pr_warn("failed to init libelf for %s\n", path);
461 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
462 	}
463 
464 	fd = open(path, O_RDONLY);
465 	if (fd < 0) {
466 		err = -errno;
467 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
468 		return ERR_PTR(err);
469 	}
470 
471 	err = -LIBBPF_ERRNO__FORMAT;
472 
473 	elf = elf_begin(fd, ELF_C_READ, NULL);
474 	if (!elf) {
475 		pr_warn("failed to open %s as ELF file\n", path);
476 		goto done;
477 	}
478 	if (!gelf_getehdr(elf, &ehdr)) {
479 		pr_warn("failed to get EHDR from %s\n", path);
480 		goto done;
481 	}
482 	if (!btf_check_endianness(&ehdr)) {
483 		pr_warn("non-native ELF endianness is not supported\n");
484 		goto done;
485 	}
486 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
487 		pr_warn("failed to get e_shstrndx from %s\n", path);
488 		goto done;
489 	}
490 
491 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
492 		GElf_Shdr sh;
493 		char *name;
494 
495 		idx++;
496 		if (gelf_getshdr(scn, &sh) != &sh) {
497 			pr_warn("failed to get section(%d) header from %s\n",
498 				idx, path);
499 			goto done;
500 		}
501 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
502 		if (!name) {
503 			pr_warn("failed to get section(%d) name from %s\n",
504 				idx, path);
505 			goto done;
506 		}
507 		if (strcmp(name, BTF_ELF_SEC) == 0) {
508 			btf_data = elf_getdata(scn, 0);
509 			if (!btf_data) {
510 				pr_warn("failed to get section(%d, %s) data from %s\n",
511 					idx, name, path);
512 				goto done;
513 			}
514 			continue;
515 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
516 			btf_ext_data = elf_getdata(scn, 0);
517 			if (!btf_ext_data) {
518 				pr_warn("failed to get section(%d, %s) data from %s\n",
519 					idx, name, path);
520 				goto done;
521 			}
522 			continue;
523 		}
524 	}
525 
526 	err = 0;
527 
528 	if (!btf_data) {
529 		err = -ENOENT;
530 		goto done;
531 	}
532 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
533 	if (IS_ERR(btf))
534 		goto done;
535 
536 	if (btf_ext && btf_ext_data) {
537 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
538 					btf_ext_data->d_size);
539 		if (IS_ERR(*btf_ext))
540 			goto done;
541 	} else if (btf_ext) {
542 		*btf_ext = NULL;
543 	}
544 done:
545 	if (elf)
546 		elf_end(elf);
547 	close(fd);
548 
549 	if (err)
550 		return ERR_PTR(err);
551 	/*
552 	 * btf is always parsed before btf_ext, so no need to clean up
553 	 * btf_ext, if btf loading failed
554 	 */
555 	if (IS_ERR(btf))
556 		return btf;
557 	if (btf_ext && IS_ERR(*btf_ext)) {
558 		btf__free(btf);
559 		err = PTR_ERR(*btf_ext);
560 		return ERR_PTR(err);
561 	}
562 	return btf;
563 }
564 
565 static int compare_vsi_off(const void *_a, const void *_b)
566 {
567 	const struct btf_var_secinfo *a = _a;
568 	const struct btf_var_secinfo *b = _b;
569 
570 	return a->offset - b->offset;
571 }
572 
573 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
574 			     struct btf_type *t)
575 {
576 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
577 	const char *name = btf__name_by_offset(btf, t->name_off);
578 	const struct btf_type *t_var;
579 	struct btf_var_secinfo *vsi;
580 	const struct btf_var *var;
581 	int ret;
582 
583 	if (!name) {
584 		pr_debug("No name found in string section for DATASEC kind.\n");
585 		return -ENOENT;
586 	}
587 
588 	/* .extern datasec size and var offsets were set correctly during
589 	 * extern collection step, so just skip straight to sorting variables
590 	 */
591 	if (t->size)
592 		goto sort_vars;
593 
594 	ret = bpf_object__section_size(obj, name, &size);
595 	if (ret || !size || (t->size && t->size != size)) {
596 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
597 		return -ENOENT;
598 	}
599 
600 	t->size = size;
601 
602 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
603 		t_var = btf__type_by_id(btf, vsi->type);
604 		var = btf_var(t_var);
605 
606 		if (!btf_is_var(t_var)) {
607 			pr_debug("Non-VAR type seen in section %s\n", name);
608 			return -EINVAL;
609 		}
610 
611 		if (var->linkage == BTF_VAR_STATIC)
612 			continue;
613 
614 		name = btf__name_by_offset(btf, t_var->name_off);
615 		if (!name) {
616 			pr_debug("No name found in string section for VAR kind\n");
617 			return -ENOENT;
618 		}
619 
620 		ret = bpf_object__variable_offset(obj, name, &off);
621 		if (ret) {
622 			pr_debug("No offset found in symbol table for VAR %s\n",
623 				 name);
624 			return -ENOENT;
625 		}
626 
627 		vsi->offset = off;
628 	}
629 
630 sort_vars:
631 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
632 	return 0;
633 }
634 
635 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
636 {
637 	int err = 0;
638 	__u32 i;
639 
640 	for (i = 1; i <= btf->nr_types; i++) {
641 		struct btf_type *t = btf->types[i];
642 
643 		/* Loader needs to fix up some of the things compiler
644 		 * couldn't get its hands on while emitting BTF. This
645 		 * is section size and global variable offset. We use
646 		 * the info from the ELF itself for this purpose.
647 		 */
648 		if (btf_is_datasec(t)) {
649 			err = btf_fixup_datasec(obj, btf, t);
650 			if (err)
651 				break;
652 		}
653 	}
654 
655 	return err;
656 }
657 
658 int btf__load(struct btf *btf)
659 {
660 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
661 	char *log_buf = NULL;
662 	int err = 0;
663 
664 	if (btf->fd >= 0)
665 		return -EEXIST;
666 
667 	log_buf = malloc(log_buf_size);
668 	if (!log_buf)
669 		return -ENOMEM;
670 
671 	*log_buf = 0;
672 
673 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
674 			       log_buf, log_buf_size, false);
675 	if (btf->fd < 0) {
676 		err = -errno;
677 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
678 		if (*log_buf)
679 			pr_warn("%s\n", log_buf);
680 		goto done;
681 	}
682 
683 done:
684 	free(log_buf);
685 	return err;
686 }
687 
688 int btf__fd(const struct btf *btf)
689 {
690 	return btf->fd;
691 }
692 
693 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
694 {
695 	*size = btf->data_size;
696 	return btf->data;
697 }
698 
699 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
700 {
701 	if (offset < btf->hdr->str_len)
702 		return &btf->strings[offset];
703 	else
704 		return NULL;
705 }
706 
707 int btf__get_from_id(__u32 id, struct btf **btf)
708 {
709 	struct bpf_btf_info btf_info = { 0 };
710 	__u32 len = sizeof(btf_info);
711 	__u32 last_size;
712 	int btf_fd;
713 	void *ptr;
714 	int err;
715 
716 	err = 0;
717 	*btf = NULL;
718 	btf_fd = bpf_btf_get_fd_by_id(id);
719 	if (btf_fd < 0)
720 		return 0;
721 
722 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
723 	 * let's start with a sane default - 4KiB here - and resize it only if
724 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
725 	 */
726 	btf_info.btf_size = 4096;
727 	last_size = btf_info.btf_size;
728 	ptr = malloc(last_size);
729 	if (!ptr) {
730 		err = -ENOMEM;
731 		goto exit_free;
732 	}
733 
734 	memset(ptr, 0, last_size);
735 	btf_info.btf = ptr_to_u64(ptr);
736 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
737 
738 	if (!err && btf_info.btf_size > last_size) {
739 		void *temp_ptr;
740 
741 		last_size = btf_info.btf_size;
742 		temp_ptr = realloc(ptr, last_size);
743 		if (!temp_ptr) {
744 			err = -ENOMEM;
745 			goto exit_free;
746 		}
747 		ptr = temp_ptr;
748 		memset(ptr, 0, last_size);
749 		btf_info.btf = ptr_to_u64(ptr);
750 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
751 	}
752 
753 	if (err || btf_info.btf_size > last_size) {
754 		err = errno;
755 		goto exit_free;
756 	}
757 
758 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
759 	if (IS_ERR(*btf)) {
760 		err = PTR_ERR(*btf);
761 		*btf = NULL;
762 	}
763 
764 exit_free:
765 	close(btf_fd);
766 	free(ptr);
767 
768 	return err;
769 }
770 
771 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
772 			 __u32 expected_key_size, __u32 expected_value_size,
773 			 __u32 *key_type_id, __u32 *value_type_id)
774 {
775 	const struct btf_type *container_type;
776 	const struct btf_member *key, *value;
777 	const size_t max_name = 256;
778 	char container_name[max_name];
779 	__s64 key_size, value_size;
780 	__s32 container_id;
781 
782 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
783 	    max_name) {
784 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
785 			map_name, map_name);
786 		return -EINVAL;
787 	}
788 
789 	container_id = btf__find_by_name(btf, container_name);
790 	if (container_id < 0) {
791 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
792 			 map_name, container_name);
793 		return container_id;
794 	}
795 
796 	container_type = btf__type_by_id(btf, container_id);
797 	if (!container_type) {
798 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
799 			map_name, container_id);
800 		return -EINVAL;
801 	}
802 
803 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
804 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
805 			map_name, container_name);
806 		return -EINVAL;
807 	}
808 
809 	key = btf_members(container_type);
810 	value = key + 1;
811 
812 	key_size = btf__resolve_size(btf, key->type);
813 	if (key_size < 0) {
814 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
815 		return key_size;
816 	}
817 
818 	if (expected_key_size != key_size) {
819 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
820 			map_name, (__u32)key_size, expected_key_size);
821 		return -EINVAL;
822 	}
823 
824 	value_size = btf__resolve_size(btf, value->type);
825 	if (value_size < 0) {
826 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
827 		return value_size;
828 	}
829 
830 	if (expected_value_size != value_size) {
831 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
832 			map_name, (__u32)value_size, expected_value_size);
