1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2019 Facebook */ 3 4 #ifndef _GNU_SOURCE 5 #define _GNU_SOURCE 6 #endif 7 #include <ctype.h> 8 #include <errno.h> 9 #include <fcntl.h> 10 #include <libgen.h> 11 #include <linux/err.h> 12 #include <stdbool.h> 13 #include <stdio.h> 14 #include <string.h> 15 #include <unistd.h> 16 #include <bpf/bpf.h> 17 #include <bpf/libbpf.h> 18 #include <bpf/libbpf_internal.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <sys/mman.h> 22 #include <bpf/btf.h> 23 24 #include "json_writer.h" 25 #include "main.h" 26 27 #define MAX_OBJ_NAME_LEN 64 28 29 static void sanitize_identifier(char *name) 30 { 31 int i; 32 33 for (i = 0; name[i]; i++) 34 if (!isalnum(name[i]) && name[i] != '_') 35 name[i] = '_'; 36 } 37 38 static bool str_has_prefix(const char *str, const char *prefix) 39 { 40 return strncmp(str, prefix, strlen(prefix)) == 0; 41 } 42 43 static bool str_has_suffix(const char *str, const char *suffix) 44 { 45 size_t i, n1 = strlen(str), n2 = strlen(suffix); 46 47 if (n1 < n2) 48 return false; 49 50 for (i = 0; i < n2; i++) { 51 if (str[n1 - i - 1] != suffix[n2 - i - 1]) 52 return false; 53 } 54 55 return true; 56 } 57 58 static const struct btf_type * 59 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 60 { 61 const struct btf_type *t; 62 63 t = skip_mods_and_typedefs(btf, id, NULL); 64 if (!btf_is_ptr(t)) 65 return NULL; 66 67 t = skip_mods_and_typedefs(btf, t->type, res_id); 68 69 return btf_is_func_proto(t) ? t : NULL; 70 } 71 72 static void get_obj_name(char *name, const char *file) 73 { 74 char file_copy[PATH_MAX]; 75 76 /* Using basename() POSIX version to be more portable. */ 77 strncpy(file_copy, file, PATH_MAX - 1)[PATH_MAX - 1] = '\0'; 78 strncpy(name, basename(file_copy), MAX_OBJ_NAME_LEN - 1)[MAX_OBJ_NAME_LEN - 1] = '\0'; 79 if (str_has_suffix(name, ".o")) 80 name[strlen(name) - 2] = '\0'; 81 sanitize_identifier(name); 82 } 83 84 static void get_header_guard(char *guard, const char *obj_name, const char *suffix) 85 { 86 int i; 87 88 sprintf(guard, "__%s_%s__", obj_name, suffix); 89 for (i = 0; guard[i]; i++) 90 guard[i] = toupper(guard[i]); 91 } 92 93 static bool get_map_ident(const struct bpf_map *map, char *buf, size_t buf_sz) 94 { 95 static const char *sfxs[] = { ".data", ".rodata", ".bss", ".kconfig" }; 96 const char *name = bpf_map__name(map); 97 int i, n; 98 99 if (!bpf_map__is_internal(map)) { 100 snprintf(buf, buf_sz, "%s", name); 101 return true; 102 } 103 104 for (i = 0, n = ARRAY_SIZE(sfxs); i < n; i++) { 105 const char *sfx = sfxs[i], *p; 106 107 p = strstr(name, sfx); 108 if (p) { 109 snprintf(buf, buf_sz, "%s", p + 1); 110 sanitize_identifier(buf); 111 return true; 112 } 113 } 114 115 return false; 116 } 117 118 static bool get_datasec_ident(const char *sec_name, char *buf, size_t buf_sz) 119 { 120 static const char *pfxs[] = { ".data", ".rodata", ".bss", ".kconfig" }; 121 int i, n; 122 123 /* recognize hard coded LLVM section name */ 124 if (strcmp(sec_name, ".addr_space.1") == 0) { 125 /* this is the name to use in skeleton */ 126 snprintf(buf, buf_sz, "arena"); 127 return true; 128 } 129 for (i = 0, n = ARRAY_SIZE(pfxs); i < n; i++) { 130 const char *pfx = pfxs[i]; 131 132 if (str_has_prefix(sec_name, pfx)) { 133 snprintf(buf, buf_sz, "%s", sec_name + 1); 134 sanitize_identifier(buf); 135 return true; 136 } 137 } 138 139 return false; 140 } 141 142 static void codegen_btf_dump_printf(void *ctx, const char *fmt, va_list args) 143 { 144 vprintf(fmt, args); 145 } 146 147 static int codegen_datasec_def(struct bpf_object *obj, 148 struct btf *btf, 149 struct btf_dump *d, 150 const struct btf_type *sec, 151 const char *obj_name) 152 { 153 const char *sec_name = btf__name_by_offset(btf, sec->name_off); 154 const struct btf_var_secinfo *sec_var = btf_var_secinfos(sec); 155 int i, err, off = 0, pad_cnt = 0, vlen = btf_vlen(sec); 156 char var_ident[256], sec_ident[256]; 157 bool strip_mods = false; 158 159 if (!get_datasec_ident(sec_name, sec_ident, sizeof(sec_ident))) 160 return 0; 161 162 if (strcmp(sec_name, ".kconfig") != 0) 163 strip_mods = true; 164 165 printf(" struct %s__%s {\n", obj_name, sec_ident); 166 for (i = 0; i < vlen; i++, sec_var++) { 167 const struct btf_type *var = btf__type_by_id(btf, sec_var->type); 168 const char *var_name = btf__name_by_offset(btf, var->name_off); 169 DECLARE_LIBBPF_OPTS(btf_dump_emit_type_decl_opts, opts, 170 .field_name = var_ident, 171 .indent_level = 2, 172 .strip_mods = strip_mods, 173 ); 174 int need_off = sec_var->offset, align_off, align; 175 __u32 var_type_id = var->type; 176 177 /* static variables are not exposed through BPF skeleton */ 178 if (btf_var(var)->linkage == BTF_VAR_STATIC) 179 continue; 180 181 if (off > need_off) { 182 p_err("Something is wrong for %s's variable #%d: need offset %d, already at %d.\n", 183 sec_name, i, need_off, off); 184 return -EINVAL; 185 } 186 187 align = btf__align_of(btf, var->type); 188 if (align <= 0) { 189 p_err("Failed to determine alignment of variable '%s': %d", 190 var_name, align); 191 return -EINVAL; 192 } 193 /* Assume 32-bit architectures when generating data section 194 * struct memory layout. Given bpftool can't know which target 195 * host architecture it's emitting skeleton for, we need to be 196 * conservative and assume 32-bit one to ensure enough padding 197 * bytes are generated for pointer and long types. This will 198 * still work correctly for 64-bit architectures, because in 199 * the worst case we'll generate unnecessary padding field, 200 * which on 64-bit architectures is not strictly necessary and 201 * would be handled by natural 8-byte alignment. But it still 202 * will be a correct memory layout, based on recorded offsets 203 * in BTF. 204 */ 205 if (align > 4) 206 align = 4; 207 208 align_off = (off + align - 1) / align * align; 209 if (align_off != need_off) { 210 printf("\t\tchar __pad%d[%d];\n", 211 pad_cnt, need_off - off); 212 pad_cnt++; 213 } 214 215 /* sanitize variable name, e.g., for static vars inside 216 * a function, it's name is '<function name>.<variable name>', 217 * which we'll turn into a '<function name>_<variable name>' 218 */ 219 var_ident[0] = '\0'; 220 strncat(var_ident, var_name, sizeof(var_ident) - 1); 221 sanitize_identifier(var_ident); 222 223 printf("\t\t"); 224 err = btf_dump__emit_type_decl(d, var_type_id, &opts); 225 if (err) 226 return err; 227 printf(";\n"); 228 229 off = sec_var->offset + sec_var->size; 230 } 231 printf(" } *%s;\n", sec_ident); 232 return 0; 233 } 234 235 static const struct btf_type *find_type_for_map(struct btf *btf, const char *map_ident) 236 { 237 int n = btf__type_cnt(btf), i; 238 char sec_ident[256]; 239 240 for (i = 1; i < n; i++) { 241 const struct btf_type *t = btf__type_by_id(btf, i); 242 const char *name; 243 244 if (!btf_is_datasec(t)) 245 continue; 246 247 name = btf__str_by_offset(btf, t->name_off); 248 if (!get_datasec_ident(name, sec_ident, sizeof(sec_ident))) 249 continue; 250 251 if (strcmp(sec_ident, map_ident) == 0) 252 return t; 253 } 254 return NULL; 255 } 256 257 static bool is_mmapable_map(const struct bpf_map *map, char *buf, size_t sz) 258 { 259 size_t tmp_sz; 260 261 if (bpf_map__type(map) == BPF_MAP_TYPE_ARENA && bpf_map__initial_value(map, &tmp_sz)) { 262 snprintf(buf, sz, "arena"); 263 return true; 264 } 265 266 if (!bpf_map__is_internal(map) || !(bpf_map__map_flags(map) & BPF_F_MMAPABLE)) 267 return false; 268 269 if (!get_map_ident(map, buf, sz)) 270 return false; 271 272 return true; 273 } 274 275 static int codegen_datasecs(struct bpf_object *obj, const char *obj_name) 276 { 277 struct btf *btf = bpf_object__btf(obj); 278 struct btf_dump *d; 279 struct bpf_map *map; 280 const struct btf_type *sec; 281 char map_ident[256]; 282 int err = 0; 283 284 d = btf_dump__new(btf, codegen_btf_dump_printf, NULL, NULL); 285 if (!d) 286 return -errno; 287 288 bpf_object__for_each_map(map, obj) { 289 /* only generate definitions for memory-mapped internal maps */ 290 if (!is_mmapable_map(map, map_ident, sizeof(map_ident))) 291 continue; 292 293 sec = find_type_for_map(btf, map_ident); 294 295 /* In some cases (e.g., sections like .rodata.cst16 containing 296 * compiler allocated string constants only) there will be 297 * special internal maps with no corresponding DATASEC BTF 298 * type. In such case, generate empty structs for each such 299 * map. It will still be memory-mapped and its contents 300 * accessible from user-space through BPF skeleton. 