xref: /linux/sound/x86/intel_hdmi_audio.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *		Ramesh Babu K V	<ramesh.babu@intel.com>
8  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *		Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15 
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
35 
36 #define for_each_pipe(card_ctx, pipe) \
37 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
38 #define for_each_port(card_ctx, port) \
39 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
40 
41 /*standard module options for ALSA. This module supports only one card*/
42 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
43 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
44 static bool single_port;
45 
46 module_param_named(index, hdmi_card_index, int, 0444);
47 MODULE_PARM_DESC(index,
48 		"Index value for INTEL Intel HDMI Audio controller.");
49 module_param_named(id, hdmi_card_id, charp, 0444);
50 MODULE_PARM_DESC(id,
51 		"ID string for INTEL Intel HDMI Audio controller.");
52 module_param(single_port, bool, 0444);
53 MODULE_PARM_DESC(single_port,
54 		"Single-port mode (for compatibility)");
55 
56 /*
57  * ELD SA bits in the CEA Speaker Allocation data block
58  */
59 static const int eld_speaker_allocation_bits[] = {
60 	[0] = FL | FR,
61 	[1] = LFE,
62 	[2] = FC,
63 	[3] = RL | RR,
64 	[4] = RC,
65 	[5] = FLC | FRC,
66 	[6] = RLC | RRC,
67 	/* the following are not defined in ELD yet */
68 	[7] = 0,
69 };
70 
71 /*
72  * This is an ordered list!
73  *
74  * The preceding ones have better chances to be selected by
75  * hdmi_channel_allocation().
76  */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /*                        channel:   7     6    5    4    3     2    1    0  */
79 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80 				/* 2.1 */
81 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82 				/* Dolby Surround */
83 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84 				/* surround40 */
85 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86 				/* surround41 */
87 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88 				/* surround50 */
89 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90 				/* surround51 */
91 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92 				/* 6.1 */
93 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94 				/* surround71 */
95 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96 
97 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120 };
121 
122 static const struct channel_map_table map_tables[] = {
123 	{ SNDRV_CHMAP_FL,       0x00,   FL },
124 	{ SNDRV_CHMAP_FR,       0x01,   FR },
125 	{ SNDRV_CHMAP_RL,       0x04,   RL },
126 	{ SNDRV_CHMAP_RR,       0x05,   RR },
127 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
128 	{ SNDRV_CHMAP_FC,       0x03,   FC },
129 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
130 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
131 	{} /* terminator */
132 };
133 
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
137 		SNDRV_PCM_INFO_MMAP |
138 		SNDRV_PCM_INFO_MMAP_VALID |
139 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
141 		    SNDRV_PCM_FMTBIT_S24_LE |
142 		    SNDRV_PCM_FMTBIT_S32_LE),
143 	.rates = SNDRV_PCM_RATE_32000 |
144 		SNDRV_PCM_RATE_44100 |
145 		SNDRV_PCM_RATE_48000 |
146 		SNDRV_PCM_RATE_88200 |
147 		SNDRV_PCM_RATE_96000 |
148 		SNDRV_PCM_RATE_176400 |
149 		SNDRV_PCM_RATE_192000,
150 	.rate_min = HAD_MIN_RATE,
151 	.rate_max = HAD_MAX_RATE,
152 	.channels_min = HAD_MIN_CHANNEL,
153 	.channels_max = HAD_MAX_CHANNEL,
154 	.buffer_bytes_max = HAD_MAX_BUFFER,
155 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
156 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
157 	.periods_min = HAD_MIN_PERIODS,
158 	.periods_max = HAD_MAX_PERIODS,
159 	.fifo_size = HAD_FIFO_SIZE,
160 };
161 
162 /* Get the active PCM substream;
163  * Call had_substream_put() for unreferecing.
164  * Don't call this inside had_spinlock, as it takes by itself
165  */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169 	struct snd_pcm_substream *substream;
170 	unsigned long flags;
171 
172 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173 	substream = intelhaddata->stream_info.substream;
174 	if (substream)
175 		intelhaddata->stream_info.substream_refcount++;
176 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177 	return substream;
178 }
179 
180 /* Unref the active PCM substream;
181  * Don't call this inside had_spinlock, as it takes by itself
182  */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188 	intelhaddata->stream_info.substream_refcount--;
189 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191 
192 static u32 had_config_offset(int pipe)
193 {
194 	switch (pipe) {
195 	default:
196 	case 0:
197 		return AUDIO_HDMI_CONFIG_A;
198 	case 1:
199 		return AUDIO_HDMI_CONFIG_B;
200 	case 2:
201 		return AUDIO_HDMI_CONFIG_C;
202 	}
203 }
204 
205 /* Register access functions */
206 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
207 				 int pipe, u32 reg)
208 {
209 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
210 }
211 
212 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
213 				   int pipe, u32 reg, u32 val)
214 {
215 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
216 }
217 
218 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
219 {
220 	if (!ctx->connected)
221 		*val = 0;
222 	else
223 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
224 }
225 
226 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
227 {
228 	if (ctx->connected)
229 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
230 }
231 
232 /*
233  * enable / disable audio configuration
234  *
235  * The normal read/modify should not directly be used on VLV2 for
236  * updating AUD_CONFIG register.
237  * This is because:
238  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
239  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
240  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
241  * register. This field should be 1xy binary for configuration with 6 or
242  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
243  * causes the "channels" field to be updated as 0xy binary resulting in
244  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
245  * appropriate value when doing read-modify of AUD_CONFIG register.