833 		return -EINVAL;
834 	}
835 
836 	*key_type_id = key->type;
837 	*value_type_id = value->type;
838 
839 	return 0;
840 }
841 
842 struct btf_ext_sec_setup_param {
843 	__u32 off;
844 	__u32 len;
845 	__u32 min_rec_size;
846 	struct btf_ext_info *ext_info;
847 	const char *desc;
848 };
849 
850 static int btf_ext_setup_info(struct btf_ext *btf_ext,
851 			      struct btf_ext_sec_setup_param *ext_sec)
852 {
853 	const struct btf_ext_info_sec *sinfo;
854 	struct btf_ext_info *ext_info;
855 	__u32 info_left, record_size;
856 	/* The start of the info sec (including the __u32 record_size). */
857 	void *info;
858 
859 	if (ext_sec->len == 0)
860 		return 0;
861 
862 	if (ext_sec->off & 0x03) {
863 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
864 		     ext_sec->desc);
865 		return -EINVAL;
866 	}
867 
868 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
869 	info_left = ext_sec->len;
870 
871 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
872 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
873 			 ext_sec->desc, ext_sec->off, ext_sec->len);
874 		return -EINVAL;
875 	}
876 
877 	/* At least a record size */
878 	if (info_left < sizeof(__u32)) {
879 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
880 		return -EINVAL;
881 	}
882 
883 	/* The record size needs to meet the minimum standard */
884 	record_size = *(__u32 *)info;
885 	if (record_size < ext_sec->min_rec_size ||
886 	    record_size & 0x03) {
887 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
888 			 ext_sec->desc, record_size);
889 		return -EINVAL;
890 	}
891 
892 	sinfo = info + sizeof(__u32);
893 	info_left -= sizeof(__u32);
894 
895 	/* If no records, return failure now so .BTF.ext won't be used. */
896 	if (!info_left) {
897 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
898 		return -EINVAL;
899 	}
900 
901 	while (info_left) {
902 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
903 		__u64 total_record_size;
904 		__u32 num_records;
905 
906 		if (info_left < sec_hdrlen) {
907 			pr_debug("%s section header is not found in .BTF.ext\n",
908 			     ext_sec->desc);
909 			return -EINVAL;
910 		}
911 
912 		num_records = sinfo->num_info;
913 		if (num_records == 0) {
914 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
915 			     ext_sec->desc);
916 			return -EINVAL;
917 		}
918 
919 		total_record_size = sec_hdrlen +
920 				    (__u64)num_records * record_size;
921 		if (info_left < total_record_size) {
922 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
923 			     ext_sec->desc);
924 			return -EINVAL;
925 		}
926 
927 		info_left -= total_record_size;
928 		sinfo = (void *)sinfo + total_record_size;
929 	}
930 
931 	ext_info = ext_sec->ext_info;
932 	ext_info->len = ext_sec->len - sizeof(__u32);
933 	ext_info->rec_size = record_size;
934 	ext_info->info = info + sizeof(__u32);
935 
936 	return 0;
937 }
938 
939 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
940 {
941 	struct btf_ext_sec_setup_param param = {
942 		.off = btf_ext->hdr->func_info_off,
943 		.len = btf_ext->hdr->func_info_len,
944 		.min_rec_size = sizeof(struct bpf_func_info_min),
945 		.ext_info = &btf_ext->func_info,
946 		.desc = "func_info"
947 	};
948 
949 	return btf_ext_setup_info(btf_ext, &param);
950 }
951 
952 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
953 {
954 	struct btf_ext_sec_setup_param param = {
955 		.off = btf_ext->hdr->line_info_off,
956 		.len = btf_ext->hdr->line_info_len,
957 		.min_rec_size = sizeof(struct bpf_line_info_min),
958 		.ext_info = &btf_ext->line_info,
959 		.desc = "line_info",
960 	};
961 
962 	return btf_ext_setup_info(btf_ext, &param);
963 }
964 
965 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
966 {
967 	struct btf_ext_sec_setup_param param = {
968 		.off = btf_ext->hdr->field_reloc_off,
969 		.len = btf_ext->hdr->field_reloc_len,
970 		.min_rec_size = sizeof(struct bpf_field_reloc),
971 		.ext_info = &btf_ext->field_reloc_info,
972 		.desc = "field_reloc",
973 	};
974 
975 	return btf_ext_setup_info(btf_ext, &param);
976 }
977 
978 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
979 {
980 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
981 
982 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
983 	    data_size < hdr->hdr_len) {
984 		pr_debug("BTF.ext header not found");
985 		return -EINVAL;
986 	}
987 
988 	if (hdr->magic != BTF_MAGIC) {
989 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
990 		return -EINVAL;
991 	}
992 
993 	if (hdr->version != BTF_VERSION) {
994 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
995 		return -ENOTSUP;
996 	}
997 
998 	if (hdr->flags) {
999 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
1000 		return -ENOTSUP;
1001 	}
1002 
1003 	if (data_size == hdr->hdr_len) {
1004 		pr_debug("BTF.ext has no data\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 void btf_ext__free(struct btf_ext *btf_ext)
1012 {
1013 	if (!btf_ext)
1014 		return;
1015 	free(btf_ext->data);
1016 	free(btf_ext);
1017 }
1018 
1019 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
1020 {
1021 	struct btf_ext *btf_ext;
1022 	int err;
1023 
1024 	err = btf_ext_parse_hdr(data, size);
1025 	if (err)
1026 		return ERR_PTR(err);
1027 
1028 	btf_ext = calloc(1, sizeof(struct btf_ext));
1029 	if (!btf_ext)
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	btf_ext->data_size = size;
1033 	btf_ext->data = malloc(size);
1034 	if (!btf_ext->data) {
1035 		err = -ENOMEM;
1036 		goto done;
1037 	}
1038 	memcpy(btf_ext->data, data, size);
1039 
1040 	if (btf_ext->hdr->hdr_len <
1041 	    offsetofend(struct btf_ext_header, line_info_len))
1042 		goto done;
1043 	err = btf_ext_setup_func_info(btf_ext);
1044 	if (err)
1045 		goto done;
1046 
1047 	err = btf_ext_setup_line_info(btf_ext);
1048 	if (err)
1049 		goto done;
1050 
1051 	if (btf_ext->hdr->hdr_len <
1052 	    offsetofend(struct btf_ext_header, field_reloc_len))
1053 		goto done;
1054 	err = btf_ext_setup_field_reloc(btf_ext);
1055 	if (err)
1056 		goto done;
1057 
1058 done:
1059 	if (err) {
1060 		btf_ext__free(btf_ext);
1061 		return ERR_PTR(err);
1062 	}
1063 
1064 	return btf_ext;
1065 }
1066 
1067 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1068 {
1069 	*size = btf_ext->data_size;
1070 	return btf_ext->data;
1071 }
1072 
1073 static int btf_ext_reloc_info(const struct btf *btf,
1074 			      const struct btf_ext_info *ext_info,
1075 			      const char *sec_name, __u32 insns_cnt,
1076 			      void **info, __u32 *cnt)
1077 {
1078 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1079 	__u32 i, record_size, existing_len, records_len;
1080 	struct btf_ext_info_sec *sinfo;
1081 	const char *info_sec_name;
1082 	__u64 remain_len;
1083 	void *data;
1084 
1085 	record_size = ext_info->rec_size;
1086 	sinfo = ext_info->info;
1087 	remain_len = ext_info->len;
1088 	while (remain_len > 0) {
1089 		records_len = sinfo->num_info * record_size;
1090 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1091 		if (strcmp(info_sec_name, sec_name)) {
1092 			remain_len -= sec_hdrlen + records_len;
1093 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1094 			continue;
1095 		}
1096 
1097 		existing_len = (*cnt) * record_size;
1098 		data = realloc(*info, existing_len + records_len);
1099 		if (!data)
1100 			return -ENOMEM;
1101 
1102 		memcpy(data + existing_len, sinfo->data, records_len);
1103 		/* adjust insn_off only, the rest data will be passed
1104 		 * to the kernel.
1105 		 */
1106 		for (i = 0; i < sinfo->num_info; i++) {
1107 			__u32 *insn_off;
1108 
1109 			insn_off = data + existing_len + (i * record_size);
1110 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1111 				insns_cnt;
1112 		}
1113 		*info = data;
1114 		*cnt += sinfo->num_info;
1115 		return 0;
1116 	}
1117 
1118 	return -ENOENT;
1119 }
1120 
1121 int btf_ext__reloc_func_info(const struct btf *btf,
1122 			     const struct btf_ext *btf_ext,
1123 			     const char *sec_name, __u32 insns_cnt,
1124 			     void **func_info, __u32 *cnt)
1125 {
1126 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1127 				  insns_cnt, func_info, cnt);
1128 }
1129 
1130 int btf_ext__reloc_line_info(const struct btf *btf,
1131 			     const struct btf_ext *btf_ext,
1132 			     const char *sec_name, __u32 insns_cnt,
1133 			     void **line_info, __u32 *cnt)
1134 {
1135 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1136 				  insns_cnt, line_info, cnt);
1137 }
1138 
1139 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1140 {
1141 	return btf_ext->func_info.rec_size;
1142 }
1143 
1144 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1145 {
1146 	return btf_ext->line_info.rec_size;
1147 }
1148 
1149 struct btf_dedup;
1150 
1151 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1152 				       const struct btf_dedup_opts *opts);
1153 static void btf_dedup_free(struct btf_dedup *d);
1154 static int btf_dedup_strings(struct btf_dedup *d);
1155 static int btf_dedup_prim_types(struct btf_dedup *d);
1156 static int btf_dedup_struct_types(struct btf_dedup *d);
1157 static int btf_dedup_ref_types(struct btf_dedup *d);
1158 static int btf_dedup_compact_types(struct btf_dedup *d);
1159 static int btf_dedup_remap_types(struct btf_dedup *d);
1160 
1161 /*
1162  * Deduplicate BTF types and strings.
1163  *
1164  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1165  * section with all BTF type descriptors and string data. It overwrites that
1166  * memory in-place with deduplicated types and strings without any loss of
1167  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1168  * is provided, all the strings referenced from .BTF.ext section are honored
1169  * and updated to point to the right offsets after deduplication.
