1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 instruction analysis 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004, 2009 6 */ 7 8 #include <linux/kernel.h> 9 #ifdef __KERNEL__ 10 #include <linux/string.h> 11 #else 12 #include <string.h> 13 #endif 14 #include "../include/asm/inat.h" /* __ignore_sync_check__ */ 15 #include "../include/asm/insn.h" /* __ignore_sync_check__ */ 16 #include <linux/unaligned.h> /* __ignore_sync_check__ */ 17 18 #include <linux/errno.h> 19 #include <linux/kconfig.h> 20 21 #include "../include/asm/emulate_prefix.h" /* __ignore_sync_check__ */ 22 23 #define leXX_to_cpu(t, r) \ 24 ({ \ 25 __typeof__(t) v; \ 26 switch (sizeof(t)) { \ 27 case 4: v = le32_to_cpu(r); break; \ 28 case 2: v = le16_to_cpu(r); break; \ 29 case 1: v = r; break; \ 30 default: \ 31 BUILD_BUG(); break; \ 32 } \ 33 v; \ 34 }) 35 36 /* Verify next sizeof(t) bytes can be on the same instruction */ 37 #define validate_next(t, insn, n) \ 38 ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr) 39 40 #define __get_next(t, insn) \ 41 ({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); }) 42 43 #define __peek_nbyte_next(t, insn, n) \ 44 ({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); }) 45 46 #define get_next(t, insn) \ 47 ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); }) 48 49 #define peek_nbyte_next(t, insn, n) \ 50 ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); }) 51 52 #define peek_next(t, insn) peek_nbyte_next(t, insn, 0) 53 54 /** 55 * insn_init() - initialize struct insn 56 * @insn: &struct insn to be initialized 57 * @kaddr: address (in kernel memory) of instruction (or copy thereof) 58 * @buf_len: length of the insn buffer at @kaddr 59 * @x86_64: !0 for 64-bit kernel or 64-bit app 60 */ 61 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64) 62 { 63 /* 64 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid 65 * even if the input buffer is long enough to hold them. 66 */ 67 if (buf_len > MAX_INSN_SIZE) 68 buf_len = MAX_INSN_SIZE; 69 70 memset(insn, 0, sizeof(*insn)); 71 insn->kaddr = kaddr; 72 insn->end_kaddr = kaddr + buf_len; 73 insn->next_byte = kaddr; 74 insn->x86_64 = x86_64; 75 insn->opnd_bytes = 4; 76 if (x86_64) 77 insn->addr_bytes = 8; 78 else 79 insn->addr_bytes = 4; 80 } 81 82 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX }; 83 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX }; 84 85 static int __insn_get_emulate_prefix(struct insn *insn, 86 const insn_byte_t *prefix, size_t len) 87 { 88 size_t i; 89 90 for (i = 0; i < len; i++) { 91 if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i]) 92 goto err_out; 93 } 94 95 insn->emulate_prefix_size = len; 96 insn->next_byte += len; 97 98 return 1; 99 100 err_out: 101 return 0; 102 } 103 104 static void insn_get_emulate_prefix(struct insn *insn) 105 { 106 if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix))) 107 return; 108 109 __insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix)); 110 } 111 112 /** 113 * insn_get_prefixes - scan x86 instruction prefix bytes 114 * @insn: &struct insn containing instruction 115 * 116 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte 117 * to point to the (first) opcode. No effect if @insn->prefixes.got 118 * is already set. 119 * 120 * * Returns: 121 * 0: on success 122 * < 0: on error 123 */ 124 int insn_get_prefixes(struct insn *insn) 125 { 126 struct insn_field *prefixes = &insn->prefixes; 127 insn_attr_t attr; 128 insn_byte_t