xref: /linux/sound/usb/midi.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 #include <linux/usb/midi.h>
51 #include <linux/module.h>
52 
53 #include <sound/core.h>
54 #include <sound/control.h>
55 #include <sound/rawmidi.h>
56 #include <sound/asequencer.h>
57 #include "usbaudio.h"
58 #include "midi.h"
59 #include "power.h"
60 #include "helper.h"
61 
62 /*
63  * define this to log all USB packets
64  */
65 /* #define DUMP_PACKETS */
66 
67 /*
68  * how long to wait after some USB errors, so that hub_wq can disconnect() us
69  * without too many spurious errors
70  */
71 #define ERROR_DELAY_JIFFIES (HZ / 10)
72 
73 #define OUTPUT_URBS 7
74 #define INPUT_URBS 7
75 
76 
77 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
78 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
79 MODULE_LICENSE("Dual BSD/GPL");
80 
81 struct snd_usb_midi_in_endpoint;
82 struct snd_usb_midi_out_endpoint;
83 struct snd_usb_midi_endpoint;
84 
85 struct usb_protocol_ops {
86 	void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
87 	void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
88 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
89 	void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *);
90 	void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *);
91 };
92 
93 struct snd_usb_midi {
94 	struct usb_device *dev;
95 	struct snd_card *card;
96 	struct usb_interface *iface;
97 	const struct snd_usb_audio_quirk *quirk;
98 	struct snd_rawmidi *rmidi;
99 	const struct usb_protocol_ops *usb_protocol_ops;
100 	struct list_head list;
101 	struct timer_list error_timer;
102 	spinlock_t disc_lock;
103 	struct rw_semaphore disc_rwsem;
104 	struct mutex mutex;
105 	u32 usb_id;
106 	int next_midi_device;
107 
108 	struct snd_usb_midi_endpoint {
109 		struct snd_usb_midi_out_endpoint *out;
110 		struct snd_usb_midi_in_endpoint *in;
111 	} endpoints[MIDI_MAX_ENDPOINTS];
112 	unsigned long input_triggered;
113 	unsigned int opened[2];
114 	unsigned char disconnected;
115 	unsigned char input_running;
116 
117 	struct snd_kcontrol *roland_load_ctl;
118 };
119 
120 struct snd_usb_midi_out_endpoint {
121 	struct snd_usb_midi *umidi;
122 	struct out_urb_context {
123 		struct urb *urb;
124 		struct snd_usb_midi_out_endpoint *ep;
125 	} urbs[OUTPUT_URBS];
126 	unsigned int active_urbs;
127 	unsigned int drain_urbs;
128 	int max_transfer;		/* size of urb buffer */
129 	struct work_struct work;
130 	unsigned int next_urb;
131 	spinlock_t buffer_lock;
132 
133 	struct usbmidi_out_port {
134 		struct snd_usb_midi_out_endpoint *ep;
135 		struct snd_rawmidi_substream *substream;
136 		int active;
137 		uint8_t cable;		/* cable number << 4 */
138 		uint8_t state;
139 #define STATE_UNKNOWN	0
140 #define STATE_1PARAM	1
141 #define STATE_2PARAM_1	2
142 #define STATE_2PARAM_2	3
143 #define STATE_SYSEX_0	4
144 #define STATE_SYSEX_1	5
145 #define STATE_SYSEX_2	6
146 		uint8_t data[2];
147 	} ports[0x10];
148 	int current_port;
149 
150 	wait_queue_head_t drain_wait;
151 };
152 
153 struct snd_usb_midi_in_endpoint {
154 	struct snd_usb_midi *umidi;
155 	struct urb *urbs[INPUT_URBS];
156 	struct usbmidi_in_port {
157 		struct snd_rawmidi_substream *substream;
158 		u8 running_status_length;
159 	} ports[0x10];
160 	u8 seen_f5;
161 	bool in_sysex;
162 	u8 last_cin;
163 	u8 error_resubmit;
164 	int current_port;
165 };
166 
167 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep);
168 
169 static const uint8_t snd_usbmidi_cin_length[] = {
170 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
171 };
172 
173 /*
174  * Submits the URB, with error handling.
