xref: /linux/sound/x86/intel_hdmi_audio.c (revision fa84cf094ef9667e2b91c104b0a788fd1896f482)
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *		Ramesh Babu K V	<ramesh.babu@intel.com>
7  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *		Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23 
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44 
45 #define for_each_pipe(card_ctx, pipe) \
46 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49 
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 static bool single_port;
54 
55 module_param_named(index, hdmi_card_index, int, 0444);
56 MODULE_PARM_DESC(index,
57 		"Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id, hdmi_card_id, charp, 0444);
59 MODULE_PARM_DESC(id,
60 		"ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port, bool, 0444);
62 MODULE_PARM_DESC(single_port,
63 		"Single-port mode (for compatibility)");
64 
65 /*
66  * ELD SA bits in the CEA Speaker Allocation data block
67  */
68 static const int eld_speaker_allocation_bits[] = {
69 	[0] = FL | FR,
70 	[1] = LFE,
71 	[2] = FC,
72 	[3] = RL | RR,
73 	[4] = RC,
74 	[5] = FLC | FRC,
75 	[6] = RLC | RRC,
76 	/* the following are not defined in ELD yet */
77 	[7] = 0,
78 };
79 
80 /*
81  * This is an ordered list!
82  *
83  * The preceding ones have better chances to be selected by
84  * hdmi_channel_allocation().
85  */
86 static struct cea_channel_speaker_allocation channel_allocations[] = {
87 /*                        channel:   7     6    5    4    3     2    1    0  */
88 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
89 				/* 2.1 */
90 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
91 				/* Dolby Surround */
92 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
93 				/* surround40 */
94 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
95 				/* surround41 */
96 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
97 				/* surround50 */
98 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
99 				/* surround51 */
100 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
101 				/* 6.1 */
102 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
103 				/* surround71 */
104 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
105 
106 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
108 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
111 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
112 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
115 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
118 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
122 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
125 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
126 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
127 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
128 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
129 };
130 
131 static const struct channel_map_table map_tables[] = {
132 	{ SNDRV_CHMAP_FL,       0x00,   FL },
133 	{ SNDRV_CHMAP_FR,       0x01,   FR },
134 	{ SNDRV_CHMAP_RL,       0x04,   RL },
135 	{ SNDRV_CHMAP_RR,       0x05,   RR },
136 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
137 	{ SNDRV_CHMAP_FC,       0x03,   FC },
138 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
139 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
140 	{} /* terminator */
141 };
142 
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware = {
145 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
146 		SNDRV_PCM_INFO_MMAP |
147 		SNDRV_PCM_INFO_MMAP_VALID |
148 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
149 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
150 		    SNDRV_PCM_FMTBIT_S24_LE |
151 		    SNDRV_PCM_FMTBIT_S32_LE),
152 	.rates = SNDRV_PCM_RATE_32000 |
153 		SNDRV_PCM_RATE_44100 |
154 		SNDRV_PCM_RATE_48000 |
155 		SNDRV_PCM_RATE_88200 |
156 		SNDRV_PCM_RATE_96000 |
157 		SNDRV_PCM_RATE_176400 |
158 		SNDRV_PCM_RATE_192000,
159 	.rate_min = HAD_MIN_RATE,
160 	.rate_max = HAD_MAX_RATE,
161 	.channels_min = HAD_MIN_CHANNEL,
162 	.channels_max = HAD_MAX_CHANNEL,
163 	.buffer_bytes_max = HAD_MAX_BUFFER,
164 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
165 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
166 	.periods_min = HAD_MIN_PERIODS,
167 	.periods_max = HAD_MAX_PERIODS,
168 	.fifo_size = HAD_FIFO_SIZE,
169 };
170 
171 /* Get the active PCM substream;
172  * Call had_substream_put() for unreferecing.
173  * Don't call this inside had_spinlock, as it takes by itself
174  */
175 static struct snd_pcm_substream *
176 had_substream_get(struct snd_intelhad *intelhaddata)
177 {
178 	struct snd_pcm_substream *substream;
179 	unsigned long flags;
180 
181 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
182 	substream = intelhaddata->stream_info.substream;
183 	if (substream)
184 		intelhaddata->stream_info.substream_refcount++;
185 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
186 	return substream;
187 }
188 
189 /* Unref the active PCM substream;
190  * Don't call this inside had_spinlock, as it takes by itself
191  */
192 static void had_substream_put(struct snd_intelhad *intelhaddata)
193 {
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
197 	intelhaddata->stream_info.substream_refcount--;
198 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
199 }
200 
201 static u32 had_config_offset(int pipe)
202 {
203 	switch (pipe) {
204 	default:
205 	case 0:
206 		return AUDIO_HDMI_CONFIG_A;
207 	case 1:
208 		return AUDIO_HDMI_CONFIG_B;
209 	case 2:
210 		return AUDIO_HDMI_CONFIG_C;
211 	}
212 }
213 
214 /* Register access functions */
215 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
216 				 int pipe, u32 reg)
217 {
218 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220 
221 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
222 				   int pipe, u32 reg, u32 val)
223 {
224 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
225 }
226 
227 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
228 {
229 	if (!ctx->connected)
230 		*val = 0;
231 	else
232 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
233 }
234 
235 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
236 {
237 	if (ctx->connected)
238 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
239 }
240 
241 /*
242  * enable / disable audio configuration
243  *
244  * The normal read/modify should not directly be used on VLV2 for
245  * updating AUD_CONFIG register.
246  * This is because:
247  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250  * register. This field should be 1xy binary for configuration with 6 or
251  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252  * causes the "channels" field to be updated as 0xy binary resulting in
253  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254  * appropriate value when doing read-modify of AUD_CONFIG register.
