xref: /linux/sound/x86/intel_hdmi_audio.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *		Ramesh Babu K V	<ramesh.babu@intel.com>
7  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *		Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23 
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44 
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48 
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51 		"Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54 		"ID string for INTEL Intel HDMI Audio controller.");
55 
56 /*
57  * ELD SA bits in the CEA Speaker Allocation data block
58  */
59 static const int eld_speaker_allocation_bits[] = {
60 	[0] = FL | FR,
61 	[1] = LFE,
62 	[2] = FC,
63 	[3] = RL | RR,
64 	[4] = RC,
65 	[5] = FLC | FRC,
66 	[6] = RLC | RRC,
67 	/* the following are not defined in ELD yet */
68 	[7] = 0,
69 };
70 
71 /*
72  * This is an ordered list!
73  *
74  * The preceding ones have better chances to be selected by
75  * hdmi_channel_allocation().
76  */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /*                        channel:   7     6    5    4    3     2    1    0  */
79 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80 				/* 2.1 */
81 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82 				/* Dolby Surround */
83 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84 				/* surround40 */
85 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86 				/* surround41 */
87 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88 				/* surround50 */
89 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90 				/* surround51 */
91 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92 				/* 6.1 */
93 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94 				/* surround71 */
95 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96 
97 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120 };
121 
122 static const struct channel_map_table map_tables[] = {
123 	{ SNDRV_CHMAP_FL,       0x00,   FL },
124 	{ SNDRV_CHMAP_FR,       0x01,   FR },
125 	{ SNDRV_CHMAP_RL,       0x04,   RL },
126 	{ SNDRV_CHMAP_RR,       0x05,   RR },
127 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
128 	{ SNDRV_CHMAP_FC,       0x03,   FC },
129 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
130 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
131 	{} /* terminator */
132 };
133 
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
137 		SNDRV_PCM_INFO_MMAP |
138 		SNDRV_PCM_INFO_MMAP_VALID |
139 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
141 		    SNDRV_PCM_FMTBIT_S24_LE |
142 		    SNDRV_PCM_FMTBIT_S32_LE),
143 	.rates = SNDRV_PCM_RATE_32000 |
144 		SNDRV_PCM_RATE_44100 |
145 		SNDRV_PCM_RATE_48000 |
146 		SNDRV_PCM_RATE_88200 |
147 		SNDRV_PCM_RATE_96000 |
148 		SNDRV_PCM_RATE_176400 |
149 		SNDRV_PCM_RATE_192000,
150 	.rate_min = HAD_MIN_RATE,
151 	.rate_max = HAD_MAX_RATE,
152 	.channels_min = HAD_MIN_CHANNEL,
153 	.channels_max = HAD_MAX_CHANNEL,
154 	.buffer_bytes_max = HAD_MAX_BUFFER,
155 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
156 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
157 	.periods_min = HAD_MIN_PERIODS,
158 	.periods_max = HAD_MAX_PERIODS,
159 	.fifo_size = HAD_FIFO_SIZE,
160 };
161 
162 /* Get the active PCM substream;
163  * Call had_substream_put() for unreferecing.
164  * Don't call this inside had_spinlock, as it takes by itself
165  */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169 	struct snd_pcm_substream *substream;
170 	unsigned long flags;
171 
172 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173 	substream = intelhaddata->stream_info.substream;
174 	if (substream)
175 		intelhaddata->stream_info.substream_refcount++;
176 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177 	return substream;
178 }
179 
180 /* Unref the active PCM substream;
181  * Don't call this inside had_spinlock, as it takes by itself
182  */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188 	intelhaddata->stream_info.substream_refcount--;
189 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191 
192 /* Register access functions */
193 static u32 had_read_register_raw(struct snd_intelhad *ctx, u32 reg)
194 {
195 	return ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
196 }
197 
198 static void had_write_register_raw(struct snd_intelhad *ctx, u32 reg, u32 val)
199 {
200 	iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
201 }
202 
203 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
204 {
205 	if (!ctx->connected)
206 		*val = 0;
207 	else
208 		*val = had_read_register_raw(ctx, reg);
209 }
210 
211 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
212 {
213 	if (ctx->connected)
214 		had_write_register_raw(ctx, reg, val);
215 }
216 
217 /*
218  * enable / disable audio configuration
219  *
220  * The normal read/modify should not directly be used on VLV2 for
221  * updating AUD_CONFIG register.
222  * This is because:
223  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
224  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
225  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
226  * register. This field should be 1xy binary for configuration with 6 or
227  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
228  * causes the "channels" field to be updated as 0xy binary resulting in
229  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
230  * appropriate value when doing read-modify of AUD_CONFIG register.
231  */
232 static void had_enable_audio(struct snd_intelhad *intelhaddata,
233 			     bool enable)
234 {
235 	/* update the cached value */
236 	intelhaddata->aud_config.regx.aud_en = enable;
237 	had_write_register(intelhaddata, AUD_CONFIG,
238 			   intelhaddata->aud_config.regval);
239 }
240 
241 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
242 static void had_ack_irqs(struct snd_intelhad *ctx)
243 {
244 	u32 status_reg;
245 
246 	if (!ctx->connected)
247 		return;
248 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
249 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
250 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
251 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
252 }
253 
254 /* Reset buffer pointers */
255 static void had_reset_audio(struct snd_intelhad *intelhaddata)
256 {
257 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
258 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
259 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
260 }
261 
262 /*
263  * initialize audio channel status registers
264  * This function is called in the prepare callback
265  */
266 static int had_prog_status_reg(struct snd_pcm_substream *substream,
267 			struct snd_intelhad *intelhaddata)
268 {
269 	union aud_cfg cfg_val = {.regval = 0};
270 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
271 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
272 
273 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
274 					  IEC958_AES0_NONAUDIO) >> 1;
275 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
276 					  IEC958_AES3_CON_CLOCK) >> 4;
277 	cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
278 
279 	switch (substream->runtime->rate) {
280 	case AUD_SAMPLE_RATE_32:
281 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
282 		break;
283 
284 	case AUD_SAMPLE_RATE_44_1:
285 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
286 		break;
287 	case AUD_SAMPLE_RATE_48:
288 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
289 		break;
290 	case AUD_SAMPLE_RATE_88_2:
291 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
292 		break;
293 	case AUD_SAMPLE_RATE_96:
294 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
295 		break;
296 	case AUD_SAMPLE_RATE_176_4:
297 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
298 		break;
299 	case AUD_SAMPLE_RATE_192:
300 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
301 		break;
302 
303 	default:
304 		/* control should never come here */
305 		return -EINVAL;
306 	}
307 
308 	had_write_register(intelhaddata,
309 			   AUD_CH_STATUS_0, ch_stat0.regval);
310 
311 	switch (substream->runtime->format) {
312 	case SNDRV_PCM_FORMAT_S16_LE:
313 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
314 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
315 		break;
316 	case SNDRV_PCM_FORMAT_S24_LE:
317 	case SNDRV_PCM_FORMAT_S32_LE:
318 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
319 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
320 		break;
321 	default:
322 		return -EINVAL;
323 	}
324 
325 	had_write_register(intelhaddata,
326 			   AUD_CH_STATUS_1, ch_stat1.regval);
327 	return 0;
328 }
329 
330 /*
331  * function to initialize audio
332  * registers and buffer confgiuration registers
333  * This function is called in the prepare callback
334  */
335 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
336 			       struct snd_intelhad *intelhaddata)
337 {
338 	union aud_cfg cfg_val = {.regval = 0};
339 	union aud_buf_config buf_cfg = {.regval = 0};
340 	u8 channels;
341 
342 	had_prog_status_reg(substream, intelhaddata);
343 
344 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
345 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
346 	buf_cfg.regx.aud_delay = 0;
347 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
348 
349 	channels = substream->runtime->channels;
350 	cfg_val.regx.num_ch = channels - 2;
351 	if (channels <= 2)
352 		cfg_val.regx.layout = LAYOUT0;
353 	else
354 		cfg_val.regx.layout = LAYOUT1;
355 
356 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
357 		cfg_val.regx.packet_mode = 1;
358 
359 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
360 		cfg_val.regx.left_align = 1;
361 
362 	cfg_val.regx.val_bit = 1;
363 
364 	/* fix up the DP bits */
365 	if (intelhaddata->dp_output) {
366 		cfg_val.regx.dp_modei = 1;
367 		cfg_val.regx.set = 1;
368 	}
369 
370 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
371 	intelhaddata->aud_config = cfg_val;
372 	return 0;
373 }
374 
375 /*
376  * Compute derived values in channel_allocations[].