1170  *
1171  * If function returns with error, type/string data might be garbled and should
1172  * be discarded.
1173  *
1174  * More verbose and detailed description of both problem btf_dedup is solving,
1175  * as well as solution could be found at:
1176  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1177  *
1178  * Problem description and justification
1179  * =====================================
1180  *
1181  * BTF type information is typically emitted either as a result of conversion
1182  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1183  * unit contains information about a subset of all the types that are used
1184  * in an application. These subsets are frequently overlapping and contain a lot
1185  * of duplicated information when later concatenated together into a single
1186  * binary. This algorithm ensures that each unique type is represented by single
1187  * BTF type descriptor, greatly reducing resulting size of BTF data.
1188  *
1189  * Compilation unit isolation and subsequent duplication of data is not the only
1190  * problem. The same type hierarchy (e.g., struct and all the type that struct
1191  * references) in different compilation units can be represented in BTF to
1192  * various degrees of completeness (or, rather, incompleteness) due to
1193  * struct/union forward declarations.
1194  *
1195  * Let's take a look at an example, that we'll use to better understand the
1196  * problem (and solution). Suppose we have two compilation units, each using
1197  * same `struct S`, but each of them having incomplete type information about
1198  * struct's fields:
1199  *
1200  * // CU #1:
1201  * struct S;
1202  * struct A {
1203  *	int a;
1204  *	struct A* self;
1205  *	struct S* parent;
1206  * };
1207  * struct B;
1208  * struct S {
1209  *	struct A* a_ptr;
1210  *	struct B* b_ptr;
1211  * };
1212  *
1213  * // CU #2:
1214  * struct S;
1215  * struct A;
1216  * struct B {
1217  *	int b;
1218  *	struct B* self;
1219  *	struct S* parent;
1220  * };
1221  * struct S {
1222  *	struct A* a_ptr;
1223  *	struct B* b_ptr;
1224  * };
1225  *
1226  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1227  * more), but will know the complete type information about `struct A`. While
1228  * for CU #2, it will know full type information about `struct B`, but will
1229  * only know about forward declaration of `struct A` (in BTF terms, it will
1230  * have `BTF_KIND_FWD` type descriptor with name `B`).
1231  *
1232  * This compilation unit isolation means that it's possible that there is no
1233  * single CU with complete type information describing structs `S`, `A`, and
1234  * `B`. Also, we might get tons of duplicated and redundant type information.
1235  *
1236  * Additional complication we need to keep in mind comes from the fact that
1237  * types, in general, can form graphs containing cycles, not just DAGs.
1238  *
1239  * While algorithm does deduplication, it also merges and resolves type
1240  * information (unless disabled throught `struct btf_opts`), whenever possible.
1241  * E.g., in the example above with two compilation units having partial type
1242  * information for structs `A` and `B`, the output of algorithm will emit
1243  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1244  * (as well as type information for `int` and pointers), as if they were defined
1245  * in a single compilation unit as:
1246  *
1247  * struct A {
1248  *	int a;
1249  *	struct A* self;
1250  *	struct S* parent;
1251  * };
1252  * struct B {
1253  *	int b;
1254  *	struct B* self;
1255  *	struct S* parent;
1256  * };
1257  * struct S {
1258  *	struct A* a_ptr;
1259  *	struct B* b_ptr;
1260  * };
1261  *
1262  * Algorithm summary
1263  * =================
1264  *
1265  * Algorithm completes its work in 6 separate passes:
1266  *
1267  * 1. Strings deduplication.
1268  * 2. Primitive types deduplication (int, enum, fwd).
1269  * 3. Struct/union types deduplication.
1270  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1271  *    protos, and const/volatile/restrict modifiers).
1272  * 5. Types compaction.
1273  * 6. Types remapping.
1274  *
1275  * Algorithm determines canonical type descriptor, which is a single
1276  * representative type for each truly unique type. This canonical type is the
1277  * one that will go into final deduplicated BTF type information. For
1278  * struct/unions, it is also the type that algorithm will merge additional type
1279  * information into (while resolving FWDs), as it discovers it from data in
1280  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1281  * that type is canonical, or to some other type, if that type is equivalent
1282  * and was chosen as canonical representative. This mapping is stored in
1283  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1284  * FWD type got resolved to.
1285  *
1286  * To facilitate fast discovery of canonical types, we also maintain canonical
1287  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1288  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1289  * that match that signature. With sufficiently good choice of type signature
1290  * hashing function, we can limit number of canonical types for each unique type
1291  * signature to a very small number, allowing to find canonical type for any
1292  * duplicated type very quickly.
1293  *
1294  * Struct/union deduplication is the most critical part and algorithm for
1295  * deduplicating structs/unions is described in greater details in comments for
1296  * `btf_dedup_is_equiv` function.
1297  */
1298 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1299 	       const struct btf_dedup_opts *opts)
1300 {
1301 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1302 	int err;
1303 
1304 	if (IS_ERR(d)) {
1305 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1306 		return -EINVAL;
1307 	}
1308 
1309 	err = btf_dedup_strings(d);
1310 	if (err < 0) {
1311 		pr_debug("btf_dedup_strings failed:%d\n", err);
1312 		goto done;
1313 	}
1314 	err = btf_dedup_prim_types(d);
1315 	if (err < 0) {
1316 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1317 		goto done;
1318 	}
1319 	err = btf_dedup_struct_types(d);
1320 	if (err < 0) {
1321 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1322 		goto done;
1323 	}
1324 	err = btf_dedup_ref_types(d);
1325 	if (err < 0) {
1326 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1327 		goto done;
1328 	}
1329 	err = btf_dedup_compact_types(d);
1330 	if (err < 0) {
1331 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1332 		goto done;
1333 	}
1334 	err = btf_dedup_remap_types(d);
1335 	if (err < 0) {
1336 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1337 		goto done;
1338 	}
1339 
1340 done:
1341 	btf_dedup_free(d);
1342 	return err;
1343 }
1344 
1345 #define BTF_UNPROCESSED_ID ((__u32)-1)
1346 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1347 
1348 struct btf_dedup {
1349 	/* .BTF section to be deduped in-place */
1350 	struct btf *btf;
1351 	/*
1352 	 * Optional .BTF.ext section. When provided, any strings referenced
1353 	 * from it will be taken into account when deduping strings
1354 	 */
1355 	struct btf_ext *btf_ext;
1356 	/*
1357 	 * This is a map from any type's signature hash to a list of possible
1358 	 * canonical representative type candidates. Hash collisions are
1359 	 * ignored, so even types of various kinds can share same list of
1360 	 * candidates, which is fine because we rely on subsequent
1361 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1362 	 */
1363 	struct hashmap *dedup_table;
1364 	/* Canonical types map */
1365 	__u32 *map;
1366 	/* Hypothetical mapping, used during type graph equivalence checks */
1367 	__u32 *hypot_map;
1368 	__u32 *hypot_list;
1369 	size_t hypot_cnt;
1370 	size_t hypot_cap;
1371 	/* Various option modifying behavior of algorithm */
1372 	struct btf_dedup_opts opts;
1373 };
1374 
1375 struct btf_str_ptr {
1376 	const char *str;
1377 	__u32 new_off;
1378 	bool used;
1379 };
1380 
1381 struct btf_str_ptrs {
1382 	struct btf_str_ptr *ptrs;
1383 	const char *data;
1384 	__u32 cnt;
1385 	__u32 cap;
1386 };
1387 
1388 static long hash_combine(long h, long value)
1389 {
1390 	return h * 31 + value;
1391 }
1392 
1393 #define for_each_dedup_cand(d, node, hash) \
1394 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1395 
1396 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1397 {
1398 	return hashmap__append(d->dedup_table,
1399 			       (void *)hash, (void *)(long)type_id);
1400 }
1401 
1402 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1403 				   __u32 from_id, __u32 to_id)
1404 {
1405 	if (d->hypot_cnt == d->hypot_cap) {
1406 		__u32 *new_list;
1407 
1408 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
1409 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1410 		if (!new_list)
1411 			return -ENOMEM;
1412 		d->hypot_list = new_list;
1413 	}
1414 	d->hypot_list[d->hypot_cnt++] = from_id;
1415 	d->hypot_map[from_id] = to_id;
1416 	return 0;
1417 }
1418 
1419 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1420 {
1421 	int i;
1422 
1423 	for (i = 0; i < d->hypot_cnt; i++)
1424 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1425 	d->hypot_cnt = 0;
1426 }
1427 
1428 static void btf_dedup_free(struct btf_dedup *d)
1429 {
1430 	hashmap__free(d->dedup_table);
1431 	d->dedup_table = NULL;
1432 
1433 	free(d->map);
1434 	d->map = NULL;
1435 
1436 	free(d->hypot_map);
1437 	d->hypot_map = NULL;
1438 
1439 	free(d->hypot_list);
1440 	d->hypot_list = NULL;
1441 
1442 	free(d);
1443 }
1444 
1445 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1446 {
1447 	return (size_t)key;
1448 }
1449 
1450 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1451 {
1452 	return 0;
1453 }
1454 
1455 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1456 {
1457 	return k1 == k2;
1458 }
1459 
1460 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1461 				       const struct btf_dedup_opts *opts)
1462 {
1463 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1464 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1465 	int i, err = 0;
1466 
1467 	if (!d)
1468 		return ERR_PTR(-ENOMEM);
1469 
1470 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1471 	/* dedup_table_size is now used only to force collisions in tests */
1472 	if (opts && opts->dedup_table_size == 1)
1473 		hash_fn = btf_dedup_collision_hash_fn;
1474 
1475 	d->btf = btf;
1476 	d->btf_ext = btf_ext;
1477 
1478 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1479 	if (IS_ERR(d->dedup_table)) {
1480 		err = PTR_ERR(d->dedup_table);
1481 		d->dedup_table = NULL;
1482 		goto done;
1483 	}
1484 
1485 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1486 	if (!d->map) {
1487 		err = -ENOMEM;
1488 		goto done;
1489 	}
1490 	/* special BTF "void" type is made canonical immediately */
1491 	d->map[0] = 0;
1492 	for (i = 1; i <= btf->nr_types; i++) {
1493 		struct btf_type *t = d->btf->types[i];
1494 
1495 		/* VAR and DATASEC are never deduped and are self-canonical */
1496 		if (btf_is_var(t) || btf_is_datasec(t))
1497 			d->map[i] = i;
1498 		else
1499 			d->map[i] = BTF_UNPROCESSED_ID;
1500 	}
1501 
1502 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1503 	if (!d->hypot_map) {
1504 		err = -ENOMEM;
1505 		goto done;
1506 	}
1507 	for (i = 0; i <= btf->nr_types; i++)
1508 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1509 
1510 done:
1511 	if (err) {
1512 		btf_dedup_free(d);
1513 		return ERR_PTR(err);
1514 	}
1515 
1516 	return d;
1517 }
1518 
1519 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1520 
1521 /*
1522  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1523  * string and pass pointer to it to a provided callback `fn`.