175  */
176 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags)
177 {
178 	int err = usb_submit_urb(urb, flags);
179 	if (err < 0 && err != -ENODEV)
180 		dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err);
181 	return err;
182 }
183 
184 /*
185  * Error handling for URB completion functions.
186  */
187 static int snd_usbmidi_urb_error(const struct urb *urb)
188 {
189 	switch (urb->status) {
190 	/* manually unlinked, or device gone */
191 	case -ENOENT:
192 	case -ECONNRESET:
193 	case -ESHUTDOWN:
194 	case -ENODEV:
195 		return -ENODEV;
196 	/* errors that might occur during unplugging */
197 	case -EPROTO:
198 	case -ETIME:
199 	case -EILSEQ:
200 		return -EIO;
201 	default:
202 		dev_err(&urb->dev->dev, "urb status %d\n", urb->status);
203 		return 0; /* continue */
204 	}
205 }
206 
207 /*
208  * Receives a chunk of MIDI data.
209  */
210 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep,
211 				   int portidx, uint8_t *data, int length)
212 {
213 	struct usbmidi_in_port *port = &ep->ports[portidx];
214 
215 	if (!port->substream) {
216 		dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx);
217 		return;
218 	}
219 	if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
220 		return;
221 	snd_rawmidi_receive(port->substream, data, length);
222 }
223 
224 #ifdef DUMP_PACKETS
225 static void dump_urb(const char *type, const u8 *data, int length)
226 {
227 	snd_printk(KERN_DEBUG "%s packet: [", type);
228 	for (; length > 0; ++data, --length)
229 		printk(KERN_CONT " %02x", *data);
230 	printk(KERN_CONT " ]\n");
231 }
232 #else
233 #define dump_urb(type, data, length) /* nothing */
234 #endif
235 
236 /*
237  * Processes the data read from the device.
238  */
239 static void snd_usbmidi_in_urb_complete(struct urb *urb)
240 {
241 	struct snd_usb_midi_in_endpoint *ep = urb->context;
242 
243 	if (urb->status == 0) {
244 		dump_urb("received", urb->transfer_buffer, urb->actual_length);
245 		ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
246 						   urb->actual_length);
247 	} else {
248 		int err = snd_usbmidi_urb_error(urb);
249 		if (err < 0) {
250 			if (err != -ENODEV) {
251 				ep->error_resubmit = 1;
252 				mod_timer(&ep->umidi->error_timer,
253 					  jiffies + ERROR_DELAY_JIFFIES);
254 			}
255 			return;
256 		}
257 	}
258 
259 	urb->dev = ep->umidi->dev;
260 	snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
261 }
262 
263 static void snd_usbmidi_out_urb_complete(struct urb *urb)
264 {
265 	struct out_urb_context *context = urb->context;
266 	struct snd_usb_midi_out_endpoint *ep = context->ep;
267 	unsigned int urb_index;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&ep->buffer_lock, flags);
271 	urb_index = context - ep->urbs;
272 	ep->active_urbs &= ~(1 << urb_index);
273 	if (unlikely(ep->drain_urbs)) {
274 		ep->drain_urbs &= ~(1 << urb_index);
275 		wake_up(&ep->drain_wait);
276 	}
277 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
278 	if (urb->status < 0) {
279 		int err = snd_usbmidi_urb_error(urb);
280 		if (err < 0) {
281 			if (err != -ENODEV)
282 				mod_timer(&ep->umidi->error_timer,
283 					  jiffies + ERROR_DELAY_JIFFIES);
284 			return;
285 		}
286 	}
287 	snd_usbmidi_do_output(ep);
288 }
289 
290 /*
291  * This is called when some data should be transferred to the device
292  * (from one or more substreams).