255  */
256 static void had_enable_audio(struct snd_intelhad *intelhaddata,
257 			     bool enable)
258 {
259 	/* update the cached value */
260 	intelhaddata->aud_config.regx.aud_en = enable;
261 	had_write_register(intelhaddata, AUD_CONFIG,
262 			   intelhaddata->aud_config.regval);
263 }
264 
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad *ctx)
267 {
268 	u32 status_reg;
269 
270 	if (!ctx->connected)
271 		return;
272 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
273 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
274 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
275 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
276 }
277 
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad *intelhaddata)
280 {
281 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
282 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
283 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
284 }
285 
286 /*
287  * initialize audio channel status registers
288  * This function is called in the prepare callback
289  */
290 static int had_prog_status_reg(struct snd_pcm_substream *substream,
291 			struct snd_intelhad *intelhaddata)
292 {
293 	union aud_cfg cfg_val = {.regval = 0};
294 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
295 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
296 
297 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
298 					  IEC958_AES0_NONAUDIO) >> 1;
299 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
300 					  IEC958_AES3_CON_CLOCK) >> 4;
301 	cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
302 
303 	switch (substream->runtime->rate) {
304 	case AUD_SAMPLE_RATE_32:
305 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
306 		break;
307 
308 	case AUD_SAMPLE_RATE_44_1:
309 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
310 		break;
311 	case AUD_SAMPLE_RATE_48:
312 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
313 		break;
314 	case AUD_SAMPLE_RATE_88_2:
315 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
316 		break;
317 	case AUD_SAMPLE_RATE_96:
318 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
319 		break;
320 	case AUD_SAMPLE_RATE_176_4:
321 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
322 		break;
323 	case AUD_SAMPLE_RATE_192:
324 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
325 		break;
326 
327 	default:
328 		/* control should never come here */
329 		return -EINVAL;
330 	}
331 
332 	had_write_register(intelhaddata,
333 			   AUD_CH_STATUS_0, ch_stat0.regval);
334 
335 	switch (substream->runtime->format) {
336 	case SNDRV_PCM_FORMAT_S16_LE:
337 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
338 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
339 		break;
340 	case SNDRV_PCM_FORMAT_S24_LE:
341 	case SNDRV_PCM_FORMAT_S32_LE:
342 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
343 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
344 		break;
345 	default:
346 		return -EINVAL;
347 	}
348 
349 	had_write_register(intelhaddata,
350 			   AUD_CH_STATUS_1, ch_stat1.regval);
351 	return 0;
352 }
353 
354 /*
355  * function to initialize audio
356  * registers and buffer confgiuration registers
357  * This function is called in the prepare callback
358  */
359 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
360 			       struct snd_intelhad *intelhaddata)
361 {
362 	union aud_cfg cfg_val = {.regval = 0};
363 	union aud_buf_config buf_cfg = {.regval = 0};
364 	u8 channels;
365 
366 	had_prog_status_reg(substream, intelhaddata);
367 
368 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
369 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
370 	buf_cfg.regx.aud_delay = 0;
371 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
372 
373 	channels = substream->runtime->channels;
374 	cfg_val.regx.num_ch = channels - 2;
375 	if (channels <= 2)
376 		cfg_val.regx.layout = LAYOUT0;
377 	else
378 		cfg_val.regx.layout = LAYOUT1;
379 
380 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
381 		cfg_val.regx.packet_mode = 1;
382 
383 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
384 		cfg_val.regx.left_align = 1;
385 
386 	cfg_val.regx.val_bit = 1;
387 
388 	/* fix up the DP bits */
389 	if (intelhaddata->dp_output) {
390 		cfg_val.regx.dp_modei = 1;
391 		cfg_val.regx.set = 1;
392 	}
393 
394 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
395 	intelhaddata->aud_config = cfg_val;
396 	return 0;
397 }
398 
399 /*
400  * Compute derived values in channel_allocations[].
401  */
402 static void init_channel_allocations(void)
403 {
404 	int i, j;
405 	struct cea_channel_speaker_allocation *p;
406 
407 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
408 		p = channel_allocations + i;
409 		p->channels = 0;
410 		p->spk_mask = 0;
411 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
412 			if (p->speakers[j]) {
413 				p->channels++;
414 				p->spk_mask |= p->speakers[j];
415 			}
416 	}
417 }
418 
419 /*
420  * The transformation takes two steps:
421  *
422  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
423  *            spk_mask => (channel_allocations[])         => ai->CA
424  *
425  * TODO: it could select the wrong CA from multiple candidates.
426  */
427 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
428 				  int channels)
429 {
430 	int i;
431 	int ca = 0;
432 	int spk_mask = 0;
433 
434 	/*
435 	 * CA defaults to 0 for basic stereo audio
436 	 */
437 	if (channels <= 2)
438 		return 0;
439 
440 	/*
441 	 * expand ELD's speaker allocation mask
442 	 *
443 	 * ELD tells the speaker mask in a compact(paired) form,
444 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
445 	 */
446 
447 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
448 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
449 			spk_mask |= eld_speaker_allocation_bits[i];
450 	}
451 
452 	/* search for the first working match in the CA table */
453 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
454 		if (channels == channel_allocations[i].channels &&
455 		(spk_mask & channel_allocations[i].spk_mask) ==
456 				channel_allocations[i].spk_mask) {
457 			ca = channel_allocations[i].ca_index;
458 			break;
459 		}
460 	}
461 
462 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
463 
464 	return ca;
465 }
466 
467 /* from speaker bit mask to ALSA API channel position */
468 static int spk_to_chmap(int spk)
469 {
470 	const struct channel_map_table *t = map_tables;
471 
472 	for (; t->map; t++) {
473 		if (t->spk_mask == spk)
474 			return t->map;
475 	}
476 	return 0;
477 }
478 
479 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
480 {
481 	int i, c;
482 	int spk_mask = 0;
483 	struct snd_pcm_chmap_elem *chmap;
484 	u8 eld_high, eld_high_mask = 0xF0;
485 	u8 high_msb;
486 
487 	kfree(intelhaddata->chmap->chmap);
488 	intelhaddata->chmap->chmap = NULL;
489 
490 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
491 	if (!chmap)
492 		return;
493 
494 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
495 		intelhaddata->eld[DRM_ELD_SPEAKER]);
496 
497 	/* WA: Fix the max channel supported to 8 */
498 
499 	/*
500 	 * Sink may support more than 8 channels, if eld_high has more than
501 	 * one bit set. SOC supports max 8 channels.