377  */
378 static void init_channel_allocations(void)
379 {
380 	int i, j;
381 	struct cea_channel_speaker_allocation *p;
382 
383 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
384 		p = channel_allocations + i;
385 		p->channels = 0;
386 		p->spk_mask = 0;
387 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
388 			if (p->speakers[j]) {
389 				p->channels++;
390 				p->spk_mask |= p->speakers[j];
391 			}
392 	}
393 }
394 
395 /*
396  * The transformation takes two steps:
397  *
398  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
399  *            spk_mask => (channel_allocations[])         => ai->CA
400  *
401  * TODO: it could select the wrong CA from multiple candidates.
402  */
403 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
404 				  int channels)
405 {
406 	int i;
407 	int ca = 0;
408 	int spk_mask = 0;
409 
410 	/*
411 	 * CA defaults to 0 for basic stereo audio
412 	 */
413 	if (channels <= 2)
414 		return 0;
415 
416 	/*
417 	 * expand ELD's speaker allocation mask
418 	 *
419 	 * ELD tells the speaker mask in a compact(paired) form,
420 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
421 	 */
422 
423 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
424 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
425 			spk_mask |= eld_speaker_allocation_bits[i];
426 	}
427 
428 	/* search for the first working match in the CA table */
429 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
430 		if (channels == channel_allocations[i].channels &&
431 		(spk_mask & channel_allocations[i].spk_mask) ==
432 				channel_allocations[i].spk_mask) {
433 			ca = channel_allocations[i].ca_index;
434 			break;
435 		}
436 	}
437 
438 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
439 
440 	return ca;
441 }
442 
443 /* from speaker bit mask to ALSA API channel position */
444 static int spk_to_chmap(int spk)
445 {
446 	const struct channel_map_table *t = map_tables;
447 
448 	for (; t->map; t++) {
449 		if (t->spk_mask == spk)
450 			return t->map;
451 	}
452 	return 0;
453 }
454 
455 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
456 {
457 	int i, c;
458 	int spk_mask = 0;
459 	struct snd_pcm_chmap_elem *chmap;
460 	u8 eld_high, eld_high_mask = 0xF0;
461 	u8 high_msb;
462 
463 	kfree(intelhaddata->chmap->chmap);
464 	intelhaddata->chmap->chmap = NULL;
465 
466 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
467 	if (!chmap)
468 		return;
469 
470 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
471 		intelhaddata->eld[DRM_ELD_SPEAKER]);
472 
473 	/* WA: Fix the max channel supported to 8 */
474 
475 	/*
476 	 * Sink may support more than 8 channels, if eld_high has more than
477 	 * one bit set. SOC supports max 8 channels.
478 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
479 	 */
480 
481 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
482 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
483 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
484 		/* eld_high & (eld_high-1): if more than 1 bit set */
485 		/* 0x1F: 7 channels */
486 		for (i = 1; i < 4; i++) {
487 			high_msb = eld_high & (0x80 >> i);
488 			if (high_msb) {
489 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
490 					high_msb | 0xF;
491 				break;
492 			}
493 		}
494 	}
495 
496 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
497 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
498 			spk_mask |= eld_speaker_allocation_bits[i];
499 	}
500 
501 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
502 		if (spk_mask == channel_allocations[i].spk_mask) {
503 			for (c = 0; c < channel_allocations[i].channels; c++) {
504 				chmap->map[c] = spk_to_chmap(
505 					channel_allocations[i].speakers[
506 						(MAX_SPEAKERS - 1) - c]);
507 			}
508 			chmap->channels = channel_allocations[i].channels;
509 			intelhaddata->chmap->chmap = chmap;
510 			break;
511 		}
512 	}
513 	if (i >= ARRAY_SIZE(channel_allocations))
514 		kfree(chmap);
515 }
516 
517 /*
518  * ALSA API channel-map control callbacks
519  */
520 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
521 				struct snd_ctl_elem_info *uinfo)
522 {
523 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
524 	uinfo->count = HAD_MAX_CHANNEL;
525 	uinfo->value.integer.min = 0;
526 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
527 	return 0;
528 }
529 
530 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
531 				struct snd_ctl_elem_value *ucontrol)
532 {
533 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
534 	struct snd_intelhad *intelhaddata = info->private_data;
535 	int i;
536 	const struct snd_pcm_chmap_elem *chmap;
537 
538 	memset(ucontrol->value.integer.value, 0,
539 	       sizeof(long) * HAD_MAX_CHANNEL);
540 	mutex_lock(&intelhaddata->mutex);
541 	if (!intelhaddata->chmap->chmap) {
542 		mutex_unlock(&intelhaddata->mutex);
543 		return 0;
544 	}
545 
546 	chmap = intelhaddata->chmap->chmap;
547 	for (i = 0; i < chmap->channels; i++)
548 		ucontrol->value.integer.value[i] = chmap->map[i];
549 	mutex_unlock(&intelhaddata->mutex);
550 
551 	return 0;
552 }
553 
554 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
555 						struct snd_pcm *pcm)
556 {
557 	int err;
558 
559 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
560 			NULL, 0, (unsigned long)intelhaddata,
561 			&intelhaddata->chmap);
562 	if (err < 0)
563 		return err;
564 
565 	intelhaddata->chmap->private_data = intelhaddata;
566 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
567 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
568 	intelhaddata->chmap->chmap = NULL;
569 	return 0;
570 }
571 
572 /*
573  * Initialize Data Island Packets registers
574  * This function is called in the prepare callback
575  */
576 static void had_prog_dip(struct snd_pcm_substream *substream,
577 			 struct snd_intelhad *intelhaddata)
578 {
579 	int i;
580 	union aud_ctrl_st ctrl_state = {.regval = 0};
581 	union aud_info_frame2 frame2 = {.regval = 0};
582 	union aud_info_frame3 frame3 = {.regval = 0};
