xref: /linux/sound/x86/intel_hdmi_audio.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *		Ramesh Babu K V	<ramesh.babu@intel.com>
8  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *		Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15 
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
35 
36 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
37 
38 #define for_each_pipe(card_ctx, pipe) \
39 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
40 #define for_each_port(card_ctx, port) \
41 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
42 
43 /*standard module options for ALSA. This module supports only one card*/
44 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
45 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
46 static bool single_port;
47 
48 module_param_named(index, hdmi_card_index, int, 0444);
49 MODULE_PARM_DESC(index,
50 		"Index value for INTEL Intel HDMI Audio controller.");
51 module_param_named(id, hdmi_card_id, charp, 0444);
52 MODULE_PARM_DESC(id,
53 		"ID string for INTEL Intel HDMI Audio controller.");
54 module_param(single_port, bool, 0444);
55 MODULE_PARM_DESC(single_port,
56 		"Single-port mode (for compatibility)");
57 
58 /*
59  * ELD SA bits in the CEA Speaker Allocation data block
60  */
61 static const int eld_speaker_allocation_bits[] = {
62 	[0] = FL | FR,
63 	[1] = LFE,
64 	[2] = FC,
65 	[3] = RL | RR,
66 	[4] = RC,
67 	[5] = FLC | FRC,
68 	[6] = RLC | RRC,
69 	/* the following are not defined in ELD yet */
70 	[7] = 0,
71 };
72 
73 /*
74  * This is an ordered list!
75  *
76  * The preceding ones have better chances to be selected by
77  * hdmi_channel_allocation().
78  */
79 static struct cea_channel_speaker_allocation channel_allocations[] = {
80 /*                        channel:   7     6    5    4    3     2    1    0  */
81 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
82 				/* 2.1 */
83 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
84 				/* Dolby Surround */
85 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
86 				/* surround40 */
87 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
88 				/* surround41 */
89 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
90 				/* surround50 */
91 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
92 				/* surround51 */
93 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
94 				/* 6.1 */
95 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96 				/* surround71 */
97 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
98 
99 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
100 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
101 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
102 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
103 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
104 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
105 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
106 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
107 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
108 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
111 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
112 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
113 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
114 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
115 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
118 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
119 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
120 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
121 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
122 };
123 
124 static const struct channel_map_table map_tables[] = {
125 	{ SNDRV_CHMAP_FL,       0x00,   FL },
126 	{ SNDRV_CHMAP_FR,       0x01,   FR },
127 	{ SNDRV_CHMAP_RL,       0x04,   RL },
128 	{ SNDRV_CHMAP_RR,       0x05,   RR },
129 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
130 	{ SNDRV_CHMAP_FC,       0x03,   FC },
131 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
132 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
133 	{} /* terminator */
134 };
135 
136 /* hardware capability structure */
137 static const struct snd_pcm_hardware had_pcm_hardware = {
138 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
139 		SNDRV_PCM_INFO_MMAP |
140 		SNDRV_PCM_INFO_MMAP_VALID |
141 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
142 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
143 		    SNDRV_PCM_FMTBIT_S24_LE |
144 		    SNDRV_PCM_FMTBIT_S32_LE),
145 	.rates = SNDRV_PCM_RATE_32000 |
146 		SNDRV_PCM_RATE_44100 |
147 		SNDRV_PCM_RATE_48000 |
148 		SNDRV_PCM_RATE_88200 |
149 		SNDRV_PCM_RATE_96000 |
150 		SNDRV_PCM_RATE_176400 |
151 		SNDRV_PCM_RATE_192000,
152 	.rate_min = HAD_MIN_RATE,
153 	.rate_max = HAD_MAX_RATE,
154 	.channels_min = HAD_MIN_CHANNEL,
155 	.channels_max = HAD_MAX_CHANNEL,
156 	.buffer_bytes_max = HAD_MAX_BUFFER,
157 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
158 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
159 	.periods_min = HAD_MIN_PERIODS,
160 	.periods_max = HAD_MAX_PERIODS,
161 	.fifo_size = HAD_FIFO_SIZE,
162 };
163 
164 /* Get the active PCM substream;
165  * Call had_substream_put() for unreferecing.
166  * Don't call this inside had_spinlock, as it takes by itself
167  */
168 static struct snd_pcm_substream *
169 had_substream_get(struct snd_intelhad *intelhaddata)
170 {
171 	struct snd_pcm_substream *substream;
172 	unsigned long flags;
173 
174 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
175 	substream = intelhaddata->stream_info.substream;
176 	if (substream)
177 		intelhaddata->stream_info.substream_refcount++;
178 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
179 	return substream;
180 }
181 
182 /* Unref the active PCM substream;
183  * Don't call this inside had_spinlock, as it takes by itself
184  */
185 static void had_substream_put(struct snd_intelhad *intelhaddata)
186 {
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
190 	intelhaddata->stream_info.substream_refcount--;
191 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
192 }
193 
194 static u32 had_config_offset(int pipe)
195 {
196 	switch (pipe) {
197 	default:
198 	case 0:
199 		return AUDIO_HDMI_CONFIG_A;
200 	case 1:
201 		return AUDIO_HDMI_CONFIG_B;
202 	case 2:
203 		return AUDIO_HDMI_CONFIG_C;
204 	}
205 }
206 
207 /* Register access functions */
208 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
209 				 int pipe, u32 reg)
210 {
211 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
212 }
213 
214 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
215 				   int pipe, u32 reg, u32 val)
216 {
217 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
218 }
219 
220 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
221 {
222 	if (!ctx->connected)
223 		*val = 0;
224 	else
225 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
226 }
227 
228 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
229 {
230 	if (ctx->connected)
231 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
232 }
233 
234 /*
235  * enable / disable audio configuration
236  *
237  * The normal read/modify should not directly be used on VLV2 for
238  * updating AUD_CONFIG register.
239  * This is because:
240  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
241  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
242  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
243  * register. This field should be 1xy binary for configuration with 6 or
244  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
245  * causes the "channels" field to be updated as 0xy binary resulting in
246  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
247  * appropriate value when doing read-modify of AUD_CONFIG register.
