xref: /linux/sound/usb/midi.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "power.h"
58 #include "helper.h"
59 
60 /*
61  * define this to log all USB packets
62  */
63 /* #define DUMP_PACKETS */
64 
65 /*
66  * how long to wait after some USB errors, so that khubd can disconnect() us
67  * without too many spurious errors
68  */
69 #define ERROR_DELAY_JIFFIES (HZ / 10)
70 
71 #define OUTPUT_URBS 7
72 #define INPUT_URBS 7
73 
74 
75 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
76 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
77 MODULE_LICENSE("Dual BSD/GPL");
78 
79 
80 struct usb_ms_header_descriptor {
81 	__u8  bLength;
82 	__u8  bDescriptorType;
83 	__u8  bDescriptorSubtype;
84 	__u8  bcdMSC[2];
85 	__le16 wTotalLength;
86 } __attribute__ ((packed));
87 
88 struct usb_ms_endpoint_descriptor {
89 	__u8  bLength;
90 	__u8  bDescriptorType;
91 	__u8  bDescriptorSubtype;
92 	__u8  bNumEmbMIDIJack;
93 	__u8  baAssocJackID[0];
94 } __attribute__ ((packed));
95 
96 struct snd_usb_midi_in_endpoint;
97 struct snd_usb_midi_out_endpoint;
98 struct snd_usb_midi_endpoint;
99 
100 struct usb_protocol_ops {
101 	void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
102 	void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
103 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
104 	void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 	void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
106 };
107 
108 struct snd_usb_midi {
109 	struct usb_device *dev;
110 	struct snd_card *card;
111 	struct usb_interface *iface;
112 	const struct snd_usb_audio_quirk *quirk;
113 	struct snd_rawmidi *rmidi;
114 	struct usb_protocol_ops* usb_protocol_ops;
115 	struct list_head list;
116 	struct timer_list error_timer;
117 	spinlock_t disc_lock;
118 	struct mutex mutex;
119 	u32 usb_id;
120 	int next_midi_device;
121 
122 	struct snd_usb_midi_endpoint {
123 		struct snd_usb_midi_out_endpoint *out;
124 		struct snd_usb_midi_in_endpoint *in;
125 	} endpoints[MIDI_MAX_ENDPOINTS];
126 	unsigned long input_triggered;
127 	unsigned int opened;
128 	unsigned char disconnected;
129 
130 	struct snd_kcontrol *roland_load_ctl;
131 };
132 
133 struct snd_usb_midi_out_endpoint {
134 	struct snd_usb_midi* umidi;
135 	struct out_urb_context {
136 		struct urb *urb;
137 		struct snd_usb_midi_out_endpoint *ep;
138 	} urbs[OUTPUT_URBS];
139 	unsigned int active_urbs;
140 	unsigned int drain_urbs;
141 	int max_transfer;		/* size of urb buffer */
142 	struct tasklet_struct tasklet;
143 	unsigned int next_urb;
144 	spinlock_t buffer_lock;
145 
146 	struct usbmidi_out_port {
147 		struct snd_usb_midi_out_endpoint* ep;
148 		struct snd_rawmidi_substream *substream;
149 		int active;
150 		uint8_t cable;		/* cable number << 4 */
151 		uint8_t state;
152 #define STATE_UNKNOWN	0
153 #define STATE_1PARAM	1
154 #define STATE_2PARAM_1	2
155 #define STATE_2PARAM_2	3
156 #define STATE_SYSEX_0	4
157 #define STATE_SYSEX_1	5
158 #define STATE_SYSEX_2	6
159 		uint8_t data[2];
160 	} ports[0x10];
161 	int current_port;
162 
163 	wait_queue_head_t drain_wait;
164 };
165 
166 struct snd_usb_midi_in_endpoint {
167 	struct snd_usb_midi* umidi;
168 	struct urb* urbs[INPUT_URBS];
169 	struct usbmidi_in_port {
170 		struct snd_rawmidi_substream *substream;
171 		u8 running_status_length;
172 	} ports[0x10];
173 	u8 seen_f5;
174 	u8 error_resubmit;
175 	int current_port;
176 };
177 
178 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
179 
180 static const uint8_t snd_usbmidi_cin_length[] = {
181 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
182 };
183 
184 /*
185  * Submits the URB, with error handling.
186  */
187 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
188 {
189 	int err = usb_submit_urb(urb, flags);
190 	if (err < 0 && err != -ENODEV)
191 		snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
192 	return err;
193 }
194 
195 /*
196  * Error handling for URB completion functions.
197  */
198 static int snd_usbmidi_urb_error(int status)
199 {
200 	switch (status) {
201 	/* manually unlinked, or device gone */
202 	case -ENOENT:
203 	case -ECONNRESET:
204 	case -ESHUTDOWN:
205 	case -ENODEV:
206 		return -ENODEV;
207 	/* errors that might occur during unplugging */
208 	case -EPROTO:
209 	case -ETIME:
210 	case -EILSEQ:
211 		return -EIO;
212 	default:
213 		snd_printk(KERN_ERR "urb status %d\n", status);
214 		return 0; /* continue */
215 	}
216 }
217 
218 /*
219  * Receives a chunk of MIDI data.
220  */
221 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
222 				   uint8_t* data, int length)
223 {
224 	struct usbmidi_in_port* port = &ep->ports[portidx];
225 
226 	if (!port->substream) {
227 		snd_printd("unexpected port %d!\n", portidx);
228 		return;
229 	}
230 	if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
231 		return;
232 	snd_rawmidi_receive(port->substream, data, length);
233 }
234 
235 #ifdef DUMP_PACKETS
236 static void dump_urb(const char *type, const u8 *data, int length)
237 {
238 	snd_printk(KERN_DEBUG "%s packet: [", type);
239 	for (; length > 0; ++data, --length)
240 		printk(" %02x", *data);
241 	printk(" ]\n");
242 }
243 #else
244 #define dump_urb(type, data, length) /* nothing */
245 #endif
246 
247 /*
248  * Processes the data read from the device.
249  */
250 static void snd_usbmidi_in_urb_complete(struct urb* urb)
251 {
252 	struct snd_usb_midi_in_endpoint* ep = urb->context;
253 
254 	if (urb->status == 0) {
255 		dump_urb("received", urb->transfer_buffer, urb->actual_length);
256 		ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
257 						   urb->actual_length);
258 	} else {
259 		int err = snd_usbmidi_urb_error(urb->status);
260 		if (err < 0) {
261 			if (err != -ENODEV) {
262 				ep->error_resubmit = 1;
263 				mod_timer(&ep->umidi->error_timer,
264 					  jiffies + ERROR_DELAY_JIFFIES);
265 			}
266 			return;
267 		}
268 	}
269 
270 	urb->dev = ep->umidi->dev;
271 	snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
272 }
273 
274 static void snd_usbmidi_out_urb_complete(struct urb* urb)
275 {
276 	struct out_urb_context *context = urb->context;
277 	struct snd_usb_midi_out_endpoint* ep = context->ep;
278 	unsigned int urb_index;
279 
280 	spin_lock(&ep->buffer_lock);
281 	urb_index = context - ep->urbs;
282 	ep->active_urbs &= ~(1 << urb_index);
283 	if (unlikely(ep->drain_urbs)) {
284 		ep->drain_urbs &= ~(1 << urb_index);
285 		wake_up(&ep->drain_wait);
286 	}
287 	spin_unlock(&ep->buffer_lock);
288 	if (urb->status < 0) {
289 		int err = snd_usbmidi_urb_error(urb->status);
290 		if (err < 0) {
291 			if (err != -ENODEV)
292 				mod_timer(&ep->umidi->error_timer,
293 					  jiffies + ERROR_DELAY_JIFFIES);
294 			return;
295 		}
296 	}
297 	snd_usbmidi_do_output(ep);
298 }
299 
300 /*
301  * This is called when some data should be transferred to the device
302  * (from one or more substreams).