b, lb; 129 int i, nb; 130 131 if (prefixes->got) 132 return 0; 133 134 insn_get_emulate_prefix(insn); 135 136 nb = 0; 137 lb = 0; 138 b = peek_next(insn_byte_t, insn); 139 attr = inat_get_opcode_attribute(b); 140 while (inat_is_legacy_prefix(attr)) { 141 /* Skip if same prefix */ 142 for (i = 0; i < nb; i++) 143 if (prefixes->bytes[i] == b) 144 goto found; 145 if (nb == 4) 146 /* Invalid instruction */ 147 break; 148 prefixes->bytes[nb++] = b; 149 if (inat_is_address_size_prefix(attr)) { 150 /* address size switches 2/4 or 4/8 */ 151 if (insn->x86_64) 152 insn->addr_bytes ^= 12; 153 else 154 insn->addr_bytes ^= 6; 155 } else if (inat_is_operand_size_prefix(attr)) { 156 /* oprand size switches 2/4 */ 157 insn->opnd_bytes ^= 6; 158 } 159 found: 160 prefixes->nbytes++; 161 insn->next_byte++; 162 lb = b; 163 b = peek_next(insn_byte_t, insn); 164 attr = inat_get_opcode_attribute(b); 165 } 166 /* Set the last prefix */ 167 if (lb && lb != insn->prefixes.bytes[3]) { 168 if (unlikely(insn->prefixes.bytes[3])) { 169 /* Swap the last prefix */ 170 b = insn->prefixes.bytes[3]; 171 for (i = 0; i < nb; i++) 172 if (prefixes->bytes[i] == lb) 173 insn_set_byte(prefixes, i, b); 174 } 175 insn_set_byte(&insn->prefixes, 3, lb); 176 } 177 178 /* Decode REX prefix */ 179 if (insn->x86_64) { 180 b = peek_next(insn_byte_t, insn); 181 attr = inat_get_opcode_attribute(b); 182 if (inat_is_rex_prefix(attr)) { 183 insn_field_set(&insn->rex_prefix, b, 1); 184 insn->next_byte++; 185 if (X86_REX_W(b)) 186 /* REX.W overrides opnd_size */ 187 insn->opnd_bytes = 8; 188 } else if (inat_is_rex2_prefix(attr)) { 189 insn_set_byte(&insn->rex_prefix, 0, b); 190 b = peek_nbyte_next(insn_byte_t, insn, 1); 191 insn_set_byte(&insn->rex_prefix, 1, b); 192 insn->rex_prefix.nbytes = 2; 193 insn->next_byte += 2; 194 if (X86_REX_W(b)) 195 /* REX.W overrides opnd_size */ 196 insn->opnd_bytes = 8; 197 insn->rex_prefix.got = 1; 198 goto vex_end; 199 } 200 } 201 insn->rex_prefix.got = 1; 202 203 /* Decode VEX/XOP prefix */ 204 b = peek_next(insn_byte_t, insn); 205 if (inat_is_vex_prefix(attr) || inat_is_xop_prefix(attr)) { 206 insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1); 207 208 if (inat_is_xop_prefix(attr) && X86_MODRM_REG(b2) == 0) { 209 /* Grp1A.0 is always POP Ev */ 210 goto vex_end; 211 } else if (!insn->x86_64) { 212 /* 213 * In 32-bits mode, if the [7:6] bits (mod bits of 214 * ModRM) on the second byte are not 11b, it is 215 * LDS or LES or BOUND. 216 */ 217 if (X86_MODRM_MOD(b2) != 3) 218 goto vex_end; 219 } 220 insn_set_byte(&insn->vex_prefix, 0, b); 221 insn_set_byte(&insn->vex_prefix, 1, b2); 222 if (inat_is_evex_prefix(attr)) { 223 b2 = peek_nbyte_next(insn_byte_t, insn, 2); 224 insn_set_byte(&insn->vex_prefix, 2, b2); 225 b2 = peek_nbyte_next(insn_byte_t, insn, 3); 226 insn_set_byte(&insn->vex_prefix, 3, b2); 227 insn->vex_prefix.nbytes = 4; 228 insn->next_byte += 4; 229 if (insn->x86_64 && X86_VEX_W(b2)) 230 /* VEX.W overrides opnd_size */ 231 insn->opnd_bytes = 8; 232 } else if (inat_is_vex3_prefix(attr) || inat_is_xop_prefix(attr)) { 233 b2 = peek_nbyte_next(insn_byte_t, insn, 2); 234 insn_set_byte(&insn->vex_prefix, 2, b2); 235 insn->vex_prefix.nbytes = 3; 236 insn->next_byte += 3; 237 if (insn->x86_64 && X86_VEX_W(b2)) 238 /* VEX.W/XOP.W overrides opnd_size */ 239 insn->opnd_bytes = 8; 240 } else { 241 /* 242 * For VEX2, fake VEX3-like byte#2. 243 * Makes it easier to decode vex.W, vex.vvvv, 244 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0. 