xref: /linux/sound/usb/mixer_quirks.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   USB Audio Driver for ALSA
4  *
5  *   Quirks and vendor-specific extensions for mixer interfaces
6  *
7  *   Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8  *
9  *   Many codes borrowed from audio.c by
10  *	    Alan Cox (alan@lxorguk.ukuu.org.uk)
11  *	    Thomas Sailer (sailer@ife.ee.ethz.ch)
12  *
13  *   Audio Advantage Micro II support added by:
14  *	    Przemek Rudy (prudy1@o2.pl)
15  */
16 
17 #include <linux/bitfield.h>
18 #include <linux/hid.h>
19 #include <linux/init.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/usb.h>
23 #include <linux/usb/audio.h>
24 
25 #include <sound/asoundef.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/hda_verbs.h>
29 #include <sound/hwdep.h>
30 #include <sound/info.h>
31 #include <sound/tlv.h>
32 
33 #include "usbaudio.h"
34 #include "mixer.h"
35 #include "mixer_quirks.h"
36 #include "mixer_scarlett.h"
37 #include "mixer_scarlett2.h"
38 #include "mixer_us16x08.h"
39 #include "mixer_s1810c.h"
40 #include "helper.h"
41 
42 struct std_mono_table {
43 	unsigned int unitid, control, cmask;
44 	int val_type;
45 	const char *name;
46 	snd_kcontrol_tlv_rw_t *tlv_callback;
47 };
48 
49 /* This function allows for the creation of standard UAC controls.
50  * See the quirks for M-Audio FTUs or Ebox-44.
51  * If you don't want to set a TLV callback pass NULL.
52  *
53  * Since there doesn't seem to be a devices that needs a multichannel
54  * version, we keep it mono for simplicity.
55  */
56 static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
57 				unsigned int unitid,
58 				unsigned int control,
59 				unsigned int cmask,
60 				int val_type,
61 				unsigned int idx_off,
62 				const char *name,
63 				snd_kcontrol_tlv_rw_t *tlv_callback)
64 {
65 	struct usb_mixer_elem_info *cval;
66 	struct snd_kcontrol *kctl;
67 
68 	cval = kzalloc(sizeof(*cval), GFP_KERNEL);
69 	if (!cval)
70 		return -ENOMEM;
71 
72 	snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
73 	cval->val_type = val_type;
74 	cval->channels = 1;
75 	cval->control = control;
76 	cval->cmask = cmask;
77 	cval->idx_off = idx_off;
78 
79 	/* get_min_max() is called only for integer volumes later,
80 	 * so provide a short-cut for booleans */
81 	cval->min = 0;
82 	cval->max = 1;
83 	cval->res = 0;
84 	cval->dBmin = 0;
85 	cval->dBmax = 0;
86 
87 	/* Create control */
88 	kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
89 	if (!kctl) {
90 		kfree(cval);
91 		return -ENOMEM;
92 	}
93 
94 	/* Set name */
95 	snprintf(kctl->id.name, sizeof(kctl->id.name), name);
96 	kctl->private_free = snd_usb_mixer_elem_free;
97 
98 	/* set TLV */
99 	if (tlv_callback) {
100 		kctl->tlv.c = tlv_callback;
101 		kctl->vd[0].access |=
102 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
103 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
104 	}
105 	/* Add control to mixer */
106 	return snd_usb_mixer_add_control(&cval->head, kctl);
107 }
108 
109 static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
110 				unsigned int unitid,
111 				unsigned int control,
112 				unsigned int cmask,
113 				int val_type,
114 				const char *name,
115 				snd_kcontrol_tlv_rw_t *tlv_callback)
116 {
117 	return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
118 		val_type, 0 /* Offset */, name, tlv_callback);
119 }
120 
121 /*
122  * Create a set of standard UAC controls from a table
123  */
124 static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
125 				     const struct std_mono_table *t)
126 {
127 	int err;
128 
129 	while (t->name != NULL) {
130 		err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
131 				t->cmask, t->val_type, t->name, t->tlv_callback);
132 		if (err < 0)
133 			return err;
134 		t++;
135 	}
136 
137 	return 0;
138 }
139 
140 static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
141 				      int id,
142 				      usb_mixer_elem_resume_func_t resume,
143 				      const struct snd_kcontrol_new *knew,
144 				      struct usb_mixer_elem_list **listp)
145 {
146 	struct usb_mixer_elem_list *list;
147 	struct snd_kcontrol *kctl;
148 
149 	list = kzalloc(sizeof(*list), GFP_KERNEL);
150 	if (!list)
151 		return -ENOMEM;
152 	if (listp)
153 		*listp = list;
154 	list->mixer = mixer;
155 	list->id = id;
156 	list->resume = resume;
157 	kctl = snd_ctl_new1(knew, list);
158 	if (!kctl) {
159 		kfree(list);
160 		return -ENOMEM;
161 	}
162 	kctl->private_free = snd_usb_mixer_elem_free;
163 	/* don't use snd_usb_mixer_add_control() here, this is a special list element */
164 	return snd_usb_mixer_add_list(list, kctl, false);
165 }
166 
167 /*
168  * Sound Blaster remote control configuration
169  *
170  * format of remote control data:
171  * Extigy:       xx 00
172  * Audigy 2 NX:  06 80 xx 00 00 00
173  * Live! 24-bit: 06 80 xx yy 22 83
174  */
175 static const struct rc_config {
176 	u32 usb_id;
177 	u8  offset;
178 	u8  length;
179 	u8  packet_length;
180 	u8  min_packet_length; /* minimum accepted length of the URB result */
181 	u8  mute_mixer_id;
182 	u32 mute_code;
183 } rc_configs[] = {
184 	{ USB_ID(0x041e, 0x3000), 0, 1, 2, 1,  18, 0x0013 }, /* Extigy       */
185 	{ USB_ID(0x041e, 0x3020), 2, 1, 6, 6,  18, 0x0013 }, /* Audigy 2 NX  */
186 	{ USB_ID(0x041e, 0x3040), 2, 2, 6, 6,  2,  0x6e91 }, /* Live! 24-bit */
187 	{ USB_ID(0x041e, 0x3042), 0, 1, 1, 1,  1,  0x000d }, /* Usb X-Fi S51 */
188 	{ USB_ID(0x041e, 0x30df), 0, 1, 1, 1,  1,  0x000d }, /* Usb X-Fi S51 Pro */
189 	{ USB_ID(0x041e, 0x3237), 0, 1, 1, 1,  1,  0x000d }, /* Usb X-Fi S51 Pro */
190 	{ USB_ID(0x041e, 0x3263), 0, 1, 1, 1,  1,  0x000d }, /* Usb X-Fi S51 Pro */
191 	{ USB_ID(0x041e, 0x3048), 2, 2, 6, 6,  2,  0x6e91 }, /* Toshiba SB0500 */
192 };
193 
194 static void snd_usb_soundblaster_remote_complete(struct urb *urb)
195 {
196 	struct usb_mixer_interface *mixer = urb->context;
197 	const struct rc_config *rc = mixer->rc_cfg;
198 	u32 code;
199 
200 	if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
201 		return;
202 
203 	code = mixer->rc_buffer[rc->offset];
204 	if (rc->length == 2)
205 		code |= mixer->rc_buffer[rc->offset + 1] << 8;
206 
207 	/* the Mute button actually changes the mixer control */
208 	if (code == rc->mute_code)
209 		snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
210 	mixer->rc_code = code;
211 	wmb();
212 	wake_up(&mixer->rc_waitq);
213 }
214 
215 static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
216 				     long count, loff_t *offset)
217 {
218 	struct usb_mixer_interface *mixer = hw->private_data;
219 	int err;
220 	u32 rc_code;
221 
222 	if (count != 1 && count != 4)
223 		return -EINVAL;
224 	err = wait_event_interruptible(mixer->rc_waitq,
225 				       (rc_code = xchg(&mixer->rc_code, 0)) != 0);
226 	if (err == 0) {
227 		if (count == 1)
228 			err = put_user(rc_code, buf);
229 		else
230 			err = put_user(rc_code, (u32 __user *)buf);
231 	}
232 	return err < 0 ? err : count;
233 }
234 
235 static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
236 					    poll_table *wait)
237 {
238 	struct usb_mixer_interface *mixer = hw->private_data;
239 
240 	poll_wait(file, &mixer->rc_waitq, wait);
241 	return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
242 }
243 
244 static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
245 {
246 	struct snd_hwdep *hwdep;
247 	int err, len, i;
248 
249 	for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
250 		if (rc_configs[i].usb_id == mixer->chip->usb_id)
251 			break;
252 	if (i >= ARRAY_SIZE(rc_configs))
253 		return 0;
254 	mixer->rc_cfg = &rc_configs[i];
255 
256 	len = mixer->rc_cfg->packet_length;
257 
258 	init_waitqueue_head(&mixer->rc_waitq);
259 	err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
260 	if (err < 0)
261 		return err;
262 	snprintf(hwdep->name, sizeof(hwdep->name),
263 		 "%s remote control", mixer->chip->card->shortname);
264 	hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
265 	hwdep->private_data = mixer;
266 	hwdep->ops.read = snd_usb_sbrc_hwdep_read;
267 	hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
268 	hwdep->exclusive = 1;
269 
270 	mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
271 	if (!mixer->rc_urb)
272 		return -ENOMEM;
273 	mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
274 	if (!mixer->rc_setup_packet) {
275 		usb_free_urb(mixer->rc_urb);
276 		mixer->rc_urb = NULL;
277 		return -ENOMEM;
278 	}
279 	mixer->rc_setup_packet->bRequestType =
280 		USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
281 	mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
282 	mixer->rc_setup_packet->wValue = cpu_to_le16(0);
283 	mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
284 	mixer->rc_setup_packet->wLength = cpu_to_le16(len);
285 	usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
286 			     usb_rcvctrlpipe(mixer->chip->dev, 0),
287 			     (u8*)mixer->rc_setup_packet, mixer->rc_buffer, len,
288 			     snd_usb_soundblaster_remote_complete, mixer);
289 	return 0;
290 }
291 
292 #define snd_audigy2nx_led_info		snd_ctl_boolean_mono_info
293 
294 static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
295 {
296 	ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
297 	return 0;
298 }
299 
300 static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
301 				    int value, int index)
302 {
303 	struct snd_usb_audio *chip = mixer->chip;
304 	int err;
305 
306 	err = snd_usb_lock_shutdown(chip);
307 	if (err < 0)
308 		return err;
309 
310 	if (chip->usb_id == USB_ID(0x041e, 0x3042))
311 		err = snd_usb_ctl_msg(chip->dev,
312 			      usb_sndctrlpipe(chip->dev, 0), 0x24,
313 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
314 			      !value, 0, NULL, 0);
315 	/* USB X-Fi S51 Pro */
316 	if (chip->usb_id == USB_ID(0x041e, 0x30df))
317 		err = snd_usb_ctl_msg(chip->dev,
318 			      usb_sndctrlpipe(chip->dev, 0), 0x24,
319 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
320 			      !value, 0, NULL, 0);
321 	else
322 		err = snd_usb_ctl_msg(chip->dev,
323 			      usb_sndctrlpipe(chip->dev, 0), 0x24,
324 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
325 			      value, index + 2, NULL, 0);
326 	snd_usb_unlock_shutdown(chip);
327 	return err;
328 }
329 
330 static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
331 				 struct snd_ctl_elem_value *ucontrol)
332 {
333 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
334 	struct usb_mixer_interface *mixer = list->mixer;
335 	int index = kcontrol->private_value & 0xff;
336 	unsigned int value = ucontrol->value.integer.value[0];
337 	int old_value = kcontrol->private_value >> 8;
338 	int err;
339 
340 	if (value > 1)
341 		return -EINVAL;
342 	if (value == old_value)
343 		return 0;
344 	kcontrol->private_value = (value << 8) | index;
345 	err = snd_audigy2nx_led_update(mixer, value, index);
346 	return err < 0 ? err : 1;
347 }
348 
349 static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
350 {
351 	int priv_value = list->kctl->private_value;
352 
353 	return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
354 					priv_value & 0xff);
355 }
356 
357 /* name and private_value are set dynamically */
358 static const struct snd_kcontrol_new snd_audigy2nx_control = {
359 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
360 	.info = snd_audigy2nx_led_info,
361 	.get = snd_audigy2nx_led_get,
362 	.put = snd_audigy2nx_led_put,
363 };
364 
365 static const char * const snd_audigy2nx_led_names[] = {
366 	"CMSS LED Switch",
367 	"Power LED Switch",
368 	"Dolby Digital LED Switch",
369 };
370 
371 static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
372 {
373 	int i, err;
374 
375 	for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
376 		struct snd_kcontrol_new knew;
377 
378 		/* USB X-Fi S51 doesn't have a CMSS LED */
379 		if ((mixer->chip->usb_id == USB_ID(0x041e, 0x3042)) && i == 0)
380 			continue;
381 		/* USB X-Fi S51 Pro doesn't have one either */
382 		if ((mixer->chip->usb_id == USB_ID(0x041e, 0x30df)) && i == 0)
383 			continue;
384 		if (i > 1 && /* Live24ext has 2 LEDs only */
385 			(mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
386 			 mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
387 			 mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
388 			 mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
389 			break;
390 
391 		knew = snd_audigy2nx_control;
392 		knew.name = snd_audigy2nx_led_names[i];
393 		knew.private_value = (1 << 8) | i; /* LED on as default */
394 		err = add_single_ctl_with_resume(mixer, 0,
395 						 snd_audigy2nx_led_resume,
396 						 &knew, NULL);
397 		if (err < 0)
398 			return err;
399 	}
400 	return 0;
401 }
402 
403 static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
404 				    struct snd_info_buffer *buffer)
405 {
406 	static const struct sb_jack {
407 		int unitid;
408 		const char *name;
409 	}  jacks_audigy2nx[] = {
410 		{4,  "dig in "},
411 		{7,  "line in"},
412 		{19, "spk out"},
413 		{20, "hph out"},
414 		{-1, NULL}
415 	}, jacks_live24ext[] = {
416 		{4,  "line in"}, /* &1=Line, &2=Mic*/
417 		{3,  "hph out"}, /* headphones */
418 		{0,  "RC     "}, /* last command, 6 bytes see rc_config above */
419 		{-1, NULL}
420 	};
421 	const struct sb_jack *jacks;
422 	struct usb_mixer_interface *mixer = entry->private_data;
423 	int i, err;
424 	u8 buf[3];
425 
426 	snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
427 	if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
428 		jacks = jacks_audigy2nx;
429 	else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
430 		 mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
431 		jacks = jacks_live24ext;
432 	else
433 		return;
434 
435 	for (i = 0; jacks[i].name; ++i) {
436 		snd_iprintf(buffer, "%s: ", jacks[i].name);
437 		err = snd_usb_lock_shutdown(mixer->chip);
438 		if (err < 0)
439 			return;
440 		err = snd_usb_ctl_msg(mixer->chip->dev,
441 				      usb_rcvctrlpipe(mixer->chip->dev, 0),
442 				      UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
443 				      USB_RECIP_INTERFACE, 0,
444 				      jacks[i].unitid << 8, buf, 3);
445 		snd_usb_unlock_shutdown(mixer->chip);
446 		if (err == 3 && (buf[0] == 3 || buf[0] == 6))
447 			snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
448 		else
449 			snd_iprintf(buffer, "?\n");
450 	}
451 }
452 
453 /* EMU0204 */
454 static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
455 				      struct snd_ctl_elem_info *uinfo)
456 {
457 	static const char * const texts[2] = {"1/2", "3/4"};
458 
459 	return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
460 }
461 
462 static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
463 				     struct snd_ctl_elem_value *ucontrol)
464 {
465 	ucontrol->value.enumerated.item[0] = kcontrol->private_value;
466 	return 0;
467 }
468 
469 static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
470 					int value)
471 {
472 	struct snd_usb_audio *chip = mixer->chip;
473 	int err;
474 	unsigned char buf[2];
475 
476 	err = snd_usb_lock_shutdown(chip);
477 	if (err < 0)
478 		return err;
479 
480 	buf[0] = 0x01;
481 	buf[1] = value ? 0x02 : 0x01;
482 	err = snd_usb_ctl_msg(chip->dev,
483 		      usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
484 		      USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
485 		      0x0400, 0x0e00, buf, 2);
486 	snd_usb_unlock_shutdown(chip);
487 	return err;
488 }
489 
490 static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
491 				     struct snd_ctl_elem_value *ucontrol)
492 {
493 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
494 	struct usb_mixer_interface *mixer = list->mixer;
495 	unsigned int value = ucontrol->value.enumerated.item[0];
496 	int err;
497 
498 	if (value > 1)
499 		return -EINVAL;
500 
501 	if (value == kcontrol->private_value)
502 		return 0;
503 
504 	kcontrol->private_value = value;
505 	err = snd_emu0204_ch_switch_update(mixer, value);
506 	return err < 0 ? err : 1;
507 }
508 
509 static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
510 {
511 	return snd_emu0204_ch_switch_update(list->mixer,
512 					    list->kctl->private_value);
513 }
514 
515 static const struct snd_kcontrol_new snd_emu0204_control = {
516 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
517 	.name = "Front Jack Channels",
518 	.info = snd_emu0204_ch_switch_info,
519 	.get = snd_emu0204_ch_switch_get,
520 	.put = snd_emu0204_ch_switch_put,
521 	.private_value = 0,
522 };
523 