303  */
304 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
305 {
306 	unsigned int urb_index;
307 	struct urb* urb;
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(&ep->buffer_lock, flags);
311 	if (ep->umidi->disconnected) {
312 		spin_unlock_irqrestore(&ep->buffer_lock, flags);
313 		return;
314 	}
315 
316 	urb_index = ep->next_urb;
317 	for (;;) {
318 		if (!(ep->active_urbs & (1 << urb_index))) {
319 			urb = ep->urbs[urb_index].urb;
320 			urb->transfer_buffer_length = 0;
321 			ep->umidi->usb_protocol_ops->output(ep, urb);
322 			if (urb->transfer_buffer_length == 0)
323 				break;
324 
325 			dump_urb("sending", urb->transfer_buffer,
326 				 urb->transfer_buffer_length);
327 			urb->dev = ep->umidi->dev;
328 			if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
329 				break;
330 			ep->active_urbs |= 1 << urb_index;
331 		}
332 		if (++urb_index >= OUTPUT_URBS)
333 			urb_index = 0;
334 		if (urb_index == ep->next_urb)
335 			break;
336 	}
337 	ep->next_urb = urb_index;
338 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
339 }
340 
341 static void snd_usbmidi_out_tasklet(unsigned long data)
342 {
343 	struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
344 
345 	snd_usbmidi_do_output(ep);
346 }
347 
348 /* called after transfers had been interrupted due to some USB error */
349 static void snd_usbmidi_error_timer(unsigned long data)
350 {
351 	struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
352 	unsigned int i, j;
353 
354 	spin_lock(&umidi->disc_lock);
355 	if (umidi->disconnected) {
356 		spin_unlock(&umidi->disc_lock);
357 		return;
358 	}
359 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
360 		struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
361 		if (in && in->error_resubmit) {
362 			in->error_resubmit = 0;
363 			for (j = 0; j < INPUT_URBS; ++j) {
364 				in->urbs[j]->dev = umidi->dev;
365 				snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
366 			}
367 		}
368 		if (umidi->endpoints[i].out)
369 			snd_usbmidi_do_output(umidi->endpoints[i].out);
370 	}
371 	spin_unlock(&umidi->disc_lock);
372 }
373 
374 /* helper function to send static data that may not DMA-able */
375 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
376 				 const void *data, int len)
377 {
378 	int err = 0;
379 	void *buf = kmemdup(data, len, GFP_KERNEL);
380 	if (!buf)
381 		return -ENOMEM;
382 	dump_urb("sending", buf, len);
383 	if (ep->urbs[0].urb)
384 		err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
385 				   buf, len, NULL, 250);
386 	kfree(buf);
387 	return err;
388 }
389 
390 /*
391  * Standard USB MIDI protocol: see the spec.
392  * Midiman protocol: like the standard protocol, but the control byte is the
393  * fourth byte in each packet, and uses length instead of CIN.
394  */
395 
396 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
397 				       uint8_t* buffer, int buffer_length)
398 {
399 	int i;
400 
401 	for (i = 0; i + 3 < buffer_length; i += 4)
402 		if (buffer[i] != 0) {
403 			int cable = buffer[i] >> 4;
404 			int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
405 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
406 		}
407 }
408 
409 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
410 				      uint8_t* buffer, int buffer_length)
411 {
412 	int i;
413 
414 	for (i = 0; i + 3 < buffer_length; i += 4)
415 		if (buffer[i + 3] != 0) {
416 			int port = buffer[i + 3] >> 4;
417 			int length = buffer[i + 3] & 3;
418 			snd_usbmidi_input_data(ep, port, &buffer[i], length);
419 		}
420 }
421 
422 /*
423  * Buggy M-Audio device: running status on input results in a packet that has
424  * the data bytes but not the status byte and that is marked with CIN 4.
425  */
426 static void snd_usbmidi_maudio_broken_running_status_input(
427 					struct snd_usb_midi_in_endpoint* ep,
428 					uint8_t* buffer, int buffer_length)
429 {
430 	int i;
431 
432 	for (i = 0; i + 3 < buffer_length; i += 4)
433 		if (buffer[i] != 0) {
434 			int cable = buffer[i] >> 4;
435 			u8 cin = buffer[i] & 0x0f;
436 			struct usbmidi_in_port *port = &ep->ports[cable];
437 			int length;
438 
439 			length = snd_usbmidi_cin_length[cin];
440 			if (cin == 0xf && buffer[i + 1] >= 0xf8)
441 				; /* realtime msg: no running status change */
442 			else if (cin >= 0x8 && cin <= 0xe)
443 				/* channel msg */
444 				port->running_status_length = length - 1;
445 			else if (cin == 0x4 &&
446 				 port->running_status_length != 0 &&
447 				 buffer[i + 1] < 0x80)
448 				/* CIN 4 that is not a SysEx */
449 				length = port->running_status_length;
450 			else
451 				/*
452 				 * All other msgs cannot begin running status.
453 				 * (A channel msg sent as two or three CIN 0xF
454 				 * packets could in theory, but this device
455 				 * doesn't use this format.)
456 				 */
457 				port->running_status_length = 0;
458 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
459 		}
460 }
461 
462 /*
463  * CME protocol: like the standard protocol, but SysEx commands are sent as a
464  * single USB packet preceded by a 0x0F byte.
465  */
466 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
467 				  uint8_t *buffer, int buffer_length)
468 {
469 	if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
470 		snd_usbmidi_standard_input(ep, buffer, buffer_length);
471 	else
472 		snd_usbmidi_input_data(ep, buffer[0] >> 4,
473 				       &buffer[1], buffer_length - 1);
474 }
475 
476 /*
477  * Adds one USB MIDI packet to the output buffer.
478  */
479 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
480 					       uint8_t p1, uint8_t p2, uint8_t p3)
481 {
482 
483 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
484 	buf[0] = p0;
485 	buf[1] = p1;
486 	buf[2] = p2;
487 	buf[3] = p3;
488 	urb->transfer_buffer_length += 4;
489 }
490 
491 /*
492  * Adds one Midiman packet to the output buffer.
493  */
494 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
495 					      uint8_t p1, uint8_t p2, uint8_t p3)
496 {
497 
498 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
499 	buf[0] = p1;
500 	buf[1] = p2;
501 	buf[2] = p3;
502 	buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
503 	urb->transfer_buffer_length += 4;
504 }
505 
506 /*
507  * Converts MIDI commands to USB MIDI packets.
508  */
509 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
510 				      uint8_t b, struct urb* urb)
511 {
512 	uint8_t p0 = port->cable;
513 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
514 		port->ep->umidi->usb_protocol_ops->output_packet;
515 
516 	if (b >= 0xf8) {
517 		output_packet(urb, p0 | 0x0f, b, 0, 0);
518 	} else if (b >= 0xf0) {
519 		switch (b) {
520 		case 0xf0:
521 			port->data[0] = b;
522 			port->state = STATE_SYSEX_1;
523 			break;
524 		case 0xf1:
525 		case 0xf3:
526 			port->data[0] = b;
527 			port->state = STATE_1PARAM;
528 			break;
529 		case 0xf2:
530 			port->data[0] = b;
531 			port->state = STATE_2PARAM_1;
532 			break;
533 		case 0xf4:
534 		case 0xf5:
535 			port->state = STATE_UNKNOWN;
536 			break;
537 		case 0xf6:
538 			output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
539 			port->state = STATE_UNKNOWN;
540 			break;
541 		case 0xf7:
542 			switch (port->state) {
543 			case STATE_SYSEX_0:
544 				output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
545 				break;
546 			case STATE_SYSEX_1:
547 				output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
548 				break;
549 			case STATE_SYSEX_2:
550 				output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
551 				break;
552 			}
553 			port->state = STATE_UNKNOWN;
554 			break;
555 		}
556 	} else if (b >= 0x80) {
557 		port->data[0] = b;
558 		if (b >= 0xc0 && b <= 0xdf)
559 			port->state = STATE_1PARAM;
560 		else
561 			port->state = STATE_2PARAM_1;
562 	} else { /* b < 0x80 */
563 		switch (port->state) {
564 		case STATE_1PARAM:
565 			if (port->data[0] < 0xf0) {
566 				p0 |= port->data[0] >> 4;
567 			} else {
568 				p0 |= 0x02;
569 				port->state = STATE_UNKNOWN;
570 			}
571 			output_packet(urb, p0, port->data[0], b, 0);
572 			break;
573 		case STATE_2PARAM_1:
574 			port->data[1] = b;
575 			port->state = STATE_2PARAM_2;
576 			break;
577 		case STATE_2PARAM_2:
578 			if (port->data[0] < 0xf0) {
579 				p0 |= port->data[0] >> 4;
580 				port->state = STATE_2PARAM_1;
581 			} else {
582 				p0 |= 0x03;
583 				port->state = STATE_UNKNOWN;
584 			}
585 			output_packet(urb, p0, port->data[0], port->data[1], b);
586 			break;
587 		case STATE_SYSEX_0:
588 			port->data[0] = b;
589 			port->state = STATE_SYSEX_1;
590 			break;
591 		case STATE_SYSEX_1:
592 			port->data[1] = b;
593 			port->state = STATE_SYSEX_2;
594 			break;
595 		case STATE_SYSEX_2:
596 			output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
597 			port->state = STATE_SYSEX_0;
598 			break;
599 		}
600 	}
601 }
602 
603 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
604 					struct urb *urb)
605 {
606 	int p;
607 
608 	/* FIXME: lower-numbered ports can starve higher-numbered ports */
609 	for (p = 0; p < 0x10; ++p) {
610 		struct usbmidi_out_port* port = &ep->ports[p];
611 		if (!port->active)
612 			continue;
613 		while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
614 			uint8_t b;
615 			if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
616 				port->active = 0;
617 				break;
618 			}
619 			snd_usbmidi_transmit_byte(port, b, urb);
620 		}
621 	}
622 }
623 
624 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
625 	.input = snd_usbmidi_standard_input,
626 	.output = snd_usbmidi_standard_output,
627 	.output_packet = snd_usbmidi_output_standard_packet,
628 };
629 
630 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
631 	.input = snd_usbmidi_midiman_input,
632 	.output = snd_usbmidi_standard_output,
633 	.output_packet = snd_usbmidi_output_midiman_packet,
634 };
635 
636 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
637 	.input = snd_usbmidi_maudio_broken_running_status_input,
638 	.output = snd_usbmidi_standard_output,
639 	.output_packet = snd_usbmidi_output_standard_packet,
640 };
641 
642 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
643 	.input = snd_usbmidi_cme_input,
644 	.output = snd_usbmidi_standard_output,
645 	.output_packet = snd_usbmidi_output_standard_packet,
646 };
647 
648 /*
649  * AKAI MPD16 protocol:
650  *
651  * For control port (endpoint 1):
652  * ==============================
653  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
654  * SysEx message (msg_len=9 bytes long).