245 */ 246 insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f); 247 insn->vex_prefix.nbytes = 2; 248 insn->next_byte += 2; 249 } 250 } 251 vex_end: 252 insn->vex_prefix.got = 1; 253 254 prefixes->got = 1; 255 256 return 0; 257 258 err_out: 259 return -ENODATA; 260 } 261 262 /** 263 * insn_get_opcode - collect opcode(s) 264 * @insn: &struct insn containing instruction 265 * 266 * Populates @insn->opcode, updates @insn->next_byte to point past the 267 * opcode byte(s), and set @insn->attr (except for groups). 268 * If necessary, first collects any preceding (prefix) bytes. 269 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got 270 * is already 1. 271 * 272 * Returns: 273 * 0: on success 274 * < 0: on error 275 */ 276 int insn_get_opcode(struct insn *insn) 277 { 278 struct insn_field *opcode = &insn->opcode; 279 int pfx_id, ret; 280 insn_byte_t op; 281 282 if (opcode->got) 283 return 0; 284 285 ret = insn_get_prefixes(insn); 286 if (ret) 287 return ret; 288 289 /* Get first opcode */ 290 op = get_next(insn_byte_t, insn); 291 insn_set_byte(opcode, 0, op); 292 opcode->nbytes = 1; 293 294 /* Check if there is VEX/XOP prefix or not */ 295 if (insn_is_avx_or_xop(insn)) { 296 insn_byte_t m, p; 297 298 /* XOP prefix has different encoding */ 299 if (unlikely(avx_insn_is_xop(insn))) { 300 m = insn_xop_map_bits(insn); 301 insn->attr = inat_get_xop_attribute(op, m); 302 if (!inat_accept_xop(insn->attr)) { 303 insn->attr = 0; 304 return -EINVAL; 305 } 306 /* XOP has only 1 byte for opcode */ 307 goto end; 308 } 309 310 m = insn_vex_m_bits(insn); 311 p = insn_vex_p_bits(insn); 312 insn->attr = inat_get_avx_attribute(op, m, p); 313 /* SCALABLE EVEX uses p bits to encode operand size */ 314 if (inat_evex_scalable(insn->attr) && !insn_vex_w_bit(insn) && 315 p == INAT_PFX_OPNDSZ) 316 insn->opnd_bytes = 2; 317 if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) || 318 (!inat_accept_vex(insn->attr) && 319 !inat_is_group(insn->attr))) { 320 /* This instruction is bad */ 321 insn->attr = 0; 322 return -EINVAL; 323 } 324 /* VEX has only 1 byte for opcode */ 325 goto end; 326 } 327 328 /* Check if there is REX2 prefix or not */ 329 if (insn_is_rex2(insn)) { 330 if (insn_rex2_m_bit(insn)) { 331 /* map 1 is escape 0x0f */ 332 insn_attr_t esc_attr = inat_get_opcode_attribute(0x0f); 333 334 pfx_id = insn_last_prefix_id(insn); 335 insn->attr = inat_get_escape_attribute(op, pfx_id, esc_attr); 336 } else { 337 insn->attr = inat_get_opcode_attribute(op); 338 } 339 goto end; 340 } 341 342 insn->attr = inat_get_opcode_attribute(op); 343 if (insn->x86_64 && inat_is_invalid64(insn->attr)) { 344 /* This instruction is invalid, like UD2. Stop decoding. */ 345 insn->attr &= INAT_INV64; 346 } 347 348 while (inat_is_escape(insn->attr)) { 349 /* Get escaped opcode */ 350 op = get_next(insn_byte_t, insn); 351 opcode->bytes[opcode->nbytes++] = op; 352 pfx_id = insn_last_prefix_id(insn); 353 insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr); 354 } 355 356 if (inat_must_vex(insn->attr)) { 357 /* This instruction is bad */ 358 insn->attr = 0; 359 return -EINVAL; 360 } 361 362 end: 363 opcode->got = 1; 364 return 0; 365 366 err_out: 367 return -ENODATA; 368 } 369 370 /** 371 * insn_get_modrm - collect ModRM byte, if any 372 * @insn: &struct insn containing instruction 373 * 374 * Populates @insn->modrm and updates @insn->next_byte to point past the 375 * ModRM byte, if any. If necessary, first collects the preceding bytes 376 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1. 