xref: /linux/tools/include/uapi/drm/i915_drm.h (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
284 
285 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
286 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
287 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
288 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
290 
291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
292 
293 /* Each region is a minimum of 16k, and there are at most 255 of them.
294  */
295 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
296 				 * of chars for next/prev indices */
297 #define I915_LOG_MIN_TEX_REGION_SIZE 14
298 
299 typedef struct _drm_i915_init {
300 	enum {
301 		I915_INIT_DMA = 0x01,
302 		I915_CLEANUP_DMA = 0x02,
303 		I915_RESUME_DMA = 0x03
304 	} func;
305 	unsigned int mmio_offset;
306 	int sarea_priv_offset;
307 	unsigned int ring_start;
308 	unsigned int ring_end;
309 	unsigned int ring_size;
310 	unsigned int front_offset;
311 	unsigned int back_offset;
312 	unsigned int depth_offset;
313 	unsigned int w;
314 	unsigned int h;
315 	unsigned int pitch;
316 	unsigned int pitch_bits;
317 	unsigned int back_pitch;
318 	unsigned int depth_pitch;
319 	unsigned int cpp;
320 	unsigned int chipset;
321 } drm_i915_init_t;
322 
323 typedef struct _drm_i915_sarea {
324 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
325 	int last_upload;	/* last time texture was uploaded */
326 	int last_enqueue;	/* last time a buffer was enqueued */
327 	int last_dispatch;	/* age of the most recently dispatched buffer */
328 	int ctxOwner;		/* last context to upload state */
329 	int texAge;
330 	int pf_enabled;		/* is pageflipping allowed? */
331 	int pf_active;
332 	int pf_current_page;	/* which buffer is being displayed? */
333 	int perf_boxes;		/* performance boxes to be displayed */
334 	int width, height;      /* screen size in pixels */
335 
336 	drm_handle_t front_handle;
337 	int front_offset;
338 	int front_size;
339 
340 	drm_handle_t back_handle;
341 	int back_offset;
342 	int back_size;
343 
344 	drm_handle_t depth_handle;
345 	int depth_offset;
346 	int depth_size;
347 
348 	drm_handle_t tex_handle;
349 	int tex_offset;
350 	int tex_size;
351 	int log_tex_granularity;
352 	int pitch;
353 	int rotation;           /* 0, 90, 180 or 270 */
354 	int rotated_offset;
355 	int rotated_size;
356 	int rotated_pitch;
357 	int virtualX, virtualY;
358 
359 	unsigned int front_tiled;
360 	unsigned int back_tiled;
361 	unsigned int depth_tiled;
362 	unsigned int rotated_tiled;
363 	unsigned int rotated2_tiled;
364 
365 	int pipeA_x;
366 	int pipeA_y;
367 	int pipeA_w;
368 	int pipeA_h;
369 	int pipeB_x;
370 	int pipeB_y;
371 	int pipeB_w;
372 	int pipeB_h;
373 
374 	/* fill out some space for old userspace triple buffer */
375 	drm_handle_t unused_handle;
376 	__u32 unused1, unused2, unused3;
377 
378 	/* buffer object handles for static buffers. May change
379 	 * over the lifetime of the client.
380 	 */
381 	__u32 front_bo_handle;
382 	__u32 back_bo_handle;
383 	__u32 unused_bo_handle;
384 	__u32 depth_bo_handle;
385 
386 } drm_i915_sarea_t;
387 
388 /* due to userspace building against these headers we need some compat here */
389 #define planeA_x pipeA_x
390 #define planeA_y pipeA_y
391 #define planeA_w pipeA_w
392 #define planeA_h pipeA_h
393 #define planeB_x pipeB_x
394 #define planeB_y pipeB_y
395 #define planeB_w pipeB_w
396 #define planeB_h pipeB_h
397 
398 /* Flags for perf_boxes
399  */
400 #define I915_BOX_RING_EMPTY    0x1
401 #define I915_BOX_FLIP          0x2
402 #define I915_BOX_WAIT          0x4
403 #define I915_BOX_TEXTURE_LOAD  0x8
404 #define I915_BOX_LOST_CONTEXT  0x10
405 
406 /*
407  * i915 specific ioctls.
408  *
409  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
410  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
411  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
412  */
413 #define DRM_I915_INIT		0x00
414 #define DRM_I915_FLUSH		0x01
415 #define DRM_I915_FLIP		0x02
416 #define DRM_I915_BATCHBUFFER	0x03
417 #define DRM_I915_IRQ_EMIT	0x04
418 #define DRM_I915_IRQ_WAIT	0x05
419 #define DRM_I915_GETPARAM	0x06
420 #define DRM_I915_SETPARAM	0x07
421 #define DRM_I915_ALLOC		0x08
422 #define DRM_I915_FREE		0x09
423 #define DRM_I915_INIT_HEAP	0x0a
424 #define DRM_I915_CMDBUFFER	0x0b
425 #define DRM_I915_DESTROY_HEAP	0x0c
426 #define DRM_I915_SET_VBLANK_PIPE	0x0d
427 #define DRM_I915_GET_VBLANK_PIPE	0x0e
428 #define DRM_I915_VBLANK_SWAP	0x0f
429 #define DRM_I915_HWS_ADDR	0x11
430 #define DRM_I915_GEM_INIT	0x13
431 #define DRM_I915_GEM_EXECBUFFER	0x14
432 #define DRM_I915_GEM_PIN	0x15
433 #define DRM_I915_GEM_UNPIN	0x16
434 #define DRM_I915_GEM_BUSY	0x17
435 #define DRM_I915_GEM_THROTTLE	0x18
436 #define DRM_I915_GEM_ENTERVT	0x19
437 #define DRM_I915_GEM_LEAVEVT	0x1a
438 #define DRM_I915_GEM_CREATE	0x1b
439 #define DRM_I915_GEM_PREAD	0x1c
440 #define DRM_I915_GEM_PWRITE	0x1d
441 #define DRM_I915_GEM_MMAP	0x1e
442 #define DRM_I915_GEM_SET_DOMAIN	0x1f
443 #define DRM_I915_GEM_SW_FINISH	0x20
444 #define DRM_I915_GEM_SET_TILING	0x21
445 #define DRM_I915_GEM_GET_TILING	0x22
446 #define DRM_I915_GEM_GET_APERTURE 0x23
447 #define DRM_I915_GEM_MMAP_GTT	0x24
448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
449 #define DRM_I915_GEM_MADVISE	0x26
450 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
451 #define DRM_I915_OVERLAY_ATTRS	0x28
452 #define DRM_I915_GEM_EXECBUFFER2	0x29
453 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
454 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
455 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
456 #define DRM_I915_GEM_WAIT	0x2c
457 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
458 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
459 #define DRM_I915_GEM_SET_CACHING	0x2f
460 #define DRM_I915_GEM_GET_CACHING	0x30
461 #define DRM_I915_REG_READ		0x31
462 #define DRM_I915_GET_RESET_STATS	0x32
463 #define DRM_I915_GEM_USERPTR		0x33
464 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
465 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
466 #define DRM_I915_PERF_OPEN		0x36
467 #define DRM_I915_PERF_ADD_CONFIG	0x37
468 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
469 #define DRM_I915_QUERY			0x39
470 #define DRM_I915_GEM_VM_CREATE		0x3a
471 #define DRM_I915_GEM_VM_DESTROY		0x3b
472 #define DRM_I915_GEM_CREATE_EXT		0x3c
473 /* Must be kept compact -- no holes */
474 
475 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
476 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
477 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
478 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
479 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
480 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
481 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
482 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
483 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
484 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
485 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
486 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
487 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
490 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
491 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
492 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
493 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
496 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
497 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
498 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
499 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
500 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
501 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
502 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
503 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
504 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
505 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
506 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
507 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
508 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
509 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
512 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
513 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
514 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
515 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
517 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
519 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
522 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
526 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
527 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
528 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
531 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
534 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
535 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
536 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
537 
538 /* Allow drivers to submit batchbuffers directly to hardware, relying
539  * on the security mechanisms provided by hardware.
540  */
541 typedef struct drm_i915_batchbuffer {
542 	int start;		/* agp offset */
543 	int used;		/* nr bytes in use */
544 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
545 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
546 	int num_cliprects;	/* mulitpass with multiple cliprects? */
547 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
548 } drm_i915_batchbuffer_t;
549 
550 /* As above, but pass a pointer to userspace buffer which can be
551  * validated by the kernel prior to sending to hardware.
552  */
553 typedef struct _drm_i915_cmdbuffer {
554 	char __user *buf;	/* pointer to userspace command buffer */
555 	int sz;			/* nr bytes in buf */
556 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
557 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
558 	int num_cliprects;	/* mulitpass with multiple cliprects? */
559 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
560 } drm_i915_cmdbuffer_t;
561 
562 /* Userspace can request & wait on irq's:
563  */
564 typedef struct drm_i915_irq_emit {
565 	int __user *irq_seq;
566 } drm_i915_irq_emit_t;
567 
568 typedef struct drm_i915_irq_wait {
569 	int irq_seq;
570 } drm_i915_irq_wait_t;
571 
572 /*
573  * Different modes of per-process Graphics Translation Table,
574  * see I915_PARAM_HAS_ALIASING_PPGTT
575  */
576 #define I915_GEM_PPGTT_NONE	0
577 #define I915_GEM_PPGTT_ALIASING	1
578 #define I915_GEM_PPGTT_FULL	2
579 
580 /* Ioctl to query kernel params:
581  */
582 #define I915_PARAM_IRQ_ACTIVE            1
583 #define I915_PARAM_ALLOW_BATCHBUFFER     2
584 #define I915_PARAM_LAST_DISPATCH         3
585 #define I915_PARAM_CHIPSET_ID            4
586 #define I915_PARAM_HAS_GEM               5
587 #define I915_PARAM_NUM_FENCES_AVAIL      6
588 #define I915_PARAM_HAS_OVERLAY           7
589 #define I915_PARAM_HAS_PAGEFLIPPING	 8
590 #define I915_PARAM_HAS_EXECBUF2          9
591 #define I915_PARAM_HAS_BSD		 10
592 #define I915_PARAM_HAS_BLT		 11
593 #define I915_PARAM_HAS_RELAXED_FENCING	 12
594 #define I915_PARAM_HAS_COHERENT_RINGS	 13
595 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
596 #define I915_PARAM_HAS_RELAXED_DELTA	 15
597 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
598 #define I915_PARAM_HAS_LLC     	 	 17
599 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
600 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
601 #define I915_PARAM_HAS_SEMAPHORES	 20
602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
603 #define I915_PARAM_HAS_VEBOX		 22
604 #define I915_PARAM_HAS_SECURE_BATCHES	 23
605 #define I915_PARAM_HAS_PINNED_BATCHES	 24
606 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
608 #define I915_PARAM_HAS_WT     	 	 27
609 #define I915_PARAM_CMD_PARSER_VERSION	 28
610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
611 #define I915_PARAM_MMAP_VERSION          30
612 #define I915_PARAM_HAS_BSD2		 31
613 #define I915_PARAM_REVISION              32
614 #define I915_PARAM_SUBSLICE_TOTAL	 33
615 #define I915_PARAM_EU_TOTAL		 34
616 #define I915_PARAM_HAS_GPU_RESET	 35
617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
618 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
619 #define I915_PARAM_HAS_POOLED_EU	 38
620 #define I915_PARAM_MIN_EU_IN_POOL	 39
621 #define I915_PARAM_MMAP_GTT_VERSION	 40
622 
623 /*
624  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
625  * priorities and the driver will attempt to execute batches in priority order.
626  * The param returns a capability bitmask, nonzero implies that the scheduler
627  * is enabled, with different features present according to the mask.
628  *
629  * The initial priority for each batch is supplied by the context and is
630  * controlled via I915_CONTEXT_PARAM_PRIORITY.
631  */
632 #define I915_PARAM_HAS_SCHEDULER	 41
633 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
634 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
635 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
636 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
637 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
638 /*
639  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
640  * follows:
641  *
642  * -1k to -1	Low priority
643  * 0		Normal priority
644  * 1 to 1k	Highest priority
645  */
646 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
647 
648 #define I915_PARAM_HUC_STATUS		 42
649 
650 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
651  * synchronisation with implicit fencing on individual objects.
652  * See EXEC_OBJECT_ASYNC.
653  */
654 #define I915_PARAM_HAS_EXEC_ASYNC	 43
655 
656 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
657  * both being able to pass in a sync_file fd to wait upon before executing,
658  * and being able to return a new sync_file fd that is signaled when the
659  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
660  */
661 #define I915_PARAM_HAS_EXEC_FENCE	 44
662 
663 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
664  * user specified bufffers for post-mortem debugging of GPU hangs. See
665  * EXEC_OBJECT_CAPTURE.
666  */
667 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
668 
669 #define I915_PARAM_SLICE_MASK		 46
670 
671 /* Assuming it's uniform for each slice, this queries the mask of subslices
672  * per-slice for this system.