583 	u8 checksum = 0;
584 	u32 info_frame;
585 	int channels;
586 	int ca;
587 
588 	channels = substream->runtime->channels;
589 
590 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
591 
592 	ca = had_channel_allocation(intelhaddata, channels);
593 	if (intelhaddata->dp_output) {
594 		info_frame = DP_INFO_FRAME_WORD1;
595 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
596 	} else {
597 		info_frame = HDMI_INFO_FRAME_WORD1;
598 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
599 		frame3.regx.chnl_alloc = ca;
600 
601 		/* Calculte the byte wide checksum for all valid DIP words */
602 		for (i = 0; i < BYTES_PER_WORD; i++)
603 			checksum += (info_frame >> (i * 8)) & 0xff;
604 		for (i = 0; i < BYTES_PER_WORD; i++)
605 			checksum += (frame2.regval >> (i * 8)) & 0xff;
606 		for (i = 0; i < BYTES_PER_WORD; i++)
607 			checksum += (frame3.regval >> (i * 8)) & 0xff;
608 
609 		frame2.regx.chksum = -(checksum);
610 	}
611 
612 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
613 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
614 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
615 
616 	/* program remaining DIP words with zero */
617 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
618 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
619 
620 	ctrl_state.regx.dip_freq = 1;
621 	ctrl_state.regx.dip_en_sta = 1;
622 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
623 }
624 
625 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
626 {
627 	u32 maud_val;
628 
629 	/* Select maud according to DP 1.2 spec */
630 	if (link_rate == DP_2_7_GHZ) {
631 		switch (aud_samp_freq) {
632 		case AUD_SAMPLE_RATE_32:
633 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
634 			break;
635 
636 		case AUD_SAMPLE_RATE_44_1:
637 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
638 			break;
639 
640 		case AUD_SAMPLE_RATE_48:
641 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
642 			break;
643 
644 		case AUD_SAMPLE_RATE_88_2:
645 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
646 			break;
647 
648 		case AUD_SAMPLE_RATE_96:
649 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
650 			break;
651 
652 		case AUD_SAMPLE_RATE_176_4:
653 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
654 			break;
655 
656 		case HAD_MAX_RATE:
657 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
658 			break;
659 
660 		default:
661 			maud_val = -EINVAL;
662 			break;
663 		}
664 	} else if (link_rate == DP_1_62_GHZ) {
665 		switch (aud_samp_freq) {
666 		case AUD_SAMPLE_RATE_32:
667 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
668 			break;
669 
670 		case AUD_SAMPLE_RATE_44_1:
671 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
672 			break;
673 
674 		case AUD_SAMPLE_RATE_48:
675 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
676 			break;
677 
678 		case AUD_SAMPLE_RATE_88_2:
679 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
680 			break;
681 
682 		case AUD_SAMPLE_RATE_96:
683 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
684 			break;
685 
686 		case AUD_SAMPLE_RATE_176_4:
687 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
688 			break;
689 
690 		case HAD_MAX_RATE:
691 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
692 			break;
693 
694 		default:
695 			maud_val = -EINVAL;
696 			break;
697 		}
698 	} else
699 		maud_val = -EINVAL;
700 
701 	return maud_val;
702 }
703 
704 /*
705  * Program HDMI audio CTS value
706  *
707  * @aud_samp_freq: sampling frequency of audio data
708  * @tmds: sampling frequency of the display data
709  * @link_rate: DP link rate
710  * @n_param: N value, depends on aud_samp_freq
711  * @intelhaddata: substream private data
712  *
713  * Program CTS register based on the audio and display sampling frequency
714  */
715 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
716 			 u32 n_param, struct snd_intelhad *intelhaddata)
717 {
718 	u32 cts_val;
719 	u64 dividend, divisor;
720 
721 	if (intelhaddata->dp_output) {
722 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
723 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
724 	} else {
725 		/* Calculate CTS according to HDMI 1.3a spec*/
726 		dividend = (u64)tmds * n_param*1000;
727 		divisor = 128 * aud_samp_freq;
728 		cts_val = div64_u64(dividend, divisor);
729 	}
730 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
731 		 tmds, n_param, cts_val);
732 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
733 }
734 
735 static int had_calculate_n_value(u32 aud_samp_freq)
736 {
737 	int n_val;
738 
739 	/* Select N according to HDMI 1.3a spec*/
740 	switch (aud_samp_freq) {
741 	case AUD_SAMPLE_RATE_32:
742 		n_val = 4096;
743 		break;
744 
745 	case AUD_SAMPLE_RATE_44_1:
746 		n_val = 6272;
747 		break;
748 
749 	case AUD_SAMPLE_RATE_48:
750 		n_val = 6144;
751 		break;
752 
753 	case AUD_SAMPLE_RATE_88_2:
754 		n_val = 12544;
755 		break;
756 
757 	case AUD_SAMPLE_RATE_96:
758 		n_val = 12288;
759 		break;
760 
761 	case AUD_SAMPLE_RATE_176_4:
762 		n_val = 25088;
763 		break;
764 
765 	case HAD_MAX_RATE:
766 		n_val = 24576;
767 		break;
768 
769 	default:
770 		n_val = -EINVAL;
771 		break;
772 	}
773 	return n_val;
774 }
775 
776 /*
777  * Program HDMI audio N value
778  *
779  * @aud_samp_freq: sampling frequency of audio data
780  * @n_param: N value, depends on aud_samp_freq
781  * @intelhaddata: substream private data
782  *
783  * This function is called in the prepare callback.
784  * It programs based on the audio and display sampling frequency
785  */
786 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
787 		      struct snd_intelhad *intelhaddata)
788 {
789 	int n_val;
790 
791 	if (intelhaddata->dp_output) {
792 		/*
793 		 * According to DP specs, Maud and Naud values hold
794 		 * a relationship, which is stated as:
795 		 * Maud/Naud = 512 * fs / f_LS_Clk
796 		 * where, fs is the sampling frequency of the audio stream
797 		 * and Naud is 32768 for Async clock.