655  *
656  * For data port (endpoint 2):
657  * ===========================
658  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
659  * MIDI message (msg_len bytes long)
660  *
661  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
662  */
663 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
664 				   uint8_t *buffer, int buffer_length)
665 {
666 	unsigned int pos = 0;
667 	unsigned int len = (unsigned int)buffer_length;
668 	while (pos < len) {
669 		unsigned int port = (buffer[pos] >> 4) - 1;
670 		unsigned int msg_len = buffer[pos] & 0x0f;
671 		pos++;
672 		if (pos + msg_len <= len && port < 2)
673 			snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
674 		pos += msg_len;
675 	}
676 }
677 
678 #define MAX_AKAI_SYSEX_LEN 9
679 
680 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
681 				    struct urb *urb)
682 {
683 	uint8_t *msg;
684 	int pos, end, count, buf_end;
685 	uint8_t tmp[MAX_AKAI_SYSEX_LEN];
686 	struct snd_rawmidi_substream *substream = ep->ports[0].substream;
687 
688 	if (!ep->ports[0].active)
689 		return;
690 
691 	msg = urb->transfer_buffer + urb->transfer_buffer_length;
692 	buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
693 
694 	/* only try adding more data when there's space for at least 1 SysEx */
695 	while (urb->transfer_buffer_length < buf_end) {
696 		count = snd_rawmidi_transmit_peek(substream,
697 						  tmp, MAX_AKAI_SYSEX_LEN);
698 		if (!count) {
699 			ep->ports[0].active = 0;
700 			return;
701 		}
702 		/* try to skip non-SysEx data */
703 		for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
704 			;
705 
706 		if (pos > 0) {
707 			snd_rawmidi_transmit_ack(substream, pos);
708 			continue;
709 		}
710 
711 		/* look for the start or end marker */
712 		for (end = 1; end < count && tmp[end] < 0xF0; end++)
713 			;
714 
715 		/* next SysEx started before the end of current one */
716 		if (end < count && tmp[end] == 0xF0) {
717 			/* it's incomplete - drop it */
718 			snd_rawmidi_transmit_ack(substream, end);
719 			continue;
720 		}
721 		/* SysEx complete */
722 		if (end < count && tmp[end] == 0xF7) {
723 			/* queue it, ack it, and get the next one */
724 			count = end + 1;
725 			msg[0] = 0x10 | count;
726 			memcpy(&msg[1], tmp, count);
727 			snd_rawmidi_transmit_ack(substream, count);
728 			urb->transfer_buffer_length += count + 1;
729 			msg += count + 1;
730 			continue;
731 		}
732 		/* less than 9 bytes and no end byte - wait for more */
733 		if (count < MAX_AKAI_SYSEX_LEN) {
734 			ep->ports[0].active = 0;
735 			return;
736 		}
737 		/* 9 bytes and no end marker in sight - malformed, skip it */
738 		snd_rawmidi_transmit_ack(substream, count);
739 	}
740 }
741 
742 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
743 	.input = snd_usbmidi_akai_input,
744 	.output = snd_usbmidi_akai_output,
745 };
746 
747 /*
748  * Novation USB MIDI protocol: number of data bytes is in the first byte
749  * (when receiving) (+1!) or in the second byte (when sending); data begins
750  * at the third byte.
751  */
752 
753 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
754 				       uint8_t* buffer, int buffer_length)
755 {
756 	if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
757 		return;
758 	snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
759 }
760 
761 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
762 					struct urb *urb)
763 {
764 	uint8_t* transfer_buffer;
765 	int count;
766 
767 	if (!ep->ports[0].active)
768 		return;
769 	transfer_buffer = urb->transfer_buffer;
770 	count = snd_rawmidi_transmit(ep->ports[0].substream,
771 				     &transfer_buffer[2],
772 				     ep->max_transfer - 2);
773 	if (count < 1) {
774 		ep->ports[0].active = 0;
775 		return;
776 	}
777 	transfer_buffer[0] = 0;
778 	transfer_buffer[1] = count;
779 	urb->transfer_buffer_length = 2 + count;
780 }
781 
782 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
783 	.input = snd_usbmidi_novation_input,
784 	.output = snd_usbmidi_novation_output,
785 };
786 
787 /*
788  * "raw" protocol: just move raw MIDI bytes from/to the endpoint
789  */
790 
791 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
792 				  uint8_t* buffer, int buffer_length)
793 {
794 	snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
795 }
796 
797 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
798 				   struct urb *urb)
799 {
800 	int count;
801 
802 	if (!ep->ports[0].active)
803 		return;
804 	count = snd_rawmidi_transmit(ep->ports[0].substream,
805 				     urb->transfer_buffer,
806 				     ep->max_transfer);
807 	if (count < 1) {
808 		ep->ports[0].active = 0;
809 		return;
810 	}
811 	urb->transfer_buffer_length = count;
812 }
813 
814 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
815 	.input = snd_usbmidi_raw_input,
816 	.output = snd_usbmidi_raw_output,
817 };
818 
819 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
820 				     uint8_t *buffer, int buffer_length)
821 {
822 	if (buffer_length != 9)
823 		return;
824 	buffer_length = 8;
825 	while (buffer_length && buffer[buffer_length - 1] == 0xFD)
826 		buffer_length--;
827 	if (buffer_length)
828 		snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
829 }
830 
831 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
832 				      struct urb *urb)
833 {
834 	int count;
835 
836 	if (!ep->ports[0].active)
837 		return;
838 	switch (snd_usb_get_speed(ep->umidi->dev)) {
839 	case USB_SPEED_HIGH:
840 	case USB_SPEED_SUPER:
841 		count = 1;
842 		break;
843 	default:
844 		count = 2;
845 	}
846 	count = snd_rawmidi_transmit(ep->ports[0].substream,
847 				     urb->transfer_buffer,
848 				     count);
849 	if (count < 1) {
850 		ep->ports[0].active = 0;
851 		return;
852 	}
853 
854 	memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
855 	urb->transfer_buffer_length = ep->max_transfer;
856 }
857 
858 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
859 	.input = snd_usbmidi_us122l_input,
860 	.output = snd_usbmidi_us122l_output,
861 };
862 
863 /*
864  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
865  */
866 
867 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
868 {
869 	static const u8 init_data[] = {
870 		/* initialization magic: "get version" */
871 		0xf0,
872 		0x00, 0x20, 0x31,	/* Emagic */
873 		0x64,			/* Unitor8 */
874 		0x0b,			/* version number request */
875 		0x00,			/* command version */
876 		0x00,			/* EEPROM, box 0 */
877 		0xf7
878 	};
879 	send_bulk_static_data(ep, init_data, sizeof(init_data));
880 	/* while we're at it, pour on more magic */
881 	send_bulk_static_data(ep, init_data, sizeof(init_data));
882 }
883 
884 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
885 {
886 	static const u8 finish_data[] = {
887 		/* switch to patch mode with last preset */
888 		0xf0,
889 		0x00, 0x20, 0x31,	/* Emagic */
890 		0x64,			/* Unitor8 */
891 		0x10,			/* patch switch command */
892 		0x00,			/* command version */
893 		0x7f,			/* to all boxes */
894 		0x40,			/* last preset in EEPROM */
895 		0xf7
896 	};
897 	send_bulk_static_data(ep, finish_data, sizeof(finish_data));
898 }
899 
900 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
901 				     uint8_t* buffer, int buffer_length)
902 {
903 	int i;
904 
905 	/* FF indicates end of valid data */
906 	for (i = 0; i < buffer_length; ++i)
907 		if (buffer[i] == 0xff) {
908 			buffer_length = i;
909 			break;
910 		}
911 
912 	/* handle F5 at end of last buffer */
913 	if (ep->seen_f5)
914 		goto switch_port;
915 
916 	while (buffer_length > 0) {