246  */
247 static void had_enable_audio(struct snd_intelhad *intelhaddata,
248 			     bool enable)
249 {
250 	/* update the cached value */
251 	intelhaddata->aud_config.regx.aud_en = enable;
252 	had_write_register(intelhaddata, AUD_CONFIG,
253 			   intelhaddata->aud_config.regval);
254 }
255 
256 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
257 static void had_ack_irqs(struct snd_intelhad *ctx)
258 {
259 	u32 status_reg;
260 
261 	if (!ctx->connected)
262 		return;
263 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
264 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
265 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
266 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267 }
268 
269 /* Reset buffer pointers */
270 static void had_reset_audio(struct snd_intelhad *intelhaddata)
271 {
272 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
273 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
274 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
275 }
276 
277 /*
278  * initialize audio channel status registers
279  * This function is called in the prepare callback
280  */
281 static int had_prog_status_reg(struct snd_pcm_substream *substream,
282 			struct snd_intelhad *intelhaddata)
283 {
284 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
285 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
286 
287 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
288 					  IEC958_AES0_NONAUDIO) >> 1;
289 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
290 					  IEC958_AES3_CON_CLOCK) >> 4;
291 
292 	switch (substream->runtime->rate) {
293 	case AUD_SAMPLE_RATE_32:
294 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
295 		break;
296 
297 	case AUD_SAMPLE_RATE_44_1:
298 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
299 		break;
300 	case AUD_SAMPLE_RATE_48:
301 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
302 		break;
303 	case AUD_SAMPLE_RATE_88_2:
304 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
305 		break;
306 	case AUD_SAMPLE_RATE_96:
307 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
308 		break;
309 	case AUD_SAMPLE_RATE_176_4:
310 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
311 		break;
312 	case AUD_SAMPLE_RATE_192:
313 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
314 		break;
315 
316 	default:
317 		/* control should never come here */
318 		return -EINVAL;
319 	}
320 
321 	had_write_register(intelhaddata,
322 			   AUD_CH_STATUS_0, ch_stat0.regval);
323 
324 	switch (substream->runtime->format) {
325 	case SNDRV_PCM_FORMAT_S16_LE:
326 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
327 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
328 		break;
329 	case SNDRV_PCM_FORMAT_S24_LE:
330 	case SNDRV_PCM_FORMAT_S32_LE:
331 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
332 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
333 		break;
334 	default:
335 		return -EINVAL;
336 	}
337 
338 	had_write_register(intelhaddata,
339 			   AUD_CH_STATUS_1, ch_stat1.regval);
340 	return 0;
341 }
342 
343 /*
344  * function to initialize audio
345  * registers and buffer configuration registers
346  * This function is called in the prepare callback
347  */
348 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
349 			       struct snd_intelhad *intelhaddata)
350 {
351 	union aud_cfg cfg_val = {.regval = 0};
352 	union aud_buf_config buf_cfg = {.regval = 0};
353 	u8 channels;
354 
355 	had_prog_status_reg(substream, intelhaddata);
356 
357 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
358 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
359 	buf_cfg.regx.aud_delay = 0;
360 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
361 
362 	channels = substream->runtime->channels;
363 	cfg_val.regx.num_ch = channels - 2;
364 	if (channels <= 2)
365 		cfg_val.regx.layout = LAYOUT0;
366 	else
367 		cfg_val.regx.layout = LAYOUT1;
368 
369 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
370 		cfg_val.regx.packet_mode = 1;
371 
372 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
373 		cfg_val.regx.left_align = 1;
374 
375 	cfg_val.regx.val_bit = 1;
376 
377 	/* fix up the DP bits */
378 	if (intelhaddata->dp_output) {
379 		cfg_val.regx.dp_modei = 1;
380 		cfg_val.regx.set = 1;
381 	}
382 
383 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
384 	intelhaddata->aud_config = cfg_val;
385 	return 0;
386 }
387 
388 /*
389  * Compute derived values in channel_allocations[].
390  */
391 static void init_channel_allocations(void)
392 {
393 	int i, j;
394 	struct cea_channel_speaker_allocation *p;
395 
396 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
397 		p = channel_allocations + i;
398 		p->channels = 0;
399 		p->spk_mask = 0;
400 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
401 			if (p->speakers[j]) {
402 				p->channels++;
403 				p->spk_mask |= p->speakers[j];
404 			}
405 	}
406 }
407 
408 /*
409  * The transformation takes two steps:
410  *
411  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
412  *            spk_mask => (channel_allocations[])         => ai->CA
413  *
414  * TODO: it could select the wrong CA from multiple candidates.
415  */
416 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
417 				  int channels)
418 {
419 	int i;
420 	int ca = 0;
421 	int spk_mask = 0;
422 
423 	/*
424 	 * CA defaults to 0 for basic stereo audio
425 	 */
426 	if (channels <= 2)
427 		return 0;
428 
429 	/*
430 	 * expand ELD's speaker allocation mask
431 	 *
432 	 * ELD tells the speaker mask in a compact(paired) form,
433 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
434 	 */
435 
436 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
437 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
438 			spk_mask |= eld_speaker_allocation_bits[i];
439 	}
440 
441 	/* search for the first working match in the CA table */
442 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
443 		if (channels == channel_allocations[i].channels &&
444 		(spk_mask & channel_allocations[i].spk_mask) ==
445 				channel_allocations[i].spk_mask) {
446 			ca = channel_allocations[i].ca_index;
447 			break;
448 		}
449 	}
450 
451 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
452 
453 	return ca;
454 }
455 
456 /* from speaker bit mask to ALSA API channel position */
457 static int spk_to_chmap(int spk)
458 {
459 	const struct channel_map_table *t = map_tables;
460 
461 	for (; t->map; t++) {
462 		if (t->spk_mask == spk)
463 			return t->map;
464 	}
465 	return 0;
466 }
467 
468 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
469 {
470 	int i, c;
471 	int spk_mask = 0;
472 	struct snd_pcm_chmap_elem *chmap;
473 	u8 eld_high, eld_high_mask = 0xF0;
474 	u8 high_msb;
475 
476 	kfree(intelhaddata->chmap->chmap);
477 	intelhaddata->chmap->chmap = NULL;
478 
479 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
480 	if (!chmap)
481 		return;
482 
483 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
484 		intelhaddata->eld[DRM_ELD_SPEAKER]);
485 
486 	/* WA: Fix the max channel supported to 8 */
487 
488 	/*
489 	 * Sink may support more than 8 channels, if eld_high has more than
490 	 * one bit set. SOC supports max 8 channels.