1524  */
1525 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1526 {
1527 	void *line_data_cur, *line_data_end;
1528 	int i, j, r, rec_size;
1529 	struct btf_type *t;
1530 
1531 	for (i = 1; i <= d->btf->nr_types; i++) {
1532 		t = d->btf->types[i];
1533 		r = fn(&t->name_off, ctx);
1534 		if (r)
1535 			return r;
1536 
1537 		switch (btf_kind(t)) {
1538 		case BTF_KIND_STRUCT:
1539 		case BTF_KIND_UNION: {
1540 			struct btf_member *m = btf_members(t);
1541 			__u16 vlen = btf_vlen(t);
1542 
1543 			for (j = 0; j < vlen; j++) {
1544 				r = fn(&m->name_off, ctx);
1545 				if (r)
1546 					return r;
1547 				m++;
1548 			}
1549 			break;
1550 		}
1551 		case BTF_KIND_ENUM: {
1552 			struct btf_enum *m = btf_enum(t);
1553 			__u16 vlen = btf_vlen(t);
1554 
1555 			for (j = 0; j < vlen; j++) {
1556 				r = fn(&m->name_off, ctx);
1557 				if (r)
1558 					return r;
1559 				m++;
1560 			}
1561 			break;
1562 		}
1563 		case BTF_KIND_FUNC_PROTO: {
1564 			struct btf_param *m = btf_params(t);
1565 			__u16 vlen = btf_vlen(t);
1566 
1567 			for (j = 0; j < vlen; j++) {
1568 				r = fn(&m->name_off, ctx);
1569 				if (r)
1570 					return r;
1571 				m++;
1572 			}
1573 			break;
1574 		}
1575 		default:
1576 			break;
1577 		}
1578 	}
1579 
1580 	if (!d->btf_ext)
1581 		return 0;
1582 
1583 	line_data_cur = d->btf_ext->line_info.info;
1584 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1585 	rec_size = d->btf_ext->line_info.rec_size;
1586 
1587 	while (line_data_cur < line_data_end) {
1588 		struct btf_ext_info_sec *sec = line_data_cur;
1589 		struct bpf_line_info_min *line_info;
1590 		__u32 num_info = sec->num_info;
1591 
1592 		r = fn(&sec->sec_name_off, ctx);
1593 		if (r)
1594 			return r;
1595 
1596 		line_data_cur += sizeof(struct btf_ext_info_sec);
1597 		for (i = 0; i < num_info; i++) {
1598 			line_info = line_data_cur;
1599 			r = fn(&line_info->file_name_off, ctx);
1600 			if (r)
1601 				return r;
1602 			r = fn(&line_info->line_off, ctx);
1603 			if (r)
1604 				return r;
1605 			line_data_cur += rec_size;
1606 		}
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static int str_sort_by_content(const void *a1, const void *a2)
1613 {
1614 	const struct btf_str_ptr *p1 = a1;
1615 	const struct btf_str_ptr *p2 = a2;
1616 
1617 	return strcmp(p1->str, p2->str);
1618 }
1619 
1620 static int str_sort_by_offset(const void *a1, const void *a2)
1621 {
1622 	const struct btf_str_ptr *p1 = a1;
1623 	const struct btf_str_ptr *p2 = a2;
1624 
1625 	if (p1->str != p2->str)
1626 		return p1->str < p2->str ? -1 : 1;
1627 	return 0;
1628 }
1629 
1630 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1631 {
1632 	const struct btf_str_ptr *p = pelem;
1633 
1634 	if (str_ptr != p->str)
1635 		return (const char *)str_ptr < p->str ? -1 : 1;
1636 	return 0;
1637 }
1638 
1639 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1640 {
1641 	struct btf_str_ptrs *strs;
1642 	struct btf_str_ptr *s;
1643 
1644 	if (*str_off_ptr == 0)
1645 		return 0;
1646 
1647 	strs = ctx;
1648 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1649 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1650 	if (!s)
1651 		return -EINVAL;
1652 	s->used = true;
1653 	return 0;
1654 }
1655 
1656 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1657 {
1658 	struct btf_str_ptrs *strs;
1659 	struct btf_str_ptr *s;
1660 
1661 	if (*str_off_ptr == 0)
1662 		return 0;
1663 
1664 	strs = ctx;
1665 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1666 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1667 	if (!s)
1668 		return -EINVAL;
1669 	*str_off_ptr = s->new_off;
1670 	return 0;
1671 }
1672 
1673 /*
1674  * Dedup string and filter out those that are not referenced from either .BTF
1675  * or .BTF.ext (if provided) sections.
1676  *
1677  * This is done by building index of all strings in BTF's string section,
1678  * then iterating over all entities that can reference strings (e.g., type
1679  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1680  * strings as used. After that all used strings are deduped and compacted into
1681  * sequential blob of memory and new offsets are calculated. Then all the string
1682  * references are iterated again and rewritten using new offsets.
1683  */
1684 static int btf_dedup_strings(struct btf_dedup *d)
1685 {
1686 	const struct btf_header *hdr = d->btf->hdr;
1687 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1688 	char *end = start + d->btf->hdr->str_len;
1689 	char *p = start, *tmp_strs = NULL;
1690 	struct btf_str_ptrs strs = {
1691 		.cnt = 0,
1692 		.cap = 0,
1693 		.ptrs = NULL,
1694 		.data = start,
1695 	};
1696 	int i, j, err = 0, grp_idx;
1697 	bool grp_used;
1698 
1699 	/* build index of all strings */
1700 	while (p < end) {
1701 		if (strs.cnt + 1 > strs.cap) {
1702 			struct btf_str_ptr *new_ptrs;
1703 
1704 			strs.cap += max(strs.cnt / 2, 16U);
1705 			new_ptrs = realloc(strs.ptrs,
1706 					   sizeof(strs.ptrs[0]) * strs.cap);
1707 			if (!new_ptrs) {
1708 				err = -ENOMEM;
1709 				goto done;
1710 			}
1711 			strs.ptrs = new_ptrs;
1712 		}
1713 
1714 		strs.ptrs[strs.cnt].str = p;
1715 		strs.ptrs[strs.cnt].used = false;
1716 
1717 		p += strlen(p) + 1;
1718 		strs.cnt++;
1719 	}
1720 
1721 	/* temporary storage for deduplicated strings */
1722 	tmp_strs = malloc(d->btf->hdr->str_len);
1723 	if (!tmp_strs) {
1724 		err = -ENOMEM;
1725 		goto done;
1726 	}
1727 
1728 	/* mark all used strings */
1729 	strs.ptrs[0].used = true;
1730 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1731 	if (err)
1732 		goto done;
1733 
1734 	/* sort strings by context, so that we can identify duplicates */
1735 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1736 
1737 	/*
1738 	 * iterate groups of equal strings and if any instance in a group was
1739 	 * referenced, emit single instance and remember new offset
1740 	 */
1741 	p = tmp_strs;
1742 	grp_idx = 0;
1743 	grp_used = strs.ptrs[0].used;
1744 	/* iterate past end to avoid code duplication after loop */
1745 	for (i = 1; i <= strs.cnt; i++) {
1746 		/*
1747 		 * when i == strs.cnt, we want to skip string comparison and go
1748 		 * straight to handling last group of strings (otherwise we'd
1749 		 * need to handle last group after the loop w/ duplicated code)
1750 		 */
1751 		if (i < strs.cnt &&
1752 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1753 			grp_used = grp_used || strs.ptrs[i].used;
1754 			continue;
1755 		}
1756 
1757 		/*
1758 		 * this check would have been required after the loop to handle
1759 		 * last group of strings, but due to <= condition in a loop
1760 		 * we avoid that duplication
1761 		 */
1762 		if (grp_used) {
1763 			int new_off = p - tmp_strs;
1764 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1765 
1766 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1767 			for (j = grp_idx; j < i; j++)
1768 				strs.ptrs[j].new_off = new_off;
1769 			p += len + 1;
1770 		}
1771 
1772 		if (i < strs.cnt) {
1773 			grp_idx = i;
1774 			grp_used = strs.ptrs[i].used;
1775 		}
1776 	}
1777 
1778 	/* replace original strings with deduped ones */
1779 	d->btf->hdr->str_len = p - tmp_strs;
1780 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1781 	end = start + d->btf->hdr->str_len;
1782 
1783 	/* restore original order for further binary search lookups */
1784 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1785 
1786 	/* remap string offsets */
1787 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1788 	if (err)
1789 		goto done;
1790 
1791 	d->btf->hdr->str_len = end - start;
1792 
1793 done:
1794 	free(tmp_strs);
1795 	free(strs.ptrs);
1796 	return err;
1797 }
1798 
1799 static long btf_hash_common(struct btf_type *t)
1800 {
1801 	long h;
1802 
1803 	h = hash_combine(0, t->name_off);
1804 	h = hash_combine(h, t->info);
1805 	h = hash_combine(h, t->size);
1806 	return h;
1807 }
1808 
1809 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1810 {
1811 	return t1->name_off == t2->name_off &&
1812 	       t1->info == t2->info &&
1813 	       t1->size == t2->size;
1814 }
1815 
1816 /* Calculate type signature hash of INT. */
1817 static long btf_hash_int(struct btf_type *t)
1818 {
1819 	__u32 info = *(__u32 *)(t + 1);
1820 	long h;
1821 
1822 	h = btf_hash_common(t);
1823 	h = hash_combine(h, info);
1824 	return h;
1825 }
1826 
1827 /* Check structural equality of two INTs. */
1828 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1829 {
1830 	__u32 info1, info2;
1831 
1832 	if (!btf_equal_common(t1, t2))
1833 		return false;
1834 	info1 = *(__u32 *)(t1 + 1);
1835 	info2 = *(__u32 *)(t2 + 1);
1836 	return info1 == info2;
1837 }
1838 
1839 /* Calculate type signature hash of ENUM. */
1840 static long btf_hash_enum(struct btf_type *t)
1841 {
1842 	long h;
1843 
1844 	/* don't hash vlen and enum members to support enum fwd resolving */
1845 	h = hash_combine(0, t->name_off);
1846 	h = hash_combine(h, t->info & ~0xffff);
1847 	h = hash_combine(h, t->size);
1848 	return h;
1849 }
1850 
1851 /* Check structural equality of two ENUMs. */
1852 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1853 {
1854 	const struct btf_enum *m1, *m2;
1855 	__u16 vlen;
1856 	int i;
1857 
1858 	if (!btf_equal_common(t1, t2))
1859 		return false;
1860 
1861 	vlen = btf_vlen(t1);
1862 	m1 = btf_enum(t1);
1863 	m2 = btf_enum(t2);
1864 	for (i = 0; i < vlen; i++) {
1865 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1866 			return false;
1867 		m1++;
1868 		m2++;
1869 	}
1870 	return true;
1871 }
1872 
1873 static inline bool btf_is_enum_fwd(struct btf_type *t)
1874 {
1875 	return btf_is_enum(t) && btf_vlen(t) == 0;
1876 }
1877 
1878 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1879 {
1880 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1881 		return btf_equal_enum(t1, t2);
1882 	/* ignore vlen when comparing */
1883 	return t1->name_off == t2->name_off &&
1884 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1885 	       t1->size == t2->size;
1886 }
1887 
1888 /*
1889  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1890  * as referenced type IDs equivalence is established separately during type
1891  * graph equivalence check algorithm.