293  */
294 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep)
295 {
296 	unsigned int urb_index;
297 	struct urb *urb;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&ep->buffer_lock, flags);
301 	if (ep->umidi->disconnected) {
302 		spin_unlock_irqrestore(&ep->buffer_lock, flags);
303 		return;
304 	}
305 
306 	urb_index = ep->next_urb;
307 	for (;;) {
308 		if (!(ep->active_urbs & (1 << urb_index))) {
309 			urb = ep->urbs[urb_index].urb;
310 			urb->transfer_buffer_length = 0;
311 			ep->umidi->usb_protocol_ops->output(ep, urb);
312 			if (urb->transfer_buffer_length == 0)
313 				break;
314 
315 			dump_urb("sending", urb->transfer_buffer,
316 				 urb->transfer_buffer_length);
317 			urb->dev = ep->umidi->dev;
318 			if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
319 				break;
320 			ep->active_urbs |= 1 << urb_index;
321 		}
322 		if (++urb_index >= OUTPUT_URBS)
323 			urb_index = 0;
324 		if (urb_index == ep->next_urb)
325 			break;
326 	}
327 	ep->next_urb = urb_index;
328 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
329 }
330 
331 static void snd_usbmidi_out_work(struct work_struct *work)
332 {
333 	struct snd_usb_midi_out_endpoint *ep =
334 		container_of(work, struct snd_usb_midi_out_endpoint, work);
335 
336 	snd_usbmidi_do_output(ep);
337 }
338 
339 /* called after transfers had been interrupted due to some USB error */
340 static void snd_usbmidi_error_timer(struct timer_list *t)
341 {
342 	struct snd_usb_midi *umidi = from_timer(umidi, t, error_timer);
343 	unsigned int i, j;
344 
345 	spin_lock(&umidi->disc_lock);
346 	if (umidi->disconnected) {
347 		spin_unlock(&umidi->disc_lock);
348 		return;
349 	}
350 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
351 		struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
352 		if (in && in->error_resubmit) {
353 			in->error_resubmit = 0;
354 			for (j = 0; j < INPUT_URBS; ++j) {
355 				if (atomic_read(&in->urbs[j]->use_count))
356 					continue;
357 				in->urbs[j]->dev = umidi->dev;
358 				snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
359 			}
360 		}
361 		if (umidi->endpoints[i].out)
362 			snd_usbmidi_do_output(umidi->endpoints[i].out);
363 	}
364 	spin_unlock(&umidi->disc_lock);
365 }
366 
367 /* helper function to send static data that may not DMA-able */
368 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep,
369 				 const void *data, int len)
370 {
371 	int err = 0;
372 	void *buf = kmemdup(data, len, GFP_KERNEL);
373 	if (!buf)
374 		return -ENOMEM;
375 	dump_urb("sending", buf, len);
376 	if (ep->urbs[0].urb)
377 		err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
378 				   buf, len, NULL, 250);
379 	kfree(buf);
380 	return err;
381 }
382 
383 /*
384  * Standard USB MIDI protocol: see the spec.
385  * Midiman protocol: like the standard protocol, but the control byte is the
386  * fourth byte in each packet, and uses length instead of CIN.
387  */
388 
389 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep,
390 				       uint8_t *buffer, int buffer_length)
391 {
392 	int i;
393 
394 	for (i = 0; i + 3 < buffer_length; i += 4)
395 		if (buffer[i] != 0) {
396 			int cable = buffer[i] >> 4;
397 			int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
398 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
399 					       length);
400 		}
401 }
402 
403 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep,
404 				      uint8_t *buffer, int buffer_length)
405 {
406 	int i;
407 
408 	for (i = 0; i + 3 < buffer_length; i += 4)
409 		if (buffer[i + 3] != 0) {
410 			int port = buffer[i + 3] >> 4;
411 			int length = buffer[i + 3] & 3;
412 			snd_usbmidi_input_data(ep, port, &buffer[i], length);
413 		}
414 }
415 
416 /*
417  * Buggy M-Audio device: running status on input results in a packet that has
418  * the data bytes but not the status byte and that is marked with CIN 4.
