xref: /linux/tools/include/uapi/drm/i915_drm.h (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /*
66  * i915_user_extension: Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  */
80 struct i915_user_extension {
81 	__u64 next_extension;
82 	__u32 name;
83 	__u32 flags; /* All undefined bits must be zero. */
84 	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
85 };
86 
87 /*
88  * MOCS indexes used for GPU surfaces, defining the cacheability of the
89  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
90  */
91 enum i915_mocs_table_index {
92 	/*
93 	 * Not cached anywhere, coherency between CPU and GPU accesses is
94 	 * guaranteed.
95 	 */
96 	I915_MOCS_UNCACHED,
97 	/*
98 	 * Cacheability and coherency controlled by the kernel automatically
99 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
100 	 * usage of the surface (used for display scanout or not).
101 	 */
102 	I915_MOCS_PTE,
103 	/*
104 	 * Cached in all GPU caches available on the platform.
105 	 * Coherency between CPU and GPU accesses to the surface is not
106 	 * guaranteed without extra synchronization.
107 	 */
108 	I915_MOCS_CACHED,
109 };
110 
111 /*
112  * Different engines serve different roles, and there may be more than one
113  * engine serving each role. enum drm_i915_gem_engine_class provides a
114  * classification of the role of the engine, which may be used when requesting
115  * operations to be performed on a certain subset of engines, or for providing
116  * information about that group.
117  */
118 enum drm_i915_gem_engine_class {
119 	I915_ENGINE_CLASS_RENDER	= 0,
120 	I915_ENGINE_CLASS_COPY		= 1,
121 	I915_ENGINE_CLASS_VIDEO		= 2,
122 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
123 
124 	/* should be kept compact */
125 
126 	I915_ENGINE_CLASS_INVALID	= -1
127 };
128 
129 /*
130  * There may be more than one engine fulfilling any role within the system.
131  * Each engine of a class is given a unique instance number and therefore
132  * any engine can be specified by its class:instance tuplet. APIs that allow
133  * access to any engine in the system will use struct i915_engine_class_instance
134  * for this identification.
135  */
136 struct i915_engine_class_instance {
137 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
138 	__u16 engine_instance;
139 #define I915_ENGINE_CLASS_INVALID_NONE -1
140 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
141 };
142 
143 /**
144  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
145  *
146  */
147 
148 enum drm_i915_pmu_engine_sample {
149 	I915_SAMPLE_BUSY = 0,
150 	I915_SAMPLE_WAIT = 1,
151 	I915_SAMPLE_SEMA = 2
152 };
153 
154 #define I915_PMU_SAMPLE_BITS (4)
155 #define I915_PMU_SAMPLE_MASK (0xf)
156 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
157 #define I915_PMU_CLASS_SHIFT \
158 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
159 
160 #define __I915_PMU_ENGINE(class, instance, sample) \
161 	((class) << I915_PMU_CLASS_SHIFT | \
162 	(instance) << I915_PMU_SAMPLE_BITS | \
163 	(sample))
164 
165 #define I915_PMU_ENGINE_BUSY(class, instance) \
166 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
167 
168 #define I915_PMU_ENGINE_WAIT(class, instance) \
169 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
170 
171 #define I915_PMU_ENGINE_SEMA(class, instance) \
172 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
173 
174 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
175 
176 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
177 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
178 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
179 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
180 
181 #define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
182 
183 /* Each region is a minimum of 16k, and there are at most 255 of them.
184  */
185 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
186 				 * of chars for next/prev indices */
187 #define I915_LOG_MIN_TEX_REGION_SIZE 14
188 
189 typedef struct _drm_i915_init {
190 	enum {
191 		I915_INIT_DMA = 0x01,
192 		I915_CLEANUP_DMA = 0x02,
193 		I915_RESUME_DMA = 0x03
194 	} func;
195 	unsigned int mmio_offset;
196 	int sarea_priv_offset;
197 	unsigned int ring_start;
198 	unsigned int ring_end;
199 	unsigned int ring_size;
200 	unsigned int front_offset;
201 	unsigned int back_offset;
202 	unsigned int depth_offset;
203 	unsigned int w;
204 	unsigned int h;
205 	unsigned int pitch;
206 	unsigned int pitch_bits;
207 	unsigned int back_pitch;
208 	unsigned int depth_pitch;
209 	unsigned int cpp;
210 	unsigned int chipset;
211 } drm_i915_init_t;
212 
213 typedef struct _drm_i915_sarea {
214 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
215 	int last_upload;	/* last time texture was uploaded */
216 	int last_enqueue;	/* last time a buffer was enqueued */
217 	int last_dispatch;	/* age of the most recently dispatched buffer */
218 	int ctxOwner;		/* last context to upload state */
219 	int texAge;
220 	int pf_enabled;		/* is pageflipping allowed? */
221 	int pf_active;
222 	int pf_current_page;	/* which buffer is being displayed? */
223 	int perf_boxes;		/* performance boxes to be displayed */
224 	int width, height;      /* screen size in pixels */
225 
226 	drm_handle_t front_handle;
227 	int front_offset;
228 	int front_size;
229 
230 	drm_handle_t back_handle;
231 	int back_offset;
232 	int back_size;
233 
234 	drm_handle_t depth_handle;
235 	int depth_offset;
236 	int depth_size;
237 
238 	drm_handle_t tex_handle;
239 	int tex_offset;
240 	int tex_size;
241 	int log_tex_granularity;
242 	int pitch;
243 	int rotation;           /* 0, 90, 180 or 270 */
244 	int rotated_offset;
245 	int rotated_size;
246 	int rotated_pitch;
247 	int virtualX, virtualY;
248 
249 	unsigned int front_tiled;
250 	unsigned int back_tiled;
251 	unsigned int depth_tiled;
252 	unsigned int rotated_tiled;
253 	unsigned int rotated2_tiled;
254 
255 	int pipeA_x;
256 	int pipeA_y;
257 	int pipeA_w;
258 	int pipeA_h;
259 	int pipeB_x;
260 	int pipeB_y;
261 	int pipeB_w;
262 	int pipeB_h;
263 
264 	/* fill out some space for old userspace triple buffer */
265 	drm_handle_t unused_handle;
266 	__u32 unused1, unused2, unused3;
267 
268 	/* buffer object handles for static buffers. May change
269 	 * over the lifetime of the client.
270 	 */
271 	__u32 front_bo_handle;
272 	__u32 back_bo_handle;
273 	__u32 unused_bo_handle;
274 	__u32 depth_bo_handle;
275 
276 } drm_i915_sarea_t;
277 
278 /* due to userspace building against these headers we need some compat here */
279 #define planeA_x pipeA_x
280 #define planeA_y pipeA_y
281 #define planeA_w pipeA_w
282 #define planeA_h pipeA_h
283 #define planeB_x pipeB_x
284 #define planeB_y pipeB_y
285 #define planeB_w pipeB_w
286 #define planeB_h pipeB_h
287 
288 /* Flags for perf_boxes
289  */
290 #define I915_BOX_RING_EMPTY    0x1
291 #define I915_BOX_FLIP          0x2
292 #define I915_BOX_WAIT          0x4
293 #define I915_BOX_TEXTURE_LOAD  0x8
294 #define I915_BOX_LOST_CONTEXT  0x10
295 
296 /*
297  * i915 specific ioctls.
298  *
299  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
300  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
301  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
302  */
303 #define DRM_I915_INIT		0x00
304 #define DRM_I915_FLUSH		0x01
305 #define DRM_I915_FLIP		0x02
306 #define DRM_I915_BATCHBUFFER	0x03
307 #define DRM_I915_IRQ_EMIT	0x04
308 #define DRM_I915_IRQ_WAIT	0x05
309 #define DRM_I915_GETPARAM	0x06
310 #define DRM_I915_SETPARAM	0x07
311 #define DRM_I915_ALLOC		0x08
312 #define DRM_I915_FREE		0x09
313 #define DRM_I915_INIT_HEAP	0x0a
314 #define DRM_I915_CMDBUFFER	0x0b
315 #define DRM_I915_DESTROY_HEAP	0x0c
316 #define DRM_I915_SET_VBLANK_PIPE	0x0d
317 #define DRM_I915_GET_VBLANK_PIPE	0x0e
318 #define DRM_I915_VBLANK_SWAP	0x0f
319 #define DRM_I915_HWS_ADDR	0x11
320 #define DRM_I915_GEM_INIT	0x13
321 #define DRM_I915_GEM_EXECBUFFER	0x14
322 #define DRM_I915_GEM_PIN	0x15
323 #define DRM_I915_GEM_UNPIN	0x16
324 #define DRM_I915_GEM_BUSY	0x17
325 #define DRM_I915_GEM_THROTTLE	0x18
326 #define DRM_I915_GEM_ENTERVT	0x19
327 #define DRM_I915_GEM_LEAVEVT	0x1a
328 #define DRM_I915_GEM_CREATE	0x1b
329 #define DRM_I915_GEM_PREAD	0x1c
330 #define DRM_I915_GEM_PWRITE	0x1d
331 #define DRM_I915_GEM_MMAP	0x1e
332 #define DRM_I915_GEM_SET_DOMAIN	0x1f
333 #define DRM_I915_GEM_SW_FINISH	0x20
334 #define DRM_I915_GEM_SET_TILING	0x21
335 #define DRM_I915_GEM_GET_TILING	0x22
336 #define DRM_I915_GEM_GET_APERTURE 0x23
337 #define DRM_I915_GEM_MMAP_GTT	0x24
338 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
339 #define DRM_I915_GEM_MADVISE	0x26
340 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
341 #define DRM_I915_OVERLAY_ATTRS	0x28
342 #define DRM_I915_GEM_EXECBUFFER2	0x29
343 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
344 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
345 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
346 #define DRM_I915_GEM_WAIT	0x2c
347 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
348 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
349 #define DRM_I915_GEM_SET_CACHING	0x2f
350 #define DRM_I915_GEM_GET_CACHING	0x30
351 #define DRM_I915_REG_READ		0x31
352 #define DRM_I915_GET_RESET_STATS	0x32
353 #define DRM_I915_GEM_USERPTR		0x33
354 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
355 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
356 #define DRM_I915_PERF_OPEN		0x36
357 #define DRM_I915_PERF_ADD_CONFIG	0x37
358 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
359 #define DRM_I915_QUERY			0x39
360 #define DRM_I915_GEM_VM_CREATE		0x3a
361 #define DRM_I915_GEM_VM_DESTROY		0x3b
362 /* Must be kept compact -- no holes */
363 
364 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
365 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
366 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
367 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
368 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
369 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
370 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
371 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
372 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
373 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
374 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
375 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
376 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
377 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
378 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
379 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
380 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
381 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
382 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
383 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
384 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
385 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
386 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
387 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
388 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
389 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
390 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
391 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
392 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
393 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
394 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
395 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
396 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
397 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
398 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
399 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
400 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
401 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
402 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
403 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
404 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
405 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
406 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
407 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
408 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
409 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
410 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
411 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
412 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
413 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
414 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
415 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
416 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
417 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
418 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
419 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
420 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
421 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
422 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
423 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
424 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
425 
426 /* Allow drivers to submit batchbuffers directly to hardware, relying
427  * on the security mechanisms provided by hardware.