673  */
674 #define I915_PARAM_SUBSLICE_MASK	 47
675 
676 /*
677  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
678  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
679  */
680 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
681 
682 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
683  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
684  */
685 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
686 
687 /*
688  * Query whether every context (both per-file default and user created) is
689  * isolated (insofar as HW supports). If this parameter is not true, then
690  * freshly created contexts may inherit values from an existing context,
691  * rather than default HW values. If true, it also ensures (insofar as HW
692  * supports) that all state set by this context will not leak to any other
693  * context.
694  *
695  * As not every engine across every gen support contexts, the returned
696  * value reports the support of context isolation for individual engines by
697  * returning a bitmask of each engine class set to true if that class supports
698  * isolation.
699  */
700 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
701 
702 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
703  * registers. This used to be fixed per platform but from CNL onwards, this
704  * might vary depending on the parts.
705  */
706 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
707 
708 /*
709  * Once upon a time we supposed that writes through the GGTT would be
710  * immediately in physical memory (once flushed out of the CPU path). However,
711  * on a few different processors and chipsets, this is not necessarily the case
712  * as the writes appear to be buffered internally. Thus a read of the backing
713  * storage (physical memory) via a different path (with different physical tags
714  * to the indirect write via the GGTT) will see stale values from before
715  * the GGTT write. Inside the kernel, we can for the most part keep track of
716  * the different read/write domains in use (e.g. set-domain), but the assumption
717  * of coherency is baked into the ABI, hence reporting its true state in this
718  * parameter.
719  *
720  * Reports true when writes via mmap_gtt are immediately visible following an
721  * lfence to flush the WCB.
722  *
723  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
724  * internal buffer and are _not_ immediately visible to third parties accessing
725  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
726  * communications channel when reporting false is strongly disadvised.
727  */
728 #define I915_PARAM_MMAP_GTT_COHERENT	52
729 
730 /*
731  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
732  * execution through use of explicit fence support.
733  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
734  */
735 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
736 
737 /*
738  * Revision of the i915-perf uAPI. The value returned helps determine what
739  * i915-perf features are available. See drm_i915_perf_property_id.
740  */
741 #define I915_PARAM_PERF_REVISION	54
742 
743 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
744  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
745  * I915_EXEC_USE_EXTENSIONS.
746  */
747 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
748 
749 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
750 #define I915_PARAM_HAS_USERPTR_PROBE 56
751 
752 /* Must be kept compact -- no holes and well documented */
753 
754 typedef struct drm_i915_getparam {
755 	__s32 param;
756 	/*
757 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
758 	 * compat32 code. Don't repeat this mistake.
759 	 */
760 	int __user *value;
761 } drm_i915_getparam_t;
762 
763 /* Ioctl to set kernel params:
764  */
765 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
766 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
767 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
768 #define I915_SETPARAM_NUM_USED_FENCES                     4
769 /* Must be kept compact -- no holes */
770 
771 typedef struct drm_i915_setparam {
772 	int param;
773 	int value;
774 } drm_i915_setparam_t;
775 
776 /* A memory manager for regions of shared memory:
777  */
778 #define I915_MEM_REGION_AGP 1
779 
780 typedef struct drm_i915_mem_alloc {
781 	int region;
782 	int alignment;
783 	int size;
784 	int __user *region_offset;	/* offset from start of fb or agp */
785 } drm_i915_mem_alloc_t;
786 
787 typedef struct drm_i915_mem_free {
788 	int region;
789 	int region_offset;
790 } drm_i915_mem_free_t;
791 
792 typedef struct drm_i915_mem_init_heap {
793 	int region;
794 	int size;
795 	int start;
796 } drm_i915_mem_init_heap_t;
797 
798 /* Allow memory manager to be torn down and re-initialized (eg on
799  * rotate):
800  */
801 typedef struct drm_i915_mem_destroy_heap {
802 	int region;
803 } drm_i915_mem_destroy_heap_t;
804 
805 /* Allow X server to configure which pipes to monitor for vblank signals
806  */
807 #define	DRM_I915_VBLANK_PIPE_A	1
808 #define	DRM_I915_VBLANK_PIPE_B	2
809 
810 typedef struct drm_i915_vblank_pipe {
811 	int pipe;
812 } drm_i915_vblank_pipe_t;
813 
814 /* Schedule buffer swap at given vertical blank:
815  */
816 typedef struct drm_i915_vblank_swap {
817 	drm_drawable_t drawable;
818 	enum drm_vblank_seq_type seqtype;
819 	unsigned int sequence;
820 } drm_i915_vblank_swap_t;
821 
822 typedef struct drm_i915_hws_addr {
823 	__u64 addr;
824 } drm_i915_hws_addr_t;
825 
826 struct drm_i915_gem_init {
827 	/**
828 	 * Beginning offset in the GTT to be managed by the DRM memory
829 	 * manager.
830 	 */
831 	__u64 gtt_start;
832 	/**
833 	 * Ending offset in the GTT to be managed by the DRM memory
834 	 * manager.
835 	 */
836 	__u64 gtt_end;
837 };
838 
839 struct drm_i915_gem_create {
840 	/**
841 	 * Requested size for the object.
842 	 *
843 	 * The (page-aligned) allocated size for the object will be returned.
844 	 */
845 	__u64 size;
846 	/**
847 	 * Returned handle for the object.
848 	 *
849 	 * Object handles are nonzero.
850 	 */
851 	__u32 handle;
852 	__u32 pad;
853 };
854 
855 struct drm_i915_gem_pread {
856 	/** Handle for the object being read. */
857 	__u32 handle;
858 	__u32 pad;
859 	/** Offset into the object to read from */
860 	__u64 offset;
861 	/** Length of data to read */
862 	__u64 size;
863 	/**
864 	 * Pointer to write the data into.
865 	 *
866 	 * This is a fixed-size type for 32/64 compatibility.
867 	 */
868 	__u64 data_ptr;
869 };
870 
871 struct drm_i915_gem_pwrite {
872 	/** Handle for the object being written to. */
873 	__u32 handle;
874 	__u32 pad;
875 	/** Offset into the object to write to */
876 	__u64 offset;
877 	/** Length of data to write */
878 	__u64 size;
879 	/**
880 	 * Pointer to read the data from.
881 	 *
882 	 * This is a fixed-size type for 32/64 compatibility.
883 	 */
884 	__u64 data_ptr;
885 };
886 
887 struct drm_i915_gem_mmap {
888 	/** Handle for the object being mapped. */
889 	__u32 handle;
890 	__u32 pad;
891 	/** Offset in the object to map. */
892 	__u64 offset;
893 	/**
894 	 * Length of data to map.
895 	 *
896 	 * The value will be page-aligned.
897 	 */
898 	__u64 size;
899 	/**
900 	 * Returned pointer the data was mapped at.
901 	 *
902 	 * This is a fixed-size type for 32/64 compatibility.
903 	 */
904 	__u64 addr_ptr;
905 
906 	/**
907 	 * Flags for extended behaviour.
908 	 *
909 	 * Added in version 2.
910 	 */
911 	__u64 flags;
912 #define I915_MMAP_WC 0x1
913 };
914 
915 struct drm_i915_gem_mmap_gtt {
916 	/** Handle for the object being mapped. */
917 	__u32 handle;
918 	__u32 pad;
919 	/**
920 	 * Fake offset to use for subsequent mmap call
921 	 *
922 	 * This is a fixed-size type for 32/64 compatibility.
923 	 */
924 	__u64 offset;
925 };
926 
927 /**
928  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
929  *
930  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
931  * and is used to retrieve the fake offset to mmap an object specified by &handle.
932  *
933  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
934  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
935  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
936  */
937 struct drm_i915_gem_mmap_offset {
938 	/** @handle: Handle for the object being mapped. */
939 	__u32 handle;
940 	/** @pad: Must be zero */
941 	__u32 pad;
942 	/**
943 	 * @offset: The fake offset to use for subsequent mmap call
944 	 *
945 	 * This is a fixed-size type for 32/64 compatibility.
946 	 */
947 	__u64 offset;
948 
949 	/**
950 	 * @flags: Flags for extended behaviour.
951 	 *
952 	 * It is mandatory that one of the `MMAP_OFFSET` types
953 	 * should be included:
954 	 *
955 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
956 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
957 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
958 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
959 	 *
960 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
961 	 * type. On devices without local memory, this caching mode is invalid.
962 	 *
963 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
964 	 * be used, depending on the object placement on creation. WB will be used
965 	 * when the object can only exist in system memory, WC otherwise.
966 	 */
967 	__u64 flags;
968 
969 #define I915_MMAP_OFFSET_GTT	0
970 #define I915_MMAP_OFFSET_WC	1
971 #define I915_MMAP_OFFSET_WB	2
972 #define I915_MMAP_OFFSET_UC	3
973 #define I915_MMAP_OFFSET_FIXED	4
974 
975 	/**
976 	 * @extensions: Zero-terminated chain of extensions.
977 	 *
978 	 * No current extensions defined; mbz.
979 	 */
980 	__u64 extensions;
981 };
982 
983 /**
984  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
985  * preparation for accessing the pages via some CPU domain.
986  *
987  * Specifying a new write or read domain will flush the object out of the
988  * previous domain(if required), before then updating the objects domain
989  * tracking with the new domain.
990  *
991  * Note this might involve waiting for the object first if it is still active on
992  * the GPU.
993  *
994  * Supported values for @read_domains and @write_domain:
995  *
996  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
997  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
998  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
999  *
1000  * All other domains are rejected.
1001  *
1002  * Note that for discrete, starting from DG1, this is no longer supported, and
1003  * is instead rejected. On such platforms the CPU domain is effectively static,
1004  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1005  * which can't be set explicitly and instead depends on the object placements,
1006  * as per the below.
1007  *
1008  * Implicit caching rules, starting from DG1:
1009  *
1010  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1011  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1012  *	  mapped as write-combined only.
1013  *
1014  *	- Everything else is always allocated and mapped as write-back, with the
1015  *	  guarantee that everything is also coherent with the GPU.
1016  *
1017  * Note that this is likely to change in the future again, where we might need
1018  * more flexibility on future devices, so making this all explicit as part of a
1019  * new &drm_i915_gem_create_ext extension is probable.
1020  */
1021 struct drm_i915_gem_set_domain {
1022 	/** @handle: Handle for the object. */
1023 	__u32 handle;
1024 
1025 	/** @read_domains: New read domains. */
1026 	__u32 read_domains;
1027 
1028 	/**
1029 	 * @write_domain: New write domain.
1030 	 *
1031 	 * Note that having something in the write domain implies it's in the
1032 	 * read domain, and only that read domain.
1033 	 */
1034 	__u32 write_domain;
1035 };
1036 
1037 struct drm_i915_gem_sw_finish {
1038 	/** Handle for the object */
1039 	__u32 handle;
1040 };
1041 
1042 struct drm_i915_gem_relocation_entry {
1043 	/**
1044 	 * Handle of the buffer being pointed to by this relocation entry.
1045 	 *
1046 	 * It's appealing to make this be an index into the mm_validate_entry
1047 	 * list to refer to the buffer, but this allows the driver to create
1048 	 * a relocation list for state buffers and not re-write it per
1049 	 * exec using the buffer.
1050 	 */
1051 	__u32 target_handle;
1052 
1053 	/**
1054 	 * Value to be added to the offset of the target buffer to make up
1055 	 * the relocation entry.
1056 	 */
1057 	__u32 delta;
1058 
1059 	/** Offset in the buffer the relocation entry will be written into */
1060 	__u64 offset;
1061 
1062 	/**
1063 	 * Offset value of the target buffer that the relocation entry was last
1064 	 * written as.
1065 	 *
1066 	 * If the buffer has the same offset as last time, we can skip syncing
1067 	 * and writing the relocation.  This value is written back out by
1068 	 * the execbuffer ioctl when the relocation is written.
1069 	 */
1070 	__u64 presumed_offset;
1071 
1072 	/**
1073 	 * Target memory domains read by this operation.
1074 	 */
1075 	__u32 read_domains;
1076 
1077 	/**
1078 	 * Target memory domains written by this operation.
1079 	 *
1080 	 * Note that only one domain may be written by the whole
1081 	 * execbuffer operation, so that where there are conflicts,
1082 	 * the application will get -EINVAL back.
1083 	 */
1084 	__u32 write_domain;
1085 };
1086 
1087 /** @{
1088  * Intel memory domains
1089  *
1090  * Most of these just align with the various caches in
1091  * the system and are used to flush and invalidate as
1092  * objects end up cached in different domains.
1093  */
1094 /** CPU cache */
1095 #define I915_GEM_DOMAIN_CPU		0x00000001
1096 /** Render cache, used by 2D and 3D drawing */
1097 #define I915_GEM_DOMAIN_RENDER		0x00000002
1098 /** Sampler cache, used by texture engine */
1099 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1100 /** Command queue, used to load batch buffers */
1101 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1102 /** Instruction cache, used by shader programs */
1103 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1104 /** Vertex address cache */
1105 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1106 /** GTT domain - aperture and scanout */
1107 #define I915_GEM_DOMAIN_GTT		0x00000040
1108 /** WC domain - uncached access */
1109 #define I915_GEM_DOMAIN_WC		0x00000080
1110 /** @} */
1111 
1112 struct drm_i915_gem_exec_object {
1113 	/**
1114 	 * User's handle for a buffer to be bound into the GTT for this
1115 	 * operation.