917 		/* determine size of data until next F5 */
918 		for (i = 0; i < buffer_length; ++i)
919 			if (buffer[i] == 0xf5)
920 				break;
921 		snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
922 		buffer += i;
923 		buffer_length -= i;
924 
925 		if (buffer_length <= 0)
926 			break;
927 		/* assert(buffer[0] == 0xf5); */
928 		ep->seen_f5 = 1;
929 		++buffer;
930 		--buffer_length;
931 
932 	switch_port:
933 		if (buffer_length <= 0)
934 			break;
935 		if (buffer[0] < 0x80) {
936 			ep->current_port = (buffer[0] - 1) & 15;
937 			++buffer;
938 			--buffer_length;
939 		}
940 		ep->seen_f5 = 0;
941 	}
942 }
943 
944 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
945 				      struct urb *urb)
946 {
947 	int port0 = ep->current_port;
948 	uint8_t* buf = urb->transfer_buffer;
949 	int buf_free = ep->max_transfer;
950 	int length, i;
951 
952 	for (i = 0; i < 0x10; ++i) {
953 		/* round-robin, starting at the last current port */
954 		int portnum = (port0 + i) & 15;
955 		struct usbmidi_out_port* port = &ep->ports[portnum];
956 
957 		if (!port->active)
958 			continue;
959 		if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
960 			port->active = 0;
961 			continue;
962 		}
963 
964 		if (portnum != ep->current_port) {
965 			if (buf_free < 2)
966 				break;
967 			ep->current_port = portnum;
968 			buf[0] = 0xf5;
969 			buf[1] = (portnum + 1) & 15;
970 			buf += 2;
971 			buf_free -= 2;
972 		}
973 
974 		if (buf_free < 1)
975 			break;
976 		length = snd_rawmidi_transmit(port->substream, buf, buf_free);
977 		if (length > 0) {
978 			buf += length;
979 			buf_free -= length;
980 			if (buf_free < 1)
981 				break;
982 		}
983 	}
984 	if (buf_free < ep->max_transfer && buf_free > 0) {
985 		*buf = 0xff;
986 		--buf_free;
987 	}
988 	urb->transfer_buffer_length = ep->max_transfer - buf_free;
989 }
990 
991 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
992 	.input = snd_usbmidi_emagic_input,
993 	.output = snd_usbmidi_emagic_output,
994 	.init_out_endpoint = snd_usbmidi_emagic_init_out,
995 	.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
996 };
997 
998 
999 static void update_roland_altsetting(struct snd_usb_midi* umidi)
1000 {
1001 	struct usb_interface *intf;
1002 	struct usb_host_interface *hostif;
1003 	struct usb_interface_descriptor *intfd;
1004 	int is_light_load;
1005 
1006 	intf = umidi->iface;
1007 	is_light_load = intf->cur_altsetting != intf->altsetting;
1008 	if (umidi->roland_load_ctl->private_value == is_light_load)
1009 		return;
1010 	hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1011 	intfd = get_iface_desc(hostif);
1012 	snd_usbmidi_input_stop(&umidi->list);
1013 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1014 			  intfd->bAlternateSetting);
1015 	snd_usbmidi_input_start(&umidi->list);
1016 }
1017 
1018 static void substream_open(struct snd_rawmidi_substream *substream, int open)
1019 {
1020 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1021 	struct snd_kcontrol *ctl;
1022 
1023 	mutex_lock(&umidi->mutex);
1024 	if (open) {
1025 		if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1026 			ctl = umidi->roland_load_ctl;
1027 			ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1028 			snd_ctl_notify(umidi->card,
1029 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1030 			update_roland_altsetting(umidi);
1031 		}
1032 	} else {
1033 		if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1034 			ctl = umidi->roland_load_ctl;
1035 			ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1036 			snd_ctl_notify(umidi->card,
1037 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1038 		}
1039 	}
1040 	mutex_unlock(&umidi->mutex);
1041 }
1042 
1043 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1044 {
1045 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1046 	struct usbmidi_out_port* port = NULL;
1047 	int i, j;
1048 	int err;
1049 
1050 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1051 		if (umidi->endpoints[i].out)
1052 			for (j = 0; j < 0x10; ++j)
1053 				if (umidi->endpoints[i].out->ports[j].substream == substream) {
1054 					port = &umidi->endpoints[i].out->ports[j];
1055 					break;
1056 				}
1057 	if (!port) {
1058 		snd_BUG();
1059 		return -ENXIO;
1060 	}
1061 	err = usb_autopm_get_interface(umidi->iface);
1062 	if (err < 0)
1063 		return -EIO;
1064 	substream->runtime->private_data = port;
1065 	port->state = STATE_UNKNOWN;
1066 	substream_open(substream, 1);
1067 	return 0;
1068 }
1069 
1070 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1071 {
1072 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1073 
1074 	substream_open(substream, 0);
1075 	usb_autopm_put_interface(umidi->iface);
1076 	return 0;
1077 }
1078 
1079 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1080 {
1081 	struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1082 
1083 	port->active = up;
1084 	if (up) {
1085 		if (port->ep->umidi->disconnected) {
1086 			/* gobble up remaining bytes to prevent wait in
1087 			 * snd_rawmidi_drain_output */
1088 			while (!snd_rawmidi_transmit_empty(substream))
1089 				snd_rawmidi_transmit_ack(substream, 1);
1090 			return;
1091 		}
1092 		tasklet_schedule(&port->ep->tasklet);
1093 	}
1094 }
1095 
1096 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1097 {
1098 	struct usbmidi_out_port* port = substream->runtime->private_data;
1099 	struct snd_usb_midi_out_endpoint *ep = port->ep;
1100 	unsigned int drain_urbs;
1101 	DEFINE_WAIT(wait);
1102 	long timeout = msecs_to_jiffies(50);
1103 
1104 	if (ep->umidi->disconnected)
1105 		return;
1106 	/*
1107 	 * The substream buffer is empty, but some data might still be in the
1108 	 * currently active URBs, so we have to wait for those to complete.
1109 	 */
1110 	spin_lock_irq(&ep->buffer_lock);
1111 	drain_urbs = ep->active_urbs;
1112 	if (drain_urbs) {
1113 		ep->drain_urbs |= drain_urbs;
1114 		do {
1115 			prepare_to_wait(&ep->drain_wait, &wait,
1116 					TASK_UNINTERRUPTIBLE);
1117 			spin_unlock_irq(&ep->buffer_lock);
1118 			timeout = schedule_timeout(timeout);
1119 			spin_lock_irq(&ep->buffer_lock);
1120 			drain_urbs &= ep->drain_urbs;
1121 		} while (drain_urbs && timeout);
1122 		finish_wait(&ep->drain_wait, &wait);
1123 	}
1124 	spin_unlock_irq(&ep->buffer_lock);
1125 }
1126 
1127 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1128 {
1129 	substream_open(substream, 1);
1130 	return 0;
1131 }
1132 
1133 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1134 {
1135 	substream_open(substream, 0);
1136 	return 0;
1137 }
1138 
1139 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1140 {
1141 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1142 
1143 	if (up)
1144 		set_bit(substream->number, &umidi->input_triggered);
1145 	else
1146 		clear_bit(substream->number, &umidi->input_triggered);
1147 }
1148 
1149 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1150 	.open = snd_usbmidi_output_open,
1151 	.close = snd_usbmidi_output_close,
1152 	.trigger = snd_usbmidi_output_trigger,
1153 	.drain = snd_usbmidi_output_drain,
1154 };
1155 
1156 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1157 	.open = snd_usbmidi_input_open,
1158 	.close = snd_usbmidi_input_close,
1159 	.trigger = snd_usbmidi_input_trigger
1160 };
1161 
1162 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1163 				unsigned int buffer_length)
1164 {
1165 	usb_free_coherent(umidi->dev, buffer_length,
1166 			  urb->transfer_buffer, urb->transfer_dma);
1167 	usb_free_urb(urb);
1168 }
1169 
1170 /*
1171  * Frees an input endpoint.