502 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
503 	 */
504 
505 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
506 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
507 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
508 		/* eld_high & (eld_high-1): if more than 1 bit set */
509 		/* 0x1F: 7 channels */
510 		for (i = 1; i < 4; i++) {
511 			high_msb = eld_high & (0x80 >> i);
512 			if (high_msb) {
513 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
514 					high_msb | 0xF;
515 				break;
516 			}
517 		}
518 	}
519 
520 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
521 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
522 			spk_mask |= eld_speaker_allocation_bits[i];
523 	}
524 
525 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
526 		if (spk_mask == channel_allocations[i].spk_mask) {
527 			for (c = 0; c < channel_allocations[i].channels; c++) {
528 				chmap->map[c] = spk_to_chmap(
529 					channel_allocations[i].speakers[
530 						(MAX_SPEAKERS - 1) - c]);
531 			}
532 			chmap->channels = channel_allocations[i].channels;
533 			intelhaddata->chmap->chmap = chmap;
534 			break;
535 		}
536 	}
537 	if (i >= ARRAY_SIZE(channel_allocations))
538 		kfree(chmap);
539 }
540 
541 /*
542  * ALSA API channel-map control callbacks
543  */
544 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
545 				struct snd_ctl_elem_info *uinfo)
546 {
547 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
548 	uinfo->count = HAD_MAX_CHANNEL;
549 	uinfo->value.integer.min = 0;
550 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
551 	return 0;
552 }
553 
554 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
555 				struct snd_ctl_elem_value *ucontrol)
556 {
557 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
558 	struct snd_intelhad *intelhaddata = info->private_data;
559 	int i;
560 	const struct snd_pcm_chmap_elem *chmap;
561 
562 	memset(ucontrol->value.integer.value, 0,
563 	       sizeof(long) * HAD_MAX_CHANNEL);
564 	mutex_lock(&intelhaddata->mutex);
565 	if (!intelhaddata->chmap->chmap) {
566 		mutex_unlock(&intelhaddata->mutex);
567 		return 0;
568 	}
569 
570 	chmap = intelhaddata->chmap->chmap;
571 	for (i = 0; i < chmap->channels; i++)
572 		ucontrol->value.integer.value[i] = chmap->map[i];
573 	mutex_unlock(&intelhaddata->mutex);
574 
575 	return 0;
576 }
577 
578 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
579 						struct snd_pcm *pcm)
580 {
581 	int err;
582 
583 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
584 			NULL, 0, (unsigned long)intelhaddata,
585 			&intelhaddata->chmap);
586 	if (err < 0)
587 		return err;
588 
589 	intelhaddata->chmap->private_data = intelhaddata;
590 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
591 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
592 	intelhaddata->chmap->chmap = NULL;
593 	return 0;
594 }
595 
596 /*
597  * Initialize Data Island Packets registers
598  * This function is called in the prepare callback
599  */
600 static void had_prog_dip(struct snd_pcm_substream *substream,
601 			 struct snd_intelhad *intelhaddata)
602 {
603 	int i;
604 	union aud_ctrl_st ctrl_state = {.regval = 0};
605 	union aud_info_frame2 frame2 = {.regval = 0};
606 	union aud_info_frame3 frame3 = {.regval = 0};
607 	u8 checksum = 0;
608 	u32 info_frame;
609 	int channels;
610 	int ca;
611 
612 	channels = substream->runtime->channels;
613 
614 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
615 
616 	ca = had_channel_allocation(intelhaddata, channels);
617 	if (intelhaddata->dp_output) {
618 		info_frame = DP_INFO_FRAME_WORD1;
619 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
620 	} else {
621 		info_frame = HDMI_INFO_FRAME_WORD1;
622 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
623 		frame3.regx.chnl_alloc = ca;
624 
625 		/* Calculte the byte wide checksum for all valid DIP words */
626 		for (i = 0; i < BYTES_PER_WORD; i++)
627 			checksum += (info_frame >> (i * 8)) & 0xff;
628 		for (i = 0; i < BYTES_PER_WORD; i++)
629 			checksum += (frame2.regval >> (i * 8)) & 0xff;
630 		for (i = 0; i < BYTES_PER_WORD; i++)
631 			checksum += (frame3.regval >> (i * 8)) & 0xff;
632 
633 		frame2.regx.chksum = -(checksum);
634 	}
635 
636 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
637 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
638 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
639 
640 	/* program remaining DIP words with zero */
641 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
642 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
643 
644 	ctrl_state.regx.dip_freq = 1;
645 	ctrl_state.regx.dip_en_sta = 1;
646 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
647 }
648 
649 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
650 {
651 	u32 maud_val;
652 
653 	/* Select maud according to DP 1.2 spec */
654 	if (link_rate == DP_2_7_GHZ) {
655 		switch (aud_samp_freq) {
656 		case AUD_SAMPLE_RATE_32:
657 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
658 			break;
659 
660 		case AUD_SAMPLE_RATE_44_1:
661 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
662 			break;
663 
664 		case AUD_SAMPLE_RATE_48:
665 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
666 			break;
667 
668 		case AUD_SAMPLE_RATE_88_2:
669 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
670 			break;
671 
672 		case AUD_SAMPLE_RATE_96:
673 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
674 			break;
675 
676 		case AUD_SAMPLE_RATE_176_4:
677 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
678 			break;
679 
680 		case HAD_MAX_RATE:
681 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
682 			break;
683 
684 		default:
685 			maud_val = -EINVAL;
686 			break;
687 		}
688 	} else if (link_rate == DP_1_62_GHZ) {
689 		switch (aud_samp_freq) {
690 		case AUD_SAMPLE_RATE_32:
691 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
692 			break;
693 
694 		case AUD_SAMPLE_RATE_44_1:
695 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
696 			break;
697 
698 		case AUD_SAMPLE_RATE_48:
699 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
700 			break;
701 
702 		case AUD_SAMPLE_RATE_88_2:
703 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
704 			break;
705 
706 		case AUD_SAMPLE_RATE_96:
707 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
708 			break;
709 
710 		case AUD_SAMPLE_RATE_176_4:
711 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
712 			break;
713 
714 		case HAD_MAX_RATE:
715 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
716 			break;
717 
718 		default:
719 			maud_val = -EINVAL;
720 			break;
721 		}
722 	} else
723 		maud_val = -EINVAL;
724 
725 	return maud_val;
726 }
727 
728 /*
729  * Program HDMI audio CTS value
730  *
731  * @aud_samp_freq: sampling frequency of audio data
732  * @tmds: sampling frequency of the display data
733  * @link_rate: DP link rate
734  * @n_param: N value, depends on aud_samp_freq
735  * @intelhaddata: substream private data
736  *
737  * Program CTS register based on the audio and display sampling frequency
738  */
739 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
740 			 u32 n_param, struct snd_intelhad *intelhaddata)
741 {
742 	u32 cts_val;
743 	u64 dividend, divisor;
744 
745 	if (intelhaddata->dp_output) {
746 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
747 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
748 	} else {
749 		/* Calculate CTS according to HDMI 1.3a spec*/
750 		dividend = (u64)tmds * n_param*1000;
751 		divisor = 128 * aud_samp_freq;
752 		cts_val = div64_u64(dividend, divisor);
753 	}
754 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
755 		 tmds, n_param, cts_val);
756 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
757 }
758 
759 static int had_calculate_n_value(u32 aud_samp_freq)
760 {
761 	int n_val;
762 
763 	/* Select N according to HDMI 1.3a spec*/
764 	switch (aud_samp_freq) {
765 	case AUD_SAMPLE_RATE_32:
766 		n_val = 4096;
767 		break;
768 
769 	case AUD_SAMPLE_RATE_44_1:
770 		n_val = 6272;
771 		break;
772 
773 	case AUD_SAMPLE_RATE_48:
774 		n_val = 6144;
775 		break;
776 
777 	case AUD_SAMPLE_RATE_88_2:
778 		n_val = 12544;
779 		break;
780 
781 	case AUD_SAMPLE_RATE_96:
782 		n_val = 12288;
783 		break;
784 
785 	case AUD_SAMPLE_RATE_176_4:
786 		n_val = 25088;
787 		break;
788 
789 	case HAD_MAX_RATE:
790 		n_val = 24576;
791 		break;
792 
793 	default:
794 		n_val = -EINVAL;
795 		break;
796 	}
797 	return n_val;
798 }
799 
800 /*
801  * Program HDMI audio N value
802  *
803  * @aud_samp_freq: sampling frequency of audio data
804  * @n_param: N value, depends on aud_samp_freq
805  * @intelhaddata: substream private data
806  *
807  * This function is called in the prepare callback.