301 */ 302 if (!sec) { 303 printf(" struct %s__%s {\n", obj_name, map_ident); 304 printf(" } *%s;\n", map_ident); 305 } else { 306 err = codegen_datasec_def(obj, btf, d, sec, obj_name); 307 if (err) 308 goto out; 309 } 310 } 311 312 313 out: 314 btf_dump__free(d); 315 return err; 316 } 317 318 static bool btf_is_ptr_to_func_proto(const struct btf *btf, 319 const struct btf_type *v) 320 { 321 return btf_is_ptr(v) && btf_is_func_proto(btf__type_by_id(btf, v->type)); 322 } 323 324 static int codegen_subskel_datasecs(struct bpf_object *obj, const char *obj_name) 325 { 326 struct btf *btf = bpf_object__btf(obj); 327 struct btf_dump *d; 328 struct bpf_map *map; 329 const struct btf_type *sec, *var; 330 const struct btf_var_secinfo *sec_var; 331 int i, err = 0, vlen; 332 char map_ident[256], sec_ident[256]; 333 bool strip_mods = false, needs_typeof = false; 334 const char *sec_name, *var_name; 335 __u32 var_type_id; 336 337 d = btf_dump__new(btf, codegen_btf_dump_printf, NULL, NULL); 338 if (!d) 339 return -errno; 340 341 bpf_object__for_each_map(map, obj) { 342 /* only generate definitions for memory-mapped internal maps */ 343 if (!is_mmapable_map(map, map_ident, sizeof(map_ident))) 344 continue; 345 346 sec = find_type_for_map(btf, map_ident); 347 if (!sec) 348 continue; 349 350 sec_name = btf__name_by_offset(btf, sec->name_off); 351 if (!get_datasec_ident(sec_name, sec_ident, sizeof(sec_ident))) 352 continue; 353 354 strip_mods = strcmp(sec_name, ".kconfig") != 0; 355 printf(" struct %s__%s {\n", obj_name, sec_ident); 356 357 sec_var = btf_var_secinfos(sec); 358 vlen = btf_vlen(sec); 359 for (i = 0; i < vlen; i++, sec_var++) { 360 DECLARE_LIBBPF_OPTS(btf_dump_emit_type_decl_opts, opts, 361 .indent_level = 2, 362 .strip_mods = strip_mods, 363 /* we'll print the name separately */ 364 .field_name = "", 365 ); 366 367 var = btf__type_by_id(btf, sec_var->type); 368 var_name = btf__name_by_offset(btf, var->name_off); 369 var_type_id = var->type; 370 371 /* static variables are not exposed through BPF skeleton */ 372 if (btf_var(var)->linkage == BTF_VAR_STATIC) 373 continue; 374 375 /* The datasec member has KIND_VAR but we want the 376 * underlying type of the variable (e.g. KIND_INT). 377 */ 378 var = skip_mods_and_typedefs(btf, var->type, NULL); 379 380 printf("\t\t"); 381 /* Func and array members require special handling. 382 * Instead of producing `typename *var`, they produce 383 * `typeof(typename) *var`. This allows us to keep a 384 * similar syntax where the identifier is just prefixed 385 * by *, allowing us to ignore C declaration minutiae. 386 */ 387 needs_typeof = btf_is_array(var) || btf_is_ptr_to_func_proto(btf, var); 388 if (needs_typeof) 389 printf("__typeof__("); 390 391 err = btf_dump__emit_type_decl(d, var_type_id, &opts); 392 if (err) 393 goto out; 394 395 if (needs_typeof) 396 printf(")"); 397 398 printf(" *%s;\n", var_name); 399 } 400 printf(" } %s;\n", sec_ident); 401 } 402 403 out: 404 btf_dump__free(d); 405 return err; 406 } 407 408 static void codegen(const char *template, ...) 409 { 410 const char *src, *end; 411 int skip_tabs = 0, n; 412 char *s, *dst; 413 va_list args; 414 char c; 415 416 n = strlen(template); 417 s = malloc(n + 1); 418 if (!s) 419 exit(-1); 420 src = template; 421 dst = s; 422 423 /* find out "baseline" indentation to skip */ 424 while ((c = *src++)) { 425 if (c == '\t') { 426 skip_tabs++; 427 } else if (c == '\n') { 428 break; 429 } else { 430 p_err("unrecognized character at pos %td in template '%s': '%c'", 431 src - template - 1, template, c); 432 free(s); 433 exit(-1); 434 } 435 } 436 437 while (*src) { 438 /* skip baseline indentation tabs */ 439 for (n = skip_tabs; n > 0; n--, src++) { 440 if (*src != '\t') { 441 p_err("not enough tabs at pos %td in template '%s'", 442 src - template - 1, template); 443 free(s); 444 exit(-1); 445 } 446 } 447 /* trim trailing whitespace */ 448 end = strchrnul(src, '\n'); 449 for (n = end - src; n > 0 && isspace(src[n - 1]); n--) 450 ; 451 memcpy(dst, src, n); 452 dst += n; 453 if (*end) 454 *dst++ = '\n'; 455 src = *end ? end + 1 : end; 456 } 457 *dst++ = '\0'; 458 459 /* print out using adjusted template */ 460 va_start(args, template); 461 n = vprintf(s, args); 462 va_end(args); 463 464 free(s); 465 } 466 467 static void print_hex(const char *data, int data_sz) 468 { 469 int i, len; 470 471 for (i = 0, len = 0; i < data_sz; i++) { 472 int w = data[i] ? 4 : 2; 473 474 len += w; 475 if (len > 78) { 476 printf("\\\n"); 477 len = w; 478 } 479 if (!data[i]) 480 printf("\\0"); 481 else 482 printf("\\x%02x", (unsigned char)data[i]); 483 } 484 } 485 486 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 487 { 488 long page_sz = sysconf(_SC_PAGE_SIZE); 489 size_t map_sz; 490 491 map_sz = (size_t)roundup(bpf_map__value_size(map), 8) * bpf_map__max_entries(map); 492 map_sz = roundup(map_sz, page_sz); 493 return map_sz; 494 } 495 496 /* Emit type size asserts for all top-level fields in memory-mapped internal maps. */ 497 static void codegen_asserts(struct bpf_object *obj, const char *obj_name) 498 { 499 struct btf *btf = bpf_object__btf(obj); 500 struct bpf_map *map; 501 struct btf_var_secinfo *sec_var; 502 int i, vlen; 503 const struct btf_type *sec; 504 char map_ident[256], var_ident[256]; 505 506 if (!btf) 507 return; 508 509 codegen("\ 510 \n\ 511 __attribute__((unused)) static void \n\ 512 %1$s__assert(struct %1$s *s __attribute__((unused))) \n\ 513 { \n\ 514 #ifdef __cplusplus \n\ 515 #define _Static_assert static_assert \n\ 516 #endif \n\ 517 ", obj_name); 518 519 bpf_object__for_each_map(map, obj) { 520 if (!is_mmapable_map(map, map_ident, sizeof(map_ident))) 521 continue; 522 523 sec = find_type_for_map(btf, map_ident); 524 if (!sec) { 525 /* best effort, couldn't find the type for this map */ 526 continue; 527 } 528 529 sec_var = btf_var_secinfos(sec); 530 vlen = btf_vlen(sec); 531 532 for (i = 0; i < vlen; i++, sec_var++) { 533 const struct btf_type *var = btf__type_by_id(btf, sec_var->type); 534 const char *var_name = btf__name_by_offset(btf, var->name_off); 535 long var_size; 536 537 /* static variables are not exposed through BPF skeleton */ 538 if (btf_var(var)->linkage == BTF_VAR_STATIC) 539 continue; 540 541 var_size = btf__resolve_size(btf, var->type); 542 if (var_size < 0) 543 continue; 544 545 var_ident[0] = '\0'; 546 strncat(var_ident, var_name, sizeof(var_ident) - 1); 547 sanitize_identifier(var_ident); 548 549 printf("\t_Static_assert(sizeof(s->%s->%s) == %ld, \"unexpected size of '%s'\");\n", 550 map_ident, var_ident, var_size, var_ident); 551 } 552 } 553 codegen("\ 554 \n\ 555 #ifdef __cplusplus \n\ 556 #undef _Static_assert \n\ 557 #endif \n\ 558 } \n\ 559 "); 560 } 561 562 static void codegen_attach_detach(struct bpf_object *obj, const char *obj_name) 563 { 564 struct bpf_program *prog; 565 566 bpf_object__for_each_program(prog, obj) { 567 const char *tp_name; 568 569 codegen("\ 570 \n\ 571 \n\ 572 static inline int \n\ 573 %1$s__%2$s__attach(struct %1$s *skel) \n\ 574 { \n\ 575 int prog_fd = skel->progs.%2$s.prog_fd; \n\ 576 ", obj_name, bpf_program__name(prog)); 577 578 switch (bpf_program__type(prog)) { 579 case BPF_PROG_TYPE_RAW_TRACEPOINT: 580 tp_name = strchr(bpf_program__section_name(prog), '/') + 1; 581 printf("\tint fd = skel_raw_tracepoint_open(\"%s\", prog_fd);\n", tp_name); 582 break; 583 case BPF_PROG_TYPE_TRACING: 584 case BPF_PROG_TYPE_LSM: 585 if (bpf_program__expected_attach_type(prog) == BPF_TRACE_ITER) 586 printf("\tint fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER);\n"); 587 else 588 printf("\tint fd = skel_raw_tracepoint_open(NULL, prog_fd);\n"); 589 break; 590 default: 591 printf("\tint fd = ((void)prog_fd, 0); /* auto-attach not supported */\n"); 592 break; 593 } 594 codegen("\ 595 \n\ 596 \n\ 597 if (fd > 0) \n\ 598 skel->links.%1$s_fd = fd; \n\ 599 return fd; \n\ 600 } \n\ 601 ", bpf_program__name(prog)); 602 } 603 604 codegen("\ 605 \n\ 606 \n\ 607 static inline int \n\ 608 %1$s__attach(struct %1$s *skel) \n\ 609 { \n\ 610 int ret = 0; \n\ 611 \n\ 612 ", obj_name); 613 614 bpf_object__for_each_program(prog, obj) { 615 codegen("\ 616 \n\ 617 ret = ret < 0 ? ret : %1$s__%2$s__attach(skel); \n\ 618 ", obj_name, bpf_program__name(prog)); 619 } 620 621 codegen("\ 622 \n\ 623 return ret < 0 ? ret : 0; \n\ 624 } \n\ 625 \n\ 626 static inline void \n\ 627 %1$s__detach(struct %1$s *skel) \n\ 628 { \n\ 629 ", obj_name); 630 631 bpf_object__for_each_program(prog, obj) { 632 codegen("\ 633 \n\ 634 skel_closenz(skel->links.%1$s_fd); \n\ 635 ", bpf_program__name(prog)); 636 } 637 638 codegen("\ 639 \n\ 640 } \n\ 641 "); 642 } 643 644 static void codegen_destroy(struct bpf_object *obj, const char *obj_name) 645 { 646 struct bpf_program *prog; 647 struct bpf_map *map; 648 char ident[256]; 649 650 codegen("\ 651 \n\ 652 static void \n\ 653 %1$s__destroy(struct %1$s *skel) \n\ 654 { \n\ 655 if (!skel) \n\ 656 return; \n\ 657 %1$s__detach(skel); \n\ 658 ", 659 obj_name); 660 661 bpf_object__for_each_program(prog, obj) { 662 codegen("\ 663 \n\ 664 skel_closenz(skel->progs.