491 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
492 	 */
493 
494 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
495 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
496 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
497 		/* eld_high & (eld_high-1): if more than 1 bit set */
498 		/* 0x1F: 7 channels */
499 		for (i = 1; i < 4; i++) {
500 			high_msb = eld_high & (0x80 >> i);
501 			if (high_msb) {
502 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
503 					high_msb | 0xF;
504 				break;
505 			}
506 		}
507 	}
508 
509 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
510 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
511 			spk_mask |= eld_speaker_allocation_bits[i];
512 	}
513 
514 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
515 		if (spk_mask == channel_allocations[i].spk_mask) {
516 			for (c = 0; c < channel_allocations[i].channels; c++) {
517 				chmap->map[c] = spk_to_chmap(
518 					channel_allocations[i].speakers[
519 						(MAX_SPEAKERS - 1) - c]);
520 			}
521 			chmap->channels = channel_allocations[i].channels;
522 			intelhaddata->chmap->chmap = chmap;
523 			break;
524 		}
525 	}
526 	if (i >= ARRAY_SIZE(channel_allocations))
527 		kfree(chmap);
528 }
529 
530 /*
531  * ALSA API channel-map control callbacks
532  */
533 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
534 				struct snd_ctl_elem_info *uinfo)
535 {
536 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
537 	uinfo->count = HAD_MAX_CHANNEL;
538 	uinfo->value.integer.min = 0;
539 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
540 	return 0;
541 }
542 
543 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
544 				struct snd_ctl_elem_value *ucontrol)
545 {
546 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
547 	struct snd_intelhad *intelhaddata = info->private_data;
548 	int i;
549 	const struct snd_pcm_chmap_elem *chmap;
550 
551 	memset(ucontrol->value.integer.value, 0,
552 	       sizeof(long) * HAD_MAX_CHANNEL);
553 	mutex_lock(&intelhaddata->mutex);
554 	if (!intelhaddata->chmap->chmap) {
555 		mutex_unlock(&intelhaddata->mutex);
556 		return 0;
557 	}
558 
559 	chmap = intelhaddata->chmap->chmap;
560 	for (i = 0; i < chmap->channels; i++)
561 		ucontrol->value.integer.value[i] = chmap->map[i];
562 	mutex_unlock(&intelhaddata->mutex);
563 
564 	return 0;
565 }
566 
567 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
568 						struct snd_pcm *pcm)
569 {
570 	int err;
571 
572 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
573 			NULL, 0, (unsigned long)intelhaddata,
574 			&intelhaddata->chmap);
575 	if (err < 0)
576 		return err;
577 
578 	intelhaddata->chmap->private_data = intelhaddata;
579 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
580 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
581 	intelhaddata->chmap->chmap = NULL;
582 	return 0;
583 }
584 
585 /*
586  * Initialize Data Island Packets registers
587  * This function is called in the prepare callback
588  */
589 static void had_prog_dip(struct snd_pcm_substream *substream,
590 			 struct snd_intelhad *intelhaddata)
591 {
592 	int i;
593 	union aud_ctrl_st ctrl_state = {.regval = 0};
594 	union aud_info_frame2 frame2 = {.regval = 0};
595 	union aud_info_frame3 frame3 = {.regval = 0};
596 	u8 checksum = 0;
597 	u32 info_frame;
598 	int channels;
599 	int ca;
600 
601 	channels = substream->runtime->channels;
602 
603 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
604 
605 	ca = had_channel_allocation(intelhaddata, channels);
606 	if (intelhaddata->dp_output) {
607 		info_frame = DP_INFO_FRAME_WORD1;
608 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
609 	} else {
610 		info_frame = HDMI_INFO_FRAME_WORD1;
611 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
612 		frame3.regx.chnl_alloc = ca;
613 
614 		/* Calculte the byte wide checksum for all valid DIP words */
615 		for (i = 0; i < BYTES_PER_WORD; i++)
616 			checksum += (info_frame >> (i * 8)) & 0xff;
617 		for (i = 0; i < BYTES_PER_WORD; i++)
618 			checksum += (frame2.regval >> (i * 8)) & 0xff;
619 		for (i = 0; i < BYTES_PER_WORD; i++)
620 			checksum += (frame3.regval >> (i * 8)) & 0xff;
621 
622 		frame2.regx.chksum = -(checksum);
623 	}
624 
625 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
626 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
627 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
628 
629 	/* program remaining DIP words with zero */
630 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
631 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
632 
633 	ctrl_state.regx.dip_freq = 1;
634 	ctrl_state.regx.dip_en_sta = 1;
635 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
636 }
637 
638 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
639 {
640 	u32 maud_val;
641 
642 	/* Select maud according to DP 1.2 spec */
643 	if (link_rate == DP_2_7_GHZ) {
644 		switch (aud_samp_freq) {
645 		case AUD_SAMPLE_RATE_32:
646 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
647 			break;
648 
649 		case AUD_SAMPLE_RATE_44_1:
650 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
651 			break;
652 
653 		case AUD_SAMPLE_RATE_48:
654 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
655 			break;
656 
657 		case AUD_SAMPLE_RATE_88_2:
658 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
659 			break;
660 
661 		case AUD_SAMPLE_RATE_96:
662 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
663 			break;
664 
665 		case AUD_SAMPLE_RATE_176_4:
666 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
667 			break;
668 
669 		case HAD_MAX_RATE:
670 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
671 			break;
672 
673 		default:
674 			maud_val = -EINVAL;
675 			break;
676 		}
677 	} else if (link_rate == DP_1_62_GHZ) {
678 		switch (aud_samp_freq) {
679 		case AUD_SAMPLE_RATE_32:
680 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
681 			break;
682 
683 		case AUD_SAMPLE_RATE_44_1:
684 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
685 			break;
686 
687 		case AUD_SAMPLE_RATE_48:
688 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
689 			break;
690 
691 		case AUD_SAMPLE_RATE_88_2:
692 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
693 			break;
694 
695 		case AUD_SAMPLE_RATE_96:
696 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
697 			break;
698 
699 		case AUD_SAMPLE_RATE_176_4:
700 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
701 			break;
702 
703 		case HAD_MAX_RATE:
704 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
705 			break;
706 
707 		default:
708 			maud_val = -EINVAL;
709 			break;
710 		}
711 	} else
712 		maud_val = -EINVAL;
713 
714 	return maud_val;
715 }
716 
717 /*
718  * Program HDMI audio CTS value
719  *
720  * @aud_samp_freq: sampling frequency of audio data
721  * @tmds: sampling frequency of the display data
722  * @link_rate: DP link rate
723  * @n_param: N value, depends on aud_samp_freq
724  * @intelhaddata: substream private data
725  *
726  * Program CTS register based on the audio and display sampling frequency
727  */
728 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
729 			 u32 n_param, struct snd_intelhad *intelhaddata)
730 {
731 	u32 cts_val;
732 	u64 dividend, divisor;
733 
734 	if (intelhaddata->dp_output) {
735 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
736 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
737 	} else {
738 		/* Calculate CTS according to HDMI 1.3a spec*/
739 		dividend = (u64)tmds * n_param*1000;
740 		divisor = 128 * aud_samp_freq;
741 		cts_val = div64_u64(dividend, divisor);
742 	}
743 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
744 		 tmds, n_param, cts_val);
745 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
746 }
747 
748 static int had_calculate_n_value(u32 aud_samp_freq)
749 {
750 	int n_val;
751 
752 	/* Select N according to HDMI 1.3a spec*/
753 	switch (aud_samp_freq) {
754 	case AUD_SAMPLE_RATE_32:
755 		n_val = 4096;
756 		break;
757 
758 	case AUD_SAMPLE_RATE_44_1:
759 		n_val = 6272;
760 		break;
761 
762 	case AUD_SAMPLE_RATE_48:
763 		n_val = 6144;
764 		break;
765 
766 	case AUD_SAMPLE_RATE_88_2:
767 		n_val = 12544;
768 		break;
769 
770 	case AUD_SAMPLE_RATE_96:
771 		n_val = 12288;
772 		break;
773 
774 	case AUD_SAMPLE_RATE_176_4:
775 		n_val = 25088;
776 		break;
777 
778 	case HAD_MAX_RATE:
779 		n_val = 24576;
780 		break;
781 
782 	default:
783 		n_val = -EINVAL;
784 		break;
785 	}
786 	return n_val;
787 }
788 
789 /*
790  * Program HDMI audio N value
791  *
792  * @aud_samp_freq: sampling frequency of audio data
793  * @n_param: N value, depends on aud_samp_freq
794  * @intelhaddata: substream private data
795  *
796  * This function is called in the prepare callback.
