xref: /linux/tools/lib/bpf/bpf_helpers.h (revision 0a670e151a71434765de69590944e18c08ee08cf)
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_HELPERS__
3 #define __BPF_HELPERS__
4 
5 /*
6  * Note that bpf programs need to include either
7  * vmlinux.h (auto-generated from BTF) or linux/types.h
8  * in advance since bpf_helper_defs.h uses such types
9  * as __u64.
10  */
11 #include "bpf_helper_defs.h"
12 
13 #define __uint(name, val) int (*name)[val]
14 #define __type(name, val) typeof(val) *name
15 #define __array(name, val) typeof(val) *name[]
16 #define __ulong(name, val) enum { ___bpf_concat(__unique_value, __COUNTER__) = val } name
17 
18 /*
19  * Helper macro to place programs, maps, license in
20  * different sections in elf_bpf file. Section names
21  * are interpreted by libbpf depending on the context (BPF programs, BPF maps,
22  * extern variables, etc).
23  * To allow use of SEC() with externs (e.g., for extern .maps declarations),
24  * make sure __attribute__((unused)) doesn't trigger compilation warning.
25  */
26 #if __GNUC__ && !__clang__
27 
28 /*
29  * Pragma macros are broken on GCC
30  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=55578
31  * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90400
32  */
33 #define SEC(name) __attribute__((section(name), used))
34 
35 #else
36 
37 #define SEC(name) \
38 	_Pragma("GCC diagnostic push")					    \
39 	_Pragma("GCC diagnostic ignored \"-Wignored-attributes\"")	    \
40 	__attribute__((section(name), used))				    \
41 	_Pragma("GCC diagnostic pop")					    \
42 
43 #endif
44 
45 /* Avoid 'linux/stddef.h' definition of '__always_inline'. */
46 #undef __always_inline
47 #define __always_inline inline __attribute__((always_inline))
48 
49 #ifndef __noinline
50 #define __noinline __attribute__((noinline))
51 #endif
52 #ifndef __weak
53 #define __weak __attribute__((weak))
54 #endif
55 
56 /*
57  * Use __hidden attribute to mark a non-static BPF subprogram effectively
58  * static for BPF verifier's verification algorithm purposes, allowing more
59  * extensive and permissive BPF verification process, taking into account
60  * subprogram's caller context.
61  */
62 #define __hidden __attribute__((visibility("hidden")))
63 
64 /* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include
65  * any system-level headers (such as stddef.h, linux/version.h, etc), and
66  * commonly-used macros like NULL and KERNEL_VERSION aren't available through
67  * vmlinux.h. This just adds unnecessary hurdles and forces users to re-define
68  * them on their own. So as a convenience, provide such definitions here.
69  */
70 #ifndef NULL
71 #define NULL ((void *)0)
72 #endif
73 
74 #ifndef KERNEL_VERSION
75 #define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c)))
76 #endif
77 
78 /*
79  * Helper macros to manipulate data structures
80  */
81 
82 /* offsetof() definition that uses __builtin_offset() might not preserve field
83  * offset CO-RE relocation properly, so force-redefine offsetof() using
84  * old-school approach which works with CO-RE correctly
85  */
86 #undef offsetof
87 #define offsetof(type, member)	((unsigned long)&((type *)0)->member)
88 
89 /* redefined container_of() to ensure we use the above offsetof() macro */
90 #undef container_of
91 #define container_of(ptr, type, member)				\
92 	({							\
93 		void *__mptr = (void *)(ptr);			\
94 		((type *)(__mptr - offsetof(type, member)));	\
95 	})
96 
97 /*
98  * Compiler (optimization) barrier.
99  */
100 #ifndef barrier
101 #define barrier() asm volatile("" ::: "memory")
102 #endif
103 
104 /* Variable-specific compiler (optimization) barrier. It's a no-op which makes
105  * compiler believe that there is some black box modification of a given
106  * variable and thus prevents compiler from making extra assumption about its
107  * value and potential simplifications and optimizations on this variable.
108  *
109  * E.g., compiler might often delay or even omit 32-bit to 64-bit casting of
110  * a variable, making some code patterns unverifiable. Putting barrier_var()
111  * in place will ensure that cast is performed before the barrier_var()
112  * invocation, because compiler has to pessimistically assume that embedded
113  * asm section might perform some extra operations on that variable.
114  *
115  * This is a variable-specific variant of more global barrier().
116  */
117 #ifndef barrier_var
118 #define barrier_var(var) asm volatile("" : "+r"(var))
119 #endif
120 
121 /*
122  * Helper macro to throw a compilation error if __bpf_unreachable() gets
123  * built into the resulting code. This works given BPF back end does not
124  * implement __builtin_trap(). This is useful to assert that certain paths
125  * of the program code are never used and hence eliminated by the compiler.