428  */
429 typedef struct drm_i915_batchbuffer {
430 	int start;		/* agp offset */
431 	int used;		/* nr bytes in use */
432 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
433 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
434 	int num_cliprects;	/* mulitpass with multiple cliprects? */
435 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
436 } drm_i915_batchbuffer_t;
437 
438 /* As above, but pass a pointer to userspace buffer which can be
439  * validated by the kernel prior to sending to hardware.
440  */
441 typedef struct _drm_i915_cmdbuffer {
442 	char __user *buf;	/* pointer to userspace command buffer */
443 	int sz;			/* nr bytes in buf */
444 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
445 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
446 	int num_cliprects;	/* mulitpass with multiple cliprects? */
447 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
448 } drm_i915_cmdbuffer_t;
449 
450 /* Userspace can request & wait on irq's:
451  */
452 typedef struct drm_i915_irq_emit {
453 	int __user *irq_seq;
454 } drm_i915_irq_emit_t;
455 
456 typedef struct drm_i915_irq_wait {
457 	int irq_seq;
458 } drm_i915_irq_wait_t;
459 
460 /*
461  * Different modes of per-process Graphics Translation Table,
462  * see I915_PARAM_HAS_ALIASING_PPGTT
463  */
464 #define I915_GEM_PPGTT_NONE	0
465 #define I915_GEM_PPGTT_ALIASING	1
466 #define I915_GEM_PPGTT_FULL	2
467 
468 /* Ioctl to query kernel params:
469  */
470 #define I915_PARAM_IRQ_ACTIVE            1
471 #define I915_PARAM_ALLOW_BATCHBUFFER     2
472 #define I915_PARAM_LAST_DISPATCH         3
473 #define I915_PARAM_CHIPSET_ID            4
474 #define I915_PARAM_HAS_GEM               5
475 #define I915_PARAM_NUM_FENCES_AVAIL      6
476 #define I915_PARAM_HAS_OVERLAY           7
477 #define I915_PARAM_HAS_PAGEFLIPPING	 8
478 #define I915_PARAM_HAS_EXECBUF2          9
479 #define I915_PARAM_HAS_BSD		 10
480 #define I915_PARAM_HAS_BLT		 11
481 #define I915_PARAM_HAS_RELAXED_FENCING	 12
482 #define I915_PARAM_HAS_COHERENT_RINGS	 13
483 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
484 #define I915_PARAM_HAS_RELAXED_DELTA	 15
485 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
486 #define I915_PARAM_HAS_LLC     	 	 17
487 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
488 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
489 #define I915_PARAM_HAS_SEMAPHORES	 20
490 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
491 #define I915_PARAM_HAS_VEBOX		 22
492 #define I915_PARAM_HAS_SECURE_BATCHES	 23
493 #define I915_PARAM_HAS_PINNED_BATCHES	 24
494 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
495 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
496 #define I915_PARAM_HAS_WT     	 	 27
497 #define I915_PARAM_CMD_PARSER_VERSION	 28
498 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
499 #define I915_PARAM_MMAP_VERSION          30
500 #define I915_PARAM_HAS_BSD2		 31
501 #define I915_PARAM_REVISION              32
502 #define I915_PARAM_SUBSLICE_TOTAL	 33
503 #define I915_PARAM_EU_TOTAL		 34
504 #define I915_PARAM_HAS_GPU_RESET	 35
505 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
506 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
507 #define I915_PARAM_HAS_POOLED_EU	 38
508 #define I915_PARAM_MIN_EU_IN_POOL	 39
509 #define I915_PARAM_MMAP_GTT_VERSION	 40
510 
511 /*
512  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
513  * priorities and the driver will attempt to execute batches in priority order.
514  * The param returns a capability bitmask, nonzero implies that the scheduler
515  * is enabled, with different features present according to the mask.
516  *
517  * The initial priority for each batch is supplied by the context and is
518  * controlled via I915_CONTEXT_PARAM_PRIORITY.
519  */
520 #define I915_PARAM_HAS_SCHEDULER	 41
521 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
522 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
523 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
524 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
525 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
526 
527 #define I915_PARAM_HUC_STATUS		 42
528 
529 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
530  * synchronisation with implicit fencing on individual objects.
531  * See EXEC_OBJECT_ASYNC.
532  */
533 #define I915_PARAM_HAS_EXEC_ASYNC	 43
534 
535 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
536  * both being able to pass in a sync_file fd to wait upon before executing,
537  * and being able to return a new sync_file fd that is signaled when the
538  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
539  */
540 #define I915_PARAM_HAS_EXEC_FENCE	 44
541 
542 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
543  * user specified bufffers for post-mortem debugging of GPU hangs. See
544  * EXEC_OBJECT_CAPTURE.
545  */
546 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
547 
548 #define I915_PARAM_SLICE_MASK		 46
549 
550 /* Assuming it's uniform for each slice, this queries the mask of subslices
551  * per-slice for this system.
552  */
553 #define I915_PARAM_SUBSLICE_MASK	 47
554 
555 /*
556  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
557  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
558  */
559 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
560 
561 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
562  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
563  */
564 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
565 
566 /*
567  * Query whether every context (both per-file default and user created) is
568  * isolated (insofar as HW supports). If this parameter is not true, then
569  * freshly created contexts may inherit values from an existing context,
570  * rather than default HW values. If true, it also ensures (insofar as HW
571  * supports) that all state set by this context will not leak to any other
572  * context.
573  *
574  * As not every engine across every gen support contexts, the returned
575  * value reports the support of context isolation for individual engines by
576  * returning a bitmask of each engine class set to true if that class supports
577  * isolation.
578  */
579 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
580 
581 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
582  * registers. This used to be fixed per platform but from CNL onwards, this
583  * might vary depending on the parts.
584  */
585 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
586 
587 /*
588  * Once upon a time we supposed that writes through the GGTT would be
589  * immediately in physical memory (once flushed out of the CPU path). However,
590  * on a few different processors and chipsets, this is not necessarily the case
591  * as the writes appear to be buffered internally. Thus a read of the backing
592  * storage (physical memory) via a different path (with different physical tags
593  * to the indirect write via the GGTT) will see stale values from before
594  * the GGTT write. Inside the kernel, we can for the most part keep track of
595  * the different read/write domains in use (e.g. set-domain), but the assumption
596  * of coherency is baked into the ABI, hence reporting its true state in this
597  * parameter.
598  *
599  * Reports true when writes via mmap_gtt are immediately visible following an
600  * lfence to flush the WCB.
601  *
602  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
603  * internal buffer and are _not_ immediately visible to third parties accessing
604  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
605  * communications channel when reporting false is strongly disadvised.
606  */
607 #define I915_PARAM_MMAP_GTT_COHERENT	52
608 
609 /*
610  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
611  * execution through use of explicit fence support.
612  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
613  */
614 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
615 
616 /*
617  * Revision of the i915-perf uAPI. The value returned helps determine what
618  * i915-perf features are available. See drm_i915_perf_property_id.
619  */
620 #define I915_PARAM_PERF_REVISION	54
621 
622 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
623  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
624  * I915_EXEC_USE_EXTENSIONS.
625  */
626 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
627 
628 /* Must be kept compact -- no holes and well documented */
629 
630 typedef struct drm_i915_getparam {
631 	__s32 param;
632 	/*
633 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
634 	 * compat32 code. Don't repeat this mistake.