1892  */
1893 static long btf_hash_struct(struct btf_type *t)
1894 {
1895 	const struct btf_member *member = btf_members(t);
1896 	__u32 vlen = btf_vlen(t);
1897 	long h = btf_hash_common(t);
1898 	int i;
1899 
1900 	for (i = 0; i < vlen; i++) {
1901 		h = hash_combine(h, member->name_off);
1902 		h = hash_combine(h, member->offset);
1903 		/* no hashing of referenced type ID, it can be unresolved yet */
1904 		member++;
1905 	}
1906 	return h;
1907 }
1908 
1909 /*
1910  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1911  * IDs. This check is performed during type graph equivalence check and
1912  * referenced types equivalence is checked separately.
1913  */
1914 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1915 {
1916 	const struct btf_member *m1, *m2;
1917 	__u16 vlen;
1918 	int i;
1919 
1920 	if (!btf_equal_common(t1, t2))
1921 		return false;
1922 
1923 	vlen = btf_vlen(t1);
1924 	m1 = btf_members(t1);
1925 	m2 = btf_members(t2);
1926 	for (i = 0; i < vlen; i++) {
1927 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1928 			return false;
1929 		m1++;
1930 		m2++;
1931 	}
1932 	return true;
1933 }
1934 
1935 /*
1936  * Calculate type signature hash of ARRAY, including referenced type IDs,
1937  * under assumption that they were already resolved to canonical type IDs and
1938  * are not going to change.
1939  */
1940 static long btf_hash_array(struct btf_type *t)
1941 {
1942 	const struct btf_array *info = btf_array(t);
1943 	long h = btf_hash_common(t);
1944 
1945 	h = hash_combine(h, info->type);
1946 	h = hash_combine(h, info->index_type);
1947 	h = hash_combine(h, info->nelems);
1948 	return h;
1949 }
1950 
1951 /*
1952  * Check exact equality of two ARRAYs, taking into account referenced
1953  * type IDs, under assumption that they were already resolved to canonical
1954  * type IDs and are not going to change.
1955  * This function is called during reference types deduplication to compare
1956  * ARRAY to potential canonical representative.
1957  */
1958 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1959 {
1960 	const struct btf_array *info1, *info2;
1961 
1962 	if (!btf_equal_common(t1, t2))
1963 		return false;
1964 
1965 	info1 = btf_array(t1);
1966 	info2 = btf_array(t2);
1967 	return info1->type == info2->type &&
1968 	       info1->index_type == info2->index_type &&
1969 	       info1->nelems == info2->nelems;
1970 }
1971 
1972 /*
1973  * Check structural compatibility of two ARRAYs, ignoring referenced type
1974  * IDs. This check is performed during type graph equivalence check and
1975  * referenced types equivalence is checked separately.
1976  */
1977 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1978 {
1979 	if (!btf_equal_common(t1, t2))
1980 		return false;
1981 
1982 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1983 }
1984 
1985 /*
1986  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1987  * under assumption that they were already resolved to canonical type IDs and
1988  * are not going to change.
1989  */
1990 static long btf_hash_fnproto(struct btf_type *t)
1991 {
1992 	const struct btf_param *member = btf_params(t);
1993 	__u16 vlen = btf_vlen(t);
1994 	long h = btf_hash_common(t);
1995 	int i;
1996 
1997 	for (i = 0; i < vlen; i++) {
1998 		h = hash_combine(h, member->name_off);
1999 		h = hash_combine(h, member->type);
2000 		member++;
2001 	}
2002 	return h;
2003 }
2004 
2005 /*
2006  * Check exact equality of two FUNC_PROTOs, taking into account referenced
2007  * type IDs, under assumption that they were already resolved to canonical
2008  * type IDs and are not going to change.
2009  * This function is called during reference types deduplication to compare
2010  * FUNC_PROTO to potential canonical representative.
2011  */
2012 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
2013 {
2014 	const struct btf_param *m1, *m2;
2015 	__u16 vlen;
2016 	int i;
2017 
2018 	if (!btf_equal_common(t1, t2))
2019 		return false;
2020 
2021 	vlen = btf_vlen(t1);
2022 	m1 = btf_params(t1);
2023 	m2 = btf_params(t2);
2024 	for (i = 0; i < vlen; i++) {
2025 		if (m1->name_off != m2->name_off || m1->type != m2->type)
2026 			return false;
2027 		m1++;
2028 		m2++;
2029 	}
2030 	return true;
2031 }
2032 
2033 /*
2034  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2035  * IDs. This check is performed during type graph equivalence check and
2036  * referenced types equivalence is checked separately.
2037  */
2038 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
2039 {
2040 	const struct btf_param *m1, *m2;
2041 	__u16 vlen;
2042 	int i;
2043 
2044 	/* skip return type ID */
2045 	if (t1->name_off != t2->name_off || t1->info != t2->info)
2046 		return false;
2047 
2048 	vlen = btf_vlen(t1);
2049 	m1 = btf_params(t1);
2050 	m2 = btf_params(t2);
2051 	for (i = 0; i < vlen; i++) {
2052 		if (m1->name_off != m2->name_off)
2053 			return false;
2054 		m1++;
2055 		m2++;
2056 	}
2057 	return true;
2058 }
2059 
2060 /*
2061  * Deduplicate primitive types, that can't reference other types, by calculating
2062  * their type signature hash and comparing them with any possible canonical
2063  * candidate. If no canonical candidate matches, type itself is marked as
2064  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2065  */
2066 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2067 {
2068 	struct btf_type *t = d->btf->types[type_id];
2069 	struct hashmap_entry *hash_entry;
2070 	struct btf_type *cand;
2071 	/* if we don't find equivalent type, then we are canonical */
2072 	__u32 new_id = type_id;
2073 	__u32 cand_id;
2074 	long h;
2075 
2076 	switch (btf_kind(t)) {
2077 	case BTF_KIND_CONST:
2078 	case BTF_KIND_VOLATILE:
2079 	case BTF_KIND_RESTRICT:
2080 	case BTF_KIND_PTR:
2081 	case BTF_KIND_TYPEDEF:
2082 	case BTF_KIND_ARRAY:
2083 	case BTF_KIND_STRUCT:
2084 	case BTF_KIND_UNION:
2085 	case BTF_KIND_FUNC:
2086 	case BTF_KIND_FUNC_PROTO:
2087 	case BTF_KIND_VAR:
2088 	case BTF_KIND_DATASEC:
2089 		return 0;
2090 
2091 	case BTF_KIND_INT:
2092 		h = btf_hash_int(t);
2093 		for_each_dedup_cand(d, hash_entry, h) {
2094 			cand_id = (__u32)(long)hash_entry->value;
2095 			cand = d->btf->types[cand_id];
2096 			if (btf_equal_int(t, cand)) {
2097 				new_id = cand_id;
2098 				break;
2099 			}
2100 		}
2101 		break;
2102 
2103 	case BTF_KIND_ENUM:
2104 		h = btf_hash_enum(t);
2105 		for_each_dedup_cand(d, hash_entry, h) {
2106 			cand_id = (__u32)(long)hash_entry->value;
2107 			cand = d->btf->types[cand_id];
2108 			if (btf_equal_enum(t, cand)) {
2109 				new_id = cand_id;
2110 				break;
2111 			}
2112 			if (d->opts.dont_resolve_fwds)
2113 				continue;
2114 			if (btf_compat_enum(t, cand)) {
2115 				if (btf_is_enum_fwd(t)) {
2116 					/* resolve fwd to full enum */
2117 					new_id = cand_id;
2118 					break;
2119 				}
2120 				/* resolve canonical enum fwd to full enum */
2121 				d->map[cand_id] = type_id;
2122 			}
2123 		}
2124 		break;
2125 
2126 	case BTF_KIND_FWD:
2127 		h = btf_hash_common(t);
2128 		for_each_dedup_cand(d, hash_entry, h) {
2129 			cand_id = (__u32)(long)hash_entry->value;
2130 			cand = d->btf->types[cand_id];
2131 			if (btf_equal_common(t, cand)) {
2132 				new_id = cand_id;
2133 				break;
2134 			}
2135 		}
2136 		break;
2137 
2138 	default:
2139 		return -EINVAL;
2140 	}
2141 
2142 	d->map[type_id] = new_id;
2143 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2144 		return -ENOMEM;
2145 
2146 	return 0;
2147 }
2148 
2149 static int btf_dedup_prim_types(struct btf_dedup *d)
2150 {
2151 	int i, err;
2152 
2153 	for (i = 1; i <= d->btf->nr_types; i++) {
2154 		err = btf_dedup_prim_type(d, i);
2155 		if (err)
2156 			return err;
2157 	}
2158 	return 0;
2159 }
2160 
2161 /*
2162  * Check whether type is already mapped into canonical one (could be to itself).