248  */
249 static void had_enable_audio(struct snd_intelhad *intelhaddata,
250 			     bool enable)
251 {
252 	/* update the cached value */
253 	intelhaddata->aud_config.regx.aud_en = enable;
254 	had_write_register(intelhaddata, AUD_CONFIG,
255 			   intelhaddata->aud_config.regval);
256 }
257 
258 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
259 static void had_ack_irqs(struct snd_intelhad *ctx)
260 {
261 	u32 status_reg;
262 
263 	if (!ctx->connected)
264 		return;
265 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
266 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
267 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
268 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269 }
270 
271 /* Reset buffer pointers */
272 static void had_reset_audio(struct snd_intelhad *intelhaddata)
273 {
274 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
275 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
276 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
277 }
278 
279 /*
280  * initialize audio channel status registers
281  * This function is called in the prepare callback
282  */
283 static int had_prog_status_reg(struct snd_pcm_substream *substream,
284 			struct snd_intelhad *intelhaddata)
285 {
286 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
287 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
288 
289 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
290 					  IEC958_AES0_NONAUDIO) >> 1;
291 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
292 					  IEC958_AES3_CON_CLOCK) >> 4;
293 
294 	switch (substream->runtime->rate) {
295 	case AUD_SAMPLE_RATE_32:
296 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
297 		break;
298 
299 	case AUD_SAMPLE_RATE_44_1:
300 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
301 		break;
302 	case AUD_SAMPLE_RATE_48:
303 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
304 		break;
305 	case AUD_SAMPLE_RATE_88_2:
306 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
307 		break;
308 	case AUD_SAMPLE_RATE_96:
309 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
310 		break;
311 	case AUD_SAMPLE_RATE_176_4:
312 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
313 		break;
314 	case AUD_SAMPLE_RATE_192:
315 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
316 		break;
317 
318 	default:
319 		/* control should never come here */
320 		return -EINVAL;
321 	}
322 
323 	had_write_register(intelhaddata,
324 			   AUD_CH_STATUS_0, ch_stat0.regval);
325 
326 	switch (substream->runtime->format) {
327 	case SNDRV_PCM_FORMAT_S16_LE:
328 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
329 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
330 		break;
331 	case SNDRV_PCM_FORMAT_S24_LE:
332 	case SNDRV_PCM_FORMAT_S32_LE:
333 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
334 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
335 		break;
336 	default:
337 		return -EINVAL;
338 	}
339 
340 	had_write_register(intelhaddata,
341 			   AUD_CH_STATUS_1, ch_stat1.regval);
342 	return 0;
343 }
344 
345 /*
346  * function to initialize audio
347  * registers and buffer configuration registers
348  * This function is called in the prepare callback
349  */
350 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
351 			       struct snd_intelhad *intelhaddata)
352 {
353 	union aud_cfg cfg_val = {.regval = 0};
354 	union aud_buf_config buf_cfg = {.regval = 0};
355 	u8 channels;
356 
357 	had_prog_status_reg(substream, intelhaddata);
358 
359 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
360 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
361 	buf_cfg.regx.aud_delay = 0;
362 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
363 
364 	channels = substream->runtime->channels;
365 	cfg_val.regx.num_ch = channels - 2;
366 	if (channels <= 2)
367 		cfg_val.regx.layout = LAYOUT0;
368 	else
369 		cfg_val.regx.layout = LAYOUT1;
370 
371 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
372 		cfg_val.regx.packet_mode = 1;
373 
374 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
375 		cfg_val.regx.left_align = 1;
376 
377 	cfg_val.regx.val_bit = 1;
378 
379 	/* fix up the DP bits */
380 	if (intelhaddata->dp_output) {
381 		cfg_val.regx.dp_modei = 1;
382 		cfg_val.regx.set = 1;
383 	}
384 
385 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
386 	intelhaddata->aud_config = cfg_val;
387 	return 0;
388 }
389 
390 /*
391  * Compute derived values in channel_allocations[].
392  */
393 static void init_channel_allocations(void)
394 {
395 	int i, j;
396 	struct cea_channel_speaker_allocation *p;
397 
398 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
399 		p = channel_allocations + i;
400 		p->channels = 0;
401 		p->spk_mask = 0;
402 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
403 			if (p->speakers[j]) {
404 				p->channels++;
405 				p->spk_mask |= p->speakers[j];
406 			}
407 	}
408 }
409 
410 /*
411  * The transformation takes two steps:
412  *
413  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
414  *            spk_mask => (channel_allocations[])         => ai->CA
415  *
416  * TODO: it could select the wrong CA from multiple candidates.
417  */
418 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
419 				  int channels)
420 {
421 	int i;
422 	int ca = 0;
423 	int spk_mask = 0;
424 
425 	/*
426 	 * CA defaults to 0 for basic stereo audio
427 	 */
428 	if (channels <= 2)
429 		return 0;
430 
431 	/*
432 	 * expand ELD's speaker allocation mask
433 	 *
434 	 * ELD tells the speaker mask in a compact(paired) form,
435 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
436 	 */
437 
438 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
439 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
440 			spk_mask |= eld_speaker_allocation_bits[i];
441 	}
442 
443 	/* search for the first working match in the CA table */
444 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
445 		if (channels == channel_allocations[i].channels &&
446 		(spk_mask & channel_allocations[i].spk_mask) ==
447 				channel_allocations[i].spk_mask) {
448 			ca = channel_allocations[i].ca_index;
449 			break;
450 		}
451 	}
452 
453 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
454 
455 	return ca;
456 }
457 
458 /* from speaker bit mask to ALSA API channel position */
459 static int spk_to_chmap(int spk)
460 {
461 	const struct channel_map_table *t = map_tables;
462 
463 	for (; t->map; t++) {
464 		if (t->spk_mask == spk)
465 			return t->map;
466 	}
467 	return 0;
468 }
469 
470 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
471 {
472 	int i, c;
473 	int spk_mask = 0;
474 	struct snd_pcm_chmap_elem *chmap;
475 	u8 eld_high, eld_high_mask = 0xF0;
476 	u8 high_msb;
477 
478 	kfree(intelhaddata->chmap->chmap);
479 	intelhaddata->chmap->chmap = NULL;
480 
481 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
482 	if (!chmap)
483 		return;
484 
485 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
486 		intelhaddata->eld[DRM_ELD_SPEAKER]);
487 
488 	/* WA: Fix the max channel supported to 8 */
489 
490 	/*
491 	 * Sink may support more than 8 channels, if eld_high has more than
492 	 * one bit set. SOC supports max 8 channels.