798 		 */
799 
800 		n_val = DP_NAUD_VAL;
801 	} else
802 		n_val =	had_calculate_n_value(aud_samp_freq);
803 
804 	if (n_val < 0)
805 		return n_val;
806 
807 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
808 	*n_param = n_val;
809 	return 0;
810 }
811 
812 /*
813  * PCM ring buffer handling
814  *
815  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
816  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
817  * moves at each period elapsed.  The below illustrates how it works:
818  *
819  * At time=0
820  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
821  *  BD  | 0 | 1 | 2 | 3 |
822  *
823  * At time=1 (period elapsed)
824  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
825  *  BD      | 1 | 2 | 3 | 0 |
826  *
827  * At time=2 (second period elapsed)
828  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
829  *  BD          | 2 | 3 | 0 | 1 |
830  *
831  * The bd_head field points to the index of the BD to be read.  It's also the
832  * position to be filled at next.  The pcm_head and the pcm_filled fields
833  * point to the indices of the current position and of the next position to
834  * be filled, respectively.  For PCM buffer there are both _head and _filled
835  * because they may be difference when nperiods > 4.  For example, in the
836  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
837  *
838  * pcm_head (=1) --v               v-- pcm_filled (=5)
839  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840  *       BD      | 1 | 2 | 3 | 0 |
841  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
842  *
843  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
844  * the hardware skips those BDs in the loop.
845  *
846  * An exceptional setup is the case with nperiods=1.  Since we have to update
847  * BDs after finishing one BD processing, we'd need at least two BDs, where
848  * both BDs point to the same content, the same address, the same size of the
849  * whole PCM buffer.
850  */
851 
852 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
853 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
854 
855 /* Set up a buffer descriptor at the "filled" position */
856 static void had_prog_bd(struct snd_pcm_substream *substream,
857 			struct snd_intelhad *intelhaddata)
858 {
859 	int idx = intelhaddata->bd_head;
860 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
861 	u32 addr = substream->runtime->dma_addr + ofs;
862 
863 	addr |= AUD_BUF_VALID;
864 	if (!substream->runtime->no_period_wakeup)
865 		addr |= AUD_BUF_INTR_EN;
866 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
867 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
868 			   intelhaddata->period_bytes);
869 
870 	/* advance the indices to the next */
871 	intelhaddata->bd_head++;
872 	intelhaddata->bd_head %= intelhaddata->num_bds;
873 	intelhaddata->pcmbuf_filled++;
874 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
875 }
876 
877 /* invalidate a buffer descriptor with the given index */
878 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
879 			      int idx)
880 {
881 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
882 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
883 }
884 
885 /* Initial programming of ring buffer */
886 static void had_init_ringbuf(struct snd_pcm_substream *substream,
887 			     struct snd_intelhad *intelhaddata)
888 {
889 	struct snd_pcm_runtime *runtime = substream->runtime;
890 	int i, num_periods;
891 
892 	num_periods = runtime->periods;
893 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
894 	/* set the minimum 2 BDs for num_periods=1 */
895 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
896 	intelhaddata->period_bytes =
897 		frames_to_bytes(runtime, runtime->period_size);
898 	WARN_ON(intelhaddata->period_bytes & 0x3f);
899 
900 	intelhaddata->bd_head = 0;
901 	intelhaddata->pcmbuf_head = 0;
902 	intelhaddata->pcmbuf_filled = 0;
903 
904 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
905 		if (i < intelhaddata->num_bds)
906 			had_prog_bd(substream, intelhaddata);
907 		else /* invalidate the rest */
908 			had_invalidate_bd(intelhaddata, i);
909 	}
910 
911 	intelhaddata->bd_head = 0; /* reset at head again before starting */
912 }
913 
914 /* process a bd, advance to the next */
915 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
916 				struct snd_intelhad *intelhaddata)
917 {
918 	int num_periods = substream->runtime->periods;
919 
920 	/* reprogram the next buffer */
921 	had_prog_bd(substream, intelhaddata);
922 
923 	/* proceed to next */
924 	intelhaddata->pcmbuf_head++;
925 	intelhaddata->pcmbuf_head %= num_periods;
926 }
927 
928 /* process the current BD(s);
929  * returns the current PCM buffer byte position, or -EPIPE for underrun.
930  */
931 static int had_process_ringbuf(struct snd_pcm_substream *substream,
932 			       struct snd_intelhad *intelhaddata)
933 {
934 	int len, processed;
935 	unsigned long flags;
936 
937 	processed = 0;
938 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
939 	for (;;) {
940 		/* get the remaining bytes on the buffer */
941 		had_read_register(intelhaddata,
942 				  AUD_BUF_LEN(intelhaddata->bd_head),
943 				  &len);
944 		if (len < 0 || len > intelhaddata->period_bytes) {
945 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
946 				len);
947 			len = -EPIPE;
948 			goto out;
949 		}
950 
951 		if (len > 0) /* OK, this is the current buffer */
952 			break;
953 
954 		/* len=0 => already empty, check the next buffer */
955 		if (++processed >= intelhaddata->num_bds) {
956 			len = -EPIPE; /* all empty? - report underrun */
957 			goto out;
958 		}
959 		had_advance_ringbuf(substream, intelhaddata);
960 	}
961 
962 	len = intelhaddata->period_bytes - len;
963 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
964  out:
965 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
966 	return len;
967 }
968 
969 /* called from irq handler */
970 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
971 {
972 	struct snd_pcm_substream *substream;
973 
974 	substream = had_substream_get(intelhaddata);
975 	if (!substream)
976 		return; /* no stream? - bail out */
977 
978 	if (!intelhaddata->connected) {
979 		snd_pcm_stop_xrun(substream);
980 		goto out; /* disconnected? - bail out */
981 	}
982 
983 	/* process or stop the stream */
984 	if (had_process_ringbuf(substream, intelhaddata) < 0)
985 		snd_pcm_stop_xrun(substream);
986 	else
987 		snd_pcm_period_elapsed(substream);
988 
989  out:
990 	had_substream_put(intelhaddata);
991 }
992 
993 /*
994  * The interrupt status 'sticky' bits might not be cleared by
995  * setting '1' to that bit once...
996  */
997 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
998 {
999 	int i;
1000 	u32 val;
1001 
1002 	for (i = 0; i < 100; i++) {
1003 		/* clear bit30, 31 AUD_HDMI_STATUS */
1004 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1005 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1006 			return;
1007 		udelay(100);
1008 		cond_resched();
1009 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1010 	}
1011 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1012 }
1013 
1014 /* Perform some reset procedure but only when need_reset is set;
1015  * this is called from prepare or hw_free callbacks once after trigger STOP
1016  * or underrun has been processed in order to settle down the h/w state.