1116 	 */
1117 	__u32 handle;
1118 
1119 	/** Number of relocations to be performed on this buffer */
1120 	__u32 relocation_count;
1121 	/**
1122 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1123 	 * the relocations to be performed in this buffer.
1124 	 */
1125 	__u64 relocs_ptr;
1126 
1127 	/** Required alignment in graphics aperture */
1128 	__u64 alignment;
1129 
1130 	/**
1131 	 * Returned value of the updated offset of the object, for future
1132 	 * presumed_offset writes.
1133 	 */
1134 	__u64 offset;
1135 };
1136 
1137 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1138 struct drm_i915_gem_execbuffer {
1139 	/**
1140 	 * List of buffers to be validated with their relocations to be
1141 	 * performend on them.
1142 	 *
1143 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1144 	 *
1145 	 * These buffers must be listed in an order such that all relocations
1146 	 * a buffer is performing refer to buffers that have already appeared
1147 	 * in the validate list.
1148 	 */
1149 	__u64 buffers_ptr;
1150 	__u32 buffer_count;
1151 
1152 	/** Offset in the batchbuffer to start execution from. */
1153 	__u32 batch_start_offset;
1154 	/** Bytes used in batchbuffer from batch_start_offset */
1155 	__u32 batch_len;
1156 	__u32 DR1;
1157 	__u32 DR4;
1158 	__u32 num_cliprects;
1159 	/** This is a struct drm_clip_rect *cliprects */
1160 	__u64 cliprects_ptr;
1161 };
1162 
1163 struct drm_i915_gem_exec_object2 {
1164 	/**
1165 	 * User's handle for a buffer to be bound into the GTT for this
1166 	 * operation.
1167 	 */
1168 	__u32 handle;
1169 
1170 	/** Number of relocations to be performed on this buffer */
1171 	__u32 relocation_count;
1172 	/**
1173 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1174 	 * the relocations to be performed in this buffer.
1175 	 */
1176 	__u64 relocs_ptr;
1177 
1178 	/** Required alignment in graphics aperture */
1179 	__u64 alignment;
1180 
1181 	/**
1182 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1183 	 * the user with the GTT offset at which this object will be pinned.
1184 	 *
1185 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1186 	 * presumed_offset of the object.
1187 	 *
1188 	 * During execbuffer2 the kernel populates it with the value of the
1189 	 * current GTT offset of the object, for future presumed_offset writes.
1190 	 *
1191 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1192 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1193 	 * minimum page sizes, like DG2.
1194 	 */
1195 	__u64 offset;
1196 
1197 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1198 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1199 #define EXEC_OBJECT_WRITE		 (1<<2)
1200 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1201 #define EXEC_OBJECT_PINNED		 (1<<4)
1202 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1203 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1204  * synchronises operations with outstanding rendering. This includes
1205  * rendering on other devices if exported via dma-buf. However, sometimes
1206  * this tracking is too coarse and the user knows better. For example,
1207  * if the object is split into non-overlapping ranges shared between different
1208  * clients or engines (i.e. suballocating objects), the implicit tracking
1209  * by kernel assumes that each operation affects the whole object rather
1210  * than an individual range, causing needless synchronisation between clients.
1211  * The kernel will also forgo any CPU cache flushes prior to rendering from
1212  * the object as the client is expected to be also handling such domain
1213  * tracking.
1214  *
1215  * The kernel maintains the implicit tracking in order to manage resources
1216  * used by the GPU - this flag only disables the synchronisation prior to
1217  * rendering with this object in this execbuf.
1218  *
1219  * Opting out of implicit synhronisation requires the user to do its own
1220  * explicit tracking to avoid rendering corruption. See, for example,
1221  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1222  */
1223 #define EXEC_OBJECT_ASYNC		(1<<6)
1224 /* Request that the contents of this execobject be copied into the error
1225  * state upon a GPU hang involving this batch for post-mortem debugging.
1226  * These buffers are recorded in no particular order as "user" in
1227  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1228  * if the kernel supports this flag.
1229  */
1230 #define EXEC_OBJECT_CAPTURE		(1<<7)
1231 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1232 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1233 	__u64 flags;
1234 
1235 	union {
1236 		__u64 rsvd1;
1237 		__u64 pad_to_size;
1238 	};
1239 	__u64 rsvd2;
1240 };
1241 
1242 struct drm_i915_gem_exec_fence {
1243 	/**
1244 	 * User's handle for a drm_syncobj to wait on or signal.
1245 	 */
1246 	__u32 handle;
1247 
1248 #define I915_EXEC_FENCE_WAIT            (1<<0)
1249 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1250 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1251 	__u32 flags;
1252 };
1253 
1254 /*
1255  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1256  */
1257 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1258 
1259 /*
1260  * This structure describes an array of drm_syncobj and associated points for
1261  * timeline variants of drm_syncobj. It is invalid to append this structure to
1262  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1263  */
1264 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1265 	struct i915_user_extension base;
1266 
1267 	/**
1268 	 * Number of element in the handles_ptr & value_ptr arrays.
1269 	 */
1270 	__u64 fence_count;
1271 
1272 	/**
1273 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1274 	 * fence_count.
1275 	 */
1276 	__u64 handles_ptr;
1277 
1278 	/**
1279 	 * Pointer to an array of u64 values of length fence_count. Values
1280 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1281 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1282 	 */
1283 	__u64 values_ptr;
1284 };
1285 
1286 struct drm_i915_gem_execbuffer2 {
1287 	/**
1288 	 * List of gem_exec_object2 structs
1289 	 */
1290 	__u64 buffers_ptr;
1291 	__u32 buffer_count;
1292 
1293 	/** Offset in the batchbuffer to start execution from. */
1294 	__u32 batch_start_offset;
1295 	/** Bytes used in batchbuffer from batch_start_offset */
1296 	__u32 batch_len;
1297 	__u32 DR1;
1298 	__u32 DR4;
1299 	__u32 num_cliprects;
1300 	/**
1301 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1302 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1303 	 *
1304 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1305 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1306 	 * of the array.
1307 	 *
1308 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1309 	 * single struct i915_user_extension and num_cliprects is 0.
1310 	 */
1311 	__u64 cliprects_ptr;
1312 #define I915_EXEC_RING_MASK              (0x3f)
1313 #define I915_EXEC_DEFAULT                (0<<0)
1314 #define I915_EXEC_RENDER                 (1<<0)
1315 #define I915_EXEC_BSD                    (2<<0)
1316 #define I915_EXEC_BLT                    (3<<0)
1317 #define I915_EXEC_VEBOX                  (4<<0)
1318 
1319 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1320  * Gen6+ only supports relative addressing to dynamic state (default) and
1321  * absolute addressing.
1322  *
1323  * These flags are ignored for the BSD and BLT rings.
1324  */
1325 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1326 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1327 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1328 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1329 	__u64 flags;
1330 	__u64 rsvd1; /* now used for context info */
1331 	__u64 rsvd2;
1332 };
1333 
1334 /** Resets the SO write offset registers for transform feedback on gen7. */
1335 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1336 
1337 /** Request a privileged ("secure") batch buffer. Note only available for
1338  * DRM_ROOT_ONLY | DRM_MASTER processes.
1339  */
1340 #define I915_EXEC_SECURE		(1<<9)
1341 
1342 /** Inform the kernel that the batch is and will always be pinned. This
1343  * negates the requirement for a workaround to be performed to avoid
1344  * an incoherent CS (such as can be found on 830/845). If this flag is
1345  * not passed, the kernel will endeavour to make sure the batch is
1346  * coherent with the CS before execution. If this flag is passed,
1347  * userspace assumes the responsibility for ensuring the same.
1348  */
1349 #define I915_EXEC_IS_PINNED		(1<<10)
1350 
1351 /** Provide a hint to the kernel that the command stream and auxiliary
1352  * state buffers already holds the correct presumed addresses and so the
1353  * relocation process may be skipped if no buffers need to be moved in
1354  * preparation for the execbuffer.
1355  */
1356 #define I915_EXEC_NO_RELOC		(1<<11)
1357 
1358 /** Use the reloc.handle as an index into the exec object array rather
1359  * than as the per-file handle.
1360  */
1361 #define I915_EXEC_HANDLE_LUT		(1<<12)
1362 
1363 /** Used for switching BSD rings on the platforms with two BSD rings */
1364 #define I915_EXEC_BSD_SHIFT	 (13)
1365 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1366 /* default ping-pong mode */
1367 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1368 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1369 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1370 
1371 /** Tell the kernel that the batchbuffer is processed by
1372  *  the resource streamer.
1373  */
1374 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1375 
1376 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1377  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1378  * the batch.
1379  *
1380  * Returns -EINVAL if the sync_file fd cannot be found.
1381  */
1382 #define I915_EXEC_FENCE_IN		(1<<16)
1383 
1384 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1385  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1386  * to the caller, and it should be close() after use. (The fd is a regular
1387  * file descriptor and will be cleaned up on process termination. It holds
1388  * a reference to the request, but nothing else.)
1389  *
1390  * The sync_file fd can be combined with other sync_file and passed either
1391  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1392  * will only occur after this request completes), or to other devices.
1393  *
1394  * Using I915_EXEC_FENCE_OUT requires use of
1395  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1396  * back to userspace. Failure to do so will cause the out-fence to always
1397  * be reported as zero, and the real fence fd to be leaked.
1398  */
1399 #define I915_EXEC_FENCE_OUT		(1<<17)
1400 
1401 /*
1402  * Traditionally the execbuf ioctl has only considered the final element in
1403  * the execobject[] to be the executable batch. Often though, the client
1404  * will known the batch object prior to construction and being able to place
1405  * it into the execobject[] array first can simplify the relocation tracking.
1406  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1407  * execobject[] as the * batch instead (the default is to use the last
1408  * element).
1409  */
1410 #define I915_EXEC_BATCH_FIRST		(1<<18)
1411 
1412 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1413  * define an array of i915_gem_exec_fence structures which specify a set of
1414  * dma fences to wait upon or signal.
1415  */
1416 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1417 
1418 /*
1419  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1420  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1421  * the batch.
1422  *
1423  * Returns -EINVAL if the sync_file fd cannot be found.
1424  */
1425 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1426 
1427 /*
1428  * Setting I915_EXEC_USE_EXTENSIONS implies that
1429  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1430  * list of i915_user_extension. Each i915_user_extension node is the base of a
1431  * larger structure. The list of supported structures are listed in the
1432  * drm_i915_gem_execbuffer_ext enum.
1433  */
1434 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1435 
1436 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1437 
1438 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1439 #define i915_execbuffer2_set_context_id(eb2, context) \
1440 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1441 #define i915_execbuffer2_get_context_id(eb2) \
1442 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1443 
1444 struct drm_i915_gem_pin {
1445 	/** Handle of the buffer to be pinned. */
1446 	__u32 handle;
1447 	__u32 pad;
1448 
1449 	/** alignment required within the aperture */
1450 	__u64 alignment;
1451 
1452 	/** Returned GTT offset of the buffer. */
1453 	__u64 offset;
1454 };
1455 
1456 struct drm_i915_gem_unpin {
1457 	/** Handle of the buffer to be unpinned. */
1458 	__u32 handle;
1459 	__u32 pad;
1460 };
1461 
1462 struct drm_i915_gem_busy {
1463 	/** Handle of the buffer to check for busy */
1464 	__u32 handle;
1465 
1466 	/** Return busy status
1467 	 *
1468 	 * A return of 0 implies that the object is idle (after
1469 	 * having flushed any pending activity), and a non-zero return that
1470 	 * the object is still in-flight on the GPU. (The GPU has not yet
1471 	 * signaled completion for all pending requests that reference the
1472 	 * object.) An object is guaranteed to become idle eventually (so
1473 	 * long as no new GPU commands are executed upon it). Due to the
1474 	 * asynchronous nature of the hardware, an object reported
1475 	 * as busy may become idle before the ioctl is completed.
1476 	 *
1477 	 * Furthermore, if the object is busy, which engine is busy is only
1478 	 * provided as a guide and only indirectly by reporting its class
1479 	 * (there may be more than one engine in each class). There are race
1480 	 * conditions which prevent the report of which engines are busy from
1481 	 * being always accurate.  However, the converse is not true. If the
1482 	 * object is idle, the result of the ioctl, that all engines are idle,
1483 	 * is accurate.
1484 	 *
1485 	 * The returned dword is split into two fields to indicate both
1486 	 * the engine classess on which the object is being read, and the
1487 	 * engine class on which it is currently being written (if any).
1488 	 *
1489 	 * The low word (bits 0:15) indicate if the object is being written
1490 	 * to by any engine (there can only be one, as the GEM implicit
1491 	 * synchronisation rules force writes to be serialised). Only the
1492 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1493 	 * 1 not 0 etc) for the last write is reported.