1172  * May be called when ep hasn't been initialized completely.
1173  */
1174 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1175 {
1176 	unsigned int i;
1177 
1178 	for (i = 0; i < INPUT_URBS; ++i)
1179 		if (ep->urbs[i])
1180 			free_urb_and_buffer(ep->umidi, ep->urbs[i],
1181 					    ep->urbs[i]->transfer_buffer_length);
1182 	kfree(ep);
1183 }
1184 
1185 /*
1186  * Creates an input endpoint.
1187  */
1188 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1189 					  struct snd_usb_midi_endpoint_info* ep_info,
1190 					  struct snd_usb_midi_endpoint* rep)
1191 {
1192 	struct snd_usb_midi_in_endpoint* ep;
1193 	void* buffer;
1194 	unsigned int pipe;
1195 	int length;
1196 	unsigned int i;
1197 
1198 	rep->in = NULL;
1199 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1200 	if (!ep)
1201 		return -ENOMEM;
1202 	ep->umidi = umidi;
1203 
1204 	for (i = 0; i < INPUT_URBS; ++i) {
1205 		ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1206 		if (!ep->urbs[i]) {
1207 			snd_usbmidi_in_endpoint_delete(ep);
1208 			return -ENOMEM;
1209 		}
1210 	}
1211 	if (ep_info->in_interval)
1212 		pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1213 	else
1214 		pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1215 	length = usb_maxpacket(umidi->dev, pipe, 0);
1216 	for (i = 0; i < INPUT_URBS; ++i) {
1217 		buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1218 					    &ep->urbs[i]->transfer_dma);
1219 		if (!buffer) {
1220 			snd_usbmidi_in_endpoint_delete(ep);
1221 			return -ENOMEM;
1222 		}
1223 		if (ep_info->in_interval)
1224 			usb_fill_int_urb(ep->urbs[i], umidi->dev,
1225 					 pipe, buffer, length,
1226 					 snd_usbmidi_in_urb_complete,
1227 					 ep, ep_info->in_interval);
1228 		else
1229 			usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1230 					  pipe, buffer, length,
1231 					  snd_usbmidi_in_urb_complete, ep);
1232 		ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1233 	}
1234 
1235 	rep->in = ep;
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Frees an output endpoint.
1241  * May be called when ep hasn't been initialized completely.
1242  */
1243 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1244 {
1245 	unsigned int i;
1246 
1247 	for (i = 0; i < OUTPUT_URBS; ++i)
1248 		if (ep->urbs[i].urb) {
1249 			free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1250 					    ep->max_transfer);
1251 			ep->urbs[i].urb = NULL;
1252 		}
1253 }
1254 
1255 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1256 {
1257 	snd_usbmidi_out_endpoint_clear(ep);
1258 	kfree(ep);
1259 }
1260 
1261 /*
1262  * Creates an output endpoint, and initializes output ports.
1263  */
1264 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1265 					   struct snd_usb_midi_endpoint_info* ep_info,
1266 					   struct snd_usb_midi_endpoint* rep)
1267 {
1268 	struct snd_usb_midi_out_endpoint* ep;
1269 	unsigned int i;
1270 	unsigned int pipe;
1271 	void* buffer;
1272 
1273 	rep->out = NULL;
1274 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1275 	if (!ep)
1276 		return -ENOMEM;
1277 	ep->umidi = umidi;
1278 
1279 	for (i = 0; i < OUTPUT_URBS; ++i) {
1280 		ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1281 		if (!ep->urbs[i].urb) {
1282 			snd_usbmidi_out_endpoint_delete(ep);
1283 			return -ENOMEM;
1284 		}
1285 		ep->urbs[i].ep = ep;
1286 	}
1287 	if (ep_info->out_interval)
1288 		pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1289 	else
1290 		pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1291 	switch (umidi->usb_id) {
1292 	default:
1293 		ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1294 		break;
1295 		/*
1296 		 * Various chips declare a packet size larger than 4 bytes, but
1297 		 * do not actually work with larger packets:
1298 		 */
1299 	case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1300 	case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1301 	case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1302 	case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1303 	case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1304 	case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1305 		ep->max_transfer = 4;
1306 		break;
1307 		/*
1308 		 * Some devices only work with 9 bytes packet size:
1309 		 */
1310 	case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1311 	case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1312 		ep->max_transfer = 9;
1313 		break;
1314 	}
1315 	for (i = 0; i < OUTPUT_URBS; ++i) {
1316 		buffer = usb_alloc_coherent(umidi->dev,
1317 					    ep->max_transfer, GFP_KERNEL,
1318 					    &ep->urbs[i].urb->transfer_dma);
1319 		if (!buffer) {
1320 			snd_usbmidi_out_endpoint_delete(ep);
1321 			return -ENOMEM;
1322 		}
1323 		if (ep_info->out_interval)
1324 			usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1325 					 pipe, buffer, ep->max_transfer,
1326 					 snd_usbmidi_out_urb_complete,
1327 					 &ep->urbs[i], ep_info->out_interval);
1328 		else
1329 			usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1330 					  pipe, buffer, ep->max_transfer,
1331 					  snd_usbmidi_out_urb_complete,
1332 					  &ep->urbs[i]);
1333 		ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1334 	}
1335 
1336 	spin_lock_init(&ep->buffer_lock);
1337 	tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1338 	init_waitqueue_head(&ep->drain_wait);
1339 
1340 	for (i = 0; i < 0x10; ++i)
1341 		if (ep_info->out_cables & (1 << i)) {
1342 			ep->ports[i].ep = ep;
1343 			ep->ports[i].cable = i << 4;
1344 		}
1345 
1346 	if (umidi->usb_protocol_ops->init_out_endpoint)
1347 		umidi->usb_protocol_ops->init_out_endpoint(ep);
1348 
1349 	rep->out = ep;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Frees everything.
1355  */
1356 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1361 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1362 		if (ep->out)
1363 			snd_usbmidi_out_endpoint_delete(ep->out);
1364 		if (ep->in)
1365 			snd_usbmidi_in_endpoint_delete(ep->in);
1366 	}
1367 	mutex_destroy(&umidi->mutex);
1368 	kfree(umidi);
1369 }
1370 
1371 /*
1372  * Unlinks all URBs (must be done before the usb_device is deleted).
1373  */
1374 void snd_usbmidi_disconnect(struct list_head* p)
1375 {
1376 	struct snd_usb_midi* umidi;
1377 	unsigned int i, j;
1378 
1379 	umidi = list_entry(p, struct snd_usb_midi, list);
1380 	/*
1381 	 * an URB's completion handler may start the timer and
1382 	 * a timer may submit an URB. To reliably break the cycle
1383 	 * a flag under lock must be used
1384 	 */
1385 	spin_lock_irq(&umidi->disc_lock);
1386 	umidi->disconnected = 1;
1387 	spin_unlock_irq(&umidi->disc_lock);
1388 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1389 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1390 		if (ep->out)
1391 			tasklet_kill(&ep->out->tasklet);
1392 		if (ep->out) {
1393 			for (j = 0; j < OUTPUT_URBS; ++j)
1394 				usb_kill_urb(ep->out->urbs[j].urb);
1395 			if (umidi->usb_protocol_ops->finish_out_endpoint)
1396 				umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1397 			ep->out->active_urbs = 0;
1398 			if (ep->out->drain_urbs) {
1399 				ep->out->drain_urbs = 0;
1400 				wake_up(&ep->out->drain_wait);
1401 			}
1402 		}
1403 		if (ep->in)
1404 			for (j = 0; j < INPUT_URBS; ++j)
1405 				usb_kill_urb(ep->in->urbs[j]);
1406 		/* free endpoints here; later call can result in Oops */
1407 		if (ep->out)
1408 			snd_usbmidi_out_endpoint_clear(ep->out);
1409 		if (ep->in) {
1410 			snd_usbmidi_in_endpoint_delete(ep->in);
1411 			ep->in = NULL;
1412 		}
1413 	}
1414 	del_timer_sync(&umidi->error_timer);
1415 }
1416 
1417 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1418 {
1419 	struct snd_usb_midi* umidi = rmidi->private_data;
1420 	snd_usbmidi_free(umidi);
1421 }
1422 
1423 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1424 								int stream, int number)
1425 {
1426 	struct list_head* list;
1427 
1428 	list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1429 		struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1430 		if (substream->number == number)
1431 			return substream;
1432 	}
1433 	return NULL;
1434 }
1435 
1436 /*
1437  * This list specifies names for ports that do not fit into the standard
1438  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1439  * such as internal control or synthesizer ports.