524 static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
525 {
526 	return add_single_ctl_with_resume(mixer, 0,
527 					  snd_emu0204_ch_switch_resume,
528 					  &snd_emu0204_control, NULL);
529 }
530 
531 /* ASUS Xonar U1 / U3 controls */
532 
533 static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
534 				   struct snd_ctl_elem_value *ucontrol)
535 {
536 	ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
537 	return 0;
538 }
539 
540 static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
541 				      unsigned char status)
542 {
543 	struct snd_usb_audio *chip = mixer->chip;
544 	int err;
545 
546 	err = snd_usb_lock_shutdown(chip);
547 	if (err < 0)
548 		return err;
549 	err = snd_usb_ctl_msg(chip->dev,
550 			      usb_sndctrlpipe(chip->dev, 0), 0x08,
551 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
552 			      50, 0, &status, 1);
553 	snd_usb_unlock_shutdown(chip);
554 	return err;
555 }
556 
557 static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
558 				   struct snd_ctl_elem_value *ucontrol)
559 {
560 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
561 	u8 old_status, new_status;
562 	int err;
563 
564 	old_status = kcontrol->private_value;
565 	if (ucontrol->value.integer.value[0])
566 		new_status = old_status | 0x02;
567 	else
568 		new_status = old_status & ~0x02;
569 	if (new_status == old_status)
570 		return 0;
571 
572 	kcontrol->private_value = new_status;
573 	err = snd_xonar_u1_switch_update(list->mixer, new_status);
574 	return err < 0 ? err : 1;
575 }
576 
577 static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
578 {
579 	return snd_xonar_u1_switch_update(list->mixer,
580 					  list->kctl->private_value);
581 }
582 
583 static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
584 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
585 	.name = "Digital Playback Switch",
586 	.info = snd_ctl_boolean_mono_info,
587 	.get = snd_xonar_u1_switch_get,
588 	.put = snd_xonar_u1_switch_put,
589 	.private_value = 0x05,
590 };
591 
592 static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
593 {
594 	return add_single_ctl_with_resume(mixer, 0,
595 					  snd_xonar_u1_switch_resume,
596 					  &snd_xonar_u1_output_switch, NULL);
597 }
598 
599 /* Digidesign Mbox 1 helper functions */
600 
601 static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
602 {
603 	unsigned char buff[3];
604 	int err;
605 	int is_spdif_synced;
606 
607 	/* Read clock source */
608 	err = snd_usb_ctl_msg(chip->dev,
609 			      usb_rcvctrlpipe(chip->dev, 0), 0x81,
610 			      USB_DIR_IN |
611 			      USB_TYPE_CLASS |
612 			      USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
613 	if (err < 0)
614 		return err;
615 
616 	/* spdif sync: buff is all zeroes */
617 	is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
618 	return is_spdif_synced;
619 }
620 
621 static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
622 {
623 	/* 2 possibilities:	Internal    -> expects sample rate
624 	 *			S/PDIF sync -> expects rate = 0
625 	 */
626 	unsigned char buff[3];
627 
628 	buff[0] = (rate_or_zero >>  0) & 0xff;
629 	buff[1] = (rate_or_zero >>  8) & 0xff;
630 	buff[2] = (rate_or_zero >> 16) & 0xff;
631 
632 	/* Set clock source */
633 	return snd_usb_ctl_msg(chip->dev,
634 			       usb_sndctrlpipe(chip->dev, 0), 0x1,
635 			       USB_TYPE_CLASS |
636 			       USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
637 }
638 
639 static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
640 {
641 	/* Hardware gives 2 possibilities:	ANALOG Source  -> 0x01
642 	 *					S/PDIF Source  -> 0x02
643 	 */
644 	int err;
645 	unsigned char source[1];
646 
647 	/* Read input source */
648 	err = snd_usb_ctl_msg(chip->dev,
649 			      usb_rcvctrlpipe(chip->dev, 0), 0x81,
650 			      USB_DIR_IN |
651 			      USB_TYPE_CLASS |
652 			      USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
653 	if (err < 0)
654 		return err;
655 
656 	return (source[0] == 2);
657 }
658 
659 static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
660 {
661 	/* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
662 	 * Hardware expects 2 possibilities:	ANALOG Source  -> 0x01
663 	 *					S/PDIF Source  -> 0x02
664 	 */
665 	unsigned char buff[1];
666 
667 	buff[0] = (is_spdif & 1) + 1;
668 
669 	/* Set input source */
670 	return snd_usb_ctl_msg(chip->dev,
671 			       usb_sndctrlpipe(chip->dev, 0), 0x1,
672 			       USB_TYPE_CLASS |
673 			       USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
674 }
675 
676 /* Digidesign Mbox 1 clock source switch (internal/spdif) */
677 
678 static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
679 				    struct snd_ctl_elem_value *ucontrol)
680 {
681 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
682 	struct snd_usb_audio *chip = list->mixer->chip;
683 	int err;
684 
685 	err = snd_usb_lock_shutdown(chip);
686 	if (err < 0)
687 		goto err;
688 
689 	err = snd_mbox1_is_spdif_synced(chip);
690 	if (err < 0)
691 		goto err;
692 
693 	kctl->private_value = err;
694 	err = 0;
695 	ucontrol->value.enumerated.item[0] = kctl->private_value;
696 err:
697 	snd_usb_unlock_shutdown(chip);
698 	return err;
699 }
700 
701 static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
702 {
703 	struct snd_usb_audio *chip = mixer->chip;
704 	int err;
705 
706 	err = snd_usb_lock_shutdown(chip);
707 	if (err < 0)
708 		return err;
709 
710 	err = snd_mbox1_is_spdif_input(chip);
711 	if (err < 0)
712 		goto err;
713 
714 	err = snd_mbox1_is_spdif_synced(chip);
715 	if (err < 0)
716 		goto err;
717 
718 	/* FIXME: hardcoded sample rate */
719 	err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
720 	if (err < 0)
721 		goto err;
722 
723 	err = snd_mbox1_is_spdif_synced(chip);
724 err:
725 	snd_usb_unlock_shutdown(chip);
726 	return err;
727 }
728 
729 static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
730 				    struct snd_ctl_elem_value *ucontrol)
731 {
732 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
733 	struct usb_mixer_interface *mixer = list->mixer;
734 	int err;
735 	bool cur_val, new_val;
736 
737 	cur_val = kctl->private_value;
738 	new_val = ucontrol->value.enumerated.item[0];
739 	if (cur_val == new_val)
740 		return 0;
741 
742 	kctl->private_value = new_val;
743 	err = snd_mbox1_clk_switch_update(mixer, new_val);
744 	return err < 0 ? err : 1;
745 }
746 
747 static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
748 				     struct snd_ctl_elem_info *uinfo)
749 {
750 	static const char *const texts[2] = {
751 		"Internal",
752 		"S/PDIF"
753 	};
754 
755 	return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
756 }
757 
758 static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
759 {
760 	return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
761 }
762 
763 /* Digidesign Mbox 1 input source switch (analog/spdif) */
764 
765 static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
766 				    struct snd_ctl_elem_value *ucontrol)
767 {
768 	ucontrol->value.enumerated.item[0] = kctl->private_value;
769 	return 0;
770 }
771 
772 static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
773 {
774 	struct snd_usb_audio *chip = mixer->chip;
775 	int err;
776 
777 	err = snd_usb_lock_shutdown(chip);
778 	if (err < 0)
779 		return err;
780 
781 	err = snd_mbox1_is_spdif_input(chip);
782 	if (err < 0)
783 		goto err;
784 
785 	err = snd_mbox1_set_input_source(chip, is_spdif_input);
786 	if (err < 0)
787 		goto err;
788 
789 	err = snd_mbox1_is_spdif_input(chip);
790 	if (err < 0)
791 		goto err;
792 
793 	err = snd_mbox1_is_spdif_synced(chip);
794 err:
795 	snd_usb_unlock_shutdown(chip);
796 	return err;
797 }
798 
799 static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
800 				    struct snd_ctl_elem_value *ucontrol)
801 {
802 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
803 	struct usb_mixer_interface *mixer = list->mixer;
804 	int err;
805 	bool cur_val, new_val;
806 
807 	cur_val = kctl->private_value;
808 	new_val = ucontrol->value.enumerated.item[0];
809 	if (cur_val == new_val)
810 		return 0;
811 
812 	kctl->private_value = new_val;
813 	err = snd_mbox1_src_switch_update(mixer, new_val);
814 	return err < 0 ? err : 1;
815 }
816 
817 static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
818 				     struct snd_ctl_elem_info *uinfo)
819 {
820 	static const char *const texts[2] = {
821 		"Analog",
822 		"S/PDIF"
823 	};
824 
825 	return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
826 }
827 
828 static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
829 {
830 	return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
831 }
832 
833 static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
834 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
835 	.name = "Clock Source",
836 	.index = 0,
837 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
838 	.info = snd_mbox1_clk_switch_info,
839 	.get = snd_mbox1_clk_switch_get,
840 	.put = snd_mbox1_clk_switch_put,
841 	.private_value = 0
842 };
843 
844 static const struct snd_kcontrol_new snd_mbox1_src_switch = {
845 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
846 	.name = "Input Source",
847 	.index = 1,
848 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
849 	.info = snd_mbox1_src_switch_info,
850 	.get = snd_mbox1_src_switch_get,
851 	.put = snd_mbox1_src_switch_put,
852 	.private_value = 0
853 };
854 
855 static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
856 {
857 	int err;
858 	err = add_single_ctl_with_resume(mixer, 0,
859 					 snd_mbox1_clk_switch_resume,
860 					 &snd_mbox1_clk_switch, NULL);
861 	if (err < 0)
862 		return err;
863 
864 	return add_single_ctl_with_resume(mixer, 1,
865 					  snd_mbox1_src_switch_resume,
866 					  &snd_mbox1_src_switch, NULL);
867 }
868 
869 /* Native Instruments device quirks */
870 
871 #define _MAKE_NI_CONTROL(bRequest,wIndex) ((bRequest) << 16 | (wIndex))
872 
873 static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
874 				   struct snd_kcontrol *kctl)
875 {
876 	struct usb_device *dev = mixer->chip->dev;
877 	unsigned int pval = kctl->private_value;
878 	u8 value;
879 	int err;
880 
881 	err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
882 			      (pval >> 16) & 0xff,
883 			      USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
884 			      0, pval & 0xffff, &value, 1);
885 	if (err < 0) {
886 		dev_err(&dev->dev,
887 			"unable to issue vendor read request (ret = %d)", err);
888 		return err;
889 	}
890 
891 	kctl->private_value |= ((unsigned int)value << 24);
892 	return 0;
893 }
894 
895 static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
896 					     struct snd_ctl_elem_value *ucontrol)
897 {
898 	ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
899 	return 0;
900 }
901 
902 static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
903 {
904 	struct snd_usb_audio *chip = list->mixer->chip;
905 	unsigned int pval = list->kctl->private_value;
906 	int err;
907 
908 	err = snd_usb_lock_shutdown(chip);
909 	if (err < 0)
910 		return err;
911 	err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
912 			      (pval >> 16) & 0xff,
913 			      USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
914 			      pval >> 24, pval & 0xffff, NULL, 0, 1000);
915 	snd_usb_unlock_shutdown(chip);
916 	return err;
917 }
918 
919 static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
920 					     struct snd_ctl_elem_value *ucontrol)
921 {
922 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
923 	u8 oldval = (kcontrol->private_value >> 24) & 0xff;
924 	u8 newval = ucontrol->value.integer.value[0];
925 	int err;
926 
927 	if (oldval == newval)
928 		return 0;
929 
930 	kcontrol->private_value &= ~(0xff << 24);
931 	kcontrol->private_value |= (unsigned int)newval << 24;
932 	err = snd_ni_update_cur_val(list);
933 	return err < 0 ? err : 1;
934 }
935 
936 static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
937 	{
938 		.name = "Direct Thru Channel A",
939 		.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
940 	},
941 	{
942 		.name = "Direct Thru Channel B",
943 		.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
944 	},
945 	{
946 		.name = "Phono Input Channel A",
947 		.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
948 	},
949 	{
950 		.name = "Phono Input Channel B",
951 		.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
952 	},
953 };
954 
955 static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
956 	{
957 		.name = "Direct Thru Channel A",
958 		.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
959 	},
960 	{
961 		.name = "Direct Thru Channel B",
962 		.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
963 	},
964 	{
965 		.name = "Direct Thru Channel C",
966 		.private_value = _MAKE_NI_CONTROL(0x01, 0x07),
967 	},
968 	{
969 		.name = "Direct Thru Channel D",
970 		.private_value = _MAKE_NI_CONTROL(0x01, 0x09),
971 	},
972 	{
973 		.name = "Phono Input Channel A",
974 		.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
975 	},
976 	{
977 		.name = "Phono Input Channel B",
978 		.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
979 	},
980 	{
981 		.name = "Phono Input Channel C",
982 		.private_value = _MAKE_NI_CONTROL(0x02, 0x07),
983 	},
984 	{
985 		.name = "Phono Input Channel D",
986 		.private_value = _MAKE_NI_CONTROL(0x02, 0x09),
987 	},
988 };
989 
990 static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
991 					      const struct snd_kcontrol_new *kc,
992 					      unsigned int count)
993 {
994 	int i, err = 0;
995 	struct snd_kcontrol_new template = {
996 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
997 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
998 		.get = snd_nativeinstruments_control_get,
999 		.put = snd_nativeinstruments_control_put,
1000 		.info = snd_ctl_boolean_mono_info,
1001 	};
1002 
1003 	for (i = 0; i < count; i++) {
1004 		struct usb_mixer_elem_list *list;
1005 
1006 		template.name = kc[i].name;
1007 		template.private_value = kc[i].private_value;
1008 
1009 		err = add_single_ctl_with_resume(mixer, 0,
1010 						 snd_ni_update_cur_val,
1011 						 &template, &list);
1012 		if (err < 0)
1013 			break;
1014 		snd_ni_control_init_val(mixer, list->kctl);
1015 	}
1016 
1017 	return err;
1018 }
1019 
1020 /* M-Audio FastTrack Ultra quirks */
1021 /* FTU Effect switch (also used by C400/C600) */
1022 static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
1023 					struct snd_ctl_elem_info *uinfo)
1024 {
1025 	static const char *const texts[8] = {
1026 		"Room 1", "Room 2", "Room 3", "Hall 1",
1027 		"Hall 2", "Plate", "Delay", "Echo"
1028 	};
1029 
1030 	return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1031 }
1032 
1033 static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
1034 				   struct snd_kcontrol *kctl)
1035 {
1036 	struct usb_device *dev = mixer->chip->dev;
1037 	unsigned int pval = kctl->private_value;
1038 	int err;
1039 	unsigned char value[2];
1040 
1041 	value[0] = 0x00;
1042 	value[1] = 0x00;
1043 
1044 	err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
1045 			      USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
1046 			      pval & 0xff00,
1047 			      snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8),
1048 			      value, 2);
1049 	if (err < 0)
1050 		return err;
1051 
1052 	kctl->private_value |= (unsigned int)value[0] << 24;
1053 	return 0;
1054 }
1055 
1056 static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
1057 					struct snd_ctl_elem_value *ucontrol)
1058 {
1059 	ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
1060 	return 0;
1061 }
1062 
1063 static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
1064 {
1065 	struct snd_usb_audio *chip = list->mixer->chip;
1066 	unsigned int pval = list->kctl->private_value;
1067 	unsigned char value[2];
1068 	int err;
1069 
1070 	value[0] = pval >> 24;
1071 	value[1] = 0;
1072 
1073 	err = snd_usb_lock_shutdown(chip);
1074 	if (err < 0)
1075 		return err;
1076 	err = snd_usb_ctl_msg(chip->dev,
1077 			      usb_sndctrlpipe(chip->dev, 0),
1078 			      UAC_SET_CUR,
1079 			      USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
1080 			      pval & 0xff00,
1081 			      snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8),
1082 			      value, 2);
1083 	snd_usb_unlock_shutdown(chip);
1084 	return err;
1085 }
1086 
1087 static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
1088 					struct snd_ctl_elem_value *ucontrol)