1494 	 *
1495 	 * The high word (bits 16:31) are a bitmask of which engines classes
1496 	 * are currently reading from the object. Multiple engines may be
1497 	 * reading from the object simultaneously.
1498 	 *
1499 	 * The value of each engine class is the same as specified in the
1500 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1501 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1502 	 * Some hardware may have parallel execution engines, e.g. multiple
1503 	 * media engines, which are mapped to the same class identifier and so
1504 	 * are not separately reported for busyness.
1505 	 *
1506 	 * Caveat emptor:
1507 	 * Only the boolean result of this query is reliable; that is whether
1508 	 * the object is idle or busy. The report of which engines are busy
1509 	 * should be only used as a heuristic.
1510 	 */
1511 	__u32 busy;
1512 };
1513 
1514 /**
1515  * struct drm_i915_gem_caching - Set or get the caching for given object
1516  * handle.
1517  *
1518  * Allow userspace to control the GTT caching bits for a given object when the
1519  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1520  * ppGTT support, or if the object is used for scanout). Note that this might
1521  * require unbinding the object from the GTT first, if its current caching value
1522  * doesn't match.
1523  *
1524  * Note that this all changes on discrete platforms, starting from DG1, the
1525  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1526  * caching attributes(WB vs WC) will become an immutable creation time property
1527  * for the object, along with the GTT caching level. For now we don't expose any
1528  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1529  * shouldn't matter since DG1 is coherent by default(without any way of
1530  * controlling it).
1531  *
1532  * Implicit caching rules, starting from DG1:
1533  *
1534  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1535  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1536  *       mapped as write-combined only.
1537  *
1538  *     - Everything else is always allocated and mapped as write-back, with the
1539  *       guarantee that everything is also coherent with the GPU.
1540  *
1541  * Note that this is likely to change in the future again, where we might need
1542  * more flexibility on future devices, so making this all explicit as part of a
1543  * new &drm_i915_gem_create_ext extension is probable.
1544  *
1545  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1546  * caching attributes for the pages might be required(and is expensive) if we
1547  * need to then CPU map the pages later with different caching attributes. This
1548  * inconsistent caching behaviour, while supported on x86, is not universally
1549  * supported on other architectures. So for simplicity we opt for setting
1550  * everything at creation time, whilst also making it immutable, on discrete
1551  * platforms.
1552  */
1553 struct drm_i915_gem_caching {
1554 	/**
1555 	 * @handle: Handle of the buffer to set/get the caching level.
1556 	 */
1557 	__u32 handle;
1558 
1559 	/**
1560 	 * @caching: The GTT caching level to apply or possible return value.
1561 	 *
1562 	 * The supported @caching values:
1563 	 *
1564 	 * I915_CACHING_NONE:
1565 	 *
1566 	 * GPU access is not coherent with CPU caches.  Default for machines
1567 	 * without an LLC. This means manual flushing might be needed, if we
1568 	 * want GPU access to be coherent.
1569 	 *
1570 	 * I915_CACHING_CACHED:
1571 	 *
1572 	 * GPU access is coherent with CPU caches and furthermore the data is
1573 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1574 	 *
1575 	 * I915_CACHING_DISPLAY:
1576 	 *
1577 	 * Special GPU caching mode which is coherent with the scanout engines.
1578 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1579 	 * special cache mode (like write-through or gfdt flushing) is
1580 	 * available. The kernel automatically sets this mode when using a
1581 	 * buffer as a scanout target.  Userspace can manually set this mode to
1582 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1583 	 * frame.
1584 	 */
1585 #define I915_CACHING_NONE		0
1586 #define I915_CACHING_CACHED		1
1587 #define I915_CACHING_DISPLAY		2
1588 	__u32 caching;
1589 };
1590 
1591 #define I915_TILING_NONE	0
1592 #define I915_TILING_X		1
1593 #define I915_TILING_Y		2
1594 /*
1595  * Do not add new tiling types here.  The I915_TILING_* values are for
1596  * de-tiling fence registers that no longer exist on modern platforms.  Although
1597  * the hardware may support new types of tiling in general (e.g., Tile4), we
1598  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1599  */
1600 #define I915_TILING_LAST	I915_TILING_Y
1601 
1602 #define I915_BIT_6_SWIZZLE_NONE		0
1603 #define I915_BIT_6_SWIZZLE_9		1
1604 #define I915_BIT_6_SWIZZLE_9_10		2
1605 #define I915_BIT_6_SWIZZLE_9_11		3
1606 #define I915_BIT_6_SWIZZLE_9_10_11	4
1607 /* Not seen by userland */
1608 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1609 /* Seen by userland. */
1610 #define I915_BIT_6_SWIZZLE_9_17		6
1611 #define I915_BIT_6_SWIZZLE_9_10_17	7
1612 
1613 struct drm_i915_gem_set_tiling {
1614 	/** Handle of the buffer to have its tiling state updated */
1615 	__u32 handle;
1616 
1617 	/**
1618 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1619 	 * I915_TILING_Y).
1620 	 *
1621 	 * This value is to be set on request, and will be updated by the
1622 	 * kernel on successful return with the actual chosen tiling layout.
1623 	 *
1624 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1625 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1626 	 *
1627 	 * Buffer contents become undefined when changing tiling_mode.
1628 	 */
1629 	__u32 tiling_mode;
1630 
1631 	/**
1632 	 * Stride in bytes for the object when in I915_TILING_X or
1633 	 * I915_TILING_Y.
1634 	 */
1635 	__u32 stride;
1636 
1637 	/**
1638 	 * Returned address bit 6 swizzling required for CPU access through
1639 	 * mmap mapping.
1640 	 */
1641 	__u32 swizzle_mode;
1642 };
1643 
1644 struct drm_i915_gem_get_tiling {
1645 	/** Handle of the buffer to get tiling state for. */
1646 	__u32 handle;
1647 
1648 	/**
1649 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1650 	 * I915_TILING_Y).
1651 	 */
1652 	__u32 tiling_mode;
1653 
1654 	/**
1655 	 * Returned address bit 6 swizzling required for CPU access through
1656 	 * mmap mapping.
1657 	 */
1658 	__u32 swizzle_mode;
1659 
1660 	/**
1661 	 * Returned address bit 6 swizzling required for CPU access through
1662 	 * mmap mapping whilst bound.
1663 	 */
1664 	__u32 phys_swizzle_mode;
1665 };
1666 
1667 struct drm_i915_gem_get_aperture {
1668 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1669 	__u64 aper_size;
1670 
1671 	/**
1672 	 * Available space in the aperture used by i915_gem_execbuffer, in
1673 	 * bytes
1674 	 */
1675 	__u64 aper_available_size;
1676 };
1677 
1678 struct drm_i915_get_pipe_from_crtc_id {
1679 	/** ID of CRTC being requested **/
1680 	__u32 crtc_id;
1681 
1682 	/** pipe of requested CRTC **/
1683 	__u32 pipe;
1684 };
1685 
1686 #define I915_MADV_WILLNEED 0
1687 #define I915_MADV_DONTNEED 1
1688 #define __I915_MADV_PURGED 2 /* internal state */
1689 
1690 struct drm_i915_gem_madvise {
1691 	/** Handle of the buffer to change the backing store advice */
1692 	__u32 handle;
1693 
1694 	/* Advice: either the buffer will be needed again in the near future,
1695 	 *         or wont be and could be discarded under memory pressure.
1696 	 */
1697 	__u32 madv;
1698 
1699 	/** Whether the backing store still exists. */
1700 	__u32 retained;
1701 };
1702 
1703 /* flags */
1704 #define I915_OVERLAY_TYPE_MASK 		0xff
1705 #define I915_OVERLAY_YUV_PLANAR 	0x01
1706 #define I915_OVERLAY_YUV_PACKED 	0x02
1707 #define I915_OVERLAY_RGB		0x03
1708 
1709 #define I915_OVERLAY_DEPTH_MASK		0xff00
1710 #define I915_OVERLAY_RGB24		0x1000
1711 #define I915_OVERLAY_RGB16		0x2000
1712 #define I915_OVERLAY_RGB15		0x3000
1713 #define I915_OVERLAY_YUV422		0x0100
1714 #define I915_OVERLAY_YUV411		0x0200
1715 #define I915_OVERLAY_YUV420		0x0300
1716 #define I915_OVERLAY_YUV410		0x0400
1717 
1718 #define I915_OVERLAY_SWAP_MASK		0xff0000
1719 #define I915_OVERLAY_NO_SWAP		0x000000
1720 #define I915_OVERLAY_UV_SWAP		0x010000
1721 #define I915_OVERLAY_Y_SWAP		0x020000
1722 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1723 
1724 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1725 #define I915_OVERLAY_ENABLE		0x01000000
1726 
1727 struct drm_intel_overlay_put_image {
1728 	/* various flags and src format description */
1729 	__u32 flags;
1730 	/* source picture description */
1731 	__u32 bo_handle;
1732 	/* stride values and offsets are in bytes, buffer relative */
1733 	__u16 stride_Y; /* stride for packed formats */
1734 	__u16 stride_UV;
1735 	__u32 offset_Y; /* offset for packet formats */
1736 	__u32 offset_U;
1737 	__u32 offset_V;
1738 	/* in pixels */
1739 	__u16 src_width;
1740 	__u16 src_height;
1741 	/* to compensate the scaling factors for partially covered surfaces */
1742 	__u16 src_scan_width;
1743 	__u16 src_scan_height;
1744 	/* output crtc description */
1745 	__u32 crtc_id;
1746 	__u16 dst_x;
1747 	__u16 dst_y;
1748 	__u16 dst_width;
1749 	__u16 dst_height;
1750 };
1751 
1752 /* flags */
1753 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1754 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1755 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1756 struct drm_intel_overlay_attrs {
1757 	__u32 flags;
1758 	__u32 color_key;
1759 	__s32 brightness;
1760 	__u32 contrast;
1761 	__u32 saturation;
1762 	__u32 gamma0;
1763 	__u32 gamma1;
1764 	__u32 gamma2;
1765 	__u32 gamma3;
1766 	__u32 gamma4;
1767 	__u32 gamma5;
1768 };
1769 
1770 /*
1771  * Intel sprite handling
1772  *
1773  * Color keying works with a min/mask/max tuple.  Both source and destination
1774  * color keying is allowed.
1775  *
1776  * Source keying:
1777  * Sprite pixels within the min & max values, masked against the color channels
1778  * specified in the mask field, will be transparent.  All other pixels will
1779  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1780  * and mask fields will be used; ranged compares are not allowed.
1781  *
1782  * Destination keying:
1783  * Primary plane pixels that match the min value, masked against the color
1784  * channels specified in the mask field, will be replaced by corresponding
1785  * pixels from the sprite plane.
1786  *
1787  * Note that source & destination keying are exclusive; only one can be
1788  * active on a given plane.
1789  */
1790 
1791 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1792 						* flags==0 to disable colorkeying.
1793 						*/
1794 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1795 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1796 struct drm_intel_sprite_colorkey {
1797 	__u32 plane_id;
1798 	__u32 min_value;
1799 	__u32 channel_mask;
1800 	__u32 max_value;
1801 	__u32 flags;
1802 };
1803 
1804 struct drm_i915_gem_wait {
1805 	/** Handle of BO we shall wait on */
1806 	__u32 bo_handle;
1807 	__u32 flags;
1808 	/** Number of nanoseconds to wait, Returns time remaining. */
1809 	__s64 timeout_ns;
1810 };
1811 
1812 struct drm_i915_gem_context_create {
1813 	__u32 ctx_id; /* output: id of new context*/
1814 	__u32 pad;
1815 };
1816 
1817 struct drm_i915_gem_context_create_ext {
1818 	__u32 ctx_id; /* output: id of new context*/
1819 	__u32 flags;
1820 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1821 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1822 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1823 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1824 	__u64 extensions;
1825 };
1826 
1827 struct drm_i915_gem_context_param {
1828 	__u32 ctx_id;
1829 	__u32 size;
1830 	__u64 param;
1831 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1832 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1833  * someone somewhere has attempted to use it, never re-use this context
1834  * param number.
1835  */
1836 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1837 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1838 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1839 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1840 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1841 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1842 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1843 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1844 	/*
1845 	 * When using the following param, value should be a pointer to
1846 	 * drm_i915_gem_context_param_sseu.
1847 	 */
1848 #define I915_CONTEXT_PARAM_SSEU		0x7
1849 
1850 /*
1851  * Not all clients may want to attempt automatic recover of a context after
1852  * a hang (for example, some clients may only submit very small incremental
1853  * batches relying on known logical state of previous batches which will never
1854  * recover correctly and each attempt will hang), and so would prefer that
1855  * the context is forever banned instead.
1856  *
1857  * If set to false (0), after a reset, subsequent (and in flight) rendering
1858  * from this context is discarded, and the client will need to create a new
1859  * context to use instead.
1860  *
1861  * If set to true (1), the kernel will automatically attempt to recover the
1862  * context by skipping the hanging batch and executing the next batch starting
1863  * from the default context state (discarding the incomplete logical context
1864  * state lost due to the reset).