635 	 */
636 	int __user *value;
637 } drm_i915_getparam_t;
638 
639 /* Ioctl to set kernel params:
640  */
641 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
642 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
643 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
644 #define I915_SETPARAM_NUM_USED_FENCES                     4
645 /* Must be kept compact -- no holes */
646 
647 typedef struct drm_i915_setparam {
648 	int param;
649 	int value;
650 } drm_i915_setparam_t;
651 
652 /* A memory manager for regions of shared memory:
653  */
654 #define I915_MEM_REGION_AGP 1
655 
656 typedef struct drm_i915_mem_alloc {
657 	int region;
658 	int alignment;
659 	int size;
660 	int __user *region_offset;	/* offset from start of fb or agp */
661 } drm_i915_mem_alloc_t;
662 
663 typedef struct drm_i915_mem_free {
664 	int region;
665 	int region_offset;
666 } drm_i915_mem_free_t;
667 
668 typedef struct drm_i915_mem_init_heap {
669 	int region;
670 	int size;
671 	int start;
672 } drm_i915_mem_init_heap_t;
673 
674 /* Allow memory manager to be torn down and re-initialized (eg on
675  * rotate):
676  */
677 typedef struct drm_i915_mem_destroy_heap {
678 	int region;
679 } drm_i915_mem_destroy_heap_t;
680 
681 /* Allow X server to configure which pipes to monitor for vblank signals
682  */
683 #define	DRM_I915_VBLANK_PIPE_A	1
684 #define	DRM_I915_VBLANK_PIPE_B	2
685 
686 typedef struct drm_i915_vblank_pipe {
687 	int pipe;
688 } drm_i915_vblank_pipe_t;
689 
690 /* Schedule buffer swap at given vertical blank:
691  */
692 typedef struct drm_i915_vblank_swap {
693 	drm_drawable_t drawable;
694 	enum drm_vblank_seq_type seqtype;
695 	unsigned int sequence;
696 } drm_i915_vblank_swap_t;
697 
698 typedef struct drm_i915_hws_addr {
699 	__u64 addr;
700 } drm_i915_hws_addr_t;
701 
702 struct drm_i915_gem_init {
703 	/**
704 	 * Beginning offset in the GTT to be managed by the DRM memory
705 	 * manager.
706 	 */
707 	__u64 gtt_start;
708 	/**
709 	 * Ending offset in the GTT to be managed by the DRM memory
710 	 * manager.
711 	 */
712 	__u64 gtt_end;
713 };
714 
715 struct drm_i915_gem_create {
716 	/**
717 	 * Requested size for the object.
718 	 *
719 	 * The (page-aligned) allocated size for the object will be returned.
720 	 */
721 	__u64 size;
722 	/**
723 	 * Returned handle for the object.
724 	 *
725 	 * Object handles are nonzero.
726 	 */
727 	__u32 handle;
728 	__u32 pad;
729 };
730 
731 struct drm_i915_gem_pread {
732 	/** Handle for the object being read. */
733 	__u32 handle;
734 	__u32 pad;
735 	/** Offset into the object to read from */
736 	__u64 offset;
737 	/** Length of data to read */
738 	__u64 size;
739 	/**
740 	 * Pointer to write the data into.
741 	 *
742 	 * This is a fixed-size type for 32/64 compatibility.
743 	 */
744 	__u64 data_ptr;
745 };
746 
747 struct drm_i915_gem_pwrite {
748 	/** Handle for the object being written to. */
749 	__u32 handle;
750 	__u32 pad;
751 	/** Offset into the object to write to */
752 	__u64 offset;
753 	/** Length of data to write */
754 	__u64 size;
755 	/**
756 	 * Pointer to read the data from.
757 	 *
758 	 * This is a fixed-size type for 32/64 compatibility.
759 	 */
760 	__u64 data_ptr;
761 };
762 
763 struct drm_i915_gem_mmap {
764 	/** Handle for the object being mapped. */
765 	__u32 handle;
766 	__u32 pad;
767 	/** Offset in the object to map. */
768 	__u64 offset;
769 	/**
770 	 * Length of data to map.
771 	 *
772 	 * The value will be page-aligned.
773 	 */
774 	__u64 size;
775 	/**
776 	 * Returned pointer the data was mapped at.
777 	 *
778 	 * This is a fixed-size type for 32/64 compatibility.
779 	 */
780 	__u64 addr_ptr;
781 
782 	/**
783 	 * Flags for extended behaviour.
784 	 *
785 	 * Added in version 2.
786 	 */
787 	__u64 flags;
788 #define I915_MMAP_WC 0x1
789 };
790 
791 struct drm_i915_gem_mmap_gtt {
792 	/** Handle for the object being mapped. */
793 	__u32 handle;
794 	__u32 pad;
795 	/**
796 	 * Fake offset to use for subsequent mmap call
797 	 *
798 	 * This is a fixed-size type for 32/64 compatibility.
799 	 */
800 	__u64 offset;
801 };
802 
803 struct drm_i915_gem_mmap_offset {
804 	/** Handle for the object being mapped. */
805 	__u32 handle;
806 	__u32 pad;
807 	/**
808 	 * Fake offset to use for subsequent mmap call
809 	 *
810 	 * This is a fixed-size type for 32/64 compatibility.
811 	 */
812 	__u64 offset;
813 
814 	/**
815 	 * Flags for extended behaviour.
816 	 *
817 	 * It is mandatory that one of the MMAP_OFFSET types
818 	 * (GTT, WC, WB, UC, etc) should be included.
819 	 */
820 	__u64 flags;
821 #define I915_MMAP_OFFSET_GTT 0
822 #define I915_MMAP_OFFSET_WC  1
823 #define I915_MMAP_OFFSET_WB  2
824 #define I915_MMAP_OFFSET_UC  3
825 
826 	/*
827 	 * Zero-terminated chain of extensions.
828 	 *
829 	 * No current extensions defined; mbz.
830 	 */
831 	__u64 extensions;
832 };
833 
834 struct drm_i915_gem_set_domain {
835 	/** Handle for the object */
836 	__u32 handle;
837 
838 	/** New read domains */
839 	__u32 read_domains;
840 
841 	/** New write domain */
842 	__u32 write_domain;
843 };
844 
845 struct drm_i915_gem_sw_finish {
846 	/** Handle for the object */
847 	__u32 handle;
848 };
849 
850 struct drm_i915_gem_relocation_entry {
851 	/**
852 	 * Handle of the buffer being pointed to by this relocation entry.
853 	 *
854 	 * It's appealing to make this be an index into the mm_validate_entry
855 	 * list to refer to the buffer, but this allows the driver to create
856 	 * a relocation list for state buffers and not re-write it per
857 	 * exec using the buffer.
858 	 */
859 	__u32 target_handle;
860 
861 	/**
862 	 * Value to be added to the offset of the target buffer to make up
863 	 * the relocation entry.
864 	 */
865 	__u32 delta;
866 
867 	/** Offset in the buffer the relocation entry will be written into */
868 	__u64 offset;
869 
870 	/**
871 	 * Offset value of the target buffer that the relocation entry was last
872 	 * written as.
873 	 *
874 	 * If the buffer has the same offset as last time, we can skip syncing
875 	 * and writing the relocation.  This value is written back out by
876 	 * the execbuffer ioctl when the relocation is written.
877 	 */
878 	__u64 presumed_offset;
879 
880 	/**
881 	 * Target memory domains read by this operation.
882 	 */
883 	__u32 read_domains;
884 
885 	/**
886 	 * Target memory domains written by this operation.
887 	 *
888 	 * Note that only one domain may be written by the whole
889 	 * execbuffer operation, so that where there are conflicts,
890 	 * the application will get -EINVAL back.
891 	 */
892 	__u32 write_domain;
893 };
894 
895 /** @{
896  * Intel memory domains
897  *
898  * Most of these just align with the various caches in
899  * the system and are used to flush and invalidate as
900  * objects end up cached in different domains.
901  */
902 /** CPU cache */
903 #define I915_GEM_DOMAIN_CPU		0x00000001
904 /** Render cache, used by 2D and 3D drawing */
905 #define I915_GEM_DOMAIN_RENDER		0x00000002
906 /** Sampler cache, used by texture engine */
907 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
908 /** Command queue, used to load batch buffers */
909 #define I915_GEM_DOMAIN_COMMAND		0x00000008
910 /** Instruction cache, used by shader programs */
911 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
912 /** Vertex address cache */
913 #define I915_GEM_DOMAIN_VERTEX		0x00000020
914 /** GTT domain - aperture and scanout */
915 #define I915_GEM_DOMAIN_GTT		0x00000040
916 /** WC domain - uncached access */
917 #define I915_GEM_DOMAIN_WC		0x00000080
918 /** @} */
919 
920 struct drm_i915_gem_exec_object {
921 	/**
922 	 * User's handle for a buffer to be bound into the GTT for this
923 	 * operation.
924 	 */
925 	__u32 handle;
926 
927 	/** Number of relocations to be performed on this buffer */
928 	__u32 relocation_count;
929 	/**
930 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
931 	 * the relocations to be performed in this buffer.
932 	 */
933 	__u64 relocs_ptr;
934 
935 	/** Required alignment in graphics aperture */
936 	__u64 alignment;
937 
938 	/**
939 	 * Returned value of the updated offset of the object, for future
940 	 * presumed_offset writes.
941 	 */
942 	__u64 offset;
943 };
944 
945 struct drm_i915_gem_execbuffer {
946 	/**
947 	 * List of buffers to be validated with their relocations to be
948 	 * performend on them.
949 	 *
950 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
951 	 *
952 	 * These buffers must be listed in an order such that all relocations
953 	 * a buffer is performing refer to buffers that have already appeared
954 	 * in the validate list.