419  */
420 static void snd_usbmidi_maudio_broken_running_status_input(
421 					struct snd_usb_midi_in_endpoint *ep,
422 					uint8_t *buffer, int buffer_length)
423 {
424 	int i;
425 
426 	for (i = 0; i + 3 < buffer_length; i += 4)
427 		if (buffer[i] != 0) {
428 			int cable = buffer[i] >> 4;
429 			u8 cin = buffer[i] & 0x0f;
430 			struct usbmidi_in_port *port = &ep->ports[cable];
431 			int length;
432 
433 			length = snd_usbmidi_cin_length[cin];
434 			if (cin == 0xf && buffer[i + 1] >= 0xf8)
435 				; /* realtime msg: no running status change */
436 			else if (cin >= 0x8 && cin <= 0xe)
437 				/* channel msg */
438 				port->running_status_length = length - 1;
439 			else if (cin == 0x4 &&
440 				 port->running_status_length != 0 &&
441 				 buffer[i + 1] < 0x80)
442 				/* CIN 4 that is not a SysEx */
443 				length = port->running_status_length;
444 			else
445 				/*
446 				 * All other msgs cannot begin running status.
447 				 * (A channel msg sent as two or three CIN 0xF
448 				 * packets could in theory, but this device
449 				 * doesn't use this format.)
450 				 */
451 				port->running_status_length = 0;
452 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
453 					       length);
454 		}
455 }
456 
457 /*
458  * QinHeng CH345 is buggy: every second packet inside a SysEx has not CIN 4
459  * but the previously seen CIN, but still with three data bytes.
460  */
461 static void ch345_broken_sysex_input(struct snd_usb_midi_in_endpoint *ep,
462 				     uint8_t *buffer, int buffer_length)
463 {
464 	unsigned int i, cin, length;
465 
466 	for (i = 0; i + 3 < buffer_length; i += 4) {
467 		if (buffer[i] == 0 && i > 0)
468 			break;
469 		cin = buffer[i] & 0x0f;
470 		if (ep->in_sysex &&
471 		    cin == ep->last_cin &&
472 		    (buffer[i + 1 + (cin == 0x6)] & 0x80) == 0)
473 			cin = 0x4;
474 #if 0
475 		if (buffer[i + 1] == 0x90) {
476 			/*
477 			 * Either a corrupted running status or a real note-on
478 			 * message; impossible to detect reliably.
479 			 */
480 		}
481 #endif
482 		length = snd_usbmidi_cin_length[cin];
483 		snd_usbmidi_input_data(ep, 0, &buffer[i + 1], length);
484 		ep->in_sysex = cin == 0x4;
485 		if (!ep->in_sysex)
486 			ep->last_cin = cin;
487 	}
488 }
489 
490 /*
491  * CME protocol: like the standard protocol, but SysEx commands are sent as a
492  * single USB packet preceded by a 0x0F byte.
493  */
494 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
495 				  uint8_t *buffer, int buffer_length)
496 {
497 	if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
498 		snd_usbmidi_standard_input(ep, buffer, buffer_length);
499 	else
500 		snd_usbmidi_input_data(ep, buffer[0] >> 4,
501 				       &buffer[1], buffer_length - 1);
502 }
503 
504 /*
505  * Adds one USB MIDI packet to the output buffer.
506  */
507 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0,
508 					       uint8_t p1, uint8_t p2,
509 					       uint8_t p3)
510 {
511 
512 	uint8_t *buf =
513 		(uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
514 	buf[0] = p0;
515 	buf[1] = p1;
516 	buf[2] = p2;
517 	buf[3] = p3;
518 	urb->transfer_buffer_length += 4;
519 }
520 
521 /*
522  * Adds one Midiman packet to the output buffer.
523  */
524 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0,
525 					      uint8_t p1, uint8_t p2,
526 					      uint8_t p3)
527 {
528 
529 	uint8_t *buf =
530 		(uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
531 	buf[0] = p1;
532 	buf[1] = p2;
533 	buf[2] = p3;
534 	buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
535 	urb->transfer_buffer_length += 4;
536 }
537 
538 /*
539  * Converts MIDI commands to USB MIDI packets.
