xref: /linux/tools/arch/x86/lib/insn.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * x86 instruction analysis
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004, 2009
6  */
7 
8 #include <linux/kernel.h>
9 #ifdef __KERNEL__
10 #include <linux/string.h>
11 #else
12 #include <string.h>
13 #endif
14 #include "../include/asm/inat.h" /* __ignore_sync_check__ */
15 #include "../include/asm/insn.h" /* __ignore_sync_check__ */
16 #include "../include/asm-generic/unaligned.h" /* __ignore_sync_check__ */
17 
18 #include <linux/errno.h>
19 #include <linux/kconfig.h>
20 
21 #include "../include/asm/emulate_prefix.h" /* __ignore_sync_check__ */
22 
23 #define leXX_to_cpu(t, r)						\
24 ({									\
25 	__typeof__(t) v;						\
26 	switch (sizeof(t)) {						\
27 	case 4: v = le32_to_cpu(r); break;				\
28 	case 2: v = le16_to_cpu(r); break;				\
29 	case 1:	v = r; break;						\
30 	default:							\
31 		BUILD_BUG(); break;					\
32 	}								\
33 	v;								\
34 })
35 
36 /* Verify next sizeof(t) bytes can be on the same instruction */
37 #define validate_next(t, insn, n)	\
38 	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
39 
40 #define __get_next(t, insn)	\
41 	({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
42 
43 #define __peek_nbyte_next(t, insn, n)	\
44 	({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
45 
46 #define get_next(t, insn)	\
47 	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
48 
49 #define peek_nbyte_next(t, insn, n)	\
50 	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
51 
52 #define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
53 
54 /**
55  * insn_init() - initialize struct insn
56  * @insn:	&struct insn to be initialized
57  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
58  * @buf_len:	length of the insn buffer at @kaddr
59  * @x86_64:	!0 for 64-bit kernel or 64-bit app
60  */
61 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
62 {
63 	/*
64 	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
65 	 * even if the input buffer is long enough to hold them.
66 	 */
67 	if (buf_len > MAX_INSN_SIZE)
68 		buf_len = MAX_INSN_SIZE;
69 
70 	memset(insn, 0, sizeof(*insn));
71 	insn->kaddr = kaddr;
72 	insn->end_kaddr = kaddr + buf_len;
73 	insn->next_byte = kaddr;
74 	insn->x86_64 = x86_64 ? 1 : 0;
75 	insn->opnd_bytes = 4;
76 	if (x86_64)
77 		insn->addr_bytes = 8;
78 	else
79 		insn->addr_bytes = 4;
80 }
81 
82 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
83 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
84 
85 static int __insn_get_emulate_prefix(struct insn *insn,
86 				     const insn_byte_t *prefix, size_t len)
87 {
88 	size_t i;
89 
90 	for (i = 0; i < len; i++) {
91 		if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
92 			goto err_out;
93 	}
94 
95 	insn->emulate_prefix_size = len;
96 	insn->next_byte += len;
97 
98 	return 1;
99 
100 err_out:
101 	return 0;
102 }
103 
104 static void insn_get_emulate_prefix(struct insn *insn)
105 {
106 	if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107 		return;
108 
109 	__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110 }
111 
112 /**
113  * insn_get_prefixes - scan x86 instruction prefix bytes
114  * @insn:	&struct insn containing instruction
115  *
116  * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117  * to point to the (first) opcode.  No effect if @insn->prefixes.got
118  * is already set.