808  * It programs based on the audio and display sampling frequency
809  */
810 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
811 		      struct snd_intelhad *intelhaddata)
812 {
813 	int n_val;
814 
815 	if (intelhaddata->dp_output) {
816 		/*
817 		 * According to DP specs, Maud and Naud values hold
818 		 * a relationship, which is stated as:
819 		 * Maud/Naud = 512 * fs / f_LS_Clk
820 		 * where, fs is the sampling frequency of the audio stream
821 		 * and Naud is 32768 for Async clock.
822 		 */
823 
824 		n_val = DP_NAUD_VAL;
825 	} else
826 		n_val =	had_calculate_n_value(aud_samp_freq);
827 
828 	if (n_val < 0)
829 		return n_val;
830 
831 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
832 	*n_param = n_val;
833 	return 0;
834 }
835 
836 /*
837  * PCM ring buffer handling
838  *
839  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
840  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
841  * moves at each period elapsed.  The below illustrates how it works:
842  *
843  * At time=0
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD  | 0 | 1 | 2 | 3 |
846  *
847  * At time=1 (period elapsed)
848  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849  *  BD      | 1 | 2 | 3 | 0 |
850  *
851  * At time=2 (second period elapsed)
852  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853  *  BD          | 2 | 3 | 0 | 1 |
854  *
855  * The bd_head field points to the index of the BD to be read.  It's also the
856  * position to be filled at next.  The pcm_head and the pcm_filled fields
857  * point to the indices of the current position and of the next position to
858  * be filled, respectively.  For PCM buffer there are both _head and _filled
859  * because they may be difference when nperiods > 4.  For example, in the
860  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
861  *
862  * pcm_head (=1) --v               v-- pcm_filled (=5)
863  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
864  *       BD      | 1 | 2 | 3 | 0 |
865  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
866  *
867  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
868  * the hardware skips those BDs in the loop.
869  *
870  * An exceptional setup is the case with nperiods=1.  Since we have to update
871  * BDs after finishing one BD processing, we'd need at least two BDs, where
872  * both BDs point to the same content, the same address, the same size of the
873  * whole PCM buffer.
874  */
875 
876 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
877 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
878 
879 /* Set up a buffer descriptor at the "filled" position */
880 static void had_prog_bd(struct snd_pcm_substream *substream,
881 			struct snd_intelhad *intelhaddata)
882 {
883 	int idx = intelhaddata->bd_head;
884 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
885 	u32 addr = substream->runtime->dma_addr + ofs;
886 
887 	addr |= AUD_BUF_VALID;
888 	if (!substream->runtime->no_period_wakeup)
889 		addr |= AUD_BUF_INTR_EN;
890 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
891 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
892 			   intelhaddata->period_bytes);
893 
894 	/* advance the indices to the next */
895 	intelhaddata->bd_head++;
896 	intelhaddata->bd_head %= intelhaddata->num_bds;
897 	intelhaddata->pcmbuf_filled++;
898 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
899 }
900 
901 /* invalidate a buffer descriptor with the given index */
902 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
903 			      int idx)
904 {
905 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
906 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
907 }
908 
909 /* Initial programming of ring buffer */
910 static void had_init_ringbuf(struct snd_pcm_substream *substream,
911 			     struct snd_intelhad *intelhaddata)
912 {
913 	struct snd_pcm_runtime *runtime = substream->runtime;
914 	int i, num_periods;
915 
916 	num_periods = runtime->periods;
917 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
918 	/* set the minimum 2 BDs for num_periods=1 */
919 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
920 	intelhaddata->period_bytes =
921 		frames_to_bytes(runtime, runtime->period_size);
922 	WARN_ON(intelhaddata->period_bytes & 0x3f);
923 
924 	intelhaddata->bd_head = 0;
925 	intelhaddata->pcmbuf_head = 0;
926 	intelhaddata->pcmbuf_filled = 0;
927 
928 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
929 		if (i < intelhaddata->num_bds)
930 			had_prog_bd(substream, intelhaddata);
931 		else /* invalidate the rest */
932 			had_invalidate_bd(intelhaddata, i);
933 	}
934 
935 	intelhaddata->bd_head = 0; /* reset at head again before starting */
936 }
937 
938 /* process a bd, advance to the next */
939 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
940 				struct snd_intelhad *intelhaddata)
941 {
942 	int num_periods = substream->runtime->periods;
943 
944 	/* reprogram the next buffer */
945 	had_prog_bd(substream, intelhaddata);
946 
947 	/* proceed to next */
948 	intelhaddata->pcmbuf_head++;
949 	intelhaddata->pcmbuf_head %= num_periods;
950 }
951 
952 /* process the current BD(s);
953  * returns the current PCM buffer byte position, or -EPIPE for underrun.
954  */
955 static int had_process_ringbuf(struct snd_pcm_substream *substream,
956 			       struct snd_intelhad *intelhaddata)
957 {
958 	int len, processed;
959 	unsigned long flags;
960 
961 	processed = 0;
962 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
963 	for (;;) {
964 		/* get the remaining bytes on the buffer */
965 		had_read_register(intelhaddata,
966 				  AUD_BUF_LEN(intelhaddata->bd_head),
967 				  &len);
968 		if (len < 0 || len > intelhaddata->period_bytes) {
969 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
970 				len);
971 			len = -EPIPE;
972 			goto out;
973 		}
974 
975 		if (len > 0) /* OK, this is the current buffer */
976 			break;
977 
978 		/* len=0 => already empty, check the next buffer */
979 		if (++processed >= intelhaddata->num_bds) {
980 			len = -EPIPE; /* all empty? - report underrun */
981 			goto out;
982 		}
983 		had_advance_ringbuf(substream, intelhaddata);
984 	}
985 
986 	len = intelhaddata->period_bytes - len;
987 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
988  out:
989 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
990 	return len;
991 }
992 
993 /* called from irq handler */
994 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
995 {
996 	struct snd_pcm_substream *substream;
997 
998 	substream = had_substream_get(intelhaddata);
999 	if (!substream)
1000 		return; /* no stream? - bail out */
1001 
1002 	if (!intelhaddata->connected) {
1003 		snd_pcm_stop_xrun(substream);
1004 		goto out; /* disconnected? - bail out */
1005 	}
1006 
1007 	/* process or stop the stream */
1008 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1009 		snd_pcm_stop_xrun(substream);
1010 	else
1011 		snd_pcm_period_elapsed(substream);
1012 
1013  out:
1014 	had_substream_put(intelhaddata);
1015 }
1016 
1017 /*
1018  * The interrupt status 'sticky' bits might not be cleared by
1019  * setting '1' to that bit once...
1020  */
1021 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1022 {
1023 	int i;
1024 	u32 val;
1025 
1026 	for (i = 0; i < 100; i++) {
1027 		/* clear bit30, 31 AUD_HDMI_STATUS */
1028 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1029 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1030 			return;
1031 		udelay(100);
1032 		cond_resched();
1033 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1034 	}
1035 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1036 }
1037 
1038 /* Perform some reset procedure but only when need_reset is set;
1039  * this is called from prepare or hw_free callbacks once after trigger STOP
1040  * or underrun has been processed in order to settle down the h/w state.