2163  */
2164 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2165 {
2166 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2167 }
2168 
2169 /*
2170  * Resolve type ID into its canonical type ID, if any; otherwise return original
2171  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2172  * STRUCT/UNION link and resolve it into canonical type ID as well.
2173  */
2174 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2175 {
2176 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2177 		type_id = d->map[type_id];
2178 	return type_id;
2179 }
2180 
2181 /*
2182  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2183  * type ID.
2184  */
2185 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2186 {
2187 	__u32 orig_type_id = type_id;
2188 
2189 	if (!btf_is_fwd(d->btf->types[type_id]))
2190 		return type_id;
2191 
2192 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2193 		type_id = d->map[type_id];
2194 
2195 	if (!btf_is_fwd(d->btf->types[type_id]))
2196 		return type_id;
2197 
2198 	return orig_type_id;
2199 }
2200 
2201 
2202 static inline __u16 btf_fwd_kind(struct btf_type *t)
2203 {
2204 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2205 }
2206 
2207 /*
2208  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2209  * call it "candidate graph" in this description for brevity) to a type graph
2210  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2211  * here, though keep in mind that not all types in canonical graph are
2212  * necessarily canonical representatives themselves, some of them might be
2213  * duplicates or its uniqueness might not have been established yet).
2214  * Returns:
2215  *  - >0, if type graphs are equivalent;
2216  *  -  0, if not equivalent;
2217  *  - <0, on error.
2218  *
2219  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2220  * equivalence of BTF types at each step. If at any point BTF types in candidate
2221  * and canonical graphs are not compatible structurally, whole graphs are
2222  * incompatible. If types are structurally equivalent (i.e., all information
2223  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2224  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2225  * If a type references other types, then those referenced types are checked
2226  * for equivalence recursively.
2227  *
2228  * During DFS traversal, if we find that for current `canon_id` type we
2229  * already have some mapping in hypothetical map, we check for two possible
2230  * situations:
2231  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2232  *     happen when type graphs have cycles. In this case we assume those two
2233  *     types are equivalent.
2234  *   - `canon_id` is mapped to different type. This is contradiction in our
2235  *     hypothetical mapping, because same graph in canonical graph corresponds
2236  *     to two different types in candidate graph, which for equivalent type
2237  *     graphs shouldn't happen. This condition terminates equivalence check
2238  *     with negative result.
2239  *
2240  * If type graphs traversal exhausts types to check and find no contradiction,
2241  * then type graphs are equivalent.
2242  *
2243  * When checking types for equivalence, there is one special case: FWD types.
2244  * If FWD type resolution is allowed and one of the types (either from canonical
2245  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2246  * flag) and their names match, hypothetical mapping is updated to point from
2247  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2248  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2249  *
2250  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2251  * if there are two exactly named (or anonymous) structs/unions that are
2252  * compatible structurally, one of which has FWD field, while other is concrete
2253  * STRUCT/UNION, but according to C sources they are different structs/unions
2254  * that are referencing different types with the same name. This is extremely
2255  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2256  * this logic is causing problems.
2257  *
2258  * Doing FWD resolution means that both candidate and/or canonical graphs can
2259  * consists of portions of the graph that come from multiple compilation units.
2260  * This is due to the fact that types within single compilation unit are always
2261  * deduplicated and FWDs are already resolved, if referenced struct/union
2262  * definiton is available. So, if we had unresolved FWD and found corresponding
2263  * STRUCT/UNION, they will be from different compilation units. This
2264  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2265  * type graph will likely have at least two different BTF types that describe
2266  * same type (e.g., most probably there will be two different BTF types for the
2267  * same 'int' primitive type) and could even have "overlapping" parts of type
2268  * graph that describe same subset of types.
2269  *
2270  * This in turn means that our assumption that each type in canonical graph
2271  * must correspond to exactly one type in candidate graph might not hold
2272  * anymore and will make it harder to detect contradictions using hypothetical
2273  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2274  * resolution only in canonical graph. FWDs in candidate graphs are never
2275  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2276  * that can occur:
2277  *   - Both types in canonical and candidate graphs are FWDs. If they are
2278  *     structurally equivalent, then they can either be both resolved to the
2279  *     same STRUCT/UNION or not resolved at all. In both cases they are
2280  *     equivalent and there is no need to resolve FWD on candidate side.
2281  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2282  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2283  *   - Type in canonical graph is FWD, while type in candidate is concrete
2284  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2285  *     unit, so there is exactly one BTF type for each unique C type. After
2286  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2287  *     in canonical graph mapping to single BTF type in candidate graph, but
2288  *     because hypothetical mapping maps from canonical to candidate types, it's
2289  *     alright, and we still maintain the property of having single `canon_id`
2290  *     mapping to single `cand_id` (there could be two different `canon_id`
2291  *     mapped to the same `cand_id`, but it's not contradictory).
2292  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2293  *     graph is FWD. In this case we are just going to check compatibility of
2294  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2295  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2296  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2297  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2298  *     canonical graph.
2299  */
2300 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2301 			      __u32 canon_id)
2302 {
2303 	struct btf_type *cand_type;
2304 	struct btf_type *canon_type;
2305 	__u32 hypot_type_id;
2306 	__u16 cand_kind;
2307 	__u16 canon_kind;
2308 	int i, eq;
2309 
2310 	/* if both resolve to the same canonical, they must be equivalent */
2311 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2312 		return 1;
2313 
2314 	canon_id = resolve_fwd_id(d, canon_id);
2315 
2316 	hypot_type_id = d->hypot_map[canon_id];
2317 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2318 		return hypot_type_id == cand_id;
2319 
2320 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2321 		return -ENOMEM;
2322 
2323 	cand_type = d->btf->types[cand_id];
2324 	canon_type = d->btf->types[canon_id];
2325 	cand_kind = btf_kind(cand_type);
2326 	canon_kind = btf_kind(canon_type);
2327 
2328 	if (cand_type->name_off != canon_type->name_off)
2329 		return 0;
2330 
2331 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2332 	if (!d->opts.dont_resolve_fwds
2333 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2334 	    && cand_kind != canon_kind) {
2335 		__u16 real_kind;
2336 		__u16 fwd_kind;
2337 
2338 		if (cand_kind == BTF_KIND_FWD) {
2339 			real_kind = canon_kind;
2340 			fwd_kind = btf_fwd_kind(cand_type);
2341 		} else {
2342 			real_kind = cand_kind;
2343 			fwd_kind = btf_fwd_kind(canon_type);
2344 		}
2345 		return fwd_kind == real_kind;
2346 	}
2347 
2348 	if (cand_kind != canon_kind)
2349 		return 0;
2350 
2351 	switch (cand_kind) {
2352 	case BTF_KIND_INT:
2353 		return btf_equal_int(cand_type, canon_type);
2354 
2355 	case BTF_KIND_ENUM:
2356 		if (d->opts.dont_resolve_fwds)
2357 			return btf_equal_enum(cand_type, canon_type);
2358 		else
2359 			return btf_compat_enum(cand_type, canon_type);
2360 
2361 	case BTF_KIND_FWD:
2362 		return btf_equal_common(cand_type, canon_type);
2363 
2364 	case BTF_KIND_CONST:
2365 	case BTF_KIND_VOLATILE:
2366 	case BTF_KIND_RESTRICT:
2367 	case BTF_KIND_PTR:
2368 	case BTF_KIND_TYPEDEF:
2369 	case BTF_KIND_FUNC:
2370 		if (cand_type->info != canon_type->info)
2371 			return 0;
2372 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2373 
2374 	case BTF_KIND_ARRAY: {
2375 		const struct btf_array *cand_arr, *canon_arr;
2376 
2377 		if (!btf_compat_array(cand_type, canon_type))
2378 			return 0;
2379 		cand_arr = btf_array(cand_type);
2380 		canon_arr = btf_array(canon_type);
2381 		eq = btf_dedup_is_equiv(d,
2382 			cand_arr->index_type, canon_arr->index_type);
2383 		if (eq <= 0)
2384 			return eq;
2385 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2386 	}
2387 
2388 	case BTF_KIND_STRUCT:
2389 	case BTF_KIND_UNION: {
2390 		const struct btf_member *cand_m, *canon_m;
2391 		__u16 vlen;
2392 
2393 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2394 			return 0;
2395 		vlen = btf_vlen(cand_type);
2396 		cand_m = btf_members(cand_type);
2397 		canon_m = btf_members(canon_type);
2398 		for (i = 0; i < vlen; i++) {
2399 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2400 			if (eq <= 0)
2401 				return eq;
2402 			cand_m++;
2403 			canon_m++;
2404 		}
2405 
2406 		return 1;
2407 	}
2408 
2409 	case BTF_KIND_FUNC_PROTO: {
2410 		const struct btf_param *cand_p, *canon_p;
2411 		__u16 vlen;
2412 
2413 		if (!btf_compat_fnproto(cand_type, canon_type))
2414 			return 0;
2415 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2416 		if (eq <= 0)
2417 			return eq;
2418 		vlen = btf_vlen(cand_type);
2419 		cand_p = btf_params(cand_type);
2420 		canon_p = btf_params(canon_type);
2421 		for (i = 0; i < vlen; i++) {
2422 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2423 			if (eq <= 0)
2424 				return eq;
2425 			cand_p++;
2426 			canon_p++;
2427 		}
2428 		return 1;
2429 	}
2430 
2431 	default:
2432 		return -EINVAL;
2433 	}
2434 	return 0;
2435 }
2436 
2437 /*
2438  * Use hypothetical mapping, produced by successful type graph equivalence
2439  * check, to augment existing struct/union canonical mapping, where possible.