1440  */
1441 static struct port_info {
1442 	u32 id;
1443 	short int port;
1444 	short int voices;
1445 	const char *name;
1446 	unsigned int seq_flags;
1447 } snd_usbmidi_port_info[] = {
1448 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1449 	{ .id = USB_ID(vendor, product), \
1450 	  .port = num, .voices = voices_, \
1451 	  .name = name_, .seq_flags = flags }
1452 #define EXTERNAL_PORT(vendor, product, num, name) \
1453 	PORT_INFO(vendor, product, num, name, 0, \
1454 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1455 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1456 		  SNDRV_SEQ_PORT_TYPE_PORT)
1457 #define CONTROL_PORT(vendor, product, num, name) \
1458 	PORT_INFO(vendor, product, num, name, 0, \
1459 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1460 		  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1461 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1462 	PORT_INFO(vendor, product, num, name, voices, \
1463 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1464 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1465 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1466 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1467 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1468 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1469 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1470 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1471 	PORT_INFO(vendor, product, num, name, voices, \
1472 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1473 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1474 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1475 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1476 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1477 		  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1478 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1479 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1480 	/* Roland UA-100 */
1481 	CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1482 	/* Roland SC-8850 */
1483 	SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1484 	SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1485 	SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1486 	SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1487 	EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1488 	EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1489 	/* Roland U-8 */
1490 	EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1491 	CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1492 	/* Roland SC-8820 */
1493 	SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1494 	SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1495 	EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1496 	/* Roland SK-500 */
1497 	SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1498 	SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1499 	EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1500 	/* Roland SC-D70 */
1501 	SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1502 	SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1503 	EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1504 	/* Edirol UM-880 */
1505 	CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1506 	/* Edirol SD-90 */
1507 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1508 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1509 	EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1510 	EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1511 	/* Edirol UM-550 */
1512 	CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1513 	/* Edirol SD-20 */
1514 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1515 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1516 	EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1517 	/* Edirol SD-80 */
1518 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1519 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1520 	EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1521 	EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1522 	/* Edirol UA-700 */
1523 	EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1524 	CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1525 	/* Roland VariOS */
1526 	EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1527 	EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1528 	EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1529 	/* Edirol PCR */
1530 	EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1531 	EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1532 	EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1533 	/* BOSS GS-10 */
1534 	EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1535 	CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1536 	/* Edirol UA-1000 */
1537 	EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1538 	CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1539 	/* Edirol UR-80 */
1540 	EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1541 	EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1542 	EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1543 	/* Edirol PCR-A */
1544 	EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1545 	EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1546 	EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1547 	/* Edirol UM-3EX */
1548 	CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1549 	/* M-Audio MidiSport 8x8 */
1550 	CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1551 	CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1552 	/* MOTU Fastlane */
1553 	EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1554 	EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1555 	/* Emagic Unitor8/AMT8/MT4 */
1556 	EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1557 	EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1558 	EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1559 	/* Akai MPD16 */
1560 	CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1561 	PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1562 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1563 		SNDRV_SEQ_PORT_TYPE_HARDWARE),
1564 	/* Access Music Virus TI */
1565 	EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1566 	PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1567 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1568 		SNDRV_SEQ_PORT_TYPE_HARDWARE |
1569 		SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1570 };
1571 
1572 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1573 {
1574 	int i;
1575 
1576 	for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1577 		if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1578 		    snd_usbmidi_port_info[i].port == number)
1579 			return &snd_usbmidi_port_info[i];
1580 	}
1581 	return NULL;
1582 }
1583 
1584 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1585 				      struct snd_seq_port_info *seq_port_info)
1586 {
1587 	struct snd_usb_midi *umidi = rmidi->private_data;
1588 	struct port_info *port_info;
1589 
1590 	/* TODO: read port flags from descriptors */
1591 	port_info = find_port_info(umidi, number);
1592 	if (port_info) {
1593 		seq_port_info->type = port_info->seq_flags;
1594 		seq_port_info->midi_voices = port_info->voices;
1595 	}
1596 }
1597 
1598 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1599 				       int stream, int number,
1600 				       struct snd_rawmidi_substream ** rsubstream)
1601 {
1602 	struct port_info *port_info;
1603 	const char *name_format;
1604 
1605 	struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1606 	if (!substream) {
1607 		snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1608 		return;
1609 	}
1610 
1611 	/* TODO: read port name from jack descriptor */
1612 	port_info = find_port_info(umidi, number);
1613 	name_format = port_info ? port_info->name : "%s MIDI %d";
1614 	snprintf(substream->name, sizeof(substream->name),
1615 		 name_format, umidi->card->shortname, number + 1);
1616 
1617 	*rsubstream = substream;
1618 }
1619 
1620 /*
1621  * Creates the endpoints and their ports.
1622  */
1623 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1624 					struct snd_usb_midi_endpoint_info* endpoints)
1625 {
1626 	int i, j, err;
1627 	int out_ports = 0, in_ports = 0;
1628 
1629 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1630 		if (endpoints[i].out_cables) {
1631 			err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1632 							      &umidi->endpoints[i]);
1633 			if (err < 0)
1634 				return err;
1635 		}
1636 		if (endpoints[i].in_cables) {
1637 			err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1638 							     &umidi->endpoints[i]);
1639 			if (err < 0)
1640 				return err;
1641 		}
1642 
1643 		for (j = 0; j < 0x10; ++j) {
1644 			if (endpoints[i].out_cables & (1 << j)) {
1645 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1646 							   &umidi->endpoints[i].out->ports[j].substream);
1647 				++out_ports;
1648 			}
1649 			if (endpoints[i].in_cables & (1 << j)) {
1650 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1651 							   &umidi->endpoints[i].in->ports[j].substream);
1652 				++in_ports;
1653 			}
1654 		}
1655 	}
1656 	snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1657 		    out_ports, in_ports);
1658 	return 0;
1659 }
1660 
1661 /*
1662  * Returns MIDIStreaming device capabilities.
1663  */
1664 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1665 			   	   struct snd_usb_midi_endpoint_info* endpoints)
1666 {
1667 	struct usb_interface* intf;
1668 	struct usb_host_interface *hostif;
1669 	struct usb_interface_descriptor* intfd;
1670 	struct usb_ms_header_descriptor* ms_header;
1671 	struct usb_host_endpoint *hostep;
1672 	struct usb_endpoint_descriptor* ep;
1673 	struct usb_ms_endpoint_descriptor* ms_ep;
1674 	int i, epidx;
1675 
1676 	intf = umidi->iface;
1677 	if (!intf)
1678 		return -ENXIO;
1679 	hostif = &intf->altsetting[0];
1680 	intfd = get_iface_desc(hostif);
1681 	ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1682 	if (hostif->extralen >= 7 &&
1683 	    ms_header->bLength >= 7 &&
1684 	    ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1685 	    ms_header->bDescriptorSubtype == UAC_HEADER)
1686 		snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1687 			    ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1688 	else
1689 		snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1690 
1691 	epidx = 0;
1692 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1693 		hostep = &hostif->endpoint[i];
1694 		ep = get_ep_desc(hostep);
1695 		if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1696 			continue;
1697 		ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1698 		if (hostep->extralen < 4 ||
1699 		    ms_ep->bLength < 4 ||
1700 		    ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1701 		    ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1702 			continue;
1703 		if (usb_endpoint_dir_out(ep)) {
1704 			if (endpoints[epidx].out_ep) {
1705 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1706 					snd_printk(KERN_WARNING "too many endpoints\n");
1707 					break;
1708 				}
1709 			}
1710 			endpoints[epidx].out_ep = usb_endpoint_num(ep);
1711 			if (usb_endpoint_xfer_int(ep))
1712 				endpoints[epidx].out_interval = ep->bInterval;
1713 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1714 				/*
1715 				 * Low speed bulk transfers don't exist, so
1716 				 * force interrupt transfers for devices like
1717 				 * ESI MIDI Mate that try to use them anyway.