119  *
120  * * Returns:
121  * 0:  on success
122  * < 0: on error
123  */
124 int insn_get_prefixes(struct insn *insn)
125 {
126 	struct insn_field *prefixes = &insn->prefixes;
127 	insn_attr_t attr;
128 	insn_byte_t b, lb;
129 	int i, nb;
130 
131 	if (prefixes->got)
132 		return 0;
133 
134 	insn_get_emulate_prefix(insn);
135 
136 	nb = 0;
137 	lb = 0;
138 	b = peek_next(insn_byte_t, insn);
139 	attr = inat_get_opcode_attribute(b);
140 	while (inat_is_legacy_prefix(attr)) {
141 		/* Skip if same prefix */
142 		for (i = 0; i < nb; i++)
143 			if (prefixes->bytes[i] == b)
144 				goto found;
145 		if (nb == 4)
146 			/* Invalid instruction */
147 			break;
148 		prefixes->bytes[nb++] = b;
149 		if (inat_is_address_size_prefix(attr)) {
150 			/* address size switches 2/4 or 4/8 */
151 			if (insn->x86_64)
152 				insn->addr_bytes ^= 12;
153 			else
154 				insn->addr_bytes ^= 6;
155 		} else if (inat_is_operand_size_prefix(attr)) {
156 			/* oprand size switches 2/4 */
157 			insn->opnd_bytes ^= 6;
158 		}
159 found:
160 		prefixes->nbytes++;
161 		insn->next_byte++;
162 		lb = b;
163 		b = peek_next(insn_byte_t, insn);
164 		attr = inat_get_opcode_attribute(b);
165 	}
166 	/* Set the last prefix */
167 	if (lb && lb != insn->prefixes.bytes[3]) {
168 		if (unlikely(insn->prefixes.bytes[3])) {
169 			/* Swap the last prefix */
170 			b = insn->prefixes.bytes[3];
171 			for (i = 0; i < nb; i++)
172 				if (prefixes->bytes[i] == lb)
173 					insn_set_byte(prefixes, i, b);
174 		}
175 		insn_set_byte(&insn->prefixes, 3, lb);
176 	}
177 
178 	/* Decode REX prefix */
179 	if (insn->x86_64) {
180 		b = peek_next(insn_byte_t, insn);
181 		attr = inat_get_opcode_attribute(b);
182 		if (inat_is_rex_prefix(attr)) {
183 			insn_field_set(&insn->rex_prefix, b, 1);
184 			insn->next_byte++;
185 			if (X86_REX_W(b))
186 				/* REX.W overrides opnd_size */
187 				insn->opnd_bytes = 8;
188 		}
189 	}
190 	insn->rex_prefix.got = 1;
191 
192 	/* Decode VEX prefix */
193 	b = peek_next(insn_byte_t, insn);
194 	attr = inat_get_opcode_attribute(b);
195 	if (inat_is_vex_prefix(attr)) {
196 		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
197 		if (!insn->x86_64) {
198 			/*
199 			 * In 32-bits mode, if the [7:6] bits (mod bits of
200 			 * ModRM) on the second byte are not 11b, it is
201 			 * LDS or LES or BOUND.
202 			 */
203 			if (X86_MODRM_MOD(b2) != 3)
204 				goto vex_end;
205 		}
206 		insn_set_byte(&insn->vex_prefix, 0, b);
207 		insn_set_byte(&insn->vex_prefix, 1, b2);
208 		if (inat_is_evex_prefix(attr)) {
209 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
210 			insn_set_byte(&insn->vex_prefix, 2, b2);
211 			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
212 			insn_set_byte(&insn->vex_prefix, 3, b2);
213 			insn->vex_prefix.nbytes = 4;
214 			insn->next_byte += 4;
215 			if (insn->x86_64 && X86_VEX_W(b2))
216 				/* VEX.W overrides opnd_size */
217 				insn->opnd_bytes = 8;
218 		} else if (inat_is_vex3_prefix(attr)) {
219 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
220 			insn_set_byte(&insn->vex_prefix, 2, b2);
221 			insn->vex_prefix.nbytes = 3;
222 			insn->next_byte += 3;
223 			if (insn->x86_64 && X86_VEX_W(b2))
224 				/* VEX.W overrides opnd_size */
225 				insn->opnd_bytes = 8;
226 		} else {
227 			/*
228 			 * For VEX2, fake VEX3-like byte#2.
229 			 * Makes it easier to decode vex.W, vex.vvvv,
230 			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
231 			 */
232 			insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
233 			insn->vex_prefix.nbytes = 2;
234 			insn->next_byte += 2;
235 		}
236 	}
237 vex_end:
238 	insn->vex_prefix.got = 1;
239 
240 	prefixes->got = 1;
241 
242 	return 0;
243 
244 err_out:
245 	return -ENODATA;
246 }
247 
248 /**
249  * insn_get_opcode - collect opcode(s)
250  * @insn:	&struct insn containing instruction
251  *
252  * Populates @insn->opcode, updates @insn->next_byte to point past the
253  * opcode byte(s), and set @insn->attr (except for groups).
254  * If necessary, first collects any preceding (prefix) bytes.
255  * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
256  * is already 1.