493 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
494 	 */
495 
496 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
497 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
498 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
499 		/* eld_high & (eld_high-1): if more than 1 bit set */
500 		/* 0x1F: 7 channels */
501 		for (i = 1; i < 4; i++) {
502 			high_msb = eld_high & (0x80 >> i);
503 			if (high_msb) {
504 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
505 					high_msb | 0xF;
506 				break;
507 			}
508 		}
509 	}
510 
511 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
512 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
513 			spk_mask |= eld_speaker_allocation_bits[i];
514 	}
515 
516 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
517 		if (spk_mask == channel_allocations[i].spk_mask) {
518 			for (c = 0; c < channel_allocations[i].channels; c++) {
519 				chmap->map[c] = spk_to_chmap(
520 					channel_allocations[i].speakers[
521 						(MAX_SPEAKERS - 1) - c]);
522 			}
523 			chmap->channels = channel_allocations[i].channels;
524 			intelhaddata->chmap->chmap = chmap;
525 			break;
526 		}
527 	}
528 	if (i >= ARRAY_SIZE(channel_allocations))
529 		kfree(chmap);
530 }
531 
532 /*
533  * ALSA API channel-map control callbacks
534  */
535 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
536 				struct snd_ctl_elem_info *uinfo)
537 {
538 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
539 	uinfo->count = HAD_MAX_CHANNEL;
540 	uinfo->value.integer.min = 0;
541 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
542 	return 0;
543 }
544 
545 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
546 				struct snd_ctl_elem_value *ucontrol)
547 {
548 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
549 	struct snd_intelhad *intelhaddata = info->private_data;
550 	int i;
551 	const struct snd_pcm_chmap_elem *chmap;
552 
553 	memset(ucontrol->value.integer.value, 0,
554 	       sizeof(long) * HAD_MAX_CHANNEL);
555 	mutex_lock(&intelhaddata->mutex);
556 	if (!intelhaddata->chmap->chmap) {
557 		mutex_unlock(&intelhaddata->mutex);
558 		return 0;
559 	}
560 
561 	chmap = intelhaddata->chmap->chmap;
562 	for (i = 0; i < chmap->channels; i++)
563 		ucontrol->value.integer.value[i] = chmap->map[i];
564 	mutex_unlock(&intelhaddata->mutex);
565 
566 	return 0;
567 }
568 
569 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
570 						struct snd_pcm *pcm)
571 {
572 	int err;
573 
574 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
575 			NULL, 0, (unsigned long)intelhaddata,
576 			&intelhaddata->chmap);
577 	if (err < 0)
578 		return err;
579 
580 	intelhaddata->chmap->private_data = intelhaddata;
581 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
582 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
583 	intelhaddata->chmap->chmap = NULL;
584 	return 0;
585 }
586 
587 /*
588  * Initialize Data Island Packets registers
589  * This function is called in the prepare callback
590  */
591 static void had_prog_dip(struct snd_pcm_substream *substream,
592 			 struct snd_intelhad *intelhaddata)
593 {
594 	int i;
595 	union aud_ctrl_st ctrl_state = {.regval = 0};
596 	union aud_info_frame2 frame2 = {.regval = 0};
597 	union aud_info_frame3 frame3 = {.regval = 0};
598 	u8 checksum = 0;
599 	u32 info_frame;
600 	int channels;
601 	int ca;
602 
603 	channels = substream->runtime->channels;
604 
605 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
606 
607 	ca = had_channel_allocation(intelhaddata, channels);
608 	if (intelhaddata->dp_output) {
609 		info_frame = DP_INFO_FRAME_WORD1;
610 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
611 	} else {
612 		info_frame = HDMI_INFO_FRAME_WORD1;
613 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
614 		frame3.regx.chnl_alloc = ca;
615 
616 		/* Calculte the byte wide checksum for all valid DIP words */
617 		for (i = 0; i < BYTES_PER_WORD; i++)
618 			checksum += (info_frame >> (i * 8)) & 0xff;
619 		for (i = 0; i < BYTES_PER_WORD; i++)
620 			checksum += (frame2.regval >> (i * 8)) & 0xff;
621 		for (i = 0; i < BYTES_PER_WORD; i++)
622 			checksum += (frame3.regval >> (i * 8)) & 0xff;
623 
624 		frame2.regx.chksum = -(checksum);
625 	}
626 
627 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
628 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
629 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
630 
631 	/* program remaining DIP words with zero */
632 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
633 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
634 
635 	ctrl_state.regx.dip_freq = 1;
636 	ctrl_state.regx.dip_en_sta = 1;
637 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
638 }
639 
640 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
641 {
642 	u32 maud_val;
643 
644 	/* Select maud according to DP 1.2 spec */
645 	if (link_rate == DP_2_7_GHZ) {
646 		switch (aud_samp_freq) {
647 		case AUD_SAMPLE_RATE_32:
648 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
649 			break;
650 
651 		case AUD_SAMPLE_RATE_44_1:
652 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
653 			break;
654 
655 		case AUD_SAMPLE_RATE_48:
656 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
657 			break;
658 
659 		case AUD_SAMPLE_RATE_88_2:
660 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
661 			break;
662 
663 		case AUD_SAMPLE_RATE_96:
664 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
665 			break;
666 
667 		case AUD_SAMPLE_RATE_176_4:
668 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
669 			break;
670 
671 		case HAD_MAX_RATE:
672 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
673 			break;
674 
675 		default:
676 			maud_val = -EINVAL;
677 			break;
678 		}
679 	} else if (link_rate == DP_1_62_GHZ) {
680 		switch (aud_samp_freq) {
681 		case AUD_SAMPLE_RATE_32:
682 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
683 			break;
684 
685 		case AUD_SAMPLE_RATE_44_1:
686 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
687 			break;
688 
689 		case AUD_SAMPLE_RATE_48:
690 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
691 			break;
692 
693 		case AUD_SAMPLE_RATE_88_2:
694 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
695 			break;
696 
697 		case AUD_SAMPLE_RATE_96:
698 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
699 			break;
700 
701 		case AUD_SAMPLE_RATE_176_4:
702 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
703 			break;
704 
705 		case HAD_MAX_RATE:
706 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
707 			break;
708 
709 		default:
710 			maud_val = -EINVAL;
711 			break;
712 		}
713 	} else
714 		maud_val = -EINVAL;
715 
716 	return maud_val;
717 }
718 
719 /*
720  * Program HDMI audio CTS value
721  *
722  * @aud_samp_freq: sampling frequency of audio data
723  * @tmds: sampling frequency of the display data
724  * @link_rate: DP link rate
725  * @n_param: N value, depends on aud_samp_freq
726  * @intelhaddata: substream private data
727  *
728  * Program CTS register based on the audio and display sampling frequency
729  */
730 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
731 			 u32 n_param, struct snd_intelhad *intelhaddata)
732 {
733 	u32 cts_val;
734 	u64 dividend, divisor;
735 
736 	if (intelhaddata->dp_output) {
737 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
738 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
739 	} else {
740 		/* Calculate CTS according to HDMI 1.3a spec*/
741 		dividend = (u64)tmds * n_param*1000;
742 		divisor = 128 * aud_samp_freq;
743 		cts_val = div64_u64(dividend, divisor);
744 	}
745 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
746 		 tmds, n_param, cts_val);
747 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
748 }
749 
750 static int had_calculate_n_value(u32 aud_samp_freq)
751 {
752 	int n_val;
753 
754 	/* Select N according to HDMI 1.3a spec*/
755 	switch (aud_samp_freq) {
756 	case AUD_SAMPLE_RATE_32:
757 		n_val = 4096;
758 		break;
759 
760 	case AUD_SAMPLE_RATE_44_1:
761 		n_val = 6272;
762 		break;
763 
764 	case AUD_SAMPLE_RATE_48:
765 		n_val = 6144;
766 		break;
767 
768 	case AUD_SAMPLE_RATE_88_2:
769 		n_val = 12544;
770 		break;
771 
772 	case AUD_SAMPLE_RATE_96:
773 		n_val = 12288;
774 		break;
775 
776 	case AUD_SAMPLE_RATE_176_4:
777 		n_val = 25088;
778 		break;
779 
780 	case HAD_MAX_RATE:
781 		n_val = 24576;
782 		break;
783 
784 	default:
785 		n_val = -EINVAL;
786 		break;
787 	}
788 	return n_val;
789 }
790 
791 /*
792  * Program HDMI audio N value
793  *
794  * @aud_samp_freq: sampling frequency of audio data
795  * @n_param: N value, depends on aud_samp_freq
796  * @intelhaddata: substream private data
797  *
798  * This function is called in the prepare callback.