797  * It programs based on the audio and display sampling frequency
798  */
799 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
800 		      struct snd_intelhad *intelhaddata)
801 {
802 	int n_val;
803 
804 	if (intelhaddata->dp_output) {
805 		/*
806 		 * According to DP specs, Maud and Naud values hold
807 		 * a relationship, which is stated as:
808 		 * Maud/Naud = 512 * fs / f_LS_Clk
809 		 * where, fs is the sampling frequency of the audio stream
810 		 * and Naud is 32768 for Async clock.
811 		 */
812 
813 		n_val = DP_NAUD_VAL;
814 	} else
815 		n_val =	had_calculate_n_value(aud_samp_freq);
816 
817 	if (n_val < 0)
818 		return n_val;
819 
820 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
821 	*n_param = n_val;
822 	return 0;
823 }
824 
825 /*
826  * PCM ring buffer handling
827  *
828  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
829  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
830  * moves at each period elapsed.  The below illustrates how it works:
831  *
832  * At time=0
833  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834  *  BD  | 0 | 1 | 2 | 3 |
835  *
836  * At time=1 (period elapsed)
837  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838  *  BD      | 1 | 2 | 3 | 0 |
839  *
840  * At time=2 (second period elapsed)
841  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842  *  BD          | 2 | 3 | 0 | 1 |
843  *
844  * The bd_head field points to the index of the BD to be read.  It's also the
845  * position to be filled at next.  The pcm_head and the pcm_filled fields
846  * point to the indices of the current position and of the next position to
847  * be filled, respectively.  For PCM buffer there are both _head and _filled
848  * because they may be difference when nperiods > 4.  For example, in the
849  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
850  *
851  * pcm_head (=1) --v               v-- pcm_filled (=5)
852  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853  *       BD      | 1 | 2 | 3 | 0 |
854  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
855  *
856  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
857  * the hardware skips those BDs in the loop.
858  *
859  * An exceptional setup is the case with nperiods=1.  Since we have to update
860  * BDs after finishing one BD processing, we'd need at least two BDs, where
861  * both BDs point to the same content, the same address, the same size of the
862  * whole PCM buffer.
863  */
864 
865 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
866 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
867 
868 /* Set up a buffer descriptor at the "filled" position */
869 static void had_prog_bd(struct snd_pcm_substream *substream,
870 			struct snd_intelhad *intelhaddata)
871 {
872 	int idx = intelhaddata->bd_head;
873 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
874 	u32 addr = substream->runtime->dma_addr + ofs;
875 
876 	addr |= AUD_BUF_VALID;
877 	if (!substream->runtime->no_period_wakeup)
878 		addr |= AUD_BUF_INTR_EN;
879 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
880 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
881 			   intelhaddata->period_bytes);
882 
883 	/* advance the indices to the next */
884 	intelhaddata->bd_head++;
885 	intelhaddata->bd_head %= intelhaddata->num_bds;
886 	intelhaddata->pcmbuf_filled++;
887 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
888 }
889 
890 /* invalidate a buffer descriptor with the given index */
891 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
892 			      int idx)
893 {
894 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
895 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
896 }
897 
898 /* Initial programming of ring buffer */
899 static void had_init_ringbuf(struct snd_pcm_substream *substream,
900 			     struct snd_intelhad *intelhaddata)
901 {
902 	struct snd_pcm_runtime *runtime = substream->runtime;
903 	int i, num_periods;
904 
905 	num_periods = runtime->periods;
906 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
907 	/* set the minimum 2 BDs for num_periods=1 */
908 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
909 	intelhaddata->period_bytes =
910 		frames_to_bytes(runtime, runtime->period_size);
911 	WARN_ON(intelhaddata->period_bytes & 0x3f);
912 
913 	intelhaddata->bd_head = 0;
914 	intelhaddata->pcmbuf_head = 0;
915 	intelhaddata->pcmbuf_filled = 0;
916 
917 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
918 		if (i < intelhaddata->num_bds)
919 			had_prog_bd(substream, intelhaddata);
920 		else /* invalidate the rest */
921 			had_invalidate_bd(intelhaddata, i);
922 	}
923 
924 	intelhaddata->bd_head = 0; /* reset at head again before starting */
925 }
926 
927 /* process a bd, advance to the next */
928 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
929 				struct snd_intelhad *intelhaddata)
930 {
931 	int num_periods = substream->runtime->periods;
932 
933 	/* reprogram the next buffer */
934 	had_prog_bd(substream, intelhaddata);
935 
936 	/* proceed to next */
937 	intelhaddata->pcmbuf_head++;
938 	intelhaddata->pcmbuf_head %= num_periods;
939 }
940 
941 /* process the current BD(s);
942  * returns the current PCM buffer byte position, or -EPIPE for underrun.
943  */
944 static int had_process_ringbuf(struct snd_pcm_substream *substream,
945 			       struct snd_intelhad *intelhaddata)
946 {
947 	int len, processed;
948 	unsigned long flags;
949 
950 	processed = 0;
951 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
952 	for (;;) {
953 		/* get the remaining bytes on the buffer */
954 		had_read_register(intelhaddata,
955 				  AUD_BUF_LEN(intelhaddata->bd_head),
956 				  &len);
957 		if (len < 0 || len > intelhaddata->period_bytes) {
958 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
959 				len);
960 			len = -EPIPE;
961 			goto out;
962 		}
963 
964 		if (len > 0) /* OK, this is the current buffer */
965 			break;
966 
967 		/* len=0 => already empty, check the next buffer */
968 		if (++processed >= intelhaddata->num_bds) {
969 			len = -EPIPE; /* all empty? - report underrun */
970 			goto out;
971 		}
972 		had_advance_ringbuf(substream, intelhaddata);
973 	}
974 
975 	len = intelhaddata->period_bytes - len;
976 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
977  out:
978 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
979 	return len;
980 }
981 
982 /* called from irq handler */
983 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
984 {
985 	struct snd_pcm_substream *substream;
986 
987 	substream = had_substream_get(intelhaddata);
988 	if (!substream)
989 		return; /* no stream? - bail out */
990 
991 	if (!intelhaddata->connected) {
992 		snd_pcm_stop_xrun(substream);
993 		goto out; /* disconnected? - bail out */
994 	}
995 
996 	/* process or stop the stream */
997 	if (had_process_ringbuf(substream, intelhaddata) < 0)
998 		snd_pcm_stop_xrun(substream);
999 	else
1000 		snd_pcm_period_elapsed(substream);
1001 
1002  out:
1003 	had_substream_put(intelhaddata);
1004 }
1005 
1006 /*
1007  * The interrupt status 'sticky' bits might not be cleared by
1008  * setting '1' to that bit once...
