xref: /linux/sound/x86/intel_hdmi_audio.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *		Ramesh Babu K V	<ramesh.babu@intel.com>
8  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *		Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15 
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_eld.h>
34 #include <drm/intel_lpe_audio.h>
35 #include "intel_hdmi_audio.h"
36 
37 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
38 
39 #define for_each_pipe(card_ctx, pipe) \
40 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
41 #define for_each_port(card_ctx, port) \
42 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
43 
44 /*standard module options for ALSA. This module supports only one card*/
45 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
46 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
47 static bool single_port;
48 
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51 		"Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54 		"ID string for INTEL Intel HDMI Audio controller.");
55 module_param(single_port, bool, 0444);
56 MODULE_PARM_DESC(single_port,
57 		"Single-port mode (for compatibility)");
58 
59 /*
60  * ELD SA bits in the CEA Speaker Allocation data block
61  */
62 static const int eld_speaker_allocation_bits[] = {
63 	[0] = FL | FR,
64 	[1] = LFE,
65 	[2] = FC,
66 	[3] = RL | RR,
67 	[4] = RC,
68 	[5] = FLC | FRC,
69 	[6] = RLC | RRC,
70 	/* the following are not defined in ELD yet */
71 	[7] = 0,
72 };
73 
74 /*
75  * This is an ordered list!
76  *
77  * The preceding ones have better chances to be selected by
78  * hdmi_channel_allocation().
79  */
80 static struct cea_channel_speaker_allocation channel_allocations[] = {
81 /*                        channel:   7     6    5    4    3     2    1    0  */
82 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
83 				/* 2.1 */
84 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
85 				/* Dolby Surround */
86 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
87 				/* surround40 */
88 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
89 				/* surround41 */
90 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
91 				/* surround50 */
92 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
93 				/* surround51 */
94 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
95 				/* 6.1 */
96 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
97 				/* surround71 */
98 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
99 
100 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
101 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
102 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
103 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
104 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
105 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
109 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
112 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
115 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
116 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
117 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
118 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
119 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
120 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
121 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
122 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
123 };
124 
125 static const struct channel_map_table map_tables[] = {
126 	{ SNDRV_CHMAP_FL,       0x00,   FL },
127 	{ SNDRV_CHMAP_FR,       0x01,   FR },
128 	{ SNDRV_CHMAP_RL,       0x04,   RL },
129 	{ SNDRV_CHMAP_RR,       0x05,   RR },
130 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
131 	{ SNDRV_CHMAP_FC,       0x03,   FC },
132 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
133 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
134 	{} /* terminator */
135 };
136 
137 /* hardware capability structure */
138 static const struct snd_pcm_hardware had_pcm_hardware = {
139 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
140 		SNDRV_PCM_INFO_MMAP |
141 		SNDRV_PCM_INFO_MMAP_VALID |
142 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
143 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
144 		    SNDRV_PCM_FMTBIT_S24_LE |
145 		    SNDRV_PCM_FMTBIT_S32_LE),
146 	.rates = SNDRV_PCM_RATE_32000 |
147 		SNDRV_PCM_RATE_44100 |
148 		SNDRV_PCM_RATE_48000 |
149 		SNDRV_PCM_RATE_88200 |
150 		SNDRV_PCM_RATE_96000 |
151 		SNDRV_PCM_RATE_176400 |
152 		SNDRV_PCM_RATE_192000,
153 	.rate_min = HAD_MIN_RATE,
154 	.rate_max = HAD_MAX_RATE,
155 	.channels_min = HAD_MIN_CHANNEL,
156 	.channels_max = HAD_MAX_CHANNEL,
157 	.buffer_bytes_max = HAD_MAX_BUFFER,
158 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
159 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
160 	.periods_min = HAD_MIN_PERIODS,
161 	.periods_max = HAD_MAX_PERIODS,
162 	.fifo_size = HAD_FIFO_SIZE,
163 };
164 
165 /* Get the active PCM substream;
166  * Call had_substream_put() for unreferecing.
167  * Don't call this inside had_spinlock, as it takes by itself
168  */
169 static struct snd_pcm_substream *
170 had_substream_get(struct snd_intelhad *intelhaddata)
171 {
172 	struct snd_pcm_substream *substream;
173 	unsigned long flags;
174 
175 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
176 	substream = intelhaddata->stream_info.substream;
177 	if (substream)
178 		intelhaddata->stream_info.substream_refcount++;
179 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
180 	return substream;
181 }
182 
183 /* Unref the active PCM substream;
184  * Don't call this inside had_spinlock, as it takes by itself
185  */
186 static void had_substream_put(struct snd_intelhad *intelhaddata)
187 {
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
191 	intelhaddata->stream_info.substream_refcount--;
192 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
193 }
194 
195 static u32 had_config_offset(int pipe)
196 {
197 	switch (pipe) {
198 	default:
199 	case 0:
200 		return AUDIO_HDMI_CONFIG_A;
201 	case 1:
202 		return AUDIO_HDMI_CONFIG_B;
203 	case 2:
204 		return AUDIO_HDMI_CONFIG_C;
205 	}
206 }
207 
208 /* Register access functions */
209 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
210 				 int pipe, u32 reg)
211 {
212 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
213 }
214 
215 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
216 				   int pipe, u32 reg, u32 val)
217 {
218 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220 
221 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
222 {
223 	if (!ctx->connected)
224 		*val = 0;
225 	else
226 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
227 }
228 
229 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
230 {
231 	if (ctx->connected)
232 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
233 }
234 
235 /*
236  * enable / disable audio configuration
237  *
238  * The normal read/modify should not directly be used on VLV2 for
239  * updating AUD_CONFIG register.
240  * This is because:
241  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
242  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
243  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
244  * register. This field should be 1xy binary for configuration with 6 or
245  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
246  * causes the "channels" field to be updated as 0xy binary resulting in
247  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
248  * appropriate value when doing read-modify of AUD_CONFIG register.