1017  */
1018 static void had_do_reset(struct snd_intelhad *intelhaddata)
1019 {
1020 	if (!intelhaddata->need_reset || !intelhaddata->connected)
1021 		return;
1022 
1023 	/* Reset buffer pointers */
1024 	had_reset_audio(intelhaddata);
1025 	wait_clear_underrun_bit(intelhaddata);
1026 	intelhaddata->need_reset = false;
1027 }
1028 
1029 /* called from irq handler */
1030 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1031 {
1032 	struct snd_pcm_substream *substream;
1033 
1034 	/* Report UNDERRUN error to above layers */
1035 	substream = had_substream_get(intelhaddata);
1036 	if (substream) {
1037 		snd_pcm_stop_xrun(substream);
1038 		had_substream_put(intelhaddata);
1039 	}
1040 	intelhaddata->need_reset = true;
1041 }
1042 
1043 /*
1044  * ALSA PCM open callback
1045  */
1046 static int had_pcm_open(struct snd_pcm_substream *substream)
1047 {
1048 	struct snd_intelhad *intelhaddata;
1049 	struct snd_pcm_runtime *runtime;
1050 	int retval;
1051 
1052 	intelhaddata = snd_pcm_substream_chip(substream);
1053 	runtime = substream->runtime;
1054 
1055 	pm_runtime_get_sync(intelhaddata->dev);
1056 
1057 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1058 	runtime->hw = had_pcm_hardware;
1059 
1060 	retval = snd_pcm_hw_constraint_integer(runtime,
1061 			 SNDRV_PCM_HW_PARAM_PERIODS);
1062 	if (retval < 0)
1063 		goto error;
1064 
1065 	/* Make sure, that the period size is always aligned
1066 	 * 64byte boundary
1067 	 */
1068 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1069 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1070 	if (retval < 0)
1071 		goto error;
1072 
1073 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1074 	if (retval < 0)
1075 		goto error;
1076 
1077 	/* expose PCM substream */
1078 	spin_lock_irq(&intelhaddata->had_spinlock);
1079 	intelhaddata->stream_info.substream = substream;
1080 	intelhaddata->stream_info.substream_refcount++;
1081 	spin_unlock_irq(&intelhaddata->had_spinlock);
1082 
1083 	return retval;
1084  error:
1085 	pm_runtime_mark_last_busy(intelhaddata->dev);
1086 	pm_runtime_put_autosuspend(intelhaddata->dev);
1087 	return retval;
1088 }
1089 
1090 /*
1091  * ALSA PCM close callback
1092  */
1093 static int had_pcm_close(struct snd_pcm_substream *substream)
1094 {
1095 	struct snd_intelhad *intelhaddata;
1096 
1097 	intelhaddata = snd_pcm_substream_chip(substream);
1098 
1099 	/* unreference and sync with the pending PCM accesses */
1100 	spin_lock_irq(&intelhaddata->had_spinlock);
1101 	intelhaddata->stream_info.substream = NULL;
1102 	intelhaddata->stream_info.substream_refcount--;
1103 	while (intelhaddata->stream_info.substream_refcount > 0) {
1104 		spin_unlock_irq(&intelhaddata->had_spinlock);
1105 		cpu_relax();
1106 		spin_lock_irq(&intelhaddata->had_spinlock);
1107 	}
1108 	spin_unlock_irq(&intelhaddata->had_spinlock);
1109 
1110 	pm_runtime_mark_last_busy(intelhaddata->dev);
1111 	pm_runtime_put_autosuspend(intelhaddata->dev);
1112 	return 0;
1113 }
1114 
1115 /*
1116  * ALSA PCM hw_params callback
1117  */
1118 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1119 			     struct snd_pcm_hw_params *hw_params)
1120 {
1121 	struct snd_intelhad *intelhaddata;
1122 	unsigned long addr;
1123 	int pages, buf_size, retval;
1124 
1125 	intelhaddata = snd_pcm_substream_chip(substream);
1126 	buf_size = params_buffer_bytes(hw_params);
1127 	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1128 	if (retval < 0)
1129 		return retval;
1130 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1131 		__func__, buf_size);
1132 	/* mark the pages as uncached region */
1133 	addr = (unsigned long) substream->runtime->dma_area;
1134 	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1135 	retval = set_memory_uc(addr, pages);
1136 	if (retval) {
1137 		dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1138 			retval);
1139 		return retval;
1140 	}
1141 	memset(substream->runtime->dma_area, 0, buf_size);
1142 
1143 	return retval;
1144 }
1145 
1146 /*
1147  * ALSA PCM hw_free callback
1148  */
1149 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1150 {
1151 	struct snd_intelhad *intelhaddata;
1152 	unsigned long addr;
1153 	u32 pages;
1154 
1155 	intelhaddata = snd_pcm_substream_chip(substream);
1156 	had_do_reset(intelhaddata);
1157 
1158 	/* mark back the pages as cached/writeback region before the free */
1159 	if (substream->runtime->dma_area != NULL) {
1160 		addr = (unsigned long) substream->runtime->dma_area;
1161 		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1162 								PAGE_SIZE;
1163 		set_memory_wb(addr, pages);
1164 		return snd_pcm_lib_free_pages(substream);
1165 	}
1166 	return 0;
1167 }
1168 
1169 /*
1170  * ALSA PCM trigger callback
1171  */
1172 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1173 {
1174 	int retval = 0;
1175 	struct snd_intelhad *intelhaddata;
1176 
1177 	intelhaddata = snd_pcm_substream_chip(substream);
1178 
1179 	spin_lock(&intelhaddata->had_spinlock);
1180 	switch (cmd) {
1181 	case SNDRV_PCM_TRIGGER_START:
1182 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1183 	case SNDRV_PCM_TRIGGER_RESUME:
1184 		/* Enable Audio */
1185 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1186 		had_enable_audio(intelhaddata, true);
1187 		break;
1188 
1189 	case SNDRV_PCM_TRIGGER_STOP:
1190 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1191 		/* Disable Audio */
1192 		had_enable_audio(intelhaddata, false);
1193 		intelhaddata->need_reset = true;
1194 		break;
1195 
1196 	default:
1197 		retval = -EINVAL;
1198 	}
1199 	spin_unlock(&intelhaddata->had_spinlock);
1200 	return retval;
1201 }
1202 
1203 /*
1204  * ALSA PCM prepare callback
1205  */
1206 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1207 {
1208 	int retval;
1209 	u32 disp_samp_freq, n_param;
1210 	u32 link_rate = 0;
1211 	struct snd_intelhad *intelhaddata;
1212 	struct snd_pcm_runtime *runtime;
1213 
1214 	intelhaddata = snd_pcm_substream_chip(substream);
1215 	runtime = substream->runtime;
1216 
1217 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1218 		(int)frames_to_bytes(runtime, runtime->period_size));
1219 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1220 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1221 		(int)snd_pcm_lib_buffer_bytes(substream));
1222 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1223 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1224 
1225 	had_do_reset(intelhaddata);
1226 
1227 	/* Get N value in KHz */
1228 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1229 