1718 				 */
1719 				endpoints[epidx].out_interval = 1;
1720 			endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1721 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1722 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1723 		} else {
1724 			if (endpoints[epidx].in_ep) {
1725 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1726 					snd_printk(KERN_WARNING "too many endpoints\n");
1727 					break;
1728 				}
1729 			}
1730 			endpoints[epidx].in_ep = usb_endpoint_num(ep);
1731 			if (usb_endpoint_xfer_int(ep))
1732 				endpoints[epidx].in_interval = ep->bInterval;
1733 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1734 				endpoints[epidx].in_interval = 1;
1735 			endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1736 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1737 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1738 		}
1739 	}
1740 	return 0;
1741 }
1742 
1743 static int roland_load_info(struct snd_kcontrol *kcontrol,
1744 			    struct snd_ctl_elem_info *info)
1745 {
1746 	static const char *const names[] = { "High Load", "Light Load" };
1747 
1748 	return snd_ctl_enum_info(info, 1, 2, names);
1749 }
1750 
1751 static int roland_load_get(struct snd_kcontrol *kcontrol,
1752 			   struct snd_ctl_elem_value *value)
1753 {
1754 	value->value.enumerated.item[0] = kcontrol->private_value;
1755 	return 0;
1756 }
1757 
1758 static int roland_load_put(struct snd_kcontrol *kcontrol,
1759 			   struct snd_ctl_elem_value *value)
1760 {
1761 	struct snd_usb_midi* umidi = kcontrol->private_data;
1762 	int changed;
1763 
1764 	if (value->value.enumerated.item[0] > 1)
1765 		return -EINVAL;
1766 	mutex_lock(&umidi->mutex);
1767 	changed = value->value.enumerated.item[0] != kcontrol->private_value;
1768 	if (changed)
1769 		kcontrol->private_value = value->value.enumerated.item[0];
1770 	mutex_unlock(&umidi->mutex);
1771 	return changed;
1772 }
1773 
1774 static struct snd_kcontrol_new roland_load_ctl = {
1775 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1776 	.name = "MIDI Input Mode",
1777 	.info = roland_load_info,
1778 	.get = roland_load_get,
1779 	.put = roland_load_put,
1780 	.private_value = 1,
1781 };
1782 
1783 /*
1784  * On Roland devices, use the second alternate setting to be able to use
1785  * the interrupt input endpoint.
1786  */
1787 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1788 {
1789 	struct usb_interface* intf;
1790 	struct usb_host_interface *hostif;
1791 	struct usb_interface_descriptor* intfd;
1792 
1793 	intf = umidi->iface;
1794 	if (!intf || intf->num_altsetting != 2)
1795 		return;
1796 
1797 	hostif = &intf->altsetting[1];
1798 	intfd = get_iface_desc(hostif);
1799 	if (intfd->bNumEndpoints != 2 ||
1800 	    (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1801 	    (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1802 		return;
1803 
1804 	snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1805 		    intfd->bAlternateSetting);
1806 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1807 			  intfd->bAlternateSetting);
1808 
1809 	umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1810 	if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1811 		umidi->roland_load_ctl = NULL;
1812 }
1813 
1814 /*
1815  * Try to find any usable endpoints in the interface.
1816  */
1817 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1818 					struct snd_usb_midi_endpoint_info* endpoint,
1819 					int max_endpoints)
1820 {
1821 	struct usb_interface* intf;
1822 	struct usb_host_interface *hostif;
1823 	struct usb_interface_descriptor* intfd;
1824 	struct usb_endpoint_descriptor* epd;
1825 	int i, out_eps = 0, in_eps = 0;
1826 
1827 	if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1828 		snd_usbmidi_switch_roland_altsetting(umidi);
1829 
1830 	if (endpoint[0].out_ep || endpoint[0].in_ep)
1831 		return 0;
1832 
1833 	intf = umidi->iface;
1834 	if (!intf || intf->num_altsetting < 1)
1835 		return -ENOENT;
1836 	hostif = intf->cur_altsetting;
1837 	intfd = get_iface_desc(hostif);
1838 
1839 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1840 		epd = get_endpoint(hostif, i);
1841 		if (!usb_endpoint_xfer_bulk(epd) &&
1842 		    !usb_endpoint_xfer_int(epd))
1843 			continue;
1844 		if (out_eps < max_endpoints &&
1845 		    usb_endpoint_dir_out(epd)) {
1846 			endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1847 			if (usb_endpoint_xfer_int(epd))
1848 				endpoint[out_eps].out_interval = epd->bInterval;
1849 			++out_eps;
1850 		}
1851 		if (in_eps < max_endpoints &&
1852 		    usb_endpoint_dir_in(epd)) {
1853 			endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1854 			if (usb_endpoint_xfer_int(epd))
1855 				endpoint[in_eps].in_interval = epd->bInterval;
1856 			++in_eps;
1857 		}
1858 	}
1859 	return (out_eps || in_eps) ? 0 : -ENOENT;
1860 }
1861 
1862 /*
1863  * Detects the endpoints for one-port-per-endpoint protocols.
1864  */
1865 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1866 						 struct snd_usb_midi_endpoint_info* endpoints)
1867 {
1868 	int err, i;
1869 
1870 	err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1871 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1872 		if (endpoints[i].out_ep)
1873 			endpoints[i].out_cables = 0x0001;
1874 		if (endpoints[i].in_ep)
1875 			endpoints[i].in_cables = 0x0001;
1876 	}
1877 	return err;
1878 }
1879 
1880 /*
1881  * Detects the endpoints and ports of Yamaha devices.
1882  */
1883 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1884 				     struct snd_usb_midi_endpoint_info* endpoint)
1885 {
1886 	struct usb_interface* intf;
1887 	struct usb_host_interface *hostif;
1888 	struct usb_interface_descriptor* intfd;
1889 	uint8_t* cs_desc;
1890 
1891 	intf = umidi->iface;
1892 	if (!intf)
1893 		return -ENOENT;
1894 	hostif = intf->altsetting;
1895 	intfd = get_iface_desc(hostif);
1896 	if (intfd->bNumEndpoints < 1)
1897 		return -ENOENT;
1898 
1899 	/*
1900 	 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1901 	 * necessarily with any useful contents.  So simply count 'em.
1902 	 */
1903 	for (cs_desc = hostif->extra;
1904 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1905 	     cs_desc += cs_desc[0]) {
1906 		if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1907 			if (cs_desc[2] == UAC_MIDI_IN_JACK)
1908 				endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1909 			else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1910 				endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1911 		}
1912 	}
1913 	if (!endpoint->in_cables && !endpoint->out_cables)
1914 		return -ENOENT;
1915 
1916 	return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1917 }
1918 
1919 /*
1920  * Creates the endpoints and their ports for Midiman devices.
1921  */
1922 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1923 						struct snd_usb_midi_endpoint_info* endpoint)
1924 {
1925 	struct snd_usb_midi_endpoint_info ep_info;
1926 	struct usb_interface* intf;
1927 	struct usb_host_interface *hostif;
1928 	struct usb_interface_descriptor* intfd;
1929 	struct usb_endpoint_descriptor* epd;
1930 	int cable, err;
1931 
1932 	intf = umidi->iface;
1933 	if (!intf)
1934 		return -ENOENT;
1935 	hostif = intf->altsetting;
1936 	intfd = get_iface_desc(hostif);
1937 	/*
1938 	 * The various MidiSport devices have more or less random endpoint
1939 	 * numbers, so we have to identify the endpoints by their index in
1940 	 * the descriptor array, like the driver for that other OS does.
1941 	 *
1942 	 * There is one interrupt input endpoint for all input ports, one
1943 	 * bulk output endpoint for even-numbered ports, and one for odd-
1944 	 * numbered ports.  Both bulk output endpoints have corresponding
1945 	 * input bulk endpoints (at indices 1 and 3) which aren't used.