377 * 378 * Returns: 379 * 0: on success 380 * < 0: on error 381 */ 382 int insn_get_modrm(struct insn *insn) 383 { 384 struct insn_field *modrm = &insn->modrm; 385 insn_byte_t pfx_id, mod; 386 int ret; 387 388 if (modrm->got) 389 return 0; 390 391 ret = insn_get_opcode(insn); 392 if (ret) 393 return ret; 394 395 if (inat_has_modrm(insn->attr)) { 396 mod = get_next(insn_byte_t, insn); 397 insn_field_set(modrm, mod, 1); 398 if (inat_is_group(insn->attr)) { 399 pfx_id = insn_last_prefix_id(insn); 400 insn->attr = inat_get_group_attribute(mod, pfx_id, 401 insn->attr); 402 if (insn_is_avx_or_xop(insn) && !inat_accept_vex(insn->attr) && 403 !inat_accept_xop(insn->attr)) { 404 /* Bad insn */ 405 insn->attr = 0; 406 return -EINVAL; 407 } 408 } 409 } 410 411 if (insn->x86_64 && inat_is_force64(insn->attr)) 412 insn->opnd_bytes = 8; 413 414 modrm->got = 1; 415 return 0; 416 417 err_out: 418 return -ENODATA; 419 } 420 421 422 /** 423 * insn_rip_relative() - Does instruction use RIP-relative addressing mode? 424 * @insn: &struct insn containing instruction 425 * 426 * If necessary, first collects the instruction up to and including the 427 * ModRM byte. No effect if @insn->x86_64 is 0. 428 */ 429 int insn_rip_relative(struct insn *insn) 430 { 431 struct insn_field *modrm = &insn->modrm; 432 int ret; 433 434 if (!insn->x86_64) 435 return 0; 436 437 ret = insn_get_modrm(insn); 438 if (ret) 439 return 0; 440 /* 441 * For rip-relative instructions, the mod field (top 2 bits) 442 * is zero and the r/m field (bottom 3 bits) is 0x5. 443 */ 444 return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5); 445 } 446 447 /** 448 * insn_get_sib() - Get the SIB byte of instruction 449 * @insn: &struct insn containing instruction 450 * 451 * If necessary, first collects the instruction up to and including the 452 * ModRM byte. 453 * 454 * Returns: 455 * 0: if decoding succeeded 456 * < 0: otherwise. 457 */ 458 int insn_get_sib(struct insn *insn) 459 { 460 insn_byte_t modrm; 461 int ret; 462 463 if (insn->sib.got) 464 return 0; 465 466 ret = insn_get_modrm(insn); 467 if (ret) 468 return ret; 469 470 if (insn->modrm.nbytes) { 471 modrm = insn->modrm.bytes[0]; 472 if (insn->addr_bytes != 2 && 473 X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) { 474 insn_field_set(&insn->sib, 475 get_next(insn_byte_t, insn), 1); 476 } 477 } 478 insn->sib.got = 1; 479 480 return 0; 481 482 err_out: 483 return -ENODATA; 484 } 485 486 487 /** 488 * insn_get_displacement() - Get the displacement of instruction 489 * @insn: &struct insn containing instruction 490 * 491 * If necessary, first collects the instruction up to and including the 492 * SIB byte. 493 * Displacement value is sign-expanded. 494 * 495 * * Returns: 496 * 0: if decoding succeeded 497 * < 0: otherwise. 498 */ 499 int insn_get_displacement(struct insn *insn) 500 { 501 insn_byte_t mod, rm, base; 502 int ret; 503 504 if (insn->displacement.got) 505 return 0; 506 507 ret = insn_get_sib(insn); 508 if (ret) 509 return ret; 510 511 if (insn->modrm.nbytes) { 512 /* 513 * Interpreting the modrm byte: 514 * mod = 00 - no displacement fields (exceptions below) 515 * mod = 01 - 1-byte displacement field 516 * mod = 10 - displacement field is 4 bytes, or 2 bytes if 517 * address size = 2 (0x67 prefix in 32-bit mode) 518 * mod = 11 - no memory operand 519 * 520 * If address size = 2... 