1230 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1231 	if (retval) {
1232 		dev_err(intelhaddata->dev,
1233 			"programming N value failed %#x\n", retval);
1234 		goto prep_end;
1235 	}
1236 
1237 	if (intelhaddata->dp_output)
1238 		link_rate = intelhaddata->link_rate;
1239 
1240 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1241 		     n_param, intelhaddata);
1242 
1243 	had_prog_dip(substream, intelhaddata);
1244 
1245 	retval = had_init_audio_ctrl(substream, intelhaddata);
1246 
1247 	/* Prog buffer address */
1248 	had_init_ringbuf(substream, intelhaddata);
1249 
1250 	/*
1251 	 * Program channel mapping in following order:
1252 	 * FL, FR, C, LFE, RL, RR
1253 	 */
1254 
1255 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1256 
1257 prep_end:
1258 	return retval;
1259 }
1260 
1261 /*
1262  * ALSA PCM pointer callback
1263  */
1264 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1265 {
1266 	struct snd_intelhad *intelhaddata;
1267 	int len;
1268 
1269 	intelhaddata = snd_pcm_substream_chip(substream);
1270 
1271 	if (!intelhaddata->connected)
1272 		return SNDRV_PCM_POS_XRUN;
1273 
1274 	len = had_process_ringbuf(substream, intelhaddata);
1275 	if (len < 0)
1276 		return SNDRV_PCM_POS_XRUN;
1277 	len = bytes_to_frames(substream->runtime, len);
1278 	/* wrapping may happen when periods=1 */
1279 	len %= substream->runtime->buffer_size;
1280 	return len;
1281 }
1282 
1283 /*
1284  * ALSA PCM mmap callback
1285  */
1286 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1287 			struct vm_area_struct *vma)
1288 {
1289 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290 	return remap_pfn_range(vma, vma->vm_start,
1291 			substream->dma_buffer.addr >> PAGE_SHIFT,
1292 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1293 }
1294 
1295 /*
1296  * ALSA PCM ops
1297  */
1298 static const struct snd_pcm_ops had_pcm_ops = {
1299 	.open =		had_pcm_open,
1300 	.close =	had_pcm_close,
1301 	.ioctl =	snd_pcm_lib_ioctl,
1302 	.hw_params =	had_pcm_hw_params,
1303 	.hw_free =	had_pcm_hw_free,
1304 	.prepare =	had_pcm_prepare,
1305 	.trigger =	had_pcm_trigger,
1306 	.pointer =	had_pcm_pointer,
1307 	.mmap =		had_pcm_mmap,
1308 };
1309 
1310 /* process mode change of the running stream; called in mutex */
1311 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1312 {
1313 	struct snd_pcm_substream *substream;
1314 	int retval = 0;
1315 	u32 disp_samp_freq, n_param;
1316 	u32 link_rate = 0;
1317 
1318 	substream = had_substream_get(intelhaddata);
1319 	if (!substream)
1320 		return 0;
1321 
1322 	/* Disable Audio */
1323 	had_enable_audio(intelhaddata, false);
1324 
1325 	/* Update CTS value */
1326 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1327 
1328 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1329 	if (retval) {
1330 		dev_err(intelhaddata->dev,
1331 			"programming N value failed %#x\n", retval);
1332 		goto out;
1333 	}
1334 
1335 	if (intelhaddata->dp_output)
1336 		link_rate = intelhaddata->link_rate;
1337 
1338 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1339 		     n_param, intelhaddata);
1340 
1341 	/* Enable Audio */
1342 	had_enable_audio(intelhaddata, true);
1343 
1344 out:
1345 	had_substream_put(intelhaddata);
1346 	return retval;
1347 }
1348 
1349 /* process hot plug, called from wq with mutex locked */
1350 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1351 {
1352 	struct snd_pcm_substream *substream;
1353 
1354 	spin_lock_irq(&intelhaddata->had_spinlock);
1355 	if (intelhaddata->connected) {
1356 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1357 		spin_unlock_irq(&intelhaddata->had_spinlock);
1358 		return;
1359 	}
1360 
1361 	intelhaddata->connected = true;
1362 	dev_dbg(intelhaddata->dev,
1363 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1364 			__func__, __LINE__);
1365 	spin_unlock_irq(&intelhaddata->had_spinlock);
1366 
1367 	had_build_channel_allocation_map(intelhaddata);
1368 
1369 	/* Report to above ALSA layer */
1370 	substream = had_substream_get(intelhaddata);
1371 	if (substream) {
1372 		snd_pcm_stop_xrun(substream);
1373 		had_substream_put(intelhaddata);
1374 	}
1375 
1376 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1377 }
1378 
1379 /* process hot unplug, called from wq with mutex locked */
1380 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1381 {
1382 	struct snd_pcm_substream *substream;
1383 
1384 	spin_lock_irq(&intelhaddata->had_spinlock);
1385 	if (!intelhaddata->connected) {
1386 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1387 		spin_unlock_irq(&intelhaddata->had_spinlock);
1388 		return;
1389 
1390 	}
1391 
1392 	/* Disable Audio */
1393 	had_enable_audio(intelhaddata, false);
1394 
1395 	intelhaddata->connected = false;
1396 	dev_dbg(intelhaddata->dev,
1397 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1398 			__func__, __LINE__);
1399 	spin_unlock_irq(&intelhaddata->had_spinlock);
1400 
1401 	kfree(intelhaddata->chmap->chmap);
1402 	intelhaddata->chmap->chmap = NULL;
1403 
1404 	/* Report to above ALSA layer */
1405 	substream = had_substream_get(intelhaddata);
1406 	if (substream) {
1407 		snd_pcm_stop_xrun(substream);
1408 		had_substream_put(intelhaddata);
1409 	}
1410 
1411 	snd_jack_report(intelhaddata->jack, 0);
1412 }
1413 
1414 /*
1415  * ALSA iec958 and ELD controls
1416  */
1417 
1418 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1419 				struct snd_ctl_elem_info *uinfo)
1420 {
1421 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1422 	uinfo->count = 1;
1423 	return 0;
1424 }
1425 
1426 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1427 				struct snd_ctl_elem_value *ucontrol)
1428 {
1429 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1430 
1431 	mutex_lock(&intelhaddata->mutex);
1432 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1433 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1434 	ucontrol->value.iec958.status[2] =
1435 					(intelhaddata->aes_bits >> 16) & 0xff;
1436 	ucontrol->value.iec958.status[3] =
1437 					(intelhaddata->aes_bits >> 24) & 0xff;
1438 	mutex_unlock(&intelhaddata->mutex);
1439 	return 0;
1440 }
1441 
1442 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1443 				struct snd_ctl_elem_value *ucontrol)
1444 {
1445 	ucontrol->value.iec958.status[0] = 0xff;
1446 	ucontrol->value.iec958.status[1] = 0xff;
1447 	ucontrol->value.iec958.status[2] = 0xff;
1448 	ucontrol->value.iec958.status[3] = 0xff;
1449 	return 0;
1450 }
1451 
1452 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1453 				struct snd_ctl_elem_value *ucontrol)
1454 {
1455 	unsigned int val;