799  * It programs based on the audio and display sampling frequency
800  */
801 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
802 		      struct snd_intelhad *intelhaddata)
803 {
804 	int n_val;
805 
806 	if (intelhaddata->dp_output) {
807 		/*
808 		 * According to DP specs, Maud and Naud values hold
809 		 * a relationship, which is stated as:
810 		 * Maud/Naud = 512 * fs / f_LS_Clk
811 		 * where, fs is the sampling frequency of the audio stream
812 		 * and Naud is 32768 for Async clock.
813 		 */
814 
815 		n_val = DP_NAUD_VAL;
816 	} else
817 		n_val =	had_calculate_n_value(aud_samp_freq);
818 
819 	if (n_val < 0)
820 		return n_val;
821 
822 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
823 	*n_param = n_val;
824 	return 0;
825 }
826 
827 /*
828  * PCM ring buffer handling
829  *
830  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
831  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
832  * moves at each period elapsed.  The below illustrates how it works:
833  *
834  * At time=0
835  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
836  *  BD  | 0 | 1 | 2 | 3 |
837  *
838  * At time=1 (period elapsed)
839  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840  *  BD      | 1 | 2 | 3 | 0 |
841  *
842  * At time=2 (second period elapsed)
843  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
844  *  BD          | 2 | 3 | 0 | 1 |
845  *
846  * The bd_head field points to the index of the BD to be read.  It's also the
847  * position to be filled at next.  The pcm_head and the pcm_filled fields
848  * point to the indices of the current position and of the next position to
849  * be filled, respectively.  For PCM buffer there are both _head and _filled
850  * because they may be difference when nperiods > 4.  For example, in the
851  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
852  *
853  * pcm_head (=1) --v               v-- pcm_filled (=5)
854  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
855  *       BD      | 1 | 2 | 3 | 0 |
856  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
857  *
858  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
859  * the hardware skips those BDs in the loop.
860  *
861  * An exceptional setup is the case with nperiods=1.  Since we have to update
862  * BDs after finishing one BD processing, we'd need at least two BDs, where
863  * both BDs point to the same content, the same address, the same size of the
864  * whole PCM buffer.
865  */
866 
867 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
868 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
869 
870 /* Set up a buffer descriptor at the "filled" position */
871 static void had_prog_bd(struct snd_pcm_substream *substream,
872 			struct snd_intelhad *intelhaddata)
873 {
874 	int idx = intelhaddata->bd_head;
875 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
876 	u32 addr = substream->runtime->dma_addr + ofs;
877 
878 	addr |= AUD_BUF_VALID;
879 	if (!substream->runtime->no_period_wakeup)
880 		addr |= AUD_BUF_INTR_EN;
881 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
882 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
883 			   intelhaddata->period_bytes);
884 
885 	/* advance the indices to the next */
886 	intelhaddata->bd_head++;
887 	intelhaddata->bd_head %= intelhaddata->num_bds;
888 	intelhaddata->pcmbuf_filled++;
889 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
890 }
891 
892 /* invalidate a buffer descriptor with the given index */
893 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
894 			      int idx)
895 {
896 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
897 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
898 }
899 
900 /* Initial programming of ring buffer */
901 static void had_init_ringbuf(struct snd_pcm_substream *substream,
902 			     struct snd_intelhad *intelhaddata)
903 {
904 	struct snd_pcm_runtime *runtime = substream->runtime;
905 	int i, num_periods;
906 
907 	num_periods = runtime->periods;
908 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
909 	/* set the minimum 2 BDs for num_periods=1 */
910 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
911 	intelhaddata->period_bytes =
912 		frames_to_bytes(runtime, runtime->period_size);
913 	WARN_ON(intelhaddata->period_bytes & 0x3f);
914 
915 	intelhaddata->bd_head = 0;
916 	intelhaddata->pcmbuf_head = 0;
917 	intelhaddata->pcmbuf_filled = 0;
918 
919 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
920 		if (i < intelhaddata->num_bds)
921 			had_prog_bd(substream, intelhaddata);
922 		else /* invalidate the rest */
923 			had_invalidate_bd(intelhaddata, i);
924 	}
925 
926 	intelhaddata->bd_head = 0; /* reset at head again before starting */
927 }
928 
929 /* process a bd, advance to the next */
930 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
931 				struct snd_intelhad *intelhaddata)
932 {
933 	int num_periods = substream->runtime->periods;
934 
935 	/* reprogram the next buffer */
936 	had_prog_bd(substream, intelhaddata);
937 
938 	/* proceed to next */
939 	intelhaddata->pcmbuf_head++;
940 	intelhaddata->pcmbuf_head %= num_periods;
941 }
942 
943 /* process the current BD(s);
944  * returns the current PCM buffer byte position, or -EPIPE for underrun.