955 	 */
956 	__u64 buffers_ptr;
957 	__u32 buffer_count;
958 
959 	/** Offset in the batchbuffer to start execution from. */
960 	__u32 batch_start_offset;
961 	/** Bytes used in batchbuffer from batch_start_offset */
962 	__u32 batch_len;
963 	__u32 DR1;
964 	__u32 DR4;
965 	__u32 num_cliprects;
966 	/** This is a struct drm_clip_rect *cliprects */
967 	__u64 cliprects_ptr;
968 };
969 
970 struct drm_i915_gem_exec_object2 {
971 	/**
972 	 * User's handle for a buffer to be bound into the GTT for this
973 	 * operation.
974 	 */
975 	__u32 handle;
976 
977 	/** Number of relocations to be performed on this buffer */
978 	__u32 relocation_count;
979 	/**
980 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
981 	 * the relocations to be performed in this buffer.
982 	 */
983 	__u64 relocs_ptr;
984 
985 	/** Required alignment in graphics aperture */
986 	__u64 alignment;
987 
988 	/**
989 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
990 	 * the user with the GTT offset at which this object will be pinned.
991 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
992 	 * presumed_offset of the object.
993 	 * During execbuffer2 the kernel populates it with the value of the
994 	 * current GTT offset of the object, for future presumed_offset writes.
995 	 */
996 	__u64 offset;
997 
998 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
999 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1000 #define EXEC_OBJECT_WRITE		 (1<<2)
1001 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1002 #define EXEC_OBJECT_PINNED		 (1<<4)
1003 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1004 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1005  * synchronises operations with outstanding rendering. This includes
1006  * rendering on other devices if exported via dma-buf. However, sometimes
1007  * this tracking is too coarse and the user knows better. For example,
1008  * if the object is split into non-overlapping ranges shared between different
1009  * clients or engines (i.e. suballocating objects), the implicit tracking
1010  * by kernel assumes that each operation affects the whole object rather
1011  * than an individual range, causing needless synchronisation between clients.
1012  * The kernel will also forgo any CPU cache flushes prior to rendering from
1013  * the object as the client is expected to be also handling such domain
1014  * tracking.
1015  *
1016  * The kernel maintains the implicit tracking in order to manage resources
1017  * used by the GPU - this flag only disables the synchronisation prior to
1018  * rendering with this object in this execbuf.
1019  *
1020  * Opting out of implicit synhronisation requires the user to do its own
1021  * explicit tracking to avoid rendering corruption. See, for example,
1022  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1023  */
1024 #define EXEC_OBJECT_ASYNC		(1<<6)
1025 /* Request that the contents of this execobject be copied into the error
1026  * state upon a GPU hang involving this batch for post-mortem debugging.
1027  * These buffers are recorded in no particular order as "user" in
1028  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1029  * if the kernel supports this flag.
1030  */
1031 #define EXEC_OBJECT_CAPTURE		(1<<7)
1032 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1033 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1034 	__u64 flags;
1035 
1036 	union {
1037 		__u64 rsvd1;
1038 		__u64 pad_to_size;
1039 	};
1040 	__u64 rsvd2;
1041 };
1042 
1043 struct drm_i915_gem_exec_fence {
1044 	/**
1045 	 * User's handle for a drm_syncobj to wait on or signal.
1046 	 */
1047 	__u32 handle;
1048 
1049 #define I915_EXEC_FENCE_WAIT            (1<<0)
1050 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1051 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1052 	__u32 flags;
1053 };
1054 
1055 /**
1056  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1057  */
1058 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1059 
1060 /**
1061  * This structure describes an array of drm_syncobj and associated points for
1062  * timeline variants of drm_syncobj. It is invalid to append this structure to
1063  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1064  */
1065 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1066 	struct i915_user_extension base;
1067 
1068 	/**
1069 	 * Number of element in the handles_ptr & value_ptr arrays.
1070 	 */
1071 	__u64 fence_count;
1072 
1073 	/**
1074 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1075 	 * fence_count.
1076 	 */
1077 	__u64 handles_ptr;
1078 
1079 	/**
1080 	 * Pointer to an array of u64 values of length fence_count. Values
1081 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1082 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1083 	 */
1084 	__u64 values_ptr;
1085 };
1086 
1087 struct drm_i915_gem_execbuffer2 {
1088 	/**
1089 	 * List of gem_exec_object2 structs
1090 	 */
1091 	__u64 buffers_ptr;
1092 	__u32 buffer_count;
1093 
1094 	/** Offset in the batchbuffer to start execution from. */
1095 	__u32 batch_start_offset;
1096 	/** Bytes used in batchbuffer from batch_start_offset */
1097 	__u32 batch_len;
1098 	__u32 DR1;
1099 	__u32 DR4;
1100 	__u32 num_cliprects;
1101 	/**
1102 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1103 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1104 	 *
1105 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1106 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1107 	 * of the array.
1108 	 *
1109 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1110 	 * single struct i915_user_extension and num_cliprects is 0.
1111 	 */
1112 	__u64 cliprects_ptr;
1113 #define I915_EXEC_RING_MASK              (0x3f)
1114 #define I915_EXEC_DEFAULT                (0<<0)
1115 #define I915_EXEC_RENDER                 (1<<0)
1116 #define I915_EXEC_BSD                    (2<<0)
1117 #define I915_EXEC_BLT                    (3<<0)
1118 #define I915_EXEC_VEBOX                  (4<<0)
1119 
1120 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1121  * Gen6+ only supports relative addressing to dynamic state (default) and
1122  * absolute addressing.
1123  *
1124  * These flags are ignored for the BSD and BLT rings.
1125  */
1126 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1127 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1128 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1129 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1130 	__u64 flags;
1131 	__u64 rsvd1; /* now used for context info */
1132 	__u64 rsvd2;
1133 };
1134 
1135 /** Resets the SO write offset registers for transform feedback on gen7. */
1136 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1137 
1138 /** Request a privileged ("secure") batch buffer. Note only available for
1139  * DRM_ROOT_ONLY | DRM_MASTER processes.
1140  */
1141 #define I915_EXEC_SECURE		(1<<9)
1142 
1143 /** Inform the kernel that the batch is and will always be pinned. This
1144  * negates the requirement for a workaround to be performed to avoid
1145  * an incoherent CS (such as can be found on 830/845). If this flag is
1146  * not passed, the kernel will endeavour to make sure the batch is
1147  * coherent with the CS before execution. If this flag is passed,
1148  * userspace assumes the responsibility for ensuring the same.
1149  */
1150 #define I915_EXEC_IS_PINNED		(1<<10)
1151 
1152 /** Provide a hint to the kernel that the command stream and auxiliary
1153  * state buffers already holds the correct presumed addresses and so the
1154  * relocation process may be skipped if no buffers need to be moved in
1155  * preparation for the execbuffer.
1156  */
1157 #define I915_EXEC_NO_RELOC		(1<<11)
1158 
1159 /** Use the reloc.handle as an index into the exec object array rather
1160  * than as the per-file handle.
1161  */
1162 #define I915_EXEC_HANDLE_LUT		(1<<12)
1163 
1164 /** Used for switching BSD rings on the platforms with two BSD rings */
1165 #define I915_EXEC_BSD_SHIFT	 (13)
1166 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1167 /* default ping-pong mode */
1168 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1169 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1170 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1171 
1172 /** Tell the kernel that the batchbuffer is processed by
1173  *  the resource streamer.
1174  */
1175 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1176 
1177 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1178  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1179  * the batch.
1180  *
1181  * Returns -EINVAL if the sync_file fd cannot be found.
1182  */
1183 #define I915_EXEC_FENCE_IN		(1<<16)
1184 
1185 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1186  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1187  * to the caller, and it should be close() after use. (The fd is a regular
1188  * file descriptor and will be cleaned up on process termination. It holds
1189  * a reference to the request, but nothing else.)
1190  *
1191  * The sync_file fd can be combined with other sync_file and passed either
1192  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1193  * will only occur after this request completes), or to other devices.
1194  *
1195  * Using I915_EXEC_FENCE_OUT requires use of
1196  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1197  * back to userspace. Failure to do so will cause the out-fence to always
1198  * be reported as zero, and the real fence fd to be leaked.
1199  */
1200 #define I915_EXEC_FENCE_OUT		(1<<17)
1201 
1202 /*
1203  * Traditionally the execbuf ioctl has only considered the final element in
1204  * the execobject[] to be the executable batch. Often though, the client
1205  * will known the batch object prior to construction and being able to place
1206  * it into the execobject[] array first can simplify the relocation tracking.
1207  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1208  * execobject[] as the * batch instead (the default is to use the last
1209  * element).
1210  */
1211 #define I915_EXEC_BATCH_FIRST		(1<<18)
1212 
1213 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1214  * define an array of i915_gem_exec_fence structures which specify a set of
1215  * dma fences to wait upon or signal.
1216  */
1217 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1218 
1219 /*
1220  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1221  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1222  * the batch.
1223  *
1224  * Returns -EINVAL if the sync_file fd cannot be found.
1225  */
1226 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1227 
1228 /*
1229  * Setting I915_EXEC_USE_EXTENSIONS implies that
1230  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1231  * list of i915_user_extension. Each i915_user_extension node is the base of a
1232  * larger structure. The list of supported structures are listed in the
1233  * drm_i915_gem_execbuffer_ext enum.