521 * mod = 00, r/m = 110 - displacement field is 2 bytes 522 * 523 * If address size != 2... 524 * mod != 11, r/m = 100 - SIB byte exists 525 * mod = 00, SIB base = 101 - displacement field is 4 bytes 526 * mod = 00, r/m = 101 - rip-relative addressing, displacement 527 * field is 4 bytes 528 */ 529 mod = X86_MODRM_MOD(insn->modrm.value); 530 rm = X86_MODRM_RM(insn->modrm.value); 531 base = X86_SIB_BASE(insn->sib.value); 532 if (mod == 3) 533 goto out; 534 if (mod == 1) { 535 insn_field_set(&insn->displacement, 536 get_next(signed char, insn), 1); 537 } else if (insn->addr_bytes == 2) { 538 if ((mod == 0 && rm == 6) || mod == 2) { 539 insn_field_set(&insn->displacement, 540 get_next(short, insn), 2); 541 } 542 } else { 543 if ((mod == 0 && rm == 5) || mod == 2 || 544 (mod == 0 && base == 5)) { 545 insn_field_set(&insn->displacement, 546 get_next(int, insn), 4); 547 } 548 } 549 } 550 out: 551 insn->displacement.got = 1; 552 return 0; 553 554 err_out: 555 return -ENODATA; 556 } 557 558 /* Decode moffset16/32/64. Return 0 if failed */ 559 static int __get_moffset(struct insn *insn) 560 { 561 switch (insn->addr_bytes) { 562 case 2: 563 insn_field_set(&insn->moffset1, get_next(short, insn), 2); 564 break; 565 case 4: 566 insn_field_set(&insn->moffset1, get_next(int, insn), 4); 567 break; 568 case 8: 569 insn_field_set(&insn->moffset1, get_next(int, insn), 4); 570 insn_field_set(&insn->moffset2, get_next(int, insn), 4); 571 break; 572 default: /* opnd_bytes must be modified manually */ 573 goto err_out; 574 } 575 insn->moffset1.got = insn->moffset2.got = 1; 576 577 return 1; 578 579 err_out: 580 return 0; 581 } 582 583 /* Decode imm v32(Iz). Return 0 if failed */ 584 static int __get_immv32(struct insn *insn) 585 { 586 switch (insn->opnd_bytes) { 587 case 2: 588 insn_field_set(&insn->immediate, get_next(short, insn), 2); 589 break; 590 case 4: 591 case 8: 592 insn_field_set(&insn->immediate, get_next(int, insn), 4); 593 break; 594 default: /* opnd_bytes must be modified manually */ 595 goto err_out; 596 } 597 598 return 1; 599 600 err_out: 601 return 0; 602 } 603 604 /* Decode imm v64(Iv/Ov), Return 0 if failed */ 605 static int __get_immv(struct insn *insn) 606 { 607 switch (insn->opnd_bytes) { 608 case 2: 609 insn_field_set(&insn->immediate1, get_next(short, insn), 2); 610 break; 611 case 4: 612 insn_field_set(&insn->immediate1, get_next(int, insn), 4); 613 insn->immediate1.nbytes = 4; 614 break; 615 case 8: 616 insn_field_set(&insn->immediate1, get_next(int, insn), 4); 617 insn_field_set(&insn->immediate2, get_next(int, insn), 4); 618 break; 619 default: /* opnd_bytes must be modified manually */ 620 goto err_out; 621 } 622 insn->immediate1.got = insn->immediate2.got = 1; 623 624 return 1; 625 err_out: 626 return 0; 627 } 628 629 /* Decode ptr16:16/32(Ap) */ 630 static int __get_immptr(struct insn *insn) 631 { 632 switch (insn->opnd_bytes) { 633 case 2: 634 insn_field_set(&insn->immediate1, get_next(short, insn), 2); 635 break; 636 case 4: 637 insn_field_set(&insn->immediate1, get_next(int, insn), 4); 638 break; 639 case 8: 640 /* ptr16:64 is not exist (no segment) */ 641 return 0; 642 default: /* opnd_bytes must be modified manually */ 643 goto err_out; 644 } 645 insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2); 646 insn->immediate1.got = insn->immediate2.got = 1; 647 648 return 1; 649 err_out: 650 return 0; 651 } 652 653 /** 654 * insn_get_immediate() - Get the immediate in an instruction 655 * @insn: &struct insn containing instruction 656 * 657 * If necessary, first collects the instruction up to and including the 658 * displacement bytes. 