945  */
946 static int had_process_ringbuf(struct snd_pcm_substream *substream,
947 			       struct snd_intelhad *intelhaddata)
948 {
949 	int len, processed;
950 	unsigned long flags;
951 
952 	processed = 0;
953 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
954 	for (;;) {
955 		/* get the remaining bytes on the buffer */
956 		had_read_register(intelhaddata,
957 				  AUD_BUF_LEN(intelhaddata->bd_head),
958 				  &len);
959 		if (len < 0 || len > intelhaddata->period_bytes) {
960 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
961 				len);
962 			len = -EPIPE;
963 			goto out;
964 		}
965 
966 		if (len > 0) /* OK, this is the current buffer */
967 			break;
968 
969 		/* len=0 => already empty, check the next buffer */
970 		if (++processed >= intelhaddata->num_bds) {
971 			len = -EPIPE; /* all empty? - report underrun */
972 			goto out;
973 		}
974 		had_advance_ringbuf(substream, intelhaddata);
975 	}
976 
977 	len = intelhaddata->period_bytes - len;
978 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
979  out:
980 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
981 	return len;
982 }
983 
984 /* called from irq handler */
985 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
986 {
987 	struct snd_pcm_substream *substream;
988 
989 	substream = had_substream_get(intelhaddata);
990 	if (!substream)
991 		return; /* no stream? - bail out */
992 
993 	if (!intelhaddata->connected) {
994 		snd_pcm_stop_xrun(substream);
995 		goto out; /* disconnected? - bail out */
996 	}
997 
998 	/* process or stop the stream */
999 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1000 		snd_pcm_stop_xrun(substream);
1001 	else
1002 		snd_pcm_period_elapsed(substream);
1003 
1004  out:
1005 	had_substream_put(intelhaddata);
1006 }
1007 
1008 /*
1009  * The interrupt status 'sticky' bits might not be cleared by
1010  * setting '1' to that bit once...
1011  */
1012 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1013 {
1014 	int i;
1015 	u32 val;
1016 
1017 	for (i = 0; i < 100; i++) {
1018 		/* clear bit30, 31 AUD_HDMI_STATUS */
1019 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1020 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1021 			return;
1022 		udelay(100);
1023 		cond_resched();
1024 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1025 	}
1026 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1027 }
1028 
1029 /* Perform some reset procedure after stopping the stream;
1030  * this is called from prepare or hw_free callbacks once after trigger STOP
1031  * or underrun has been processed in order to settle down the h/w state.
1032  */
1033 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1034 {
1035 	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1036 
1037 	if (!intelhaddata->connected)
1038 		return 0;
1039 
1040 	/* Reset buffer pointers */
1041 	had_reset_audio(intelhaddata);
1042 	wait_clear_underrun_bit(intelhaddata);
1043 	return 0;
1044 }
1045 
1046 /* called from irq handler */
1047 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1048 {
1049 	struct snd_pcm_substream *substream;
1050 
1051 	/* Report UNDERRUN error to above layers */
1052 	substream = had_substream_get(intelhaddata);
1053 	if (substream) {
1054 		snd_pcm_stop_xrun(substream);
1055 		had_substream_put(intelhaddata);
1056 	}
1057 }
1058 
1059 /*
1060  * ALSA PCM open callback
1061  */
1062 static int had_pcm_open(struct snd_pcm_substream *substream)
1063 {
1064 	struct snd_intelhad *intelhaddata;
1065 	struct snd_pcm_runtime *runtime;
1066 	int retval;
1067 
1068 	intelhaddata = snd_pcm_substream_chip(substream);
1069 	runtime = substream->runtime;
1070 
1071 	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1072 	if (retval < 0)
1073 		return retval;
1074 
1075 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1076 	runtime->hw = had_pcm_hardware;
1077 
1078 	retval = snd_pcm_hw_constraint_integer(runtime,
1079 			 SNDRV_PCM_HW_PARAM_PERIODS);
1080 	if (retval < 0)
1081 		goto error;
1082 
1083 	/* Make sure, that the period size is always aligned
1084 	 * 64byte boundary
1085 	 */
1086 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1087 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1088 	if (retval < 0)
1089 		goto error;
1090 
1091 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1092 	if (retval < 0)
1093 		goto error;
1094 
1095 	/* expose PCM substream */
1096 	spin_lock_irq(&intelhaddata->had_spinlock);
1097 	intelhaddata->stream_info.substream = substream;
1098 	intelhaddata->stream_info.substream_refcount++;
1099 	spin_unlock_irq(&intelhaddata->had_spinlock);
1100 
1101 	return retval;
1102  error:
1103 	pm_runtime_mark_last_busy(intelhaddata->dev);
1104 	pm_runtime_put_autosuspend(intelhaddata->dev);
1105 	return retval;
1106 }
1107 
1108 /*
1109  * ALSA PCM close callback
1110  */
1111 static int had_pcm_close(struct snd_pcm_substream *substream)
1112 {
1113 	struct snd_intelhad *intelhaddata;
1114 
1115 	intelhaddata = snd_pcm_substream_chip(substream);
1116 
1117 	/* unreference and sync with the pending PCM accesses */
1118 	spin_lock_irq(&intelhaddata->had_spinlock);
1119 	intelhaddata->stream_info.substream = NULL;
1120 	intelhaddata->stream_info.substream_refcount--;
1121 	while (intelhaddata->stream_info.substream_refcount > 0) {
1122 		spin_unlock_irq(&intelhaddata->had_spinlock);
1123 		cpu_relax();
1124 		spin_lock_irq(&intelhaddata->had_spinlock);
1125 	}
1126 	spin_unlock_irq(&intelhaddata->had_spinlock);
1127 
1128 	pm_runtime_mark_last_busy(intelhaddata->dev);
1129 	pm_runtime_put_autosuspend(intelhaddata->dev);
1130 	return 0;
1131 }
1132 
1133 /*
1134  * ALSA PCM hw_params callback
1135  */
1136 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1137 			     struct snd_pcm_hw_params *hw_params)
1138 {
1139 	struct snd_intelhad *intelhaddata;
1140 	int buf_size;
1141 
1142 	intelhaddata = snd_pcm_substream_chip(substream);
1143 	buf_size = params_buffer_bytes(hw_params);
1144 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1145 		__func__, buf_size);
1146 	return 0;
1147 }
1148 
1149 /*
1150  * ALSA PCM trigger callback
1151  */
1152 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1153 {
1154 	int retval = 0;
1155 	struct snd_intelhad *intelhaddata;
1156 
1157 	intelhaddata = snd_pcm_substream_chip(substream);
1158 
1159 	spin_lock(&intelhaddata->had_spinlock);
1160 	switch (cmd) {
1161 	case SNDRV_PCM_TRIGGER_START:
1162 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1163 	case SNDRV_PCM_TRIGGER_RESUME:
1164 		/* Enable Audio */
1165 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1166 		had_enable_audio(intelhaddata, true);
1167 		break;
1168 
1169 	case SNDRV_PCM_TRIGGER_STOP:
1170 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1171 		/* Disable Audio */
1172 		had_enable_audio(intelhaddata, false);
1173 		break;
1174 
1175 	default:
1176 		retval = -EINVAL;
1177 	}
1178 	spin_unlock(&intelhaddata->had_spinlock);
1179 	return retval;
1180 }
1181 
1182 /*