1234  */
1235 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1236 
1237 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1238 
1239 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1240 #define i915_execbuffer2_set_context_id(eb2, context) \
1241 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1242 #define i915_execbuffer2_get_context_id(eb2) \
1243 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1244 
1245 struct drm_i915_gem_pin {
1246 	/** Handle of the buffer to be pinned. */
1247 	__u32 handle;
1248 	__u32 pad;
1249 
1250 	/** alignment required within the aperture */
1251 	__u64 alignment;
1252 
1253 	/** Returned GTT offset of the buffer. */
1254 	__u64 offset;
1255 };
1256 
1257 struct drm_i915_gem_unpin {
1258 	/** Handle of the buffer to be unpinned. */
1259 	__u32 handle;
1260 	__u32 pad;
1261 };
1262 
1263 struct drm_i915_gem_busy {
1264 	/** Handle of the buffer to check for busy */
1265 	__u32 handle;
1266 
1267 	/** Return busy status
1268 	 *
1269 	 * A return of 0 implies that the object is idle (after
1270 	 * having flushed any pending activity), and a non-zero return that
1271 	 * the object is still in-flight on the GPU. (The GPU has not yet
1272 	 * signaled completion for all pending requests that reference the
1273 	 * object.) An object is guaranteed to become idle eventually (so
1274 	 * long as no new GPU commands are executed upon it). Due to the
1275 	 * asynchronous nature of the hardware, an object reported
1276 	 * as busy may become idle before the ioctl is completed.
1277 	 *
1278 	 * Furthermore, if the object is busy, which engine is busy is only
1279 	 * provided as a guide and only indirectly by reporting its class
1280 	 * (there may be more than one engine in each class). There are race
1281 	 * conditions which prevent the report of which engines are busy from
1282 	 * being always accurate.  However, the converse is not true. If the
1283 	 * object is idle, the result of the ioctl, that all engines are idle,
1284 	 * is accurate.
1285 	 *
1286 	 * The returned dword is split into two fields to indicate both
1287 	 * the engine classess on which the object is being read, and the
1288 	 * engine class on which it is currently being written (if any).
1289 	 *
1290 	 * The low word (bits 0:15) indicate if the object is being written
1291 	 * to by any engine (there can only be one, as the GEM implicit
1292 	 * synchronisation rules force writes to be serialised). Only the
1293 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1294 	 * 1 not 0 etc) for the last write is reported.
1295 	 *
1296 	 * The high word (bits 16:31) are a bitmask of which engines classes
1297 	 * are currently reading from the object. Multiple engines may be
1298 	 * reading from the object simultaneously.
1299 	 *
1300 	 * The value of each engine class is the same as specified in the
1301 	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1302 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1303 	 * reported as active itself. Some hardware may have parallel
1304 	 * execution engines, e.g. multiple media engines, which are
1305 	 * mapped to the same class identifier and so are not separately
1306 	 * reported for busyness.
1307 	 *
1308 	 * Caveat emptor:
1309 	 * Only the boolean result of this query is reliable; that is whether
1310 	 * the object is idle or busy. The report of which engines are busy
1311 	 * should be only used as a heuristic.
1312 	 */
1313 	__u32 busy;
1314 };
1315 
1316 /**
1317  * I915_CACHING_NONE
1318  *
1319  * GPU access is not coherent with cpu caches. Default for machines without an
1320  * LLC.
1321  */
1322 #define I915_CACHING_NONE		0
1323 /**
1324  * I915_CACHING_CACHED
1325  *
1326  * GPU access is coherent with cpu caches and furthermore the data is cached in
1327  * last-level caches shared between cpu cores and the gpu GT. Default on
1328  * machines with HAS_LLC.
1329  */
1330 #define I915_CACHING_CACHED		1
1331 /**
1332  * I915_CACHING_DISPLAY
1333  *
1334  * Special GPU caching mode which is coherent with the scanout engines.
1335  * Transparently falls back to I915_CACHING_NONE on platforms where no special
1336  * cache mode (like write-through or gfdt flushing) is available. The kernel
1337  * automatically sets this mode when using a buffer as a scanout target.
1338  * Userspace can manually set this mode to avoid a costly stall and clflush in
1339  * the hotpath of drawing the first frame.
1340  */
1341 #define I915_CACHING_DISPLAY		2
1342 
1343 struct drm_i915_gem_caching {
1344 	/**
1345 	 * Handle of the buffer to set/get the caching level of. */
1346 	__u32 handle;
1347 
1348 	/**
1349 	 * Cacheing level to apply or return value
1350 	 *
1351 	 * bits0-15 are for generic caching control (i.e. the above defined
1352 	 * values). bits16-31 are reserved for platform-specific variations
1353 	 * (e.g. l3$ caching on gen7). */
1354 	__u32 caching;
1355 };
1356 
1357 #define I915_TILING_NONE	0
1358 #define I915_TILING_X		1
1359 #define I915_TILING_Y		2
1360 #define I915_TILING_LAST	I915_TILING_Y
1361 
1362 #define I915_BIT_6_SWIZZLE_NONE		0
1363 #define I915_BIT_6_SWIZZLE_9		1
1364 #define I915_BIT_6_SWIZZLE_9_10		2
1365 #define I915_BIT_6_SWIZZLE_9_11		3
1366 #define I915_BIT_6_SWIZZLE_9_10_11	4
1367 /* Not seen by userland */
1368 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1369 /* Seen by userland. */
1370 #define I915_BIT_6_SWIZZLE_9_17		6
1371 #define I915_BIT_6_SWIZZLE_9_10_17	7
1372 
1373 struct drm_i915_gem_set_tiling {
1374 	/** Handle of the buffer to have its tiling state updated */
1375 	__u32 handle;
1376 
1377 	/**
1378 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1379 	 * I915_TILING_Y).
1380 	 *
1381 	 * This value is to be set on request, and will be updated by the
1382 	 * kernel on successful return with the actual chosen tiling layout.
1383 	 *
1384 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1385 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1386 	 *
1387 	 * Buffer contents become undefined when changing tiling_mode.
1388 	 */
1389 	__u32 tiling_mode;
1390 
1391 	/**
1392 	 * Stride in bytes for the object when in I915_TILING_X or
1393 	 * I915_TILING_Y.
1394 	 */
1395 	__u32 stride;
1396 
1397 	/**
1398 	 * Returned address bit 6 swizzling required for CPU access through
1399 	 * mmap mapping.
1400 	 */
1401 	__u32 swizzle_mode;
1402 };
1403 
1404 struct drm_i915_gem_get_tiling {
1405 	/** Handle of the buffer to get tiling state for. */
1406 	__u32 handle;
1407 
1408 	/**
1409 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1410 	 * I915_TILING_Y).
1411 	 */
1412 	__u32 tiling_mode;
1413 
1414 	/**
1415 	 * Returned address bit 6 swizzling required for CPU access through
1416 	 * mmap mapping.
1417 	 */
1418 	__u32 swizzle_mode;
1419 
1420 	/**
1421 	 * Returned address bit 6 swizzling required for CPU access through
1422 	 * mmap mapping whilst bound.
1423 	 */
1424 	__u32 phys_swizzle_mode;
1425 };
1426 
1427 struct drm_i915_gem_get_aperture {
1428 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1429 	__u64 aper_size;
1430 
1431 	/**
1432 	 * Available space in the aperture used by i915_gem_execbuffer, in
1433 	 * bytes
1434 	 */
1435 	__u64 aper_available_size;
1436 };
1437 
1438 struct drm_i915_get_pipe_from_crtc_id {
1439 	/** ID of CRTC being requested **/
1440 	__u32 crtc_id;
1441 
1442 	/** pipe of requested CRTC **/
1443 	__u32 pipe;
1444 };
1445 
1446 #define I915_MADV_WILLNEED 0
1447 #define I915_MADV_DONTNEED 1
1448 #define __I915_MADV_PURGED 2 /* internal state */
1449 
1450 struct drm_i915_gem_madvise {
1451 	/** Handle of the buffer to change the backing store advice */
1452 	__u32 handle;
1453 
1454 	/* Advice: either the buffer will be needed again in the near future,
1455 	 *         or wont be and could be discarded under memory pressure.