659 * Basically, most of immediates are sign-expanded. Unsigned-value can be 660 * computed by bit masking with ((1 << (nbytes * 8)) - 1) 661 * 662 * Returns: 663 * 0: on success 664 * < 0: on error 665 */ 666 int insn_get_immediate(struct insn *insn) 667 { 668 int ret; 669 670 if (insn->immediate.got) 671 return 0; 672 673 ret = insn_get_displacement(insn); 674 if (ret) 675 return ret; 676 677 if (inat_has_moffset(insn->attr)) { 678 if (!__get_moffset(insn)) 679 goto err_out; 680 goto done; 681 } 682 683 if (!inat_has_immediate(insn->attr)) 684 goto done; 685 686 switch (inat_immediate_size(insn->attr)) { 687 case INAT_IMM_BYTE: 688 insn_field_set(&insn->immediate, get_next(signed char, insn), 1); 689 break; 690 case INAT_IMM_WORD: 691 insn_field_set(&insn->immediate, get_next(short, insn), 2); 692 break; 693 case INAT_IMM_DWORD: 694 insn_field_set(&insn->immediate, get_next(int, insn), 4); 695 break; 696 case INAT_IMM_QWORD: 697 insn_field_set(&insn->immediate1, get_next(int, insn), 4); 698 insn_field_set(&insn->immediate2, get_next(int, insn), 4); 699 break; 700 case INAT_IMM_PTR: 701 if (!__get_immptr(insn)) 702 goto err_out; 703 break; 704 case INAT_IMM_VWORD32: 705 if (!__get_immv32(insn)) 706 goto err_out; 707 break; 708 case INAT_IMM_VWORD: 709 if (!__get_immv(insn)) 710 goto err_out; 711 break; 712 default: 713 /* Here, insn must have an immediate, but failed */ 714 goto err_out; 715 } 716 if (inat_has_second_immediate(insn->attr)) { 717 insn_field_set(&insn->immediate2, get_next(signed char, insn), 1); 718 } 719 done: 720 insn->immediate.got = 1; 721 return 0; 722 723 err_out: 724 return -ENODATA; 725 } 726 727 /** 728 * insn_get_length() - Get the length of instruction 729 * @insn: &struct insn containing instruction 730 * 731 * If necessary, first collects the instruction up to and including the 732 * immediates bytes. 733 * 734 * Returns: 735 * - 0 on success 736 * - < 0 on error 737 */ 738 int insn_get_length(struct insn *insn) 739 { 740 int ret; 741 742 if (insn->length) 743 return 0; 744 745 ret = insn_get_immediate(insn); 746 if (ret) 747 return ret; 748 749 insn->length = (unsigned char)((unsigned long)insn->next_byte 750 - (unsigned long)insn->kaddr); 751 752 return 0; 753 } 754 755 /* Ensure this instruction is decoded completely */ 756 static inline int insn_complete(struct insn *insn) 757 { 758 return insn->opcode.got && insn->modrm.got && insn->sib.got && 759 insn->displacement.got && insn->immediate.got; 760 } 761 762 /** 763 * insn_decode() - Decode an x86 instruction 764 * @insn: &struct insn to be initialized 765 * @kaddr: address (in kernel memory) of instruction (or copy thereof) 766 * @buf_len: length of the insn buffer at @kaddr 767 * @m: insn mode, see enum insn_mode 768 * 769 * Returns: 770 * 0: if decoding succeeded 771 * < 0: otherwise. 772 */ 773 int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m) 774 { 775 int ret; 776 777 #define INSN_MODE_KERN (enum insn_mode)-1 /* __ignore_sync_check__ mode is only valid in the kernel */ 778 779 if (m == INSN_MODE_KERN) 780 insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64)); 781 else 782 insn_init(insn, kaddr, buf_len, m == INSN_MODE_64); 783 784 ret = insn_get_length(insn); 785 if (ret) 786 return ret; 787 788 if (insn_complete(insn)) 789 return 0; 790 791 return -EINVAL; 792 } 793