249  */
250 static void had_enable_audio(struct snd_intelhad *intelhaddata,
251 			     bool enable)
252 {
253 	/* update the cached value */
254 	intelhaddata->aud_config.regx.aud_en = enable;
255 	had_write_register(intelhaddata, AUD_CONFIG,
256 			   intelhaddata->aud_config.regval);
257 }
258 
259 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
260 static void had_ack_irqs(struct snd_intelhad *ctx)
261 {
262 	u32 status_reg;
263 
264 	if (!ctx->connected)
265 		return;
266 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
268 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
269 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
270 }
271 
272 /* Reset buffer pointers */
273 static void had_reset_audio(struct snd_intelhad *intelhaddata)
274 {
275 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
276 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
277 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
278 }
279 
280 /*
281  * initialize audio channel status registers
282  * This function is called in the prepare callback
283  */
284 static int had_prog_status_reg(struct snd_pcm_substream *substream,
285 			struct snd_intelhad *intelhaddata)
286 {
287 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
288 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
289 
290 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
291 					  IEC958_AES0_NONAUDIO) >> 1;
292 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
293 					  IEC958_AES3_CON_CLOCK) >> 4;
294 
295 	switch (substream->runtime->rate) {
296 	case AUD_SAMPLE_RATE_32:
297 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
298 		break;
299 
300 	case AUD_SAMPLE_RATE_44_1:
301 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
302 		break;
303 	case AUD_SAMPLE_RATE_48:
304 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
305 		break;
306 	case AUD_SAMPLE_RATE_88_2:
307 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
308 		break;
309 	case AUD_SAMPLE_RATE_96:
310 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
311 		break;
312 	case AUD_SAMPLE_RATE_176_4:
313 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
314 		break;
315 	case AUD_SAMPLE_RATE_192:
316 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
317 		break;
318 
319 	default:
320 		/* control should never come here */
321 		return -EINVAL;
322 	}
323 
324 	had_write_register(intelhaddata,
325 			   AUD_CH_STATUS_0, ch_stat0.regval);
326 
327 	switch (substream->runtime->format) {
328 	case SNDRV_PCM_FORMAT_S16_LE:
329 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
330 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
331 		break;
332 	case SNDRV_PCM_FORMAT_S24_LE:
333 	case SNDRV_PCM_FORMAT_S32_LE:
334 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
335 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
336 		break;
337 	default:
338 		return -EINVAL;
339 	}
340 
341 	had_write_register(intelhaddata,
342 			   AUD_CH_STATUS_1, ch_stat1.regval);
343 	return 0;
344 }
345 
346 /*
347  * function to initialize audio
348  * registers and buffer configuration registers
349  * This function is called in the prepare callback
350  */
351 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
352 			       struct snd_intelhad *intelhaddata)
353 {
354 	union aud_cfg cfg_val = {.regval = 0};
355 	union aud_buf_config buf_cfg = {.regval = 0};
356 	u8 channels;
357 
358 	had_prog_status_reg(substream, intelhaddata);
359 
360 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
361 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
362 	buf_cfg.regx.aud_delay = 0;
363 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
364 
365 	channels = substream->runtime->channels;
366 	cfg_val.regx.num_ch = channels - 2;
367 	if (channels <= 2)
368 		cfg_val.regx.layout = LAYOUT0;
369 	else
370 		cfg_val.regx.layout = LAYOUT1;
371 
372 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
373 		cfg_val.regx.packet_mode = 1;
374 
375 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
376 		cfg_val.regx.left_align = 1;
377 
378 	cfg_val.regx.val_bit = 1;
379 
380 	/* fix up the DP bits */
381 	if (intelhaddata->dp_output) {
382 		cfg_val.regx.dp_modei = 1;
383 		cfg_val.regx.set = 1;
384 	}
385 
386 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
387 	intelhaddata->aud_config = cfg_val;
388 	return 0;
389 }
390 
391 /*
392  * Compute derived values in channel_allocations[].
393  */
394 static void init_channel_allocations(void)
395 {
396 	int i, j;
397 	struct cea_channel_speaker_allocation *p;
398 
399 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
400 		p = channel_allocations + i;
401 		p->channels = 0;
402 		p->spk_mask = 0;
403 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
404 			if (p->speakers[j]) {
405 				p->channels++;
406 				p->spk_mask |= p->speakers[j];
407 			}
408 	}
409 }
410 
411 /*
412  * The transformation takes two steps:
413  *
414  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
415  *            spk_mask => (channel_allocations[])         => ai->CA
416  *
417  * TODO: it could select the wrong CA from multiple candidates.
418  */
419 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
420 				  int channels)
421 {
422 	int i;
423 	int ca = 0;
424 	int spk_mask = 0;
425 
426 	/*
427 	 * CA defaults to 0 for basic stereo audio
428 	 */
429 	if (channels <= 2)
430 		return 0;
431 
432 	/*
433 	 * expand ELD's speaker allocation mask
434 	 *
435 	 * ELD tells the speaker mask in a compact(paired) form,
436 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
437 	 */
438 
439 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
440 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
441 			spk_mask |= eld_speaker_allocation_bits[i];
442 	}
443 
444 	/* search for the first working match in the CA table */
445 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
446 		if (channels == channel_allocations[i].channels &&
447 		(spk_mask & channel_allocations[i].spk_mask) ==
448 				channel_allocations[i].spk_mask) {
449 			ca = channel_allocations[i].ca_index;
450 			break;
451 		}
452 	}
453 
454 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
455 
456 	return ca;
457 }
458 
459 /* from speaker bit mask to ALSA API channel position */
460 static int spk_to_chmap(int spk)
461 {
462 	const struct channel_map_table *t = map_tables;
463 
464 	for (; t->map; t++) {
465 		if (t->spk_mask == spk)
466 			return t->map;
467 	}
468 	return 0;
469 }
470 
471 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
472 {
473 	int i, c;
474 	int spk_mask = 0;
475 	struct snd_pcm_chmap_elem *chmap;
476 	u8 eld_high, eld_high_mask = 0xF0;
477 	u8 high_msb;
478 
479 	kfree(intelhaddata->chmap->chmap);
480 	intelhaddata->chmap->chmap = NULL;
481 
482 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
483 	if (!chmap)
484 		return;
485 
486 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
487 		intelhaddata->eld[DRM_ELD_SPEAKER]);
488 
489 	/* WA: Fix the max channel supported to 8 */
490 
491 	/*
492 	 * Sink may support more than 8 channels, if eld_high has more than
493 	 * one bit set. SOC supports max 8 channels.