1456 	 */
1457 	__u32 madv;
1458 
1459 	/** Whether the backing store still exists. */
1460 	__u32 retained;
1461 };
1462 
1463 /* flags */
1464 #define I915_OVERLAY_TYPE_MASK 		0xff
1465 #define I915_OVERLAY_YUV_PLANAR 	0x01
1466 #define I915_OVERLAY_YUV_PACKED 	0x02
1467 #define I915_OVERLAY_RGB		0x03
1468 
1469 #define I915_OVERLAY_DEPTH_MASK		0xff00
1470 #define I915_OVERLAY_RGB24		0x1000
1471 #define I915_OVERLAY_RGB16		0x2000
1472 #define I915_OVERLAY_RGB15		0x3000
1473 #define I915_OVERLAY_YUV422		0x0100
1474 #define I915_OVERLAY_YUV411		0x0200
1475 #define I915_OVERLAY_YUV420		0x0300
1476 #define I915_OVERLAY_YUV410		0x0400
1477 
1478 #define I915_OVERLAY_SWAP_MASK		0xff0000
1479 #define I915_OVERLAY_NO_SWAP		0x000000
1480 #define I915_OVERLAY_UV_SWAP		0x010000
1481 #define I915_OVERLAY_Y_SWAP		0x020000
1482 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1483 
1484 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1485 #define I915_OVERLAY_ENABLE		0x01000000
1486 
1487 struct drm_intel_overlay_put_image {
1488 	/* various flags and src format description */
1489 	__u32 flags;
1490 	/* source picture description */
1491 	__u32 bo_handle;
1492 	/* stride values and offsets are in bytes, buffer relative */
1493 	__u16 stride_Y; /* stride for packed formats */
1494 	__u16 stride_UV;
1495 	__u32 offset_Y; /* offset for packet formats */
1496 	__u32 offset_U;
1497 	__u32 offset_V;
1498 	/* in pixels */
1499 	__u16 src_width;
1500 	__u16 src_height;
1501 	/* to compensate the scaling factors for partially covered surfaces */
1502 	__u16 src_scan_width;
1503 	__u16 src_scan_height;
1504 	/* output crtc description */
1505 	__u32 crtc_id;
1506 	__u16 dst_x;
1507 	__u16 dst_y;
1508 	__u16 dst_width;
1509 	__u16 dst_height;
1510 };
1511 
1512 /* flags */
1513 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1514 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1515 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1516 struct drm_intel_overlay_attrs {
1517 	__u32 flags;
1518 	__u32 color_key;
1519 	__s32 brightness;
1520 	__u32 contrast;
1521 	__u32 saturation;
1522 	__u32 gamma0;
1523 	__u32 gamma1;
1524 	__u32 gamma2;
1525 	__u32 gamma3;
1526 	__u32 gamma4;
1527 	__u32 gamma5;
1528 };
1529 
1530 /*
1531  * Intel sprite handling
1532  *
1533  * Color keying works with a min/mask/max tuple.  Both source and destination
1534  * color keying is allowed.
1535  *
1536  * Source keying:
1537  * Sprite pixels within the min & max values, masked against the color channels
1538  * specified in the mask field, will be transparent.  All other pixels will
1539  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1540  * and mask fields will be used; ranged compares are not allowed.
1541  *
1542  * Destination keying:
1543  * Primary plane pixels that match the min value, masked against the color
1544  * channels specified in the mask field, will be replaced by corresponding
1545  * pixels from the sprite plane.
1546  *
1547  * Note that source & destination keying are exclusive; only one can be
1548  * active on a given plane.
1549  */
1550 
1551 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1552 						* flags==0 to disable colorkeying.
1553 						*/
1554 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1555 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1556 struct drm_intel_sprite_colorkey {
1557 	__u32 plane_id;
1558 	__u32 min_value;
1559 	__u32 channel_mask;
1560 	__u32 max_value;
1561 	__u32 flags;
1562 };
1563 
1564 struct drm_i915_gem_wait {
1565 	/** Handle of BO we shall wait on */
1566 	__u32 bo_handle;
1567 	__u32 flags;
1568 	/** Number of nanoseconds to wait, Returns time remaining. */
1569 	__s64 timeout_ns;
1570 };
1571 
1572 struct drm_i915_gem_context_create {
1573 	__u32 ctx_id; /* output: id of new context*/
1574 	__u32 pad;
1575 };
1576 
1577 struct drm_i915_gem_context_create_ext {
1578 	__u32 ctx_id; /* output: id of new context*/
1579 	__u32 flags;
1580 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1581 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1582 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1583 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1584 	__u64 extensions;
1585 };
1586 
1587 struct drm_i915_gem_context_param {
1588 	__u32 ctx_id;
1589 	__u32 size;
1590 	__u64 param;
1591 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1592 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1593 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1594 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1595 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1596 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1597 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1598 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1599 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1600 	/*
1601 	 * When using the following param, value should be a pointer to
1602 	 * drm_i915_gem_context_param_sseu.
1603 	 */
1604 #define I915_CONTEXT_PARAM_SSEU		0x7
1605 
1606 /*
1607  * Not all clients may want to attempt automatic recover of a context after
1608  * a hang (for example, some clients may only submit very small incremental
1609  * batches relying on known logical state of previous batches which will never
1610  * recover correctly and each attempt will hang), and so would prefer that
1611  * the context is forever banned instead.
1612  *
1613  * If set to false (0), after a reset, subsequent (and in flight) rendering
1614  * from this context is discarded, and the client will need to create a new
1615  * context to use instead.
1616  *
1617  * If set to true (1), the kernel will automatically attempt to recover the
1618  * context by skipping the hanging batch and executing the next batch starting
1619  * from the default context state (discarding the incomplete logical context
1620  * state lost due to the reset).
1621  *
1622  * On creation, all new contexts are marked as recoverable.
1623  */
1624 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1625 
1626 	/*
1627 	 * The id of the associated virtual memory address space (ppGTT) of
1628 	 * this context. Can be retrieved and passed to another context
1629 	 * (on the same fd) for both to use the same ppGTT and so share
1630 	 * address layouts, and avoid reloading the page tables on context
1631 	 * switches between themselves.
1632 	 *
1633 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1634 	 */
1635 #define I915_CONTEXT_PARAM_VM		0x9
1636 
1637 /*
1638  * I915_CONTEXT_PARAM_ENGINES:
1639  *
1640  * Bind this context to operate on this subset of available engines. Henceforth,
1641  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1642  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1643  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1644  * Use
1645  *	engine_class: I915_ENGINE_CLASS_INVALID,
1646  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1647  * to specify a gap in the array that can be filled in later, e.g. by a
1648  * virtual engine used for load balancing.
1649  *
1650  * Setting the number of engines bound to the context to 0, by passing a zero
1651  * sized argument, will revert back to default settings.
1652  *
1653  * See struct i915_context_param_engines.
1654  *
1655  * Extensions:
1656  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1657  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1658  */
1659 #define I915_CONTEXT_PARAM_ENGINES	0xa
1660 
1661 /*
1662  * I915_CONTEXT_PARAM_PERSISTENCE:
1663  *
1664  * Allow the context and active rendering to survive the process until
1665  * completion. Persistence allows fire-and-forget clients to queue up a
1666  * bunch of work, hand the output over to a display server and then quit.
1667  * If the context is marked as not persistent, upon closing (either via
1668  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1669  * or process termination), the context and any outstanding requests will be
1670  * cancelled (and exported fences for cancelled requests marked as -EIO).
1671  *
1672  * By default, new contexts allow persistence.
1673  */
1674 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1675 
1676 /*
1677  * I915_CONTEXT_PARAM_RINGSIZE:
1678  *
1679  * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1680  * applies a limit of how many batches can be queued to HW before the caller
1681  * is blocked due to lack of space for more commands.
1682  *
1683  * Only reliably possible to be set prior to first use, i.e. during
1684  * construction. At any later point, the current execution must be flushed as
1685  * the ring can only be changed while the context is idle. Note, the ringsize
1686  * can be specified as a constructor property, see
1687  * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1688  *
1689  * Only applies to the current set of engine and lost when those engines
1690  * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1691  *
1692  * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1693  * Default is 16 KiB.
1694  */
1695 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1696 /* Must be kept compact -- no holes and well documented */
1697 
1698 	__u64 value;
1699 };
1700 
1701 /**
1702  * Context SSEU programming
1703  *
1704  * It may be necessary for either functional or performance reason to configure
1705  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1706  * Sub-slice/EU).
1707  *
1708  * This is done by configuring SSEU configuration using the below
1709  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1710  * userspace intends to use.
1711  *
1712  * Not all GPUs or engines support this functionality in which case an error
1713  * code -ENODEV will be returned.
1714  *
1715  * Also, flexibility of possible SSEU configuration permutations varies between
1716  * GPU generations and software imposed limitations. Requesting such a
1717  * combination will return an error code of -EINVAL.
1718  *
1719  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1720  * favour of a single global setting.
1721  */
1722 struct drm_i915_gem_context_param_sseu {
1723 	/*
1724 	 * Engine class & instance to be configured or queried.
1725 	 */
1726 	struct i915_engine_class_instance engine;
1727 
1728 	/*
1729 	 * Unknown flags must be cleared to zero.
1730 	 */
1731 	__u32 flags;
1732 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1733 
1734 	/*
1735 	 * Mask of slices to enable for the context. Valid values are a subset
1736 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1737 	 */
1738 	__u64 slice_mask;
1739 
1740 	/*
1741 	 * Mask of subslices to enable for the context. Valid values are a
1742 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1743 	 */
1744 	__u64 subslice_mask;
1745 
1746 	/*
1747 	 * Minimum/Maximum number of EUs to enable per subslice for the
1748 	 * context. min_eus_per_subslice must be inferior or equal to
1749 	 * max_eus_per_subslice.
1750 	 */
1751 	__u16 min_eus_per_subslice;
1752 	__u16 max_eus_per_subslice;
1753 
1754 	/*
1755 	 * Unused for now. Must be cleared to zero.
1756 	 */
1757 	__u32 rsvd;
1758 };
1759 
1760 /*
1761  * i915_context_engines_load_balance:
1762  *
1763  * Enable load balancing across this set of engines.
1764  *
1765  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1766  * used will proxy the execbuffer request onto one of the set of engines
1767  * in such a way as to distribute the load evenly across the set.
1768  *
1769  * The set of engines must be compatible (e.g. the same HW class) as they
1770  * will share the same logical GPU context and ring.
1771  *
1772  * To intermix rendering with the virtual engine and direct rendering onto
1773  * the backing engines (bypassing the load balancing proxy), the context must
1774  * be defined to use a single timeline for all engines.