540  */
541 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port,
542 				      uint8_t b, struct urb *urb)
543 {
544 	uint8_t p0 = port->cable;
545 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
546 		port->ep->umidi->usb_protocol_ops->output_packet;
547 
548 	if (b >= 0xf8) {
549 		output_packet(urb, p0 | 0x0f, b, 0, 0);
550 	} else if (b >= 0xf0) {
551 		switch (b) {
552 		case 0xf0:
553 			port->data[0] = b;
554 			port->state = STATE_SYSEX_1;
555 			break;
556 		case 0xf1:
557 		case 0xf3:
558 			port->data[0] = b;
559 			port->state = STATE_1PARAM;
560 			break;
561 		case 0xf2:
562 			port->data[0] = b;
563 			port->state = STATE_2PARAM_1;
564 			break;
565 		case 0xf4:
566 		case 0xf5:
567 			port->state = STATE_UNKNOWN;
568 			break;
569 		case 0xf6:
570 			output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
571 			port->state = STATE_UNKNOWN;
572 			break;
573 		case 0xf7:
574 			switch (port->state) {
575 			case STATE_SYSEX_0:
576 				output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
577 				break;
578 			case STATE_SYSEX_1:
579 				output_packet(urb, p0 | 0x06, port->data[0],
580 					      0xf7, 0);
581 				break;
582 			case STATE_SYSEX_2:
583 				output_packet(urb, p0 | 0x07, port->data[0],
584 					      port->data[1], 0xf7);
585 				break;
586 			}
587 			port->state = STATE_UNKNOWN;
588 			break;
589 		}
590 	} else if (b >= 0x80) {
591 		port->data[0] = b;
592 		if (b >= 0xc0 && b <= 0xdf)
593 			port->state = STATE_1PARAM;
594 		else
595 			port->state = STATE_2PARAM_1;
596 	} else { /* b < 0x80 */
597 		switch (port->state) {
598 		case STATE_1PARAM:
599 			if (port->data[0] < 0xf0) {
600 				p0 |= port->data[0] >> 4;
601 			} else {
602 				p0 |= 0x02;
603 				port->state = STATE_UNKNOWN;
604 			}
605 			output_packet(urb, p0, port->data[0], b, 0);
606 			break;
607 		case STATE_2PARAM_1:
608 			port->data[1] = b;
609 			port->state = STATE_2PARAM_2;
610 			break;
611 		case STATE_2PARAM_2:
612 			if (port->data[0] < 0xf0) {
613 				p0 |= port->data[0] >> 4;
614 				port->state = STATE_2PARAM_1;
615 			} else {
616 				p0 |= 0x03;
617 				port->state = STATE_UNKNOWN;
618 			}
619 			output_packet(urb, p0, port->data[0], port->data[1], b);
620 			break;
621 		case STATE_SYSEX_0:
622 			port->data[0] = b;
623 			port->state = STATE_SYSEX_1;
624 			break;
625 		case STATE_SYSEX_1:
626 			port->data[1] = b;
627 			port->state = STATE_SYSEX_2;
628 			break;
629 		case STATE_SYSEX_2:
630 			output_packet(urb, p0 | 0x04, port->data[0],
631 				      port->data[1], b);
632 			port->state = STATE_SYSEX_0;
633 			break;
634 		}
635 	}
636 }
637 
638 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep,
639 					struct urb *urb)
640 {
641 	int p;
642 
643 	/* FIXME: lower-numbered ports can starve higher-numbered ports */
644 	for (p = 0; p < 0x10; ++p) {
645 		struct usbmidi_out_port *port = &ep->ports[p];
646 		if (!port->active)
647 			continue;
648 		while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
649 			uint8_t b;
650 			if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
651 				port->active = 0;
652 				break;
653 			}
654 			snd_usbmidi_transmit_byte(port, b, urb);
655 		}
656 	}
657 }
658 
659 static const struct usb_protocol_ops snd_usbmidi_standard_ops = {
660 	.input = snd_usbmidi_standard_input,
661 	.output = snd_usbmidi_standard_output,
662 	.output_packet = snd_usbmidi_output_standard_packet,
663 };
664 
665 static const struct usb_protocol_ops snd_usbmidi_midiman_ops = {
666 	.input = snd_usbmidi_midiman_input,
667 	.output = snd_usbmidi_standard_output,
668 	.output_packet = snd_usbmidi_output_midiman_packet,
669 };
670 
671 static const
672 struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
673 	.input = snd_usbmidi_maudio_broken_running_status_input,
674 	.output = snd_usbmidi_standard_output,
675 	.output_packet = snd_usbmidi_output_standard_packet,
676 };
677 
678 static const struct usb_protocol_ops snd_usbmidi_cme_ops = {
679 	.input = snd_usbmidi_cme_input,
680 	.output = snd_usbmidi_standard_output,
681 	.output_packet = snd_usbmidi_output_standard_packet,
682 };
683 
684 static const struct usb_protocol_ops snd_usbmidi_ch345_broken_sysex_ops = {
685 	.input = ch345_broken_sysex_input,
686 	.output = snd_usbmidi_standard_output,
687 	.output_packet = snd_usbmidi_output_standard_packet,
688 };
689 
690 /*
691  * AKAI MPD16 protocol:
692  *
693  * For control port (endpoint 1):
694  * ==============================
695  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
696  * SysEx message (msg_len=9 bytes long).