494 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
495 	 */
496 
497 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
498 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
499 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
500 		/* eld_high & (eld_high-1): if more than 1 bit set */
501 		/* 0x1F: 7 channels */
502 		for (i = 1; i < 4; i++) {
503 			high_msb = eld_high & (0x80 >> i);
504 			if (high_msb) {
505 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
506 					high_msb | 0xF;
507 				break;
508 			}
509 		}
510 	}
511 
512 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
513 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
514 			spk_mask |= eld_speaker_allocation_bits[i];
515 	}
516 
517 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
518 		if (spk_mask == channel_allocations[i].spk_mask) {
519 			for (c = 0; c < channel_allocations[i].channels; c++) {
520 				chmap->map[c] = spk_to_chmap(
521 					channel_allocations[i].speakers[
522 						(MAX_SPEAKERS - 1) - c]);
523 			}
524 			chmap->channels = channel_allocations[i].channels;
525 			intelhaddata->chmap->chmap = chmap;
526 			break;
527 		}
528 	}
529 	if (i >= ARRAY_SIZE(channel_allocations))
530 		kfree(chmap);
531 }
532 
533 /*
534  * ALSA API channel-map control callbacks
535  */
536 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
537 				struct snd_ctl_elem_info *uinfo)
538 {
539 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
540 	uinfo->count = HAD_MAX_CHANNEL;
541 	uinfo->value.integer.min = 0;
542 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
543 	return 0;
544 }
545 
546 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
547 				struct snd_ctl_elem_value *ucontrol)
548 {
549 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
550 	struct snd_intelhad *intelhaddata = info->private_data;
551 	int i;
552 	const struct snd_pcm_chmap_elem *chmap;
553 
554 	memset(ucontrol->value.integer.value, 0,
555 	       sizeof(long) * HAD_MAX_CHANNEL);
556 	mutex_lock(&intelhaddata->mutex);
557 	if (!intelhaddata->chmap->chmap) {
558 		mutex_unlock(&intelhaddata->mutex);
559 		return 0;
560 	}
561 
562 	chmap = intelhaddata->chmap->chmap;
563 	for (i = 0; i < chmap->channels; i++)
564 		ucontrol->value.integer.value[i] = chmap->map[i];
565 	mutex_unlock(&intelhaddata->mutex);
566 
567 	return 0;
568 }
569 
570 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
571 						struct snd_pcm *pcm)
572 {
573 	int err;
574 
575 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
576 			NULL, 0, (unsigned long)intelhaddata,
577 			&intelhaddata->chmap);
578 	if (err < 0)
579 		return err;
580 
581 	intelhaddata->chmap->private_data = intelhaddata;
582 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
583 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
584 	intelhaddata->chmap->chmap = NULL;
585 	return 0;
586 }
587 
588 /*
589  * Initialize Data Island Packets registers
590  * This function is called in the prepare callback
591  */
592 static void had_prog_dip(struct snd_pcm_substream *substream,
593 			 struct snd_intelhad *intelhaddata)
594 {
595 	int i;
596 	union aud_ctrl_st ctrl_state = {.regval = 0};
597 	union aud_info_frame2 frame2 = {.regval = 0};
598 	union aud_info_frame3 frame3 = {.regval = 0};
599 	u8 checksum = 0;
600 	u32 info_frame;
601 	int channels;
602 	int ca;
603 
604 	channels = substream->runtime->channels;
605 
606 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
607 
608 	ca = had_channel_allocation(intelhaddata, channels);
609 	if (intelhaddata->dp_output) {
610 		info_frame = DP_INFO_FRAME_WORD1;
611 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
612 	} else {
613 		info_frame = HDMI_INFO_FRAME_WORD1;
614 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
615 		frame3.regx.chnl_alloc = ca;
616 
617 		/* Calculte the byte wide checksum for all valid DIP words */
618 		for (i = 0; i < BYTES_PER_WORD; i++)
619 			checksum += (info_frame >> (i * 8)) & 0xff;
620 		for (i = 0; i < BYTES_PER_WORD; i++)
621 			checksum += (frame2.regval >> (i * 8)) & 0xff;
622 		for (i = 0; i < BYTES_PER_WORD; i++)
623 			checksum += (frame3.regval >> (i * 8)) & 0xff;
624 
625 		frame2.regx.chksum = -(checksum);
626 	}
627 
628 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
629 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
630 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
631 
632 	/* program remaining DIP words with zero */
633 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
634 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
635 
636 	ctrl_state.regx.dip_freq = 1;
637 	ctrl_state.regx.dip_en_sta = 1;
638 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
639 }
640 
641 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
642 {
643 	u32 maud_val;
644 
645 	/* Select maud according to DP 1.2 spec */
646 	if (link_rate == DP_2_7_GHZ) {
647 		switch (aud_samp_freq) {
648 		case AUD_SAMPLE_RATE_32:
649 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
650 			break;
651 
652 		case AUD_SAMPLE_RATE_44_1:
653 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
654 			break;
655 
656 		case AUD_SAMPLE_RATE_48:
657 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
658 			break;
659 
660 		case AUD_SAMPLE_RATE_88_2:
661 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
662 			break;
663 
664 		case AUD_SAMPLE_RATE_96:
665 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
666 			break;
667 
668 		case AUD_SAMPLE_RATE_176_4:
669 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
670 			break;
671 
672 		case HAD_MAX_RATE:
673 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
674 			break;
675 
676 		default:
677 			maud_val = -EINVAL;
678 			break;
679 		}
680 	} else if (link_rate == DP_1_62_GHZ) {
681 		switch (aud_samp_freq) {
682 		case AUD_SAMPLE_RATE_32:
683 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
684 			break;
685 
686 		case AUD_SAMPLE_RATE_44_1:
687 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
688 			break;
689 
690 		case AUD_SAMPLE_RATE_48:
691 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
692 			break;
693 
694 		case AUD_SAMPLE_RATE_88_2:
695 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
696 			break;
697 
698 		case AUD_SAMPLE_RATE_96:
699 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
700 			break;
701 
702 		case AUD_SAMPLE_RATE_176_4:
703 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
704 			break;
705 
706 		case HAD_MAX_RATE:
707 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
708 			break;
709 
710 		default:
711 			maud_val = -EINVAL;
712 			break;
713 		}
714 	} else
715 		maud_val = -EINVAL;
716 
717 	return maud_val;
718 }
719 
720 /*
721  * Program HDMI audio CTS value
722  *
723  * @aud_samp_freq: sampling frequency of audio data
724  * @tmds: sampling frequency of the display data
725  * @link_rate: DP link rate
726  * @n_param: N value, depends on aud_samp_freq
727  * @intelhaddata: substream private data
728  *
729  * Program CTS register based on the audio and display sampling frequency
730  */
731 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
732 			 u32 n_param, struct snd_intelhad *intelhaddata)
733 {
734 	u32 cts_val;
735 	u64 dividend, divisor;
736 
737 	if (intelhaddata->dp_output) {
738 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
739 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
740 	} else {
741 		/* Calculate CTS according to HDMI 1.3a spec*/
742 		dividend = (u64)tmds * n_param*1000;
743 		divisor = 128 * aud_samp_freq;
744 		cts_val = div64_u64(dividend, divisor);
745 	}
746 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
747 		 tmds, n_param, cts_val);
748 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
749 }
750 
751 static int had_calculate_n_value(u32 aud_samp_freq)
752 {
753 	int n_val;
754 
755 	/* Select N according to HDMI 1.3a spec*/
756 	switch (aud_samp_freq) {
757 	case AUD_SAMPLE_RATE_32:
758 		n_val = 4096;
759 		break;
760 
761 	case AUD_SAMPLE_RATE_44_1:
762 		n_val = 6272;
763 		break;
764 
765 	case AUD_SAMPLE_RATE_48:
766 		n_val = 6144;
767 		break;
768 
769 	case AUD_SAMPLE_RATE_88_2:
770 		n_val = 12544;
771 		break;
772 
773 	case AUD_SAMPLE_RATE_96:
774 		n_val = 12288;
775 		break;
776 
777 	case AUD_SAMPLE_RATE_176_4:
778 		n_val = 25088;
779 		break;
780 
781 	case HAD_MAX_RATE:
782 		n_val = 24576;
783 		break;
784 
785 	default:
786 		n_val = -EINVAL;
787 		break;
788 	}
789 	return n_val;
790 }
791 
792 /*
793  * Program HDMI audio N value
794  *
795  * @aud_samp_freq: sampling frequency of audio data
796  * @n_param: N value, depends on aud_samp_freq
797  * @intelhaddata: substream private data
798  *
799  * This function is called in the prepare callback.