126  *
127  * For example, consider a switch statement that covers known cases used by
128  * the program. __bpf_unreachable() can then reside in the default case. If
129  * the program gets extended such that a case is not covered in the switch
130  * statement, then it will throw a build error due to the default case not
131  * being compiled out.
132  */
133 #ifndef __bpf_unreachable
134 # define __bpf_unreachable()	__builtin_trap()
135 #endif
136 
137 /*
138  * Helper function to perform a tail call with a constant/immediate map slot.
139  */
140 #if (defined(__clang__) && __clang_major__ >= 8) || (!defined(__clang__) && __GNUC__ > 12)
141 #if defined(__bpf__)
142 static __always_inline void
143 bpf_tail_call_static(void *ctx, const void *map, const __u32 slot)
144 {
145 	if (!__builtin_constant_p(slot))
146 		__bpf_unreachable();
147 
148 	/*
149 	 * Provide a hard guarantee that LLVM won't optimize setting r2 (map
150 	 * pointer) and r3 (constant map index) from _different paths_ ending
151 	 * up at the _same_ call insn as otherwise we won't be able to use the
152 	 * jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel
153 	 * given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key
154 	 * tracking for prog array pokes") for details on verifier tracking.
155 	 *
156 	 * Note on clobber list: we need to stay in-line with BPF calling
157 	 * convention, so even if we don't end up using r0, r4, r5, we need
158 	 * to mark them as clobber so that LLVM doesn't end up using them
159 	 * before / after the call.
160 	 */
161 	asm volatile("r1 = %[ctx]\n\t"
162 		     "r2 = %[map]\n\t"
163 		     "r3 = %[slot]\n\t"
164 		     "call 12"
165 		     :: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot)
166 		     : "r0", "r1", "r2", "r3", "r4", "r5");
167 }
168 #endif
169 #endif
170 
171 enum libbpf_pin_type {
172 	LIBBPF_PIN_NONE,
173 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
174 	LIBBPF_PIN_BY_NAME,
175 };
176 
177 enum libbpf_tristate {
178 	TRI_NO = 0,
179 	TRI_YES = 1,
180 	TRI_MODULE = 2,
181 };
182 
183 #define __kconfig __attribute__((section(".kconfig")))
184 #define __ksym __attribute__((section(".ksyms")))
185 #define __kptr_untrusted __attribute__((btf_type_tag("kptr_untrusted")))
186 #define __kptr __attribute__((btf_type_tag("kptr")))
187 #define __percpu_kptr __attribute__((btf_type_tag("percpu_kptr")))
188 #define __uptr __attribute__((btf_type_tag("uptr")))
189 
190 #if defined (__clang__)
191 #define bpf_ksym_exists(sym) ({						\
192 	_Static_assert(!__builtin_constant_p(!!sym),			\
193 		       #sym " should be marked as __weak");		\
194 	!!sym;								\
195 })
196 #elif __GNUC__ > 8
197 #define bpf_ksym_exists(sym) ({						\
198 	_Static_assert(__builtin_has_attribute (*sym, __weak__),	\
199 		       #sym " should be marked as __weak");		\
200 	!!sym;								\
201 })
202 #else
203 #define bpf_ksym_exists(sym) !!sym
204 #endif
205 
206 #define __arg_ctx __attribute__((btf_decl_tag("arg:ctx")))
207 #define __arg_nonnull __attribute((btf_decl_tag("arg:nonnull")))
208 #define __arg_nullable __attribute((btf_decl_tag("arg:nullable")))
209 #define __arg_trusted __attribute((btf_decl_tag("arg:trusted")))
210 #define __arg_arena __attribute((btf_decl_tag("arg:arena")))