257  *
258  * Returns:
259  * 0:  on success
260  * < 0: on error
261  */
262 int insn_get_opcode(struct insn *insn)
263 {
264 	struct insn_field *opcode = &insn->opcode;
265 	int pfx_id, ret;
266 	insn_byte_t op;
267 
268 	if (opcode->got)
269 		return 0;
270 
271 	if (!insn->prefixes.got) {
272 		ret = insn_get_prefixes(insn);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	/* Get first opcode */
278 	op = get_next(insn_byte_t, insn);
279 	insn_set_byte(opcode, 0, op);
280 	opcode->nbytes = 1;
281 
282 	/* Check if there is VEX prefix or not */
283 	if (insn_is_avx(insn)) {
284 		insn_byte_t m, p;
285 		m = insn_vex_m_bits(insn);
286 		p = insn_vex_p_bits(insn);
287 		insn->attr = inat_get_avx_attribute(op, m, p);
288 		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
289 		    (!inat_accept_vex(insn->attr) &&
290 		     !inat_is_group(insn->attr))) {
291 			/* This instruction is bad */
292 			insn->attr = 0;
293 			return -EINVAL;
294 		}
295 		/* VEX has only 1 byte for opcode */
296 		goto end;
297 	}
298 
299 	insn->attr = inat_get_opcode_attribute(op);
300 	while (inat_is_escape(insn->attr)) {
301 		/* Get escaped opcode */
302 		op = get_next(insn_byte_t, insn);
303 		opcode->bytes[opcode->nbytes++] = op;
304 		pfx_id = insn_last_prefix_id(insn);
305 		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
306 	}
307 
308 	if (inat_must_vex(insn->attr)) {
309 		/* This instruction is bad */
310 		insn->attr = 0;
311 		return -EINVAL;
312 	}
313 end:
314 	opcode->got = 1;
315 	return 0;
316 
317 err_out:
318 	return -ENODATA;
319 }
320 
321 /**
322  * insn_get_modrm - collect ModRM byte, if any
323  * @insn:	&struct insn containing instruction
324  *
325  * Populates @insn->modrm and updates @insn->next_byte to point past the
326  * ModRM byte, if any.  If necessary, first collects the preceding bytes
327  * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
328  *
329  * Returns:
330  * 0:  on success
331  * < 0: on error
332  */
333 int insn_get_modrm(struct insn *insn)
334 {
335 	struct insn_field *modrm = &insn->modrm;
336 	insn_byte_t pfx_id, mod;
337 	int ret;
338 
339 	if (modrm->got)
340 		return 0;
341 
342 	if (!insn->opcode.got) {
343 		ret = insn_get_opcode(insn);
344 		if (ret)
345 			return ret;
346 	}
347 
348 	if (inat_has_modrm(insn->attr)) {
349 		mod = get_next(insn_byte_t, insn);
350 		insn_field_set(modrm, mod, 1);
351 		if (inat_is_group(insn->attr)) {
352 			pfx_id = insn_last_prefix_id(insn);
353 			insn->attr = inat_get_group_attribute(mod, pfx_id,
354 							      insn->attr);
355 			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
356 				/* Bad insn */
357 				insn->attr = 0;
358 				return -EINVAL;
359 			}
360 		}
361 	}
362 
363 	if (insn->x86_64 && inat_is_force64(insn->attr))
364 		insn->opnd_bytes = 8;
365 
366 	modrm->got = 1;
367 	return 0;
368 
369 err_out:
370 	return -ENODATA;
371 }
372 
373 
374 /**
375  * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
376  * @insn:	&struct insn containing instruction
377  *
378  * If necessary, first collects the instruction up to and including the
379  * ModRM byte.  No effect if @insn->x86_64 is 0.
380  */
381 int insn_rip_relative(struct insn *insn)
382 {
383 	struct insn_field *modrm = &insn->modrm;
384 	int ret;
385 
386 	if (!insn->x86_64)
387 		return 0;
388 
389 	if (!modrm->got) {
390 		ret = insn_get_modrm(insn);
391 		if (ret)
392 			return 0;
393 	}
394 	/*
395 	 * For rip-relative instructions, the mod field (top 2 bits)
396 	 * is zero and the r/m field (bottom 3 bits) is 0x5.
397 	 */
398 	return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
399 }
400 
401 /**
402  * insn_get_sib() - Get the SIB byte of instruction
403  * @insn:	&struct insn containing instruction
404  *
405  * If necessary, first collects the instruction up to and including the
406  * ModRM byte.
407  *
408  * Returns:
409  * 0: if decoding succeeded
410  * < 0: otherwise.
411  */
412 int insn_get_sib(struct insn *insn)
413 {
414 	insn_byte_t modrm;
415 	int ret;
416 
417 	if (insn->sib.got)
418 		return 0;
419 
420 	if (!insn->modrm.got) {
421 		ret = insn_get_modrm(insn);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	if (insn->modrm.nbytes) {
427 		modrm = insn->modrm.bytes[0];
428 		if (insn->addr_bytes != 2 &&
429 		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
430 			insn_field_set(&insn->sib,
431 				       get_next(insn_byte_t, insn), 1);
432 		}
433 	}
434 	insn->sib.got = 1;
435 
436 	return 0;
437 
438 err_out:
439 	return -ENODATA;
440 }
441 
442 
443 /**
444  * insn_get_displacement() - Get the displacement of instruction
445  * @insn:	&struct insn containing instruction
446  *
447  * If necessary, first collects the instruction up to and including the
448  * SIB byte.