2440  *
2441  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2442  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2443  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2444  * we are recording the mapping anyway. As opposed to carefulness required
2445  * for struct/union correspondence mapping (described below), for FWD resolution
2446  * it's not important, as by the time that FWD type (reference type) will be
2447  * deduplicated all structs/unions will be deduped already anyway.
2448  *
2449  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2450  * not required for correctness. It needs to be done carefully to ensure that
2451  * struct/union from candidate's type graph is not mapped into corresponding
2452  * struct/union from canonical type graph that itself hasn't been resolved into
2453  * canonical representative. The only guarantee we have is that canonical
2454  * struct/union was determined as canonical and that won't change. But any
2455  * types referenced through that struct/union fields could have been not yet
2456  * resolved, so in case like that it's too early to establish any kind of
2457  * correspondence between structs/unions.
2458  *
2459  * No canonical correspondence is derived for primitive types (they are already
2460  * deduplicated completely already anyway) or reference types (they rely on
2461  * stability of struct/union canonical relationship for equivalence checks).
2462  */
2463 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2464 {
2465 	__u32 cand_type_id, targ_type_id;
2466 	__u16 t_kind, c_kind;
2467 	__u32 t_id, c_id;
2468 	int i;
2469 
2470 	for (i = 0; i < d->hypot_cnt; i++) {
2471 		cand_type_id = d->hypot_list[i];
2472 		targ_type_id = d->hypot_map[cand_type_id];
2473 		t_id = resolve_type_id(d, targ_type_id);
2474 		c_id = resolve_type_id(d, cand_type_id);
2475 		t_kind = btf_kind(d->btf->types[t_id]);
2476 		c_kind = btf_kind(d->btf->types[c_id]);
2477 		/*
2478 		 * Resolve FWD into STRUCT/UNION.
2479 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2480 		 * mapped to canonical representative (as opposed to
2481 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2482 		 * eventually that struct is going to be mapped and all resolved
2483 		 * FWDs will automatically resolve to correct canonical
2484 		 * representative. This will happen before ref type deduping,
2485 		 * which critically depends on stability of these mapping. This
2486 		 * stability is not a requirement for STRUCT/UNION equivalence
2487 		 * checks, though.
2488 		 */
2489 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2490 			d->map[c_id] = t_id;
2491 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2492 			d->map[t_id] = c_id;
2493 
2494 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2495 		    c_kind != BTF_KIND_FWD &&
2496 		    is_type_mapped(d, c_id) &&
2497 		    !is_type_mapped(d, t_id)) {
2498 			/*
2499 			 * as a perf optimization, we can map struct/union
2500 			 * that's part of type graph we just verified for
2501 			 * equivalence. We can do that for struct/union that has
2502 			 * canonical representative only, though.
2503 			 */
2504 			d->map[t_id] = c_id;
2505 		}
2506 	}
2507 }
2508 
2509 /*
2510  * Deduplicate struct/union types.
2511  *
2512  * For each struct/union type its type signature hash is calculated, taking
2513  * into account type's name, size, number, order and names of fields, but
2514  * ignoring type ID's referenced from fields, because they might not be deduped
2515  * completely until after reference types deduplication phase. This type hash
2516  * is used to iterate over all potential canonical types, sharing same hash.
2517  * For each canonical candidate we check whether type graphs that they form
2518  * (through referenced types in fields and so on) are equivalent using algorithm
2519  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2520  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2521  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2522  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2523  * potentially map other structs/unions to their canonical representatives,
2524  * if such relationship hasn't yet been established. This speeds up algorithm
2525  * by eliminating some of the duplicate work.
2526  *
2527  * If no matching canonical representative was found, struct/union is marked
2528  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2529  * for further look ups.
2530  */
2531 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2532 {
2533 	struct btf_type *cand_type, *t;
2534 	struct hashmap_entry *hash_entry;
2535 	/* if we don't find equivalent type, then we are canonical */
2536 	__u32 new_id = type_id;
2537 	__u16 kind;
2538 	long h;
2539 
2540 	/* already deduped or is in process of deduping (loop detected) */
2541 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2542 		return 0;
2543 
2544 	t = d->btf->types[type_id];
2545 	kind = btf_kind(t);
2546 
2547 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2548 		return 0;
2549 
2550 	h = btf_hash_struct(t);
2551 	for_each_dedup_cand(d, hash_entry, h) {
2552 		__u32 cand_id = (__u32)(long)hash_entry->value;
2553 		int eq;
2554 
2555 		/*
2556 		 * Even though btf_dedup_is_equiv() checks for
2557 		 * btf_shallow_equal_struct() internally when checking two
2558 		 * structs (unions) for equivalence, we need to guard here
2559 		 * from picking matching FWD type as a dedup candidate.
2560 		 * This can happen due to hash collision. In such case just
2561 		 * relying on btf_dedup_is_equiv() would lead to potentially
2562 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2563 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2564 		 */
2565 		cand_type = d->btf->types[cand_id];
2566 		if (!btf_shallow_equal_struct(t, cand_type))
2567 			continue;
2568 
2569 		btf_dedup_clear_hypot_map(d);
2570 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2571 		if (eq < 0)
2572 			return eq;
2573 		if (!eq)
2574 			continue;
2575 		new_id = cand_id;
2576 		btf_dedup_merge_hypot_map(d);
2577 		break;
2578 	}
2579 
2580 	d->map[type_id] = new_id;
2581 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2582 		return -ENOMEM;
2583 
2584 	return 0;
2585 }
2586 
2587 static int btf_dedup_struct_types(struct btf_dedup *d)
2588 {
2589 	int i, err;
2590 
2591 	for (i = 1; i <= d->btf->nr_types; i++) {
2592 		err = btf_dedup_struct_type(d, i);
2593 		if (err)
2594 			return err;
2595 	}
2596 	return 0;
2597 }
2598 
2599 /*
2600  * Deduplicate reference type.
2601  *
2602  * Once all primitive and struct/union types got deduplicated, we can easily
2603  * deduplicate all other (reference) BTF types. This is done in two steps:
2604  *
2605  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2606  * resolution can be done either immediately for primitive or struct/union types
2607  * (because they were deduped in previous two phases) or recursively for
2608  * reference types. Recursion will always terminate at either primitive or
2609  * struct/union type, at which point we can "unwind" chain of reference types
2610  * one by one. There is no danger of encountering cycles because in C type
2611  * system the only way to form type cycle is through struct/union, so any chain
2612  * of reference types, even those taking part in a type cycle, will inevitably
2613  * reach struct/union at some point.
2614  *
2615  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2616  * becomes "stable", in the sense that no further deduplication will cause
2617  * any changes to it. With that, it's now possible to calculate type's signature
2618  * hash (this time taking into account referenced type IDs) and loop over all
2619  * potential canonical representatives. If no match was found, current type
2620  * will become canonical representative of itself and will be added into
2621  * btf_dedup->dedup_table as another possible canonical representative.
2622  */
2623 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2624 {
2625 	struct hashmap_entry *hash_entry;
2626 	__u32 new_id = type_id, cand_id;
2627 	struct btf_type *t, *cand;
2628 	/* if we don't find equivalent type, then we are representative type */
2629 	int ref_type_id;
2630 	long h;
2631 
2632 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2633 		return -ELOOP;
2634 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2635 		return resolve_type_id(d, type_id);
2636 
2637 	t = d->btf->types[type_id];
2638 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2639 
2640 	switch (btf_kind(t)) {
2641 	case BTF_KIND_CONST:
2642 	case BTF_KIND_VOLATILE:
2643 	case BTF_KIND_RESTRICT:
2644 	case BTF_KIND_PTR:
2645 	case BTF_KIND_TYPEDEF:
2646 	case BTF_KIND_FUNC:
2647 		ref_type_id = btf_dedup_ref_type(d, t->type);
2648 		if (ref_type_id < 0)
2649 			return ref_type_id;
2650 		t->type = ref_type_id;
2651 
2652 		h = btf_hash_common(t);
2653 		for_each_dedup_cand(d, hash_entry, h) {
2654 			cand_id = (__u32)(long)hash_entry->value;
2655 			cand = d->btf->types[cand_id];
2656 			if (btf_equal_common(t, cand)) {
2657 				new_id = cand_id;
2658 				break;
2659 			}
2660 		}
2661 		break;
2662 
2663 	case BTF_KIND_ARRAY: {
2664 		struct btf_array *info = btf_array(t);
2665 
2666 		ref_type_id = btf_dedup_ref_type(d, info->type);
2667 		if (ref_type_id < 0)
2668 			return ref_type_id;
2669 		info->type = ref_type_id;
2670 
2671 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2672 		if (ref_type_id < 0)
2673 			return ref_type_id;
2674 		info->index_type = ref_type_id;
2675 
2676 		h = btf_hash_array(t);
2677 		for_each_dedup_cand(d, hash_entry, h) {
2678 			cand_id = (__u32)(long)hash_entry->value;
2679 			cand = d->btf->types[cand_id];
2680 			if (btf_equal_array(t, cand)) {
2681 				new_id = cand_id;
2682 				break;
2683 			}
2684 		}
2685 		break;
2686 	}
2687 
2688 	case BTF_KIND_FUNC_PROTO: {
2689 		struct btf_param *param;
2690 		__u16 vlen;
2691 		int i;
2692 
2693 		ref_type_id = btf_dedup_ref_type(d, t->type);
2694 		if (ref_type_id < 0)
2695 			return ref_type_id;
2696 		t->type = ref_type_id;
2697 
2698 		vlen = btf_vlen(t);
2699 		param = btf_params(t);
2700 		for (i = 0; i < vlen; i++) {
2701 			ref_type_id = btf_dedup_ref_type(d, param->type);
2702 			if (ref_type_id < 0)
2703 				return ref_type_id;
2704 			param->type = ref_type_id;
2705 			param++;
2706 		}
2707 
2708 		h = btf_hash_fnproto(t);
2709 		for_each_dedup_cand(d, hash_entry, h) {
2710 			cand_id = (__u32)(long)hash_entry->value;
2711 			cand = d->btf->types[cand_id];
2712 			if (btf_equal_fnproto(t, cand)) {
2713 				new_id = cand_id;
2714 				break;
2715 			}
2716 		}
2717 		break;
2718 	}
2719 
2720 	default:
2721 		return -EINVAL;
2722 	}
2723 
2724 	d->map[type_id] = new_id;
2725 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2726 		return -ENOMEM;
2727 
2728 	return new_id;
2729 }
2730 
2731 static int btf_dedup_ref_types(struct btf_dedup *d)
2732 {
2733 	int i, err;
2734 
2735 	for (i = 1; i <= d->btf->nr_types; i++) {
2736 		err = btf_dedup_ref_type(d, i);
2737 		if (err < 0)
2738 			return err;
2739 	}
2740 	/* we won't need d->dedup_table anymore */
2741 	hashmap__free(d->dedup_table);
2742 	d->dedup_table = NULL;
2743 	return 0;
2744 }
2745 
2746 /*
2747  * Compact types.