1865  *
1866  * On creation, all new contexts are marked as recoverable.
1867  */
1868 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1869 
1870 	/*
1871 	 * The id of the associated virtual memory address space (ppGTT) of
1872 	 * this context. Can be retrieved and passed to another context
1873 	 * (on the same fd) for both to use the same ppGTT and so share
1874 	 * address layouts, and avoid reloading the page tables on context
1875 	 * switches between themselves.
1876 	 *
1877 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1878 	 */
1879 #define I915_CONTEXT_PARAM_VM		0x9
1880 
1881 /*
1882  * I915_CONTEXT_PARAM_ENGINES:
1883  *
1884  * Bind this context to operate on this subset of available engines. Henceforth,
1885  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1886  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1887  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1888  * Use
1889  *	engine_class: I915_ENGINE_CLASS_INVALID,
1890  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1891  * to specify a gap in the array that can be filled in later, e.g. by a
1892  * virtual engine used for load balancing.
1893  *
1894  * Setting the number of engines bound to the context to 0, by passing a zero
1895  * sized argument, will revert back to default settings.
1896  *
1897  * See struct i915_context_param_engines.
1898  *
1899  * Extensions:
1900  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1901  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1902  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
1903  */
1904 #define I915_CONTEXT_PARAM_ENGINES	0xa
1905 
1906 /*
1907  * I915_CONTEXT_PARAM_PERSISTENCE:
1908  *
1909  * Allow the context and active rendering to survive the process until
1910  * completion. Persistence allows fire-and-forget clients to queue up a
1911  * bunch of work, hand the output over to a display server and then quit.
1912  * If the context is marked as not persistent, upon closing (either via
1913  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1914  * or process termination), the context and any outstanding requests will be
1915  * cancelled (and exported fences for cancelled requests marked as -EIO).
1916  *
1917  * By default, new contexts allow persistence.
1918  */
1919 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1920 
1921 /* This API has been removed.  On the off chance someone somewhere has
1922  * attempted to use it, never re-use this context param number.
1923  */
1924 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1925 
1926 /*
1927  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
1928  *
1929  * Mark that the context makes use of protected content, which will result
1930  * in the context being invalidated when the protected content session is.
1931  * Given that the protected content session is killed on suspend, the device
1932  * is kept awake for the lifetime of a protected context, so the user should
1933  * make sure to dispose of them once done.
1934  * This flag can only be set at context creation time and, when set to true,
1935  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
1936  * to false. This flag can't be set to true in conjunction with setting the
1937  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
1938  *
1939  * .. code-block:: C
1940  *
1941  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
1942  *		.base = {
1943  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1944  *		},
1945  *		.param = {
1946  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
1947  *			.value = 1,
1948  *		}
1949  *	};
1950  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
1951  *		.base = {
1952  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1953  *			.next_extension = to_user_pointer(&p_protected),
1954  *		},
1955  *		.param = {
1956  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
1957  *			.value = 0,
1958  *		}
1959  *	};
1960  *	struct drm_i915_gem_context_create_ext create = {
1961  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1962  *		.extensions = to_user_pointer(&p_norecover);
1963  *	};
1964  *
1965  *	ctx_id = gem_context_create_ext(drm_fd, &create);
1966  *
1967  * In addition to the normal failure cases, setting this flag during context
1968  * creation can result in the following errors:
1969  *
1970  * -ENODEV: feature not available
1971  * -EPERM: trying to mark a recoverable or not bannable context as protected
1972  */
1973 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
1974 /* Must be kept compact -- no holes and well documented */
1975 
1976 	__u64 value;
1977 };
1978 
1979 /*
1980  * Context SSEU programming
1981  *
1982  * It may be necessary for either functional or performance reason to configure
1983  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1984  * Sub-slice/EU).
1985  *
1986  * This is done by configuring SSEU configuration using the below
1987  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1988  * userspace intends to use.
1989  *
1990  * Not all GPUs or engines support this functionality in which case an error
1991  * code -ENODEV will be returned.
1992  *
1993  * Also, flexibility of possible SSEU configuration permutations varies between
1994  * GPU generations and software imposed limitations. Requesting such a
1995  * combination will return an error code of -EINVAL.
1996  *
1997  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1998  * favour of a single global setting.
1999  */
2000 struct drm_i915_gem_context_param_sseu {
2001 	/*
2002 	 * Engine class & instance to be configured or queried.
2003 	 */
2004 	struct i915_engine_class_instance engine;
2005 
2006 	/*
2007 	 * Unknown flags must be cleared to zero.
2008 	 */
2009 	__u32 flags;
2010 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2011 
2012 	/*
2013 	 * Mask of slices to enable for the context. Valid values are a subset
2014 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2015 	 */
2016 	__u64 slice_mask;
2017 
2018 	/*
2019 	 * Mask of subslices to enable for the context. Valid values are a
2020 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2021 	 */
2022 	__u64 subslice_mask;
2023 
2024 	/*
2025 	 * Minimum/Maximum number of EUs to enable per subslice for the
2026 	 * context. min_eus_per_subslice must be inferior or equal to
2027 	 * max_eus_per_subslice.
2028 	 */
2029 	__u16 min_eus_per_subslice;
2030 	__u16 max_eus_per_subslice;
2031 
2032 	/*
2033 	 * Unused for now. Must be cleared to zero.
2034 	 */
2035 	__u32 rsvd;
2036 };
2037 
2038 /**
2039  * DOC: Virtual Engine uAPI
2040  *
2041  * Virtual engine is a concept where userspace is able to configure a set of
2042  * physical engines, submit a batch buffer, and let the driver execute it on any
2043  * engine from the set as it sees fit.
2044  *
2045  * This is primarily useful on parts which have multiple instances of a same
2046  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2047  *
2048  * For instance userspace can enumerate all engines of a certain class using the
2049  * previously described `Engine Discovery uAPI`_. After that userspace can
2050  * create a GEM context with a placeholder slot for the virtual engine (using
2051  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2052  * and instance respectively) and finally using the
2053  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2054  * the same reserved slot.
2055  *
2056  * Example of creating a virtual engine and submitting a batch buffer to it:
2057  *
2058  * .. code-block:: C
2059  *
2060  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2061  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2062  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2063  * 		.num_siblings = 2,
2064  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2065  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2066  * 	};
2067  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2068  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2069  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2070  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2071  * 	};
2072  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2073  * 		.base = {
2074  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2075  * 		},
2076  * 		.param = {
2077  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2078  * 			.value = to_user_pointer(&engines),
2079  * 			.size = sizeof(engines),
2080  * 		},
2081  * 	};
2082  * 	struct drm_i915_gem_context_create_ext create = {
2083  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2084  * 		.extensions = to_user_pointer(&p_engines);
2085  * 	};
2086  *
2087  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2088  *
2089  * 	// Now we have created a GEM context with its engine map containing a
2090  * 	// single virtual engine. Submissions to this slot can go either to
2091  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2092  * 	// the driver. The load balancing is dynamic from one batch buffer to
2093  * 	// another and transparent to userspace.
2094  *
2095  * 	...
2096  * 	execbuf.rsvd1 = ctx_id;
2097  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2098  * 	gem_execbuf(drm_fd, &execbuf);
2099  */
2100 
2101 /*
2102  * i915_context_engines_load_balance:
2103  *
2104  * Enable load balancing across this set of engines.
2105  *
2106  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2107  * used will proxy the execbuffer request onto one of the set of engines
2108  * in such a way as to distribute the load evenly across the set.
2109  *
2110  * The set of engines must be compatible (e.g. the same HW class) as they
2111  * will share the same logical GPU context and ring.
2112  *
2113  * To intermix rendering with the virtual engine and direct rendering onto
2114  * the backing engines (bypassing the load balancing proxy), the context must
2115  * be defined to use a single timeline for all engines.
2116  */
2117 struct i915_context_engines_load_balance {
2118 	struct i915_user_extension base;
2119 
2120 	__u16 engine_index;
2121 	__u16 num_siblings;
2122 	__u32 flags; /* all undefined flags must be zero */
2123 
2124 	__u64 mbz64; /* reserved for future use; must be zero */
2125 
2126 	struct i915_engine_class_instance engines[];
2127 } __attribute__((packed));
2128 
2129 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2130 	struct i915_user_extension base; \
2131 	__u16 engine_index; \
2132 	__u16 num_siblings; \
2133 	__u32 flags; \
2134 	__u64 mbz64; \
2135 	struct i915_engine_class_instance engines[N__]; \
2136 } __attribute__((packed)) name__
2137 
2138 /*
2139  * i915_context_engines_bond:
2140  *
2141  * Constructed bonded pairs for execution within a virtual engine.
2142  *
2143  * All engines are equal, but some are more equal than others. Given
2144  * the distribution of resources in the HW, it may be preferable to run
2145  * a request on a given subset of engines in parallel to a request on a
2146  * specific engine. We enable this selection of engines within a virtual
2147  * engine by specifying bonding pairs, for any given master engine we will
2148  * only execute on one of the corresponding siblings within the virtual engine.
2149  *
2150  * To execute a request in parallel on the master engine and a sibling requires
2151  * coordination with a I915_EXEC_FENCE_SUBMIT.
2152  */
2153 struct i915_context_engines_bond {
2154 	struct i915_user_extension base;
2155 
2156 	struct i915_engine_class_instance master;
2157 
2158 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2159 	__u16 num_bonds;
2160 
2161 	__u64 flags; /* all undefined flags must be zero */
2162 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2163 
2164 	struct i915_engine_class_instance engines[];
2165 } __attribute__((packed));
2166 
2167 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2168 	struct i915_user_extension base; \
2169 	struct i915_engine_class_instance master; \
2170 	__u16 virtual_index; \
2171 	__u16 num_bonds; \
2172 	__u64 flags; \
2173 	__u64 mbz64[4]; \
2174 	struct i915_engine_class_instance engines[N__]; \
2175 } __attribute__((packed)) name__
2176 
2177 /**
2178  * struct i915_context_engines_parallel_submit - Configure engine for
2179  * parallel submission.
2180  *
2181  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2182  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2183  * in parallel. Multiple hardware contexts are created internally in the i915 to
2184  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2185  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2186  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2187  * many BBs there are based on the slot's configuration. The N BBs are the last
2188  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2189  *
2190  * The default placement behavior is to create implicit bonds between each
2191  * context if each context maps to more than 1 physical engine (e.g. context is
2192  * a virtual engine). Also we only allow contexts of same engine class and these
2193  * contexts must be in logically contiguous order. Examples of the placement
2194  * behavior are described below. Lastly, the default is to not allow BBs to be
2195  * preempted mid-batch. Rather insert coordinated preemption points on all
2196  * hardware contexts between each set of BBs. Flags could be added in the future
2197  * to change both of these default behaviors.
2198  *
2199  * Returns -EINVAL if hardware context placement configuration is invalid or if
2200  * the placement configuration isn't supported on the platform / submission
2201  * interface.
2202  * Returns -ENODEV if extension isn't supported on the platform / submission
2203  * interface.
2204  *
2205  * .. code-block:: none
2206  *
2207  *	Examples syntax:
2208  *	CS[X] = generic engine of same class, logical instance X
2209  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2210  *
2211  *	Example 1 pseudo code:
2212  *	set_engines(INVALID)
2213  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2214  *		     engines=CS[0],CS[1])
2215  *
2216  *	Results in the following valid placement:
2217  *	CS[0], CS[1]
2218  *
2219  *	Example 2 pseudo code:
2220  *	set_engines(INVALID)
2221  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2222  *		     engines=CS[0],CS[2],CS[1],CS[3])
2223  *
2224  *	Results in the following valid placements:
2225  *	CS[0], CS[1]
2226  *	CS[2], CS[3]
2227  *
2228  *	This can be thought of as two virtual engines, each containing two
2229  *	engines thereby making a 2D array. However, there are bonds tying the
2230  *	entries together and placing restrictions on how they can be scheduled.
2231  *	Specifically, the scheduler can choose only vertical columns from the 2D
2232  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2233  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2234  *	versa. Same for CS[2] requires also using CS[3].
2235  *	VE[0] = CS[0], CS[2]
2236  *	VE[1] = CS[1], CS[3]
2237  *
2238  *	Example 3 pseudo code:
2239  *	set_engines(INVALID)
2240  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2241  *		     engines=CS[0],CS[1],CS[1],CS[3])
2242  *
2243  *	Results in the following valid and invalid placements:
2244  *	CS[0], CS[1]
2245  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2246  */
2247 struct i915_context_engines_parallel_submit {
2248 	/**
2249 	 * @base: base user extension.