800  * It programs based on the audio and display sampling frequency
801  */
802 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
803 		      struct snd_intelhad *intelhaddata)
804 {
805 	int n_val;
806 
807 	if (intelhaddata->dp_output) {
808 		/*
809 		 * According to DP specs, Maud and Naud values hold
810 		 * a relationship, which is stated as:
811 		 * Maud/Naud = 512 * fs / f_LS_Clk
812 		 * where, fs is the sampling frequency of the audio stream
813 		 * and Naud is 32768 for Async clock.
814 		 */
815 
816 		n_val = DP_NAUD_VAL;
817 	} else
818 		n_val =	had_calculate_n_value(aud_samp_freq);
819 
820 	if (n_val < 0)
821 		return n_val;
822 
823 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
824 	*n_param = n_val;
825 	return 0;
826 }
827 
828 /*
829  * PCM ring buffer handling
830  *
831  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
832  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
833  * moves at each period elapsed.  The below illustrates how it works:
834  *
835  * At time=0
836  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
837  *  BD  | 0 | 1 | 2 | 3 |
838  *
839  * At time=1 (period elapsed)
840  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841  *  BD      | 1 | 2 | 3 | 0 |
842  *
843  * At time=2 (second period elapsed)
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD          | 2 | 3 | 0 | 1 |
846  *
847  * The bd_head field points to the index of the BD to be read.  It's also the
848  * position to be filled at next.  The pcm_head and the pcm_filled fields
849  * point to the indices of the current position and of the next position to
850  * be filled, respectively.  For PCM buffer there are both _head and _filled
851  * because they may be difference when nperiods > 4.  For example, in the
852  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
853  *
854  * pcm_head (=1) --v               v-- pcm_filled (=5)
855  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
856  *       BD      | 1 | 2 | 3 | 0 |
857  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
858  *
859  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
860  * the hardware skips those BDs in the loop.
861  *
862  * An exceptional setup is the case with nperiods=1.  Since we have to update
863  * BDs after finishing one BD processing, we'd need at least two BDs, where
864  * both BDs point to the same content, the same address, the same size of the
865  * whole PCM buffer.
866  */
867 
868 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
869 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
870 
871 /* Set up a buffer descriptor at the "filled" position */
872 static void had_prog_bd(struct snd_pcm_substream *substream,
873 			struct snd_intelhad *intelhaddata)
874 {
875 	int idx = intelhaddata->bd_head;
876 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
877 	u32 addr = substream->runtime->dma_addr + ofs;
878 
879 	addr |= AUD_BUF_VALID;
880 	if (!substream->runtime->no_period_wakeup)
881 		addr |= AUD_BUF_INTR_EN;
882 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
883 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
884 			   intelhaddata->period_bytes);
885 
886 	/* advance the indices to the next */
887 	intelhaddata->bd_head++;
888 	intelhaddata->bd_head %= intelhaddata->num_bds;
889 	intelhaddata->pcmbuf_filled++;
890 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
891 }
892 
893 /* invalidate a buffer descriptor with the given index */
894 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
895 			      int idx)
896 {
897 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
898 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
899 }
900 
901 /* Initial programming of ring buffer */
902 static void had_init_ringbuf(struct snd_pcm_substream *substream,
903 			     struct snd_intelhad *intelhaddata)
904 {
905 	struct snd_pcm_runtime *runtime = substream->runtime;
906 	int i, num_periods;
907 
908 	num_periods = runtime->periods;
909 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
910 	/* set the minimum 2 BDs for num_periods=1 */
911 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
912 	intelhaddata->period_bytes =
913 		frames_to_bytes(runtime, runtime->period_size);
914 	WARN_ON(intelhaddata->period_bytes & 0x3f);
915 
916 	intelhaddata->bd_head = 0;
917 	intelhaddata->pcmbuf_head = 0;
918 	intelhaddata->pcmbuf_filled = 0;
919 
920 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
921 		if (i < intelhaddata->num_bds)
922 			had_prog_bd(substream, intelhaddata);
923 		else /* invalidate the rest */
924 			had_invalidate_bd(intelhaddata, i);
925 	}
926 
927 	intelhaddata->bd_head = 0; /* reset at head again before starting */
928 }
929 
930 /* process a bd, advance to the next */
931 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
932 				struct snd_intelhad *intelhaddata)
933 {
934 	int num_periods = substream->runtime->periods;
935 
936 	/* reprogram the next buffer */
937 	had_prog_bd(substream, intelhaddata);
938 
939 	/* proceed to next */
940 	intelhaddata->pcmbuf_head++;
941 	intelhaddata->pcmbuf_head %= num_periods;
942 }
943 
944 /* process the current BD(s);
945  * returns the current PCM buffer byte position, or -EPIPE for underrun.