1089 {
1090 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1091 	unsigned int pval = list->kctl->private_value;
1092 	int cur_val, err, new_val;
1093 
1094 	cur_val = pval >> 24;
1095 	new_val = ucontrol->value.enumerated.item[0];
1096 	if (cur_val == new_val)
1097 		return 0;
1098 
1099 	kctl->private_value &= ~(0xff << 24);
1100 	kctl->private_value |= new_val << 24;
1101 	err = snd_ftu_eff_switch_update(list);
1102 	return err < 0 ? err : 1;
1103 }
1104 
1105 static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
1106 	int validx, int bUnitID)
1107 {
1108 	static struct snd_kcontrol_new template = {
1109 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1110 		.name = "Effect Program Switch",
1111 		.index = 0,
1112 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1113 		.info = snd_ftu_eff_switch_info,
1114 		.get = snd_ftu_eff_switch_get,
1115 		.put = snd_ftu_eff_switch_put
1116 	};
1117 	struct usb_mixer_elem_list *list;
1118 	int err;
1119 
1120 	err = add_single_ctl_with_resume(mixer, bUnitID,
1121 					 snd_ftu_eff_switch_update,
1122 					 &template, &list);
1123 	if (err < 0)
1124 		return err;
1125 	list->kctl->private_value = (validx << 8) | bUnitID;
1126 	snd_ftu_eff_switch_init(mixer, list->kctl);
1127 	return 0;
1128 }
1129 
1130 /* Create volume controls for FTU devices*/
1131 static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
1132 {
1133 	char name[64];
1134 	unsigned int control, cmask;
1135 	int in, out, err;
1136 
1137 	const unsigned int id = 5;
1138 	const int val_type = USB_MIXER_S16;
1139 
1140 	for (out = 0; out < 8; out++) {
1141 		control = out + 1;
1142 		for (in = 0; in < 8; in++) {
1143 			cmask = BIT(in);
1144 			snprintf(name, sizeof(name),
1145 				"AIn%d - Out%d Capture Volume",
1146 				in  + 1, out + 1);
1147 			err = snd_create_std_mono_ctl(mixer, id, control,
1148 							cmask, val_type, name,
1149 							&snd_usb_mixer_vol_tlv);
1150 			if (err < 0)
1151 				return err;
1152 		}
1153 		for (in = 8; in < 16; in++) {
1154 			cmask = BIT(in);
1155 			snprintf(name, sizeof(name),
1156 				"DIn%d - Out%d Playback Volume",
1157 				in - 7, out + 1);
1158 			err = snd_create_std_mono_ctl(mixer, id, control,
1159 							cmask, val_type, name,
1160 							&snd_usb_mixer_vol_tlv);
1161 			if (err < 0)
1162 				return err;
1163 		}
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /* This control needs a volume quirk, see mixer.c */
1170 static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1171 {
1172 	static const char name[] = "Effect Volume";
1173 	const unsigned int id = 6;
1174 	const int val_type = USB_MIXER_U8;
1175 	const unsigned int control = 2;
1176 	const unsigned int cmask = 0;
1177 
1178 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1179 					name, snd_usb_mixer_vol_tlv);
1180 }
1181 
1182 /* This control needs a volume quirk, see mixer.c */
1183 static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1184 {
1185 	static const char name[] = "Effect Duration";
1186 	const unsigned int id = 6;
1187 	const int val_type = USB_MIXER_S16;
1188 	const unsigned int control = 3;
1189 	const unsigned int cmask = 0;
1190 
1191 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1192 					name, snd_usb_mixer_vol_tlv);
1193 }
1194 
1195 /* This control needs a volume quirk, see mixer.c */
1196 static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1197 {
1198 	static const char name[] = "Effect Feedback Volume";
1199 	const unsigned int id = 6;
1200 	const int val_type = USB_MIXER_U8;
1201 	const unsigned int control = 4;
1202 	const unsigned int cmask = 0;
1203 
1204 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1205 					name, NULL);
1206 }
1207 
1208 static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
1209 {
1210 	unsigned int cmask;
1211 	int err, ch;
1212 	char name[48];
1213 
1214 	const unsigned int id = 7;
1215 	const int val_type = USB_MIXER_S16;
1216 	const unsigned int control = 7;
1217 
1218 	for (ch = 0; ch < 4; ++ch) {
1219 		cmask = BIT(ch);
1220 		snprintf(name, sizeof(name),
1221 			"Effect Return %d Volume", ch + 1);
1222 		err = snd_create_std_mono_ctl(mixer, id, control,
1223 						cmask, val_type, name,
1224 						snd_usb_mixer_vol_tlv);
1225 		if (err < 0)
1226 			return err;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
1233 {
1234 	unsigned int  cmask;
1235 	int err, ch;
1236 	char name[48];
1237 
1238 	const unsigned int id = 5;
1239 	const int val_type = USB_MIXER_S16;
1240 	const unsigned int control = 9;
1241 
1242 	for (ch = 0; ch < 8; ++ch) {
1243 		cmask = BIT(ch);
1244 		snprintf(name, sizeof(name),
1245 			"Effect Send AIn%d Volume", ch + 1);
1246 		err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1247 						val_type, name,
1248 						snd_usb_mixer_vol_tlv);
1249 		if (err < 0)
1250 			return err;
1251 	}
1252 	for (ch = 8; ch < 16; ++ch) {
1253 		cmask = BIT(ch);
1254 		snprintf(name, sizeof(name),
1255 			"Effect Send DIn%d Volume", ch - 7);
1256 		err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1257 						val_type, name,
1258 						snd_usb_mixer_vol_tlv);
1259 		if (err < 0)
1260 			return err;
1261 	}
1262 	return 0;
1263 }
1264 
1265 static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
1266 {
1267 	int err;
1268 
1269 	err = snd_ftu_create_volume_ctls(mixer);
1270 	if (err < 0)
1271 		return err;
1272 
1273 	err = snd_ftu_create_effect_switch(mixer, 1, 6);
1274 	if (err < 0)
1275 		return err;
1276 
1277 	err = snd_ftu_create_effect_volume_ctl(mixer);
1278 	if (err < 0)
1279 		return err;
1280 
1281 	err = snd_ftu_create_effect_duration_ctl(mixer);
1282 	if (err < 0)
1283 		return err;
1284 
1285 	err = snd_ftu_create_effect_feedback_ctl(mixer);
1286 	if (err < 0)
1287 		return err;
1288 
1289 	err = snd_ftu_create_effect_return_ctls(mixer);
1290 	if (err < 0)
1291 		return err;
1292 
1293 	err = snd_ftu_create_effect_send_ctls(mixer);
1294 	if (err < 0)
1295 		return err;
1296 
1297 	return 0;
1298 }
1299 
1300 void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
1301 			       unsigned char samplerate_id)
1302 {
1303 	struct usb_mixer_interface *mixer;
1304 	struct usb_mixer_elem_info *cval;
1305 	int unitid = 12; /* SampleRate ExtensionUnit ID */
1306 
1307 	list_for_each_entry(mixer, &chip->mixer_list, list) {
1308 		if (mixer->id_elems[unitid]) {
1309 			cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
1310 			snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
1311 						    cval->control << 8,
1312 						    samplerate_id);
1313 			snd_usb_mixer_notify_id(mixer, unitid);
1314 			break;
1315 		}
1316 	}
1317 }
1318 
1319 /* M-Audio Fast Track C400/C600 */
1320 /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
1321 static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
1322 {
1323 	char name[64];
1324 	unsigned int cmask, offset;
1325 	int out, chan, err;
1326 	int num_outs = 0;
1327 	int num_ins = 0;
1328 
1329 	const unsigned int id = 0x40;
1330 	const int val_type = USB_MIXER_S16;
1331 	const int control = 1;
1332 
1333 	switch (mixer->chip->usb_id) {
1334 	case USB_ID(0x0763, 0x2030):
1335 		num_outs = 6;
1336 		num_ins = 4;
1337 		break;
1338 	case USB_ID(0x0763, 0x2031):
1339 		num_outs = 8;
1340 		num_ins = 6;
1341 		break;
1342 	}
1343 
1344 	for (chan = 0; chan < num_outs + num_ins; chan++) {
1345 		for (out = 0; out < num_outs; out++) {
1346 			if (chan < num_outs) {
1347 				snprintf(name, sizeof(name),
1348 					"PCM%d-Out%d Playback Volume",
1349 					chan + 1, out + 1);
1350 			} else {
1351 				snprintf(name, sizeof(name),
1352 					"In%d-Out%d Playback Volume",
1353 					chan - num_outs + 1, out + 1);
1354 			}
1355 
1356 			cmask = (out == 0) ? 0 : BIT(out - 1);
1357 			offset = chan * num_outs;
1358 			err = snd_create_std_mono_ctl_offset(mixer, id, control,
1359 						cmask, val_type, offset, name,
1360 						&snd_usb_mixer_vol_tlv);
1361 			if (err < 0)
1362 				return err;
1363 		}
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 /* This control needs a volume quirk, see mixer.c */
1370 static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1371 {
1372 	static const char name[] = "Effect Volume";
1373 	const unsigned int id = 0x43;
1374 	const int val_type = USB_MIXER_U8;
1375 	const unsigned int control = 3;
1376 	const unsigned int cmask = 0;
1377 
1378 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1379 					name, snd_usb_mixer_vol_tlv);
1380 }
1381 
1382 /* This control needs a volume quirk, see mixer.c */
1383 static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1384 {
1385 	static const char name[] = "Effect Duration";
1386 	const unsigned int id = 0x43;
1387 	const int val_type = USB_MIXER_S16;
1388 	const unsigned int control = 4;
1389 	const unsigned int cmask = 0;
1390 
1391 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1392 					name, snd_usb_mixer_vol_tlv);
1393 }
1394 
1395 /* This control needs a volume quirk, see mixer.c */
1396 static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1397 {
1398 	static const char name[] = "Effect Feedback Volume";
1399 	const unsigned int id = 0x43;
1400 	const int val_type = USB_MIXER_U8;
1401 	const unsigned int control = 5;
1402 	const unsigned int cmask = 0;
1403 
1404 	return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1405 					name, NULL);
1406 }
1407 
1408 static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
1409 {
1410 	char name[64];
1411 	unsigned int cmask;
1412 	int chan, err;
1413 	int num_outs = 0;
1414 	int num_ins = 0;
1415 
1416 	const unsigned int id = 0x42;
1417 	const int val_type = USB_MIXER_S16;
1418 	const int control = 1;
1419 
1420 	switch (mixer->chip->usb_id) {
1421 	case USB_ID(0x0763, 0x2030):
1422 		num_outs = 6;
1423 		num_ins = 4;
1424 		break;
1425 	case USB_ID(0x0763, 0x2031):
1426 		num_outs = 8;
1427 		num_ins = 6;
1428 		break;
1429 	}
1430 
1431 	for (chan = 0; chan < num_outs + num_ins; chan++) {
1432 		if (chan < num_outs) {
1433 			snprintf(name, sizeof(name),
1434 				"Effect Send DOut%d",
1435 				chan + 1);
1436 		} else {
1437 			snprintf(name, sizeof(name),
1438 				"Effect Send AIn%d",
1439 				chan - num_outs + 1);
1440 		}
1441 
1442 		cmask = (chan == 0) ? 0 : BIT(chan - 1);
1443 		err = snd_create_std_mono_ctl(mixer, id, control,
1444 						cmask, val_type, name,
1445 						&snd_usb_mixer_vol_tlv);
1446 		if (err < 0)
1447 			return err;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
1454 {
1455 	char name[64];
1456 	unsigned int cmask;
1457 	int chan, err;
1458 	int num_outs = 0;
1459 	int offset = 0;
1460 
1461 	const unsigned int id = 0x40;
1462 	const int val_type = USB_MIXER_S16;
1463 	const int control = 1;
1464 
1465 	switch (mixer->chip->usb_id) {
1466 	case USB_ID(0x0763, 0x2030):
1467 		num_outs = 6;
1468 		offset = 0x3c;
1469 		/* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
1470 		break;
1471 	case USB_ID(0x0763, 0x2031):
1472 		num_outs = 8;
1473 		offset = 0x70;
1474 		/* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
1475 		break;
1476 	}
1477 
1478 	for (chan = 0; chan < num_outs; chan++) {
1479 		snprintf(name, sizeof(name),
1480 			"Effect Return %d",
1481 			chan + 1);
1482 
1483 		cmask = (chan == 0) ? 0 :
1484 			BIT(chan + (chan % 2) * num_outs - 1);
1485 		err = snd_create_std_mono_ctl_offset(mixer, id, control,
1486 						cmask, val_type, offset, name,
1487 						&snd_usb_mixer_vol_tlv);
1488 		if (err < 0)
1489 			return err;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
1496 {
1497 	int err;
1498 
1499 	err = snd_c400_create_vol_ctls(mixer);
1500 	if (err < 0)
1501 		return err;
1502 
1503 	err = snd_c400_create_effect_vol_ctls(mixer);
1504 	if (err < 0)
1505 		return err;
1506 
1507 	err = snd_c400_create_effect_ret_vol_ctls(mixer);
1508 	if (err < 0)
1509 		return err;
1510 
1511 	err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
1512 	if (err < 0)
1513 		return err;
1514 
1515 	err = snd_c400_create_effect_volume_ctl(mixer);
1516 	if (err < 0)
1517 		return err;
1518 
1519 	err = snd_c400_create_effect_duration_ctl(mixer);
1520 	if (err < 0)
1521 		return err;
1522 
1523 	err = snd_c400_create_effect_feedback_ctl(mixer);
1524 	if (err < 0)
1525 		return err;
1526 
1527 	return 0;
1528 }
1529 
1530 /*
1531  * The mixer units for Ebox-44 are corrupt, and even where they
1532  * are valid they presents mono controls as L and R channels of
1533  * stereo. So we provide a good mixer here.
1534  */
1535 static const struct std_mono_table ebox44_table[] = {
1536 	{
1537 		.unitid = 4,
1538 		.control = 1,
1539 		.cmask = 0x0,
1540 		.val_type = USB_MIXER_INV_BOOLEAN,
1541 		.name = "Headphone Playback Switch"
1542 	},
1543 	{
1544 		.unitid = 4,
1545 		.control = 2,
1546 		.cmask = 0x1,
1547 		.val_type = USB_MIXER_S16,
1548 		.name = "Headphone A Mix Playback Volume"
1549 	},
1550 	{
1551 		.unitid = 4,
1552 		.control = 2,
1553 		.cmask = 0x2,
1554 		.val_type = USB_MIXER_S16,
1555 		.name = "Headphone B Mix Playback Volume"
1556 	},
1557 
1558 	{
1559 		.unitid = 7,
1560 		.control = 1,
1561 		.cmask = 0x0,
1562 		.val_type = USB_MIXER_INV_BOOLEAN,
1563 		.name = "Output Playback Switch"
1564 	},
1565 	{
1566 		.unitid = 7,
1567 		.control = 2,
1568 		.cmask = 0x1,
1569 		.val_type = USB_MIXER_S16,
1570 		.name = "Output A Playback Volume"
1571 	},
1572 	{
1573 		.unitid = 7,
1574 		.control = 2,
1575 		.cmask = 0x2,
1576 		.val_type = USB_MIXER_S16,
1577 		.name = "Output B Playback Volume"
1578 	},
1579 
1580 	{
1581 		.unitid = 10,
1582 		.control = 1,
1583 		.cmask = 0x0,
1584 		.val_type = USB_MIXER_INV_BOOLEAN,
1585 		.name = "Input Capture Switch"
1586 	},
1587 	{
1588 		.unitid = 10,
1589 		.control = 2,
1590 		.cmask = 0x1,
1591 		.val_type = USB_MIXER_S16,
1592 		.name = "Input A Capture Volume"
1593 	},
1594 	{
1595 		.unitid = 10,
1596 		.control = 2,
1597 		.cmask = 0x2,
1598 		.val_type = USB_MIXER_S16,
1599 		.name = "Input B Capture Volume"
1600 	},
1601 
1602 	{}
1603 };
1604 
1605 /* Audio Advantage Micro II findings:
1606  *
1607  * Mapping spdif AES bits to vendor register.bit:
1608  * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
1609  * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
1610  * AES2: [0 0 0 0 0 0 0 0]
1611  * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
1612  *                           (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
1613  *
1614  * power on values:
1615  * r2: 0x10
1616  * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
1617  *           just after it to 0xa0, presumably it disables/mutes some analog
1618  *           parts when there is no audio.)
1619  * r9: 0x28
1620  *
1621  * Optical transmitter on/off:
1622  * vendor register.bit: 9.1
1623  * 0 - on (0x28 register value)
1624  * 1 - off (0x2a register value)
1625  *
1626  */
1627 static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
1628 	struct snd_ctl_elem_info *uinfo)
1629 {
1630 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1631 	uinfo->count = 1;
1632 	return 0;
1633 }
1634 
1635 static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
1636 	struct snd_ctl_elem_value *ucontrol)
1637 {
1638 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1639 	struct snd_usb_audio *chip = list->mixer->chip;
1640 	int err;
1641 	struct usb_interface *iface;
1642 	struct usb_host_interface *alts;
1643 	unsigned int ep;
1644 	unsigned char data[3];
1645 	int rate;
1646 
1647 	err = snd_usb_lock_shutdown(chip);
1648 	if (err < 0)
1649 		return err;
1650 
1651 	ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
1652 	ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
1653 	ucontrol->value.iec958.status[2] = 0x00;
1654 
1655 	/* use known values for that card: interface#1 altsetting#1 */
1656 	iface = usb_ifnum_to_if(chip->dev, 1);
1657 	if (!iface || iface->num_altsetting < 2) {
1658 		err = -EINVAL;
1659 		goto end;
1660 	}
1661 	alts = &iface->altsetting[1];
1662 	if (get_iface_desc(alts)->bNumEndpoints < 1) {
1663 		err = -EINVAL;
1664 		goto end;
1665 	}
1666 	ep = get_endpoint(alts, 0)->bEndpointAddress;
1667 
1668 	err = snd_usb_ctl_msg(chip->dev,
1669 			usb_rcvctrlpipe(chip->dev, 0),
1670 			UAC_GET_CUR,
1671 			USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
1672 			UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
1673 			ep,
1674 			data,
1675 			sizeof(data));
1676 	if (err < 0)
1677 		goto end;
1678 
1679 	rate = data[0] | (data[1] << 8) | (data[2] << 16);
1680 	ucontrol->value.iec958.status[3] = (rate == 48000) ?