2250 	 */
2251 	struct i915_user_extension base;
2252 
2253 	/**
2254 	 * @engine_index: slot for parallel engine
2255 	 */
2256 	__u16 engine_index;
2257 
2258 	/**
2259 	 * @width: number of contexts per parallel engine or in other words the
2260 	 * number of batches in each submission
2261 	 */
2262 	__u16 width;
2263 
2264 	/**
2265 	 * @num_siblings: number of siblings per context or in other words the
2266 	 * number of possible placements for each submission
2267 	 */
2268 	__u16 num_siblings;
2269 
2270 	/**
2271 	 * @mbz16: reserved for future use; must be zero
2272 	 */
2273 	__u16 mbz16;
2274 
2275 	/**
2276 	 * @flags: all undefined flags must be zero, currently not defined flags
2277 	 */
2278 	__u64 flags;
2279 
2280 	/**
2281 	 * @mbz64: reserved for future use; must be zero
2282 	 */
2283 	__u64 mbz64[3];
2284 
2285 	/**
2286 	 * @engines: 2-d array of engine instances to configure parallel engine
2287 	 *
2288 	 * length = width (i) * num_siblings (j)
2289 	 * index = j + i * num_siblings
2290 	 */
2291 	struct i915_engine_class_instance engines[];
2292 
2293 } __packed;
2294 
2295 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2296 	struct i915_user_extension base; \
2297 	__u16 engine_index; \
2298 	__u16 width; \
2299 	__u16 num_siblings; \
2300 	__u16 mbz16; \
2301 	__u64 flags; \
2302 	__u64 mbz64[3]; \
2303 	struct i915_engine_class_instance engines[N__]; \
2304 } __attribute__((packed)) name__
2305 
2306 /**
2307  * DOC: Context Engine Map uAPI
2308  *
2309  * Context engine map is a new way of addressing engines when submitting batch-
2310  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2311  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2312  *
2313  * To use it created GEM contexts need to be configured with a list of engines
2314  * the user is intending to submit to. This is accomplished using the
2315  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2316  * i915_context_param_engines`.
2317  *
2318  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2319  * configured map.
2320  *
2321  * Example of creating such context and submitting against it:
2322  *
2323  * .. code-block:: C
2324  *
2325  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2326  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2327  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2328  * 	};
2329  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2330  * 		.base = {
2331  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2332  * 		},
2333  * 		.param = {
2334  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2335  * 			.value = to_user_pointer(&engines),
2336  * 			.size = sizeof(engines),
2337  * 		},
2338  * 	};
2339  * 	struct drm_i915_gem_context_create_ext create = {
2340  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2341  * 		.extensions = to_user_pointer(&p_engines);
2342  * 	};
2343  *
2344  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2345  *
2346  * 	// We have now created a GEM context with two engines in the map:
2347  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2348  * 	// will not be accessible from this context.
2349  *
2350  * 	...
2351  * 	execbuf.rsvd1 = ctx_id;
2352  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2353  * 	gem_execbuf(drm_fd, &execbuf);
2354  *
2355  * 	...
2356  * 	execbuf.rsvd1 = ctx_id;
2357  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2358  * 	gem_execbuf(drm_fd, &execbuf);
2359  */
2360 
2361 struct i915_context_param_engines {
2362 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2363 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2364 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2365 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2366 	struct i915_engine_class_instance engines[0];
2367 } __attribute__((packed));
2368 
2369 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2370 	__u64 extensions; \
2371 	struct i915_engine_class_instance engines[N__]; \
2372 } __attribute__((packed)) name__
2373 
2374 struct drm_i915_gem_context_create_ext_setparam {
2375 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2376 	struct i915_user_extension base;
2377 	struct drm_i915_gem_context_param param;
2378 };
2379 
2380 /* This API has been removed.  On the off chance someone somewhere has
2381  * attempted to use it, never re-use this extension number.
2382  */
2383 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2384 
2385 struct drm_i915_gem_context_destroy {
2386 	__u32 ctx_id;
2387 	__u32 pad;
2388 };
2389 
2390 /*
2391  * DRM_I915_GEM_VM_CREATE -
2392  *
2393  * Create a new virtual memory address space (ppGTT) for use within a context
2394  * on the same file. Extensions can be provided to configure exactly how the
2395  * address space is setup upon creation.
2396  *
2397  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2398  * returned in the outparam @id.
2399  *
2400  * No flags are defined, with all bits reserved and must be zero.
2401  *
2402  * An extension chain maybe provided, starting with @extensions, and terminated
2403  * by the @next_extension being 0. Currently, no extensions are defined.
2404  *
2405  * DRM_I915_GEM_VM_DESTROY -
2406  *
2407  * Destroys a previously created VM id, specified in @id.
2408  *
2409  * No extensions or flags are allowed currently, and so must be zero.
2410  */
2411 struct drm_i915_gem_vm_control {
2412 	__u64 extensions;
2413 	__u32 flags;
2414 	__u32 vm_id;
2415 };
2416 
2417 struct drm_i915_reg_read {
2418 	/*
2419 	 * Register offset.
2420 	 * For 64bit wide registers where the upper 32bits don't immediately
2421 	 * follow the lower 32bits, the offset of the lower 32bits must
2422 	 * be specified
2423 	 */
2424 	__u64 offset;
2425 #define I915_REG_READ_8B_WA (1ul << 0)
2426 
2427 	__u64 val; /* Return value */
2428 };
2429 
2430 /* Known registers:
2431  *
2432  * Render engine timestamp - 0x2358 + 64bit - gen7+
2433  * - Note this register returns an invalid value if using the default
2434  *   single instruction 8byte read, in order to workaround that pass
2435  *   flag I915_REG_READ_8B_WA in offset field.
2436  *
2437  */
2438 
2439 struct drm_i915_reset_stats {
2440 	__u32 ctx_id;
2441 	__u32 flags;
2442 
2443 	/* All resets since boot/module reload, for all contexts */
2444 	__u32 reset_count;
2445 
2446 	/* Number of batches lost when active in GPU, for this context */
2447 	__u32 batch_active;
2448 
2449 	/* Number of batches lost pending for execution, for this context */
2450 	__u32 batch_pending;
2451 
2452 	__u32 pad;
2453 };
2454 
2455 /**
2456  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2457  *
2458  * Userptr objects have several restrictions on what ioctls can be used with the
2459  * object handle.
2460  */
2461 struct drm_i915_gem_userptr {
2462 	/**
2463 	 * @user_ptr: The pointer to the allocated memory.
2464 	 *
2465 	 * Needs to be aligned to PAGE_SIZE.
2466 	 */
2467 	__u64 user_ptr;
2468 
2469 	/**
2470 	 * @user_size:
2471 	 *
2472 	 * The size in bytes for the allocated memory. This will also become the
2473 	 * object size.
2474 	 *
2475 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2476 	 * or larger.
2477 	 */
2478 	__u64 user_size;
2479 
2480 	/**
2481 	 * @flags:
2482 	 *
2483 	 * Supported flags:
2484 	 *
2485 	 * I915_USERPTR_READ_ONLY:
2486 	 *
2487 	 * Mark the object as readonly, this also means GPU access can only be
2488 	 * readonly. This is only supported on HW which supports readonly access
2489 	 * through the GTT. If the HW can't support readonly access, an error is
2490 	 * returned.
2491 	 *
2492 	 * I915_USERPTR_PROBE:
2493 	 *
2494 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2495 	 * indeed pointing to normal memory and that the range is also valid.
2496 	 * For example if some garbage address is given to the kernel, then this
2497 	 * should complain.
2498 	 *
2499 	 * Returns -EFAULT if the probe failed.
2500 	 *
2501 	 * Note that this doesn't populate the backing pages, and also doesn't
2502 	 * guarantee that the object will remain valid when the object is
2503 	 * eventually used.
2504 	 *
2505 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2506 	 * returns a non-zero value.
2507 	 *
2508 	 * I915_USERPTR_UNSYNCHRONIZED:
2509 	 *
2510 	 * NOT USED. Setting this flag will result in an error.
2511 	 */
2512 	__u32 flags;
2513 #define I915_USERPTR_READ_ONLY 0x1
2514 #define I915_USERPTR_PROBE 0x2
2515 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2516 	/**
2517 	 * @handle: Returned handle for the object.
2518 	 *
2519 	 * Object handles are nonzero.
2520 	 */
2521 	__u32 handle;
2522 };
2523 
2524 enum drm_i915_oa_format {
2525 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2526 	I915_OA_FORMAT_A29,	    /* HSW only */
2527 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2528 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2529 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2530 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2531 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2532 
2533 	/* Gen8+ */
2534 	I915_OA_FORMAT_A12,
2535 	I915_OA_FORMAT_A12_B8_C8,
2536 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2537 
2538 	I915_OA_FORMAT_MAX	    /* non-ABI */
2539 };
2540 
2541 enum drm_i915_perf_property_id {
2542 	/**
2543 	 * Open the stream for a specific context handle (as used with
2544 	 * execbuffer2). A stream opened for a specific context this way
2545 	 * won't typically require root privileges.
2546 	 *
2547 	 * This property is available in perf revision 1.
2548 	 */
2549 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2550 
2551 	/**
2552 	 * A value of 1 requests the inclusion of raw OA unit reports as
2553 	 * part of stream samples.
2554 	 *
2555 	 * This property is available in perf revision 1.
2556 	 */
2557 	DRM_I915_PERF_PROP_SAMPLE_OA,
2558 
2559 	/**
2560 	 * The value specifies which set of OA unit metrics should be
2561 	 * configured, defining the contents of any OA unit reports.
2562 	 *
2563 	 * This property is available in perf revision 1.
2564 	 */
2565 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2566 
2567 	/**
2568 	 * The value specifies the size and layout of OA unit reports.
2569 	 *
2570 	 * This property is available in perf revision 1.
2571 	 */
2572 	DRM_I915_PERF_PROP_OA_FORMAT,
2573 
2574 	/**
2575 	 * Specifying this property implicitly requests periodic OA unit
2576 	 * sampling and (at least on Haswell) the sampling frequency is derived
2577 	 * from this exponent as follows:
2578 	 *
2579 	 *   80ns * 2^(period_exponent + 1)
2580 	 *
2581 	 * This property is available in perf revision 1.
2582 	 */
2583 	DRM_I915_PERF_PROP_OA_EXPONENT,
2584 
2585 	/**
2586 	 * Specifying this property is only valid when specify a context to
2587 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2588 	 * will hold preemption of the particular context we want to gather
2589 	 * performance data about. The execbuf2 submissions must include a
2590 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2591 	 *
2592 	 * This property is available in perf revision 3.
2593 	 */
2594 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2595 
2596 	/**
2597 	 * Specifying this pins all contexts to the specified SSEU power
2598 	 * configuration for the duration of the recording.
2599 	 *
2600 	 * This parameter's value is a pointer to a struct
2601 	 * drm_i915_gem_context_param_sseu.
2602 	 *
2603 	 * This property is available in perf revision 4.
2604 	 */
2605 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2606 
2607 	/**
2608 	 * This optional parameter specifies the timer interval in nanoseconds
2609 	 * at which the i915 driver will check the OA buffer for available data.
2610 	 * Minimum allowed value is 100 microseconds. A default value is used by
2611 	 * the driver if this parameter is not specified. Note that larger timer
2612 	 * values will reduce cpu consumption during OA perf captures. However,
2613 	 * excessively large values would potentially result in OA buffer
2614 	 * overwrites as captures reach end of the OA buffer.
2615 	 *
2616 	 * This property is available in perf revision 5.
2617 	 */
2618 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2619 
2620 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2621 };
2622 
2623 struct drm_i915_perf_open_param {
2624 	__u32 flags;
2625 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2626 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2627 #define I915_PERF_FLAG_DISABLED		(1<<2)
2628 
2629 	/** The number of u64 (id, value) pairs */
2630 	__u32 num_properties;
2631 
2632 	/**
2633 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2634 	 * to open.
2635 	 */
2636 	__u64 properties_ptr;
2637 };
2638 
2639 /*
2640  * Enable data capture for a stream that was either opened in a disabled state
2641  * via I915_PERF_FLAG_DISABLED or was later disabled via
2642  * I915_PERF_IOCTL_DISABLE.
2643  *
2644  * It is intended to be cheaper to disable and enable a stream than it may be
2645  * to close and re-open a stream with the same configuration.
2646  *
2647  * It's undefined whether any pending data for the stream will be lost.
2648  *
2649  * This ioctl is available in perf revision 1.
2650  */
2651 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2652 
2653 /*
2654  * Disable data capture for a stream.
2655  *
2656  * It is an error to try and read a stream that is disabled.
2657  *
2658  * This ioctl is available in perf revision 1.
2659  */
2660 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2661 
2662 /*
2663  * Change metrics_set captured by a stream.
2664  *
2665  * If the stream is bound to a specific context, the configuration change
2666  * will performed inline with that context such that it takes effect before
2667  * the next execbuf submission.
2668  *
2669  * Returns the previously bound metrics set id, or a negative error code.
2670  *
2671  * This ioctl is available in perf revision 2.
2672  */
2673 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2674 
2675 /*
2676  * Common to all i915 perf records
2677  */
2678 struct drm_i915_perf_record_header {
2679 	__u32 type;
2680 	__u16 pad;
2681 	__u16 size;
2682 };
2683 
2684 enum drm_i915_perf_record_type {
2685 
2686 	/**
2687 	 * Samples are the work horse record type whose contents are extensible
2688 	 * and defined when opening an i915 perf stream based on the given
2689 	 * properties.