211 
212 #ifndef ___bpf_concat
213 #define ___bpf_concat(a, b) a ## b
214 #endif
215 #ifndef ___bpf_apply
216 #define ___bpf_apply(fn, n) ___bpf_concat(fn, n)
217 #endif
218 #ifndef ___bpf_nth
219 #define ___bpf_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _a, _b, _c, N, ...) N
220 #endif
221 #ifndef ___bpf_narg
222 #define ___bpf_narg(...) \
223 	___bpf_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
224 #endif
225 
226 #define ___bpf_fill0(arr, p, x) do {} while (0)
227 #define ___bpf_fill1(arr, p, x) arr[p] = x
228 #define ___bpf_fill2(arr, p, x, args...) arr[p] = x; ___bpf_fill1(arr, p + 1, args)
229 #define ___bpf_fill3(arr, p, x, args...) arr[p] = x; ___bpf_fill2(arr, p + 1, args)
230 #define ___bpf_fill4(arr, p, x, args...) arr[p] = x; ___bpf_fill3(arr, p + 1, args)
231 #define ___bpf_fill5(arr, p, x, args...) arr[p] = x; ___bpf_fill4(arr, p + 1, args)
232 #define ___bpf_fill6(arr, p, x, args...) arr[p] = x; ___bpf_fill5(arr, p + 1, args)
233 #define ___bpf_fill7(arr, p, x, args...) arr[p] = x; ___bpf_fill6(arr, p + 1, args)
234 #define ___bpf_fill8(arr, p, x, args...) arr[p] = x; ___bpf_fill7(arr, p + 1, args)
235 #define ___bpf_fill9(arr, p, x, args...) arr[p] = x; ___bpf_fill8(arr, p + 1, args)
236 #define ___bpf_fill10(arr, p, x, args...) arr[p] = x; ___bpf_fill9(arr, p + 1, args)
237 #define ___bpf_fill11(arr, p, x, args...) arr[p] = x; ___bpf_fill10(arr, p + 1, args)
238 #define ___bpf_fill12(arr, p, x, args...) arr[p] = x; ___bpf_fill11(arr, p + 1, args)
239 #define ___bpf_fill(arr, args...) \
240 	___bpf_apply(___bpf_fill, ___bpf_narg(args))(arr, 0, args)
241 
242 /*
243  * BPF_SEQ_PRINTF to wrap bpf_seq_printf to-be-printed values
244  * in a structure.
245  */
246 #define BPF_SEQ_PRINTF(seq, fmt, args...)			\
247 ({								\
248 	static const char ___fmt[] = fmt;			\
249 	unsigned long long ___param[___bpf_narg(args)];		\
250 								\
251 	_Pragma("GCC diagnostic push")				\
252 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
253 	___bpf_fill(___param, args);				\
254 	_Pragma("GCC diagnostic pop")				\
255 								\
256 	bpf_seq_printf(seq, ___fmt, sizeof(___fmt),		\
257 		       ___param, sizeof(___param));		\
258 })
259 
260 /*
261  * BPF_SNPRINTF wraps the bpf_snprintf helper with variadic arguments instead of
262  * an array of u64.
263  */
264 #define BPF_SNPRINTF(out, out_size, fmt, args...)		\
265 ({								\
266 	static const char ___fmt[] = fmt;			\
267 	unsigned long long ___param[___bpf_narg(args)];		\
268 								\
269 	_Pragma("GCC diagnostic push")				\
270 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
271 	___bpf_fill(___param, args);				\
272 	_Pragma("GCC diagnostic pop")				\
273 								\
274 	bpf_snprintf(out, out_size, ___fmt,			\
275 		     ___param, sizeof(___param));		\
276 })
277 
278 #ifdef BPF_NO_GLOBAL_DATA
279 #define BPF_PRINTK_FMT_MOD
280 #else
281 #define BPF_PRINTK_FMT_MOD static const
282 #endif
283 
284 #define __bpf_printk(fmt, ...)				\
285 ({							\
286 	BPF_PRINTK_FMT_MOD char ____fmt[] = fmt;	\
287 	bpf_trace_printk(____fmt, sizeof(____fmt),	\
288 			 ##__VA_ARGS__);		\
289 })
290 
291 /*
292  * __bpf_vprintk wraps the bpf_trace_vprintk helper with variadic arguments
293  * instead of an array of u64.