1681 			IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
1682 
1683 	err = 0;
1684  end:
1685 	snd_usb_unlock_shutdown(chip);
1686 	return err;
1687 }
1688 
1689 static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
1690 {
1691 	struct snd_usb_audio *chip = list->mixer->chip;
1692 	unsigned int pval = list->kctl->private_value;
1693 	u8 reg;
1694 	int err;
1695 
1696 	err = snd_usb_lock_shutdown(chip);
1697 	if (err < 0)
1698 		return err;
1699 
1700 	reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
1701 	err = snd_usb_ctl_msg(chip->dev,
1702 			usb_sndctrlpipe(chip->dev, 0),
1703 			UAC_SET_CUR,
1704 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1705 			reg,
1706 			2,
1707 			NULL,
1708 			0);
1709 	if (err < 0)
1710 		goto end;
1711 
1712 	reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
1713 	reg |= (pval >> 12) & 0x0f;
1714 	err = snd_usb_ctl_msg(chip->dev,
1715 			usb_sndctrlpipe(chip->dev, 0),
1716 			UAC_SET_CUR,
1717 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1718 			reg,
1719 			3,
1720 			NULL,
1721 			0);
1722 	if (err < 0)
1723 		goto end;
1724 
1725  end:
1726 	snd_usb_unlock_shutdown(chip);
1727 	return err;
1728 }
1729 
1730 static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
1731 	struct snd_ctl_elem_value *ucontrol)
1732 {
1733 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1734 	unsigned int pval, pval_old;
1735 	int err;
1736 
1737 	pval = pval_old = kcontrol->private_value;
1738 	pval &= 0xfffff0f0;
1739 	pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
1740 	pval |= (ucontrol->value.iec958.status[0] & 0x0f);
1741 
1742 	pval &= 0xffff0fff;
1743 	pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
1744 
1745 	/* The frequency bits in AES3 cannot be set via register access. */
1746 
1747 	/* Silently ignore any bits from the request that cannot be set. */
1748 
1749 	if (pval == pval_old)
1750 		return 0;
1751 
1752 	kcontrol->private_value = pval;
1753 	err = snd_microii_spdif_default_update(list);
1754 	return err < 0 ? err : 1;
1755 }
1756 
1757 static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
1758 	struct snd_ctl_elem_value *ucontrol)
1759 {
1760 	ucontrol->value.iec958.status[0] = 0x0f;
1761 	ucontrol->value.iec958.status[1] = 0xff;
1762 	ucontrol->value.iec958.status[2] = 0x00;
1763 	ucontrol->value.iec958.status[3] = 0x00;
1764 
1765 	return 0;
1766 }
1767 
1768 static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
1769 	struct snd_ctl_elem_value *ucontrol)
1770 {
1771 	ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
1772 
1773 	return 0;
1774 }
1775 
1776 static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
1777 {
1778 	struct snd_usb_audio *chip = list->mixer->chip;
1779 	u8 reg = list->kctl->private_value;
1780 	int err;
1781 
1782 	err = snd_usb_lock_shutdown(chip);
1783 	if (err < 0)
1784 		return err;
1785 
1786 	err = snd_usb_ctl_msg(chip->dev,
1787 			usb_sndctrlpipe(chip->dev, 0),
1788 			UAC_SET_CUR,
1789 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1790 			reg,
1791 			9,
1792 			NULL,
1793 			0);
1794 
1795 	snd_usb_unlock_shutdown(chip);
1796 	return err;
1797 }
1798 
1799 static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
1800 	struct snd_ctl_elem_value *ucontrol)
1801 {
1802 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1803 	u8 reg;
1804 	int err;
1805 
1806 	reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
1807 	if (reg != list->kctl->private_value)
1808 		return 0;
1809 
1810 	kcontrol->private_value = reg;
1811 	err = snd_microii_spdif_switch_update(list);
1812 	return err < 0 ? err : 1;
1813 }
1814 
1815 static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
1816 	{
1817 		.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
1818 		.name =     SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1819 		.info =     snd_microii_spdif_info,
1820 		.get =      snd_microii_spdif_default_get,
1821 		.put =      snd_microii_spdif_default_put,
1822 		.private_value = 0x00000100UL,/* reset value */
1823 	},
1824 	{
1825 		.access =   SNDRV_CTL_ELEM_ACCESS_READ,
1826 		.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
1827 		.name =     SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1828 		.info =     snd_microii_spdif_info,
1829 		.get =      snd_microii_spdif_mask_get,
1830 	},
1831 	{
1832 		.iface =    SNDRV_CTL_ELEM_IFACE_MIXER,
1833 		.name =     SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
1834 		.info =     snd_ctl_boolean_mono_info,
1835 		.get =      snd_microii_spdif_switch_get,
1836 		.put =      snd_microii_spdif_switch_put,
1837 		.private_value = 0x00000028UL,/* reset value */
1838 	}
1839 };
1840 
1841 static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
1842 {
1843 	int err, i;
1844 	static const usb_mixer_elem_resume_func_t resume_funcs[] = {
1845 		snd_microii_spdif_default_update,
1846 		NULL,
1847 		snd_microii_spdif_switch_update
1848 	};
1849 
1850 	for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
1851 		err = add_single_ctl_with_resume(mixer, 0,
1852 						 resume_funcs[i],
1853 						 &snd_microii_mixer_spdif[i],
1854 						 NULL);
1855 		if (err < 0)
1856 			return err;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /* Creative Sound Blaster E1 */
1863 
1864 static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
1865 					  struct snd_ctl_elem_value *ucontrol)
1866 {
1867 	ucontrol->value.integer.value[0] = kcontrol->private_value;
1868 	return 0;
1869 }
1870 
1871 static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
1872 					     unsigned char state)
1873 {
1874 	struct snd_usb_audio *chip = mixer->chip;
1875 	int err;
1876 	unsigned char buff[2];
1877 
1878 	buff[0] = 0x02;
1879 	buff[1] = state ? 0x02 : 0x00;
1880 
1881 	err = snd_usb_lock_shutdown(chip);
1882 	if (err < 0)
1883 		return err;
1884 	err = snd_usb_ctl_msg(chip->dev,
1885 			usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
1886 			USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
1887 			0x0202, 3, buff, 2);
1888 	snd_usb_unlock_shutdown(chip);
1889 	return err;
1890 }
1891 
1892 static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
1893 					  struct snd_ctl_elem_value *ucontrol)
1894 {
1895 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1896 	unsigned char value = !!ucontrol->value.integer.value[0];
1897 	int err;
1898 
1899 	if (kcontrol->private_value == value)
1900 		return 0;
1901 	kcontrol->private_value = value;
1902 	err = snd_soundblaster_e1_switch_update(list->mixer, value);
1903 	return err < 0 ? err : 1;
1904 }
1905 
1906 static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
1907 {
1908 	return snd_soundblaster_e1_switch_update(list->mixer,
1909 						 list->kctl->private_value);
1910 }
1911 
1912 static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
1913 					   struct snd_ctl_elem_info *uinfo)
1914 {
1915 	static const char *const texts[2] = {
1916 		"Mic", "Aux"
1917 	};
1918 
1919 	return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1920 }
1921 
1922 static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
1923 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1924 	.name = "Input Source",
1925 	.info = snd_soundblaster_e1_switch_info,
1926 	.get = snd_soundblaster_e1_switch_get,
1927 	.put = snd_soundblaster_e1_switch_put,
1928 	.private_value = 0,
1929 };
1930 
1931 static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
1932 {
1933 	return add_single_ctl_with_resume(mixer, 0,
1934 					  snd_soundblaster_e1_switch_resume,
1935 					  &snd_soundblaster_e1_input_switch,
1936 					  NULL);
1937 }
1938 
1939 /*
1940  * Dell WD15 dock jack detection
1941  *
1942  * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
1943  * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
1944  * detection. Instead, jack detection works by sending HD Audio commands over
1945  * vendor-type USB messages.
1946  */
1947 
1948 #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
1949 
1950 #define REALTEK_HDA_VALUE 0x0038
1951 
1952 #define REALTEK_HDA_SET		62
1953 #define REALTEK_MANUAL_MODE	72
1954 #define REALTEK_HDA_GET_OUT	88
1955 #define REALTEK_HDA_GET_IN	89
1956 
1957 #define REALTEK_AUDIO_FUNCTION_GROUP	0x01
1958 #define REALTEK_LINE1			0x1a
1959 #define REALTEK_VENDOR_REGISTERS	0x20
1960 #define REALTEK_HP_OUT			0x21
1961 
1962 #define REALTEK_CBJ_CTRL2 0x50
1963 
1964 #define REALTEK_JACK_INTERRUPT_NODE 5
1965 
1966 #define REALTEK_MIC_FLAG 0x100
1967 
1968 static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
1969 {
1970 	struct usb_device *dev = chip->dev;
1971 	__be32 buf = cpu_to_be32(cmd);
1972 
1973 	return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
1974 			       USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
1975 			       REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
1976 }
1977 
1978 static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
1979 {
1980 	struct usb_device *dev = chip->dev;
1981 	int err;
1982 	__be32 buf = cpu_to_be32(cmd);
1983 
1984 	err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
1985 			      USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
1986 			      REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
1987 	if (err < 0)
1988 		return err;
1989 	err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
1990 			      USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
1991 			      REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
1992 	if (err < 0)
1993 		return err;
1994 
1995 	*value = be32_to_cpu(buf);
1996 	return 0;
1997 }
1998 
1999 static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
2000 				     struct snd_ctl_elem_value *ucontrol)
2001 {
2002 	struct usb_mixer_elem_info *cval = kcontrol->private_data;
2003 	struct snd_usb_audio *chip = cval->head.mixer->chip;
2004 	u32 pv = kcontrol->private_value;
2005 	u32 node_id = pv & 0xff;
2006 	u32 sense;
2007 	u32 cbj_ctrl2;
2008 	bool presence;
2009 	int err;
2010 
2011 	err = snd_usb_lock_shutdown(chip);
2012 	if (err < 0)
2013 		return err;
2014 	err = realtek_hda_get(chip,
2015 			      HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
2016 			      &sense);
2017 	if (err < 0)
2018 		goto err;
2019 	if (pv & REALTEK_MIC_FLAG) {
2020 		err = realtek_hda_set(chip,
2021 				      HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
2022 						   REALTEK_VENDOR_REGISTERS,
2023 						   REALTEK_CBJ_CTRL2));
2024 		if (err < 0)
2025 			goto err;
2026 		err = realtek_hda_get(chip,
2027 				      HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
2028 						   REALTEK_VENDOR_REGISTERS, 0),
2029 				      &cbj_ctrl2);
2030 		if (err < 0)
2031 			goto err;
2032 	}
2033 err:
2034 	snd_usb_unlock_shutdown(chip);
2035 	if (err < 0)
2036 		return err;
2037 
2038 	presence = sense & AC_PINSENSE_PRESENCE;
2039 	if (pv & REALTEK_MIC_FLAG)
2040 		presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
2041 	ucontrol->value.integer.value[0] = presence;
2042 	return 0;
2043 }
2044 
2045 static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
2046 	.iface = SNDRV_CTL_ELEM_IFACE_CARD,
2047 	.name = "", /* will be filled later manually */
2048 	.access = SNDRV_CTL_ELEM_ACCESS_READ,
2049 	.info = snd_ctl_boolean_mono_info,
2050 	.get = realtek_ctl_connector_get,
2051 };
2052 
2053 static int realtek_resume_jack(struct usb_mixer_elem_list *list)
2054 {
2055 	snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
2056 		       &list->kctl->id);
2057 	return 0;
2058 }
2059 
2060 static int realtek_add_jack(struct usb_mixer_interface *mixer,
2061 			    char *name, u32 val)
2062 {
2063 	struct usb_mixer_elem_info *cval;
2064 	struct snd_kcontrol *kctl;
2065 
2066 	cval = kzalloc(sizeof(*cval), GFP_KERNEL);
2067 	if (!cval)
2068 		return -ENOMEM;
2069 	snd_usb_mixer_elem_init_std(&cval->head, mixer,
2070 				    REALTEK_JACK_INTERRUPT_NODE);
2071 	cval->head.resume = realtek_resume_jack;
2072 	cval->val_type = USB_MIXER_BOOLEAN;
2073 	cval->channels = 1;
2074 	cval->min = 0;
2075 	cval->max = 1;
2076 	kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval);
2077 	if (!kctl) {
2078 		kfree(cval);
2079 		return -ENOMEM;
2080 	}
2081 	kctl->private_value = val;
2082 	strscpy(kctl->id.name, name, sizeof(kctl->id.name));
2083 	kctl->private_free = snd_usb_mixer_elem_free;
2084 	return snd_usb_mixer_add_control(&cval->head, kctl);
2085 }
2086 
2087 static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
2088 {
2089 	int err;
2090 	struct usb_device *dev = mixer->chip->dev;
2091 
2092 	/* Power down the audio codec to avoid loud pops in the next step. */
2093 	realtek_hda_set(mixer->chip,
2094 			HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
2095 				     REALTEK_AUDIO_FUNCTION_GROUP,
2096 				     AC_PWRST_D3));
2097 
2098 	/*
2099 	 * Turn off 'manual mode' in case it was enabled. This removes the need
2100 	 * to power cycle the dock after it was attached to a Windows machine.