%1$s.prog_fd); \n\ 665 ", bpf_program__name(prog)); 666 } 667 668 bpf_object__for_each_map(map, obj) { 669 if (!get_map_ident(map, ident, sizeof(ident))) 670 continue; 671 if (bpf_map__is_internal(map) && 672 (bpf_map__map_flags(map) & BPF_F_MMAPABLE)) 673 printf("\tskel_free_map_data(skel->%1$s, skel->maps.%1$s.initial_value, %2$zd);\n", 674 ident, bpf_map_mmap_sz(map)); 675 codegen("\ 676 \n\ 677 skel_closenz(skel->maps.%1$s.map_fd); \n\ 678 ", ident); 679 } 680 codegen("\ 681 \n\ 682 skel_free(skel); \n\ 683 } \n\ 684 ", 685 obj_name); 686 } 687 688 static int gen_trace(struct bpf_object *obj, const char *obj_name, const char *header_guard) 689 { 690 DECLARE_LIBBPF_OPTS(gen_loader_opts, opts); 691 struct bpf_map *map; 692 char ident[256]; 693 int err = 0; 694 695 err = bpf_object__gen_loader(obj, &opts); 696 if (err) 697 return err; 698 699 err = bpf_object__load(obj); 700 if (err) { 701 p_err("failed to load object file"); 702 goto out; 703 } 704 /* If there was no error during load then gen_loader_opts 705 * are populated with the loader program. 706 */ 707 708 /* finish generating 'struct skel' */ 709 codegen("\ 710 \n\ 711 }; \n\ 712 ", obj_name); 713 714 715 codegen_attach_detach(obj, obj_name); 716 717 codegen_destroy(obj, obj_name); 718 719 codegen("\ 720 \n\ 721 static inline struct %1$s * \n\ 722 %1$s__open(void) \n\ 723 { \n\ 724 struct %1$s *skel; \n\ 725 \n\ 726 skel = skel_alloc(sizeof(*skel)); \n\ 727 if (!skel) \n\ 728 goto cleanup; \n\ 729 skel->ctx.sz = (void *)&skel->links - (void *)skel; \n\ 730 ", 731 obj_name, opts.data_sz); 732 bpf_object__for_each_map(map, obj) { 733 const void *mmap_data = NULL; 734 size_t mmap_size = 0; 735 736 if (!is_mmapable_map(map, ident, sizeof(ident))) 737 continue; 738 739 codegen("\ 740 \n\ 741 { \n\ 742 static const char data[] __attribute__((__aligned__(8))) = \"\\\n\ 743 "); 744 mmap_data = bpf_map__initial_value(map, &mmap_size); 745 print_hex(mmap_data, mmap_size); 746 codegen("\ 747 \n\ 748 \"; \n\ 749 \n\ 750 skel->%1$s = skel_prep_map_data((void *)data, %2$zd,\n\ 751 sizeof(data) - 1);\n\ 752 if (!skel->%1$s) \n\ 753 goto cleanup; \n\ 754 skel->maps.%1$s.initial_value = (__u64) (long) skel->%1$s;\n\ 755 } \n\ 756 ", ident, bpf_map_mmap_sz(map)); 757 } 758 codegen("\ 759 \n\ 760 return skel; \n\ 761 cleanup: \n\ 762 %1$s__destroy(skel); \n\ 763 return NULL; \n\ 764 } \n\ 765 \n\ 766 static inline int \n\ 767 %1$s__load(struct %1$s *skel) \n\ 768 { \n\ 769 struct bpf_load_and_run_opts opts = {}; \n\ 770 int err; \n\ 771 static const char opts_data[] __attribute__((__aligned__(8))) = \"\\\n\ 772 ", 773 obj_name); 774 print_hex(opts.data, opts.data_sz); 775 codegen("\ 776 \n\ 777 \"; \n\ 778 static const char opts_insn[] __attribute__((__aligned__(8))) = \"\\\n\ 779 "); 780 print_hex(opts.insns, opts.insns_sz); 781 codegen("\ 782 \n\ 783 \"; \n\ 784 \n\ 785 opts.ctx = (struct bpf_loader_ctx *)skel; \n\ 786 opts.data_sz = sizeof(opts_data) - 1; \n\ 787 opts.data = (void *)opts_data; \n\ 788 opts.insns_sz = sizeof(opts_insn) - 1; \n\ 789 opts.insns = (void *)opts_insn; \n\ 790 \n\ 791 err = bpf_load_and_run(&opts); \n\ 792 if (err < 0) \n\ 793 return err; \n\ 794 "); 795 bpf_object__for_each_map(map, obj) { 796 const char *mmap_flags; 797 798 if (!is_mmapable_map(map, ident, sizeof(ident))) 799 continue; 800 801 if (bpf_map__map_flags(map) & BPF_F_RDONLY_PROG) 802 mmap_flags = "PROT_READ"; 803 else 804 mmap_flags = "PROT_READ | PROT_WRITE"; 805 806 codegen("\ 807 \n\ 808 skel->%1$s = skel_finalize_map_data(&skel->maps.%1$s.initial_value, \n\ 809 %2$zd, %3$s, skel->maps.%1$s.map_fd);\n\ 810 if (!skel->%1$s) \n\ 811 return -ENOMEM; \n\ 812 ", 813 ident, bpf_map_mmap_sz(map), mmap_flags); 814 } 815 codegen("\ 816 \n\ 817 return 0; \n\ 818 } \n\ 819 \n\ 820 static inline struct %1$s * \n\ 821 %1$s__open_and_load(void) \n\ 822 { \n\ 823 struct %1$s *skel; \n\ 824 \n\ 825 skel = %1$s__open(); \n\ 826 if (!skel) \n\ 827 return NULL; \n\ 828 if (%1$s__load(skel)) { \n\ 829 %1$s__destroy(skel); \n\ 830 return NULL; \n\ 831 } \n\ 832 return skel; \n\ 833 } \n\ 834 \n\ 835 ", obj_name); 836 837 codegen_asserts(obj, obj_name); 838 839 codegen("\ 840 \n\ 841 \n\ 842 #endif /* %s */ \n\ 843 ", 844 header_guard); 845 err = 0; 846 out: 847 return err; 848 } 849 850 static void 851 codegen_maps_skeleton(struct bpf_object *obj, size_t map_cnt, bool mmaped, bool populate_links) 852 { 853 struct bpf_map *map; 854 char ident[256]; 855 size_t i, map_sz; 856 857 if (!map_cnt) 858 return; 859 860 /* for backward compatibility with old libbpf versions that don't 861 * handle new BPF skeleton with new struct bpf_map_skeleton definition 862 * that includes link field, avoid specifying new increased size, 863 * unless we absolutely have to (i.e., if there are struct_ops maps 864 * present) 865 */ 866 map_sz = offsetof(struct bpf_map_skeleton, link); 867 if (populate_links) { 868 bpf_object__for_each_map(map, obj) { 869 if (bpf_map__type(map) == BPF_MAP_TYPE_STRUCT_OPS) { 870 map_sz = sizeof(struct bpf_map_skeleton); 871 break; 872 } 873 } 874 } 875 876 codegen("\ 877 \n\ 878 \n\ 879 /* maps */ \n\ 880 s->map_cnt = %zu; \n\ 881 s->map_skel_sz = %zu; \n\ 882 s->maps = (struct bpf_map_skeleton *)calloc(s->map_cnt,\n\ 883 sizeof(*s->maps) > %zu ? sizeof(*s->maps) : %zu);\n\ 884 if (!s->maps) { \n\ 885 err = -ENOMEM; \n\ 886 goto err; \n\ 887 } \n\ 888 ", 889 map_cnt, map_sz, map_sz, map_sz 890 ); 891 i = 0; 892 bpf_object__for_each_map(map, obj) { 893 if (!get_map_ident(map, ident, sizeof(ident))) 894 continue; 895 896 codegen("\ 897 \n\ 898 \n\ 899 map = (struct bpf_map_skeleton *)((char *)s->maps + %zu * s->map_skel_sz);\n\ 900 map->name = \"%s\"; \n\ 901 map->map = &obj->maps.%s; \n\ 902 ", 903 i, bpf_map__name(map), ident); 904 /* memory-mapped internal maps */ 905 if (mmaped && is_mmapable_map(map, ident, sizeof(ident))) { 906 printf("\tmap->mmaped = (void **)&obj->%s;\n", ident); 907 } 908 909 if (populate_links && bpf_map__type(map) == BPF_MAP_TYPE_STRUCT_OPS) { 910 codegen("\ 911 \n\ 912 map->link = &obj->links.%s; \n\ 913 ", ident); 914 } 915 i++; 916 } 917 } 918 919 static void 920 codegen_progs_skeleton(struct bpf_object *obj, size_t prog_cnt, bool populate_links) 921 { 922 struct bpf_program *prog; 923 int i; 924 925 if (!prog_cnt) 926 return; 927 928 codegen("\ 929 \n\ 930 \n\ 931 /* programs */ \n\ 932 s->prog_cnt = %zu; \n\ 933 s->prog_skel_sz = sizeof(*s->progs); \n\ 934 s->progs = (struct bpf_prog_skeleton *)calloc(s->prog_cnt, s->prog_skel_sz);\n\ 935 if (!s->progs) { \n\ 936 err = -ENOMEM; \n\ 937 goto err; \n\ 938 } \n\ 939 ", 940 prog_cnt 941 ); 942 i = 0; 943 bpf_object__for_each_program(prog, obj) { 944 codegen("\ 945 \n\ 946 \n\ 947 s->progs[%1$zu].name = \"%2$s\"; \n\ 948 s->progs[%1$zu].prog = &obj->progs.%2$s;\n\ 949 ", 950 i, bpf_program__name(prog)); 951 952 if (populate_links) { 953 codegen("\ 954 \n\ 955 s->progs[%1$zu].link = &obj->links.%2$s;\n\ 956 ", 957 i, bpf_program__name(prog)); 958 } 959 i++; 960 } 961 } 962 963 static int walk_st_ops_shadow_vars(struct btf *btf, const char *ident, 964 const struct btf_type *map_type, __u32 map_type_id) 965 { 966 LIBBPF_OPTS(btf_dump_emit_type_decl_opts, opts, .indent_level = 3); 967 const struct btf_type *member_type; 968 __u32 offset, next_offset = 0; 969 const struct btf_member *m; 970 struct btf_dump *d = NULL; 971 const char *member_name; 972 __u32 member_type_id; 973 int i, err = 0, n; 974 int size; 975 976 d = btf_dump__new(btf, codegen_btf_dump_printf, NULL, NULL); 977 if (!d) 978 return -errno; 979 980 n = btf_vlen(map_type); 981 for (i = 0, m = btf_members(map_type); i < n; i++, m++) { 982 member_type = skip_mods_and_typedefs(btf, m->type, &member_type_id); 983 member_name = btf__name_by_offset(btf, m->name_off); 984 985 offset = m->offset / 8; 986 if (next_offset < offset) 987 printf("\t\t\tchar __padding_%d[%d];\n", i, offset - next_offset); 988 989 switch (btf_kind(member_type)) { 990 case BTF_KIND_INT: 991 case BTF_KIND_FLOAT: 992 case BTF_KIND_ENUM: 993 case BTF_KIND_ENUM64: 994 /* scalar type */ 995 printf("\t\t\t"); 996 opts.field_name = member_name; 997 err = btf_dump__emit_type_decl(d, member_type_id, &opts); 998 if (err) { 999 p_err("Failed to emit type declaration for %s: %d", member_name, err); 1000 goto out; 1001 } 1002 printf(";\n"); 1003 1004 size = btf__resolve_size(btf, member_type_id); 1005 if (size < 0) { 1006 p_err("Failed to resolve size of %s: %d\n", member_name, size); 1007 err = size; 1008 goto out; 1009 } 1010 1011 next_offset = offset + size; 1012 break; 1013 1014 case BTF_KIND_PTR: 1015 if (resolve_func_ptr(btf, m->type, NULL)) { 1016 /* Function pointer */ 1017 printf("\t\t\tstruct bpf_program *%s;\n", member_name); 1018 1019 next_offset = offset + sizeof(void *); 1020 break; 1021 } 1022 /* All pointer types are unsupported except for 1023 * function pointers. 