xref: /linux/sound/x86/intel_hdmi_audio.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *		Ramesh Babu K V	<ramesh.babu@intel.com>
7  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *		Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23 
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44 
45 #define for_each_pipe(card_ctx, pipe) \
46 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49 
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 static bool single_port;
54 
55 module_param_named(index, hdmi_card_index, int, 0444);
56 MODULE_PARM_DESC(index,
57 		"Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id, hdmi_card_id, charp, 0444);
59 MODULE_PARM_DESC(id,
60 		"ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port, bool, 0444);
62 MODULE_PARM_DESC(single_port,
63 		"Single-port mode (for compatibility)");
64 
65 /*
66  * ELD SA bits in the CEA Speaker Allocation data block
67  */
68 static const int eld_speaker_allocation_bits[] = {
69 	[0] = FL | FR,
70 	[1] = LFE,
71 	[2] = FC,
72 	[3] = RL | RR,
73 	[4] = RC,
74 	[5] = FLC | FRC,
75 	[6] = RLC | RRC,
76 	/* the following are not defined in ELD yet */
77 	[7] = 0,
78 };
79 
80 /*
81  * This is an ordered list!
82  *
83  * The preceding ones have better chances to be selected by
84  * hdmi_channel_allocation().
85  */
86 static struct cea_channel_speaker_allocation channel_allocations[] = {
87 /*                        channel:   7     6    5    4    3     2    1    0  */
88 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
89 				/* 2.1 */
90 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
91 				/* Dolby Surround */
92 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
93 				/* surround40 */
94 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
95 				/* surround41 */
96 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
97 				/* surround50 */
98 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
99 				/* surround51 */
100 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
101 				/* 6.1 */
102 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
103 				/* surround71 */
104 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
105 
106 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
108 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
111 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
112 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
115 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
118 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
122 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
125 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
126 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
127 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
128 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
129 };
130 
131 static const struct channel_map_table map_tables[] = {
132 	{ SNDRV_CHMAP_FL,       0x00,   FL },
133 	{ SNDRV_CHMAP_FR,       0x01,   FR },
134 	{ SNDRV_CHMAP_RL,       0x04,   RL },
135 	{ SNDRV_CHMAP_RR,       0x05,   RR },
136 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
137 	{ SNDRV_CHMAP_FC,       0x03,   FC },
138 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
139 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
140 	{} /* terminator */
141 };
142 
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware = {
145 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
146 		SNDRV_PCM_INFO_MMAP |
147 		SNDRV_PCM_INFO_MMAP_VALID |
148 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
149 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
150 		    SNDRV_PCM_FMTBIT_S24_LE |
151 		    SNDRV_PCM_FMTBIT_S32_LE),
152 	.rates = SNDRV_PCM_RATE_32000 |
153 		SNDRV_PCM_RATE_44100 |
154 		SNDRV_PCM_RATE_48000 |
155 		SNDRV_PCM_RATE_88200 |
156 		SNDRV_PCM_RATE_96000 |
157 		SNDRV_PCM_RATE_176400 |
158 		SNDRV_PCM_RATE_192000,
159 	.rate_min = HAD_MIN_RATE,
160 	.rate_max = HAD_MAX_RATE,
161 	.channels_min = HAD_MIN_CHANNEL,
162 	.channels_max = HAD_MAX_CHANNEL,
163 	.buffer_bytes_max = HAD_MAX_BUFFER,
164 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
165 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
166 	.periods_min = HAD_MIN_PERIODS,
167 	.periods_max = HAD_MAX_PERIODS,
168 	.fifo_size = HAD_FIFO_SIZE,
169 };
170 
171 /* Get the active PCM substream;
172  * Call had_substream_put() for unreferecing.
173  * Don't call this inside had_spinlock, as it takes by itself
174  */
175 static struct snd_pcm_substream *
176 had_substream_get(struct snd_intelhad *intelhaddata)
177 {
178 	struct snd_pcm_substream *substream;
179 	unsigned long flags;
180 
181 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
182 	substream = intelhaddata->stream_info.substream;
183 	if (substream)
184 		intelhaddata->stream_info.substream_refcount++;
185 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
186 	return substream;
187 }
188 
189 /* Unref the active PCM substream;
190  * Don't call this inside had_spinlock, as it takes by itself
191  */
192 static void had_substream_put(struct snd_intelhad *intelhaddata)
193 {
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
197 	intelhaddata->stream_info.substream_refcount--;
198 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
199 }
200 
201 static u32 had_config_offset(int pipe)
202 {
203 	switch (pipe) {
204 	default:
205 	case 0:
206 		return AUDIO_HDMI_CONFIG_A;
207 	case 1:
208 		return AUDIO_HDMI_CONFIG_B;
209 	case 2:
210 		return AUDIO_HDMI_CONFIG_C;
211 	}
212 }
213 
214 /* Register access functions */
215 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
216 				 int pipe, u32 reg)
217 {
218 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220 
221 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
222 				   int pipe, u32 reg, u32 val)
223 {
224 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
225 }
226 
227 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
228 {
229 	if (!ctx->connected)
230 		*val = 0;
231 	else
232 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
233 }
234 
235 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
236 {
237 	if (ctx->connected)
238 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
239 }
240 
241 /*
242  * enable / disable audio configuration
243  *
244  * The normal read/modify should not directly be used on VLV2 for
245  * updating AUD_CONFIG register.
246  * This is because:
247  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250  * register. This field should be 1xy binary for configuration with 6 or
251  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252  * causes the "channels" field to be updated as 0xy binary resulting in
253  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254  * appropriate value when doing read-modify of AUD_CONFIG register.