449  * Displacement value is sign-expanded.
450  *
451  * * Returns:
452  * 0: if decoding succeeded
453  * < 0: otherwise.
454  */
455 int insn_get_displacement(struct insn *insn)
456 {
457 	insn_byte_t mod, rm, base;
458 	int ret;
459 
460 	if (insn->displacement.got)
461 		return 0;
462 
463 	if (!insn->sib.got) {
464 		ret = insn_get_sib(insn);
465 		if (ret)
466 			return ret;
467 	}
468 
469 	if (insn->modrm.nbytes) {
470 		/*
471 		 * Interpreting the modrm byte:
472 		 * mod = 00 - no displacement fields (exceptions below)
473 		 * mod = 01 - 1-byte displacement field
474 		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
475 		 * 	address size = 2 (0x67 prefix in 32-bit mode)
476 		 * mod = 11 - no memory operand
477 		 *
478 		 * If address size = 2...
479 		 * mod = 00, r/m = 110 - displacement field is 2 bytes
480 		 *
481 		 * If address size != 2...
482 		 * mod != 11, r/m = 100 - SIB byte exists
483 		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
484 		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
485 		 * 	field is 4 bytes
486 		 */
487 		mod = X86_MODRM_MOD(insn->modrm.value);
488 		rm = X86_MODRM_RM(insn->modrm.value);
489 		base = X86_SIB_BASE(insn->sib.value);
490 		if (mod == 3)
491 			goto out;
492 		if (mod == 1) {
493 			insn_field_set(&insn->displacement,
494 				       get_next(signed char, insn), 1);
495 		} else if (insn->addr_bytes == 2) {
496 			if ((mod == 0 && rm == 6) || mod == 2) {
497 				insn_field_set(&insn->displacement,
498 					       get_next(short, insn), 2);
499 			}
500 		} else {
501 			if ((mod == 0 && rm == 5) || mod == 2 ||
502 			    (mod == 0 && base == 5)) {
503 				insn_field_set(&insn->displacement,
504 					       get_next(int, insn), 4);
505 			}
506 		}
507 	}
508 out:
509 	insn->displacement.got = 1;
510 	return 0;
511 
512 err_out:
513 	return -ENODATA;
514 }
515 
516 /* Decode moffset16/32/64. Return 0 if failed */
517 static int __get_moffset(struct insn *insn)
518 {
519 	switch (insn->addr_bytes) {
520 	case 2:
521 		insn_field_set(&insn->moffset1, get_next(short, insn), 2);
522 		break;
523 	case 4:
524 		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
525 		break;
526 	case 8:
527 		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
528 		insn_field_set(&insn->moffset2, get_next(int, insn), 4);
529 		break;
530 	default:	/* opnd_bytes must be modified manually */
531 		goto err_out;
532 	}
533 	insn->moffset1.got = insn->moffset2.got = 1;
534 
535 	return 1;
536 
537 err_out:
538 	return 0;
539 }
540 
541 /* Decode imm v32(Iz). Return 0 if failed */
542 static int __get_immv32(struct insn *insn)
543 {
544 	switch (insn->opnd_bytes) {
545 	case 2:
546 		insn_field_set(&insn->immediate, get_next(short, insn), 2);
547 		break;
548 	case 4:
549 	case 8:
550 		insn_field_set(&insn->immediate, get_next(int, insn), 4);
551 		break;
552 	default:	/* opnd_bytes must be modified manually */
553 		goto err_out;
554 	}
555 
556 	return 1;
557 
558 err_out:
559 	return 0;
560 }
561 
562 /* Decode imm v64(Iv/Ov), Return 0 if failed */
563 static int __get_immv(struct insn *insn)
564 {
565 	switch (insn->opnd_bytes) {
566 	case 2:
567 		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
568 		break;
569 	case 4:
570 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
571 		insn->immediate1.nbytes = 4;
572 		break;
573 	case 8:
574 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
575 		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
576 		break;
577 	default:	/* opnd_bytes must be modified manually */
578 		goto err_out;
579 	}
580 	insn->immediate1.got = insn->immediate2.got = 1;
581 
582 	return 1;
583 err_out:
584 	return 0;
585 }
586 
587 /* Decode ptr16:16/32(Ap) */
588 static int __get_immptr(struct insn *insn)
589 {
590 	switch (insn->opnd_bytes) {
591 	case 2:
592 		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
593 		break;
594 	case 4:
595 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
596 		break;
597 	case 8:
598 		/* ptr16:64 is not exist (no segment) */
599 		return 0;
600 	default:	/* opnd_bytes must be modified manually */
601 		goto err_out;
602 	}
603 	insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
604 	insn->immediate1.got = insn->immediate2.got = 1;
605 
606 	return 1;
607 err_out:
608 	return 0;
609 }
610 
611 /**
612  * insn_get_immediate() - Get the immediate in an instruction
613  * @insn:	&struct insn containing instruction
614  *
615  * If necessary, first collects the instruction up to and including the
616  * displacement bytes.