946  */
947 static int had_process_ringbuf(struct snd_pcm_substream *substream,
948 			       struct snd_intelhad *intelhaddata)
949 {
950 	int len, processed;
951 	unsigned long flags;
952 
953 	processed = 0;
954 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
955 	for (;;) {
956 		/* get the remaining bytes on the buffer */
957 		had_read_register(intelhaddata,
958 				  AUD_BUF_LEN(intelhaddata->bd_head),
959 				  &len);
960 		if (len < 0 || len > intelhaddata->period_bytes) {
961 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
962 				len);
963 			len = -EPIPE;
964 			goto out;
965 		}
966 
967 		if (len > 0) /* OK, this is the current buffer */
968 			break;
969 
970 		/* len=0 => already empty, check the next buffer */
971 		if (++processed >= intelhaddata->num_bds) {
972 			len = -EPIPE; /* all empty? - report underrun */
973 			goto out;
974 		}
975 		had_advance_ringbuf(substream, intelhaddata);
976 	}
977 
978 	len = intelhaddata->period_bytes - len;
979 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
980  out:
981 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
982 	return len;
983 }
984 
985 /* called from irq handler */
986 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
987 {
988 	struct snd_pcm_substream *substream;
989 
990 	substream = had_substream_get(intelhaddata);
991 	if (!substream)
992 		return; /* no stream? - bail out */
993 
994 	if (!intelhaddata->connected) {
995 		snd_pcm_stop_xrun(substream);
996 		goto out; /* disconnected? - bail out */
997 	}
998 
999 	/* process or stop the stream */
1000 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1001 		snd_pcm_stop_xrun(substream);
1002 	else
1003 		snd_pcm_period_elapsed(substream);
1004 
1005  out:
1006 	had_substream_put(intelhaddata);
1007 }
1008 
1009 /*
1010  * The interrupt status 'sticky' bits might not be cleared by
1011  * setting '1' to that bit once...
1012  */
1013 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1014 {
1015 	int i;
1016 	u32 val;
1017 
1018 	for (i = 0; i < 100; i++) {
1019 		/* clear bit30, 31 AUD_HDMI_STATUS */
1020 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1021 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1022 			return;
1023 		udelay(100);
1024 		cond_resched();
1025 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1026 	}
1027 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1028 }
1029 
1030 /* Perform some reset procedure after stopping the stream;
1031  * this is called from prepare or hw_free callbacks once after trigger STOP
1032  * or underrun has been processed in order to settle down the h/w state.
1033  */
1034 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1035 {
1036 	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1037 
1038 	if (!intelhaddata->connected)
1039 		return 0;
1040 
1041 	/* Reset buffer pointers */
1042 	had_reset_audio(intelhaddata);
1043 	wait_clear_underrun_bit(intelhaddata);
1044 	return 0;
1045 }
1046 
1047 /* called from irq handler */
1048 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1049 {
1050 	struct snd_pcm_substream *substream;
1051 
1052 	/* Report UNDERRUN error to above layers */
1053 	substream = had_substream_get(intelhaddata);
1054 	if (substream) {
1055 		snd_pcm_stop_xrun(substream);
1056 		had_substream_put(intelhaddata);
1057 	}
1058 }
1059 
1060 /*
1061  * ALSA PCM open callback
1062  */
1063 static int had_pcm_open(struct snd_pcm_substream *substream)
1064 {
1065 	struct snd_intelhad *intelhaddata;
1066 	struct snd_pcm_runtime *runtime;
1067 	int retval;
1068 
1069 	intelhaddata = snd_pcm_substream_chip(substream);
1070 	runtime = substream->runtime;
1071 
1072 	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1073 	if (retval < 0)
1074 		return retval;
1075 
1076 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1077 	runtime->hw = had_pcm_hardware;
1078 
1079 	retval = snd_pcm_hw_constraint_integer(runtime,
1080 			 SNDRV_PCM_HW_PARAM_PERIODS);
1081 	if (retval < 0)
1082 		goto error;
1083 
1084 	/* Make sure, that the period size is always aligned
1085 	 * 64byte boundary
1086 	 */
1087 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1088 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1089 	if (retval < 0)
1090 		goto error;
1091 
1092 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1093 	if (retval < 0)
1094 		goto error;
1095 
1096 	/* expose PCM substream */
1097 	spin_lock_irq(&intelhaddata->had_spinlock);
1098 	intelhaddata->stream_info.substream = substream;
1099 	intelhaddata->stream_info.substream_refcount++;
1100 	spin_unlock_irq(&intelhaddata->had_spinlock);
1101 
1102 	return retval;
1103  error:
1104 	pm_runtime_mark_last_busy(intelhaddata->dev);
1105 	pm_runtime_put_autosuspend(intelhaddata->dev);
1106 	return retval;
1107 }
1108 
1109 /*
1110  * ALSA PCM close callback
1111  */
1112 static int had_pcm_close(struct snd_pcm_substream *substream)
1113 {
1114 	struct snd_intelhad *intelhaddata;
1115 
1116 	intelhaddata = snd_pcm_substream_chip(substream);
1117 
1118 	/* unreference and sync with the pending PCM accesses */
1119 	spin_lock_irq(&intelhaddata->had_spinlock);
1120 	intelhaddata->stream_info.substream = NULL;
1121 	intelhaddata->stream_info.substream_refcount--;
1122 	while (intelhaddata->stream_info.substream_refcount > 0) {
1123 		spin_unlock_irq(&intelhaddata->had_spinlock);
1124 		cpu_relax();
1125 		spin_lock_irq(&intelhaddata->had_spinlock);
1126 	}
1127 	spin_unlock_irq(&intelhaddata->had_spinlock);
1128 
1129 	pm_runtime_mark_last_busy(intelhaddata->dev);
1130 	pm_runtime_put_autosuspend(intelhaddata->dev);
1131 	return 0;
1132 }
1133 
1134 /*
1135  * ALSA PCM hw_params callback
1136  */
1137 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1138 			     struct snd_pcm_hw_params *hw_params)
1139 {
1140 	struct snd_intelhad *intelhaddata;
1141 	int buf_size;
1142 
1143 	intelhaddata = snd_pcm_substream_chip(substream);
1144 	buf_size = params_buffer_bytes(hw_params);
1145 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1146 		__func__, buf_size);
1147 	return 0;
1148 }
1149 
1150 /*
1151  * ALSA PCM trigger callback
1152  */
1153 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1154 {
1155 	int retval = 0;
1156 	struct snd_intelhad *intelhaddata;
1157 
1158 	intelhaddata = snd_pcm_substream_chip(substream);
1159 
1160 	spin_lock(&intelhaddata->had_spinlock);
1161 	switch (cmd) {
1162 	case SNDRV_PCM_TRIGGER_START:
1163 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1164 	case SNDRV_PCM_TRIGGER_RESUME:
1165 		/* Enable Audio */
1166 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1167 		had_enable_audio(intelhaddata, true);
1168 		break;
1169 
1170 	case SNDRV_PCM_TRIGGER_STOP:
1171 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1172 		/* Disable Audio */
1173 		had_enable_audio(intelhaddata, false);
1174 		break;
1175 
1176 	default:
1177 		retval = -EINVAL;
1178 	}
1179 	spin_unlock(&intelhaddata->had_spinlock);
1180 	return retval;
1181 }
1182 
1183 /*