2101 	 */
2102 	snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
2103 			USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2104 			0, 0, NULL, 0);
2105 
2106 	err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1);
2107 	if (err < 0)
2108 		return err;
2109 	err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT);
2110 	if (err < 0)
2111 		return err;
2112 	err = realtek_add_jack(mixer, "Headset Mic Jack",
2113 			       REALTEK_HP_OUT | REALTEK_MIC_FLAG);
2114 	if (err < 0)
2115 		return err;
2116 	return 0;
2117 }
2118 
2119 static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id)
2120 {
2121 	struct snd_usb_audio *chip = mixer->chip;
2122 	u16 buf = 0;
2123 
2124 	snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
2125 			USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
2126 			(UAC_FU_VOLUME << 8) | ch,
2127 			snd_usb_ctrl_intf(mixer->hostif) | (id << 8),
2128 			&buf, 2);
2129 }
2130 
2131 static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
2132 {
2133 	/* fix to 0dB playback volumes */
2134 	dell_dock_init_vol(mixer, 1, 16);
2135 	dell_dock_init_vol(mixer, 2, 16);
2136 	dell_dock_init_vol(mixer, 1, 19);
2137 	dell_dock_init_vol(mixer, 2, 19);
2138 	return 0;
2139 }
2140 
2141 /* RME Class Compliant device quirks */
2142 
2143 #define SND_RME_GET_STATUS1			23
2144 #define SND_RME_GET_CURRENT_FREQ		17
2145 #define SND_RME_CLK_SYSTEM_SHIFT		16
2146 #define SND_RME_CLK_SYSTEM_MASK			0x1f
2147 #define SND_RME_CLK_AES_SHIFT			8
2148 #define SND_RME_CLK_SPDIF_SHIFT			12
2149 #define SND_RME_CLK_AES_SPDIF_MASK		0xf
2150 #define SND_RME_CLK_SYNC_SHIFT			6
2151 #define SND_RME_CLK_SYNC_MASK			0x3
2152 #define SND_RME_CLK_FREQMUL_SHIFT		18
2153 #define SND_RME_CLK_FREQMUL_MASK		0x7
2154 #define SND_RME_CLK_SYSTEM(x) \
2155 	((x >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
2156 #define SND_RME_CLK_AES(x) \
2157 	((x >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2158 #define SND_RME_CLK_SPDIF(x) \
2159 	((x >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2160 #define SND_RME_CLK_SYNC(x) \
2161 	((x >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
2162 #define SND_RME_CLK_FREQMUL(x) \
2163 	((x >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
2164 #define SND_RME_CLK_AES_LOCK			0x1
2165 #define SND_RME_CLK_AES_SYNC			0x4
2166 #define SND_RME_CLK_SPDIF_LOCK			0x2
2167 #define SND_RME_CLK_SPDIF_SYNC			0x8
2168 #define SND_RME_SPDIF_IF_SHIFT			4
2169 #define SND_RME_SPDIF_FORMAT_SHIFT		5
2170 #define SND_RME_BINARY_MASK			0x1
2171 #define SND_RME_SPDIF_IF(x) \
2172 	((x >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
2173 #define SND_RME_SPDIF_FORMAT(x) \
2174 	((x >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
2175 
2176 static const u32 snd_rme_rate_table[] = {
2177 	32000, 44100, 48000, 50000,
2178 	64000, 88200, 96000, 100000,
2179 	128000, 176400, 192000, 200000,
2180 	256000,	352800, 384000, 400000,
2181 	512000, 705600, 768000, 800000
2182 };
2183 /* maximum number of items for AES and S/PDIF rates for above table */
2184 #define SND_RME_RATE_IDX_AES_SPDIF_NUM		12
2185 
2186 enum snd_rme_domain {
2187 	SND_RME_DOMAIN_SYSTEM,
2188 	SND_RME_DOMAIN_AES,
2189 	SND_RME_DOMAIN_SPDIF
2190 };
2191 
2192 enum snd_rme_clock_status {
2193 	SND_RME_CLOCK_NOLOCK,
2194 	SND_RME_CLOCK_LOCK,
2195 	SND_RME_CLOCK_SYNC
2196 };
2197 
2198 static int snd_rme_read_value(struct snd_usb_audio *chip,
2199 			      unsigned int item,
2200 			      u32 *value)
2201 {
2202 	struct usb_device *dev = chip->dev;
2203 	int err;
2204 
2205 	err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
2206 			      item,
2207 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2208 			      0, 0,
2209 			      value, sizeof(*value));
2210 	if (err < 0)
2211 		dev_err(&dev->dev,
2212 			"unable to issue vendor read request %d (ret = %d)",
2213 			item, err);
2214 	return err;
2215 }
2216 
2217 static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
2218 			       u32 *status1)
2219 {
2220 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2221 	struct snd_usb_audio *chip = list->mixer->chip;
2222 	int err;
2223 
2224 	err = snd_usb_lock_shutdown(chip);
2225 	if (err < 0)
2226 		return err;
2227 	err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
2228 	snd_usb_unlock_shutdown(chip);
2229 	return err;
2230 }
2231 
2232 static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
2233 			    struct snd_ctl_elem_value *ucontrol)
2234 {
2235 	u32 status1;
2236 	u32 rate = 0;
2237 	int idx;
2238 	int err;
2239 
2240 	err = snd_rme_get_status1(kcontrol, &status1);
2241 	if (err < 0)
2242 		return err;
2243 	switch (kcontrol->private_value) {
2244 	case SND_RME_DOMAIN_SYSTEM:
2245 		idx = SND_RME_CLK_SYSTEM(status1);
2246 		if (idx < ARRAY_SIZE(snd_rme_rate_table))
2247 			rate = snd_rme_rate_table[idx];
2248 		break;
2249 	case SND_RME_DOMAIN_AES:
2250 		idx = SND_RME_CLK_AES(status1);
2251 		if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2252 			rate = snd_rme_rate_table[idx];
2253 		break;
2254 	case SND_RME_DOMAIN_SPDIF:
2255 		idx = SND_RME_CLK_SPDIF(status1);
2256 		if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2257 			rate = snd_rme_rate_table[idx];
2258 		break;
2259 	default:
2260 		return -EINVAL;
2261 	}
2262 	ucontrol->value.integer.value[0] = rate;
2263 	return 0;
2264 }
2265 
2266 static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
2267 				  struct snd_ctl_elem_value *ucontrol)
2268 {
2269 	u32 status1;
2270 	int idx = SND_RME_CLOCK_NOLOCK;
2271 	int err;
2272 
2273 	err = snd_rme_get_status1(kcontrol, &status1);
2274 	if (err < 0)
2275 		return err;
2276 	switch (kcontrol->private_value) {
2277 	case SND_RME_DOMAIN_AES:  /* AES */
2278 		if (status1 & SND_RME_CLK_AES_SYNC)
2279 			idx = SND_RME_CLOCK_SYNC;
2280 		else if (status1 & SND_RME_CLK_AES_LOCK)
2281 			idx = SND_RME_CLOCK_LOCK;
2282 		break;
2283 	case SND_RME_DOMAIN_SPDIF:  /* SPDIF */
2284 		if (status1 & SND_RME_CLK_SPDIF_SYNC)
2285 			idx = SND_RME_CLOCK_SYNC;
2286 		else if (status1 & SND_RME_CLK_SPDIF_LOCK)
2287 			idx = SND_RME_CLOCK_LOCK;
2288 		break;
2289 	default:
2290 		return -EINVAL;
2291 	}
2292 	ucontrol->value.enumerated.item[0] = idx;
2293 	return 0;
2294 }
2295 
2296 static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
2297 				struct snd_ctl_elem_value *ucontrol)
2298 {
2299 	u32 status1;
2300 	int err;
2301 
2302 	err = snd_rme_get_status1(kcontrol, &status1);
2303 	if (err < 0)
2304 		return err;
2305 	ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
2306 	return 0;
2307 }
2308 
2309 static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
2310 				    struct snd_ctl_elem_value *ucontrol)
2311 {
2312 	u32 status1;
2313 	int err;
2314 
2315 	err = snd_rme_get_status1(kcontrol, &status1);
2316 	if (err < 0)
2317 		return err;
2318 	ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
2319 	return 0;
2320 }
2321 
2322 static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
2323 				   struct snd_ctl_elem_value *ucontrol)
2324 {
2325 	u32 status1;
2326 	int err;
2327 
2328 	err = snd_rme_get_status1(kcontrol, &status1);
2329 	if (err < 0)
2330 		return err;
2331 	ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
2332 	return 0;
2333 }
2334 
2335 static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
2336 				    struct snd_ctl_elem_value *ucontrol)
2337 {
2338 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2339 	struct snd_usb_audio *chip = list->mixer->chip;
2340 	u32 status1;
2341 	const u64 num = 104857600000000ULL;
2342 	u32 den;
2343 	unsigned int freq;
2344 	int err;
2345 
2346 	err = snd_usb_lock_shutdown(chip);
2347 	if (err < 0)
2348 		return err;
2349 	err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
2350 	if (err < 0)
2351 		goto end;
2352 	err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
2353 	if (err < 0)
2354 		goto end;
2355 	freq = (den == 0) ? 0 : div64_u64(num, den);
2356 	freq <<= SND_RME_CLK_FREQMUL(status1);
2357 	ucontrol->value.integer.value[0] = freq;
2358 
2359 end:
2360 	snd_usb_unlock_shutdown(chip);
2361 	return err;
2362 }
2363 
2364 static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
2365 			     struct snd_ctl_elem_info *uinfo)
2366 {
2367 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2368 	uinfo->count = 1;
2369 	switch (kcontrol->private_value) {
2370 	case SND_RME_DOMAIN_SYSTEM:
2371 		uinfo->value.integer.min = 32000;
2372 		uinfo->value.integer.max = 800000;
2373 		break;
2374 	case SND_RME_DOMAIN_AES:
2375 	case SND_RME_DOMAIN_SPDIF:
2376 	default:
2377 		uinfo->value.integer.min = 0;
2378 		uinfo->value.integer.max = 200000;
2379 	}
2380 	uinfo->value.integer.step = 0;
2381 	return 0;
2382 }
2383 
2384 static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
2385 				   struct snd_ctl_elem_info *uinfo)
2386 {
2387 	static const char *const sync_states[] = {
2388 		"No Lock", "Lock", "Sync"
2389 	};
2390 
2391 	return snd_ctl_enum_info(uinfo, 1,
2392 				 ARRAY_SIZE(sync_states), sync_states);
2393 }
2394 
2395 static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
2396 				 struct snd_ctl_elem_info *uinfo)
2397 {
2398 	static const char *const spdif_if[] = {
2399 		"Coaxial", "Optical"
2400 	};
2401 
2402 	return snd_ctl_enum_info(uinfo, 1,
2403 				 ARRAY_SIZE(spdif_if), spdif_if);
2404 }
2405 
2406 static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
2407 				     struct snd_ctl_elem_info *uinfo)
2408 {
2409 	static const char *const optical_type[] = {
2410 		"Consumer", "Professional"
2411 	};
2412 
2413 	return snd_ctl_enum_info(uinfo, 1,
2414 				 ARRAY_SIZE(optical_type), optical_type);
2415 }
2416 
2417 static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
2418 				    struct snd_ctl_elem_info *uinfo)
2419 {
2420 	static const char *const sync_sources[] = {
2421 		"Internal", "AES", "SPDIF", "Internal"
2422 	};
2423 
2424 	return snd_ctl_enum_info(uinfo, 1,
2425 				 ARRAY_SIZE(sync_sources), sync_sources);
2426 }
2427 
2428 static const struct snd_kcontrol_new snd_rme_controls[] = {
2429 	{
2430 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 		.name = "AES Rate",
2432 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2433 		.info = snd_rme_rate_info,
2434 		.get = snd_rme_rate_get,
2435 		.private_value = SND_RME_DOMAIN_AES
2436 	},
2437 	{
2438 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2439 		.name = "AES Sync",
2440 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2441 		.info = snd_rme_sync_state_info,
2442 		.get = snd_rme_sync_state_get,
2443 		.private_value = SND_RME_DOMAIN_AES
2444 	},
2445 	{
2446 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2447 		.name = "SPDIF Rate",
2448 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2449 		.info = snd_rme_rate_info,
2450 		.get = snd_rme_rate_get,
2451 		.private_value = SND_RME_DOMAIN_SPDIF
2452 	},
2453 	{
2454 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2455 		.name = "SPDIF Sync",
2456 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2457 		.info = snd_rme_sync_state_info,
2458 		.get = snd_rme_sync_state_get,
2459 		.private_value = SND_RME_DOMAIN_SPDIF
2460 	},
2461 	{
2462 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2463 		.name = "SPDIF Interface",
2464 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2465 		.info = snd_rme_spdif_if_info,
2466 		.get = snd_rme_spdif_if_get,
2467 	},
2468 	{
2469 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2470 		.name = "SPDIF Format",
2471 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2472 		.info = snd_rme_spdif_format_info,
2473 		.get = snd_rme_spdif_format_get,
2474 	},
2475 	{
2476 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2477 		.name = "Sync Source",
2478 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2479 		.info = snd_rme_sync_source_info,
2480 		.get = snd_rme_sync_source_get
2481 	},
2482 	{
2483 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2484 		.name = "System Rate",
2485 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2486 		.info = snd_rme_rate_info,
2487 		.get = snd_rme_rate_get,
2488 		.private_value = SND_RME_DOMAIN_SYSTEM
2489 	},
2490 	{
2491 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2492 		.name = "Current Frequency",
2493 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2494 		.info = snd_rme_rate_info,
2495 		.get = snd_rme_current_freq_get
2496 	}
2497 };
2498 
2499 static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
2500 {
2501 	int err, i;
2502 
2503 	for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
2504 		err = add_single_ctl_with_resume(mixer, 0,
2505 						 NULL,
2506 						 &snd_rme_controls[i],
2507 						 NULL);
2508 		if (err < 0)
2509 			return err;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 /*
2516  * RME Babyface Pro (FS)
2517  *
2518  * These devices exposes a couple of DSP functions via request to EP0.
2519  * Switches are available via control registers, while routing is controlled
2520  * by controlling the volume on each possible crossing point.
2521  * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
2522  * 0dB being at dec. 32768.
2523  */
2524 enum {
2525 	SND_BBFPRO_CTL_REG1 = 0,
2526 	SND_BBFPRO_CTL_REG2
2527 };
2528 
2529 #define SND_BBFPRO_CTL_REG_MASK 1
2530 #define SND_BBFPRO_CTL_IDX_MASK 0xff
2531 #define SND_BBFPRO_CTL_IDX_SHIFT 1
2532 #define SND_BBFPRO_CTL_VAL_MASK 1
2533 #define SND_BBFPRO_CTL_VAL_SHIFT 9
2534 #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
2535 #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
2536 #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
2537 #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
2538 #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
2539 #define SND_BBFPRO_CTL_REG2_48V_AN1 0
2540 #define SND_BBFPRO_CTL_REG2_48V_AN2 1
2541 #define SND_BBFPRO_CTL_REG2_SENS_IN3 2
2542 #define SND_BBFPRO_CTL_REG2_SENS_IN4 3
2543 #define SND_BBFPRO_CTL_REG2_PAD_AN1 4
2544 #define SND_BBFPRO_CTL_REG2_PAD_AN2 5
2545 
2546 #define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992
2547 #define SND_BBFPRO_MIXER_IDX_MASK 0x3ff
2548 #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
2549 #define SND_BBFPRO_MIXER_VAL_SHIFT 9
2550 #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
2551 #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
2552 
2553 #define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03
2554 #define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7
2555 #define SND_BBFPRO_GAIN_VAL_MASK 0x7f
2556 #define SND_BBFPRO_GAIN_VAL_MIN 0
2557 #define SND_BBFPRO_GAIN_VAL_MIC_MAX 65
2558 #define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments
2559 
2560 #define SND_BBFPRO_USBREQ_CTL_REG1 0x10
2561 #define SND_BBFPRO_USBREQ_CTL_REG2 0x17
2562 #define SND_BBFPRO_USBREQ_GAIN 0x1a
2563 #define SND_BBFPRO_USBREQ_MIXER 0x12
2564 
2565 static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
2566 				 u8 index, u8 value)
2567 {
2568 	int err;
2569 	u16 usb_req, usb_idx, usb_val;
2570 	struct snd_usb_audio *chip = mixer->chip;
2571 
2572 	err = snd_usb_lock_shutdown(chip);
2573 	if (err < 0)
2574 		return err;
2575 
2576 	if (reg == SND_BBFPRO_CTL_REG1) {
2577 		usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
2578 		if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2579 			usb_idx = 3;
2580 			usb_val = value ? 3 : 0;
2581 		} else {
2582 			usb_idx = BIT(index);
2583 			usb_val = value ? usb_idx : 0;
2584 		}
2585 	} else {
2586 		usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
2587 		usb_idx = BIT(index);
2588 		usb_val = value ? usb_idx : 0;
2589 	}
2590 
2591 	err = snd_usb_ctl_msg(chip->dev,
2592 			      usb_sndctrlpipe(chip->dev, 0), usb_req,
2593 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2594 			      usb_val, usb_idx, NULL, 0);
2595 
2596 	snd_usb_unlock_shutdown(chip);
2597 	return err;
2598 }
2599 
2600 static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
2601 			      struct snd_ctl_elem_value *ucontrol)
2602 {
2603 	u8 reg, idx, val;
2604 	int pv;
2605 
2606 	pv = kcontrol->private_value;
2607 	reg = pv & SND_BBFPRO_CTL_REG_MASK;
2608 	idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2609 	val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
2610 
2611 	if ((reg == SND_BBFPRO_CTL_REG1 &&
2612 	     idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2613 	    (reg == SND_BBFPRO_CTL_REG2 &&
2614 	    (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2615 	     idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2616 		ucontrol->value.enumerated.item[0] = val;
2617 	} else {
2618 		ucontrol->value.integer.value[0] = val;
2619 	}
2620 	return 0;
2621 }
2622 
2623 static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
2624 			       struct snd_ctl_elem_info *uinfo)
2625 {
2626 	u8 reg, idx;
2627 	int pv;
2628 
2629 	pv = kcontrol->private_value;
2630 	reg = pv & SND_BBFPRO_CTL_REG_MASK;
2631 	idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2632 
2633 	if (reg == SND_BBFPRO_CTL_REG1 &&
2634 	    idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2635 		static const char * const texts[2] = {
2636 			"AutoSync",
2637 			"Internal"
2638 		};
2639 		return snd_ctl_enum_info(uinfo, 1, 2, texts);
2640 	} else if (reg == SND_BBFPRO_CTL_REG2 &&
2641 		   (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2642 		    idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
2643 		static const char * const texts[2] = {
2644 			"-10dBV",
2645 			"+4dBu"
2646 		};
2647 		return snd_ctl_enum_info(uinfo, 1, 2, texts);
2648 	}
2649 
2650 	uinfo->count = 1;
2651 	uinfo->value.integer.min = 0;
2652 	uinfo->value.integer.max = 1;
2653 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2654 	return 0;
2655 }
2656 
2657 static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
2658 			      struct snd_ctl_elem_value *ucontrol)
2659 {
2660 	int err;
2661 	u8 reg, idx;
2662 	int old_value, pv, val;
2663 
2664 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2665 	struct usb_mixer_interface *mixer = list->mixer;
2666 
2667 	pv = kcontrol->private_value;
2668 	reg = pv & SND_BBFPRO_CTL_REG_MASK;
2669 	idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2670 	old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2671 
2672 	if ((reg == SND_BBFPRO_CTL_REG1 &&
2673 	     idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2674 	    (reg == SND_BBFPRO_CTL_REG2 &&
2675 	    (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2676 	     idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2677 		val = ucontrol->value.enumerated.item[0];
2678 	} else {
2679 		val = ucontrol->value.integer.value[0];
2680 	}
2681 
2682 	if (val > 1)
2683 		return -EINVAL;
2684 
2685 	if (val == old_value)
2686 		return 0;
2687 
2688 	kcontrol->private_value = reg
2689 		| ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
2690 		| ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
2691 
2692 	err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
2693 	return err < 0 ? err : 1;
2694 }
2695 
2696 static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
2697 {
2698 	u8 reg, idx;
2699 	int value, pv;
2700 
2701 	pv = list->kctl->private_value;
2702 	reg = pv & SND_BBFPRO_CTL_REG_MASK;
2703 	idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2704 	value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2705 
2706 	return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
2707 }
2708 
2709 static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer,
2710 				  u8 channel, u8 gain)
2711 {
2712 	int err;
2713 	struct snd_usb_audio *chip = mixer->chip;
2714 
2715 	if (channel < 2) {
2716 		// XLR preamp: 3-bit fine, 5-bit coarse; special case >60
2717 		if (gain < 60)
2718 			gain = ((gain % 3) << 5) | (gain / 3);
2719 		else
2720 			gain = ((gain % 6) << 5) | (60 / 3);
2721 	}
2722 
2723 	err = snd_usb_lock_shutdown(chip);
2724 	if (err < 0)
2725 		return err;
2726 
2727 	err = snd_usb_ctl_msg(chip->dev,
2728 			      usb_sndctrlpipe(chip->dev, 0),
2729 			      SND_BBFPRO_USBREQ_GAIN,
2730 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2731 			      gain, channel, NULL, 0);
2732 
2733 	snd_usb_unlock_shutdown(chip);
2734 	return err;
2735 }
2736 
2737 static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol,
2738 			       struct snd_ctl_elem_value *ucontrol)
2739 {
2740 	int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK;
2741 
2742 	ucontrol->value.integer.value[0] = value;
2743 	return 0;
2744 }
2745 
2746 static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol,
2747 				struct snd_ctl_elem_info *uinfo)
2748 {
2749 	int pv, channel;
2750 
2751 	pv = kcontrol->private_value;
2752 	channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
2753 		SND_BBFPRO_GAIN_CHANNEL_MASK;
2754 
2755 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2756 	uinfo->count = 1;
2757 	uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN;
2758 
2759 	if (channel < 2)
2760 		uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX;
2761 	else
2762 		uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX;
2763 
2764 	return 0;
2765 }
2766 
2767 static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol,
2768 			       struct snd_ctl_elem_value *ucontrol)
2769 {
2770 	int pv, channel, old_value, value, err;
2771 
2772 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2773 	struct usb_mixer_interface *mixer = list->mixer;
2774 
2775 	pv = kcontrol->private_value;
2776 	channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
2777 		SND_BBFPRO_GAIN_CHANNEL_MASK;
2778 	old_value = pv & SND_BBFPRO_GAIN_VAL_MASK;
2779 	value = ucontrol->value.integer.value[0];
2780 
2781 	if (value < SND_BBFPRO_GAIN_VAL_MIN)
2782 		return -EINVAL;
2783 
2784 	if (channel < 2) {
2785 		if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX)
2786 			return -EINVAL;
2787 	} else {
2788 		if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX)
2789 			return -EINVAL;
2790 	}
2791 
2792 	if (value == old_value)
2793 		return 0;
2794 
2795 	err = snd_bbfpro_gain_update(mixer, channel, value);
2796 	if (err < 0)
2797 		return err;
2798 
2799 	kcontrol->private_value =
2800 		(channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value;
2801 	return 1;
2802 }
2803 
2804 static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list)
2805 {
2806 	int pv, channel, value;
2807 	struct snd_kcontrol *kctl = list->kctl;
2808 
2809 	pv = kctl->private_value;
2810 	channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
2811 		SND_BBFPRO_GAIN_CHANNEL_MASK;
2812 	value = pv & SND_BBFPRO_GAIN_VAL_MASK;
2813 
2814 	return snd_bbfpro_gain_update(list->mixer, channel, value);
2815 }
2816 
2817 static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
2818 				 u32 value)
2819 {
2820 	struct snd_usb_audio *chip = mixer->chip;
2821 	int err;
2822 	u16 idx;
2823 	u16 usb_idx, usb_val;
2824 	u32 v;
2825 
2826 	err = snd_usb_lock_shutdown(chip);
2827 	if (err < 0)
2828 		return err;
2829 
2830 	idx = index & SND_BBFPRO_MIXER_IDX_MASK;
2831 	// 18 bit linear volume, split so 2 bits end up in index.