255  */
256 static void had_enable_audio(struct snd_intelhad *intelhaddata,
257 			     bool enable)
258 {
259 	/* update the cached value */
260 	intelhaddata->aud_config.regx.aud_en = enable;
261 	had_write_register(intelhaddata, AUD_CONFIG,
262 			   intelhaddata->aud_config.regval);
263 }
264 
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad *ctx)
267 {
268 	u32 status_reg;
269 
270 	if (!ctx->connected)
271 		return;
272 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
273 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
274 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
275 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
276 }
277 
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad *intelhaddata)
280 {
281 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
282 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
283 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
284 }
285 
286 /*
287  * initialize audio channel status registers
288  * This function is called in the prepare callback
289  */
290 static int had_prog_status_reg(struct snd_pcm_substream *substream,
291 			struct snd_intelhad *intelhaddata)
292 {
293 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
294 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
295 
296 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
297 					  IEC958_AES0_NONAUDIO) >> 1;
298 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
299 					  IEC958_AES3_CON_CLOCK) >> 4;
300 
301 	switch (substream->runtime->rate) {
302 	case AUD_SAMPLE_RATE_32:
303 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
304 		break;
305 
306 	case AUD_SAMPLE_RATE_44_1:
307 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
308 		break;
309 	case AUD_SAMPLE_RATE_48:
310 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
311 		break;
312 	case AUD_SAMPLE_RATE_88_2:
313 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
314 		break;
315 	case AUD_SAMPLE_RATE_96:
316 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
317 		break;
318 	case AUD_SAMPLE_RATE_176_4:
319 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
320 		break;
321 	case AUD_SAMPLE_RATE_192:
322 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
323 		break;
324 
325 	default:
326 		/* control should never come here */
327 		return -EINVAL;
328 	}
329 
330 	had_write_register(intelhaddata,
331 			   AUD_CH_STATUS_0, ch_stat0.regval);
332 
333 	switch (substream->runtime->format) {
334 	case SNDRV_PCM_FORMAT_S16_LE:
335 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
336 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
337 		break;
338 	case SNDRV_PCM_FORMAT_S24_LE:
339 	case SNDRV_PCM_FORMAT_S32_LE:
340 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
341 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
342 		break;
343 	default:
344 		return -EINVAL;
345 	}
346 
347 	had_write_register(intelhaddata,
348 			   AUD_CH_STATUS_1, ch_stat1.regval);
349 	return 0;
350 }
351 
352 /*
353  * function to initialize audio
354  * registers and buffer confgiuration registers
355  * This function is called in the prepare callback
356  */
357 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
358 			       struct snd_intelhad *intelhaddata)
359 {
360 	union aud_cfg cfg_val = {.regval = 0};
361 	union aud_buf_config buf_cfg = {.regval = 0};
362 	u8 channels;
363 
364 	had_prog_status_reg(substream, intelhaddata);
365 
366 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
367 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
368 	buf_cfg.regx.aud_delay = 0;
369 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
370 
371 	channels = substream->runtime->channels;
372 	cfg_val.regx.num_ch = channels - 2;
373 	if (channels <= 2)
374 		cfg_val.regx.layout = LAYOUT0;
375 	else
376 		cfg_val.regx.layout = LAYOUT1;
377 
378 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
379 		cfg_val.regx.packet_mode = 1;
380 
381 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
382 		cfg_val.regx.left_align = 1;
383 
384 	cfg_val.regx.val_bit = 1;
385 
386 	/* fix up the DP bits */
387 	if (intelhaddata->dp_output) {
388 		cfg_val.regx.dp_modei = 1;
389 		cfg_val.regx.set = 1;
390 	}
391 
392 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
393 	intelhaddata->aud_config = cfg_val;
394 	return 0;
395 }
396 
397 /*
398  * Compute derived values in channel_allocations[].
399  */
400 static void init_channel_allocations(void)
401 {
402 	int i, j;
403 	struct cea_channel_speaker_allocation *p;
404 
405 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
406 		p = channel_allocations + i;
407 		p->channels = 0;
408 		p->spk_mask = 0;
409 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
410 			if (p->speakers[j]) {
411 				p->channels++;
412 				p->spk_mask |= p->speakers[j];
413 			}
414 	}
415 }
416 
417 /*
418  * The transformation takes two steps:
419  *
420  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
421  *            spk_mask => (channel_allocations[])         => ai->CA
422  *
423  * TODO: it could select the wrong CA from multiple candidates.
424  */
425 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
426 				  int channels)
427 {
428 	int i;
429 	int ca = 0;
430 	int spk_mask = 0;
431 
432 	/*
433 	 * CA defaults to 0 for basic stereo audio
434 	 */
435 	if (channels <= 2)
436 		return 0;
437 
438 	/*
439 	 * expand ELD's speaker allocation mask
440 	 *
441 	 * ELD tells the speaker mask in a compact(paired) form,
442 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
443 	 */
444 
445 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
446 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
447 			spk_mask |= eld_speaker_allocation_bits[i];
448 	}
449 
450 	/* search for the first working match in the CA table */
451 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
452 		if (channels == channel_allocations[i].channels &&
453 		(spk_mask & channel_allocations[i].spk_mask) ==
454 				channel_allocations[i].spk_mask) {
455 			ca = channel_allocations[i].ca_index;
456 			break;
457 		}
458 	}
459 
460 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
461 
462 	return ca;
463 }
464 
465 /* from speaker bit mask to ALSA API channel position */
466 static int spk_to_chmap(int spk)
467 {
468 	const struct channel_map_table *t = map_tables;
469 
470 	for (; t->map; t++) {
471 		if (t->spk_mask == spk)
472 			return t->map;
473 	}
474 	return 0;
475 }
476 
477 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
478 {
479 	int i, c;
480 	int spk_mask = 0;
481 	struct snd_pcm_chmap_elem *chmap;
482 	u8 eld_high, eld_high_mask = 0xF0;
483 	u8 high_msb;
484 
485 	kfree(intelhaddata->chmap->chmap);
486 	intelhaddata->chmap->chmap = NULL;
487 
488 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
489 	if (!chmap)
490 		return;
491 
492 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
493 		intelhaddata->eld[DRM_ELD_SPEAKER]);
494 
495 	/* WA: Fix the max channel supported to 8 */
496 
497 	/*
498 	 * Sink may support more than 8 channels, if eld_high has more than
499 	 * one bit set. SOC supports max 8 channels.