1183  * ALSA PCM prepare callback
1184  */
1185 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1186 {
1187 	int retval;
1188 	u32 disp_samp_freq, n_param;
1189 	u32 link_rate = 0;
1190 	struct snd_intelhad *intelhaddata;
1191 	struct snd_pcm_runtime *runtime;
1192 
1193 	intelhaddata = snd_pcm_substream_chip(substream);
1194 	runtime = substream->runtime;
1195 
1196 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1197 		(int)frames_to_bytes(runtime, runtime->period_size));
1198 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1199 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1200 		(int)snd_pcm_lib_buffer_bytes(substream));
1201 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1202 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1203 
1204 	/* Get N value in KHz */
1205 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1206 
1207 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1208 	if (retval) {
1209 		dev_err(intelhaddata->dev,
1210 			"programming N value failed %#x\n", retval);
1211 		goto prep_end;
1212 	}
1213 
1214 	if (intelhaddata->dp_output)
1215 		link_rate = intelhaddata->link_rate;
1216 
1217 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1218 		     n_param, intelhaddata);
1219 
1220 	had_prog_dip(substream, intelhaddata);
1221 
1222 	retval = had_init_audio_ctrl(substream, intelhaddata);
1223 
1224 	/* Prog buffer address */
1225 	had_init_ringbuf(substream, intelhaddata);
1226 
1227 	/*
1228 	 * Program channel mapping in following order:
1229 	 * FL, FR, C, LFE, RL, RR
1230 	 */
1231 
1232 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1233 
1234 prep_end:
1235 	return retval;
1236 }
1237 
1238 /*
1239  * ALSA PCM pointer callback
1240  */
1241 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1242 {
1243 	struct snd_intelhad *intelhaddata;
1244 	int len;
1245 
1246 	intelhaddata = snd_pcm_substream_chip(substream);
1247 
1248 	if (!intelhaddata->connected)
1249 		return SNDRV_PCM_POS_XRUN;
1250 
1251 	len = had_process_ringbuf(substream, intelhaddata);
1252 	if (len < 0)
1253 		return SNDRV_PCM_POS_XRUN;
1254 	len = bytes_to_frames(substream->runtime, len);
1255 	/* wrapping may happen when periods=1 */
1256 	len %= substream->runtime->buffer_size;
1257 	return len;
1258 }
1259 
1260 /*
1261  * ALSA PCM ops
1262  */
1263 static const struct snd_pcm_ops had_pcm_ops = {
1264 	.open =		had_pcm_open,
1265 	.close =	had_pcm_close,
1266 	.hw_params =	had_pcm_hw_params,
1267 	.prepare =	had_pcm_prepare,
1268 	.trigger =	had_pcm_trigger,
1269 	.sync_stop =	had_pcm_sync_stop,
1270 	.pointer =	had_pcm_pointer,
1271 };
1272 
1273 /* process mode change of the running stream; called in mutex */
1274 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1275 {
1276 	struct snd_pcm_substream *substream;
1277 	int retval = 0;
1278 	u32 disp_samp_freq, n_param;
1279 	u32 link_rate = 0;
1280 
1281 	substream = had_substream_get(intelhaddata);
1282 	if (!substream)
1283 		return 0;
1284 
1285 	/* Disable Audio */
1286 	had_enable_audio(intelhaddata, false);
1287 
1288 	/* Update CTS value */
1289 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1290 
1291 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1292 	if (retval) {
1293 		dev_err(intelhaddata->dev,
1294 			"programming N value failed %#x\n", retval);
1295 		goto out;
1296 	}
1297 
1298 	if (intelhaddata->dp_output)
1299 		link_rate = intelhaddata->link_rate;
1300 
1301 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1302 		     n_param, intelhaddata);
1303 
1304 	/* Enable Audio */
1305 	had_enable_audio(intelhaddata, true);
1306 
1307 out:
1308 	had_substream_put(intelhaddata);
1309 	return retval;
1310 }
1311 
1312 /* process hot plug, called from wq with mutex locked */
1313 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1314 {
1315 	struct snd_pcm_substream *substream;
1316 
1317 	spin_lock_irq(&intelhaddata->had_spinlock);
1318 	if (intelhaddata->connected) {
1319 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1320 		spin_unlock_irq(&intelhaddata->had_spinlock);
1321 		return;
1322 	}
1323 
1324 	/* Disable Audio */
1325 	had_enable_audio(intelhaddata, false);
1326 
1327 	intelhaddata->connected = true;
1328 	dev_dbg(intelhaddata->dev,
1329 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1330 			__func__, __LINE__);
1331 	spin_unlock_irq(&intelhaddata->had_spinlock);
1332 
1333 	had_build_channel_allocation_map(intelhaddata);
1334 
1335 	/* Report to above ALSA layer */
1336 	substream = had_substream_get(intelhaddata);
1337 	if (substream) {
1338 		snd_pcm_stop_xrun(substream);
1339 		had_substream_put(intelhaddata);
1340 	}
1341 
1342 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1343 }
1344 
1345 /* process hot unplug, called from wq with mutex locked */
1346 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1347 {
1348 	struct snd_pcm_substream *substream;
1349 
1350 	spin_lock_irq(&intelhaddata->had_spinlock);
1351 	if (!intelhaddata->connected) {
1352 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1353 		spin_unlock_irq(&intelhaddata->had_spinlock);
1354 		return;
1355 
1356 	}
1357 
1358 	/* Disable Audio */
1359 	had_enable_audio(intelhaddata, false);
1360 
1361 	intelhaddata->connected = false;
1362 	dev_dbg(intelhaddata->dev,
1363 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1364 			__func__, __LINE__);
1365 	spin_unlock_irq(&intelhaddata->had_spinlock);
1366 
1367 	kfree(intelhaddata->chmap->chmap);
1368 	intelhaddata->chmap->chmap = NULL;
1369 
1370 	/* Report to above ALSA layer */
1371 	substream = had_substream_get(intelhaddata);
1372 	if (substream) {
1373 		snd_pcm_stop_xrun(substream);
1374 		had_substream_put(intelhaddata);
1375 	}
1376 
1377 	snd_jack_report(intelhaddata->jack, 0);
1378 }
1379 
1380 /*
1381  * ALSA iec958 and ELD controls
1382  */
1383 
1384 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1385 				struct snd_ctl_elem_info *uinfo)
1386 {
1387 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1388 	uinfo->count = 1;
1389 	return 0;
1390 }
1391 
1392 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1393 				struct snd_ctl_elem_value *ucontrol)
1394 {
1395 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1396 
1397 	mutex_lock(&intelhaddata->mutex);
1398 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1399 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1400 	ucontrol->value.iec958.status[2] =
1401 					(intelhaddata->aes_bits >> 16) & 0xff;
1402 	ucontrol->value.iec958.status[3] =
1403 					(intelhaddata->aes_bits >> 24) & 0xff;
1404 	mutex_unlock(&intelhaddata->mutex);
1405 	return 0;
1406 }
1407 
1408 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1409 				struct snd_ctl_elem_value *ucontrol)
1410 {
1411 	ucontrol->value.iec958.status[0] = 0xff;
1412 	ucontrol->value.iec958.status[1] = 0xff;
1413 	ucontrol->value.iec958.status[2] = 0xff;
1414 	ucontrol->value.iec958.status[3] = 0xff;
1415 	return 0;
1416 }
1417 
1418 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1419 				struct snd_ctl_elem_value *ucontrol)