1946 	 */
1947 	if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1948 		snd_printdd(KERN_ERR "not enough endpoints\n");
1949 		return -ENOENT;
1950 	}
1951 
1952 	epd = get_endpoint(hostif, 0);
1953 	if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1954 		snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1955 		return -ENXIO;
1956 	}
1957 	epd = get_endpoint(hostif, 2);
1958 	if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1959 		snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1960 		return -ENXIO;
1961 	}
1962 	if (endpoint->out_cables > 0x0001) {
1963 		epd = get_endpoint(hostif, 4);
1964 		if (!usb_endpoint_dir_out(epd) ||
1965 		    !usb_endpoint_xfer_bulk(epd)) {
1966 			snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1967 			return -ENXIO;
1968 		}
1969 	}
1970 
1971 	ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1972 	ep_info.out_interval = 0;
1973 	ep_info.out_cables = endpoint->out_cables & 0x5555;
1974 	err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1975 	if (err < 0)
1976 		return err;
1977 
1978 	ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1979 	ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1980 	ep_info.in_cables = endpoint->in_cables;
1981 	err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1982 	if (err < 0)
1983 		return err;
1984 
1985 	if (endpoint->out_cables > 0x0001) {
1986 		ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1987 		ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1988 		err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1989 		if (err < 0)
1990 			return err;
1991 	}
1992 
1993 	for (cable = 0; cable < 0x10; ++cable) {
1994 		if (endpoint->out_cables & (1 << cable))
1995 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1996 						   &umidi->endpoints[cable & 1].out->ports[cable].substream);
1997 		if (endpoint->in_cables & (1 << cable))
1998 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1999 						   &umidi->endpoints[0].in->ports[cable].substream);
2000 	}
2001 	return 0;
2002 }
2003 
2004 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2005 	.get_port_info = snd_usbmidi_get_port_info,
2006 };
2007 
2008 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2009 				      int out_ports, int in_ports)
2010 {
2011 	struct snd_rawmidi *rmidi;
2012 	int err;
2013 
2014 	err = snd_rawmidi_new(umidi->card, "USB MIDI",
2015 			      umidi->next_midi_device++,
2016 			      out_ports, in_ports, &rmidi);
2017 	if (err < 0)
2018 		return err;
2019 	strcpy(rmidi->name, umidi->card->shortname);
2020 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2021 			    SNDRV_RAWMIDI_INFO_INPUT |
2022 			    SNDRV_RAWMIDI_INFO_DUPLEX;
2023 	rmidi->ops = &snd_usbmidi_ops;
2024 	rmidi->private_data = umidi;
2025 	rmidi->private_free = snd_usbmidi_rawmidi_free;
2026 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2027 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2028 
2029 	umidi->rmidi = rmidi;
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Temporarily stop input.
2035  */
2036 void snd_usbmidi_input_stop(struct list_head* p)
2037 {
2038 	struct snd_usb_midi* umidi;
2039 	unsigned int i, j;
2040 
2041 	umidi = list_entry(p, struct snd_usb_midi, list);
2042 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2043 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2044 		if (ep->in)
2045 			for (j = 0; j < INPUT_URBS; ++j)
2046 				usb_kill_urb(ep->in->urbs[j]);
2047 	}
2048 }
2049 
2050 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2051 {
2052 	unsigned int i;
2053 
2054 	if (!ep)
2055 		return;
2056 	for (i = 0; i < INPUT_URBS; ++i) {
2057 		struct urb* urb = ep->urbs[i];
2058 		urb->dev = ep->umidi->dev;
2059 		snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2060 	}
2061 }
2062 
2063 /*
2064  * Resume input after a call to snd_usbmidi_input_stop().
2065  */
2066 void snd_usbmidi_input_start(struct list_head* p)
2067 {
2068 	struct snd_usb_midi* umidi;
2069 	int i;
2070 
2071 	umidi = list_entry(p, struct snd_usb_midi, list);
2072 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2073 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2074 }
2075 
2076 /*
2077  * Creates and registers everything needed for a MIDI streaming interface.
2078  */
2079 int snd_usbmidi_create(struct snd_card *card,
2080 		       struct usb_interface* iface,
2081 		       struct list_head *midi_list,
2082 		       const struct snd_usb_audio_quirk* quirk)
2083 {
2084 	struct snd_usb_midi* umidi;
2085 	struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2086 	int out_ports, in_ports;
2087 	int i, err;
2088 
2089 	umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2090 	if (!umidi)
2091 		return -ENOMEM;
2092 	umidi->dev = interface_to_usbdev(iface);
2093 	umidi->card = card;
2094 	umidi->iface = iface;
2095 	umidi->quirk = quirk;
2096 	umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2097 	init_timer(&umidi->error_timer);
2098 	spin_lock_init(&umidi->disc_lock);
2099 	mutex_init(&umidi->mutex);
2100 	umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2101 			       le16_to_cpu(umidi->dev->descriptor.idProduct));
2102 	umidi->error_timer.function = snd_usbmidi_error_timer;
2103 	umidi->error_timer.data = (unsigned long)umidi;
2104 
2105 	/* detect the endpoint(s) to use */
2106 	memset(endpoints, 0, sizeof(endpoints));
2107 	switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2108 	case QUIRK_MIDI_STANDARD_INTERFACE:
2109 		err = snd_usbmidi_get_ms_info(umidi, endpoints);
2110 		if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2111 			umidi->usb_protocol_ops =
2112 				&snd_usbmidi_maudio_broken_running_status_ops;
2113 		break;
2114 	case QUIRK_MIDI_US122L:
2115 		umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2116 		/* fall through */
2117 	case QUIRK_MIDI_FIXED_ENDPOINT:
2118 		memcpy(&endpoints[0], quirk->data,
2119 		       sizeof(struct snd_usb_midi_endpoint_info));
2120 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2121 		break;
2122 	case QUIRK_MIDI_YAMAHA:
2123 		err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2124 		break;
2125 	case QUIRK_MIDI_MIDIMAN:
2126 		umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2127 		memcpy(&endpoints[0], quirk->data,
2128 		       sizeof(struct snd_usb_midi_endpoint_info));
2129 		err = 0;
2130 		break;
2131 	case QUIRK_MIDI_NOVATION:
2132 		umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2133 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2134 		break;
2135 	case QUIRK_MIDI_RAW_BYTES:
2136 		umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2137 		/*
2138 		 * Interface 1 contains isochronous endpoints, but with the same
2139 		 * numbers as in interface 0.  Since it is interface 1 that the
2140 		 * USB core has most recently seen, these descriptors are now
2141 		 * associated with the endpoint numbers.  This will foul up our
2142 		 * attempts to submit bulk/interrupt URBs to the endpoints in
2143 		 * interface 0, so we have to make sure that the USB core looks
2144 		 * again at interface 0 by calling usb_set_interface() on it.
2145 		 */
2146 		if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2147 			usb_set_interface(umidi->dev, 0, 0);
2148 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2149 		break;
2150 	case QUIRK_MIDI_EMAGIC:
2151 		umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2152 		memcpy(&endpoints[0], quirk->data,
2153 		       sizeof(struct snd_usb_midi_endpoint_info));
2154 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2155 		break;
2156 	case QUIRK_MIDI_CME:
2157 		umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2158 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2159 		break;
2160 	case QUIRK_MIDI_AKAI:
2161 		umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2162 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2163 		/* endpoint 1 is input-only */
2164 		endpoints[1].out_cables = 0;
2165 		break;
2166 	default:
2167 		snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2168 		err = -ENXIO;
2169 		break;
2170 	}
2171 	if (err < 0) {
2172 		kfree(umidi);
2173 		return err;
2174 	}
2175 
2176 	/* create rawmidi device */
2177 	out_ports = 0;
2178 	in_ports = 0;
2179 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2180 		out_ports += hweight16(endpoints[i].out_cables);
2181 		in_ports += hweight16(endpoints[i].in_cables);
2182 	}
2183 	err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2184 	if (err < 0) {
2185 		kfree(umidi);
2186 		return err;
2187 	}
2188 
2189 	/* create endpoint/port structures */
2190 	if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2191 		err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2192 	else
2193 		err = snd_usbmidi_create_endpoints(umidi, endpoints);
2194 	if (err < 0) {
2195 		snd_usbmidi_free(umidi);
2196 		return err;
2197 	}
2198 
2199 	list_add_tail(&umidi->list, midi_list);
2200 
2201 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2202 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2203 	return 0;
2204 }
2205 
2206 EXPORT_SYMBOL(snd_usbmidi_create);
2207 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2208 EXPORT_SYMBOL(snd_usbmidi_input_start);
2209 EXPORT_SYMBOL(snd_usbmidi_disconnect);
2210