500 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
501 	 */
502 
503 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
504 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
505 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
506 		/* eld_high & (eld_high-1): if more than 1 bit set */
507 		/* 0x1F: 7 channels */
508 		for (i = 1; i < 4; i++) {
509 			high_msb = eld_high & (0x80 >> i);
510 			if (high_msb) {
511 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
512 					high_msb | 0xF;
513 				break;
514 			}
515 		}
516 	}
517 
518 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
519 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
520 			spk_mask |= eld_speaker_allocation_bits[i];
521 	}
522 
523 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
524 		if (spk_mask == channel_allocations[i].spk_mask) {
525 			for (c = 0; c < channel_allocations[i].channels; c++) {
526 				chmap->map[c] = spk_to_chmap(
527 					channel_allocations[i].speakers[
528 						(MAX_SPEAKERS - 1) - c]);
529 			}
530 			chmap->channels = channel_allocations[i].channels;
531 			intelhaddata->chmap->chmap = chmap;
532 			break;
533 		}
534 	}
535 	if (i >= ARRAY_SIZE(channel_allocations))
536 		kfree(chmap);
537 }
538 
539 /*
540  * ALSA API channel-map control callbacks
541  */
542 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
543 				struct snd_ctl_elem_info *uinfo)
544 {
545 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
546 	uinfo->count = HAD_MAX_CHANNEL;
547 	uinfo->value.integer.min = 0;
548 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
549 	return 0;
550 }
551 
552 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
553 				struct snd_ctl_elem_value *ucontrol)
554 {
555 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
556 	struct snd_intelhad *intelhaddata = info->private_data;
557 	int i;
558 	const struct snd_pcm_chmap_elem *chmap;
559 
560 	memset(ucontrol->value.integer.value, 0,
561 	       sizeof(long) * HAD_MAX_CHANNEL);
562 	mutex_lock(&intelhaddata->mutex);
563 	if (!intelhaddata->chmap->chmap) {
564 		mutex_unlock(&intelhaddata->mutex);
565 		return 0;
566 	}
567 
568 	chmap = intelhaddata->chmap->chmap;
569 	for (i = 0; i < chmap->channels; i++)
570 		ucontrol->value.integer.value[i] = chmap->map[i];
571 	mutex_unlock(&intelhaddata->mutex);
572 
573 	return 0;
574 }
575 
576 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
577 						struct snd_pcm *pcm)
578 {
579 	int err;
580 
581 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
582 			NULL, 0, (unsigned long)intelhaddata,
583 			&intelhaddata->chmap);
584 	if (err < 0)
585 		return err;
586 
587 	intelhaddata->chmap->private_data = intelhaddata;
588 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
589 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
590 	intelhaddata->chmap->chmap = NULL;
591 	return 0;
592 }
593 
594 /*
595  * Initialize Data Island Packets registers
596  * This function is called in the prepare callback
597  */
598 static void had_prog_dip(struct snd_pcm_substream *substream,
599 			 struct snd_intelhad *intelhaddata)
600 {
601 	int i;
602 	union aud_ctrl_st ctrl_state = {.regval = 0};
603 	union aud_info_frame2 frame2 = {.regval = 0};
604 	union aud_info_frame3 frame3 = {.regval = 0};
605 	u8 checksum = 0;
606 	u32 info_frame;
607 	int channels;
608 	int ca;
609 
610 	channels = substream->runtime->channels;
611 
612 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
613 
614 	ca = had_channel_allocation(intelhaddata, channels);
615 	if (intelhaddata->dp_output) {
616 		info_frame = DP_INFO_FRAME_WORD1;
617 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
618 	} else {
619 		info_frame = HDMI_INFO_FRAME_WORD1;
620 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
621 		frame3.regx.chnl_alloc = ca;
622 
623 		/* Calculte the byte wide checksum for all valid DIP words */
624 		for (i = 0; i < BYTES_PER_WORD; i++)
625 			checksum += (info_frame >> (i * 8)) & 0xff;
626 		for (i = 0; i < BYTES_PER_WORD; i++)
627 			checksum += (frame2.regval >> (i * 8)) & 0xff;
628 		for (i = 0; i < BYTES_PER_WORD; i++)
629 			checksum += (frame3.regval >> (i * 8)) & 0xff;
630 
631 		frame2.regx.chksum = -(checksum);
632 	}
633 
634 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
635 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
636 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
637 
638 	/* program remaining DIP words with zero */
639 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
640 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
641 
642 	ctrl_state.regx.dip_freq = 1;
643 	ctrl_state.regx.dip_en_sta = 1;
644 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
645 }
646 
647 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
648 {
649 	u32 maud_val;
650 
651 	/* Select maud according to DP 1.2 spec */
652 	if (link_rate == DP_2_7_GHZ) {
653 		switch (aud_samp_freq) {
654 		case AUD_SAMPLE_RATE_32:
655 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
656 			break;
657 
658 		case AUD_SAMPLE_RATE_44_1:
659 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
660 			break;
661 
662 		case AUD_SAMPLE_RATE_48:
663 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
664 			break;
665 
666 		case AUD_SAMPLE_RATE_88_2:
667 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
668 			break;
669 
670 		case AUD_SAMPLE_RATE_96:
671 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
672 			break;
673 
674 		case AUD_SAMPLE_RATE_176_4:
675 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
676 			break;
677 
678 		case HAD_MAX_RATE:
679 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
680 			break;
681 
682 		default:
683 			maud_val = -EINVAL;
684 			break;
685 		}
686 	} else if (link_rate == DP_1_62_GHZ) {
687 		switch (aud_samp_freq) {
688 		case AUD_SAMPLE_RATE_32:
689 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
690 			break;
691 
692 		case AUD_SAMPLE_RATE_44_1:
693 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
694 			break;
695 
696 		case AUD_SAMPLE_RATE_48:
697 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
698 			break;
699 
700 		case AUD_SAMPLE_RATE_88_2:
701 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
702 			break;
703 
704 		case AUD_SAMPLE_RATE_96:
705 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
706 			break;
707 
708 		case AUD_SAMPLE_RATE_176_4:
709 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
710 			break;
711 
712 		case HAD_MAX_RATE:
713 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
714 			break;
715 
716 		default:
717 			maud_val = -EINVAL;
718 			break;
719 		}
720 	} else
721 		maud_val = -EINVAL;
722 
723 	return maud_val;
724 }
725 
726 /*
727  * Program HDMI audio CTS value
728  *
729  * @aud_samp_freq: sampling frequency of audio data
730  * @tmds: sampling frequency of the display data
731  * @link_rate: DP link rate
732  * @n_param: N value, depends on aud_samp_freq
733  * @intelhaddata: substream private data
734  *
735  * Program CTS register based on the audio and display sampling frequency
736  */
737 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
738 			 u32 n_param, struct snd_intelhad *intelhaddata)
739 {
740 	u32 cts_val;
741 	u64 dividend, divisor;
742 
743 	if (intelhaddata->dp_output) {
744 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
745 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
746 	} else {
747 		/* Calculate CTS according to HDMI 1.3a spec*/
748 		dividend = (u64)tmds * n_param*1000;
749 		divisor = 128 * aud_samp_freq;
750 		cts_val = div64_u64(dividend, divisor);
751 	}
752 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
753 		 tmds, n_param, cts_val);
754 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
755 }
756 
757 static int had_calculate_n_value(u32 aud_samp_freq)
758 {
759 	int n_val;
760 
761 	/* Select N according to HDMI 1.3a spec*/
762 	switch (aud_samp_freq) {
763 	case AUD_SAMPLE_RATE_32:
764 		n_val = 4096;
765 		break;
766 
767 	case AUD_SAMPLE_RATE_44_1:
768 		n_val = 6272;
769 		break;
770 
771 	case AUD_SAMPLE_RATE_48:
772 		n_val = 6144;
773 		break;
774 
775 	case AUD_SAMPLE_RATE_88_2:
776 		n_val = 12544;
777 		break;
778 
779 	case AUD_SAMPLE_RATE_96:
780 		n_val = 12288;
781 		break;
782 
783 	case AUD_SAMPLE_RATE_176_4:
784 		n_val = 25088;
785 		break;
786 
787 	case HAD_MAX_RATE:
788 		n_val = 24576;
789 		break;
790 
791 	default:
792 		n_val = -EINVAL;
793 		break;
794 	}
795 	return n_val;
796 }
797 
798 /*
799  * Program HDMI audio N value
800  *
801  * @aud_samp_freq: sampling frequency of audio data
802  * @n_param: N value, depends on aud_samp_freq
803  * @intelhaddata: substream private data
804  *
805  * This function is called in the prepare callback.
806  * It programs based on the audio and display sampling frequency
807  */
808 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
809 		      struct snd_intelhad *intelhaddata)
810 {
811 	int n_val;
812 
813 	if (intelhaddata->dp_output) {
814 		/*
815 		 * According to DP specs, Maud and Naud values hold
816 		 * a relationship, which is stated as:
817 		 * Maud/Naud = 512 * fs / f_LS_Clk
818 		 * where, fs is the sampling frequency of the audio stream
819 		 * and Naud is 32768 for Async clock.