1420 {
1421 	unsigned int val;
1422 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1423 	int changed = 0;
1424 
1425 	val = (ucontrol->value.iec958.status[0] << 0) |
1426 		(ucontrol->value.iec958.status[1] << 8) |
1427 		(ucontrol->value.iec958.status[2] << 16) |
1428 		(ucontrol->value.iec958.status[3] << 24);
1429 	mutex_lock(&intelhaddata->mutex);
1430 	if (intelhaddata->aes_bits != val) {
1431 		intelhaddata->aes_bits = val;
1432 		changed = 1;
1433 	}
1434 	mutex_unlock(&intelhaddata->mutex);
1435 	return changed;
1436 }
1437 
1438 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1439 			    struct snd_ctl_elem_info *uinfo)
1440 {
1441 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1442 	uinfo->count = HDMI_MAX_ELD_BYTES;
1443 	return 0;
1444 }
1445 
1446 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1447 			   struct snd_ctl_elem_value *ucontrol)
1448 {
1449 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1450 
1451 	mutex_lock(&intelhaddata->mutex);
1452 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1453 	       HDMI_MAX_ELD_BYTES);
1454 	mutex_unlock(&intelhaddata->mutex);
1455 	return 0;
1456 }
1457 
1458 static const struct snd_kcontrol_new had_controls[] = {
1459 	{
1460 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1461 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1462 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1463 		.info = had_iec958_info, /* shared */
1464 		.get = had_iec958_mask_get,
1465 	},
1466 	{
1467 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1468 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1469 		.info = had_iec958_info,
1470 		.get = had_iec958_get,
1471 		.put = had_iec958_put,
1472 	},
1473 	{
1474 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1475 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1476 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477 		.name = "ELD",
1478 		.info = had_ctl_eld_info,
1479 		.get = had_ctl_eld_get,
1480 	},
1481 };
1482 
1483 /*
1484  * audio interrupt handler
1485  */
1486 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1487 {
1488 	struct snd_intelhad_card *card_ctx = dev_id;
1489 	u32 audio_stat[3] = {};
1490 	int pipe, port;
1491 
1492 	for_each_pipe(card_ctx, pipe) {
1493 		/* use raw register access to ack IRQs even while disconnected */
1494 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1495 							 AUD_HDMI_STATUS) &
1496 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1497 
1498 		if (audio_stat[pipe])
1499 			had_write_register_raw(card_ctx, pipe,
1500 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1501 	}
1502 
1503 	for_each_port(card_ctx, port) {
1504 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1505 		int pipe = ctx->pipe;
1506 
1507 		if (pipe < 0)
1508 			continue;
1509 
1510 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1511 			had_process_buffer_done(ctx);
1512 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1513 			had_process_buffer_underrun(ctx);
1514 	}
1515 
1516 	return IRQ_HANDLED;
1517 }
1518 
1519 /*
1520  * monitor plug/unplug notification from i915; just kick off the work
1521  */
1522 static void notify_audio_lpe(struct platform_device *pdev, int port)
1523 {
1524 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1525 	struct snd_intelhad *ctx;
1526 
1527 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1528 	if (single_port)
1529 		ctx->port = port;
1530 
1531 	schedule_work(&ctx->hdmi_audio_wq);
1532 }
1533 
1534 /* the work to handle monitor hot plug/unplug */
1535 static void had_audio_wq(struct work_struct *work)
1536 {
1537 	struct snd_intelhad *ctx =
1538 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1539 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1540 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1541 	int ret;
1542 
1543 	ret = pm_runtime_resume_and_get(ctx->dev);
1544 	if (ret < 0)
1545 		return;
1546 
1547 	mutex_lock(&ctx->mutex);
1548 	if (ppdata->pipe < 0) {
1549 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1550 			__func__, ctx->port);
1551 
1552 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1553 
1554 		ctx->dp_output = false;
1555 		ctx->tmds_clock_speed = 0;
1556 		ctx->link_rate = 0;
1557 
1558 		/* Shut down the stream */
1559 		had_process_hot_unplug(ctx);
1560 
1561 		ctx->pipe = -1;
1562 	} else {
1563 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1564 			__func__, ctx->port, ppdata->ls_clock);
1565 
1566 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1567 
1568 		ctx->dp_output = ppdata->dp_output;
1569 		if (ctx->dp_output) {
1570 			ctx->tmds_clock_speed = 0;
1571 			ctx->link_rate = ppdata->ls_clock;
1572 		} else {
1573 			ctx->tmds_clock_speed = ppdata->ls_clock;
1574 			ctx->link_rate = 0;
1575 		}
1576 
1577 		/*
1578 		 * Shut down the stream before we change
1579 		 * the pipe assignment for this pcm device
1580 		 */
1581 		had_process_hot_plug(ctx);
1582 
1583 		ctx->pipe = ppdata->pipe;
1584 
1585 		/* Restart the stream if necessary */
1586 		had_process_mode_change(ctx);
1587 	}
1588 
1589 	mutex_unlock(&ctx->mutex);
1590 	pm_runtime_mark_last_busy(ctx->dev);
1591 	pm_runtime_put_autosuspend(ctx->dev);
1592 }
1593 
1594 /*
1595  * Jack interface
1596  */
1597 static int had_create_jack(struct snd_intelhad *ctx,
1598 			   struct snd_pcm *pcm)
1599 {
1600 	char hdmi_str[32];
1601 	int err;
1602 
1603 	snprintf(hdmi_str, sizeof(hdmi_str),
1604 		 "HDMI/DP,pcm=%d", pcm->device);
1605 
1606 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1607 			   SND_JACK_AVOUT, &ctx->jack,
1608 			   true, false);
1609 	if (err < 0)
1610 		return err;
1611 	ctx->jack->private_data = ctx;
1612 	return 0;
1613 }
1614 
1615 /*
1616  * PM callbacks
1617  */
1618 
1619 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1620 {
1621 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1622 
1623 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1624 
1625 	return 0;
1626 }
1627 
1628 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1629 {
1630 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1631 
1632 	pm_runtime_mark_last_busy(dev);
1633 
1634 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1635 
1636 	return 0;
1637 }
1638 
1639 /* release resources */
1640 static void hdmi_lpe_audio_free(struct snd_card *card)
1641 {
1642 	struct snd_intelhad_card *card_ctx = card->private_data;
1643 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1644 	int port;
1645 
1646 	spin_lock_irq(&pdata->lpe_audio_slock);
1647 	pdata->notify_audio_lpe = NULL;
1648 	spin_unlock_irq(&pdata->lpe_audio_slock);
1649 
1650 	for_each_port(card_ctx, port) {
1651 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1652 
1653 		cancel_work_sync(&ctx->hdmi_audio_wq);
1654 	}
1655 }
1656 
1657 /*
1658  * hdmi_lpe_audio_probe - start bridge with i915
1659  *
1660  * This function is called when the i915 driver creates the
1661  * hdmi-lpe-audio platform device.