697  *
698  * For data port (endpoint 2):
699  * ===========================
700  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
701  * MIDI message (msg_len bytes long)
702  *
703  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
704  */
705 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
706 				   uint8_t *buffer, int buffer_length)
707 {
708 	unsigned int pos = 0;
709 	unsigned int len = (unsigned int)buffer_length;
710 	while (pos < len) {
711 		unsigned int port = (buffer[pos] >> 4) - 1;
712 		unsigned int msg_len = buffer[pos] & 0x0f;
713 		pos++;
714 		if (pos + msg_len <= len && port < 2)
715 			snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
716 		pos += msg_len;
717 	}
718 }
719 
720 #define MAX_AKAI_SYSEX_LEN 9
721 
722 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
723 				    struct urb *urb)
724 {
725 	uint8_t *msg;
726 	int pos, end, count, buf_end;
727 	uint8_t tmp[MAX_AKAI_SYSEX_LEN];
728 	struct snd_rawmidi_substream *substream = ep->ports[0].substream;
729 
730 	if (!ep->ports[0].active)
731 		return;
732 
733 	msg = urb->transfer_buffer + urb->transfer_buffer_length;
734 	buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
735 
736 	/* only try adding more data when there's space for at least 1 SysEx */
737 	while (urb->transfer_buffer_length < buf_end) {
738 		count = snd_rawmidi_transmit_peek(substream,
739 						  tmp, MAX_AKAI_SYSEX_LEN);
740 		if (!count) {
741 			ep->ports[0].active = 0;
742 			return;
743 		}
744 		/* try to skip non-SysEx data */
745 		for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
746 			;
747 
748 		if (pos > 0) {
749 			snd_rawmidi_transmit_ack(substream, pos);
750 			continue;
751 		}
752 
753 		/* look for the start or end marker */
754 		for (end = 1; end < count && tmp[end] < 0xF0; end++)
755 			;
756 
757 		/* next SysEx started before the end of current one */
758 		if (end < count && tmp[end] == 0xF0) {
759 			/* it's incomplete - drop it */
760 			snd_rawmidi_transmit_ack(substream, end);
761 			continue;
762 		}
763 		/* SysEx complete */
764 		if (end < count && tmp[end] == 0xF7) {
765 			/* queue it, ack it, and get the next one */
766 			count = end + 1;
767 			msg[0] = 0x10 | count;
768 			memcpy(&msg[1], tmp, count);
769 			snd_rawmidi_transmit_ack(substream, count);
770 			urb->transfer_buffer_length += count + 1;
771 			msg += count + 1;
772 			continue;
773 		}
774 		/* less than 9 bytes and no end byte - wait for more */
775 		if (count < MAX_AKAI_SYSEX_LEN) {
776 			ep->ports[0].active = 0;
777 			return;
778 		}
779 		/* 9 bytes and no end marker in sight - malformed, skip it */
780 		snd_rawmidi_transmit_ack(substream, count);
781 	}
782 }
783 
784 static const struct usb_protocol_ops snd_usbmidi_akai_ops = {
785 	.input = snd_usbmidi_akai_input,
786 	.output = snd_usbmidi_akai_output,
787 };
788 
789 /*
790  * Novation USB MIDI protocol: number of data bytes is in the first byte
791  * (when receiving) (+1!) or in the second byte (when sending); data begins
792  * at the third byte.