820 		 */
821 
822 		n_val = DP_NAUD_VAL;
823 	} else
824 		n_val =	had_calculate_n_value(aud_samp_freq);
825 
826 	if (n_val < 0)
827 		return n_val;
828 
829 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
830 	*n_param = n_val;
831 	return 0;
832 }
833 
834 /*
835  * PCM ring buffer handling
836  *
837  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
838  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
839  * moves at each period elapsed.  The below illustrates how it works:
840  *
841  * At time=0
842  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
843  *  BD  | 0 | 1 | 2 | 3 |
844  *
845  * At time=1 (period elapsed)
846  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
847  *  BD      | 1 | 2 | 3 | 0 |
848  *
849  * At time=2 (second period elapsed)
850  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
851  *  BD          | 2 | 3 | 0 | 1 |
852  *
853  * The bd_head field points to the index of the BD to be read.  It's also the
854  * position to be filled at next.  The pcm_head and the pcm_filled fields
855  * point to the indices of the current position and of the next position to
856  * be filled, respectively.  For PCM buffer there are both _head and _filled
857  * because they may be difference when nperiods > 4.  For example, in the
858  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
859  *
860  * pcm_head (=1) --v               v-- pcm_filled (=5)
861  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
862  *       BD      | 1 | 2 | 3 | 0 |
863  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
864  *
865  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
866  * the hardware skips those BDs in the loop.
867  *
868  * An exceptional setup is the case with nperiods=1.  Since we have to update
869  * BDs after finishing one BD processing, we'd need at least two BDs, where
870  * both BDs point to the same content, the same address, the same size of the
871  * whole PCM buffer.
872  */
873 
874 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
875 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
876 
877 /* Set up a buffer descriptor at the "filled" position */
878 static void had_prog_bd(struct snd_pcm_substream *substream,
879 			struct snd_intelhad *intelhaddata)
880 {
881 	int idx = intelhaddata->bd_head;
882 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
883 	u32 addr = substream->runtime->dma_addr + ofs;
884 
885 	addr |= AUD_BUF_VALID;
886 	if (!substream->runtime->no_period_wakeup)
887 		addr |= AUD_BUF_INTR_EN;
888 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
889 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
890 			   intelhaddata->period_bytes);
891 
892 	/* advance the indices to the next */
893 	intelhaddata->bd_head++;
894 	intelhaddata->bd_head %= intelhaddata->num_bds;
895 	intelhaddata->pcmbuf_filled++;
896 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
897 }
898 
899 /* invalidate a buffer descriptor with the given index */
900 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
901 			      int idx)
902 {
903 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
904 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
905 }
906 
907 /* Initial programming of ring buffer */
908 static void had_init_ringbuf(struct snd_pcm_substream *substream,
909 			     struct snd_intelhad *intelhaddata)
910 {
911 	struct snd_pcm_runtime *runtime = substream->runtime;
912 	int i, num_periods;
913 
914 	num_periods = runtime->periods;
915 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
916 	/* set the minimum 2 BDs for num_periods=1 */
917 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
918 	intelhaddata->period_bytes =
919 		frames_to_bytes(runtime, runtime->period_size);
920 	WARN_ON(intelhaddata->period_bytes & 0x3f);
921 
922 	intelhaddata->bd_head = 0;
923 	intelhaddata->pcmbuf_head = 0;
924 	intelhaddata->pcmbuf_filled = 0;
925 
926 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
927 		if (i < intelhaddata->num_bds)
928 			had_prog_bd(substream, intelhaddata);
929 		else /* invalidate the rest */
930 			had_invalidate_bd(intelhaddata, i);
931 	}
932 
933 	intelhaddata->bd_head = 0; /* reset at head again before starting */
934 }
935 
936 /* process a bd, advance to the next */
937 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
938 				struct snd_intelhad *intelhaddata)
939 {
940 	int num_periods = substream->runtime->periods;
941 
942 	/* reprogram the next buffer */
943 	had_prog_bd(substream, intelhaddata);
944 
945 	/* proceed to next */
946 	intelhaddata->pcmbuf_head++;
947 	intelhaddata->pcmbuf_head %= num_periods;
948 }
949 
950 /* process the current BD(s);
951  * returns the current PCM buffer byte position, or -EPIPE for underrun.
952  */
953 static int had_process_ringbuf(struct snd_pcm_substream *substream,
954 			       struct snd_intelhad *intelhaddata)
955 {
956 	int len, processed;
957 	unsigned long flags;
958 
959 	processed = 0;
960 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
961 	for (;;) {
962 		/* get the remaining bytes on the buffer */
963 		had_read_register(intelhaddata,
964 				  AUD_BUF_LEN(intelhaddata->bd_head),
965 				  &len);
966 		if (len < 0 || len > intelhaddata->period_bytes) {
967 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
968 				len);
969 			len = -EPIPE;
970 			goto out;
971 		}
972 
973 		if (len > 0) /* OK, this is the current buffer */
974 			break;
975 
976 		/* len=0 => already empty, check the next buffer */
977 		if (++processed >= intelhaddata->num_bds) {
978 			len = -EPIPE; /* all empty? - report underrun */
979 			goto out;
980 		}
981 		had_advance_ringbuf(substream, intelhaddata);
982 	}
983 
984 	len = intelhaddata->period_bytes - len;
985 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
986  out:
987 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
988 	return len;
989 }
990 
991 /* called from irq handler */
992 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
993 {
994 	struct snd_pcm_substream *substream;
995 
996 	substream = had_substream_get(intelhaddata);
997 	if (!substream)
998 		return; /* no stream? - bail out */
999 
1000 	if (!intelhaddata->connected) {
1001 		snd_pcm_stop_xrun(substream);
1002 		goto out; /* disconnected? - bail out */
1003 	}
1004 
1005 	/* process or stop the stream */
1006 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1007 		snd_pcm_stop_xrun(substream);
1008 	else
1009 		snd_pcm_period_elapsed(substream);
1010 
1011  out:
1012 	had_substream_put(intelhaddata);
1013 }
1014 
1015 /*
1016  * The interrupt status 'sticky' bits might not be cleared by
1017  * setting '1' to that bit once...
1018  */
1019 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1020 {
1021 	int i;
1022 	u32 val;
1023 
1024 	for (i = 0; i < 100; i++) {
1025 		/* clear bit30, 31 AUD_HDMI_STATUS */
1026 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1027 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1028 			return;
1029 		udelay(100);
1030 		cond_resched();
1031 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1032 	}
1033 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1034 }
1035 
1036 /* Perform some reset procedure but only when need_reset is set;
1037  * this is called from prepare or hw_free callbacks once after trigger STOP
1038  * or underrun has been processed in order to settle down the h/w state.