1662  */
1663 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1664 {
1665 	struct snd_card *card;
1666 	struct snd_intelhad_card *card_ctx;
1667 	struct snd_intelhad *ctx;
1668 	struct snd_pcm *pcm;
1669 	struct intel_hdmi_lpe_audio_pdata *pdata;
1670 	int irq;
1671 	struct resource *res_mmio;
1672 	int port, ret;
1673 
1674 	pdata = pdev->dev.platform_data;
1675 	if (!pdata) {
1676 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1677 		return -EINVAL;
1678 	}
1679 
1680 	/* get resources */
1681 	irq = platform_get_irq(pdev, 0);
1682 	if (irq < 0)
1683 		return irq;
1684 
1685 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1686 	if (!res_mmio) {
1687 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1688 		return -ENXIO;
1689 	}
1690 
1691 	/* create a card instance with ALSA framework */
1692 	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1693 				THIS_MODULE, sizeof(*card_ctx), &card);
1694 	if (ret)
1695 		return ret;
1696 
1697 	card_ctx = card->private_data;
1698 	card_ctx->dev = &pdev->dev;
1699 	card_ctx->card = card;
1700 	strcpy(card->driver, INTEL_HAD);
1701 	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1702 	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1703 
1704 	card_ctx->irq = -1;
1705 
1706 	card->private_free = hdmi_lpe_audio_free;
1707 
1708 	platform_set_drvdata(pdev, card_ctx);
1709 
1710 	card_ctx->num_pipes = pdata->num_pipes;
1711 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1712 
1713 	for_each_port(card_ctx, port) {
1714 		ctx = &card_ctx->pcm_ctx[port];
1715 		ctx->card_ctx = card_ctx;
1716 		ctx->dev = card_ctx->dev;
1717 		ctx->port = single_port ? -1 : port;
1718 		ctx->pipe = -1;
1719 
1720 		spin_lock_init(&ctx->had_spinlock);
1721 		mutex_init(&ctx->mutex);
1722 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1723 	}
1724 
1725 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1726 		__func__, (unsigned int)res_mmio->start,
1727 		(unsigned int)res_mmio->end);
1728 
1729 	card_ctx->mmio_start =
1730 		devm_ioremap(&pdev->dev, res_mmio->start,
1731 			     (size_t)(resource_size(res_mmio)));
1732 	if (!card_ctx->mmio_start) {
1733 		dev_err(&pdev->dev, "Could not get ioremap\n");
1734 		return -EACCES;
1735 	}
1736 
1737 	/* setup interrupt handler */
1738 	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1739 			       0, pdev->name, card_ctx);
1740 	if (ret < 0) {
1741 		dev_err(&pdev->dev, "request_irq failed\n");
1742 		return ret;
1743 	}
1744 
1745 	card_ctx->irq = irq;
1746 
1747 	/* only 32bit addressable */
1748 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1749 	if (ret)
1750 		return ret;
1751 
1752 	init_channel_allocations();
1753 
1754 	card_ctx->num_pipes = pdata->num_pipes;
1755 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1756 
1757 	for_each_port(card_ctx, port) {
1758 		int i;
1759 
1760 		ctx = &card_ctx->pcm_ctx[port];
1761 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1762 				  MAX_CAP_STREAMS, &pcm);
1763 		if (ret)
1764 			return ret;
1765 
1766 		/* setup private data which can be retrieved when required */
1767 		pcm->private_data = ctx;
1768 		pcm->info_flags = 0;
1769 		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1770 		/* setup the ops for playback */
1771 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1772 
1773 		/* allocate dma pages;
1774 		 * try to allocate 600k buffer as default which is large enough
1775 		 */
1776 		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1777 					       card->dev, HAD_DEFAULT_BUFFER,
1778 					       HAD_MAX_BUFFER);
1779 
1780 		/* create controls */
1781 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1782 			struct snd_kcontrol *kctl;
1783 
1784 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1785 			if (!kctl)
1786 				return -ENOMEM;
1787 
1788 			kctl->id.device = pcm->device;
1789 
1790 			ret = snd_ctl_add(card, kctl);
1791 			if (ret < 0)
1792 				return ret;
1793 		}
1794 
1795 		/* Register channel map controls */
1796 		ret = had_register_chmap_ctls(ctx, pcm);
1797 		if (ret < 0)
1798 			return ret;
1799 
1800 		ret = had_create_jack(ctx, pcm);
1801 		if (ret < 0)
1802 			return ret;
1803 	}
1804 
1805 	ret = snd_card_register(card);
1806 	if (ret)
1807 		return ret;
1808 
1809 	spin_lock_irq(&pdata->lpe_audio_slock);
1810 	pdata->notify_audio_lpe = notify_audio_lpe;
1811 	spin_unlock_irq(&pdata->lpe_audio_slock);
1812 
1813 	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1814 	pm_runtime_use_autosuspend(&pdev->dev);
1815 	pm_runtime_enable(&pdev->dev);
1816 	pm_runtime_mark_last_busy(&pdev->dev);
1817 	pm_runtime_idle(&pdev->dev);
1818 
1819 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1820 	for_each_port(card_ctx, port) {
1821 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1822 
1823 		schedule_work(&ctx->hdmi_audio_wq);
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1830 {
1831 	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1832 }
1833 
1834 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1835 	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1836 };
1837 
1838 static struct platform_driver hdmi_lpe_audio_driver = {
1839 	.driver		= {
1840 		.name  = "hdmi-lpe-audio",
1841 		.pm = &hdmi_lpe_audio_pm,
1842 	},
1843 	.probe          = hdmi_lpe_audio_probe,
1844 };
1845 
1846 module_platform_driver(hdmi_lpe_audio_driver);
1847 MODULE_ALIAS("platform:hdmi_lpe_audio");
1848 
1849 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1850 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1851 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1852 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1853 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1854 MODULE_LICENSE("GPL v2");
1855