1041  */
1042 static void had_do_reset(struct snd_intelhad *intelhaddata)
1043 {
1044 	if (!intelhaddata->need_reset || !intelhaddata->connected)
1045 		return;
1046 
1047 	/* Reset buffer pointers */
1048 	had_reset_audio(intelhaddata);
1049 	wait_clear_underrun_bit(intelhaddata);
1050 	intelhaddata->need_reset = false;
1051 }
1052 
1053 /* called from irq handler */
1054 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1055 {
1056 	struct snd_pcm_substream *substream;
1057 
1058 	/* Report UNDERRUN error to above layers */
1059 	substream = had_substream_get(intelhaddata);
1060 	if (substream) {
1061 		snd_pcm_stop_xrun(substream);
1062 		had_substream_put(intelhaddata);
1063 	}
1064 	intelhaddata->need_reset = true;
1065 }
1066 
1067 /*
1068  * ALSA PCM open callback
1069  */
1070 static int had_pcm_open(struct snd_pcm_substream *substream)
1071 {
1072 	struct snd_intelhad *intelhaddata;
1073 	struct snd_pcm_runtime *runtime;
1074 	int retval;
1075 
1076 	intelhaddata = snd_pcm_substream_chip(substream);
1077 	runtime = substream->runtime;
1078 
1079 	pm_runtime_get_sync(intelhaddata->dev);
1080 
1081 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1082 	runtime->hw = had_pcm_hardware;
1083 
1084 	retval = snd_pcm_hw_constraint_integer(runtime,
1085 			 SNDRV_PCM_HW_PARAM_PERIODS);
1086 	if (retval < 0)
1087 		goto error;
1088 
1089 	/* Make sure, that the period size is always aligned
1090 	 * 64byte boundary
1091 	 */
1092 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1093 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1094 	if (retval < 0)
1095 		goto error;
1096 
1097 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1098 	if (retval < 0)
1099 		goto error;
1100 
1101 	/* expose PCM substream */
1102 	spin_lock_irq(&intelhaddata->had_spinlock);
1103 	intelhaddata->stream_info.substream = substream;
1104 	intelhaddata->stream_info.substream_refcount++;
1105 	spin_unlock_irq(&intelhaddata->had_spinlock);
1106 
1107 	return retval;
1108  error:
1109 	pm_runtime_mark_last_busy(intelhaddata->dev);
1110 	pm_runtime_put_autosuspend(intelhaddata->dev);
1111 	return retval;
1112 }
1113 
1114 /*
1115  * ALSA PCM close callback
1116  */
1117 static int had_pcm_close(struct snd_pcm_substream *substream)
1118 {
1119 	struct snd_intelhad *intelhaddata;
1120 
1121 	intelhaddata = snd_pcm_substream_chip(substream);
1122 
1123 	/* unreference and sync with the pending PCM accesses */
1124 	spin_lock_irq(&intelhaddata->had_spinlock);
1125 	intelhaddata->stream_info.substream = NULL;
1126 	intelhaddata->stream_info.substream_refcount--;
1127 	while (intelhaddata->stream_info.substream_refcount > 0) {
1128 		spin_unlock_irq(&intelhaddata->had_spinlock);
1129 		cpu_relax();
1130 		spin_lock_irq(&intelhaddata->had_spinlock);
1131 	}
1132 	spin_unlock_irq(&intelhaddata->had_spinlock);
1133 
1134 	pm_runtime_mark_last_busy(intelhaddata->dev);
1135 	pm_runtime_put_autosuspend(intelhaddata->dev);
1136 	return 0;
1137 }
1138 
1139 /*
1140  * ALSA PCM hw_params callback
1141  */
1142 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1143 			     struct snd_pcm_hw_params *hw_params)
1144 {
1145 	struct snd_intelhad *intelhaddata;
1146 	unsigned long addr;
1147 	int pages, buf_size, retval;
1148 
1149 	intelhaddata = snd_pcm_substream_chip(substream);
1150 	buf_size = params_buffer_bytes(hw_params);
1151 	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1152 	if (retval < 0)
1153 		return retval;
1154 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1155 		__func__, buf_size);
1156 	/* mark the pages as uncached region */
1157 	addr = (unsigned long) substream->runtime->dma_area;
1158 	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1159 	retval = set_memory_uc(addr, pages);
1160 	if (retval) {
1161 		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1162 			retval);
1163 		return retval;
1164 	}
1165 	memset(substream->runtime->dma_area, 0, buf_size);
1166 
1167 	return retval;
1168 }
1169 
1170 /*
1171  * ALSA PCM hw_free callback
1172  */
1173 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1174 {
1175 	struct snd_intelhad *intelhaddata;
1176 	unsigned long addr;
1177 	u32 pages;
1178 
1179 	intelhaddata = snd_pcm_substream_chip(substream);
1180 	had_do_reset(intelhaddata);
1181 
1182 	/* mark back the pages as cached/writeback region before the free */
1183 	if (substream->runtime->dma_area != NULL) {
1184 		addr = (unsigned long) substream->runtime->dma_area;
1185 		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1186 								PAGE_SIZE;
1187 		set_memory_wb(addr, pages);
1188 		return snd_pcm_lib_free_pages(substream);
1189 	}
1190 	return 0;
1191 }
1192 
1193 /*
1194  * ALSA PCM trigger callback
1195  */
1196 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1197 {
1198 	int retval = 0;
1199 	struct snd_intelhad *intelhaddata;
1200 
1201 	intelhaddata = snd_pcm_substream_chip(substream);
1202 
1203 	spin_lock(&intelhaddata->had_spinlock);
1204 	switch (cmd) {
1205 	case SNDRV_PCM_TRIGGER_START:
1206 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1207 	case SNDRV_PCM_TRIGGER_RESUME:
1208 		/* Enable Audio */
1209 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1210 		had_enable_audio(intelhaddata, true);
1211 		break;
1212 
1213 	case SNDRV_PCM_TRIGGER_STOP:
1214 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1215 		/* Disable Audio */
1216 		had_enable_audio(intelhaddata, false);
1217 		intelhaddata->need_reset = true;
1218 		break;
1219 
1220 	default:
1221 		retval = -EINVAL;
1222 	}
1223 	spin_unlock(&intelhaddata->had_spinlock);
1224 	return retval;
1225 }
1226 
1227 /*
1228  * ALSA PCM prepare callback
1229  */
1230 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1231 {
1232 	int retval;
1233 	u32 disp_samp_freq, n_param;
1234 	u32 link_rate = 0;
1235 	struct snd_intelhad *intelhaddata;
1236 	struct snd_pcm_runtime *runtime;
1237 
1238 	intelhaddata = snd_pcm_substream_chip(substream);
1239 	runtime = substream->runtime;
1240 
1241 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1242 		(int)frames_to_bytes(runtime, runtime->period_size));
1243 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1244 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1245 		(int)snd_pcm_lib_buffer_bytes(substream));
1246 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1247 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1248 
1249 	had_do_reset(intelhaddata);
1250 
1251 	/* Get N value in KHz */
1252 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1253 
1254 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1255 	if (retval) {
1256 		dev_err(intelhaddata->dev,
1257 			"programming N value failed %#x\n", retval);
1258 		goto prep_end;
1259 	}
1260 
1261 	if (intelhaddata->dp_output)
1262 		link_rate = intelhaddata->link_rate;
1263 
1264 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1265 		     n_param, intelhaddata);
1266 