2748  *
2749  * After we established for each type its corresponding canonical representative
2750  * type, we now can eliminate types that are not canonical and leave only
2751  * canonical ones layed out sequentially in memory by copying them over
2752  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2753  * a map from original type ID to a new compacted type ID, which will be used
2754  * during next phase to "fix up" type IDs, referenced from struct/union and
2755  * reference types.
2756  */
2757 static int btf_dedup_compact_types(struct btf_dedup *d)
2758 {
2759 	struct btf_type **new_types;
2760 	__u32 next_type_id = 1;
2761 	char *types_start, *p;
2762 	int i, len;
2763 
2764 	/* we are going to reuse hypot_map to store compaction remapping */
2765 	d->hypot_map[0] = 0;
2766 	for (i = 1; i <= d->btf->nr_types; i++)
2767 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2768 
2769 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2770 	p = types_start;
2771 
2772 	for (i = 1; i <= d->btf->nr_types; i++) {
2773 		if (d->map[i] != i)
2774 			continue;
2775 
2776 		len = btf_type_size(d->btf->types[i]);
2777 		if (len < 0)
2778 			return len;
2779 
2780 		memmove(p, d->btf->types[i], len);
2781 		d->hypot_map[i] = next_type_id;
2782 		d->btf->types[next_type_id] = (struct btf_type *)p;
2783 		p += len;
2784 		next_type_id++;
2785 	}
2786 
2787 	/* shrink struct btf's internal types index and update btf_header */
2788 	d->btf->nr_types = next_type_id - 1;
2789 	d->btf->types_size = d->btf->nr_types;
2790 	d->btf->hdr->type_len = p - types_start;
2791 	new_types = realloc(d->btf->types,
2792 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2793 	if (!new_types)
2794 		return -ENOMEM;
2795 	d->btf->types = new_types;
2796 
2797 	/* make sure string section follows type information without gaps */
2798 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2799 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2800 	d->btf->strings = p;
2801 	p += d->btf->hdr->str_len;
2802 
2803 	d->btf->data_size = p - (char *)d->btf->data;
2804 	return 0;
2805 }
2806 
2807 /*
2808  * Figure out final (deduplicated and compacted) type ID for provided original
2809  * `type_id` by first resolving it into corresponding canonical type ID and
2810  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2811  * which is populated during compaction phase.
2812  */
2813 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2814 {
2815 	__u32 resolved_type_id, new_type_id;
2816 
2817 	resolved_type_id = resolve_type_id(d, type_id);
2818 	new_type_id = d->hypot_map[resolved_type_id];
2819 	if (new_type_id > BTF_MAX_NR_TYPES)
2820 		return -EINVAL;
2821 	return new_type_id;
2822 }
2823 
2824 /*
2825  * Remap referenced type IDs into deduped type IDs.
2826  *
2827  * After BTF types are deduplicated and compacted, their final type IDs may
2828  * differ from original ones. The map from original to a corresponding
2829  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2830  * compaction phase. During remapping phase we are rewriting all type IDs
2831  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2832  * their final deduped type IDs.
2833  */
2834 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2835 {
2836 	struct btf_type *t = d->btf->types[type_id];
2837 	int i, r;
2838 
2839 	switch (btf_kind(t)) {
2840 	case BTF_KIND_INT:
2841 	case BTF_KIND_ENUM:
2842 		break;
2843 
2844 	case BTF_KIND_FWD:
2845 	case BTF_KIND_CONST:
2846 	case BTF_KIND_VOLATILE:
2847 	case BTF_KIND_RESTRICT:
2848 	case BTF_KIND_PTR:
2849 	case BTF_KIND_TYPEDEF:
2850 	case BTF_KIND_FUNC:
2851 	case BTF_KIND_VAR:
2852 		r = btf_dedup_remap_type_id(d, t->type);
2853 		if (r < 0)
2854 			return r;
2855 		t->type = r;
2856 		break;
2857 
2858 	case BTF_KIND_ARRAY: {
2859 		struct btf_array *arr_info = btf_array(t);
2860 
2861 		r = btf_dedup_remap_type_id(d, arr_info->type);
2862 		if (r < 0)
2863 			return r;
2864 		arr_info->type = r;
2865 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2866 		if (r < 0)
2867 			return r;
2868 		arr_info->index_type = r;
2869 		break;
2870 	}
2871 
2872 	case BTF_KIND_STRUCT:
2873 	case BTF_KIND_UNION: {
2874 		struct btf_member *member = btf_members(t);
2875 		__u16 vlen = btf_vlen(t);
2876 
2877 		for (i = 0; i < vlen; i++) {
2878 			r = btf_dedup_remap_type_id(d, member->type);
2879 			if (r < 0)
2880 				return r;
2881 			member->type = r;
2882 			member++;
2883 		}
2884 		break;
2885 	}
2886 
2887 	case BTF_KIND_FUNC_PROTO: {
2888 		struct btf_param *param = btf_params(t);
2889 		__u16 vlen = btf_vlen(t);
2890 
2891 		r = btf_dedup_remap_type_id(d, t->type);
2892 		if (r < 0)
2893 			return r;
2894 		t->type = r;
2895 
2896 		for (i = 0; i < vlen; i++) {
2897 			r = btf_dedup_remap_type_id(d, param->type);
2898 			if (r < 0)
2899 				return r;
2900 			param->type = r;
2901 			param++;
2902 		}
2903 		break;
2904 	}
2905 
2906 	case BTF_KIND_DATASEC: {
2907 		struct btf_var_secinfo *var = btf_var_secinfos(t);
2908 		__u16 vlen = btf_vlen(t);
2909 
2910 		for (i = 0; i < vlen; i++) {
2911 			r = btf_dedup_remap_type_id(d, var->type);
2912 			if (r < 0)
2913 				return r;
2914 			var->type = r;
2915 			var++;
2916 		}
2917 		break;
2918 	}
2919 
2920 	default:
2921 		return -EINVAL;
2922 	}
2923 
2924 	return 0;
2925 }
2926 
2927 static int btf_dedup_remap_types(struct btf_dedup *d)
2928 {
2929 	int i, r;
2930 
2931 	for (i = 1; i <= d->btf->nr_types; i++) {
2932 		r = btf_dedup_remap_type(d, i);
2933 		if (r < 0)
2934 			return r;
2935 	}
2936 	return 0;
2937 }
2938 
2939 static struct btf *btf_load_raw(const char *path)
2940 {
2941 	struct btf *btf;
2942 	size_t read_cnt;
2943 	struct stat st;
2944 	void *data;
2945 	FILE *f;
2946 
2947 	if (stat(path, &st))
2948 		return ERR_PTR(-errno);
2949 
2950 	data = malloc(st.st_size);
2951 	if (!data)
2952 		return ERR_PTR(-ENOMEM);
2953 
2954 	f = fopen(path, "rb");
2955 	if (!f) {
2956 		btf = ERR_PTR(-errno);
2957 		goto cleanup;
2958 	}
2959 
2960 	read_cnt = fread(data, 1, st.st_size, f);
2961 	fclose(f);
2962 	if (read_cnt < st.st_size) {
2963 		btf = ERR_PTR(-EBADF);
2964 		goto cleanup;
2965 	}
2966 
2967 	btf = btf__new(data, read_cnt);
2968 
2969 cleanup:
2970 	free(data);
2971 	return btf;
2972 }
2973 
2974 /*
2975  * Probe few well-known locations for vmlinux kernel image and try to load BTF
2976  * data out of it to use for target BTF.
2977  */
2978 struct btf *libbpf_find_kernel_btf(void)
2979 {
2980 	struct {
2981 		const char *path_fmt;
2982 		bool raw_btf;
2983 	} locations[] = {
2984 		/* try canonical vmlinux BTF through sysfs first */
2985 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
2986 		/* fall back to trying to find vmlinux ELF on disk otherwise */
2987 		{ "/boot/vmlinux-%1$s" },
2988 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
2989 		{ "/lib/modules/%1$s/build/vmlinux" },
2990 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
2991 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
2992 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
2993 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
2994 	};
2995 	char path[PATH_MAX + 1];
2996 	struct utsname buf;
2997 	struct btf *btf;
2998 	int i;
2999 
3000 	uname(&buf);
3001 
3002 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
3003 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
3004 
3005 		if (access(path, R_OK))
3006 			continue;
3007 
3008 		if (locations[i].raw_btf)
3009 			btf = btf_load_raw(path);
3010 		else
3011 			btf = btf__parse_elf(path, NULL);
3012 
3013 		pr_debug("loading kernel BTF '%s': %ld\n",
3014 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
3015 		if (IS_ERR(btf))
3016 			continue;
3017 
3018 		return btf;
3019 	}
3020 
3021 	pr_warn("failed to find valid kernel BTF\n");
3022 	return ERR_PTR(-ESRCH);
3023 }
3024