2690 	 *
2691 	 * Boolean properties following the naming convention
2692 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2693 	 * every sample.
2694 	 *
2695 	 * The order of these sample properties given by userspace has no
2696 	 * affect on the ordering of data within a sample. The order is
2697 	 * documented here.
2698 	 *
2699 	 * struct {
2700 	 *     struct drm_i915_perf_record_header header;
2701 	 *
2702 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2703 	 * };
2704 	 */
2705 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2706 
2707 	/*
2708 	 * Indicates that one or more OA reports were not written by the
2709 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2710 	 * command collides with periodic sampling - which would be more likely
2711 	 * at higher sampling frequencies.
2712 	 */
2713 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2714 
2715 	/**
2716 	 * An error occurred that resulted in all pending OA reports being lost.
2717 	 */
2718 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2719 
2720 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2721 };
2722 
2723 /**
2724  * struct drm_i915_perf_oa_config
2725  *
2726  * Structure to upload perf dynamic configuration into the kernel.
2727  */
2728 struct drm_i915_perf_oa_config {
2729 	/**
2730 	 * @uuid:
2731 	 *
2732 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2733 	 */
2734 	char uuid[36];
2735 
2736 	/**
2737 	 * @n_mux_regs:
2738 	 *
2739 	 * Number of mux regs in &mux_regs_ptr.
2740 	 */
2741 	__u32 n_mux_regs;
2742 
2743 	/**
2744 	 * @n_boolean_regs:
2745 	 *
2746 	 * Number of boolean regs in &boolean_regs_ptr.
2747 	 */
2748 	__u32 n_boolean_regs;
2749 
2750 	/**
2751 	 * @n_flex_regs:
2752 	 *
2753 	 * Number of flex regs in &flex_regs_ptr.
2754 	 */
2755 	__u32 n_flex_regs;
2756 
2757 	/**
2758 	 * @mux_regs_ptr:
2759 	 *
2760 	 * Pointer to tuples of u32 values (register address, value) for mux
2761 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2762 	 * &n_mux_regs).
2763 	 */
2764 	__u64 mux_regs_ptr;
2765 
2766 	/**
2767 	 * @boolean_regs_ptr:
2768 	 *
2769 	 * Pointer to tuples of u32 values (register address, value) for mux
2770 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2771 	 * &n_boolean_regs).
2772 	 */
2773 	__u64 boolean_regs_ptr;
2774 
2775 	/**
2776 	 * @flex_regs_ptr:
2777 	 *
2778 	 * Pointer to tuples of u32 values (register address, value) for mux
2779 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2780 	 * &n_flex_regs).
2781 	 */
2782 	__u64 flex_regs_ptr;
2783 };
2784 
2785 /**
2786  * struct drm_i915_query_item - An individual query for the kernel to process.
2787  *
2788  * The behaviour is determined by the @query_id. Note that exactly what
2789  * @data_ptr is also depends on the specific @query_id.
2790  */
2791 struct drm_i915_query_item {
2792 	/**
2793 	 * @query_id:
2794 	 *
2795 	 * The id for this query.  Currently accepted query IDs are:
2796 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2797 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2798 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2799 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2800 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2801 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2802 	 */
2803 	__u64 query_id;
2804 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
2805 #define DRM_I915_QUERY_ENGINE_INFO		2
2806 #define DRM_I915_QUERY_PERF_CONFIG		3
2807 #define DRM_I915_QUERY_MEMORY_REGIONS		4
2808 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
2809 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2810 /* Must be kept compact -- no holes and well documented */
2811 
2812 	/**
2813 	 * @length:
2814 	 *
2815 	 * When set to zero by userspace, this is filled with the size of the
2816 	 * data to be written at the @data_ptr pointer. The kernel sets this
2817 	 * value to a negative value to signal an error on a particular query
2818 	 * item.
2819 	 */
2820 	__s32 length;
2821 
2822 	/**
2823 	 * @flags:
2824 	 *
2825 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2826 	 *
2827 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2828 	 * following:
2829 	 *
2830 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2831 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2832 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2833 	 *
2834 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2835 	 * a struct i915_engine_class_instance that references a render engine.
2836 	 */
2837 	__u32 flags;
2838 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2839 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2840 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2841 
2842 	/**
2843 	 * @data_ptr:
2844 	 *
2845 	 * Data will be written at the location pointed by @data_ptr when the
2846 	 * value of @length matches the length of the data to be written by the
2847 	 * kernel.
2848 	 */
2849 	__u64 data_ptr;
2850 };
2851 
2852 /**
2853  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2854  * kernel to fill out.
2855  *
2856  * Note that this is generally a two step process for each struct
2857  * drm_i915_query_item in the array:
2858  *
2859  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2860  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2861  *    kernel will then fill in the size, in bytes, which tells userspace how
2862  *    memory it needs to allocate for the blob(say for an array of properties).
2863  *
2864  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2865  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2866  *    the &drm_i915_query_item.length should still be the same as what the
2867  *    kernel previously set. At this point the kernel can fill in the blob.
2868  *
2869  * Note that for some query items it can make sense for userspace to just pass
2870  * in a buffer/blob equal to or larger than the required size. In this case only
2871  * a single ioctl call is needed. For some smaller query items this can work
2872  * quite well.
2873  *
2874  */
2875 struct drm_i915_query {
2876 	/** @num_items: The number of elements in the @items_ptr array */
2877 	__u32 num_items;
2878 
2879 	/**
2880 	 * @flags: Unused for now. Must be cleared to zero.
2881 	 */
2882 	__u32 flags;
2883 
2884 	/**
2885 	 * @items_ptr:
2886 	 *
2887 	 * Pointer to an array of struct drm_i915_query_item. The number of
2888 	 * array elements is @num_items.
2889 	 */
2890 	__u64 items_ptr;
2891 };
2892 
2893 /**
2894  * struct drm_i915_query_topology_info
2895  *
2896  * Describes slice/subslice/EU information queried by
2897  * %DRM_I915_QUERY_TOPOLOGY_INFO
2898  */
2899 struct drm_i915_query_topology_info {
2900 	/**
2901 	 * @flags:
2902 	 *
2903 	 * Unused for now. Must be cleared to zero.
2904 	 */
2905 	__u16 flags;
2906 
2907 	/**
2908 	 * @max_slices:
2909 	 *
2910 	 * The number of bits used to express the slice mask.
2911 	 */
2912 	__u16 max_slices;
2913 
2914 	/**
2915 	 * @max_subslices:
2916 	 *
2917 	 * The number of bits used to express the subslice mask.
2918 	 */
2919 	__u16 max_subslices;
2920 
2921 	/**
2922 	 * @max_eus_per_subslice:
2923 	 *
2924 	 * The number of bits in the EU mask that correspond to a single
2925 	 * subslice's EUs.
2926 	 */
2927 	__u16 max_eus_per_subslice;
2928 
2929 	/**
2930 	 * @subslice_offset:
2931 	 *
2932 	 * Offset in data[] at which the subslice masks are stored.
2933 	 */
2934 	__u16 subslice_offset;
2935 
2936 	/**
2937 	 * @subslice_stride:
2938 	 *
2939 	 * Stride at which each of the subslice masks for each slice are
2940 	 * stored.
2941 	 */
2942 	__u16 subslice_stride;
2943 
2944 	/**
2945 	 * @eu_offset:
2946 	 *
2947 	 * Offset in data[] at which the EU masks are stored.
2948 	 */
2949 	__u16 eu_offset;
2950 
2951 	/**
2952 	 * @eu_stride:
2953 	 *
2954 	 * Stride at which each of the EU masks for each subslice are stored.
2955 	 */
2956 	__u16 eu_stride;
2957 
2958 	/**
2959 	 * @data:
2960 	 *
2961 	 * Contains 3 pieces of information :
2962 	 *
2963 	 * - The slice mask with one bit per slice telling whether a slice is
2964 	 *   available. The availability of slice X can be queried with the
2965 	 *   following formula :
2966 	 *
2967 	 *   .. code:: c
2968 	 *
2969 	 *      (data[X / 8] >> (X % 8)) & 1
2970 	 *
2971 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
2972 	 *   traditional slices so i915 will always report a single slice
2973 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
2974 	 *   subslices.  I.e., the mask here does not reflect any of the newer
2975 	 *   hardware concepts such as "gslices" or "cslices" since userspace
2976 	 *   is capable of inferring those from the subslice mask.
2977 	 *
2978 	 * - The subslice mask for each slice with one bit per subslice telling
2979 	 *   whether a subslice is available.  Starting with Gen12 we use the
2980 	 *   term "subslice" to refer to what the hardware documentation
2981 	 *   describes as a "dual-subslices."  The availability of subslice Y
2982 	 *   in slice X can be queried with the following formula :
2983 	 *
2984 	 *   .. code:: c
2985 	 *
2986 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
2987 	 *
2988 	 * - The EU mask for each subslice in each slice, with one bit per EU
2989 	 *   telling whether an EU is available. The availability of EU Z in
2990 	 *   subslice Y in slice X can be queried with the following formula :
2991 	 *
2992 	 *   .. code:: c
2993 	 *
2994 	 *      (data[eu_offset +
2995 	 *            (X * max_subslices + Y) * eu_stride +
2996 	 *            Z / 8
2997 	 *       ] >> (Z % 8)) & 1
2998 	 */
2999 	__u8 data[];
3000 };
3001 
3002 /**
3003  * DOC: Engine Discovery uAPI
3004  *
3005  * Engine discovery uAPI is a way of enumerating physical engines present in a
3006  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3007  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3008  * `I915_PARAM_HAS_BLT`.
3009  *
3010  * The need for this interface came starting with Icelake and newer GPUs, which
3011  * started to establish a pattern of having multiple engines of a same class,
3012  * where not all instances were always completely functionally equivalent.
3013  *
3014  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3015  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3016  *
3017  * Example for getting the list of engines:
3018  *
3019  * .. code-block:: C
3020  *
3021  * 	struct drm_i915_query_engine_info *info;
3022  * 	struct drm_i915_query_item item = {
3023  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3024  * 	};
3025  * 	struct drm_i915_query query = {
3026  * 		.num_items = 1,
3027  * 		.items_ptr = (uintptr_t)&item,
3028  * 	};
3029  * 	int err, i;
3030  *
3031  * 	// First query the size of the blob we need, this needs to be large
3032  * 	// enough to hold our array of engines. The kernel will fill out the
3033  * 	// item.length for us, which is the number of bytes we need.
3034  * 	//
3035  * 	// Alternatively a large buffer can be allocated straight away enabling
3036  * 	// querying in one pass, in which case item.length should contain the
3037  * 	// length of the provided buffer.
3038  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3039  * 	if (err) ...
3040  *
3041  * 	info = calloc(1, item.length);
3042  * 	// Now that we allocated the required number of bytes, we call the ioctl
3043  * 	// again, this time with the data_ptr pointing to our newly allocated
3044  * 	// blob, which the kernel can then populate with info on all engines.
3045  * 	item.data_ptr = (uintptr_t)&info,
3046  *
3047  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3048  * 	if (err) ...
3049  *
3050  * 	// We can now access each engine in the array
3051  * 	for (i = 0; i < info->num_engines; i++) {
3052  * 		struct drm_i915_engine_info einfo = info->engines[i];
3053  * 		u16 class = einfo.engine.class;
3054  * 		u16 instance = einfo.engine.instance;
3055  * 		....
3056  * 	}
3057  *
3058  * 	free(info);
3059  *
3060  * Each of the enumerated engines, apart from being defined by its class and
3061  * instance (see `struct i915_engine_class_instance`), also can have flags and
3062  * capabilities defined as documented in i915_drm.h.
3063  *
3064  * For instance video engines which support HEVC encoding will have the
3065  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3066  *
3067  * Engine discovery only fully comes to its own when combined with the new way
3068  * of addressing engines when submitting batch buffers using contexts with
3069  * engine maps configured.
3070  */
3071 
3072 /**
3073  * struct drm_i915_engine_info
3074  *
3075  * Describes one engine and it's capabilities as known to the driver.
3076  */
3077 struct drm_i915_engine_info {
3078 	/** @engine: Engine class and instance. */
3079 	struct i915_engine_class_instance engine;
3080 
3081 	/** @rsvd0: Reserved field. */
3082 	__u32 rsvd0;
3083 
3084 	/** @flags: Engine flags. */
3085 	__u64 flags;
3086 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3087 
3088 	/** @capabilities: Capabilities of this engine. */
3089 	__u64 capabilities;
3090 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3091 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3092 
3093 	/** @logical_instance: Logical instance of engine */
3094 	__u16 logical_instance;
3095 
3096 	/** @rsvd1: Reserved fields. */
3097 	__u16 rsvd1[3];
3098 	/** @rsvd2: Reserved fields. */
3099 	__u64 rsvd2[3];
3100 };
3101 
3102 /**
3103  * struct drm_i915_query_engine_info
3104  *
3105  * Engine info query enumerates all engines known to the driver by filling in
3106  * an array of struct drm_i915_engine_info structures.