1039  */
1040 static void had_do_reset(struct snd_intelhad *intelhaddata)
1041 {
1042 	if (!intelhaddata->need_reset || !intelhaddata->connected)
1043 		return;
1044 
1045 	/* Reset buffer pointers */
1046 	had_reset_audio(intelhaddata);
1047 	wait_clear_underrun_bit(intelhaddata);
1048 	intelhaddata->need_reset = false;
1049 }
1050 
1051 /* called from irq handler */
1052 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1053 {
1054 	struct snd_pcm_substream *substream;
1055 
1056 	/* Report UNDERRUN error to above layers */
1057 	substream = had_substream_get(intelhaddata);
1058 	if (substream) {
1059 		snd_pcm_stop_xrun(substream);
1060 		had_substream_put(intelhaddata);
1061 	}
1062 	intelhaddata->need_reset = true;
1063 }
1064 
1065 /*
1066  * ALSA PCM open callback
1067  */
1068 static int had_pcm_open(struct snd_pcm_substream *substream)
1069 {
1070 	struct snd_intelhad *intelhaddata;
1071 	struct snd_pcm_runtime *runtime;
1072 	int retval;
1073 
1074 	intelhaddata = snd_pcm_substream_chip(substream);
1075 	runtime = substream->runtime;
1076 
1077 	pm_runtime_get_sync(intelhaddata->dev);
1078 
1079 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1080 	runtime->hw = had_pcm_hardware;
1081 
1082 	retval = snd_pcm_hw_constraint_integer(runtime,
1083 			 SNDRV_PCM_HW_PARAM_PERIODS);
1084 	if (retval < 0)
1085 		goto error;
1086 
1087 	/* Make sure, that the period size is always aligned
1088 	 * 64byte boundary
1089 	 */
1090 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1091 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1092 	if (retval < 0)
1093 		goto error;
1094 
1095 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1096 	if (retval < 0)
1097 		goto error;
1098 
1099 	/* expose PCM substream */
1100 	spin_lock_irq(&intelhaddata->had_spinlock);
1101 	intelhaddata->stream_info.substream = substream;
1102 	intelhaddata->stream_info.substream_refcount++;
1103 	spin_unlock_irq(&intelhaddata->had_spinlock);
1104 
1105 	return retval;
1106  error:
1107 	pm_runtime_mark_last_busy(intelhaddata->dev);
1108 	pm_runtime_put_autosuspend(intelhaddata->dev);
1109 	return retval;
1110 }
1111 
1112 /*
1113  * ALSA PCM close callback
1114  */
1115 static int had_pcm_close(struct snd_pcm_substream *substream)
1116 {
1117 	struct snd_intelhad *intelhaddata;
1118 
1119 	intelhaddata = snd_pcm_substream_chip(substream);
1120 
1121 	/* unreference and sync with the pending PCM accesses */
1122 	spin_lock_irq(&intelhaddata->had_spinlock);
1123 	intelhaddata->stream_info.substream = NULL;
1124 	intelhaddata->stream_info.substream_refcount--;
1125 	while (intelhaddata->stream_info.substream_refcount > 0) {
1126 		spin_unlock_irq(&intelhaddata->had_spinlock);
1127 		cpu_relax();
1128 		spin_lock_irq(&intelhaddata->had_spinlock);
1129 	}
1130 	spin_unlock_irq(&intelhaddata->had_spinlock);
1131 
1132 	pm_runtime_mark_last_busy(intelhaddata->dev);
1133 	pm_runtime_put_autosuspend(intelhaddata->dev);
1134 	return 0;
1135 }
1136 
1137 /*
1138  * ALSA PCM hw_params callback
1139  */
1140 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1141 			     struct snd_pcm_hw_params *hw_params)
1142 {
1143 	struct snd_intelhad *intelhaddata;
1144 	unsigned long addr;
1145 	int pages, buf_size, retval;
1146 
1147 	intelhaddata = snd_pcm_substream_chip(substream);
1148 	buf_size = params_buffer_bytes(hw_params);
1149 	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1150 	if (retval < 0)
1151 		return retval;
1152 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1153 		__func__, buf_size);
1154 	/* mark the pages as uncached region */
1155 	addr = (unsigned long) substream->runtime->dma_area;
1156 	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1157 	retval = set_memory_uc(addr, pages);
1158 	if (retval) {
1159 		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1160 			retval);
1161 		return retval;
1162 	}
1163 	memset(substream->runtime->dma_area, 0, buf_size);
1164 
1165 	return retval;
1166 }
1167 
1168 /*
1169  * ALSA PCM hw_free callback
1170  */
1171 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1172 {
1173 	struct snd_intelhad *intelhaddata;
1174 	unsigned long addr;
1175 	u32 pages;
1176 
1177 	intelhaddata = snd_pcm_substream_chip(substream);
1178 	had_do_reset(intelhaddata);
1179 
1180 	/* mark back the pages as cached/writeback region before the free */
1181 	if (substream->runtime->dma_area != NULL) {
1182 		addr = (unsigned long) substream->runtime->dma_area;
1183 		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1184 								PAGE_SIZE;
1185 		set_memory_wb(addr, pages);
1186 		return snd_pcm_lib_free_pages(substream);
1187 	}
1188 	return 0;
1189 }
1190 
1191 /*
1192  * ALSA PCM trigger callback
1193  */
1194 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1195 {
1196 	int retval = 0;
1197 	struct snd_intelhad *intelhaddata;
1198 
1199 	intelhaddata = snd_pcm_substream_chip(substream);
1200 
1201 	spin_lock(&intelhaddata->had_spinlock);
1202 	switch (cmd) {
1203 	case SNDRV_PCM_TRIGGER_START:
1204 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1205 	case SNDRV_PCM_TRIGGER_RESUME:
1206 		/* Enable Audio */
1207 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1208 		had_enable_audio(intelhaddata, true);
1209 		break;
1210 
1211 	case SNDRV_PCM_TRIGGER_STOP:
1212 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1213 		/* Disable Audio */
1214 		had_enable_audio(intelhaddata, false);
1215 		intelhaddata->need_reset = true;
1216 		break;
1217 
1218 	default:
1219 		retval = -EINVAL;
1220 	}
1221 	spin_unlock(&intelhaddata->had_spinlock);
1222 	return retval;
1223 }
1224 
1225 /*
1226  * ALSA PCM prepare callback
1227  */
1228 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1229 {
1230 	int retval;
1231 	u32 disp_samp_freq, n_param;
1232 	u32 link_rate = 0;
1233 	struct snd_intelhad *intelhaddata;
1234 	struct snd_pcm_runtime *runtime;
1235 
1236 	intelhaddata = snd_pcm_substream_chip(substream);
1237 	runtime = substream->runtime;
1238 
1239 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1240 		(int)frames_to_bytes(runtime, runtime->period_size));
1241 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1242 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1243 		(int)snd_pcm_lib_buffer_bytes(substream));
1244 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1245 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1246 
1247 	had_do_reset(intelhaddata);
1248 
1249 	/* Get N value in KHz */
1250 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1251 
1252 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1253 	if (retval) {
1254 		dev_err(intelhaddata->dev,
1255 			"programming N value failed %#x\n", retval);
1256 		goto prep_end;
1257 	}
1258 
1259 	if (intelhaddata->dp_output)
1260 		link_rate = intelhaddata->link_rate;
1261 
1262 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1263 		     n_param, intelhaddata);
1264 
1265 	had_prog_dip(substream, intelhaddata);