2832 	v = value & SND_BBFPRO_MIXER_VAL_MASK;
2833 	usb_idx = idx | (v & 0x3) << 14;
2834 	usb_val = (v >> 2) & 0xffff;
2835 
2836 	err = snd_usb_ctl_msg(chip->dev,
2837 			      usb_sndctrlpipe(chip->dev, 0),
2838 			      SND_BBFPRO_USBREQ_MIXER,
2839 			      USB_DIR_OUT | USB_TYPE_VENDOR |
2840 			      USB_RECIP_DEVICE,
2841 			      usb_val, usb_idx, NULL, 0);
2842 
2843 	snd_usb_unlock_shutdown(chip);
2844 	return err;
2845 }
2846 
2847 static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
2848 			      struct snd_ctl_elem_value *ucontrol)
2849 {
2850 	ucontrol->value.integer.value[0] =
2851 		kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
2852 	return 0;
2853 }
2854 
2855 static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
2856 			       struct snd_ctl_elem_info *uinfo)
2857 {
2858 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2859 	uinfo->count = 1;
2860 	uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
2861 	uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
2862 	return 0;
2863 }
2864 
2865 static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
2866 			      struct snd_ctl_elem_value *ucontrol)
2867 {
2868 	int err;
2869 	u16 idx;
2870 	u32 new_val, old_value, uvalue;
2871 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2872 	struct usb_mixer_interface *mixer = list->mixer;
2873 
2874 	uvalue = ucontrol->value.integer.value[0];
2875 	idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
2876 	old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
2877 
2878 	if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
2879 		return -EINVAL;
2880 
2881 	if (uvalue == old_value)
2882 		return 0;
2883 
2884 	new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
2885 
2886 	kcontrol->private_value = idx
2887 		| (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
2888 
2889 	err = snd_bbfpro_vol_update(mixer, idx, new_val);
2890 	return err < 0 ? err : 1;
2891 }
2892 
2893 static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
2894 {
2895 	int pv = list->kctl->private_value;
2896 	u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
2897 	u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
2898 		& SND_BBFPRO_MIXER_VAL_MASK;
2899 	return snd_bbfpro_vol_update(list->mixer, idx, val);
2900 }
2901 
2902 // Predfine elements
2903 static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
2904 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2905 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2906 	.index = 0,
2907 	.info = snd_bbfpro_ctl_info,
2908 	.get = snd_bbfpro_ctl_get,
2909 	.put = snd_bbfpro_ctl_put
2910 };
2911 
2912 static const struct snd_kcontrol_new snd_bbfpro_gain_control = {
2913 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2914 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2915 	.index = 0,
2916 	.info = snd_bbfpro_gain_info,
2917 	.get = snd_bbfpro_gain_get,
2918 	.put = snd_bbfpro_gain_put
2919 };
2920 
2921 static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
2922 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2923 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2924 	.index = 0,
2925 	.info = snd_bbfpro_vol_info,
2926 	.get = snd_bbfpro_vol_get,
2927 	.put = snd_bbfpro_vol_put
2928 };
2929 
2930 static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
2931 			      u8 index, char *name)
2932 {
2933 	struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
2934 
2935 	knew.name = name;
2936 	knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
2937 		| ((index & SND_BBFPRO_CTL_IDX_MASK)
2938 			<< SND_BBFPRO_CTL_IDX_SHIFT);
2939 
2940 	return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
2941 		&knew, NULL);
2942 }
2943 
2944 static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel,
2945 			       char *name)
2946 {
2947 	struct snd_kcontrol_new knew = snd_bbfpro_gain_control;
2948 
2949 	knew.name = name;
2950 	knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT;
2951 
2952 	return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume,
2953 		&knew, NULL);
2954 }
2955 
2956 static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
2957 			      char *name)
2958 {
2959 	struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
2960 
2961 	knew.name = name;
2962 	knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
2963 
2964 	return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
2965 		&knew, NULL);
2966 }
2967 
2968 static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
2969 {
2970 	int err, i, o;
2971 	char name[48];
2972 
2973 	static const char * const input[] = {
2974 		"AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
2975 		"ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
2976 
2977 	static const char * const output[] = {
2978 		"AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
2979 		"ADAT5", "ADAT6", "ADAT7", "ADAT8"};
2980 
2981 	for (o = 0 ; o < 12 ; ++o) {
2982 		for (i = 0 ; i < 12 ; ++i) {
2983 			// Line routing
2984 			snprintf(name, sizeof(name),
2985 				 "%s-%s-%s Playback Volume",
2986 				 (i < 2 ? "Mic" : "Line"),
2987 				 input[i], output[o]);
2988 			err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
2989 			if (err < 0)
2990 				return err;
2991 
2992 			// PCM routing... yes, it is output remapping
2993 			snprintf(name, sizeof(name),
2994 				 "PCM-%s-%s Playback Volume",
2995 				 output[i], output[o]);
2996 			err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
2997 						 name);
2998 			if (err < 0)
2999 				return err;
3000 		}
3001 	}
3002 
3003 	// Main out volume
3004 	for (i = 0 ; i < 12 ; ++i) {
3005 		snprintf(name, sizeof(name), "Main-Out %s", output[i]);
3006 		// Main outs are offset to 992
3007 		err = snd_bbfpro_vol_add(mixer,
3008 					 i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET,
3009 					 name);
3010 		if (err < 0)
3011 			return err;
3012 	}
3013 
3014 	// Input gain
3015 	for (i = 0 ; i < 4 ; ++i) {
3016 		if (i < 2)
3017 			snprintf(name, sizeof(name), "Mic-%s Gain", input[i]);
3018 		else
3019 			snprintf(name, sizeof(name), "Line-%s Gain", input[i]);
3020 
3021 		err = snd_bbfpro_gain_add(mixer, i, name);
3022 		if (err < 0)
3023 			return err;
3024 	}
3025 
3026 	// Control Reg 1
3027 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3028 				 SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
3029 				 "Sample Clock Source");
3030 	if (err < 0)
3031 		return err;
3032 
3033 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3034 				 SND_BBFPRO_CTL_REG1_SPDIF_PRO,
3035 				 "IEC958 Pro Mask");
3036 	if (err < 0)
3037 		return err;
3038 
3039 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3040 				 SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
3041 				 "IEC958 Emphasis");
3042 	if (err < 0)
3043 		return err;
3044 
3045 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3046 				 SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
3047 				 "IEC958 Switch");
3048 	if (err < 0)
3049 		return err;
3050 
3051 	// Control Reg 2
3052 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3053 				 SND_BBFPRO_CTL_REG2_48V_AN1,
3054 				 "Mic-AN1 48V");
3055 	if (err < 0)
3056 		return err;
3057 
3058 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3059 				 SND_BBFPRO_CTL_REG2_48V_AN2,
3060 				 "Mic-AN2 48V");
3061 	if (err < 0)
3062 		return err;
3063 
3064 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3065 				 SND_BBFPRO_CTL_REG2_SENS_IN3,
3066 				 "Line-IN3 Sens.");
3067 	if (err < 0)
3068 		return err;
3069 
3070 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3071 				 SND_BBFPRO_CTL_REG2_SENS_IN4,
3072 				 "Line-IN4 Sens.");
3073 	if (err < 0)
3074 		return err;
3075 
3076 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3077 				 SND_BBFPRO_CTL_REG2_PAD_AN1,
3078 				 "Mic-AN1 PAD");
3079 	if (err < 0)
3080 		return err;
3081 
3082 	err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3083 				 SND_BBFPRO_CTL_REG2_PAD_AN2,
3084 				 "Mic-AN2 PAD");
3085 	if (err < 0)
3086 		return err;
3087 
3088 	return 0;
3089 }
3090 
3091 /*
3092  * RME Digiface USB
3093  */
3094 
3095 #define RME_DIGIFACE_READ_STATUS 17
3096 #define RME_DIGIFACE_STATUS_REG0L 0
3097 #define RME_DIGIFACE_STATUS_REG0H 1
3098 #define RME_DIGIFACE_STATUS_REG1L 2
3099 #define RME_DIGIFACE_STATUS_REG1H 3
3100 #define RME_DIGIFACE_STATUS_REG2L 4
3101 #define RME_DIGIFACE_STATUS_REG2H 5
3102 #define RME_DIGIFACE_STATUS_REG3L 6
3103 #define RME_DIGIFACE_STATUS_REG3H 7
3104 
3105 #define RME_DIGIFACE_CTL_REG1 16
3106 #define RME_DIGIFACE_CTL_REG2 18
3107 
3108 /* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */
3109 #define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask))
3110 #define RME_DIGIFACE_INVERT BIT(31)
3111 
3112 /* Nonconst helpers */
3113 #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1))
3114 #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask))
3115 
3116 static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val)
3117 {
3118 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3119 	struct snd_usb_audio *chip = list->mixer->chip;
3120 	struct usb_device *dev = chip->dev;
3121 	int err;
3122 
3123 	err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
3124 			      item,
3125 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3126 			      val, mask, NULL, 0);
3127 	if (err < 0)
3128 		dev_err(&dev->dev,
3129 			"unable to issue control set request %d (ret = %d)",
3130 			item, err);
3131 	return err;
3132 }
3133 
3134 static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4])
3135 {
3136 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3137 	struct snd_usb_audio *chip = list->mixer->chip;
3138 	struct usb_device *dev = chip->dev;
3139 	__le32 buf[4];
3140 	int err;
3141 
3142 	err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
3143 			      RME_DIGIFACE_READ_STATUS,
3144 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3145 			      0, 0,
3146 			      buf, sizeof(buf));
3147 	if (err < 0) {
3148 		dev_err(&dev->dev,
3149 			"unable to issue status read request (ret = %d)",
3150 			err);
3151 	} else {
3152 		for (int i = 0; i < ARRAY_SIZE(buf); i++)
3153 			status[i] = le32_to_cpu(buf[i]);
3154 	}
3155 	return err;
3156 }
3157 
3158 static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol)
3159 {
3160 	int err;
3161 	u32 status[4];
3162 	bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3163 	u8 reg = (kcontrol->private_value >> 16) & 0xff;
3164 	u16 mask = kcontrol->private_value & 0xffff;
3165 	u16 val;
3166 
3167 	err = snd_rme_digiface_read_status(kcontrol, status);
3168 	if (err < 0)
3169 		return err;
3170 
3171 	switch (reg) {
3172 	/* Status register halfwords */
3173 	case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H:
3174 		break;
3175 	case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */
3176 		reg = RME_DIGIFACE_STATUS_REG3L;
3177 		break;
3178 	case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */
3179 		reg = RME_DIGIFACE_STATUS_REG3H;
3180 		break;
3181 	default:
3182 		return -EINVAL;
3183 	}
3184 
3185 	if (reg & 1)
3186 		val = status[reg >> 1] >> 16;
3187 	else
3188 		val = status[reg >> 1] & 0xffff;
3189 
3190 	if (invert)
3191 		val ^= mask;
3192 
3193 	return field_get(mask, val);
3194 }
3195 
3196 static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol,
3197 				     struct snd_ctl_elem_value *ucontrol)
3198 {
3199 	int freq = snd_rme_digiface_get_status_val(kcontrol);
3200 
3201 	if (freq < 0)
3202 		return freq;
3203 	if (freq >= ARRAY_SIZE(snd_rme_rate_table))
3204 		return -EIO;
3205 
3206 	ucontrol->value.integer.value[0] = snd_rme_rate_table[freq];
3207 	return 0;
3208 }
3209 
3210 static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol,
3211 				     struct snd_ctl_elem_value *ucontrol)
3212 {
3213 	int val = snd_rme_digiface_get_status_val(kcontrol);
3214 
3215 	if (val < 0)
3216 		return val;
3217 
3218 	ucontrol->value.enumerated.item[0] = val;
3219 	return 0;
3220 }
3221 
3222 static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol,
3223 				     struct snd_ctl_elem_value *ucontrol)
3224 {
3225 	bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3226 	u8 reg = (kcontrol->private_value >> 16) & 0xff;
3227 	u16 mask = kcontrol->private_value & 0xffff;
3228 	u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]);
3229 
3230 	if (invert)
3231 		val ^= mask;
3232 
3233 	return snd_rme_digiface_write_reg(kcontrol, reg, mask, val);
3234 }
3235 
3236 static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol,
3237 				     struct snd_ctl_elem_value *ucontrol)
3238 {
3239 	int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol);
3240 
3241 	/* 7 means internal for current sync */
3242 	if (ucontrol->value.enumerated.item[0] == 7)
3243 		ucontrol->value.enumerated.item[0] = 0;
3244 
3245 	return ret;
3246 }
3247 
3248 static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol,
3249 					   struct snd_ctl_elem_value *ucontrol)
3250 {
3251 	u32 status[4];
3252 	int err;
3253 	bool valid, sync;
3254 
3255 	err = snd_rme_digiface_read_status(kcontrol, status);
3256 	if (err < 0)
3257 		return err;
3258 
3259 	valid = status[0] & BIT(kcontrol->private_value);
3260 	sync = status[0] & BIT(5 + kcontrol->private_value);
3261 
3262 	if (!valid)
3263 		ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK;
3264 	else if (!sync)
3265 		ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK;