1024 */ 1025 fallthrough; 1026 1027 default: 1028 /* Unsupported types 1029 * 1030 * Types other than scalar types and function 1031 * pointers are currently not supported in order to 1032 * prevent conflicts in the generated code caused 1033 * by multiple definitions. For instance, if the 1034 * struct type FOO is used in a struct_ops map, 1035 * bpftool has to generate definitions for FOO, 1036 * which may result in conflicts if FOO is defined 1037 * in different skeleton files. 1038 */ 1039 size = btf__resolve_size(btf, member_type_id); 1040 if (size < 0) { 1041 p_err("Failed to resolve size of %s: %d\n", member_name, size); 1042 err = size; 1043 goto out; 1044 } 1045 printf("\t\t\tchar __unsupported_%d[%d];\n", i, size); 1046 1047 next_offset = offset + size; 1048 break; 1049 } 1050 } 1051 1052 /* Cannot fail since it must be a struct type */ 1053 size = btf__resolve_size(btf, map_type_id); 1054 if (next_offset < (__u32)size) 1055 printf("\t\t\tchar __padding_end[%d];\n", size - next_offset); 1056 1057 out: 1058 btf_dump__free(d); 1059 1060 return err; 1061 } 1062 1063 /* Generate the pointer of the shadow type for a struct_ops map. 1064 * 1065 * This function adds a pointer of the shadow type for a struct_ops map. 1066 * The members of a struct_ops map can be exported through a pointer to a 1067 * shadow type. The user can access these members through the pointer. 1068 * 1069 * A shadow type includes not all members, only members of some types. 1070 * They are scalar types and function pointers. The function pointers are 1071 * translated to the pointer of the struct bpf_program. The scalar types 1072 * are translated to the original type without any modifiers. 1073 * 1074 * Unsupported types will be translated to a char array to occupy the same 1075 * space as the original field, being renamed as __unsupported_*. The user 1076 * should treat these fields as opaque data. 1077 */ 1078 static int gen_st_ops_shadow_type(const char *obj_name, struct btf *btf, const char *ident, 1079 const struct bpf_map *map) 1080 { 1081 const struct btf_type *map_type; 1082 const char *type_name; 1083 __u32 map_type_id; 1084 int err; 1085 1086 map_type_id = bpf_map__btf_value_type_id(map); 1087 if (map_type_id == 0) 1088 return -EINVAL; 1089 map_type = btf__type_by_id(btf, map_type_id); 1090 if (!map_type) 1091 return -EINVAL; 1092 1093 type_name = btf__name_by_offset(btf, map_type->name_off); 1094 1095 printf("\t\tstruct %s__%s__%s {\n", obj_name, ident, type_name); 1096 1097 err = walk_st_ops_shadow_vars(btf, ident, map_type, map_type_id); 1098 if (err) 1099 return err; 1100 1101 printf("\t\t} *%s;\n", ident); 1102 1103 return 0; 1104 } 1105 1106 static int gen_st_ops_shadow(const char *obj_name, struct btf *btf, struct bpf_object *obj) 1107 { 1108 int err, st_ops_cnt = 0; 1109 struct bpf_map *map; 1110 char ident[256]; 1111 1112 if (!btf) 1113 return 0; 1114 1115 /* Generate the pointers to shadow types of 1116 * struct_ops maps. 1117 */ 1118 bpf_object__for_each_map(map, obj) { 1119 if (bpf_map__type(map) != BPF_MAP_TYPE_STRUCT_OPS) 1120 continue; 1121 if (!get_map_ident(map, ident, sizeof(ident))) 1122 continue; 1123 1124 if (st_ops_cnt == 0) /* first struct_ops map */ 1125 printf("\tstruct {\n"); 1126 st_ops_cnt++; 1127 1128 err = gen_st_ops_shadow_type(obj_name, btf, ident, map); 1129 if (err) 1130 return err; 1131 } 1132 1133 if (st_ops_cnt) 1134 printf("\t} struct_ops;\n"); 1135 1136 return 0; 1137 } 1138 1139 /* Generate the code to initialize the pointers of shadow types. */ 1140 static void gen_st_ops_shadow_init(struct btf *btf, struct bpf_object *obj) 1141 { 1142 struct bpf_map *map; 1143 char ident[256]; 1144 1145 if (!btf) 1146 return; 1147 1148 /* Initialize the pointers to_ops shadow types of 1149 * struct_ops maps. 1150 */ 1151 bpf_object__for_each_map(map, obj) { 1152 if (bpf_map__type(map) != BPF_MAP_TYPE_STRUCT_OPS) 1153 continue; 1154 if (!get_map_ident(map, ident, sizeof(ident))) 1155 continue; 1156 codegen("\ 1157 \n\ 1158 obj->struct_ops.%1$s = (__typeof__(obj->struct_ops.%1$s))\n\ 1159 bpf_map__initial_value(obj->maps.%1$s, NULL);\n\ 1160 \n\ 1161 ", ident); 1162 } 1163 } 1164 1165 static int do_skeleton(int argc, char **argv) 1166 { 1167 char header_guard[MAX_OBJ_NAME_LEN + sizeof("__SKEL_H__")]; 1168 size_t map_cnt = 0, prog_cnt = 0, attach_map_cnt = 0, file_sz, mmap_sz; 1169 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts); 1170 char obj_name[MAX_OBJ_NAME_LEN] = "", *obj_data; 1171 struct bpf_object *obj = NULL; 1172 const char *file; 1173 char ident[256]; 1174 struct bpf_program *prog; 1175 int fd, err = -1; 1176 struct bpf_map *map; 1177 struct btf *btf; 1178 struct stat st; 1179 1180 if (!REQ_ARGS(1)) { 1181 usage(); 1182 return -1; 1183 } 1184 file = GET_ARG(); 1185 1186 while (argc) { 1187 if (!REQ_ARGS(2)) 1188 return -1; 1189 1190 if (is_prefix(*argv, "name")) { 1191 NEXT_ARG(); 1192 1193 if (obj_name[0] != '\0') { 1194 p_err("object name already specified"); 1195 return -1; 1196 } 1197 1198 strncpy(obj_name, *argv, MAX_OBJ_NAME_LEN - 1); 1199 obj_name[MAX_OBJ_NAME_LEN - 1] = '\0'; 1200 } else { 1201 p_err("unknown arg %s", *argv); 1202 return -1; 1203 } 1204 1205 NEXT_ARG(); 1206 } 1207 1208 if (argc) { 1209 p_err("extra unknown arguments"); 1210 return -1; 1211 } 1212 1213 if (stat(file, &st)) { 1214 p_err("failed to stat() %s: %s", file, strerror(errno)); 1215 return -1; 1216 } 1217 file_sz = st.st_size; 1218 mmap_sz = roundup(file_sz, sysconf(_SC_PAGE_SIZE)); 1219 fd = open(file, O_RDONLY); 1220 if (fd < 0) { 1221 p_err("failed to open() %s: %s", file, strerror(errno)); 1222 return -1; 1223 } 1224 obj_data = mmap(NULL, mmap_sz, PROT_READ, MAP_PRIVATE, fd, 0); 1225 if (obj_data == MAP_FAILED) { 1226 obj_data = NULL; 1227 p_err("failed to mmap() %s: %s", file, strerror(errno)); 1228 goto out; 1229 } 1230 if (obj_name[0] == '\0') 1231 get_obj_name(obj_name, file); 1232 opts.object_name = obj_name; 1233 if (verifier_logs) 1234 /* log_level1 + log_level2 + stats, but not stable UAPI */ 1235 opts.kernel_log_level = 1 + 2 + 4; 1236 obj = bpf_object__open_mem(obj_data, file_sz, &opts); 1237 if (!obj) { 1238 char err_buf[256]; 1239 1240 err = -errno; 1241 libbpf_strerror(err, err_buf, sizeof(err_buf)); 1242 p_err("failed to open BPF object file: %s", err_buf); 1243 goto out; 1244 } 1245 1246 bpf_object__for_each_map(map, obj) { 1247 if (!get_map_ident(map, ident, sizeof(ident))) { 1248 p_err("ignoring unrecognized internal map '%s'...", 1249 bpf_map__name(map)); 1250 continue; 1251 } 1252 1253 if (bpf_map__type(map) == BPF_MAP_TYPE_STRUCT_OPS) 1254 attach_map_cnt++; 1255 1256 map_cnt++; 1257 } 1258 bpf_object__for_each_program(prog, obj) { 1259 prog_cnt++; 1260 } 1261 1262 get_header_guard(header_guard, obj_name, "SKEL_H"); 1263 if (use_loader) { 1264 codegen("\ 1265 \n\ 1266 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ \n\ 1267 /* THIS FILE IS AUTOGENERATED BY BPFTOOL! */ \n\ 1268 #ifndef %2$s \n\ 1269 #define %2$s \n\ 1270 \n\ 1271 #include <bpf/skel_internal.h> \n\ 1272 \n\ 1273 struct %1$s { \n\ 1274 struct bpf_loader_ctx ctx; \n\ 1275 ", 1276 obj_name, header_guard 1277 ); 1278 } else { 1279 codegen("\ 1280 \n\ 1281 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ \n\ 1282 \n\ 1283 /* THIS FILE IS AUTOGENERATED BY BPFTOOL! */ \n\ 1284 #ifndef %2$s \n\ 1285 #define %2$s \n\ 1286 \n\ 1287 #include <errno.h> \n\ 1288 #include <stdlib.h> \n\ 1289 #include <bpf/libbpf.h> \n\ 1290 \n\ 1291 #define BPF_SKEL_SUPPORTS_MAP_AUTO_ATTACH 1 \n\ 1292 \n\ 1293 struct %1$s { \n\ 1294 struct bpf_object_skeleton *skeleton; \n\ 1295 struct bpf_object *obj; \n\ 1296 ", 1297 obj_name, header_guard 1298 ); 1299 } 1300 1301 if (map_cnt) { 1302 printf("\tstruct {\n"); 1303 bpf_object__for_each_map(map, obj) { 1304 if (!get_map_ident(map, ident, sizeof(ident))) 1305 continue; 1306 if (use_loader) 1307 printf("\t\tstruct bpf_map_desc %s;\n", ident); 1308 else 1309 printf("\t\tstruct bpf_map *%s;\n", ident); 1310 } 1311 printf("\t} maps;\n"); 1312 } 1313 1314 btf = bpf_object__btf(obj); 1315 err = gen_st_ops_shadow(obj_name, btf, obj); 1316 if (err) 1317 goto out; 1318 1319 if (prog_cnt) { 1320 printf("\tstruct {\n"); 1321 bpf_object__for_each_program(prog, obj) { 1322 if (use_loader) 1323 printf("\t\tstruct bpf_prog_desc %s;\n", 1324 bpf_program__name(prog)); 1325 else 1326 printf("\t\tstruct bpf_program *%s;\n", 1327 bpf_program__name(prog)); 1328 } 1329 printf("\t} progs;\n"); 1330 } 1331 1332 if (prog_cnt + attach_map_cnt) { 1333 printf("\tstruct {\n"); 1334 bpf_object__for_each_program(prog, obj) { 1335 if (use_loader) 1336 printf("\t\tint %s_fd;\n", 1337 bpf_program__name(prog)); 1338 else 1339 printf("\t\tstruct bpf_link *%s;\n", 1340 bpf_program__name(prog)); 1341 } 1342 1343 bpf_object__for_each_map(map, obj) { 1344 if (!get_map_ident(map, ident, sizeof(ident))) 1345 continue; 1346 if (bpf_map__type(map) != BPF_MAP_TYPE_STRUCT_OPS) 1347 continue; 1348 1349 if (use_loader) 1350 printf("t\tint %s_fd;\n", ident); 1351 else 1352 printf("\t\tstruct bpf_link *%s;\n", ident); 1353 } 1354 1355 printf("\t} links;\n"); 1356 } 1357 1358 if (btf) { 1359 err = codegen_datasecs(obj, obj_name); 1360 if (err) 1361 goto out; 1362 } 1363 if (use_loader) { 1364 err = gen_trace(obj, obj_name, header_guard); 1365 goto out; 1366 } 1367 1368 codegen("\ 1369 \n\ 1370 \n\ 1371 #ifdef __cplusplus \n\ 1372 static inline struct %1$s *open(const struct bpf_object_open_opts *opts = nullptr);\n\ 1373 static inline struct %1$s *open_and_load(); \n\ 1374 static inline int load(struct %1$s *skel); \n\ 1375 static inline int attach(struct %1$s *skel); \n\ 1376 static inline void detach(struct %1$s *skel); \n\ 1377 static inline void destroy(struct %1$s *skel); \n\ 1378 static inline const void *elf_bytes(size_t *sz); \n\ 1379 #endif /* __cplusplus */ \n\ 1380 }; \n\ 1381 \n\ 1382 static void \n\ 1383 %1$s__destroy(struct %1$s *obj) \n\ 1384 { \n\ 1385 if (!obj) \n\ 1386 return; \n\ 1387 if (obj->skeleton) \n\ 1388 bpf_object__destroy_skeleton(obj->skeleton);\n\ 1389 free(obj); \n\ 1390 } \n\ 1391 \n\ 1392 static inline int \n\ 1393 %1$s__create_skeleton(struct %1$s *obj); \n\ 1394 \n\ 1395 static inline struct %1$s * \n\ 1396 %1$s__open_opts(const struct bpf_object_open_opts *opts) \n\ 1397 { \n\ 1398 struct %1$s *obj; \n\ 1399 int err; \n\ 1400 \n\ 1401 obj = (struct %1$s *)calloc(1, sizeof(*obj)); \n\ 1402 if (!obj) { \n\ 1403 errno = ENOMEM; \n\ 1404 return NULL; \n\ 1405 } \n\ 1406 \n\ 1407 err = %1$s__create_skeleton(obj); \n\ 1408 if (err) \n\ 1409 goto err_out; \n\ 1410 \n\ 1411 err = bpf_object__open_skeleton(obj->skeleton, opts);\n\ 1412 if (err) \n\ 1413 goto err_out; \n\ 1414 \n\ 1415 ", obj_name); 1416 1417 gen_st_ops_shadow_init(btf, obj); 1418 1419 codegen("\ 1420 \n\ 1421 return obj; \n\ 1422 err_out: \n\ 1423 %1$s__destroy(obj); \n\ 1424 errno = -err; \n\ 1425 return NULL; \n\ 1426 } \n\ 1427 \n\ 1428 static inline struct %1$s * \n\ 1429 %1$s__open(void) \n\ 1430 { \n\ 1431 return %1$s__open_opts(NULL); \n\ 1432 } \n\ 1433 \n\ 1434 static inline int \n\ 1435 %1$s__load(struct %1$s *obj) \n\ 1436 { \n\ 1437 return bpf_object__load_skeleton(obj->skeleton); \n\ 1438 } \n\ 1439 \n\ 1440 static inline struct %1$s * \n\ 1441 %1$s__open_and_load(void) \n\ 1442 { \n\ 1443 struct %1$s *obj; \n\ 1444 int err; \n\ 1445 \n\ 1446 obj = %1$s__open(); \n\ 1447 if (!obj) \n\ 1448 return NULL; \n\ 1449 err = %1$s__load(obj); \n\ 1450 if (err) { \n\ 1451 %1$s__destroy(obj); \n\ 1452 errno = -err; \n\ 1453 return NULL; \n\ 1454 } \n\ 1455 return obj; \n\ 1456 } \n\ 1457 \n\ 1458 static inline int \n\ 1459 %1$s__attach(struct %1$s *obj) \n\ 1460 { \n\ 1461 return bpf_object__attach_skeleton(obj->skeleton); \n\ 1462 } \n\ 1463 \n\ 1464 static inline void \n\ 1465 %1$s__detach(struct %1$s *obj) \n\ 1466 { \n\ 1467 bpf_object__detach_skeleton(obj->skeleton); \n\ 1468 } \n\ 1469 ", 1470 obj_name 1471 ); 1472 1473 codegen("\ 1474 \n\ 1475 \n\ 1476 static inline const void *%1$s__elf_bytes(size_t *sz); \n\ 1477 \n\ 1478 static inline int \n\ 1479 %1$s__create_skeleton(struct %1$s *obj) \n\ 1480 { \n\ 1481 struct bpf_object_skeleton *s; \n\ 1482 struct bpf_map_skeleton *map __attribute__((unused));\n\ 1483 int err; \n\ 1484 \n\ 1485 s = (struct bpf_object_skeleton *)calloc(1, sizeof(*s));\n\ 1486 if (!s) { \n\ 1487 err = -ENOMEM; \n\ 1488 goto err; \n\ 1489 } \n\ 1490 \n\ 1491 s->sz = sizeof(*s); \n\ 1492 s->name = \"%1$s\"; \n\ 1493 s->obj = &obj->obj; \n\ 1494 ", 1495 obj_name 1496 ); 1497 1498 codegen_maps_skeleton(obj, map_cnt, true /*mmaped*/, true /*links*/); 1499 codegen_progs_skeleton(obj, prog_cnt, true /*populate_links*/); 1500 1501 codegen("\ 1502 \n\ 1503 \n\ 1504 s->data = %1$s__elf_bytes(&s->data_sz); \n\ 1505 \n\ 1506 obj->skeleton = s; \n\ 1507 return 0; \n\ 1508 err: \n\ 1509 bpf_object__destroy_skeleton(s); \n\ 1510 return err; \n\ 1511 } \n\ 1512 \n\ 1513 static inline const void *%1$s__elf_bytes(size_t *sz) \n\ 1514 { \n\ 1515 static const char data[] __attribute__((__aligned__(8))) = \"\\\n\ 1516 ", 1517 obj_name 1518 ); 1519 1520 /* embed contents of BPF object file */ 1521 print_hex(obj_data, file_sz); 1522 1523 codegen("\ 1524 \n\ 1525 \"; \n\ 1526 \n\ 1527 *sz = sizeof(data) - 1; \n\ 1528 return (const void *)data; \n\ 1529 } \n\ 1530 \n\ 1531 #ifdef __cplusplus \n\ 1532 struct %1$s *%1$s::open(const struct bpf_object_open_opts *opts) { return %1$s__open_opts(opts); }\n\ 1533 struct %1$s *%1$s::open_and_load() { return %1$s__open_and_load(); } \n\ 1534 int %1$s::load(struct %1$s *skel) { return %1$s__load(skel); } \n\ 1535 int %1$s::attach(struct %1$s *skel) { return %1$s__attach(skel); } \n\ 1536 void %1$s::detach(struct %1$s *skel) { %1$s__detach(skel); } \n\ 1537 void %1$s::destroy(struct %1$s *skel) { %1$s__destroy(skel); } \n\ 1538 const void *%1$s::elf_bytes(size_t *sz) { return %1$s__elf_bytes(sz); } \n\ 1539 #endif /* __cplusplus */ \n\ 1540 \n\ 1541 ", 1542 obj_name); 1543 1544 codegen_asserts(obj, obj_name); 1545 1546 codegen("\ 1547 \n\ 1548 \n\ 1549 #endif /* %1$s */ \n\ 1550 ", 1551 header_guard); 1552 err = 0; 1553 out: 1554 bpf_object__close(obj); 1555 if (obj_data) 1556 munmap(obj_data, mmap_sz); 1557 close(fd); 1558 return err; 1559 } 1560 1561 /* Subskeletons are like skeletons, except they don't own the bpf_object, 1562 * associated maps, links, etc. Instead, they know about the existence of 1563 * variables, maps, programs and are able to find their locations 1564 * _at runtime_ from an already loaded bpf_object. 1565 * 1566 * This allows for library-like BPF objects to have userspace counterparts 1567 * with access to their own items without having to know anything about the 1568 * final BPF object that the library was linked into. 1569 */ 1570 static int do_subskeleton(int argc, char **argv) 1571 { 1572 char header_guard[MAX_OBJ_NAME_LEN + sizeof("__SUBSKEL_H__")]; 1573 size_t i, len, file_sz, map_cnt = 0, prog_cnt = 0, mmap_sz, var_cnt = 0, var_idx = 0; 1574 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts); 1575 char obj_name[MAX_OBJ_NAME_LEN] = "", *obj_data; 1576 struct bpf_object *obj = NULL; 1577 const char *file, *var_name; 1578 char ident[256]; 1579 int fd, err = -1, map_type_id; 1580 const struct bpf_map *map; 1581 struct bpf_program *prog; 1582 struct btf *btf; 1583 const struct btf_type *map_type, *var_type; 1584 const struct btf_var_secinfo *var; 1585 struct stat st; 1586 1587 if (!REQ_ARGS(1)) { 1588 usage(); 1589 return -1; 1590 } 1591 file = GET_ARG(); 1592 1593 while (argc) { 1594 if (!REQ_ARGS(2)) 1595 return -1; 1596 1597 if (is_prefix(*argv, "name")) { 1598 NEXT_ARG(); 1599 1600 if (obj_name[0] != '\0') { 1601 p_err("object name already specified"); 1602 return -1; 1603 } 1604 1605 strncpy(obj_name, *argv, MAX_OBJ_NAME_LEN - 1); 1606 obj_name[MAX_OBJ_NAME_LEN - 1] = '\0'; 1607 } else { 1608 p_err("unknown arg %s", *argv); 1609 return -1; 1610 } 1611 1612 NEXT_ARG(); 1613 } 1614 1615 if (argc) { 1616 p_err("extra unknown arguments"); 1617 return -1; 1618 } 1619 1620 if (use_loader) { 1621 p_err("cannot use loader for subskeletons"); 1622 return -1; 1623 } 1624 1625 if (stat(file, &st)) { 1626 p_err("failed to stat() %s: %s", file, strerror(errno)); 1627 return -1; 1628 } 1629 file_sz = st.st_size; 1630 mmap_sz = roundup(file_sz, sysconf(_SC_PAGE_SIZE)); 1631 fd = open(file, O_RDONLY); 1632 if (fd < 0) { 1633 p_err("failed to open() %s: %s", file, strerror(errno)); 1634 return -1; 1635 } 1636 obj_data = mmap(NULL, mmap_sz, PROT_READ, MAP_PRIVATE, fd, 0); 1637 if (obj_data == MAP_FAILED) { 1638 obj_data = NULL; 1639 p_err("failed to mmap() %s: %s", file, strerror(errno)); 1640 goto out; 1641 } 1642 if (obj_name[0] == '\0') 1643 get_obj_name(obj_name, file); 1644 1645 /* The empty object name allows us to use bpf_map__name and produce 1646 * ELF section names out of it. (".data" instead of "obj.data") 1647 */ 1648 opts.object_name = ""; 1649 obj = bpf_object__open_mem(obj_data, file_sz, &opts); 1650 if (!obj) { 1651 char err_buf[256]; 1652 1653 libbpf_strerror(errno, err_buf, sizeof(err_buf)); 1654 p_err("failed to open BPF object file: %s", err_buf); 1655 obj = NULL; 1656 goto out; 1657 } 1658 1659 btf = bpf_object__btf(obj); 1660 if (!btf) { 1661 err = -1; 1662 p_err("need btf type information for %s", obj_name); 1663 goto out; 1664 } 1665 1666 bpf_object__for_each_program(prog, obj) { 1667 prog_cnt++; 1668 } 1669 1670 /* First, count how many variables we have to find. 1671 * We need this in advance so the subskel can allocate the right 1672 * amount of storage. 