1266 
1267 	retval = had_init_audio_ctrl(substream, intelhaddata);
1268 
1269 	/* Prog buffer address */
1270 	had_init_ringbuf(substream, intelhaddata);
1271 
1272 	/*
1273 	 * Program channel mapping in following order:
1274 	 * FL, FR, C, LFE, RL, RR
1275 	 */
1276 
1277 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1278 
1279 prep_end:
1280 	return retval;
1281 }
1282 
1283 /*
1284  * ALSA PCM pointer callback
1285  */
1286 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1287 {
1288 	struct snd_intelhad *intelhaddata;
1289 	int len;
1290 
1291 	intelhaddata = snd_pcm_substream_chip(substream);
1292 
1293 	if (!intelhaddata->connected)
1294 		return SNDRV_PCM_POS_XRUN;
1295 
1296 	len = had_process_ringbuf(substream, intelhaddata);
1297 	if (len < 0)
1298 		return SNDRV_PCM_POS_XRUN;
1299 	len = bytes_to_frames(substream->runtime, len);
1300 	/* wrapping may happen when periods=1 */
1301 	len %= substream->runtime->buffer_size;
1302 	return len;
1303 }
1304 
1305 /*
1306  * ALSA PCM mmap callback
1307  */
1308 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1309 			struct vm_area_struct *vma)
1310 {
1311 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1312 	return remap_pfn_range(vma, vma->vm_start,
1313 			substream->dma_buffer.addr >> PAGE_SHIFT,
1314 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1315 }
1316 
1317 /*
1318  * ALSA PCM ops
1319  */
1320 static const struct snd_pcm_ops had_pcm_ops = {
1321 	.open =		had_pcm_open,
1322 	.close =	had_pcm_close,
1323 	.ioctl =	snd_pcm_lib_ioctl,
1324 	.hw_params =	had_pcm_hw_params,
1325 	.hw_free =	had_pcm_hw_free,
1326 	.prepare =	had_pcm_prepare,
1327 	.trigger =	had_pcm_trigger,
1328 	.pointer =	had_pcm_pointer,
1329 	.mmap =		had_pcm_mmap,
1330 };
1331 
1332 /* process mode change of the running stream; called in mutex */
1333 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1334 {
1335 	struct snd_pcm_substream *substream;
1336 	int retval = 0;
1337 	u32 disp_samp_freq, n_param;
1338 	u32 link_rate = 0;
1339 
1340 	substream = had_substream_get(intelhaddata);
1341 	if (!substream)
1342 		return 0;
1343 
1344 	/* Disable Audio */
1345 	had_enable_audio(intelhaddata, false);
1346 
1347 	/* Update CTS value */
1348 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1349 
1350 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1351 	if (retval) {
1352 		dev_err(intelhaddata->dev,
1353 			"programming N value failed %#x\n", retval);
1354 		goto out;
1355 	}
1356 
1357 	if (intelhaddata->dp_output)
1358 		link_rate = intelhaddata->link_rate;
1359 
1360 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1361 		     n_param, intelhaddata);
1362 
1363 	/* Enable Audio */
1364 	had_enable_audio(intelhaddata, true);
1365 
1366 out:
1367 	had_substream_put(intelhaddata);
1368 	return retval;
1369 }
1370 
1371 /* process hot plug, called from wq with mutex locked */
1372 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1373 {
1374 	struct snd_pcm_substream *substream;
1375 
1376 	spin_lock_irq(&intelhaddata->had_spinlock);
1377 	if (intelhaddata->connected) {
1378 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1379 		spin_unlock_irq(&intelhaddata->had_spinlock);
1380 		return;
1381 	}
1382 
1383 	/* Disable Audio */
1384 	had_enable_audio(intelhaddata, false);
1385 
1386 	intelhaddata->connected = true;
1387 	dev_dbg(intelhaddata->dev,
1388 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1389 			__func__, __LINE__);
1390 	spin_unlock_irq(&intelhaddata->had_spinlock);
1391 
1392 	had_build_channel_allocation_map(intelhaddata);
1393 
1394 	/* Report to above ALSA layer */
1395 	substream = had_substream_get(intelhaddata);
1396 	if (substream) {
1397 		snd_pcm_stop_xrun(substream);
1398 		had_substream_put(intelhaddata);
1399 	}
1400 
1401 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1402 }
1403 
1404 /* process hot unplug, called from wq with mutex locked */
1405 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1406 {
1407 	struct snd_pcm_substream *substream;
1408 
1409 	spin_lock_irq(&intelhaddata->had_spinlock);
1410 	if (!intelhaddata->connected) {
1411 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1412 		spin_unlock_irq(&intelhaddata->had_spinlock);
1413 		return;
1414 
1415 	}
1416 
1417 	/* Disable Audio */
1418 	had_enable_audio(intelhaddata, false);
1419 
1420 	intelhaddata->connected = false;
1421 	dev_dbg(intelhaddata->dev,
1422 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1423 			__func__, __LINE__);
1424 	spin_unlock_irq(&intelhaddata->had_spinlock);
1425 
1426 	kfree(intelhaddata->chmap->chmap);
1427 	intelhaddata->chmap->chmap = NULL;
1428 
1429 	/* Report to above ALSA layer */
1430 	substream = had_substream_get(intelhaddata);
1431 	if (substream) {
1432 		snd_pcm_stop_xrun(substream);
1433 		had_substream_put(intelhaddata);
1434 	}
1435 
1436 	snd_jack_report(intelhaddata->jack, 0);
1437 }
1438 
1439 /*
1440  * ALSA iec958 and ELD controls
1441  */
1442 
1443 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1444 				struct snd_ctl_elem_info *uinfo)
1445 {
1446 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1447 	uinfo->count = 1;
1448 	return 0;
1449 }
1450 
1451 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1452 				struct snd_ctl_elem_value *ucontrol)
1453 {
1454 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1455 
1456 	mutex_lock(&intelhaddata->mutex);
1457 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1458 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1459 	ucontrol->value.iec958.status[2] =
1460 					(intelhaddata->aes_bits >> 16) & 0xff;
1461 	ucontrol->value.iec958.status[3] =
1462 					(intelhaddata->aes_bits >> 24) & 0xff;
1463 	mutex_unlock(&intelhaddata->mutex);
1464 	return 0;
1465 }
1466 
1467 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1468 				struct snd_ctl_elem_value *ucontrol)
1469 {
1470 	ucontrol->value.iec958.status[0] = 0xff;
1471 	ucontrol->value.iec958.status[1] = 0xff;
1472 	ucontrol->value.iec958.status[2] = 0xff;
1473 	ucontrol->value.iec958.status[3] = 0xff;
1474 	return 0;
1475 }
1476 
1477 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1478 				struct snd_ctl_elem_value *ucontrol)
1479 {
1480 	unsigned int val;
1481 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1482 	int changed = 0;
1483 
1484 	val = (ucontrol->value.iec958.status[0] << 0) |
1485 		(ucontrol->value.iec958.status[1] << 8) |
1486 		(ucontrol->value.iec958.status[2] << 16) |
1487 		(ucontrol->value.iec958.status[3] << 24);
1488 	mutex_lock(&intelhaddata->mutex);
1489 	if (intelhaddata->aes_bits != val) {
1490 		intelhaddata->aes_bits = val;
1491 		changed = 1;
1492 	}
1493 	mutex_unlock(&intelhaddata->mutex);
1494 	return changed;
1495 }
1496 
1497 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1498 			    struct snd_ctl_elem_info *uinfo)
1499 {
1500 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1501 	uinfo->count = HDMI_MAX_ELD_BYTES;
1502 	return 0;