294  */
295 #define __bpf_vprintk(fmt, args...)				\
296 ({								\
297 	static const char ___fmt[] = fmt;			\
298 	unsigned long long ___param[___bpf_narg(args)];		\
299 								\
300 	_Pragma("GCC diagnostic push")				\
301 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
302 	___bpf_fill(___param, args);				\
303 	_Pragma("GCC diagnostic pop")				\
304 								\
305 	bpf_trace_vprintk(___fmt, sizeof(___fmt),		\
306 			  ___param, sizeof(___param));		\
307 })
308 
309 /* Use __bpf_printk when bpf_printk call has 3 or fewer fmt args
310  * Otherwise use __bpf_vprintk
311  */
312 #define ___bpf_pick_printk(...) \
313 	___bpf_nth(_, ##__VA_ARGS__, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,	\
314 		   __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,		\
315 		   __bpf_vprintk, __bpf_vprintk, __bpf_printk /*3*/, __bpf_printk /*2*/,\
316 		   __bpf_printk /*1*/, __bpf_printk /*0*/)
317 
318 /* Helper macro to print out debug messages */
319 #define bpf_printk(fmt, args...) ___bpf_pick_printk(args)(fmt, ##args)
320 
321 struct bpf_iter_num;
322 
323 extern int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) __weak __ksym;
324 extern int *bpf_iter_num_next(struct bpf_iter_num *it) __weak __ksym;
325 extern void bpf_iter_num_destroy(struct bpf_iter_num *it) __weak __ksym;
326 
327 #ifndef bpf_for_each
328 /* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for
329  * using BPF open-coded iterators without having to write mundane explicit
330  * low-level loop logic. Instead, it provides for()-like generic construct
331  * that can be used pretty naturally. E.g., for some hypothetical cgroup
332  * iterator, you'd write:
333  *
334  * struct cgroup *cg, *parent_cg = <...>;
335  *
336  * bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) {
337  *     bpf_printk("Child cgroup id = %d", cg->cgroup_id);
338  *     if (cg->cgroup_id == 123)
339  *         break;
340  * }
341  *
342  * I.e., it looks almost like high-level for each loop in other languages,
343  * supports continue/break, and is verifiable by BPF verifier.
344  *
345  * For iterating integers, the difference between bpf_for_each(num, i, N, M)
346  * and bpf_for(i, N, M) is in that bpf_for() provides additional proof to
347  * verifier that i is in [N, M) range, and in bpf_for_each() case i is `int
348  * *`, not just `int`. So for integers bpf_for() is more convenient.
349  *
350  * Note: this macro relies on C99 feature of allowing to declare variables
351  * inside for() loop, bound to for() loop lifetime. It also utilizes GCC
352  * extension: __attribute__((cleanup(<func>))), supported by both GCC and
353  * Clang.
354  */
355 #define bpf_for_each(type, cur, args...) for (							\
356 	/* initialize and define destructor */							\
357 	struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */,	\
358 						    cleanup(bpf_iter_##type##_destroy))),	\
359 	/* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */		\
360 			       *___p __attribute__((unused)) = (				\
361 					bpf_iter_##type##_new(&___it, ##args),			\
362 	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
363 	/* for bpf_iter_##type##_destroy() when used from cleanup() attribute */		\
364 					(void)bpf_iter_##type##_destroy, (void *)0);		\
365 	/* iteration and termination check */							\
366 	(((cur) = bpf_iter_##type##_next(&___it)));						\
367 )
368 #endif /* bpf_for_each */
369 
370 #ifndef bpf_for
371 /* bpf_for(i, start, end) implements a for()-like looping construct that sets
372  * provided integer variable *i* to values starting from *start* through,
373  * but not including, *end*. It also proves to BPF verifier that *i* belongs
374  * to range [start, end), so this can be used for accessing arrays without
375  * extra checks.
376  *
377  * Note: *start* and *end* are assumed to be expressions with no side effects
378  * and whose values do not change throughout bpf_for() loop execution. They do
379  * not have to be statically known or constant, though.
380  *
381  * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
382  * loop bound variables and cleanup attribute, supported by GCC and Clang.
383  */
384 #define bpf_for(i, start, end) for (								\
385 	/* initialize and define destructor */							\
386 	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
387 						 cleanup(bpf_iter_num_destroy))),		\
388 	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
389 			    *___p __attribute__((unused)) = (					\
390 				bpf_iter_num_new(&___it, (start), (end)),			\
391 	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
392 	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
393 				(void)bpf_iter_num_destroy, (void *)0);				\
394 	({											\
395 		/* iteration step */								\
396 		int *___t = bpf_iter_num_next(&___it);						\
397 		/* termination and bounds check */						\
398 		(___t && ((i) = *___t, (i) >= (start) && (i) < (end)));				\
399 	});											\
400 )
401 #endif /* bpf_for */
402 
403 #ifndef bpf_repeat
404 /* bpf_repeat(N) performs N iterations without exposing iteration number
405  *
406  * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
407  * loop bound variables and cleanup attribute, supported by GCC and Clang.
408  */
409 #define bpf_repeat(N) for (									\
410 	/* initialize and define destructor */							\
411 	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
412 						 cleanup(bpf_iter_num_destroy))),		\
413 	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
414 			    *___p __attribute__((unused)) = (					\
415 				bpf_iter_num_new(&___it, 0, (N)),				\
416 	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
417 	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
418 				(void)bpf_iter_num_destroy, (void *)0);				\
419 	bpf_iter_num_next(&___it);								\
420 	/* nothing here  */									\
421 )
422 #endif /* bpf_repeat */
423 
424 #endif
425