3266 	else
3267 		ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC;
3268 	return 0;
3269 }
3270 
3271 
3272 static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol,
3273 					struct snd_ctl_elem_info *uinfo)
3274 {
3275 	static const char *const format[] = {
3276 		"ADAT", "S/PDIF"
3277 	};
3278 
3279 	return snd_ctl_enum_info(uinfo, 1,
3280 				 ARRAY_SIZE(format), format);
3281 }
3282 
3283 
3284 static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol,
3285 					     struct snd_ctl_elem_info *uinfo)
3286 {
3287 	static const char *const sync_sources[] = {
3288 		"Internal", "Input 1", "Input 2", "Input 3", "Input 4"
3289 	};
3290 
3291 	return snd_ctl_enum_info(uinfo, 1,
3292 				 ARRAY_SIZE(sync_sources), sync_sources);
3293 }
3294 
3295 static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol,
3296 				      struct snd_ctl_elem_info *uinfo)
3297 {
3298 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3299 	uinfo->count = 1;
3300 	uinfo->value.integer.min = 0;
3301 	uinfo->value.integer.max = 200000;
3302 	uinfo->value.integer.step = 0;
3303 	return 0;
3304 }
3305 
3306 static const struct snd_kcontrol_new snd_rme_digiface_controls[] = {
3307 	{
3308 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3309 		.name = "Input 1 Sync",
3310 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3311 		.info = snd_rme_sync_state_info,
3312 		.get = snd_rme_digiface_sync_state_get,
3313 		.private_value = 0,
3314 	},
3315 	{
3316 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3317 		.name = "Input 1 Format",
3318 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3319 		.info = snd_rme_digiface_format_info,
3320 		.get = snd_rme_digiface_enum_get,
3321 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) |
3322 			RME_DIGIFACE_INVERT,
3323 	},
3324 	{
3325 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3326 		.name = "Input 1 Rate",
3327 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3328 		.info = snd_rme_digiface_rate_info,
3329 		.get = snd_rme_digiface_rate_get,
3330 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3331 	},
3332 	{
3333 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3334 		.name = "Input 2 Sync",
3335 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3336 		.info = snd_rme_sync_state_info,
3337 		.get = snd_rme_digiface_sync_state_get,
3338 		.private_value = 1,
3339 	},
3340 	{
3341 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3342 		.name = "Input 2 Format",
3343 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3344 		.info = snd_rme_digiface_format_info,
3345 		.get = snd_rme_digiface_enum_get,
3346 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) |
3347 			RME_DIGIFACE_INVERT,
3348 	},
3349 	{
3350 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3351 		.name = "Input 2 Rate",
3352 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3353 		.info = snd_rme_digiface_rate_info,
3354 		.get = snd_rme_digiface_rate_get,
3355 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)),
3356 	},
3357 	{
3358 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3359 		.name = "Input 3 Sync",
3360 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3361 		.info = snd_rme_sync_state_info,
3362 		.get = snd_rme_digiface_sync_state_get,
3363 		.private_value = 2,
3364 	},
3365 	{
3366 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3367 		.name = "Input 3 Format",
3368 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3369 		.info = snd_rme_digiface_format_info,
3370 		.get = snd_rme_digiface_enum_get,
3371 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) |
3372 			RME_DIGIFACE_INVERT,
3373 	},
3374 	{
3375 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3376 		.name = "Input 3 Rate",
3377 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3378 		.info = snd_rme_digiface_rate_info,
3379 		.get = snd_rme_digiface_rate_get,
3380 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)),
3381 	},
3382 	{
3383 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3384 		.name = "Input 4 Sync",
3385 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3386 		.info = snd_rme_sync_state_info,
3387 		.get = snd_rme_digiface_sync_state_get,
3388 		.private_value = 3,
3389 	},
3390 	{
3391 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3392 		.name = "Input 4 Format",
3393 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3394 		.info = snd_rme_digiface_format_info,
3395 		.get = snd_rme_digiface_enum_get,
3396 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) |
3397 			RME_DIGIFACE_INVERT,
3398 	},
3399 	{
3400 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3401 		.name = "Input 4 Rate",
3402 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3403 		.info = snd_rme_digiface_rate_info,
3404 		.get = snd_rme_digiface_rate_get,
3405 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3406 	},
3407 	{
3408 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3409 		.name = "Output 1 Format",
3410 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3411 		.info = snd_rme_digiface_format_info,
3412 		.get = snd_rme_digiface_enum_get,
3413 		.put = snd_rme_digiface_enum_put,
3414 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)),
3415 	},
3416 	{
3417 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3418 		.name = "Output 2 Format",
3419 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3420 		.info = snd_rme_digiface_format_info,
3421 		.get = snd_rme_digiface_enum_get,
3422 		.put = snd_rme_digiface_enum_put,
3423 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)),
3424 	},
3425 	{
3426 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3427 		.name = "Output 3 Format",
3428 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3429 		.info = snd_rme_digiface_format_info,
3430 		.get = snd_rme_digiface_enum_get,
3431 		.put = snd_rme_digiface_enum_put,
3432 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)),
3433 	},
3434 	{
3435 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3436 		.name = "Output 4 Format",
3437 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3438 		.info = snd_rme_digiface_format_info,
3439 		.get = snd_rme_digiface_enum_get,
3440 		.put = snd_rme_digiface_enum_put,
3441 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)),
3442 	},
3443 	{
3444 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3445 		.name = "Sync Source",
3446 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3447 		.info = snd_rme_digiface_sync_source_info,
3448 		.get = snd_rme_digiface_enum_get,
3449 		.put = snd_rme_digiface_enum_put,
3450 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)),
3451 	},
3452 	{
3453 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3454 		.name = "Current Sync Source",
3455 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3456 		.info = snd_rme_digiface_sync_source_info,
3457 		.get = snd_rme_digiface_current_sync_get,
3458 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)),
3459 	},
3460 	{
3461 		/*
3462 		 * This is writeable, but it is only set by the PCM rate.
3463 		 * Mixer apps currently need to drive the mixer using raw USB requests,
3464 		 * so they can also change this that way to configure the rate for
3465 		 * stand-alone operation when the PCM is closed.
3466 		 */
3467 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3468 		.name = "System Rate",
3469 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3470 		.info = snd_rme_rate_info,
3471 		.get = snd_rme_digiface_rate_get,
3472 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)),
3473 	},
3474 	{
3475 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3476 		.name = "Current Rate",
3477 		.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3478 		.info = snd_rme_rate_info,
3479 		.get = snd_rme_digiface_rate_get,
3480 		.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)),
3481 	}
3482 };
3483 
3484 static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer)
3485 {
3486 	int err, i;
3487 
3488 	for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) {
3489 		err = add_single_ctl_with_resume(mixer, 0,
3490 						 NULL,
3491 						 &snd_rme_digiface_controls[i],
3492 						 NULL);
3493 		if (err < 0)
3494 			return err;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 /*
3501  * Pioneer DJ / AlphaTheta DJM Mixers
3502  *
3503  * These devices generally have options for soft-switching the playback and
3504  * capture sources in addition to the recording level. Although different
3505  * devices have different configurations, there seems to be canonical values
3506  * for specific capture/playback types:  See the definitions of these below.
3507  *
3508  * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
3509  * capture phono would be 0x0203. Capture, playback and capture level have
3510  * different wIndexes.
3511  */
3512 
3513 // Capture types
3514 #define SND_DJM_CAP_LINE	0x00
3515 #define SND_DJM_CAP_CDLINE	0x01
3516 #define SND_DJM_CAP_DIGITAL	0x02
3517 #define SND_DJM_CAP_PHONO	0x03
3518 #define SND_DJM_CAP_PREFADER	0x05
3519 #define SND_DJM_CAP_PFADER	0x06
3520 #define SND_DJM_CAP_XFADERA	0x07
3521 #define SND_DJM_CAP_XFADERB	0x08
3522 #define SND_DJM_CAP_MIC		0x09
3523 #define SND_DJM_CAP_AUX		0x0d
3524 #define SND_DJM_CAP_RECOUT	0x0a
3525 #define SND_DJM_CAP_RECOUT_NOMIC	0x0e
3526 #define SND_DJM_CAP_NONE	0x0f
3527 #define SND_DJM_CAP_CH1PFADER	0x11
3528 #define SND_DJM_CAP_CH2PFADER	0x12
3529 #define SND_DJM_CAP_CH3PFADER	0x13
3530 #define SND_DJM_CAP_CH4PFADER	0x14
3531 #define SND_DJM_CAP_CH1PREFADER	0x31
3532 #define SND_DJM_CAP_CH2PREFADER	0x32
3533 #define SND_DJM_CAP_CH3PREFADER	0x33
3534 #define SND_DJM_CAP_CH4PREFADER	0x34
3535 
3536 // Playback types
3537 #define SND_DJM_PB_CH1		0x00
3538 #define SND_DJM_PB_CH2		0x01
3539 #define SND_DJM_PB_AUX		0x04
3540 
3541 #define SND_DJM_WINDEX_CAP	0x8002
3542 #define SND_DJM_WINDEX_CAPLVL	0x8003
3543 #define SND_DJM_WINDEX_PB	0x8016
3544 
3545 // kcontrol->private_value layout
3546 #define SND_DJM_VALUE_MASK	0x0000ffff
3547 #define SND_DJM_GROUP_MASK	0x00ff0000
3548 #define SND_DJM_DEVICE_MASK	0xff000000
3549 #define SND_DJM_GROUP_SHIFT	16
3550 #define SND_DJM_DEVICE_SHIFT	24
3551 
3552 // device table index
3553 // used for the snd_djm_devices table, so please update accordingly
3554 #define SND_DJM_250MK2_IDX	0x0
3555 #define SND_DJM_750_IDX		0x1
3556 #define SND_DJM_850_IDX		0x2
3557 #define SND_DJM_900NXS2_IDX	0x3
3558 #define SND_DJM_750MK2_IDX	0x4
3559 #define SND_DJM_450_IDX		0x5
3560 #define SND_DJM_A9_IDX		0x6
3561 
3562 
3563 #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
3564 	.name = _name, \
3565 	.options = snd_djm_opts_##suffix, \
3566 	.noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
3567 	.default_value = _default_value, \
3568 	.wIndex = _windex }
3569 
3570 #define SND_DJM_DEVICE(suffix) { \
3571 	.controls = snd_djm_ctls_##suffix, \
3572 	.ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
3573 
3574 
3575 struct snd_djm_device {
3576 	const char *name;
3577 	const struct snd_djm_ctl *controls;
3578 	size_t ncontrols;
3579 };
3580 
3581 struct snd_djm_ctl {
3582 	const char *name;
3583 	const u16 *options;
3584 	size_t noptions;
3585 	u16 default_value;
3586 	u16 wIndex;
3587 };
3588 
3589 static const char *snd_djm_get_label_caplevel_common(u16 wvalue)
3590 {
3591 	switch (wvalue) {
3592 	case 0x0000:	return "-19dB";
3593 	case 0x0100:	return "-15dB";
3594 	case 0x0200:	return "-10dB";
3595 	case 0x0300:	return "-5dB";
3596 	default:	return NULL;
3597 	}
3598 };
3599 
3600 // The DJM-A9 has different capture levels than other, older models
3601 static const char *snd_djm_get_label_caplevel_a9(u16 wvalue)
3602 {
3603 	switch (wvalue) {
3604 	case 0x0000:	return "+15dB";
3605 	case 0x0100:	return "+12dB";
3606 	case 0x0200:	return "+9dB";
3607 	case 0x0300:	return "+6dB";
3608 	case 0x0400:	return "+3dB";
3609 	case 0x0500:	return "0dB";
3610 	default:	return NULL;
3611 	}
3612 };
3613 
3614 static const char *snd_djm_get_label_cap_common(u16 wvalue)
3615 {
3616 	switch (wvalue & 0x00ff) {
3617 	case SND_DJM_CAP_LINE:		return "Control Tone LINE";
3618 	case SND_DJM_CAP_CDLINE:	return "Control Tone CD/LINE";
3619 	case SND_DJM_CAP_DIGITAL:	return "Control Tone DIGITAL";
3620 	case SND_DJM_CAP_PHONO:		return "Control Tone PHONO";
3621 	case SND_DJM_CAP_PFADER:	return "Post Fader";
3622 	case SND_DJM_CAP_XFADERA:	return "Cross Fader A";
3623 	case SND_DJM_CAP_XFADERB:	return "Cross Fader B";
3624 	case SND_DJM_CAP_MIC:		return "Mic";
3625 	case SND_DJM_CAP_RECOUT:	return "Rec Out";
3626 	case SND_DJM_CAP_RECOUT_NOMIC:	return "Rec Out without Mic";
3627 	case SND_DJM_CAP_AUX:		return "Aux";
3628 	case SND_DJM_CAP_NONE:		return "None";
3629 	case SND_DJM_CAP_CH1PREFADER:	return "Pre Fader Ch1";
3630 	case SND_DJM_CAP_CH2PREFADER:	return "Pre Fader Ch2";
3631 	case SND_DJM_CAP_CH3PREFADER:	return "Pre Fader Ch3";
3632 	case SND_DJM_CAP_CH4PREFADER:	return "Pre Fader Ch4";
3633 	case SND_DJM_CAP_CH1PFADER:	return "Post Fader Ch1";
3634 	case SND_DJM_CAP_CH2PFADER:	return "Post Fader Ch2";
3635 	case SND_DJM_CAP_CH3PFADER:	return "Post Fader Ch3";
3636 	case SND_DJM_CAP_CH4PFADER:	return "Post Fader Ch4";
3637 	default:			return NULL;
3638 	}
3639 };
3640 
3641 // The DJM-850 has different values for CD/LINE and LINE capture
3642 // control options than the other DJM declared in this file.