1456 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457 	int changed = 0;
1458 
1459 	val = (ucontrol->value.iec958.status[0] << 0) |
1460 		(ucontrol->value.iec958.status[1] << 8) |
1461 		(ucontrol->value.iec958.status[2] << 16) |
1462 		(ucontrol->value.iec958.status[3] << 24);
1463 	mutex_lock(&intelhaddata->mutex);
1464 	if (intelhaddata->aes_bits != val) {
1465 		intelhaddata->aes_bits = val;
1466 		changed = 1;
1467 	}
1468 	mutex_unlock(&intelhaddata->mutex);
1469 	return changed;
1470 }
1471 
1472 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1473 			    struct snd_ctl_elem_info *uinfo)
1474 {
1475 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1476 	uinfo->count = HDMI_MAX_ELD_BYTES;
1477 	return 0;
1478 }
1479 
1480 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1481 			   struct snd_ctl_elem_value *ucontrol)
1482 {
1483 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484 
1485 	mutex_lock(&intelhaddata->mutex);
1486 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1487 	       HDMI_MAX_ELD_BYTES);
1488 	mutex_unlock(&intelhaddata->mutex);
1489 	return 0;
1490 }
1491 
1492 static const struct snd_kcontrol_new had_controls[] = {
1493 	{
1494 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1495 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1496 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1497 		.info = had_iec958_info, /* shared */
1498 		.get = had_iec958_mask_get,
1499 	},
1500 	{
1501 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1502 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1503 		.info = had_iec958_info,
1504 		.get = had_iec958_get,
1505 		.put = had_iec958_put,
1506 	},
1507 	{
1508 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1509 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1510 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1511 		.name = "ELD",
1512 		.info = had_ctl_eld_info,
1513 		.get = had_ctl_eld_get,
1514 	},
1515 };
1516 
1517 /*
1518  * audio interrupt handler
1519  */
1520 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1521 {
1522 	struct snd_intelhad *ctx = dev_id;
1523 	u32 audio_stat;
1524 
1525 	/* use raw register access to ack IRQs even while disconnected */
1526 	audio_stat = had_read_register_raw(ctx, AUD_HDMI_STATUS);
1527 
1528 	if (audio_stat & HDMI_AUDIO_UNDERRUN) {
1529 		had_write_register_raw(ctx, AUD_HDMI_STATUS,
1530 				       HDMI_AUDIO_UNDERRUN);
1531 		had_process_buffer_underrun(ctx);
1532 	}
1533 
1534 	if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
1535 		had_write_register_raw(ctx, AUD_HDMI_STATUS,
1536 				       HDMI_AUDIO_BUFFER_DONE);
1537 		had_process_buffer_done(ctx);
1538 	}
1539 
1540 	return IRQ_HANDLED;
1541 }
1542 
1543 /*
1544  * monitor plug/unplug notification from i915; just kick off the work
1545  */
1546 static void notify_audio_lpe(struct platform_device *pdev)
1547 {
1548 	struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1549 
1550 	schedule_work(&ctx->hdmi_audio_wq);
1551 }
1552 
1553 /* the work to handle monitor hot plug/unplug */
1554 static void had_audio_wq(struct work_struct *work)
1555 {
1556 	struct snd_intelhad *ctx =
1557 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1558 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1559 
1560 	pm_runtime_get_sync(ctx->dev);
1561 	mutex_lock(&ctx->mutex);
1562 	if (!pdata->hdmi_connected) {
1563 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
1564 			__func__);
1565 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1566 		had_process_hot_unplug(ctx);
1567 	} else {
1568 		struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
1569 
1570 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1571 			__func__, eld->port_id,	pdata->tmds_clock_speed);
1572 
1573 		switch (eld->pipe_id) {
1574 		case 0:
1575 			ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1576 			break;
1577 		case 1:
1578 			ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
1579 			break;
1580 		case 2:
1581 			ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
1582 			break;
1583 		default:
1584 			dev_dbg(ctx->dev, "Invalid pipe %d\n",
1585 				eld->pipe_id);
1586 			break;
1587 		}
1588 
1589 		memcpy(ctx->eld, eld->eld_data, sizeof(ctx->eld));
1590 
1591 		ctx->dp_output = pdata->dp_output;
1592 		ctx->tmds_clock_speed = pdata->tmds_clock_speed;
1593 		ctx->link_rate = pdata->link_rate;
1594 
1595 		had_process_hot_plug(ctx);
1596 
1597 		/* Process mode change if stream is active */
1598 		had_process_mode_change(ctx);
1599 	}
1600 	mutex_unlock(&ctx->mutex);
1601 	pm_runtime_mark_last_busy(ctx->dev);
1602 	pm_runtime_put_autosuspend(ctx->dev);
1603 }
1604 
1605 /*
1606  * Jack interface
1607  */
1608 static int had_create_jack(struct snd_intelhad *ctx)
1609 {
1610 	int err;
1611 
1612 	err = snd_jack_new(ctx->card, "HDMI/DP", SND_JACK_AVOUT, &ctx->jack,
1613 			   true, false);
1614 	if (err < 0)
1615 		return err;
1616 	ctx->jack->private_data = ctx;
1617 	return 0;
1618 }
1619 
1620 /*
1621  * PM callbacks
1622  */
1623 
1624 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1625 {
1626 	struct snd_intelhad *ctx = dev_get_drvdata(dev);
1627 	struct snd_pcm_substream *substream;
1628 
1629 	substream = had_substream_get(ctx);
1630 	if (substream) {
1631 		snd_pcm_suspend(substream);
1632 		had_substream_put(ctx);
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1639 {
1640 	struct snd_intelhad *ctx = dev_get_drvdata(dev);
1641 	int err;
1642 
1643 	err = hdmi_lpe_audio_runtime_suspend(dev);
1644 	if (!err)
1645 		snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D3hot);
1646 	return err;
1647 }
1648 
1649 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1650 {
1651 	pm_runtime_mark_last_busy(dev);
1652 	return 0;
1653 }
1654 
1655 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1656 {
1657 	struct snd_intelhad *ctx = dev_get_drvdata(dev);
1658 
1659 	hdmi_lpe_audio_runtime_resume(dev);
1660 	snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D0);
1661 	return 0;
1662 }
1663 
1664 /* release resources */
1665 static void hdmi_lpe_audio_free(struct snd_card *card)
1666 {
1667 	struct snd_intelhad *ctx = card->private_data;
1668 
1669 	cancel_work_sync(&ctx->hdmi_audio_wq);
1670 
1671 	if (ctx->mmio_start)
1672 		iounmap(ctx->mmio_start);
1673 	if (ctx->irq >= 0)
1674 		free_irq(ctx->irq, ctx);
1675 }
1676 
1677 /*
1678  * hdmi_lpe_audio_probe - start bridge with i915
1679  *
1680  * This function is called when the i915 driver creates the
1681  * hdmi-lpe-audio platform device.