1009  */
1010 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011 {
1012 	int i;
1013 	u32 val;
1014 
1015 	for (i = 0; i < 100; i++) {
1016 		/* clear bit30, 31 AUD_HDMI_STATUS */
1017 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019 			return;
1020 		udelay(100);
1021 		cond_resched();
1022 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023 	}
1024 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025 }
1026 
1027 /* Perform some reset procedure after stopping the stream;
1028  * this is called from prepare or hw_free callbacks once after trigger STOP
1029  * or underrun has been processed in order to settle down the h/w state.
1030  */
1031 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1032 {
1033 	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1034 
1035 	if (!intelhaddata->connected)
1036 		return 0;
1037 
1038 	/* Reset buffer pointers */
1039 	had_reset_audio(intelhaddata);
1040 	wait_clear_underrun_bit(intelhaddata);
1041 	return 0;
1042 }
1043 
1044 /* called from irq handler */
1045 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1046 {
1047 	struct snd_pcm_substream *substream;
1048 
1049 	/* Report UNDERRUN error to above layers */
1050 	substream = had_substream_get(intelhaddata);
1051 	if (substream) {
1052 		snd_pcm_stop_xrun(substream);
1053 		had_substream_put(intelhaddata);
1054 	}
1055 }
1056 
1057 /*
1058  * ALSA PCM open callback
1059  */
1060 static int had_pcm_open(struct snd_pcm_substream *substream)
1061 {
1062 	struct snd_intelhad *intelhaddata;
1063 	struct snd_pcm_runtime *runtime;
1064 	int retval;
1065 
1066 	intelhaddata = snd_pcm_substream_chip(substream);
1067 	runtime = substream->runtime;
1068 
1069 	pm_runtime_get_sync(intelhaddata->dev);
1070 
1071 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1072 	runtime->hw = had_pcm_hardware;
1073 
1074 	retval = snd_pcm_hw_constraint_integer(runtime,
1075 			 SNDRV_PCM_HW_PARAM_PERIODS);
1076 	if (retval < 0)
1077 		goto error;
1078 
1079 	/* Make sure, that the period size is always aligned
1080 	 * 64byte boundary
1081 	 */
1082 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1083 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1084 	if (retval < 0)
1085 		goto error;
1086 
1087 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1088 	if (retval < 0)
1089 		goto error;
1090 
1091 	/* expose PCM substream */
1092 	spin_lock_irq(&intelhaddata->had_spinlock);
1093 	intelhaddata->stream_info.substream = substream;
1094 	intelhaddata->stream_info.substream_refcount++;
1095 	spin_unlock_irq(&intelhaddata->had_spinlock);
1096 
1097 	return retval;
1098  error:
1099 	pm_runtime_mark_last_busy(intelhaddata->dev);
1100 	pm_runtime_put_autosuspend(intelhaddata->dev);
1101 	return retval;
1102 }
1103 
1104 /*
1105  * ALSA PCM close callback
1106  */
1107 static int had_pcm_close(struct snd_pcm_substream *substream)
1108 {
1109 	struct snd_intelhad *intelhaddata;
1110 
1111 	intelhaddata = snd_pcm_substream_chip(substream);
1112 
1113 	/* unreference and sync with the pending PCM accesses */
1114 	spin_lock_irq(&intelhaddata->had_spinlock);
1115 	intelhaddata->stream_info.substream = NULL;
1116 	intelhaddata->stream_info.substream_refcount--;
1117 	while (intelhaddata->stream_info.substream_refcount > 0) {
1118 		spin_unlock_irq(&intelhaddata->had_spinlock);
1119 		cpu_relax();
1120 		spin_lock_irq(&intelhaddata->had_spinlock);
1121 	}
1122 	spin_unlock_irq(&intelhaddata->had_spinlock);
1123 
1124 	pm_runtime_mark_last_busy(intelhaddata->dev);
1125 	pm_runtime_put_autosuspend(intelhaddata->dev);
1126 	return 0;
1127 }
1128 
1129 /*
1130  * ALSA PCM hw_params callback
1131  */
1132 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1133 			     struct snd_pcm_hw_params *hw_params)
1134 {
1135 	struct snd_intelhad *intelhaddata;
1136 	int buf_size;
1137 
1138 	intelhaddata = snd_pcm_substream_chip(substream);
1139 	buf_size = params_buffer_bytes(hw_params);
1140 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1141 		__func__, buf_size);
1142 	return 0;
1143 }
1144 
1145 /*
1146  * ALSA PCM trigger callback
1147  */
1148 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1149 {
1150 	int retval = 0;
1151 	struct snd_intelhad *intelhaddata;
1152 
1153 	intelhaddata = snd_pcm_substream_chip(substream);
1154 
1155 	spin_lock(&intelhaddata->had_spinlock);
1156 	switch (cmd) {
1157 	case SNDRV_PCM_TRIGGER_START:
1158 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1159 	case SNDRV_PCM_TRIGGER_RESUME:
1160 		/* Enable Audio */
1161 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1162 		had_enable_audio(intelhaddata, true);
1163 		break;
1164 
1165 	case SNDRV_PCM_TRIGGER_STOP:
1166 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1167 		/* Disable Audio */
1168 		had_enable_audio(intelhaddata, false);
1169 		break;
1170 
1171 	default:
1172 		retval = -EINVAL;
1173 	}
1174 	spin_unlock(&intelhaddata->had_spinlock);
1175 	return retval;
1176 }
1177 
1178 /*
1179  * ALSA PCM prepare callback
1180  */
1181 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1182 {
1183 	int retval;
1184 	u32 disp_samp_freq, n_param;
1185 	u32 link_rate = 0;
1186 	struct snd_intelhad *intelhaddata;
1187 	struct snd_pcm_runtime *runtime;
1188 
1189 	intelhaddata = snd_pcm_substream_chip(substream);
1190 	runtime = substream->runtime;
1191 
1192 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1193 		(int)frames_to_bytes(runtime, runtime->period_size));
1194 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1195 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1196 		(int)snd_pcm_lib_buffer_bytes(substream));
1197 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1198 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1199 
1200 	/* Get N value in KHz */
1201 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1202 
1203 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1204 	if (retval) {
1205 		dev_err(intelhaddata->dev,
1206 			"programming N value failed %#x\n", retval);
1207 		goto prep_end;
1208 	}
1209 
1210 	if (intelhaddata->dp_output)
1211 		link_rate = intelhaddata->link_rate;
1212 
1213 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1214 		     n_param, intelhaddata);
1215 
1216 	had_prog_dip(substream, intelhaddata);
1217 
1218 	retval = had_init_audio_ctrl(substream, intelhaddata);
1219 
1220 	/* Prog buffer address */
1221 	had_init_ringbuf(substream, intelhaddata);