1673 */ 1674 bpf_object__for_each_map(map, obj) { 1675 if (!get_map_ident(map, ident, sizeof(ident))) 1676 continue; 1677 1678 /* Also count all maps that have a name */ 1679 map_cnt++; 1680 1681 if (!is_mmapable_map(map, ident, sizeof(ident))) 1682 continue; 1683 1684 map_type_id = bpf_map__btf_value_type_id(map); 1685 if (map_type_id <= 0) { 1686 err = map_type_id; 1687 goto out; 1688 } 1689 map_type = btf__type_by_id(btf, map_type_id); 1690 1691 var = btf_var_secinfos(map_type); 1692 len = btf_vlen(map_type); 1693 for (i = 0; i < len; i++, var++) { 1694 var_type = btf__type_by_id(btf, var->type); 1695 1696 if (btf_var(var_type)->linkage == BTF_VAR_STATIC) 1697 continue; 1698 1699 var_cnt++; 1700 } 1701 } 1702 1703 get_header_guard(header_guard, obj_name, "SUBSKEL_H"); 1704 codegen("\ 1705 \n\ 1706 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ \n\ 1707 \n\ 1708 /* THIS FILE IS AUTOGENERATED! */ \n\ 1709 #ifndef %2$s \n\ 1710 #define %2$s \n\ 1711 \n\ 1712 #include <errno.h> \n\ 1713 #include <stdlib.h> \n\ 1714 #include <bpf/libbpf.h> \n\ 1715 \n\ 1716 struct %1$s { \n\ 1717 struct bpf_object *obj; \n\ 1718 struct bpf_object_subskeleton *subskel; \n\ 1719 ", obj_name, header_guard); 1720 1721 if (map_cnt) { 1722 printf("\tstruct {\n"); 1723 bpf_object__for_each_map(map, obj) { 1724 if (!get_map_ident(map, ident, sizeof(ident))) 1725 continue; 1726 printf("\t\tstruct bpf_map *%s;\n", ident); 1727 } 1728 printf("\t} maps;\n"); 1729 } 1730 1731 err = gen_st_ops_shadow(obj_name, btf, obj); 1732 if (err) 1733 goto out; 1734 1735 if (prog_cnt) { 1736 printf("\tstruct {\n"); 1737 bpf_object__for_each_program(prog, obj) { 1738 printf("\t\tstruct bpf_program *%s;\n", 1739 bpf_program__name(prog)); 1740 } 1741 printf("\t} progs;\n"); 1742 } 1743 1744 err = codegen_subskel_datasecs(obj, obj_name); 1745 if (err) 1746 goto out; 1747 1748 /* emit code that will allocate enough storage for all symbols */ 1749 codegen("\ 1750 \n\ 1751 \n\ 1752 #ifdef __cplusplus \n\ 1753 static inline struct %1$s *open(const struct bpf_object *src);\n\ 1754 static inline void destroy(struct %1$s *skel); \n\ 1755 #endif /* __cplusplus */ \n\ 1756 }; \n\ 1757 \n\ 1758 static inline void \n\ 1759 %1$s__destroy(struct %1$s *skel) \n\ 1760 { \n\ 1761 if (!skel) \n\ 1762 return; \n\ 1763 if (skel->subskel) \n\ 1764 bpf_object__destroy_subskeleton(skel->subskel);\n\ 1765 free(skel); \n\ 1766 } \n\ 1767 \n\ 1768 static inline struct %1$s * \n\ 1769 %1$s__open(const struct bpf_object *src) \n\ 1770 { \n\ 1771 struct %1$s *obj; \n\ 1772 struct bpf_object_subskeleton *s; \n\ 1773 struct bpf_map_skeleton *map __attribute__((unused));\n\ 1774 int err; \n\ 1775 \n\ 1776 obj = (struct %1$s *)calloc(1, sizeof(*obj)); \n\ 1777 if (!obj) { \n\ 1778 err = -ENOMEM; \n\ 1779 goto err; \n\ 1780 } \n\ 1781 s = (struct bpf_object_subskeleton *)calloc(1, sizeof(*s));\n\ 1782 if (!s) { \n\ 1783 err = -ENOMEM; \n\ 1784 goto err; \n\ 1785 } \n\ 1786 s->sz = sizeof(*s); \n\ 1787 s->obj = src; \n\ 1788 s->var_skel_sz = sizeof(*s->vars); \n\ 1789 obj->subskel = s; \n\ 1790 \n\ 1791 /* vars */ \n\ 1792 s->var_cnt = %2$d; \n\ 1793 s->vars = (struct bpf_var_skeleton *)calloc(%2$d, sizeof(*s->vars));\n\ 1794 if (!s->vars) { \n\ 1795 err = -ENOMEM; \n\ 1796 goto err; \n\ 1797 } \n\ 1798 ", 1799 obj_name, var_cnt 1800 ); 1801 1802 /* walk through each symbol and emit the runtime representation */ 1803 bpf_object__for_each_map(map, obj) { 1804 if (!is_mmapable_map(map, ident, sizeof(ident))) 1805 continue; 1806 1807 map_type_id = bpf_map__btf_value_type_id(map); 1808 if (map_type_id <= 0) 1809 /* skip over internal maps with no type*/ 1810 continue; 1811 1812 map_type = btf__type_by_id(btf, map_type_id); 1813 var = btf_var_secinfos(map_type); 1814 len = btf_vlen(map_type); 1815 for (i = 0; i < len; i++, var++) { 1816 var_type = btf__type_by_id(btf, var->type); 1817 var_name = btf__name_by_offset(btf, var_type->name_off); 1818 1819 if (btf_var(var_type)->linkage == BTF_VAR_STATIC) 1820 continue; 1821 1822 /* Note that we use the dot prefix in .data as the 1823 * field access operator i.e. maps%s becomes maps.data 1824 */ 1825 codegen("\ 1826 \n\ 1827 \n\ 1828 s->vars[%3$d].name = \"%1$s\"; \n\ 1829 s->vars[%3$d].map = &obj->maps.%2$s; \n\ 1830 s->vars[%3$d].addr = (void **) &obj->%2$s.%1$s;\n\ 1831 ", var_name, ident, var_idx); 1832 1833 var_idx++; 1834 } 1835 } 1836 1837 codegen_maps_skeleton(obj, map_cnt, false /*mmaped*/, false /*links*/); 1838 codegen_progs_skeleton(obj, prog_cnt, false /*links*/); 1839 1840 codegen("\ 1841 \n\ 1842 \n\ 1843 err = bpf_object__open_subskeleton(s); \n\ 1844 if (err) \n\ 1845 goto err; \n\ 1846 \n\ 1847 "); 1848 1849 gen_st_ops_shadow_init(btf, obj); 1850 1851 codegen("\ 1852 \n\ 1853 return obj; \n\ 1854 err: \n\ 1855 %1$s__destroy(obj); \n\ 1856 errno = -err; \n\ 1857 return NULL; \n\ 1858 } \n\ 1859 \n\ 1860 #ifdef __cplusplus \n\ 1861 struct %1$s *%1$s::open(const struct bpf_object *src) { return %1$s__open(src); }\n\ 1862 void %1$s::destroy(struct %1$s *skel) { %1$s__destroy(skel); }\n\ 1863 #endif /* __cplusplus */ \n\ 1864 \n\ 1865 #endif /* %2$s */ \n\ 1866 ", 1867 obj_name, header_guard); 1868 err = 0; 1869 out: 1870 bpf_object__close(obj); 1871 if (obj_data) 1872 munmap(obj_data, mmap_sz); 1873 close(fd); 1874 return err; 1875 } 1876 1877 static int do_object(int argc, char **argv) 1878 { 1879 struct bpf_linker *linker; 1880 const char *output_file, *file; 1881 int err = 0; 1882 1883 if (!REQ_ARGS(2)) { 1884 usage(); 1885 return -1; 1886 } 1887 1888 output_file = GET_ARG(); 1889 1890 linker = bpf_linker__new(output_file, NULL); 1891 if (!linker) { 1892 p_err("failed to create BPF linker instance"); 1893 return -1; 1894 } 1895 1896 while (argc) { 1897 file = GET_ARG(); 1898 1899 err = bpf_linker__add_file(linker, file, NULL); 1900 if (err) { 1901 p_err("failed to link '%s': %s (%d)", file, strerror(errno), errno); 1902 goto out; 1903 } 1904 } 1905 1906 err = bpf_linker__finalize(linker); 1907 if (err) { 1908 p_err("failed to finalize ELF file: %s (%d)", strerror(errno), errno); 1909 goto out; 1910 } 1911 1912 err = 0; 1913 out: 1914 bpf_linker__free(linker); 1915 return err; 1916 } 1917 1918 static int do_help(int argc, char **argv) 1919 { 1920 if (json_output) { 1921 jsonw_null(json_wtr); 1922 return 0; 1923 } 1924 1925 fprintf(stderr, 1926 "Usage: %1$s %2$s object OUTPUT_FILE INPUT_FILE [INPUT_FILE...]\n" 1927 " %1$s %2$s skeleton FILE [name OBJECT_NAME]\n" 1928 " %1$s %2$s subskeleton FILE [name OBJECT_NAME]\n" 1929 " %1$s %2$s min_core_btf INPUT OUTPUT OBJECT [OBJECT...]\n" 1930 " %1$s %2$s help\n" 1931 "\n" 1932 " " HELP_SPEC_OPTIONS " |\n" 1933 " {-L|--use-loader} }\n" 1934 "", 1935 bin_name, "gen"); 1936 1937 return 0; 1938 } 1939 1940 static int btf_save_raw(const struct btf *btf, const char *path) 1941 { 1942 const void *data; 1943 FILE *f = NULL; 1944 __u32 data_sz; 1945 int err = 0; 1946 1947 data = btf__raw_data(btf, &data_sz); 1948 if (!data) 1949 return -ENOMEM; 1950 1951 f = fopen(path, "wb"); 1952 if (!f) 1953 return -errno; 1954 1955 if (fwrite(data, 1, data_sz, f) != data_sz) 1956 err = -errno; 1957 1958 fclose(f); 1959 return err; 1960 } 1961 1962 struct btfgen_info { 1963 struct btf *src_btf; 1964 struct btf *marked_btf; /* btf structure used to mark used types */ 1965 }; 1966 1967 static size_t btfgen_hash_fn(long key, void *ctx) 1968 { 1969 return key; 1970 } 1971 1972 static bool btfgen_equal_fn(long k1, long k2, void *ctx) 1973 { 1974 return k1 == k2; 1975 } 1976 1977 static void btfgen_free_info(struct btfgen_info *info) 1978 { 1979 if (!info) 1980 return; 1981 1982 btf__free(info->src_btf); 1983 btf__free(info->marked_btf); 1984 1985 free(info); 1986 } 1987 1988 static struct btfgen_info * 1989 btfgen_new_info(const char *targ_btf_path) 1990 { 1991 struct btfgen_info *info; 1992 int err; 1993 1994 info = calloc(1, sizeof(*info)); 1995 if (!info) 1996 return NULL; 1997 1998 info->src_btf = btf__parse(targ_btf_path, NULL); 1999 if (!info->src_btf) { 2000 err = -errno; 2001 p_err("failed parsing '%s' BTF file: %s", targ_btf_path, strerror(errno)); 2002 goto err_out; 2003 } 2004 2005 info->marked_btf = btf__parse(targ_btf_path, NULL); 2006 if (!info->marked_btf) { 2007 err = -errno; 2008 p_err("failed parsing '%s' BTF file: %s", targ_btf_path, strerror(errno)); 2009 goto err_out; 2010 } 2011 2012 return info; 2013 2014 err_out: 2015 btfgen_free_info(info); 2016 errno = -err; 2017 return NULL; 2018 } 2019 2020 #define MARKED UINT32_MAX 2021 2022 static void btfgen_mark_member(struct btfgen_info *info, int type_id, int idx) 2023 { 2024 const struct btf_type *t = btf__type_by_id(info->marked_btf, type_id); 2025 struct btf_member *m = btf_members(t) + idx; 2026 2027 m->name_off = MARKED; 2028 } 2029 2030 static int 2031 btfgen_mark_type(struct btfgen_info *info, unsigned int type_id, bool follow_pointers) 2032 { 2033 const struct btf_type *btf_type = btf__type_by_id(info->src_btf, type_id); 2034 struct btf_type *cloned_type; 2035 struct btf_param *param; 2036 struct btf_array *array; 2037 int err, i; 2038 2039 if (type_id == 0) 2040 return 0; 2041 2042 /* mark type on cloned BTF as used */ 2043 cloned_type = (struct btf_type *) btf__type_by_id(info->marked_btf, type_id); 2044 cloned_type->name_off = MARKED; 2045 2046 /* recursively mark other types needed by it */ 2047 switch (btf_kind(btf_type)) { 2048 case BTF_KIND_UNKN: 2049 case BTF_KIND_INT: 2050 case BTF_KIND_FLOAT: 2051 case BTF_KIND_ENUM: 2052 case BTF_KIND_ENUM64: 2053 case BTF_KIND_STRUCT: 2054 case BTF_KIND_UNION: 2055 break; 2056 case BTF_KIND_PTR: 2057 if (follow_pointers) { 2058 err = btfgen_mark_type(info, btf_type->type, follow_pointers); 2059 if (err) 2060 return err; 2061 } 2062 break; 2063 case BTF_KIND_CONST: 2064 case BTF_KIND_RESTRICT: 2065 case BTF_KIND_VOLATILE: 2066 case BTF_KIND_TYPEDEF: 2067 err = btfgen_mark_type(info, btf_type->type, follow_pointers); 2068 if (err) 2069 return err; 2070 break; 2071 case BTF_KIND_ARRAY: 2072 array = btf_array(btf_type); 2073 2074 /* mark array type */ 2075 err = btfgen_mark_type(info, array->type, follow_pointers); 2076 /* mark array's index type */ 2077 err = err ? : btfgen_mark_type(info, array->index_type, follow_pointers); 2078 if (err) 2079 return err; 2080 break; 2081 case BTF_KIND_FUNC_PROTO: 2082 /* mark ret type */ 2083 err = btfgen_mark_type(info, btf_type->type, follow_pointers); 2084 if (err) 2085 return err; 2086 2087 /* mark parameters types */ 2088 param = btf_params(btf_type); 2089 for (i = 0; i < btf_vlen(btf_type); i++) { 2090 err = btfgen_mark_type(info, param->type, follow_pointers); 2091 if (err) 2092 return err; 2093 param++; 2094 } 2095 break; 2096 /* tells if some other type needs to be handled */ 2097 default: 2098 p_err("unsupported kind: %s (%d)", btf_kind_str(btf_type), type_id); 2099 return -EINVAL; 2100 } 2101 2102 return 0; 2103 } 2104 2105 static int btfgen_record_field_relo(struct btfgen_info *info, struct bpf_core_spec *targ_spec) 2106 { 2107 struct btf *btf = info->src_btf; 2108 const struct btf_type *btf_type; 2109 struct btf_member *btf_member; 2110 struct btf_array *array; 2111 unsigned int type_id = targ_spec->root_type_id; 2112 int idx, err; 2113 2114 /* mark root type */ 2115 btf_type = btf__type_by_id(btf, type_id); 2116 err = btfgen_mark_type(info, type_id, false); 2117 if (err) 2118 return err; 2119 2120 /* mark types for complex types (arrays, unions, structures) */ 2121 for (int i = 1; i < targ_spec->raw_len; i++) { 2122 /* skip typedefs and mods */ 2123 while (btf_is_mod(btf_type) || btf_is_typedef(btf_type)) { 2124 type_id = btf_type->type; 2125 btf_type = btf__type_by_id(btf, type_id); 2126 } 2127 2128 switch (btf_kind(btf_type)) { 2129 case BTF_KIND_STRUCT: 2130 case BTF_KIND_UNION: 2131 idx = targ_spec->raw_spec[i]; 2132 btf_member = btf_members(btf_type) + idx; 2133 2134 /* mark member */ 2135 btfgen_mark_member(info, type_id, idx); 2136 2137 /* mark member's type */ 2138 type_id = btf_member->type; 2139 btf_type = btf__type_by_id(btf, type_id); 2140 err = btfgen_mark_type(info, type_id, false); 2141 if (err) 2142 return err; 2143 break; 2144 case BTF_KIND_ARRAY: 2145 array = btf_array(btf_type); 2146 type_id = array->type; 2147 btf_type = btf__type_by_id(btf, type_id); 2148 break; 2149 default: 2150 p_err("unsupported kind: %s (%d)", 2151 btf_kind_str(btf_type), btf_type->type); 2152 return -EINVAL; 2153 } 2154 } 2155 2156 return 0; 2157 } 2158 2159 /* Mark types, members, and member types. Compared to btfgen_record_field_relo, 2160 * this function does not rely on the target spec for inferring members, but 2161 * uses the associated BTF. 2162 * 2163 * The `behind_ptr` argument is used to stop marking of composite types reached 2164 * through a pointer. This way, we can keep BTF size in check while providing 2165 * reasonable match semantics. 2166 */ 2167 static int btfgen_mark_type_match(struct btfgen_info *info, __u32 type_id, bool behind_ptr) 2168 { 2169 const struct btf_type *btf_type; 2170 struct btf *btf = info->src_btf; 2171 struct btf_type *cloned_type; 2172 int i, err; 2173 2174 if (type_id == 0) 2175 return 0; 2176 2177 btf_type = btf__type_by_id(btf, type_id); 2178 /* mark type on cloned BTF as used */ 2179 cloned_type = (struct btf_type *)btf__type_by_id(info->marked_btf, type_id); 2180 cloned_type->name_off = MARKED; 2181 2182 switch (btf_kind(btf_type)) { 2183 case BTF_KIND_UNKN: 2184 case BTF_KIND_INT: 2185 case BTF_KIND_FLOAT: 2186 case BTF_KIND_ENUM: 2187 case BTF_KIND_ENUM64: 2188 break; 2189 case BTF_KIND_STRUCT: 2190 case BTF_KIND_UNION: { 2191 struct btf_member *m = btf_members(btf_type); 2192 __u16 vlen = btf_vlen(btf_type); 2193 2194 if (behind_ptr) 2195 break; 2196 2197 for (i = 0; i < vlen; i++, m++) { 2198 /* mark member */ 2199 btfgen_mark_member(info, type_id, i); 2200 2201 /* mark member's type */ 2202 err = btfgen_mark_type_match(info, m->type, false); 2203 if (err) 2204 return err; 2205 } 2206 break; 2207 } 2208 case BTF_KIND_CONST: 2209 case BTF_KIND_FWD: 2210 case BTF_KIND_RESTRICT: 2211 case BTF_KIND_TYPEDEF: 2212 case BTF_KIND_VOLATILE: 2213 return btfgen_mark_type_match(info, btf_type->type, behind_ptr); 2214 case BTF_KIND_PTR: 2215 return btfgen_mark_type_match(info, btf_type->type, true); 2216 case BTF_KIND_ARRAY: { 2217 struct btf_array *array; 2218 2219 array = btf_array(btf_type); 2220 /* mark array type */ 2221 err = btfgen_mark_type_match(info, array->type, false); 2222 /* mark array's index type */ 2223 err = err ? : btfgen_mark_type_match(info, array->index_type, false); 2224 if (err) 2225 return err; 2226 break; 2227 } 2228 case BTF_KIND_FUNC_PROTO: { 2229 __u16 vlen = btf_vlen(btf_type); 2230 struct btf_param *param; 2231 2232 /* mark ret type */ 2233 err = btfgen_mark_type_match(info, btf_type->type, false); 2234 if (err) 2235 return err; 2236 2237 /* mark parameters types */ 2238 param = btf_params(btf_type); 2239 for (i = 0; i < vlen; i++) { 2240 err = btfgen_mark_type_match(info, param->type, false); 2241 if (err) 2242 return err; 2243 param++; 2244 } 2245 break; 2246 } 2247 /* tells if some other type needs to be handled */ 2248 default: 2249 p_err("unsupported kind: %s (%d)", btf_kind_str(btf_type), type_id); 2250 return -EINVAL; 2251 } 2252 2253 return 0; 2254 } 2255 2256 /* Mark types, members, and member types. Compared to btfgen_record_field_relo, 2257 * this function does not rely on the target spec for inferring members, but 2258 * uses the associated BTF. 2259 */ 2260 static int btfgen_record_type_match_relo(struct btfgen_info *info, struct bpf_core_spec *targ_spec) 2261 { 2262 return btfgen_mark_type_match(info, targ_spec->root_type_id, false); 2263 } 2264 2265 static int btfgen_record_type_relo(struct btfgen_info *info, struct bpf_core_spec *targ_spec) 2266 { 2267 return btfgen_mark_type(info, targ_spec->root_type_id, true); 2268 } 2269 2270 static int btfgen_record_enumval_relo(struct btfgen_info *info, struct bpf_core_spec *targ_spec) 2271 { 2272 return btfgen_mark_type(info, targ_spec->root_type_id, false); 2273 } 2274 2275 static int btfgen_record_reloc(struct btfgen_info *info, struct bpf_core_spec *res) 2276 { 2277 switch (res->relo_kind) { 2278 case BPF_CORE_FIELD_BYTE_OFFSET: 2279 case BPF_CORE_FIELD_BYTE_SIZE: 2280 case BPF_CORE_FIELD_EXISTS: 2281 case BPF_CORE_FIELD_SIGNED: 2282 case BPF_CORE_FIELD_LSHIFT_U64: 2283 case BPF_CORE_FIELD_RSHIFT_U64: 2284 return btfgen_record_field_relo(info, res); 2285 case BPF_CORE_TYPE_ID_LOCAL: /* BPF_CORE_TYPE_ID_LOCAL doesn't require kernel BTF */ 2286 return 0; 2287 case BPF_CORE_TYPE_ID_TARGET: 2288 case BPF_CORE_TYPE_EXISTS: 2289 case BPF_CORE_TYPE_SIZE: 2290 return btfgen_record_type_relo(info, res); 2291 case BPF_CORE_TYPE_MATCHES: 2292 return btfgen_record_type_match_relo(info, res); 2293 case BPF_CORE_ENUMVAL_EXISTS: 2294 case BPF_CORE_ENUMVAL_VALUE: 2295 return btfgen_record_enumval_relo(info, res); 2296 default: 2297 return -EINVAL; 2298 } 2299 } 2300 2301 static struct bpf_core_cand_list * 2302 btfgen_find_cands(const struct btf *local_btf, const struct btf *targ_btf, __u32 local_id) 2303 { 2304 const struct btf_type *local_type; 2305 struct bpf_core_cand_list *cands = NULL; 2306 struct bpf_core_cand local_cand = {}; 2307 size_t local_essent_len; 2308 const char *local_name; 2309 int err; 2310 2311 local_cand.btf = local_btf; 2312 local_cand.id = local_id; 2313 2314 local_type = btf__type_by_id(local_btf, local_id); 2315 if (!local_type) { 2316 err = -EINVAL; 