617  * Basically, most of immediates are sign-expanded. Unsigned-value can be
618  * computed by bit masking with ((1 << (nbytes * 8)) - 1)
619  *
620  * Returns:
621  * 0:  on success
622  * < 0: on error
623  */
624 int insn_get_immediate(struct insn *insn)
625 {
626 	int ret;
627 
628 	if (insn->immediate.got)
629 		return 0;
630 
631 	if (!insn->displacement.got) {
632 		ret = insn_get_displacement(insn);
633 		if (ret)
634 			return ret;
635 	}
636 
637 	if (inat_has_moffset(insn->attr)) {
638 		if (!__get_moffset(insn))
639 			goto err_out;
640 		goto done;
641 	}
642 
643 	if (!inat_has_immediate(insn->attr))
644 		/* no immediates */
645 		goto done;
646 
647 	switch (inat_immediate_size(insn->attr)) {
648 	case INAT_IMM_BYTE:
649 		insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
650 		break;
651 	case INAT_IMM_WORD:
652 		insn_field_set(&insn->immediate, get_next(short, insn), 2);
653 		break;
654 	case INAT_IMM_DWORD:
655 		insn_field_set(&insn->immediate, get_next(int, insn), 4);
656 		break;
657 	case INAT_IMM_QWORD:
658 		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
659 		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
660 		break;
661 	case INAT_IMM_PTR:
662 		if (!__get_immptr(insn))
663 			goto err_out;
664 		break;
665 	case INAT_IMM_VWORD32:
666 		if (!__get_immv32(insn))
667 			goto err_out;
668 		break;
669 	case INAT_IMM_VWORD:
670 		if (!__get_immv(insn))
671 			goto err_out;
672 		break;
673 	default:
674 		/* Here, insn must have an immediate, but failed */
675 		goto err_out;
676 	}
677 	if (inat_has_second_immediate(insn->attr)) {
678 		insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
679 	}
680 done:
681 	insn->immediate.got = 1;
682 	return 0;
683 
684 err_out:
685 	return -ENODATA;
686 }
687 
688 /**
689  * insn_get_length() - Get the length of instruction
690  * @insn:	&struct insn containing instruction
691  *
692  * If necessary, first collects the instruction up to and including the
693  * immediates bytes.
694  *
695  * Returns:
696  *  - 0 on success
697  *  - < 0 on error
698 */
699 int insn_get_length(struct insn *insn)
700 {
701 	int ret;
702 
703 	if (insn->length)
704 		return 0;
705 
706 	if (!insn->immediate.got) {
707 		ret = insn_get_immediate(insn);
708 		if (ret)
709 			return ret;
710 	}
711 
712 	insn->length = (unsigned char)((unsigned long)insn->next_byte
713 				     - (unsigned long)insn->kaddr);
714 
715 	return 0;
716 }
717 
718 /* Ensure this instruction is decoded completely */
719 static inline int insn_complete(struct insn *insn)
720 {
721 	return insn->opcode.got && insn->modrm.got && insn->sib.got &&
722 		insn->displacement.got && insn->immediate.got;
723 }
724 
725 /**
726  * insn_decode() - Decode an x86 instruction
727  * @insn:	&struct insn to be initialized
728  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
729  * @buf_len:	length of the insn buffer at @kaddr
730  * @m:		insn mode, see enum insn_mode
731  *
732  * Returns:
733  * 0: if decoding succeeded
734  * < 0: otherwise.
735  */
736 int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
737 {
738 	int ret;
739 
740 #define INSN_MODE_KERN (enum insn_mode)-1 /* __ignore_sync_check__ mode is only valid in the kernel */
741 
742 	if (m == INSN_MODE_KERN)
743 		insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
744 	else
745 		insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
746 
747 	ret = insn_get_length(insn);
748 	if (ret)
749 		return ret;
750 
751 	if (insn_complete(insn))
752 		return 0;
753 
754 	return -EINVAL;
755 }
756