793  */
794 
795 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep,
796 				       uint8_t *buffer, int buffer_length)
797 {
798 	if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
799 		return;
800 	snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
801 }
802 
803 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep,
804 					struct urb *urb)
805 {
806 	uint8_t *transfer_buffer;
807 	int count;
808 
809 	if (!ep->ports[0].active)
810 		return;
811 	transfer_buffer = urb->transfer_buffer;
812 	count = snd_rawmidi_transmit(ep->ports[0].substream,
813 				     &transfer_buffer[2],
814 				     ep->max_transfer - 2);
815 	if (count < 1) {
816 		ep->ports[0].active = 0;
817 		return;
818 	}
819 	transfer_buffer[0] = 0;
820 	transfer_buffer[1] = count;
821 	urb->transfer_buffer_length = 2 + count;
822 }
823 
824 static const struct usb_protocol_ops snd_usbmidi_novation_ops = {
825 	.input = snd_usbmidi_novation_input,
826 	.output = snd_usbmidi_novation_output,
827 };
828 
829 /*
830  * "raw" protocol: just move raw MIDI bytes from/to the endpoint
831  */
832 
833 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep,
834 				  uint8_t *buffer, int buffer_length)
835 {
836 	snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
837 }
838 
839 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep,
840 				   struct urb *urb)
841 {
842 	int count;
843 
844 	if (!ep->ports[0].active)
845 		return;
846 	count = snd_rawmidi_transmit(ep->ports[0].substream,
847 				     urb->transfer_buffer,
848 				     ep->max_transfer);
849 	if (count < 1) {
850 		ep->ports[0].active = 0;
851 		return;
852 	}
853 	urb->transfer_buffer_length = count;
854 }
855 
856 static const struct usb_protocol_ops snd_usbmidi_raw_ops = {
857 	.input = snd_usbmidi_raw_input,
858 	.output = snd_usbmidi_raw_output,
859 };
860 
861 /*
862  * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
863  */
864 
865 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep,
866 				   uint8_t *buffer, int buffer_length)
867 {
868 	if (buffer_length > 2)
869 		snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
870 }
871 
872 static const struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
873 	.input = snd_usbmidi_ftdi_input,
874 	.output = snd_usbmidi_raw_output,
875 };
876 
877 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
878 				     uint8_t *buffer, int buffer_length)
879 {
880 	if (buffer_length != 9)
881 		return;
882 	buffer_length = 8;
883 	while (buffer_length && buffer[buffer_length - 1] == 0xFD)
884 		buffer_length--;
885 	if (buffer_length)
886 		snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
887 }
888 
889 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
890 				      struct urb *urb)
891 {
892 	int count;
893 
894 	if (!ep->ports[0].active)
895 		return;
896 	switch (snd_usb_get_speed(ep->umidi->dev)) {
897 	case USB_SPEED_HIGH:
898 	case USB_SPEED_SUPER:
899 	case USB_SPEED_SUPER_PLUS:
900 		count = 1;
901 		break;
902 	default:
903 		count = 2;
904 	}
905 	count = snd_rawmidi_transmit(ep->ports[0].substream,
906 				     urb->transfer_buffer,
907 				     count);
908 	if (count < 1) {
909 		ep->ports[0].active = 0;
910 		return;
911 	}
912 
913 	memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
914 	urb->transfer_buffer_length = ep->max_transfer;
915 }
916 
917 static const struct usb_protocol_ops snd_usbmidi_122l_ops = {
918 	.input = snd_usbmidi_us122l_input,
919 	.output = snd_usbmidi_us122l_output,
920 };
921 
922 /*
923  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
924  */
925 
926 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep)
927 {
928 	static const u8 init_data[] = {
929 		/* initialization magic: "get version" */
930 		0xf0,
931 		0x00, 0x20, 0x31,	/* Emagic */
932 		0x64,			/* Unitor8 */
933 		0x0b,			/* version number request */