2317 goto err_out; 2318 } 2319 2320 local_name = btf__name_by_offset(local_btf, local_type->name_off); 2321 if (!local_name) { 2322 err = -EINVAL; 2323 goto err_out; 2324 } 2325 local_essent_len = bpf_core_essential_name_len(local_name); 2326 2327 cands = calloc(1, sizeof(*cands)); 2328 if (!cands) 2329 return NULL; 2330 2331 err = bpf_core_add_cands(&local_cand, local_essent_len, targ_btf, "vmlinux", 1, cands); 2332 if (err) 2333 goto err_out; 2334 2335 return cands; 2336 2337 err_out: 2338 bpf_core_free_cands(cands); 2339 errno = -err; 2340 return NULL; 2341 } 2342 2343 /* Record relocation information for a single BPF object */ 2344 static int btfgen_record_obj(struct btfgen_info *info, const char *obj_path) 2345 { 2346 const struct btf_ext_info_sec *sec; 2347 const struct bpf_core_relo *relo; 2348 const struct btf_ext_info *seg; 2349 struct hashmap_entry *entry; 2350 struct hashmap *cand_cache = NULL; 2351 struct btf_ext *btf_ext = NULL; 2352 unsigned int relo_idx; 2353 struct btf *btf = NULL; 2354 size_t i; 2355 int err; 2356 2357 btf = btf__parse(obj_path, &btf_ext); 2358 if (!btf) { 2359 err = -errno; 2360 p_err("failed to parse BPF object '%s': %s", obj_path, strerror(errno)); 2361 return err; 2362 } 2363 2364 if (!btf_ext) { 2365 p_err("failed to parse BPF object '%s': section %s not found", 2366 obj_path, BTF_EXT_ELF_SEC); 2367 err = -EINVAL; 2368 goto out; 2369 } 2370 2371 if (btf_ext->core_relo_info.len == 0) { 2372 err = 0; 2373 goto out; 2374 } 2375 2376 cand_cache = hashmap__new(btfgen_hash_fn, btfgen_equal_fn, NULL); 2377 if (IS_ERR(cand_cache)) { 2378 err = PTR_ERR(cand_cache); 2379 goto out; 2380 } 2381 2382 seg = &btf_ext->core_relo_info; 2383 for_each_btf_ext_sec(seg, sec) { 2384 for_each_btf_ext_rec(seg, sec, relo_idx, relo) { 2385 struct bpf_core_spec specs_scratch[3] = {}; 2386 struct bpf_core_relo_res targ_res = {}; 2387 struct bpf_core_cand_list *cands = NULL; 2388 const char *sec_name = btf__name_by_offset(btf, sec->sec_name_off); 2389 2390 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 2391 !hashmap__find(cand_cache, relo->type_id, &cands)) { 2392 cands = btfgen_find_cands(btf, info->src_btf, relo->type_id); 2393 if (!cands) { 2394 err = -errno; 2395 goto out; 2396 } 2397 2398 err = hashmap__set(cand_cache, relo->type_id, cands, 2399 NULL, NULL); 2400 if (err) 2401 goto out; 2402 } 2403 2404 err = bpf_core_calc_relo_insn(sec_name, relo, relo_idx, btf, cands, 2405 specs_scratch, &targ_res); 2406 if (err) 2407 goto out; 2408 2409 /* specs_scratch[2] is the target spec */ 2410 err = btfgen_record_reloc(info, &specs_scratch[2]); 2411 if (err) 2412 goto out; 2413 } 2414 } 2415 2416 out: 2417 btf__free(btf); 2418 btf_ext__free(btf_ext); 2419 2420 if (!IS_ERR_OR_NULL(cand_cache)) { 2421 hashmap__for_each_entry(cand_cache, entry, i) { 2422 bpf_core_free_cands(entry->pvalue); 2423 } 2424 hashmap__free(cand_cache); 2425 } 2426 2427 return err; 2428 } 2429 2430 /* Generate BTF from relocation information previously recorded */ 2431 static struct btf *btfgen_get_btf(struct btfgen_info *info) 2432 { 2433 struct btf *btf_new = NULL; 2434 unsigned int *ids = NULL; 2435 unsigned int i, n = btf__type_cnt(info->marked_btf); 2436 int err = 0; 2437 2438 btf_new = btf__new_empty(); 2439 if (!btf_new) { 2440 err = -errno; 2441 goto err_out; 2442 } 2443 2444 ids = calloc(n, sizeof(*ids)); 2445 if (!ids) { 2446 err = -errno; 2447 goto err_out; 2448 } 2449 2450 /* first pass: add all marked types to btf_new and add their new ids to the ids map */ 2451 for (i = 1; i < n; i++) { 2452 const struct btf_type *cloned_type, *type; 2453 const char *name; 2454 int new_id; 2455 2456 cloned_type = btf__type_by_id(info->marked_btf, i); 2457 2458 if (cloned_type->name_off != MARKED) 2459 continue; 2460 2461 type = btf__type_by_id(info->src_btf, i); 2462 2463 /* add members for struct and union */ 2464 if (btf_is_composite(type)) { 2465 struct btf_member *cloned_m, *m; 2466 unsigned short vlen; 2467 int idx_src; 2468 2469 name = btf__str_by_offset(info->src_btf, type->name_off); 2470 2471 if (btf_is_struct(type)) 2472 err = btf__add_struct(btf_new, name, type->size); 2473 else 2474 err = btf__add_union(btf_new, name, type->size); 2475 2476 if (err < 0) 2477 goto err_out; 2478 new_id = err; 2479 2480 cloned_m = btf_members(cloned_type); 2481 m = btf_members(type); 2482 vlen = btf_vlen(cloned_type); 2483 for (idx_src = 0; idx_src < vlen; idx_src++, cloned_m++, m++) { 2484 /* add only members that are marked as used */ 2485 if (cloned_m->name_off != MARKED) 2486 continue; 2487 2488 name = btf__str_by_offset(info->src_btf, m->name_off); 2489 err = btf__add_field(btf_new, name, m->type, 2490 btf_member_bit_offset(cloned_type, idx_src), 2491 btf_member_bitfield_size(cloned_type, idx_src)); 2492 if (err < 0) 2493 goto err_out; 2494 } 2495 } else { 2496 err = btf__add_type(btf_new, info->src_btf, type); 2497 if (err < 0) 2498 goto err_out; 2499 new_id = err; 2500 } 2501 2502 /* add ID mapping */ 2503 ids[i] = new_id; 2504 } 2505 2506 /* second pass: fix up type ids */ 2507 for (i = 1; i < btf__type_cnt(btf_new); i++) { 2508 struct btf_type *btf_type = (struct btf_type *) btf__type_by_id(btf_new, i); 2509 struct btf_field_iter it; 2510 __u32 *type_id; 2511 2512 err = btf_field_iter_init(&it, btf_type, BTF_FIELD_ITER_IDS); 2513 if (err) 2514 goto err_out; 2515 2516 while ((type_id = btf_field_iter_next(&it))) 2517 *type_id = ids[*type_id]; 2518 } 2519 2520 free(ids); 2521 return btf_new; 2522 2523 err_out: 2524 btf__free(btf_new); 2525 free(ids); 2526 errno = -err; 2527 return NULL; 2528 } 2529 2530 /* Create minimized BTF file for a set of BPF objects. 2531 * 2532 * The BTFGen algorithm is divided in two main parts: (1) collect the 2533 * BTF types that are involved in relocations and (2) generate the BTF 2534 * object using the collected types. 2535 * 2536 * In order to collect the types involved in the relocations, we parse 2537 * the BTF and BTF.ext sections of the BPF objects and use 2538 * bpf_core_calc_relo_insn() to get the target specification, this 2539 * indicates how the types and fields are used in a relocation. 2540 * 2541 * Types are recorded in different ways according to the kind of the 2542 * relocation. For field-based relocations only the members that are 2543 * actually used are saved in order to reduce the size of the generated 2544 * BTF file. For type-based relocations empty struct / unions are 2545 * generated and for enum-based relocations the whole type is saved. 2546 * 2547 * The second part of the algorithm generates the BTF object. It creates 2548 * an empty BTF object and fills it with the types recorded in the 2549 * previous step. This function takes care of only adding the structure 2550 * and union members that were marked as used and it also fixes up the 2551 * type IDs on the generated BTF object. 2552 */ 2553 static int minimize_btf(const char *src_btf, const char *dst_btf, const char *objspaths[]) 2554 { 2555 struct btfgen_info *info; 2556 struct btf *btf_new = NULL; 2557 int err, i; 2558 2559 info = btfgen_new_info(src_btf); 2560 if (!info) { 2561 err = -errno; 2562 p_err("failed to allocate info structure: %s", strerror(errno)); 2563 goto out; 2564 } 2565 2566 for (i = 0; objspaths[i] != NULL; i++) { 2567 err = btfgen_record_obj(info, objspaths[i]); 2568 if (err) { 2569 p_err("error recording relocations for %s: %s", objspaths[i], 2570 strerror(errno)); 2571 goto out; 2572 } 2573 } 2574 2575 btf_new = btfgen_get_btf(info); 2576 if (!btf_new) { 2577 err = -errno; 2578 p_err("error generating BTF: %s", strerror(errno)); 2579 goto out; 2580 } 2581 2582 err = btf_save_raw(btf_new, dst_btf); 2583 if (err) { 2584 p_err("error saving btf file: %s", strerror(errno)); 2585 goto out; 2586 } 2587 2588 out: 2589 btf__free(btf_new); 2590 btfgen_free_info(info); 2591 2592 return err; 2593 } 2594 2595 static int do_min_core_btf(int argc, char **argv) 2596 { 2597 const char *input, *output, **objs; 2598 int i, err; 2599 2600 if (!REQ_ARGS(3)) { 2601 usage(); 2602 return -1; 2603 } 2604 2605 input = GET_ARG(); 2606 output = GET_ARG(); 2607 2608 objs = (const char **) calloc(argc + 1, sizeof(*objs)); 2609 if (!objs) { 2610 p_err("failed to allocate array for object names"); 2611 return -ENOMEM; 2612 } 2613 2614 i = 0; 2615 while (argc) 2616 objs[i++] = GET_ARG(); 2617 2618 err = minimize_btf(input, output, objs); 2619 free(objs); 2620 return err; 2621 } 2622 2623 static const struct cmd cmds[] = { 2624 { "object", do_object }, 2625 { "skeleton", do_skeleton }, 2626 { "subskeleton", do_subskeleton }, 2627 { "min_core_btf", do_min_core_btf}, 2628 { "help", do_help }, 2629 { 0 } 2630 }; 2631 2632 int do_gen(int argc, char **argv) 2633 { 2634 return cmd_select(cmds, argc, argv, do_help); 2635 } 2636