1682  */
1683 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1684 {
1685 	struct snd_card *card;
1686 	struct snd_intelhad *ctx;
1687 	struct snd_pcm *pcm;
1688 	struct intel_hdmi_lpe_audio_pdata *pdata;
1689 	int irq;
1690 	struct resource *res_mmio;
1691 	int i, ret;
1692 
1693 	pdata = pdev->dev.platform_data;
1694 	if (!pdata) {
1695 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1696 		return -EINVAL;
1697 	}
1698 
1699 	/* get resources */
1700 	irq = platform_get_irq(pdev, 0);
1701 	if (irq < 0) {
1702 		dev_err(&pdev->dev, "Could not get irq resource\n");
1703 		return -ENODEV;
1704 	}
1705 
1706 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1707 	if (!res_mmio) {
1708 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1709 		return -ENXIO;
1710 	}
1711 
1712 	/* create a card instance with ALSA framework */
1713 	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1714 			   THIS_MODULE, sizeof(*ctx), &card);
1715 	if (ret)
1716 		return ret;
1717 
1718 	ctx = card->private_data;
1719 	spin_lock_init(&ctx->had_spinlock);
1720 	mutex_init(&ctx->mutex);
1721 	ctx->connected = false;
1722 	ctx->dev = &pdev->dev;
1723 	ctx->card = card;
1724 	ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
1725 	strcpy(card->driver, INTEL_HAD);
1726 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1727 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1728 
1729 	ctx->irq = -1;
1730 	ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
1731 	INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1732 
1733 	card->private_free = hdmi_lpe_audio_free;
1734 
1735 	/* assume pipe A as default */
1736 	ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1737 
1738 	platform_set_drvdata(pdev, ctx);
1739 
1740 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1741 		__func__, (unsigned int)res_mmio->start,
1742 		(unsigned int)res_mmio->end);
1743 
1744 	ctx->mmio_start = ioremap_nocache(res_mmio->start,
1745 					  (size_t)(resource_size(res_mmio)));
1746 	if (!ctx->mmio_start) {
1747 		dev_err(&pdev->dev, "Could not get ioremap\n");
1748 		ret = -EACCES;
1749 		goto err;
1750 	}
1751 
1752 	/* setup interrupt handler */
1753 	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1754 			  pdev->name, ctx);
1755 	if (ret < 0) {
1756 		dev_err(&pdev->dev, "request_irq failed\n");
1757 		goto err;
1758 	}
1759 
1760 	ctx->irq = irq;
1761 
1762 	ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
1763 			  MAX_CAP_STREAMS, &pcm);
1764 	if (ret)
1765 		goto err;
1766 
1767 	/* setup private data which can be retrieved when required */
1768 	pcm->private_data = ctx;
1769 	pcm->info_flags = 0;
1770 	strncpy(pcm->name, card->shortname, strlen(card->shortname));
1771 	/* setup the ops for playabck */
1772 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773 
1774 	/* only 32bit addressable */
1775 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1776 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1777 
1778 	/* allocate dma pages;
1779 	 * try to allocate 600k buffer as default which is large enough
1780 	 */
1781 	snd_pcm_lib_preallocate_pages_for_all(pcm,
1782 			SNDRV_DMA_TYPE_DEV, NULL,
1783 			HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1784 
1785 	/* create controls */
1786 	for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1787 		ret = snd_ctl_add(card, snd_ctl_new1(&had_controls[i], ctx));
1788 		if (ret < 0)
1789 			goto err;
1790 	}
1791 
1792 	init_channel_allocations();
1793 
1794 	/* Register channel map controls */
1795 	ret = had_register_chmap_ctls(ctx, pcm);
1796 	if (ret < 0)
1797 		goto err;
1798 
1799 	ret = had_create_jack(ctx);
1800 	if (ret < 0)
1801 		goto err;
1802 
1803 	ret = snd_card_register(card);
1804 	if (ret)
1805 		goto err;
1806 
1807 	spin_lock_irq(&pdata->lpe_audio_slock);
1808 	pdata->notify_audio_lpe = notify_audio_lpe;
1809 	pdata->notify_pending = false;
1810 	spin_unlock_irq(&pdata->lpe_audio_slock);
1811 
1812 	pm_runtime_use_autosuspend(&pdev->dev);
1813 	pm_runtime_mark_last_busy(&pdev->dev);
1814 	pm_runtime_set_active(&pdev->dev);
1815 
1816 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1817 	schedule_work(&ctx->hdmi_audio_wq);
1818 
1819 	return 0;
1820 
1821 err:
1822 	snd_card_free(card);
1823 	return ret;
1824 }
1825 
1826 /*
1827  * hdmi_lpe_audio_remove - stop bridge with i915
1828  *
1829  * This function is called when the platform device is destroyed.
1830  */
1831 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1832 {
1833 	struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1834 
1835 	snd_card_free(ctx->card);
1836 	return 0;
1837 }
1838 
1839 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1840 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1841 	SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1842 			   hdmi_lpe_audio_runtime_resume, NULL)
1843 };
1844 
1845 static struct platform_driver hdmi_lpe_audio_driver = {
1846 	.driver		= {
1847 		.name  = "hdmi-lpe-audio",
1848 		.pm = &hdmi_lpe_audio_pm,
1849 	},
1850 	.probe          = hdmi_lpe_audio_probe,
1851 	.remove		= hdmi_lpe_audio_remove,
1852 };
1853 
1854 module_platform_driver(hdmi_lpe_audio_driver);
1855 MODULE_ALIAS("platform:hdmi_lpe_audio");
1856 
1857 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1858 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1859 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1860 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1861 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1862 MODULE_LICENSE("GPL v2");
1863 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
1864