1503 }
1504 
1505 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1506 			   struct snd_ctl_elem_value *ucontrol)
1507 {
1508 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1509 
1510 	mutex_lock(&intelhaddata->mutex);
1511 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1512 	       HDMI_MAX_ELD_BYTES);
1513 	mutex_unlock(&intelhaddata->mutex);
1514 	return 0;
1515 }
1516 
1517 static const struct snd_kcontrol_new had_controls[] = {
1518 	{
1519 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1520 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1521 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1522 		.info = had_iec958_info, /* shared */
1523 		.get = had_iec958_mask_get,
1524 	},
1525 	{
1526 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1527 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1528 		.info = had_iec958_info,
1529 		.get = had_iec958_get,
1530 		.put = had_iec958_put,
1531 	},
1532 	{
1533 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1534 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1535 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1536 		.name = "ELD",
1537 		.info = had_ctl_eld_info,
1538 		.get = had_ctl_eld_get,
1539 	},
1540 };
1541 
1542 /*
1543  * audio interrupt handler
1544  */
1545 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1546 {
1547 	struct snd_intelhad_card *card_ctx = dev_id;
1548 	u32 audio_stat[3] = {};
1549 	int pipe, port;
1550 
1551 	for_each_pipe(card_ctx, pipe) {
1552 		/* use raw register access to ack IRQs even while disconnected */
1553 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1554 							 AUD_HDMI_STATUS) &
1555 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1556 
1557 		if (audio_stat[pipe])
1558 			had_write_register_raw(card_ctx, pipe,
1559 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1560 	}
1561 
1562 	for_each_port(card_ctx, port) {
1563 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1564 		int pipe = ctx->pipe;
1565 
1566 		if (pipe < 0)
1567 			continue;
1568 
1569 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1570 			had_process_buffer_done(ctx);
1571 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1572 			had_process_buffer_underrun(ctx);
1573 	}
1574 
1575 	return IRQ_HANDLED;
1576 }
1577 
1578 /*
1579  * monitor plug/unplug notification from i915; just kick off the work
1580  */
1581 static void notify_audio_lpe(struct platform_device *pdev, int port)
1582 {
1583 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1584 	struct snd_intelhad *ctx;
1585 
1586 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1587 	if (single_port)
1588 		ctx->port = port;
1589 
1590 	schedule_work(&ctx->hdmi_audio_wq);
1591 }
1592 
1593 /* the work to handle monitor hot plug/unplug */
1594 static void had_audio_wq(struct work_struct *work)
1595 {
1596 	struct snd_intelhad *ctx =
1597 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1598 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1599 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1600 
1601 	pm_runtime_get_sync(ctx->dev);
1602 	mutex_lock(&ctx->mutex);
1603 	if (ppdata->pipe < 0) {
1604 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1605 			__func__, ctx->port);
1606 
1607 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1608 
1609 		ctx->dp_output = false;
1610 		ctx->tmds_clock_speed = 0;
1611 		ctx->link_rate = 0;
1612 
1613 		/* Shut down the stream */
1614 		had_process_hot_unplug(ctx);
1615 
1616 		ctx->pipe = -1;
1617 	} else {
1618 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1619 			__func__, ctx->port, ppdata->ls_clock);
1620 
1621 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1622 
1623 		ctx->dp_output = ppdata->dp_output;
1624 		if (ctx->dp_output) {
1625 			ctx->tmds_clock_speed = 0;
1626 			ctx->link_rate = ppdata->ls_clock;
1627 		} else {
1628 			ctx->tmds_clock_speed = ppdata->ls_clock;
1629 			ctx->link_rate = 0;
1630 		}
1631 
1632 		/*
1633 		 * Shut down the stream before we change
1634 		 * the pipe assignment for this pcm device
1635 		 */
1636 		had_process_hot_plug(ctx);
1637 
1638 		ctx->pipe = ppdata->pipe;
1639 
1640 		/* Restart the stream if necessary */
1641 		had_process_mode_change(ctx);
1642 	}
1643 
1644 	mutex_unlock(&ctx->mutex);
1645 	pm_runtime_mark_last_busy(ctx->dev);
1646 	pm_runtime_put_autosuspend(ctx->dev);
1647 }
1648 
1649 /*
1650  * Jack interface
1651  */
1652 static int had_create_jack(struct snd_intelhad *ctx,
1653 			   struct snd_pcm *pcm)
1654 {
1655 	char hdmi_str[32];
1656 	int err;
1657 
1658 	snprintf(hdmi_str, sizeof(hdmi_str),
1659 		 "HDMI/DP,pcm=%d", pcm->device);
1660 
1661 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1662 			   SND_JACK_AVOUT, &ctx->jack,
1663 			   true, false);
1664 	if (err < 0)
1665 		return err;
1666 	ctx->jack->private_data = ctx;
1667 	return 0;
1668 }
1669 
1670 /*
1671  * PM callbacks
1672  */
1673 
1674 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1675 {
1676 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1677 	int port;
1678 
1679 	for_each_port(card_ctx, port) {
1680 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1681 		struct snd_pcm_substream *substream;
1682 
1683 		substream = had_substream_get(ctx);
1684 		if (substream) {
1685 			snd_pcm_suspend(substream);
1686 			had_substream_put(ctx);
1687 		}
1688 	}
1689 
1690 	return 0;
1691 }
1692 
1693 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1694 {
1695 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1696 	int err;
1697 
1698 	err = hdmi_lpe_audio_runtime_suspend(dev);
1699 	if (!err)
1700 		snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1701 	return err;
1702 }
1703 
1704 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1705 {
1706 	pm_runtime_mark_last_busy(dev);
1707 	return 0;
1708 }
1709 
1710 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1711 {
1712 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1713 
1714 	hdmi_lpe_audio_runtime_resume(dev);
1715 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1716 	return 0;
1717 }
1718 
1719 /* release resources */
1720 static void hdmi_lpe_audio_free(struct snd_card *card)
1721 {
1722 	struct snd_intelhad_card *card_ctx = card->private_data;
1723 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1724 	int port;
1725 
1726 	spin_lock_irq(&pdata->lpe_audio_slock);
1727 	pdata->notify_audio_lpe = NULL;
1728 	spin_unlock_irq(&pdata->lpe_audio_slock);
1729 
1730 	for_each_port(card_ctx, port) {
1731 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1732 
1733 		cancel_work_sync(&ctx->hdmi_audio_wq);
1734 	}
1735 
1736 	if (card_ctx->mmio_start)
1737 		iounmap(card_ctx->mmio_start);
1738 	if (card_ctx->irq >= 0)
1739 		free_irq(card_ctx->irq, card_ctx);
1740 }
1741 
1742 /*
1743  * hdmi_lpe_audio_probe - start bridge with i915
1744  *
1745  * This function is called when the i915 driver creates the
1746  * hdmi-lpe-audio platform device.