1184  * ALSA PCM prepare callback
1185  */
1186 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1187 {
1188 	int retval;
1189 	u32 disp_samp_freq, n_param;
1190 	u32 link_rate = 0;
1191 	struct snd_intelhad *intelhaddata;
1192 	struct snd_pcm_runtime *runtime;
1193 
1194 	intelhaddata = snd_pcm_substream_chip(substream);
1195 	runtime = substream->runtime;
1196 
1197 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1198 		(int)frames_to_bytes(runtime, runtime->period_size));
1199 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1200 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1201 		(int)snd_pcm_lib_buffer_bytes(substream));
1202 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1203 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1204 
1205 	/* Get N value in KHz */
1206 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1207 
1208 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1209 	if (retval) {
1210 		dev_err(intelhaddata->dev,
1211 			"programming N value failed %#x\n", retval);
1212 		goto prep_end;
1213 	}
1214 
1215 	if (intelhaddata->dp_output)
1216 		link_rate = intelhaddata->link_rate;
1217 
1218 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1219 		     n_param, intelhaddata);
1220 
1221 	had_prog_dip(substream, intelhaddata);
1222 
1223 	retval = had_init_audio_ctrl(substream, intelhaddata);
1224 
1225 	/* Prog buffer address */
1226 	had_init_ringbuf(substream, intelhaddata);
1227 
1228 	/*
1229 	 * Program channel mapping in following order:
1230 	 * FL, FR, C, LFE, RL, RR
1231 	 */
1232 
1233 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1234 
1235 prep_end:
1236 	return retval;
1237 }
1238 
1239 /*
1240  * ALSA PCM pointer callback
1241  */
1242 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1243 {
1244 	struct snd_intelhad *intelhaddata;
1245 	int len;
1246 
1247 	intelhaddata = snd_pcm_substream_chip(substream);
1248 
1249 	if (!intelhaddata->connected)
1250 		return SNDRV_PCM_POS_XRUN;
1251 
1252 	len = had_process_ringbuf(substream, intelhaddata);
1253 	if (len < 0)
1254 		return SNDRV_PCM_POS_XRUN;
1255 	len = bytes_to_frames(substream->runtime, len);
1256 	/* wrapping may happen when periods=1 */
1257 	len %= substream->runtime->buffer_size;
1258 	return len;
1259 }
1260 
1261 /*
1262  * ALSA PCM ops
1263  */
1264 static const struct snd_pcm_ops had_pcm_ops = {
1265 	.open =		had_pcm_open,
1266 	.close =	had_pcm_close,
1267 	.hw_params =	had_pcm_hw_params,
1268 	.prepare =	had_pcm_prepare,
1269 	.trigger =	had_pcm_trigger,
1270 	.sync_stop =	had_pcm_sync_stop,
1271 	.pointer =	had_pcm_pointer,
1272 };
1273 
1274 /* process mode change of the running stream; called in mutex */
1275 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1276 {
1277 	struct snd_pcm_substream *substream;
1278 	int retval = 0;
1279 	u32 disp_samp_freq, n_param;
1280 	u32 link_rate = 0;
1281 
1282 	substream = had_substream_get(intelhaddata);
1283 	if (!substream)
1284 		return 0;
1285 
1286 	/* Disable Audio */
1287 	had_enable_audio(intelhaddata, false);
1288 
1289 	/* Update CTS value */
1290 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1291 
1292 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1293 	if (retval) {
1294 		dev_err(intelhaddata->dev,
1295 			"programming N value failed %#x\n", retval);
1296 		goto out;
1297 	}
1298 
1299 	if (intelhaddata->dp_output)
1300 		link_rate = intelhaddata->link_rate;
1301 
1302 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1303 		     n_param, intelhaddata);
1304 
1305 	/* Enable Audio */
1306 	had_enable_audio(intelhaddata, true);
1307 
1308 out:
1309 	had_substream_put(intelhaddata);
1310 	return retval;
1311 }
1312 
1313 /* process hot plug, called from wq with mutex locked */
1314 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1315 {
1316 	struct snd_pcm_substream *substream;
1317 
1318 	spin_lock_irq(&intelhaddata->had_spinlock);
1319 	if (intelhaddata->connected) {
1320 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1321 		spin_unlock_irq(&intelhaddata->had_spinlock);
1322 		return;
1323 	}
1324 
1325 	/* Disable Audio */
1326 	had_enable_audio(intelhaddata, false);
1327 
1328 	intelhaddata->connected = true;
1329 	dev_dbg(intelhaddata->dev,
1330 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1331 			__func__, __LINE__);
1332 	spin_unlock_irq(&intelhaddata->had_spinlock);
1333 
1334 	had_build_channel_allocation_map(intelhaddata);
1335 
1336 	/* Report to above ALSA layer */
1337 	substream = had_substream_get(intelhaddata);
1338 	if (substream) {
1339 		snd_pcm_stop_xrun(substream);
1340 		had_substream_put(intelhaddata);
1341 	}
1342 
1343 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1344 }
1345 
1346 /* process hot unplug, called from wq with mutex locked */
1347 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1348 {
1349 	struct snd_pcm_substream *substream;
1350 
1351 	spin_lock_irq(&intelhaddata->had_spinlock);
1352 	if (!intelhaddata->connected) {
1353 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1354 		spin_unlock_irq(&intelhaddata->had_spinlock);
1355 		return;
1356 
1357 	}
1358 
1359 	/* Disable Audio */
1360 	had_enable_audio(intelhaddata, false);
1361 
1362 	intelhaddata->connected = false;
1363 	dev_dbg(intelhaddata->dev,
1364 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1365 			__func__, __LINE__);
1366 	spin_unlock_irq(&intelhaddata->had_spinlock);
1367 
1368 	kfree(intelhaddata->chmap->chmap);
1369 	intelhaddata->chmap->chmap = NULL;
1370 
1371 	/* Report to above ALSA layer */
1372 	substream = had_substream_get(intelhaddata);
1373 	if (substream) {
1374 		snd_pcm_stop_xrun(substream);
1375 		had_substream_put(intelhaddata);
1376 	}
1377 
1378 	snd_jack_report(intelhaddata->jack, 0);
1379 }
1380 
1381 /*
1382  * ALSA iec958 and ELD controls
1383  */
1384 
1385 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1386 				struct snd_ctl_elem_info *uinfo)
1387 {
1388 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1389 	uinfo->count = 1;
1390 	return 0;
1391 }
1392 
1393 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1394 				struct snd_ctl_elem_value *ucontrol)
1395 {
1396 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1397 
1398 	mutex_lock(&intelhaddata->mutex);
1399 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1400 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1401 	ucontrol->value.iec958.status[2] =
1402 					(intelhaddata->aes_bits >> 16) & 0xff;
1403 	ucontrol->value.iec958.status[3] =
1404 					(intelhaddata->aes_bits >> 24) & 0xff;
1405 	mutex_unlock(&intelhaddata->mutex);
1406 	return 0;
1407 }
1408 
1409 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1410 				struct snd_ctl_elem_value *ucontrol)
1411 {
1412 	ucontrol->value.iec958.status[0] = 0xff;
1413 	ucontrol->value.iec958.status[1] = 0xff;
1414 	ucontrol->value.iec958.status[2] = 0xff;
1415 	ucontrol->value.iec958.status[3] = 0xff;
1416 	return 0;
1417 }
1418 
1419 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1420 				struct snd_ctl_elem_value *ucontrol)