1222 
1223 	/*
1224 	 * Program channel mapping in following order:
1225 	 * FL, FR, C, LFE, RL, RR
1226 	 */
1227 
1228 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1229 
1230 prep_end:
1231 	return retval;
1232 }
1233 
1234 /*
1235  * ALSA PCM pointer callback
1236  */
1237 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1238 {
1239 	struct snd_intelhad *intelhaddata;
1240 	int len;
1241 
1242 	intelhaddata = snd_pcm_substream_chip(substream);
1243 
1244 	if (!intelhaddata->connected)
1245 		return SNDRV_PCM_POS_XRUN;
1246 
1247 	len = had_process_ringbuf(substream, intelhaddata);
1248 	if (len < 0)
1249 		return SNDRV_PCM_POS_XRUN;
1250 	len = bytes_to_frames(substream->runtime, len);
1251 	/* wrapping may happen when periods=1 */
1252 	len %= substream->runtime->buffer_size;
1253 	return len;
1254 }
1255 
1256 /*
1257  * ALSA PCM mmap callback
1258  */
1259 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1260 			struct vm_area_struct *vma)
1261 {
1262 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1263 	return remap_pfn_range(vma, vma->vm_start,
1264 			substream->dma_buffer.addr >> PAGE_SHIFT,
1265 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1266 }
1267 
1268 /*
1269  * ALSA PCM ops
1270  */
1271 static const struct snd_pcm_ops had_pcm_ops = {
1272 	.open =		had_pcm_open,
1273 	.close =	had_pcm_close,
1274 	.hw_params =	had_pcm_hw_params,
1275 	.prepare =	had_pcm_prepare,
1276 	.trigger =	had_pcm_trigger,
1277 	.sync_stop =	had_pcm_sync_stop,
1278 	.pointer =	had_pcm_pointer,
1279 	.mmap =		had_pcm_mmap,
1280 };
1281 
1282 /* process mode change of the running stream; called in mutex */
1283 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1284 {
1285 	struct snd_pcm_substream *substream;
1286 	int retval = 0;
1287 	u32 disp_samp_freq, n_param;
1288 	u32 link_rate = 0;
1289 
1290 	substream = had_substream_get(intelhaddata);
1291 	if (!substream)
1292 		return 0;
1293 
1294 	/* Disable Audio */
1295 	had_enable_audio(intelhaddata, false);
1296 
1297 	/* Update CTS value */
1298 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1299 
1300 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1301 	if (retval) {
1302 		dev_err(intelhaddata->dev,
1303 			"programming N value failed %#x\n", retval);
1304 		goto out;
1305 	}
1306 
1307 	if (intelhaddata->dp_output)
1308 		link_rate = intelhaddata->link_rate;
1309 
1310 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1311 		     n_param, intelhaddata);
1312 
1313 	/* Enable Audio */
1314 	had_enable_audio(intelhaddata, true);
1315 
1316 out:
1317 	had_substream_put(intelhaddata);
1318 	return retval;
1319 }
1320 
1321 /* process hot plug, called from wq with mutex locked */
1322 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1323 {
1324 	struct snd_pcm_substream *substream;
1325 
1326 	spin_lock_irq(&intelhaddata->had_spinlock);
1327 	if (intelhaddata->connected) {
1328 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1329 		spin_unlock_irq(&intelhaddata->had_spinlock);
1330 		return;
1331 	}
1332 
1333 	/* Disable Audio */
1334 	had_enable_audio(intelhaddata, false);
1335 
1336 	intelhaddata->connected = true;
1337 	dev_dbg(intelhaddata->dev,
1338 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1339 			__func__, __LINE__);
1340 	spin_unlock_irq(&intelhaddata->had_spinlock);
1341 
1342 	had_build_channel_allocation_map(intelhaddata);
1343 
1344 	/* Report to above ALSA layer */
1345 	substream = had_substream_get(intelhaddata);
1346 	if (substream) {
1347 		snd_pcm_stop_xrun(substream);
1348 		had_substream_put(intelhaddata);
1349 	}
1350 
1351 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1352 }
1353 
1354 /* process hot unplug, called from wq with mutex locked */
1355 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1356 {
1357 	struct snd_pcm_substream *substream;
1358 
1359 	spin_lock_irq(&intelhaddata->had_spinlock);
1360 	if (!intelhaddata->connected) {
1361 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1362 		spin_unlock_irq(&intelhaddata->had_spinlock);
1363 		return;
1364 
1365 	}
1366 
1367 	/* Disable Audio */
1368 	had_enable_audio(intelhaddata, false);
1369 
1370 	intelhaddata->connected = false;
1371 	dev_dbg(intelhaddata->dev,
1372 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1373 			__func__, __LINE__);
1374 	spin_unlock_irq(&intelhaddata->had_spinlock);
1375 
1376 	kfree(intelhaddata->chmap->chmap);
1377 	intelhaddata->chmap->chmap = NULL;
1378 
1379 	/* Report to above ALSA layer */
1380 	substream = had_substream_get(intelhaddata);
1381 	if (substream) {
1382 		snd_pcm_stop_xrun(substream);
1383 		had_substream_put(intelhaddata);
1384 	}
1385 
1386 	snd_jack_report(intelhaddata->jack, 0);
1387 }
1388 
1389 /*
1390  * ALSA iec958 and ELD controls
1391  */
1392 
1393 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1394 				struct snd_ctl_elem_info *uinfo)
1395 {
1396 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1397 	uinfo->count = 1;
1398 	return 0;
1399 }
1400 
1401 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1402 				struct snd_ctl_elem_value *ucontrol)
1403 {
1404 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1405 
1406 	mutex_lock(&intelhaddata->mutex);
1407 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1408 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1409 	ucontrol->value.iec958.status[2] =
1410 					(intelhaddata->aes_bits >> 16) & 0xff;
1411 	ucontrol->value.iec958.status[3] =
1412 					(intelhaddata->aes_bits >> 24) & 0xff;
1413 	mutex_unlock(&intelhaddata->mutex);
1414 	return 0;
1415 }
1416 
1417 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1418 				struct snd_ctl_elem_value *ucontrol)
1419 {
1420 	ucontrol->value.iec958.status[0] = 0xff;
1421 	ucontrol->value.iec958.status[1] = 0xff;
1422 	ucontrol->value.iec958.status[2] = 0xff;
1423 	ucontrol->value.iec958.status[3] = 0xff;
1424 	return 0;
1425 }
1426 
1427 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1428 				struct snd_ctl_elem_value *ucontrol)
1429 {
1430 	unsigned int val;
1431 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1432 	int changed = 0;
1433 
1434 	val = (ucontrol->value.iec958.status[0] << 0) |
1435 		(ucontrol->value.iec958.status[1] << 8) |
1436 		(ucontrol->value.iec958.status[2] << 16) |
1437 		(ucontrol->value.iec958.status[3] << 24);
1438 	mutex_lock(&intelhaddata->mutex);
1439 	if (intelhaddata->aes_bits != val) {