1775  */
1776 struct i915_context_engines_load_balance {
1777 	struct i915_user_extension base;
1778 
1779 	__u16 engine_index;
1780 	__u16 num_siblings;
1781 	__u32 flags; /* all undefined flags must be zero */
1782 
1783 	__u64 mbz64; /* reserved for future use; must be zero */
1784 
1785 	struct i915_engine_class_instance engines[0];
1786 } __attribute__((packed));
1787 
1788 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1789 	struct i915_user_extension base; \
1790 	__u16 engine_index; \
1791 	__u16 num_siblings; \
1792 	__u32 flags; \
1793 	__u64 mbz64; \
1794 	struct i915_engine_class_instance engines[N__]; \
1795 } __attribute__((packed)) name__
1796 
1797 /*
1798  * i915_context_engines_bond:
1799  *
1800  * Constructed bonded pairs for execution within a virtual engine.
1801  *
1802  * All engines are equal, but some are more equal than others. Given
1803  * the distribution of resources in the HW, it may be preferable to run
1804  * a request on a given subset of engines in parallel to a request on a
1805  * specific engine. We enable this selection of engines within a virtual
1806  * engine by specifying bonding pairs, for any given master engine we will
1807  * only execute on one of the corresponding siblings within the virtual engine.
1808  *
1809  * To execute a request in parallel on the master engine and a sibling requires
1810  * coordination with a I915_EXEC_FENCE_SUBMIT.
1811  */
1812 struct i915_context_engines_bond {
1813 	struct i915_user_extension base;
1814 
1815 	struct i915_engine_class_instance master;
1816 
1817 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1818 	__u16 num_bonds;
1819 
1820 	__u64 flags; /* all undefined flags must be zero */
1821 	__u64 mbz64[4]; /* reserved for future use; must be zero */
1822 
1823 	struct i915_engine_class_instance engines[0];
1824 } __attribute__((packed));
1825 
1826 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1827 	struct i915_user_extension base; \
1828 	struct i915_engine_class_instance master; \
1829 	__u16 virtual_index; \
1830 	__u16 num_bonds; \
1831 	__u64 flags; \
1832 	__u64 mbz64[4]; \
1833 	struct i915_engine_class_instance engines[N__]; \
1834 } __attribute__((packed)) name__
1835 
1836 struct i915_context_param_engines {
1837 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1838 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1839 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1840 	struct i915_engine_class_instance engines[0];
1841 } __attribute__((packed));
1842 
1843 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1844 	__u64 extensions; \
1845 	struct i915_engine_class_instance engines[N__]; \
1846 } __attribute__((packed)) name__
1847 
1848 struct drm_i915_gem_context_create_ext_setparam {
1849 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1850 	struct i915_user_extension base;
1851 	struct drm_i915_gem_context_param param;
1852 };
1853 
1854 struct drm_i915_gem_context_create_ext_clone {
1855 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1856 	struct i915_user_extension base;
1857 	__u32 clone_id;
1858 	__u32 flags;
1859 #define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1860 #define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1861 #define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1862 #define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1863 #define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1864 #define I915_CONTEXT_CLONE_VM		(1u << 5)
1865 #define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1866 	__u64 rsvd;
1867 };
1868 
1869 struct drm_i915_gem_context_destroy {
1870 	__u32 ctx_id;
1871 	__u32 pad;
1872 };
1873 
1874 /*
1875  * DRM_I915_GEM_VM_CREATE -
1876  *
1877  * Create a new virtual memory address space (ppGTT) for use within a context
1878  * on the same file. Extensions can be provided to configure exactly how the
1879  * address space is setup upon creation.
1880  *
1881  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1882  * returned in the outparam @id.
1883  *
1884  * No flags are defined, with all bits reserved and must be zero.
1885  *
1886  * An extension chain maybe provided, starting with @extensions, and terminated
1887  * by the @next_extension being 0. Currently, no extensions are defined.
1888  *
1889  * DRM_I915_GEM_VM_DESTROY -
1890  *
1891  * Destroys a previously created VM id, specified in @id.
1892  *
1893  * No extensions or flags are allowed currently, and so must be zero.
1894  */
1895 struct drm_i915_gem_vm_control {
1896 	__u64 extensions;
1897 	__u32 flags;
1898 	__u32 vm_id;
1899 };
1900 
1901 struct drm_i915_reg_read {
1902 	/*
1903 	 * Register offset.
1904 	 * For 64bit wide registers where the upper 32bits don't immediately
1905 	 * follow the lower 32bits, the offset of the lower 32bits must
1906 	 * be specified
1907 	 */
1908 	__u64 offset;
1909 #define I915_REG_READ_8B_WA (1ul << 0)
1910 
1911 	__u64 val; /* Return value */
1912 };
1913 
1914 /* Known registers:
1915  *
1916  * Render engine timestamp - 0x2358 + 64bit - gen7+
1917  * - Note this register returns an invalid value if using the default
1918  *   single instruction 8byte read, in order to workaround that pass
1919  *   flag I915_REG_READ_8B_WA in offset field.
1920  *
1921  */
1922 
1923 struct drm_i915_reset_stats {
1924 	__u32 ctx_id;
1925 	__u32 flags;
1926 
1927 	/* All resets since boot/module reload, for all contexts */
1928 	__u32 reset_count;
1929 
1930 	/* Number of batches lost when active in GPU, for this context */
1931 	__u32 batch_active;
1932 
1933 	/* Number of batches lost pending for execution, for this context */
1934 	__u32 batch_pending;
1935 
1936 	__u32 pad;
1937 };
1938 
1939 struct drm_i915_gem_userptr {
1940 	__u64 user_ptr;
1941 	__u64 user_size;
1942 	__u32 flags;
1943 #define I915_USERPTR_READ_ONLY 0x1
1944 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1945 	/**
1946 	 * Returned handle for the object.
1947 	 *
1948 	 * Object handles are nonzero.
1949 	 */
1950 	__u32 handle;
1951 };
1952 
1953 enum drm_i915_oa_format {
1954 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1955 	I915_OA_FORMAT_A29,	    /* HSW only */
1956 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1957 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1958 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1959 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1960 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1961 
1962 	/* Gen8+ */
1963 	I915_OA_FORMAT_A12,
1964 	I915_OA_FORMAT_A12_B8_C8,
1965 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1966 
1967 	I915_OA_FORMAT_MAX	    /* non-ABI */
1968 };
1969 
1970 enum drm_i915_perf_property_id {
1971 	/**
1972 	 * Open the stream for a specific context handle (as used with
1973 	 * execbuffer2). A stream opened for a specific context this way
1974 	 * won't typically require root privileges.
1975 	 *
1976 	 * This property is available in perf revision 1.
1977 	 */
1978 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1979 
1980 	/**
1981 	 * A value of 1 requests the inclusion of raw OA unit reports as
1982 	 * part of stream samples.
1983 	 *
1984 	 * This property is available in perf revision 1.
1985 	 */
1986 	DRM_I915_PERF_PROP_SAMPLE_OA,
1987 
1988 	/**
1989 	 * The value specifies which set of OA unit metrics should be
1990 	 * configured, defining the contents of any OA unit reports.
1991 	 *
1992 	 * This property is available in perf revision 1.
1993 	 */
1994 	DRM_I915_PERF_PROP_OA_METRICS_SET,
1995 
1996 	/**
1997 	 * The value specifies the size and layout of OA unit reports.
1998 	 *
1999 	 * This property is available in perf revision 1.
2000 	 */
2001 	DRM_I915_PERF_PROP_OA_FORMAT,
2002 
2003 	/**
2004 	 * Specifying this property implicitly requests periodic OA unit
2005 	 * sampling and (at least on Haswell) the sampling frequency is derived
2006 	 * from this exponent as follows:
2007 	 *
2008 	 *   80ns * 2^(period_exponent + 1)
2009 	 *
2010 	 * This property is available in perf revision 1.
2011 	 */
2012 	DRM_I915_PERF_PROP_OA_EXPONENT,
2013 
2014 	/**
2015 	 * Specifying this property is only valid when specify a context to
2016 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2017 	 * will hold preemption of the particular context we want to gather
2018 	 * performance data about. The execbuf2 submissions must include a
2019 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2020 	 *
2021 	 * This property is available in perf revision 3.
2022 	 */
2023 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2024 
2025 	/**
2026 	 * Specifying this pins all contexts to the specified SSEU power
2027 	 * configuration for the duration of the recording.
2028 	 *
2029 	 * This parameter's value is a pointer to a struct
2030 	 * drm_i915_gem_context_param_sseu.
2031 	 *
2032 	 * This property is available in perf revision 4.
2033 	 */
2034 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2035 
2036 	/**
2037 	 * This optional parameter specifies the timer interval in nanoseconds
2038 	 * at which the i915 driver will check the OA buffer for available data.
2039 	 * Minimum allowed value is 100 microseconds. A default value is used by
2040 	 * the driver if this parameter is not specified. Note that larger timer
2041 	 * values will reduce cpu consumption during OA perf captures. However,
2042 	 * excessively large values would potentially result in OA buffer
2043 	 * overwrites as captures reach end of the OA buffer.
2044 	 *
2045 	 * This property is available in perf revision 5.
2046 	 */
2047 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2048 
2049 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2050 };
2051 
2052 struct drm_i915_perf_open_param {
2053 	__u32 flags;
2054 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2055 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2056 #define I915_PERF_FLAG_DISABLED		(1<<2)
2057 
2058 	/** The number of u64 (id, value) pairs */
2059 	__u32 num_properties;
2060 
2061 	/**
2062 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2063 	 * to open.