1421 {
1422 	unsigned int val;
1423 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424 	int changed = 0;
1425 
1426 	val = (ucontrol->value.iec958.status[0] << 0) |
1427 		(ucontrol->value.iec958.status[1] << 8) |
1428 		(ucontrol->value.iec958.status[2] << 16) |
1429 		(ucontrol->value.iec958.status[3] << 24);
1430 	mutex_lock(&intelhaddata->mutex);
1431 	if (intelhaddata->aes_bits != val) {
1432 		intelhaddata->aes_bits = val;
1433 		changed = 1;
1434 	}
1435 	mutex_unlock(&intelhaddata->mutex);
1436 	return changed;
1437 }
1438 
1439 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1440 			    struct snd_ctl_elem_info *uinfo)
1441 {
1442 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1443 	uinfo->count = HDMI_MAX_ELD_BYTES;
1444 	return 0;
1445 }
1446 
1447 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1448 			   struct snd_ctl_elem_value *ucontrol)
1449 {
1450 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451 
1452 	mutex_lock(&intelhaddata->mutex);
1453 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1454 	       HDMI_MAX_ELD_BYTES);
1455 	mutex_unlock(&intelhaddata->mutex);
1456 	return 0;
1457 }
1458 
1459 static const struct snd_kcontrol_new had_controls[] = {
1460 	{
1461 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1462 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1463 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1464 		.info = had_iec958_info, /* shared */
1465 		.get = had_iec958_mask_get,
1466 	},
1467 	{
1468 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1469 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1470 		.info = had_iec958_info,
1471 		.get = had_iec958_get,
1472 		.put = had_iec958_put,
1473 	},
1474 	{
1475 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1476 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1477 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1478 		.name = "ELD",
1479 		.info = had_ctl_eld_info,
1480 		.get = had_ctl_eld_get,
1481 	},
1482 };
1483 
1484 /*
1485  * audio interrupt handler
1486  */
1487 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1488 {
1489 	struct snd_intelhad_card *card_ctx = dev_id;
1490 	u32 audio_stat[3] = {};
1491 	int pipe, port;
1492 
1493 	for_each_pipe(card_ctx, pipe) {
1494 		/* use raw register access to ack IRQs even while disconnected */
1495 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1496 							 AUD_HDMI_STATUS) &
1497 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1498 
1499 		if (audio_stat[pipe])
1500 			had_write_register_raw(card_ctx, pipe,
1501 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1502 	}
1503 
1504 	for_each_port(card_ctx, port) {
1505 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1506 		int pipe = ctx->pipe;
1507 
1508 		if (pipe < 0)
1509 			continue;
1510 
1511 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1512 			had_process_buffer_done(ctx);
1513 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1514 			had_process_buffer_underrun(ctx);
1515 	}
1516 
1517 	return IRQ_HANDLED;
1518 }
1519 
1520 /*
1521  * monitor plug/unplug notification from i915; just kick off the work
1522  */
1523 static void notify_audio_lpe(struct platform_device *pdev, int port)
1524 {
1525 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1526 	struct snd_intelhad *ctx;
1527 
1528 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1529 	if (single_port)
1530 		ctx->port = port;
1531 
1532 	schedule_work(&ctx->hdmi_audio_wq);
1533 }
1534 
1535 /* the work to handle monitor hot plug/unplug */
1536 static void had_audio_wq(struct work_struct *work)
1537 {
1538 	struct snd_intelhad *ctx =
1539 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1540 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1541 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1542 	int ret;
1543 
1544 	ret = pm_runtime_resume_and_get(ctx->dev);
1545 	if (ret < 0)
1546 		return;
1547 
1548 	mutex_lock(&ctx->mutex);
1549 	if (ppdata->pipe < 0) {
1550 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1551 			__func__, ctx->port);
1552 
1553 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1554 
1555 		ctx->dp_output = false;
1556 		ctx->tmds_clock_speed = 0;
1557 		ctx->link_rate = 0;
1558 
1559 		/* Shut down the stream */
1560 		had_process_hot_unplug(ctx);
1561 
1562 		ctx->pipe = -1;
1563 	} else {
1564 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1565 			__func__, ctx->port, ppdata->ls_clock);
1566 
1567 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1568 
1569 		ctx->dp_output = ppdata->dp_output;
1570 		if (ctx->dp_output) {
1571 			ctx->tmds_clock_speed = 0;
1572 			ctx->link_rate = ppdata->ls_clock;
1573 		} else {
1574 			ctx->tmds_clock_speed = ppdata->ls_clock;
1575 			ctx->link_rate = 0;
1576 		}
1577 
1578 		/*
1579 		 * Shut down the stream before we change
1580 		 * the pipe assignment for this pcm device
1581 		 */
1582 		had_process_hot_plug(ctx);
1583 
1584 		ctx->pipe = ppdata->pipe;
1585 
1586 		/* Restart the stream if necessary */
1587 		had_process_mode_change(ctx);
1588 	}
1589 
1590 	mutex_unlock(&ctx->mutex);
1591 	pm_runtime_mark_last_busy(ctx->dev);
1592 	pm_runtime_put_autosuspend(ctx->dev);
1593 }
1594 
1595 /*
1596  * Jack interface
1597  */
1598 static int had_create_jack(struct snd_intelhad *ctx,
1599 			   struct snd_pcm *pcm)
1600 {
1601 	char hdmi_str[32];
1602 	int err;
1603 
1604 	snprintf(hdmi_str, sizeof(hdmi_str),
1605 		 "HDMI/DP,pcm=%d", pcm->device);
1606 
1607 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1608 			   SND_JACK_AVOUT, &ctx->jack,
1609 			   true, false);
1610 	if (err < 0)
1611 		return err;
1612 	ctx->jack->private_data = ctx;
1613 	return 0;
1614 }
1615 
1616 /*
1617  * PM callbacks
1618  */
1619 
1620 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1621 {
1622 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1623 
1624 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1625 
1626 	return 0;
1627 }
1628 
1629 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1630 {
1631 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1632 
1633 	pm_runtime_mark_last_busy(dev);
1634 
1635 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1636 
1637 	return 0;
1638 }
1639 
1640 /* release resources */
1641 static void hdmi_lpe_audio_free(struct snd_card *card)
1642 {
1643 	struct snd_intelhad_card *card_ctx = card->private_data;
1644 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1645 	int port;
1646 
1647 	spin_lock_irq(&pdata->lpe_audio_slock);
1648 	pdata->notify_audio_lpe = NULL;
1649 	spin_unlock_irq(&pdata->lpe_audio_slock);
1650 
1651 	for_each_port(card_ctx, port) {
1652 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1653 
1654 		cancel_work_sync(&ctx->hdmi_audio_wq);
1655 	}
1656 }
1657 
1658 /*
1659  * hdmi_lpe_audio_probe - start bridge with i915
1660  *
1661  * This function is called when the i915 driver creates the
1662  * hdmi-lpe-audio platform device.