1267 	had_prog_dip(substream, intelhaddata);
1268 
1269 	retval = had_init_audio_ctrl(substream, intelhaddata);
1270 
1271 	/* Prog buffer address */
1272 	had_init_ringbuf(substream, intelhaddata);
1273 
1274 	/*
1275 	 * Program channel mapping in following order:
1276 	 * FL, FR, C, LFE, RL, RR
1277 	 */
1278 
1279 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1280 
1281 prep_end:
1282 	return retval;
1283 }
1284 
1285 /*
1286  * ALSA PCM pointer callback
1287  */
1288 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1289 {
1290 	struct snd_intelhad *intelhaddata;
1291 	int len;
1292 
1293 	intelhaddata = snd_pcm_substream_chip(substream);
1294 
1295 	if (!intelhaddata->connected)
1296 		return SNDRV_PCM_POS_XRUN;
1297 
1298 	len = had_process_ringbuf(substream, intelhaddata);
1299 	if (len < 0)
1300 		return SNDRV_PCM_POS_XRUN;
1301 	len = bytes_to_frames(substream->runtime, len);
1302 	/* wrapping may happen when periods=1 */
1303 	len %= substream->runtime->buffer_size;
1304 	return len;
1305 }
1306 
1307 /*
1308  * ALSA PCM mmap callback
1309  */
1310 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1311 			struct vm_area_struct *vma)
1312 {
1313 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314 	return remap_pfn_range(vma, vma->vm_start,
1315 			substream->dma_buffer.addr >> PAGE_SHIFT,
1316 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1317 }
1318 
1319 /*
1320  * ALSA PCM ops
1321  */
1322 static const struct snd_pcm_ops had_pcm_ops = {
1323 	.open =		had_pcm_open,
1324 	.close =	had_pcm_close,
1325 	.ioctl =	snd_pcm_lib_ioctl,
1326 	.hw_params =	had_pcm_hw_params,
1327 	.hw_free =	had_pcm_hw_free,
1328 	.prepare =	had_pcm_prepare,
1329 	.trigger =	had_pcm_trigger,
1330 	.pointer =	had_pcm_pointer,
1331 	.mmap =		had_pcm_mmap,
1332 };
1333 
1334 /* process mode change of the running stream; called in mutex */
1335 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1336 {
1337 	struct snd_pcm_substream *substream;
1338 	int retval = 0;
1339 	u32 disp_samp_freq, n_param;
1340 	u32 link_rate = 0;
1341 
1342 	substream = had_substream_get(intelhaddata);
1343 	if (!substream)
1344 		return 0;
1345 
1346 	/* Disable Audio */
1347 	had_enable_audio(intelhaddata, false);
1348 
1349 	/* Update CTS value */
1350 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1351 
1352 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1353 	if (retval) {
1354 		dev_err(intelhaddata->dev,
1355 			"programming N value failed %#x\n", retval);
1356 		goto out;
1357 	}
1358 
1359 	if (intelhaddata->dp_output)
1360 		link_rate = intelhaddata->link_rate;
1361 
1362 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1363 		     n_param, intelhaddata);
1364 
1365 	/* Enable Audio */
1366 	had_enable_audio(intelhaddata, true);
1367 
1368 out:
1369 	had_substream_put(intelhaddata);
1370 	return retval;
1371 }
1372 
1373 /* process hot plug, called from wq with mutex locked */
1374 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1375 {
1376 	struct snd_pcm_substream *substream;
1377 
1378 	spin_lock_irq(&intelhaddata->had_spinlock);
1379 	if (intelhaddata->connected) {
1380 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1381 		spin_unlock_irq(&intelhaddata->had_spinlock);
1382 		return;
1383 	}
1384 
1385 	/* Disable Audio */
1386 	had_enable_audio(intelhaddata, false);
1387 
1388 	intelhaddata->connected = true;
1389 	dev_dbg(intelhaddata->dev,
1390 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391 			__func__, __LINE__);
1392 	spin_unlock_irq(&intelhaddata->had_spinlock);
1393 
1394 	had_build_channel_allocation_map(intelhaddata);
1395 
1396 	/* Report to above ALSA layer */
1397 	substream = had_substream_get(intelhaddata);
1398 	if (substream) {
1399 		snd_pcm_stop_xrun(substream);
1400 		had_substream_put(intelhaddata);
1401 	}
1402 
1403 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1404 }
1405 
1406 /* process hot unplug, called from wq with mutex locked */
1407 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1408 {
1409 	struct snd_pcm_substream *substream;
1410 
1411 	spin_lock_irq(&intelhaddata->had_spinlock);
1412 	if (!intelhaddata->connected) {
1413 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1414 		spin_unlock_irq(&intelhaddata->had_spinlock);
1415 		return;
1416 
1417 	}
1418 
1419 	/* Disable Audio */
1420 	had_enable_audio(intelhaddata, false);
1421 
1422 	intelhaddata->connected = false;
1423 	dev_dbg(intelhaddata->dev,
1424 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425 			__func__, __LINE__);
1426 	spin_unlock_irq(&intelhaddata->had_spinlock);
1427 
1428 	kfree(intelhaddata->chmap->chmap);
1429 	intelhaddata->chmap->chmap = NULL;
1430 
1431 	/* Report to above ALSA layer */
1432 	substream = had_substream_get(intelhaddata);
1433 	if (substream) {
1434 		snd_pcm_stop_xrun(substream);
1435 		had_substream_put(intelhaddata);
1436 	}
1437 
1438 	snd_jack_report(intelhaddata->jack, 0);
1439 }
1440 
1441 /*
1442  * ALSA iec958 and ELD controls
1443  */
1444 
1445 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1446 				struct snd_ctl_elem_info *uinfo)
1447 {
1448 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1449 	uinfo->count = 1;
1450 	return 0;
1451 }
1452 
1453 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1454 				struct snd_ctl_elem_value *ucontrol)
1455 {
1456 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457 
1458 	mutex_lock(&intelhaddata->mutex);
1459 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1460 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1461 	ucontrol->value.iec958.status[2] =
1462 					(intelhaddata->aes_bits >> 16) & 0xff;
1463 	ucontrol->value.iec958.status[3] =
1464 					(intelhaddata->aes_bits >> 24) & 0xff;
1465 	mutex_unlock(&intelhaddata->mutex);
1466 	return 0;
1467 }
1468 
1469 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1470 				struct snd_ctl_elem_value *ucontrol)
1471 {
1472 	ucontrol->value.iec958.status[0] = 0xff;
1473 	ucontrol->value.iec958.status[1] = 0xff;
1474 	ucontrol->value.iec958.status[2] = 0xff;
1475 	ucontrol->value.iec958.status[3] = 0xff;
1476 	return 0;
1477 }
1478 
1479 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1480 				struct snd_ctl_elem_value *ucontrol)
1481 {
1482 	unsigned int val;
1483 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484 	int changed = 0;
1485 
1486 	val = (ucontrol->value.iec958.status[0] << 0) |
1487 		(ucontrol->value.iec958.status[1] << 8) |
1488 		(ucontrol->value.iec958.status[2] << 16) |
1489 		(ucontrol->value.iec958.status[3] << 24);
1490 	mutex_lock(&intelhaddata->mutex);
1491 	if (intelhaddata->aes_bits != val) {
1492 		intelhaddata->aes_bits = val;
1493 		changed = 1;
1494 	}
1495 	mutex_unlock(&intelhaddata->mutex);
1496 	return changed;
1497 }
1498 
1499 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1500 			    struct snd_ctl_elem_info *uinfo)
1501 {