1440 		intelhaddata->aes_bits = val;
1441 		changed = 1;
1442 	}
1443 	mutex_unlock(&intelhaddata->mutex);
1444 	return changed;
1445 }
1446 
1447 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1448 			    struct snd_ctl_elem_info *uinfo)
1449 {
1450 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1451 	uinfo->count = HDMI_MAX_ELD_BYTES;
1452 	return 0;
1453 }
1454 
1455 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1456 			   struct snd_ctl_elem_value *ucontrol)
1457 {
1458 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1459 
1460 	mutex_lock(&intelhaddata->mutex);
1461 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1462 	       HDMI_MAX_ELD_BYTES);
1463 	mutex_unlock(&intelhaddata->mutex);
1464 	return 0;
1465 }
1466 
1467 static const struct snd_kcontrol_new had_controls[] = {
1468 	{
1469 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1470 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1471 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1472 		.info = had_iec958_info, /* shared */
1473 		.get = had_iec958_mask_get,
1474 	},
1475 	{
1476 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1478 		.info = had_iec958_info,
1479 		.get = had_iec958_get,
1480 		.put = had_iec958_put,
1481 	},
1482 	{
1483 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1484 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1485 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1486 		.name = "ELD",
1487 		.info = had_ctl_eld_info,
1488 		.get = had_ctl_eld_get,
1489 	},
1490 };
1491 
1492 /*
1493  * audio interrupt handler
1494  */
1495 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1496 {
1497 	struct snd_intelhad_card *card_ctx = dev_id;
1498 	u32 audio_stat[3] = {};
1499 	int pipe, port;
1500 
1501 	for_each_pipe(card_ctx, pipe) {
1502 		/* use raw register access to ack IRQs even while disconnected */
1503 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1504 							 AUD_HDMI_STATUS) &
1505 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1506 
1507 		if (audio_stat[pipe])
1508 			had_write_register_raw(card_ctx, pipe,
1509 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1510 	}
1511 
1512 	for_each_port(card_ctx, port) {
1513 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1514 		int pipe = ctx->pipe;
1515 
1516 		if (pipe < 0)
1517 			continue;
1518 
1519 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1520 			had_process_buffer_done(ctx);
1521 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1522 			had_process_buffer_underrun(ctx);
1523 	}
1524 
1525 	return IRQ_HANDLED;
1526 }
1527 
1528 /*
1529  * monitor plug/unplug notification from i915; just kick off the work
1530  */
1531 static void notify_audio_lpe(struct platform_device *pdev, int port)
1532 {
1533 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1534 	struct snd_intelhad *ctx;
1535 
1536 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1537 	if (single_port)
1538 		ctx->port = port;
1539 
1540 	schedule_work(&ctx->hdmi_audio_wq);
1541 }
1542 
1543 /* the work to handle monitor hot plug/unplug */
1544 static void had_audio_wq(struct work_struct *work)
1545 {
1546 	struct snd_intelhad *ctx =
1547 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1548 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1549 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1550 
1551 	pm_runtime_get_sync(ctx->dev);
1552 	mutex_lock(&ctx->mutex);
1553 	if (ppdata->pipe < 0) {
1554 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1555 			__func__, ctx->port);
1556 
1557 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1558 
1559 		ctx->dp_output = false;
1560 		ctx->tmds_clock_speed = 0;
1561 		ctx->link_rate = 0;
1562 
1563 		/* Shut down the stream */
1564 		had_process_hot_unplug(ctx);
1565 
1566 		ctx->pipe = -1;
1567 	} else {
1568 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1569 			__func__, ctx->port, ppdata->ls_clock);
1570 
1571 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1572 
1573 		ctx->dp_output = ppdata->dp_output;
1574 		if (ctx->dp_output) {
1575 			ctx->tmds_clock_speed = 0;
1576 			ctx->link_rate = ppdata->ls_clock;
1577 		} else {
1578 			ctx->tmds_clock_speed = ppdata->ls_clock;
1579 			ctx->link_rate = 0;
1580 		}
1581 
1582 		/*
1583 		 * Shut down the stream before we change
1584 		 * the pipe assignment for this pcm device
1585 		 */
1586 		had_process_hot_plug(ctx);
1587 
1588 		ctx->pipe = ppdata->pipe;
1589 
1590 		/* Restart the stream if necessary */
1591 		had_process_mode_change(ctx);
1592 	}
1593 
1594 	mutex_unlock(&ctx->mutex);
1595 	pm_runtime_mark_last_busy(ctx->dev);
1596 	pm_runtime_put_autosuspend(ctx->dev);
1597 }
1598 
1599 /*
1600  * Jack interface
1601  */
1602 static int had_create_jack(struct snd_intelhad *ctx,
1603 			   struct snd_pcm *pcm)
1604 {
1605 	char hdmi_str[32];
1606 	int err;
1607 
1608 	snprintf(hdmi_str, sizeof(hdmi_str),
1609 		 "HDMI/DP,pcm=%d", pcm->device);
1610 
1611 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1612 			   SND_JACK_AVOUT, &ctx->jack,
1613 			   true, false);
1614 	if (err < 0)
1615 		return err;
1616 	ctx->jack->private_data = ctx;
1617 	return 0;
1618 }
1619 
1620 /*
1621  * PM callbacks
1622  */
1623 
1624 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1625 {
1626 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1627 
1628 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1629 
1630 	return 0;
1631 }
1632 
1633 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1634 {
1635 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1636 
1637 	pm_runtime_mark_last_busy(dev);
1638 
1639 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1640 
1641 	return 0;
1642 }
1643 
1644 /* release resources */
1645 static void hdmi_lpe_audio_free(struct snd_card *card)
1646 {
1647 	struct snd_intelhad_card *card_ctx = card->private_data;
1648 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1649 	int port;
1650 
1651 	spin_lock_irq(&pdata->lpe_audio_slock);
1652 	pdata->notify_audio_lpe = NULL;
1653 	spin_unlock_irq(&pdata->lpe_audio_slock);
1654 
1655 	for_each_port(card_ctx, port) {
1656 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1657 
1658 		cancel_work_sync(&ctx->hdmi_audio_wq);
1659 	}
1660 }
1661 
1662 /*
1663  * hdmi_lpe_audio_probe - start bridge with i915
1664  *
1665  * This function is called when the i915 driver creates the
1666  * hdmi-lpe-audio platform device.