1747  */
1748 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1749 {
1750 	struct snd_card *card;
1751 	struct snd_intelhad_card *card_ctx;
1752 	struct snd_intelhad *ctx;
1753 	struct snd_pcm *pcm;
1754 	struct intel_hdmi_lpe_audio_pdata *pdata;
1755 	int irq;
1756 	struct resource *res_mmio;
1757 	int port, ret;
1758 
1759 	pdata = pdev->dev.platform_data;
1760 	if (!pdata) {
1761 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* get resources */
1766 	irq = platform_get_irq(pdev, 0);
1767 	if (irq < 0) {
1768 		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1769 		return irq;
1770 	}
1771 
1772 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1773 	if (!res_mmio) {
1774 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1775 		return -ENXIO;
1776 	}
1777 
1778 	/* create a card instance with ALSA framework */
1779 	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1780 			   THIS_MODULE, sizeof(*card_ctx), &card);
1781 	if (ret)
1782 		return ret;
1783 
1784 	card_ctx = card->private_data;
1785 	card_ctx->dev = &pdev->dev;
1786 	card_ctx->card = card;
1787 	strcpy(card->driver, INTEL_HAD);
1788 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1789 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1790 
1791 	card_ctx->irq = -1;
1792 
1793 	card->private_free = hdmi_lpe_audio_free;
1794 
1795 	platform_set_drvdata(pdev, card_ctx);
1796 
1797 	card_ctx->num_pipes = pdata->num_pipes;
1798 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1799 
1800 	for_each_port(card_ctx, port) {
1801 		ctx = &card_ctx->pcm_ctx[port];
1802 		ctx->card_ctx = card_ctx;
1803 		ctx->dev = card_ctx->dev;
1804 		ctx->port = single_port ? -1 : port;
1805 		ctx->pipe = -1;
1806 
1807 		spin_lock_init(&ctx->had_spinlock);
1808 		mutex_init(&ctx->mutex);
1809 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1810 	}
1811 
1812 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1813 		__func__, (unsigned int)res_mmio->start,
1814 		(unsigned int)res_mmio->end);
1815 
1816 	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1817 					       (size_t)(resource_size(res_mmio)));
1818 	if (!card_ctx->mmio_start) {
1819 		dev_err(&pdev->dev, "Could not get ioremap\n");
1820 		ret = -EACCES;
1821 		goto err;
1822 	}
1823 
1824 	/* setup interrupt handler */
1825 	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1826 			  pdev->name, card_ctx);
1827 	if (ret < 0) {
1828 		dev_err(&pdev->dev, "request_irq failed\n");
1829 		goto err;
1830 	}
1831 
1832 	card_ctx->irq = irq;
1833 
1834 	/* only 32bit addressable */
1835 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1836 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1837 
1838 	init_channel_allocations();
1839 
1840 	card_ctx->num_pipes = pdata->num_pipes;
1841 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1842 
1843 	for_each_port(card_ctx, port) {
1844 		int i;
1845 
1846 		ctx = &card_ctx->pcm_ctx[port];
1847 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1848 				  MAX_CAP_STREAMS, &pcm);
1849 		if (ret)
1850 			goto err;
1851 
1852 		/* setup private data which can be retrieved when required */
1853 		pcm->private_data = ctx;
1854 		pcm->info_flags = 0;
1855 		strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1856 		/* setup the ops for playabck */
1857 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1858 
1859 		/* allocate dma pages;
1860 		 * try to allocate 600k buffer as default which is large enough
1861 		 */
1862 		snd_pcm_lib_preallocate_pages_for_all(pcm,
1863 						      SNDRV_DMA_TYPE_DEV, NULL,
1864 						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1865 
1866 		/* create controls */
1867 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1868 			struct snd_kcontrol *kctl;
1869 
1870 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1871 			if (!kctl) {
1872 				ret = -ENOMEM;
1873 				goto err;
1874 			}
1875 
1876 			kctl->id.device = pcm->device;
1877 
1878 			ret = snd_ctl_add(card, kctl);
1879 			if (ret < 0)
1880 				goto err;
1881 		}
1882 
1883 		/* Register channel map controls */
1884 		ret = had_register_chmap_ctls(ctx, pcm);
1885 		if (ret < 0)
1886 			goto err;
1887 
1888 		ret = had_create_jack(ctx, pcm);
1889 		if (ret < 0)
1890 			goto err;
1891 	}
1892 
1893 	ret = snd_card_register(card);
1894 	if (ret)
1895 		goto err;
1896 
1897 	spin_lock_irq(&pdata->lpe_audio_slock);
1898 	pdata->notify_audio_lpe = notify_audio_lpe;
1899 	spin_unlock_irq(&pdata->lpe_audio_slock);
1900 
1901 	pm_runtime_use_autosuspend(&pdev->dev);
1902 	pm_runtime_mark_last_busy(&pdev->dev);
1903 	pm_runtime_set_active(&pdev->dev);
1904 
1905 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1906 	for_each_port(card_ctx, port) {
1907 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1908 
1909 		schedule_work(&ctx->hdmi_audio_wq);
1910 	}
1911 
1912 	return 0;
1913 
1914 err:
1915 	snd_card_free(card);
1916 	return ret;
1917 }
1918 
1919 /*
1920  * hdmi_lpe_audio_remove - stop bridge with i915
1921  *
1922  * This function is called when the platform device is destroyed.
1923  */
1924 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1925 {
1926 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1927 
1928 	snd_card_free(card_ctx->card);
1929 	return 0;
1930 }
1931 
1932 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1933 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1934 	SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1935 			   hdmi_lpe_audio_runtime_resume, NULL)
1936 };
1937 
1938 static struct platform_driver hdmi_lpe_audio_driver = {
1939 	.driver		= {
1940 		.name  = "hdmi-lpe-audio",
1941 		.pm = &hdmi_lpe_audio_pm,
1942 	},
1943 	.probe          = hdmi_lpe_audio_probe,
1944 	.remove		= hdmi_lpe_audio_remove,
1945 };
1946 
1947 module_platform_driver(hdmi_lpe_audio_driver);
1948 MODULE_ALIAS("platform:hdmi_lpe_audio");
1949 
1950 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1951 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1952 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1953 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1954 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1955 MODULE_LICENSE("GPL v2");
1956 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1957