1502 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1503 	uinfo->count = HDMI_MAX_ELD_BYTES;
1504 	return 0;
1505 }
1506 
1507 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1508 			   struct snd_ctl_elem_value *ucontrol)
1509 {
1510 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1511 
1512 	mutex_lock(&intelhaddata->mutex);
1513 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1514 	       HDMI_MAX_ELD_BYTES);
1515 	mutex_unlock(&intelhaddata->mutex);
1516 	return 0;
1517 }
1518 
1519 static const struct snd_kcontrol_new had_controls[] = {
1520 	{
1521 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1522 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1524 		.info = had_iec958_info, /* shared */
1525 		.get = had_iec958_mask_get,
1526 	},
1527 	{
1528 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1529 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1530 		.info = had_iec958_info,
1531 		.get = had_iec958_get,
1532 		.put = had_iec958_put,
1533 	},
1534 	{
1535 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1536 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1537 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1538 		.name = "ELD",
1539 		.info = had_ctl_eld_info,
1540 		.get = had_ctl_eld_get,
1541 	},
1542 };
1543 
1544 /*
1545  * audio interrupt handler
1546  */
1547 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1548 {
1549 	struct snd_intelhad_card *card_ctx = dev_id;
1550 	u32 audio_stat[3] = {};
1551 	int pipe, port;
1552 
1553 	for_each_pipe(card_ctx, pipe) {
1554 		/* use raw register access to ack IRQs even while disconnected */
1555 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1556 							 AUD_HDMI_STATUS) &
1557 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1558 
1559 		if (audio_stat[pipe])
1560 			had_write_register_raw(card_ctx, pipe,
1561 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1562 	}
1563 
1564 	for_each_port(card_ctx, port) {
1565 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1566 		int pipe = ctx->pipe;
1567 
1568 		if (pipe < 0)
1569 			continue;
1570 
1571 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1572 			had_process_buffer_done(ctx);
1573 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1574 			had_process_buffer_underrun(ctx);
1575 	}
1576 
1577 	return IRQ_HANDLED;
1578 }
1579 
1580 /*
1581  * monitor plug/unplug notification from i915; just kick off the work
1582  */
1583 static void notify_audio_lpe(struct platform_device *pdev, int port)
1584 {
1585 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1586 	struct snd_intelhad *ctx;
1587 
1588 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1589 	if (single_port)
1590 		ctx->port = port;
1591 
1592 	schedule_work(&ctx->hdmi_audio_wq);
1593 }
1594 
1595 /* the work to handle monitor hot plug/unplug */
1596 static void had_audio_wq(struct work_struct *work)
1597 {
1598 	struct snd_intelhad *ctx =
1599 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1600 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1601 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1602 
1603 	pm_runtime_get_sync(ctx->dev);
1604 	mutex_lock(&ctx->mutex);
1605 	if (ppdata->pipe < 0) {
1606 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607 			__func__, ctx->port);
1608 
1609 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1610 
1611 		ctx->dp_output = false;
1612 		ctx->tmds_clock_speed = 0;
1613 		ctx->link_rate = 0;
1614 
1615 		/* Shut down the stream */
1616 		had_process_hot_unplug(ctx);
1617 
1618 		ctx->pipe = -1;
1619 	} else {
1620 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621 			__func__, ctx->port, ppdata->ls_clock);
1622 
1623 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1624 
1625 		ctx->dp_output = ppdata->dp_output;
1626 		if (ctx->dp_output) {
1627 			ctx->tmds_clock_speed = 0;
1628 			ctx->link_rate = ppdata->ls_clock;
1629 		} else {
1630 			ctx->tmds_clock_speed = ppdata->ls_clock;
1631 			ctx->link_rate = 0;
1632 		}
1633 
1634 		/*
1635 		 * Shut down the stream before we change
1636 		 * the pipe assignment for this pcm device
1637 		 */
1638 		had_process_hot_plug(ctx);
1639 
1640 		ctx->pipe = ppdata->pipe;
1641 
1642 		/* Restart the stream if necessary */
1643 		had_process_mode_change(ctx);
1644 	}
1645 
1646 	mutex_unlock(&ctx->mutex);
1647 	pm_runtime_mark_last_busy(ctx->dev);
1648 	pm_runtime_put_autosuspend(ctx->dev);
1649 }
1650 
1651 /*
1652  * Jack interface
1653  */
1654 static int had_create_jack(struct snd_intelhad *ctx,
1655 			   struct snd_pcm *pcm)
1656 {
1657 	char hdmi_str[32];
1658 	int err;
1659 
1660 	snprintf(hdmi_str, sizeof(hdmi_str),
1661 		 "HDMI/DP,pcm=%d", pcm->device);
1662 
1663 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1664 			   SND_JACK_AVOUT, &ctx->jack,
1665 			   true, false);
1666 	if (err < 0)
1667 		return err;
1668 	ctx->jack->private_data = ctx;
1669 	return 0;
1670 }
1671 
1672 /*
1673  * PM callbacks
1674  */
1675 
1676 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1677 {
1678 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1679 	int port;
1680 
1681 	for_each_port(card_ctx, port) {
1682 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1683 		struct snd_pcm_substream *substream;
1684 
1685 		substream = had_substream_get(ctx);
1686 		if (substream) {
1687 			snd_pcm_suspend(substream);
1688 			had_substream_put(ctx);
1689 		}
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1696 {
1697 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1698 	int err;
1699 
1700 	err = hdmi_lpe_audio_runtime_suspend(dev);
1701 	if (!err)
1702 		snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1703 	return err;
1704 }
1705 
1706 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1707 {
1708 	pm_runtime_mark_last_busy(dev);
1709 	return 0;
1710 }
1711 
1712 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1713 {
1714 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1715 
1716 	hdmi_lpe_audio_runtime_resume(dev);
1717 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1718 	return 0;
1719 }
1720 
1721 /* release resources */
1722 static void hdmi_lpe_audio_free(struct snd_card *card)
1723 {
1724 	struct snd_intelhad_card *card_ctx = card->private_data;
1725 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1726 	int port;
1727 
1728 	spin_lock_irq(&pdata->lpe_audio_slock);
1729 	pdata->notify_audio_lpe = NULL;
1730 	spin_unlock_irq(&pdata->lpe_audio_slock);
1731 
1732 	for_each_port(card_ctx, port) {
1733 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1734 
1735 		cancel_work_sync(&ctx->hdmi_audio_wq);
1736 	}
1737 
1738 	if (card_ctx->mmio_start)
1739 		iounmap(card_ctx->mmio_start);
1740 	if (card_ctx->irq >= 0)
1741 		free_irq(card_ctx->irq, card_ctx);
1742 }
1743 
1744 /*
1745  * hdmi_lpe_audio_probe - start bridge with i915
1746  *
1747  * This function is called when the i915 driver creates the
1748  * hdmi-lpe-audio platform device.