3107  */
3108 struct drm_i915_query_engine_info {
3109 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3110 	__u32 num_engines;
3111 
3112 	/** @rsvd: MBZ */
3113 	__u32 rsvd[3];
3114 
3115 	/** @engines: Marker for drm_i915_engine_info structures. */
3116 	struct drm_i915_engine_info engines[];
3117 };
3118 
3119 /**
3120  * struct drm_i915_query_perf_config
3121  *
3122  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3123  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3124  */
3125 struct drm_i915_query_perf_config {
3126 	union {
3127 		/**
3128 		 * @n_configs:
3129 		 *
3130 		 * When &drm_i915_query_item.flags ==
3131 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3132 		 * the number of configurations available.
3133 		 */
3134 		__u64 n_configs;
3135 
3136 		/**
3137 		 * @config:
3138 		 *
3139 		 * When &drm_i915_query_item.flags ==
3140 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3141 		 * value in this field as configuration identifier to decide
3142 		 * what data to write into config_ptr.
3143 		 */
3144 		__u64 config;
3145 
3146 		/**
3147 		 * @uuid:
3148 		 *
3149 		 * When &drm_i915_query_item.flags ==
3150 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3151 		 * value in this field as configuration identifier to decide
3152 		 * what data to write into config_ptr.
3153 		 *
3154 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3155 		 */
3156 		char uuid[36];
3157 	};
3158 
3159 	/**
3160 	 * @flags:
3161 	 *
3162 	 * Unused for now. Must be cleared to zero.
3163 	 */
3164 	__u32 flags;
3165 
3166 	/**
3167 	 * @data:
3168 	 *
3169 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3170 	 * i915 will write an array of __u64 of configuration identifiers.
3171 	 *
3172 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3173 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3174 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3175 	 * write into the associated pointers the values of submitted when the
3176 	 * configuration was created :
3177 	 *
3178 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3179 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3180 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3181 	 */
3182 	__u8 data[];
3183 };
3184 
3185 /**
3186  * enum drm_i915_gem_memory_class - Supported memory classes
3187  */
3188 enum drm_i915_gem_memory_class {
3189 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3190 	I915_MEMORY_CLASS_SYSTEM = 0,
3191 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3192 	I915_MEMORY_CLASS_DEVICE,
3193 };
3194 
3195 /**
3196  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3197  */
3198 struct drm_i915_gem_memory_class_instance {
3199 	/** @memory_class: See enum drm_i915_gem_memory_class */
3200 	__u16 memory_class;
3201 
3202 	/** @memory_instance: Which instance */
3203 	__u16 memory_instance;
3204 };
3205 
3206 /**
3207  * struct drm_i915_memory_region_info - Describes one region as known to the
3208  * driver.
3209  *
3210  * Note that we reserve some stuff here for potential future work. As an example
3211  * we might want expose the capabilities for a given region, which could include
3212  * things like if the region is CPU mappable/accessible, what are the supported
3213  * mapping types etc.
3214  *
3215  * Note that to extend struct drm_i915_memory_region_info and struct
3216  * drm_i915_query_memory_regions in the future the plan is to do the following:
3217  *
3218  * .. code-block:: C
3219  *
3220  *	struct drm_i915_memory_region_info {
3221  *		struct drm_i915_gem_memory_class_instance region;
3222  *		union {
3223  *			__u32 rsvd0;
3224  *			__u32 new_thing1;
3225  *		};
3226  *		...
3227  *		union {
3228  *			__u64 rsvd1[8];
3229  *			struct {
3230  *				__u64 new_thing2;
3231  *				__u64 new_thing3;
3232  *				...
3233  *			};
3234  *		};
3235  *	};
3236  *
3237  * With this things should remain source compatible between versions for
3238  * userspace, even as we add new fields.
3239  *
3240  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3241  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3242  * at &drm_i915_query_item.query_id.
3243  */
3244 struct drm_i915_memory_region_info {
3245 	/** @region: The class:instance pair encoding */
3246 	struct drm_i915_gem_memory_class_instance region;
3247 
3248 	/** @rsvd0: MBZ */
3249 	__u32 rsvd0;
3250 
3251 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
3252 	__u64 probed_size;
3253 
3254 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
3255 	__u64 unallocated_size;
3256 
3257 	/** @rsvd1: MBZ */
3258 	__u64 rsvd1[8];
3259 };
3260 
3261 /**
3262  * struct drm_i915_query_memory_regions
3263  *
3264  * The region info query enumerates all regions known to the driver by filling
3265  * in an array of struct drm_i915_memory_region_info structures.
3266  *
3267  * Example for getting the list of supported regions:
3268  *
3269  * .. code-block:: C
3270  *
3271  *	struct drm_i915_query_memory_regions *info;
3272  *	struct drm_i915_query_item item = {
3273  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3274  *	};
3275  *	struct drm_i915_query query = {
3276  *		.num_items = 1,
3277  *		.items_ptr = (uintptr_t)&item,
3278  *	};
3279  *	int err, i;
3280  *
3281  *	// First query the size of the blob we need, this needs to be large
3282  *	// enough to hold our array of regions. The kernel will fill out the
3283  *	// item.length for us, which is the number of bytes we need.
3284  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3285  *	if (err) ...
3286  *
3287  *	info = calloc(1, item.length);
3288  *	// Now that we allocated the required number of bytes, we call the ioctl
3289  *	// again, this time with the data_ptr pointing to our newly allocated
3290  *	// blob, which the kernel can then populate with the all the region info.
3291  *	item.data_ptr = (uintptr_t)&info,
3292  *
3293  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3294  *	if (err) ...
3295  *
3296  *	// We can now access each region in the array
3297  *	for (i = 0; i < info->num_regions; i++) {
3298  *		struct drm_i915_memory_region_info mr = info->regions[i];
3299  *		u16 class = mr.region.class;
3300  *		u16 instance = mr.region.instance;
3301  *
3302  *		....
3303  *	}
3304  *
3305  *	free(info);
3306  */
3307 struct drm_i915_query_memory_regions {
3308 	/** @num_regions: Number of supported regions */
3309 	__u32 num_regions;
3310 
3311 	/** @rsvd: MBZ */
3312 	__u32 rsvd[3];
3313 
3314 	/** @regions: Info about each supported region */
3315 	struct drm_i915_memory_region_info regions[];
3316 };
3317 
3318 /**
3319  * DOC: GuC HWCONFIG blob uAPI
3320  *
3321  * The GuC produces a blob with information about the current device.
3322  * i915 reads this blob from GuC and makes it available via this uAPI.
3323  *
3324  * The format and meaning of the blob content are documented in the
3325  * Programmer's Reference Manual.
3326  */
3327 
3328 /**
3329  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3330  * extension support using struct i915_user_extension.
3331  *
3332  * Note that in the future we want to have our buffer flags here, at least for
3333  * the stuff that is immutable. Previously we would have two ioctls, one to
3334  * create the object with gem_create, and another to apply various parameters,
3335  * however this creates some ambiguity for the params which are considered
3336  * immutable. Also in general we're phasing out the various SET/GET ioctls.
3337  */
3338 struct drm_i915_gem_create_ext {
3339 	/**
3340 	 * @size: Requested size for the object.
3341 	 *
3342 	 * The (page-aligned) allocated size for the object will be returned.
3343 	 *
3344 	 *
3345 	 * DG2 64K min page size implications:
3346 	 *
3347 	 * On discrete platforms, starting from DG2, we have to contend with GTT
3348 	 * page size restrictions when dealing with I915_MEMORY_CLASS_DEVICE
3349 	 * objects.  Specifically the hardware only supports 64K or larger GTT
3350 	 * page sizes for such memory. The kernel will already ensure that all
3351 	 * I915_MEMORY_CLASS_DEVICE memory is allocated using 64K or larger page
3352 	 * sizes underneath.
3353 	 *
3354 	 * Note that the returned size here will always reflect any required
3355 	 * rounding up done by the kernel, i.e 4K will now become 64K on devices
3356 	 * such as DG2.
3357 	 *
3358 	 * Special DG2 GTT address alignment requirement:
3359 	 *
3360 	 * The GTT alignment will also need to be at least 2M for such objects.
3361 	 *
3362 	 * Note that due to how the hardware implements 64K GTT page support, we
3363 	 * have some further complications:
3364 	 *
3365 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3366 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3367 	 *   PDE is forbidden by the hardware.
3368 	 *
3369 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3370 	 *   objects.
3371 	 *
3372 	 * To keep things simple for userland, we mandate that any GTT mappings
3373 	 * must be aligned to and rounded up to 2MB. The kernel will internally
3374 	 * pad them out to the next 2MB boundary. As this only wastes virtual
3375 	 * address space and avoids userland having to copy any needlessly
3376 	 * complicated PDE sharing scheme (coloring) and only affects DG2, this
3377 	 * is deemed to be a good compromise.
3378 	 */
3379 	__u64 size;
3380 	/**
3381 	 * @handle: Returned handle for the object.
3382 	 *
3383 	 * Object handles are nonzero.
3384 	 */
3385 	__u32 handle;
3386 	/** @flags: MBZ */
3387 	__u32 flags;
3388 	/**
3389 	 * @extensions: The chain of extensions to apply to this object.
3390 	 *
3391 	 * This will be useful in the future when we need to support several
3392 	 * different extensions, and we need to apply more than one when
3393 	 * creating the object. See struct i915_user_extension.
3394 	 *
3395 	 * If we don't supply any extensions then we get the same old gem_create
3396 	 * behaviour.
3397 	 *
3398 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3399 	 * struct drm_i915_gem_create_ext_memory_regions.
3400 	 *
3401 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3402 	 * struct drm_i915_gem_create_ext_protected_content.
3403 	 */
3404 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3405 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3406 	__u64 extensions;
3407 };
3408 
3409 /**
3410  * struct drm_i915_gem_create_ext_memory_regions - The
3411  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3412  *
3413  * Set the object with the desired set of placements/regions in priority
3414  * order. Each entry must be unique and supported by the device.
3415  *
3416  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3417  * an equivalent layout of class:instance pair encodings. See struct
3418  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3419  * query the supported regions for a device.
3420  *
3421  * As an example, on discrete devices, if we wish to set the placement as
3422  * device local-memory we can do something like:
3423  *
3424  * .. code-block:: C
3425  *
3426  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3427  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3428  *              .memory_instance = 0,
3429  *      };
3430  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3431  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3432  *              .regions = (uintptr_t)&region_lmem,
3433  *              .num_regions = 1,
3434  *      };
3435  *      struct drm_i915_gem_create_ext create_ext = {
3436  *              .size = 16 * PAGE_SIZE,
3437  *              .extensions = (uintptr_t)&regions,
3438  *      };
3439  *
3440  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3441  *      if (err) ...
3442  *
3443  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3444  * along with the final object size in &drm_i915_gem_create_ext.size, which
3445  * should account for any rounding up, if required.
3446  */
3447 struct drm_i915_gem_create_ext_memory_regions {
3448 	/** @base: Extension link. See struct i915_user_extension. */
3449 	struct i915_user_extension base;
3450 
3451 	/** @pad: MBZ */
3452 	__u32 pad;
3453 	/** @num_regions: Number of elements in the @regions array. */
3454 	__u32 num_regions;
3455 	/**
3456 	 * @regions: The regions/placements array.
3457 	 *
3458 	 * An array of struct drm_i915_gem_memory_class_instance.
3459 	 */
3460 	__u64 regions;
3461 };
3462 
3463 /**
3464  * struct drm_i915_gem_create_ext_protected_content - The
3465  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3466  *
3467  * If this extension is provided, buffer contents are expected to be protected
3468  * by PXP encryption and require decryption for scan out and processing. This
3469  * is only possible on platforms that have PXP enabled, on all other scenarios
3470  * using this extension will cause the ioctl to fail and return -ENODEV. The
3471  * flags parameter is reserved for future expansion and must currently be set
3472  * to zero.
3473  *
3474  * The buffer contents are considered invalid after a PXP session teardown.
3475  *
3476  * The encryption is guaranteed to be processed correctly only if the object
3477  * is submitted with a context created using the
3478  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3479  * at submission time on the validity of the objects involved.
3480  *
3481  * Below is an example on how to create a protected object:
3482  *
3483  * .. code-block:: C
3484  *
3485  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3486  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3487  *              .flags = 0,
3488  *      };
3489  *      struct drm_i915_gem_create_ext create_ext = {
3490  *              .size = PAGE_SIZE,
3491  *              .extensions = (uintptr_t)&protected_ext,
3492  *      };
3493  *
3494  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3495  *      if (err) ...
3496  */
3497 struct drm_i915_gem_create_ext_protected_content {
3498 	/** @base: Extension link. See struct i915_user_extension. */
3499 	struct i915_user_extension base;
3500 	/** @flags: reserved for future usage, currently MBZ */
3501 	__u32 flags;
3502 };
3503 
3504 /* ID of the protected content session managed by i915 when PXP is active */
3505 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3506 
3507 #if defined(__cplusplus)
3508 }
3509 #endif
3510 
3511 #endif /* _UAPI_I915_DRM_H_ */
3512