1667  */
1668 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1669 {
1670 	struct snd_card *card;
1671 	struct snd_intelhad_card *card_ctx;
1672 	struct snd_intelhad *ctx;
1673 	struct snd_pcm *pcm;
1674 	struct intel_hdmi_lpe_audio_pdata *pdata;
1675 	int irq;
1676 	struct resource *res_mmio;
1677 	int port, ret;
1678 
1679 	pdata = pdev->dev.platform_data;
1680 	if (!pdata) {
1681 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1682 		return -EINVAL;
1683 	}
1684 
1685 	/* get resources */
1686 	irq = platform_get_irq(pdev, 0);
1687 	if (irq < 0)
1688 		return irq;
1689 
1690 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1691 	if (!res_mmio) {
1692 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1693 		return -ENXIO;
1694 	}
1695 
1696 	/* create a card instance with ALSA framework */
1697 	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1698 				THIS_MODULE, sizeof(*card_ctx), &card);
1699 	if (ret)
1700 		return ret;
1701 
1702 	card_ctx = card->private_data;
1703 	card_ctx->dev = &pdev->dev;
1704 	card_ctx->card = card;
1705 	strcpy(card->driver, INTEL_HAD);
1706 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1707 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1708 
1709 	card_ctx->irq = -1;
1710 
1711 	card->private_free = hdmi_lpe_audio_free;
1712 
1713 	platform_set_drvdata(pdev, card_ctx);
1714 
1715 	card_ctx->num_pipes = pdata->num_pipes;
1716 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1717 
1718 	for_each_port(card_ctx, port) {
1719 		ctx = &card_ctx->pcm_ctx[port];
1720 		ctx->card_ctx = card_ctx;
1721 		ctx->dev = card_ctx->dev;
1722 		ctx->port = single_port ? -1 : port;
1723 		ctx->pipe = -1;
1724 
1725 		spin_lock_init(&ctx->had_spinlock);
1726 		mutex_init(&ctx->mutex);
1727 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1728 	}
1729 
1730 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1731 		__func__, (unsigned int)res_mmio->start,
1732 		(unsigned int)res_mmio->end);
1733 
1734 	card_ctx->mmio_start =
1735 		devm_ioremap(&pdev->dev, res_mmio->start,
1736 			     (size_t)(resource_size(res_mmio)));
1737 	if (!card_ctx->mmio_start) {
1738 		dev_err(&pdev->dev, "Could not get ioremap\n");
1739 		return -EACCES;
1740 	}
1741 
1742 	/* setup interrupt handler */
1743 	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1744 			       0, pdev->name, card_ctx);
1745 	if (ret < 0) {
1746 		dev_err(&pdev->dev, "request_irq failed\n");
1747 		return ret;
1748 	}
1749 
1750 	card_ctx->irq = irq;
1751 
1752 	/* only 32bit addressable */
1753 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1754 	if (ret)
1755 		return ret;
1756 
1757 	init_channel_allocations();
1758 
1759 	card_ctx->num_pipes = pdata->num_pipes;
1760 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1761 
1762 	for_each_port(card_ctx, port) {
1763 		int i;
1764 
1765 		ctx = &card_ctx->pcm_ctx[port];
1766 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1767 				  MAX_CAP_STREAMS, &pcm);
1768 		if (ret)
1769 			return ret;
1770 
1771 		/* setup private data which can be retrieved when required */
1772 		pcm->private_data = ctx;
1773 		pcm->info_flags = 0;
1774 		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1775 		/* setup the ops for playback */
1776 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1777 
1778 		/* allocate dma pages;
1779 		 * try to allocate 600k buffer as default which is large enough
1780 		 */
1781 		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1782 					       card->dev, HAD_DEFAULT_BUFFER,
1783 					       HAD_MAX_BUFFER);
1784 
1785 		/* create controls */
1786 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1787 			struct snd_kcontrol *kctl;
1788 
1789 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1790 			if (!kctl)
1791 				return -ENOMEM;
1792 
1793 			kctl->id.device = pcm->device;
1794 
1795 			ret = snd_ctl_add(card, kctl);
1796 			if (ret < 0)
1797 				return ret;
1798 		}
1799 
1800 		/* Register channel map controls */
1801 		ret = had_register_chmap_ctls(ctx, pcm);
1802 		if (ret < 0)
1803 			return ret;
1804 
1805 		ret = had_create_jack(ctx, pcm);
1806 		if (ret < 0)
1807 			return ret;
1808 	}
1809 
1810 	ret = snd_card_register(card);
1811 	if (ret)
1812 		return ret;
1813 
1814 	spin_lock_irq(&pdata->lpe_audio_slock);
1815 	pdata->notify_audio_lpe = notify_audio_lpe;
1816 	spin_unlock_irq(&pdata->lpe_audio_slock);
1817 
1818 	pm_runtime_use_autosuspend(&pdev->dev);
1819 	pm_runtime_mark_last_busy(&pdev->dev);
1820 
1821 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1822 	for_each_port(card_ctx, port) {
1823 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1824 
1825 		schedule_work(&ctx->hdmi_audio_wq);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1832 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1833 };
1834 
1835 static struct platform_driver hdmi_lpe_audio_driver = {
1836 	.driver		= {
1837 		.name  = "hdmi-lpe-audio",
1838 		.pm = &hdmi_lpe_audio_pm,
1839 	},
1840 	.probe          = hdmi_lpe_audio_probe,
1841 };
1842 
1843 module_platform_driver(hdmi_lpe_audio_driver);
1844 MODULE_ALIAS("platform:hdmi_lpe_audio");
1845 
1846 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1847 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1848 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1849 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1850 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1851 MODULE_LICENSE("GPL v2");
1852