1749  */
1750 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1751 {
1752 	struct snd_card *card;
1753 	struct snd_intelhad_card *card_ctx;
1754 	struct snd_intelhad *ctx;
1755 	struct snd_pcm *pcm;
1756 	struct intel_hdmi_lpe_audio_pdata *pdata;
1757 	int irq;
1758 	struct resource *res_mmio;
1759 	int port, ret;
1760 
1761 	pdata = pdev->dev.platform_data;
1762 	if (!pdata) {
1763 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1764 		return -EINVAL;
1765 	}
1766 
1767 	/* get resources */
1768 	irq = platform_get_irq(pdev, 0);
1769 	if (irq < 0) {
1770 		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1771 		return irq;
1772 	}
1773 
1774 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775 	if (!res_mmio) {
1776 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1777 		return -ENXIO;
1778 	}
1779 
1780 	/* create a card instance with ALSA framework */
1781 	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1782 			   THIS_MODULE, sizeof(*card_ctx), &card);
1783 	if (ret)
1784 		return ret;
1785 
1786 	card_ctx = card->private_data;
1787 	card_ctx->dev = &pdev->dev;
1788 	card_ctx->card = card;
1789 	strcpy(card->driver, INTEL_HAD);
1790 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1791 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1792 
1793 	card_ctx->irq = -1;
1794 
1795 	card->private_free = hdmi_lpe_audio_free;
1796 
1797 	platform_set_drvdata(pdev, card_ctx);
1798 
1799 	card_ctx->num_pipes = pdata->num_pipes;
1800 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1801 
1802 	for_each_port(card_ctx, port) {
1803 		ctx = &card_ctx->pcm_ctx[port];
1804 		ctx->card_ctx = card_ctx;
1805 		ctx->dev = card_ctx->dev;
1806 		ctx->port = single_port ? -1 : port;
1807 		ctx->pipe = -1;
1808 
1809 		spin_lock_init(&ctx->had_spinlock);
1810 		mutex_init(&ctx->mutex);
1811 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1812 	}
1813 
1814 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815 		__func__, (unsigned int)res_mmio->start,
1816 		(unsigned int)res_mmio->end);
1817 
1818 	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1819 					       (size_t)(resource_size(res_mmio)));
1820 	if (!card_ctx->mmio_start) {
1821 		dev_err(&pdev->dev, "Could not get ioremap\n");
1822 		ret = -EACCES;
1823 		goto err;
1824 	}
1825 
1826 	/* setup interrupt handler */
1827 	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1828 			  pdev->name, card_ctx);
1829 	if (ret < 0) {
1830 		dev_err(&pdev->dev, "request_irq failed\n");
1831 		goto err;
1832 	}
1833 
1834 	card_ctx->irq = irq;
1835 
1836 	/* only 32bit addressable */
1837 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1839 
1840 	init_channel_allocations();
1841 
1842 	card_ctx->num_pipes = pdata->num_pipes;
1843 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1844 
1845 	for_each_port(card_ctx, port) {
1846 		int i;
1847 
1848 		ctx = &card_ctx->pcm_ctx[port];
1849 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1850 				  MAX_CAP_STREAMS, &pcm);
1851 		if (ret)
1852 			goto err;
1853 
1854 		/* setup private data which can be retrieved when required */
1855 		pcm->private_data = ctx;
1856 		pcm->info_flags = 0;
1857 		strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1858 		/* setup the ops for playabck */
1859 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1860 
1861 		/* allocate dma pages;
1862 		 * try to allocate 600k buffer as default which is large enough
1863 		 */
1864 		snd_pcm_lib_preallocate_pages_for_all(pcm,
1865 						      SNDRV_DMA_TYPE_DEV, NULL,
1866 						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1867 
1868 		/* create controls */
1869 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1870 			struct snd_kcontrol *kctl;
1871 
1872 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1873 			if (!kctl) {
1874 				ret = -ENOMEM;
1875 				goto err;
1876 			}
1877 
1878 			kctl->id.device = pcm->device;
1879 
1880 			ret = snd_ctl_add(card, kctl);
1881 			if (ret < 0)
1882 				goto err;
1883 		}
1884 
1885 		/* Register channel map controls */
1886 		ret = had_register_chmap_ctls(ctx, pcm);
1887 		if (ret < 0)
1888 			goto err;
1889 
1890 		ret = had_create_jack(ctx, pcm);
1891 		if (ret < 0)
1892 			goto err;
1893 	}
1894 
1895 	ret = snd_card_register(card);
1896 	if (ret)
1897 		goto err;
1898 
1899 	spin_lock_irq(&pdata->lpe_audio_slock);
1900 	pdata->notify_audio_lpe = notify_audio_lpe;
1901 	spin_unlock_irq(&pdata->lpe_audio_slock);
1902 
1903 	pm_runtime_use_autosuspend(&pdev->dev);
1904 	pm_runtime_mark_last_busy(&pdev->dev);
1905 	pm_runtime_set_active(&pdev->dev);
1906 
1907 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1908 	for_each_port(card_ctx, port) {
1909 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1910 
1911 		schedule_work(&ctx->hdmi_audio_wq);
1912 	}
1913 
1914 	return 0;
1915 
1916 err:
1917 	snd_card_free(card);
1918 	return ret;
1919 }
1920 
1921 /*
1922  * hdmi_lpe_audio_remove - stop bridge with i915
1923  *
1924  * This function is called when the platform device is destroyed.
1925  */
1926 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1927 {
1928 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1929 
1930 	snd_card_free(card_ctx->card);
1931 	return 0;
1932 }
1933 
1934 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1935 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1936 	SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1937 			   hdmi_lpe_audio_runtime_resume, NULL)
1938 };
1939 
1940 static struct platform_driver hdmi_lpe_audio_driver = {
1941 	.driver		= {
1942 		.name  = "hdmi-lpe-audio",
1943 		.pm = &hdmi_lpe_audio_pm,
1944 	},
1945 	.probe          = hdmi_lpe_audio_probe,
1946 	.remove		= hdmi_lpe_audio_remove,
1947 };
1948 
1949 module_platform_driver(hdmi_lpe_audio_driver);
1950 MODULE_ALIAS("platform:hdmi_lpe_audio");
1951 
1952 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1959