2064 	 */
2065 	__u64 properties_ptr;
2066 };
2067 
2068 /**
2069  * Enable data capture for a stream that was either opened in a disabled state
2070  * via I915_PERF_FLAG_DISABLED or was later disabled via
2071  * I915_PERF_IOCTL_DISABLE.
2072  *
2073  * It is intended to be cheaper to disable and enable a stream than it may be
2074  * to close and re-open a stream with the same configuration.
2075  *
2076  * It's undefined whether any pending data for the stream will be lost.
2077  *
2078  * This ioctl is available in perf revision 1.
2079  */
2080 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2081 
2082 /**
2083  * Disable data capture for a stream.
2084  *
2085  * It is an error to try and read a stream that is disabled.
2086  *
2087  * This ioctl is available in perf revision 1.
2088  */
2089 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2090 
2091 /**
2092  * Change metrics_set captured by a stream.
2093  *
2094  * If the stream is bound to a specific context, the configuration change
2095  * will performed inline with that context such that it takes effect before
2096  * the next execbuf submission.
2097  *
2098  * Returns the previously bound metrics set id, or a negative error code.
2099  *
2100  * This ioctl is available in perf revision 2.
2101  */
2102 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2103 
2104 /**
2105  * Common to all i915 perf records
2106  */
2107 struct drm_i915_perf_record_header {
2108 	__u32 type;
2109 	__u16 pad;
2110 	__u16 size;
2111 };
2112 
2113 enum drm_i915_perf_record_type {
2114 
2115 	/**
2116 	 * Samples are the work horse record type whose contents are extensible
2117 	 * and defined when opening an i915 perf stream based on the given
2118 	 * properties.
2119 	 *
2120 	 * Boolean properties following the naming convention
2121 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2122 	 * every sample.
2123 	 *
2124 	 * The order of these sample properties given by userspace has no
2125 	 * affect on the ordering of data within a sample. The order is
2126 	 * documented here.
2127 	 *
2128 	 * struct {
2129 	 *     struct drm_i915_perf_record_header header;
2130 	 *
2131 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2132 	 * };
2133 	 */
2134 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2135 
2136 	/*
2137 	 * Indicates that one or more OA reports were not written by the
2138 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2139 	 * command collides with periodic sampling - which would be more likely
2140 	 * at higher sampling frequencies.
2141 	 */
2142 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2143 
2144 	/**
2145 	 * An error occurred that resulted in all pending OA reports being lost.
2146 	 */
2147 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2148 
2149 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2150 };
2151 
2152 /**
2153  * Structure to upload perf dynamic configuration into the kernel.
2154  */
2155 struct drm_i915_perf_oa_config {
2156 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2157 	char uuid[36];
2158 
2159 	__u32 n_mux_regs;
2160 	__u32 n_boolean_regs;
2161 	__u32 n_flex_regs;
2162 
2163 	/*
2164 	 * These fields are pointers to tuples of u32 values (register address,
2165 	 * value). For example the expected length of the buffer pointed by
2166 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2167 	 */
2168 	__u64 mux_regs_ptr;
2169 	__u64 boolean_regs_ptr;
2170 	__u64 flex_regs_ptr;
2171 };
2172 
2173 struct drm_i915_query_item {
2174 	__u64 query_id;
2175 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2176 #define DRM_I915_QUERY_ENGINE_INFO	2
2177 #define DRM_I915_QUERY_PERF_CONFIG      3
2178 /* Must be kept compact -- no holes and well documented */
2179 
2180 	/*
2181 	 * When set to zero by userspace, this is filled with the size of the
2182 	 * data to be written at the data_ptr pointer. The kernel sets this
2183 	 * value to a negative value to signal an error on a particular query
2184 	 * item.
2185 	 */
2186 	__s32 length;
2187 
2188 	/*
2189 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2190 	 *
2191 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2192 	 * following :
2193 	 *         - DRM_I915_QUERY_PERF_CONFIG_LIST
2194 	 *         - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2195 	 *         - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2196 	 */
2197 	__u32 flags;
2198 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2199 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2200 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2201 
2202 	/*
2203 	 * Data will be written at the location pointed by data_ptr when the
2204 	 * value of length matches the length of the data to be written by the
2205 	 * kernel.
2206 	 */
2207 	__u64 data_ptr;
2208 };
2209 
2210 struct drm_i915_query {
2211 	__u32 num_items;
2212 
2213 	/*
2214 	 * Unused for now. Must be cleared to zero.
2215 	 */
2216 	__u32 flags;
2217 
2218 	/*
2219 	 * This points to an array of num_items drm_i915_query_item structures.
2220 	 */
2221 	__u64 items_ptr;
2222 };
2223 
2224 /*
2225  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2226  *
2227  * data: contains the 3 pieces of information :
2228  *
2229  * - the slice mask with one bit per slice telling whether a slice is
2230  *   available. The availability of slice X can be queried with the following
2231  *   formula :
2232  *
2233  *           (data[X / 8] >> (X % 8)) & 1
2234  *
2235  * - the subslice mask for each slice with one bit per subslice telling
2236  *   whether a subslice is available. Gen12 has dual-subslices, which are
2237  *   similar to two gen11 subslices. For gen12, this array represents dual-
2238  *   subslices. The availability of subslice Y in slice X can be queried
2239  *   with the following formula :
2240  *
2241  *           (data[subslice_offset +
2242  *                 X * subslice_stride +
2243  *                 Y / 8] >> (Y % 8)) & 1
2244  *
2245  * - the EU mask for each subslice in each slice with one bit per EU telling
2246  *   whether an EU is available. The availability of EU Z in subslice Y in
2247  *   slice X can be queried with the following formula :
2248  *
2249  *           (data[eu_offset +
2250  *                 (X * max_subslices + Y) * eu_stride +
2251  *                 Z / 8] >> (Z % 8)) & 1
2252  */
2253 struct drm_i915_query_topology_info {
2254 	/*
2255 	 * Unused for now. Must be cleared to zero.
2256 	 */
2257 	__u16 flags;
2258 
2259 	__u16 max_slices;
2260 	__u16 max_subslices;
2261 	__u16 max_eus_per_subslice;
2262 
2263 	/*
2264 	 * Offset in data[] at which the subslice masks are stored.
2265 	 */
2266 	__u16 subslice_offset;
2267 
2268 	/*
2269 	 * Stride at which each of the subslice masks for each slice are
2270 	 * stored.
2271 	 */
2272 	__u16 subslice_stride;
2273 
2274 	/*
2275 	 * Offset in data[] at which the EU masks are stored.
2276 	 */
2277 	__u16 eu_offset;
2278 
2279 	/*
2280 	 * Stride at which each of the EU masks for each subslice are stored.
2281 	 */
2282 	__u16 eu_stride;
2283 
2284 	__u8 data[];
2285 };
2286 
2287 /**
2288  * struct drm_i915_engine_info
2289  *
2290  * Describes one engine and it's capabilities as known to the driver.
2291  */
2292 struct drm_i915_engine_info {
2293 	/** Engine class and instance. */
2294 	struct i915_engine_class_instance engine;
2295 
2296 	/** Reserved field. */
2297 	__u32 rsvd0;
2298 
2299 	/** Engine flags. */
2300 	__u64 flags;
2301 
2302 	/** Capabilities of this engine. */
2303 	__u64 capabilities;
2304 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2305 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2306 
2307 	/** Reserved fields. */
2308 	__u64 rsvd1[4];
2309 };
2310 
2311 /**
2312  * struct drm_i915_query_engine_info
2313  *
2314  * Engine info query enumerates all engines known to the driver by filling in
2315  * an array of struct drm_i915_engine_info structures.
2316  */
2317 struct drm_i915_query_engine_info {
2318 	/** Number of struct drm_i915_engine_info structs following. */
2319 	__u32 num_engines;
2320 
2321 	/** MBZ */
2322 	__u32 rsvd[3];
2323 
2324 	/** Marker for drm_i915_engine_info structures. */
2325 	struct drm_i915_engine_info engines[];
2326 };
2327 
2328 /*
2329  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2330  */
2331 struct drm_i915_query_perf_config {
2332 	union {
2333 		/*
2334 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2335 		 * this fields to the number of configurations available.
2336 		 */
2337 		__u64 n_configs;
2338 
2339 		/*
2340 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2341 		 * i915 will use the value in this field as configuration
2342 		 * identifier to decide what data to write into config_ptr.
2343 		 */
2344 		__u64 config;
2345 
2346 		/*
2347 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2348 		 * i915 will use the value in this field as configuration
2349 		 * identifier to decide what data to write into config_ptr.
2350 		 *
2351 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2352 		 */
2353 		char uuid[36];
2354 	};
2355 
2356 	/*
2357 	 * Unused for now. Must be cleared to zero.
2358 	 */
2359 	__u32 flags;
2360 
2361 	/*
2362 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2363 	 * write an array of __u64 of configuration identifiers.
2364 	 *
2365 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2366 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2367 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2368 	 * the associated pointers the values of submitted when the
2369 	 * configuration was created :
2370 	 *
2371 	 *         - n_mux_regs
2372 	 *         - n_boolean_regs
2373 	 *         - n_flex_regs
2374 	 */
2375 	__u8 data[];
2376 };
2377 
2378 #if defined(__cplusplus)
2379 }
2380 #endif
2381 
2382 #endif /* _UAPI_I915_DRM_H_ */
2383