1663  */
1664 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1665 {
1666 	struct snd_card *card;
1667 	struct snd_intelhad_card *card_ctx;
1668 	struct snd_intelhad *ctx;
1669 	struct snd_pcm *pcm;
1670 	struct intel_hdmi_lpe_audio_pdata *pdata;
1671 	int irq;
1672 	struct resource *res_mmio;
1673 	int port, ret;
1674 
1675 	pdata = pdev->dev.platform_data;
1676 	if (!pdata) {
1677 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1678 		return -EINVAL;
1679 	}
1680 
1681 	/* get resources */
1682 	irq = platform_get_irq(pdev, 0);
1683 	if (irq < 0)
1684 		return irq;
1685 
1686 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1687 	if (!res_mmio) {
1688 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1689 		return -ENXIO;
1690 	}
1691 
1692 	/* create a card instance with ALSA framework */
1693 	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1694 				THIS_MODULE, sizeof(*card_ctx), &card);
1695 	if (ret)
1696 		return ret;
1697 
1698 	card_ctx = card->private_data;
1699 	card_ctx->dev = &pdev->dev;
1700 	card_ctx->card = card;
1701 	strcpy(card->driver, INTEL_HAD);
1702 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1703 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1704 
1705 	card_ctx->irq = -1;
1706 
1707 	card->private_free = hdmi_lpe_audio_free;
1708 
1709 	platform_set_drvdata(pdev, card_ctx);
1710 
1711 	card_ctx->num_pipes = pdata->num_pipes;
1712 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1713 
1714 	for_each_port(card_ctx, port) {
1715 		ctx = &card_ctx->pcm_ctx[port];
1716 		ctx->card_ctx = card_ctx;
1717 		ctx->dev = card_ctx->dev;
1718 		ctx->port = single_port ? -1 : port;
1719 		ctx->pipe = -1;
1720 
1721 		spin_lock_init(&ctx->had_spinlock);
1722 		mutex_init(&ctx->mutex);
1723 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1724 	}
1725 
1726 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1727 		__func__, (unsigned int)res_mmio->start,
1728 		(unsigned int)res_mmio->end);
1729 
1730 	card_ctx->mmio_start =
1731 		devm_ioremap(&pdev->dev, res_mmio->start,
1732 			     (size_t)(resource_size(res_mmio)));
1733 	if (!card_ctx->mmio_start) {
1734 		dev_err(&pdev->dev, "Could not get ioremap\n");
1735 		return -EACCES;
1736 	}
1737 
1738 	/* setup interrupt handler */
1739 	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1740 			       0, pdev->name, card_ctx);
1741 	if (ret < 0) {
1742 		dev_err(&pdev->dev, "request_irq failed\n");
1743 		return ret;
1744 	}
1745 
1746 	card_ctx->irq = irq;
1747 
1748 	/* only 32bit addressable */
1749 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1750 	if (ret)
1751 		return ret;
1752 
1753 	init_channel_allocations();
1754 
1755 	card_ctx->num_pipes = pdata->num_pipes;
1756 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1757 
1758 	for_each_port(card_ctx, port) {
1759 		int i;
1760 
1761 		ctx = &card_ctx->pcm_ctx[port];
1762 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1763 				  MAX_CAP_STREAMS, &pcm);
1764 		if (ret)
1765 			return ret;
1766 
1767 		/* setup private data which can be retrieved when required */
1768 		pcm->private_data = ctx;
1769 		pcm->info_flags = 0;
1770 		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1771 		/* setup the ops for playback */
1772 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773 
1774 		/* allocate dma pages;
1775 		 * try to allocate 600k buffer as default which is large enough
1776 		 */
1777 		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1778 					       card->dev, HAD_DEFAULT_BUFFER,
1779 					       HAD_MAX_BUFFER);
1780 
1781 		/* create controls */
1782 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1783 			struct snd_kcontrol *kctl;
1784 
1785 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1786 			if (!kctl)
1787 				return -ENOMEM;
1788 
1789 			kctl->id.device = pcm->device;
1790 
1791 			ret = snd_ctl_add(card, kctl);
1792 			if (ret < 0)
1793 				return ret;
1794 		}
1795 
1796 		/* Register channel map controls */
1797 		ret = had_register_chmap_ctls(ctx, pcm);
1798 		if (ret < 0)
1799 			return ret;
1800 
1801 		ret = had_create_jack(ctx, pcm);
1802 		if (ret < 0)
1803 			return ret;
1804 	}
1805 
1806 	ret = snd_card_register(card);
1807 	if (ret)
1808 		return ret;
1809 
1810 	spin_lock_irq(&pdata->lpe_audio_slock);
1811 	pdata->notify_audio_lpe = notify_audio_lpe;
1812 	spin_unlock_irq(&pdata->lpe_audio_slock);
1813 
1814 	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1815 	pm_runtime_use_autosuspend(&pdev->dev);
1816 	pm_runtime_enable(&pdev->dev);
1817 	pm_runtime_mark_last_busy(&pdev->dev);
1818 	pm_runtime_idle(&pdev->dev);
1819 
1820 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821 	for_each_port(card_ctx, port) {
1822 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823 
1824 		schedule_work(&ctx->hdmi_audio_wq);
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1831 {
1832 	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1833 }
1834 
1835 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1836 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1837 };
1838 
1839 static struct platform_driver hdmi_lpe_audio_driver = {
1840 	.driver		= {
1841 		.name  = "hdmi-lpe-audio",
1842 		.pm = &hdmi_lpe_audio_pm,
1843 	},
1844 	.probe          = hdmi_lpe_audio_probe,
1845 };
1846 
1847 module_platform_driver(hdmi_lpe_audio_driver);
1848 MODULE_ALIAS("platform:hdmi_lpe_audio");
1849 
1850 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1851 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1852 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1853 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1854 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1855 MODULE_LICENSE("GPL v2");
1856