3643 static const char *snd_djm_get_label_cap_850(u16 wvalue)
3644 {
3645 	switch (wvalue & 0x00ff) {
3646 	case 0x00:		return "Control Tone CD/LINE";
3647 	case 0x01:		return "Control Tone LINE";
3648 	default:		return snd_djm_get_label_cap_common(wvalue);
3649 	}
3650 };
3651 
3652 static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue)
3653 {
3654 	switch (device_idx) {
3655 	case SND_DJM_A9_IDX:		return snd_djm_get_label_caplevel_a9(wvalue);
3656 	default:			return snd_djm_get_label_caplevel_common(wvalue);
3657 	}
3658 };
3659 
3660 static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
3661 {
3662 	switch (device_idx) {
3663 	case SND_DJM_850_IDX:		return snd_djm_get_label_cap_850(wvalue);
3664 	default:			return snd_djm_get_label_cap_common(wvalue);
3665 	}
3666 };
3667 
3668 static const char *snd_djm_get_label_pb(u16 wvalue)
3669 {
3670 	switch (wvalue & 0x00ff) {
3671 	case SND_DJM_PB_CH1:	return "Ch1";
3672 	case SND_DJM_PB_CH2:	return "Ch2";
3673 	case SND_DJM_PB_AUX:	return "Aux";
3674 	default:		return NULL;
3675 	}
3676 };
3677 
3678 static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
3679 {
3680 	switch (windex) {
3681 	case SND_DJM_WINDEX_CAPLVL:	return snd_djm_get_label_caplevel(device_idx, wvalue);
3682 	case SND_DJM_WINDEX_CAP:	return snd_djm_get_label_cap(device_idx, wvalue);
3683 	case SND_DJM_WINDEX_PB:		return snd_djm_get_label_pb(wvalue);
3684 	default:			return NULL;
3685 	}
3686 };
3687 
3688 // common DJM capture level option values
3689 static const u16 snd_djm_opts_cap_level[] = {
3690 	0x0000, 0x0100, 0x0200, 0x0300, 0x400, 0x500 };
3691 
3692 
3693 // DJM-250MK2
3694 static const u16 snd_djm_opts_250mk2_cap1[] = {
3695 	0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3696 
3697 static const u16 snd_djm_opts_250mk2_cap2[] = {
3698 	0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3699 
3700 static const u16 snd_djm_opts_250mk2_cap3[] = {
3701 	0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3702 
3703 static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
3704 static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
3705 static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
3706 
3707 static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
3708 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3709 	SND_DJM_CTL("Ch1 Input",   250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
3710 	SND_DJM_CTL("Ch2 Input",   250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
3711 	SND_DJM_CTL("Ch3 Input",   250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
3712 	SND_DJM_CTL("Ch1 Output",   250mk2_pb1, 0, SND_DJM_WINDEX_PB),
3713 	SND_DJM_CTL("Ch2 Output",   250mk2_pb2, 1, SND_DJM_WINDEX_PB),
3714 	SND_DJM_CTL("Ch3 Output",   250mk2_pb3, 2, SND_DJM_WINDEX_PB)
3715 };
3716 
3717 
3718 // DJM-450
3719 static const u16 snd_djm_opts_450_cap1[] = {
3720 	0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3721 
3722 static const u16 snd_djm_opts_450_cap2[] = {
3723 	0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3724 
3725 static const u16 snd_djm_opts_450_cap3[] = {
3726 	0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3727 
3728 static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
3729 static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
3730 static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
3731 
3732 static const struct snd_djm_ctl snd_djm_ctls_450[] = {
3733 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3734 	SND_DJM_CTL("Ch1 Input",   450_cap1, 2, SND_DJM_WINDEX_CAP),
3735 	SND_DJM_CTL("Ch2 Input",   450_cap2, 2, SND_DJM_WINDEX_CAP),
3736 	SND_DJM_CTL("Ch3 Input",   450_cap3, 0, SND_DJM_WINDEX_CAP),
3737 	SND_DJM_CTL("Ch1 Output",   450_pb1, 0, SND_DJM_WINDEX_PB),
3738 	SND_DJM_CTL("Ch2 Output",   450_pb2, 1, SND_DJM_WINDEX_PB),
3739 	SND_DJM_CTL("Ch3 Output",   450_pb3, 2, SND_DJM_WINDEX_PB)
3740 };
3741 
3742 
3743 // DJM-750
3744 static const u16 snd_djm_opts_750_cap1[] = {
3745 	0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
3746 static const u16 snd_djm_opts_750_cap2[] = {
3747 	0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
3748 static const u16 snd_djm_opts_750_cap3[] = {
3749 	0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
3750 static const u16 snd_djm_opts_750_cap4[] = {
3751 	0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
3752 
3753 static const struct snd_djm_ctl snd_djm_ctls_750[] = {
3754 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3755 	SND_DJM_CTL("Ch1 Input",   750_cap1, 2, SND_DJM_WINDEX_CAP),
3756 	SND_DJM_CTL("Ch2 Input",   750_cap2, 2, SND_DJM_WINDEX_CAP),
3757 	SND_DJM_CTL("Ch3 Input",   750_cap3, 0, SND_DJM_WINDEX_CAP),
3758 	SND_DJM_CTL("Ch4 Input",   750_cap4, 0, SND_DJM_WINDEX_CAP)
3759 };
3760 
3761 
3762 // DJM-850
3763 static const u16 snd_djm_opts_850_cap1[] = {
3764 	0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
3765 static const u16 snd_djm_opts_850_cap2[] = {
3766 	0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
3767 static const u16 snd_djm_opts_850_cap3[] = {
3768 	0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
3769 static const u16 snd_djm_opts_850_cap4[] = {
3770 	0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
3771 
3772 static const struct snd_djm_ctl snd_djm_ctls_850[] = {
3773 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3774 	SND_DJM_CTL("Ch1 Input",   850_cap1, 1, SND_DJM_WINDEX_CAP),
3775 	SND_DJM_CTL("Ch2 Input",   850_cap2, 0, SND_DJM_WINDEX_CAP),
3776 	SND_DJM_CTL("Ch3 Input",   850_cap3, 0, SND_DJM_WINDEX_CAP),
3777 	SND_DJM_CTL("Ch4 Input",   850_cap4, 1, SND_DJM_WINDEX_CAP)
3778 };
3779 
3780 
3781 // DJM-900NXS2
3782 static const u16 snd_djm_opts_900nxs2_cap1[] = {
3783 	0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
3784 static const u16 snd_djm_opts_900nxs2_cap2[] = {
3785 	0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
3786 static const u16 snd_djm_opts_900nxs2_cap3[] = {
3787 	0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
3788 static const u16 snd_djm_opts_900nxs2_cap4[] = {
3789 	0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
3790 static const u16 snd_djm_opts_900nxs2_cap5[] = {
3791 	0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
3792 
3793 static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
3794 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3795 	SND_DJM_CTL("Ch1 Input",   900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
3796 	SND_DJM_CTL("Ch2 Input",   900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
3797 	SND_DJM_CTL("Ch3 Input",   900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
3798 	SND_DJM_CTL("Ch4 Input",   900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
3799 	SND_DJM_CTL("Ch5 Input",   900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
3800 };
3801 
3802 // DJM-750MK2
3803 static const u16 snd_djm_opts_750mk2_cap1[] = {
3804 	0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
3805 static const u16 snd_djm_opts_750mk2_cap2[] = {
3806 	0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
3807 static const u16 snd_djm_opts_750mk2_cap3[] = {
3808 	0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
3809 static const u16 snd_djm_opts_750mk2_cap4[] = {
3810 	0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
3811 static const u16 snd_djm_opts_750mk2_cap5[] = {
3812 	0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
3813 
3814 static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
3815 static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
3816 static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
3817 
3818 
3819 static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
3820 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3821 	SND_DJM_CTL("Ch1 Input",   750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
3822 	SND_DJM_CTL("Ch2 Input",   750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
3823 	SND_DJM_CTL("Ch3 Input",   750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
3824 	SND_DJM_CTL("Ch4 Input",   750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
3825 	SND_DJM_CTL("Ch5 Input",   750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
3826 	SND_DJM_CTL("Ch1 Output",   750mk2_pb1, 0, SND_DJM_WINDEX_PB),
3827 	SND_DJM_CTL("Ch2 Output",   750mk2_pb2, 1, SND_DJM_WINDEX_PB),
3828 	SND_DJM_CTL("Ch3 Output",   750mk2_pb3, 2, SND_DJM_WINDEX_PB)
3829 };
3830 
3831 
3832 // DJM-A9
3833 static const u16 snd_djm_opts_a9_cap1[] = {
3834 	0x0107, 0x0108, 0x0109, 0x010a, 0x010e,
3835 	0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 };
3836 static const u16 snd_djm_opts_a9_cap2[] = {
3837 	0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e };
3838 static const u16 snd_djm_opts_a9_cap3[] = {
3839 	0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e };
3840 static const u16 snd_djm_opts_a9_cap4[] = {
3841 	0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e };
3842 static const u16 snd_djm_opts_a9_cap5[] = {
3843 	0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e };
3844 
3845 static const struct snd_djm_ctl snd_djm_ctls_a9[] = {
3846 	SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3847 	SND_DJM_CTL("Master Input",  a9_cap1, 3, SND_DJM_WINDEX_CAP),
3848 	SND_DJM_CTL("Ch1 Input",     a9_cap2, 2, SND_DJM_WINDEX_CAP),
3849 	SND_DJM_CTL("Ch2 Input",     a9_cap3, 2, SND_DJM_WINDEX_CAP),
3850 	SND_DJM_CTL("Ch3 Input",     a9_cap4, 2, SND_DJM_WINDEX_CAP),
3851 	SND_DJM_CTL("Ch4 Input",     a9_cap5, 2, SND_DJM_WINDEX_CAP)
3852 };
3853 
3854 static const struct snd_djm_device snd_djm_devices[] = {
3855 	[SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
3856 	[SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
3857 	[SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
3858 	[SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
3859 	[SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
3860 	[SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
3861 	[SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9),
3862 };
3863 
3864 
3865 static int snd_djm_controls_info(struct snd_kcontrol *kctl,
3866 				struct snd_ctl_elem_info *info)
3867 {
3868 	unsigned long private_value = kctl->private_value;
3869 	u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
3870 	u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
3871 	const struct snd_djm_device *device = &snd_djm_devices[device_idx];
3872 	const char *name;
3873 	const struct snd_djm_ctl *ctl;
3874 	size_t noptions;
3875 
3876 	if (ctl_idx >= device->ncontrols)
3877 		return -EINVAL;
3878 
3879 	ctl = &device->controls[ctl_idx];
3880 	noptions = ctl->noptions;
3881 	if (info->value.enumerated.item >= noptions)
3882 		info->value.enumerated.item = noptions - 1;
3883 
3884 	name = snd_djm_get_label(device_idx,
3885 				ctl->options[info->value.enumerated.item],
3886 				ctl->wIndex);
3887 	if (!name)
3888 		return -EINVAL;
3889 
3890 	strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
3891 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3892 	info->count = 1;
3893 	info->value.enumerated.items = noptions;
3894 	return 0;
3895 }
3896 
3897 static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
3898 				u8 device_idx, u8 group, u16 value)
3899 {
3900 	int err;
3901 	const struct snd_djm_device *device = &snd_djm_devices[device_idx];
3902 
3903 	if ((group >= device->ncontrols) || value >= device->controls[group].noptions)
3904 		return -EINVAL;
3905 
3906 	err = snd_usb_lock_shutdown(mixer->chip);
3907 	if (err)
3908 		return err;
3909 
3910 	err = snd_usb_ctl_msg(
3911 		mixer->chip->dev, usb_sndctrlpipe(mixer->chip->dev, 0),
3912 		USB_REQ_SET_FEATURE,
3913 		USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3914 		device->controls[group].options[value],
3915 		device->controls[group].wIndex,
3916 		NULL, 0);
3917 
3918 	snd_usb_unlock_shutdown(mixer->chip);
3919 	return err;
3920 }
3921 
3922 static int snd_djm_controls_get(struct snd_kcontrol *kctl,
3923 				struct snd_ctl_elem_value *elem)
3924 {
3925 	elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
3926 	return 0;
3927 }
3928 
3929 static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
3930 {
3931 	struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
3932 	struct usb_mixer_interface *mixer = list->mixer;
3933 	unsigned long private_value = kctl->private_value;
3934 
3935 	u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
3936 	u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
3937 	u16 value = elem->value.enumerated.item[0];
3938 
3939 	kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
3940 			      (group << SND_DJM_GROUP_SHIFT) |
3941 			      value);
3942 
3943 	return snd_djm_controls_update(mixer, device, group, value);
3944 }
3945 
3946 static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
3947 {
3948 	unsigned long private_value = list->kctl->private_value;
3949 	u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
3950 	u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
3951 	u16 value = (private_value & SND_DJM_VALUE_MASK);
3952 
3953 	return snd_djm_controls_update(list->mixer, device, group, value);
3954 }
3955 
3956 static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
3957 		const u8 device_idx)
3958 {
3959 	int err, i;
3960 	u16 value;
3961 
3962 	const struct snd_djm_device *device = &snd_djm_devices[device_idx];
3963 
3964 	struct snd_kcontrol_new knew = {
3965 		.iface  = SNDRV_CTL_ELEM_IFACE_MIXER,
3966 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3967 		.index = 0,
3968 		.info = snd_djm_controls_info,
3969 		.get  = snd_djm_controls_get,
3970 		.put  = snd_djm_controls_put
3971 	};
3972 
3973 	for (i = 0; i < device->ncontrols; i++) {
3974 		value = device->controls[i].default_value;
3975 		knew.name = device->controls[i].name;
3976 		knew.private_value = (
3977 			((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
3978 			(i << SND_DJM_GROUP_SHIFT) |
3979 			value);
3980 		err = snd_djm_controls_update(mixer, device_idx, i, value);
3981 		if (err)
3982 			return err;
3983 		err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
3984 						 &knew, NULL);
3985 		if (err)
3986 			return err;
3987 	}
3988 	return 0;
3989 }
3990 
3991 int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
3992 {
3993 	int err = 0;
3994 
3995 	err = snd_usb_soundblaster_remote_init(mixer);
3996 	if (err < 0)
3997 		return err;
3998 
3999 	switch (mixer->chip->usb_id) {
4000 	/* Tascam US-16x08 */
4001 	case USB_ID(0x0644, 0x8047):
4002 		err = snd_us16x08_controls_create(mixer);
4003 		break;
4004 	case USB_ID(0x041e, 0x3020):
4005 	case USB_ID(0x041e, 0x3040):
4006 	case USB_ID(0x041e, 0x3042):
4007 	case USB_ID(0x041e, 0x30df):
4008 	case USB_ID(0x041e, 0x3048):
4009 		err = snd_audigy2nx_controls_create(mixer);
4010 		if (err < 0)
4011 			break;
4012 		snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
4013 				     mixer, snd_audigy2nx_proc_read);
4014 		break;
4015 
4016 	/* EMU0204 */
4017 	case USB_ID(0x041e, 0x3f19):
4018 		err = snd_emu0204_controls_create(mixer);
4019 		break;
4020 
4021 	case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
4022 	case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
4023 		err = snd_c400_create_mixer(mixer);
4024 		break;
4025 
4026 	case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
4027 	case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
4028 		err = snd_ftu_create_mixer(mixer);
4029 		break;
4030 
4031 	case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
4032 	case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
4033 	case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
4034 		err = snd_xonar_u1_controls_create(mixer);
4035 		break;
4036 
4037 	case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
4038 		err = snd_microii_controls_create(mixer);
4039 		break;
4040 
4041 	case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
4042 		err = snd_mbox1_controls_create(mixer);
4043 		break;
4044 
4045 	case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
4046 		err = snd_nativeinstruments_create_mixer(mixer,
4047 				snd_nativeinstruments_ta6_mixers,
4048 				ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
4049 		break;
4050 
4051 	case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
4052 		err = snd_nativeinstruments_create_mixer(mixer,
4053 				snd_nativeinstruments_ta10_mixers,
4054 				ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
4055 		break;
4056 
4057 	case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
4058 		/* detection is disabled in mixer_maps.c */
4059 		err = snd_create_std_mono_table(mixer, ebox44_table);
4060 		break;
4061 
4062 	case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
4063 	case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
4064 	case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
4065 	case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
4066 	case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
4067 		err = snd_scarlett_controls_create(mixer);
4068 		break;
4069 
4070 	case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
4071 	case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
4072 	case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
4073 	case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
4074 	case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
4075 	case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
4076 	case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
4077 	case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
4078 	case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
4079 	case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */
4080 	case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */
4081 	case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */
4082 	case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */
4083 	case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */
4084 	case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */
4085 	case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */
4086 	case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */
4087 	case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */
4088 	case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */
4089 	case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
4090 		err = snd_scarlett2_init(mixer);
4091 		break;
4092 
4093 	case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
4094 		err = snd_soundblaster_e1_switch_create(mixer);
4095 		break;
4096 	case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4097 		err = dell_dock_mixer_create(mixer);
4098 		if (err < 0)
4099 			break;
4100 		err = dell_dock_mixer_init(mixer);
4101 		break;
4102 	case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */
4103 		err = dell_dock_mixer_create(mixer);
4104 		break;
4105 
4106 	case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
4107 	case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
4108 	case USB_ID(0x2a39, 0x3fd4): /* RME */
4109 		err = snd_rme_controls_create(mixer);
4110 		break;
4111 
4112 	case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
4113 		err = snd_sc1810_init_mixer(mixer);
4114 		break;
4115 	case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
4116 		err = snd_bbfpro_controls_create(mixer);
4117 		break;
4118 	case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */
4119 	case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */
4120 		err = snd_rme_digiface_controls_create(mixer);
4121 		break;
4122 	case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
4123 		err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
4124 		break;
4125 	case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
4126 		err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
4127 		break;
4128 	case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
4129 		err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
4130 		break;
4131 	case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
4132 		err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
4133 		break;
4134 	case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
4135 		err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
4136 		break;
4137 	case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
4138 		err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
4139 		break;
4140 	case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */
4141 		err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX);
4142 		break;
4143 	}
4144 
4145 	return err;
4146 }
4147 
4148 void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
4149 {
4150 	switch (mixer->chip->usb_id) {
4151 	case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4152 		dell_dock_mixer_init(mixer);
4153 		break;
4154 	}
4155 }
4156 
4157 void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
4158 				    int unitid)
4159 {
4160 	if (!mixer->rc_cfg)
4161 		return;
4162 	/* unit ids specific to Extigy/Audigy 2 NX: */
4163 	switch (unitid) {
4164 	case 0: /* remote control */
4165 		mixer->rc_urb->dev = mixer->chip->dev;
4166 		usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
4167 		break;
4168 	case 4: /* digital in jack */
4169 	case 7: /* line in jacks */
4170 	case 19: /* speaker out jacks */
4171 	case 20: /* headphones out jack */
4172 		break;
4173 	/* live24ext: 4 = line-in jack */
4174 	case 3:	/* hp-out jack (may actuate Mute) */
4175 		if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
4176 		    mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
4177 			snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
4178 		break;
4179 	default:
4180 		usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
4181 		break;
4182 	}
4183 }
4184 
4185 static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
4186 					 struct usb_mixer_elem_info *cval,
4187 					 struct snd_kcontrol *kctl)
4188 {
4189 	/* Approximation using 10 ranges based on output measurement on hw v1.2.
4190 	 * This seems close to the cubic mapping e.g. alsamixer uses. */
4191 	static const DECLARE_TLV_DB_RANGE(scale,
4192 		 0,  1, TLV_DB_MINMAX_ITEM(-5300, -4970),
4193 		 2,  5, TLV_DB_MINMAX_ITEM(-4710, -4160),
4194 		 6,  7, TLV_DB_MINMAX_ITEM(-3884, -3710),
4195 		 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
4196 		15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
4197 		17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
4198 		20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
4199 		27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
4200 		32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
4201 		41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
4202 	);
4203 
4204 	if (cval->min == 0 && cval->max == 50) {
4205 		usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
4206 		kctl->tlv.p = scale;
4207 		kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
4208 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4209 
4210 	} else if (cval->min == 0 && cval->max <= 1000) {
4211 		/* Some other clearly broken DragonFly variant.
4212 		 * At least a 0..53 variant (hw v1.0) exists.
4213 		 */
4214 		usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
4215 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4216 	}
4217 }
4218 
4219 void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
4220 				  struct usb_mixer_elem_info *cval, int unitid,
4221 				  struct snd_kcontrol *kctl)
4222 {
4223 	switch (mixer->chip->usb_id) {
4224 	case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
4225 		if (unitid == 7 && cval->control == UAC_FU_VOLUME)
4226 			snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
4227 		break;
4228 	/* lowest playback value is muted on some devices */
4229 	case USB_ID(0x0d8c, 0x000c): /* C-Media */
4230 	case USB_ID(0x0d8c, 0x0014): /* C-Media */
4231 	case USB_ID(0x19f7, 0x0003): /* RODE NT-USB */
4232 		if (strstr(kctl->id.name, "Playback"))
4233 			cval->min_mute = 1;
4234 		break;
4235 	}
4236 }
4237 
4238