934 		0x00,			/* command version */
935 		0x00,			/* EEPROM, box 0 */
936 		0xf7
937 	};
938 	send_bulk_static_data(ep, init_data, sizeof(init_data));
939 	/* while we're at it, pour on more magic */
940 	send_bulk_static_data(ep, init_data, sizeof(init_data));
941 }
942 
943 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep)
944 {
945 	static const u8 finish_data[] = {
946 		/* switch to patch mode with last preset */
947 		0xf0,
948 		0x00, 0x20, 0x31,	/* Emagic */
949 		0x64,			/* Unitor8 */
950 		0x10,			/* patch switch command */
951 		0x00,			/* command version */
952 		0x7f,			/* to all boxes */
953 		0x40,			/* last preset in EEPROM */
954 		0xf7
955 	};
956 	send_bulk_static_data(ep, finish_data, sizeof(finish_data));
957 }
958 
959 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep,
960 				     uint8_t *buffer, int buffer_length)
961 {
962 	int i;
963 
964 	/* FF indicates end of valid data */
965 	for (i = 0; i < buffer_length; ++i)
966 		if (buffer[i] == 0xff) {
967 			buffer_length = i;
968 			break;
969 		}
970 
971 	/* handle F5 at end of last buffer */
972 	if (ep->seen_f5)
973 		goto switch_port;
974 
975 	while (buffer_length > 0) {
976 		/* determine size of data until next F5 */
977 		for (i = 0; i < buffer_length; ++i)
978 			if (buffer[i] == 0xf5)
979 				break;
980 		snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
981 		buffer += i;
982 		buffer_length -= i;
983 
984 		if (buffer_length <= 0)
985 			break;
986 		/* assert(buffer[0] == 0xf5); */
987 		ep->seen_f5 = 1;
988 		++buffer;
989 		--buffer_length;
990 
991 	switch_port:
992 		if (buffer_length <= 0)
993 			break;
994 		if (buffer[0] < 0x80) {
995 			ep->current_port = (buffer[0] - 1) & 15;
996 			++buffer;
997 			--buffer_length;
998 		}
999 		ep->seen_f5 = 0;
1000 	}
1001 }
1002 
1003 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep,
1004 				      struct urb *urb)
1005 {
1006 	int port0 = ep->current_port;
1007 	uint8_t *buf = urb->transfer_buffer;
1008 	int buf_free = ep->max_transfer;
1009 	int length, i;
1010 
1011 	for (i = 0; i < 0x10; ++i) {
1012 		/* round-robin, starting at the last current port */
1013 		int portnum = (port0 + i) & 15;
1014 		struct usbmidi_out_port *port = &ep->ports[portnum];
1015 
1016 		if (!port->active)
1017 			continue;
1018 		if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
1019 			port->active = 0;
1020 			continue;
1021 		}
1022 
1023 		if (portnum != ep->current_port) {
1024 			if (buf_free < 2)
1025 				break;
1026 			ep->current_port = portnum;
1027 			buf[0] = 0xf5;
1028 			buf[1] = (portnum + 1) & 15;
1029 			buf += 2;
1030 			buf_free -= 2;
1031 		}
1032 
1033 		if (buf_free < 1)
1034 			break;
1035 		length = snd_rawmidi_transmit(port->substream, buf, buf_free);
1036 		if (length > 0) {
1037 			buf += length;
1038 			buf_free -= length;
1039 			if (buf_free < 1)
1040 				break;
1041 		}
1042 	}
1043 	if (buf_free < ep->max_transfer && buf_free > 0) {
1044 		*buf = 0xff;
1045 		--buf_free;
1046 	}
1047 	urb->transfer_buffer_length = ep->max_transfer - buf_free;
1048 }
1049 
1050 static const struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1051 	.input = snd_usbmidi_emagic_input,
1052 	.output = snd_usbmidi_emagic_output,
1053 	.init_out_endpoint = snd_usbmidi_emagic_init_out,
1054 	.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1055 };
1056 
1057 
1058 static void update_roland_altsetting(struct snd_usb_midi *umidi)
1059 {
1060 	struct usb_interface *intf;
1061 	struct usb_host_interface *hostif;
1062 	struct usb_interface_descriptor *intfd;
1063 	int is_light_load;
1064 
1065 	intf = umidi->iface;
1066 	is_light_load = intf->cur_altsetting != intf->altsetting;
1067 	if (umidi->roland_load_ctl->private_value == is_light_load)
1068 		return;
1069 	hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1070 	intfd = get_iface_desc(hostif);
1071 	snd_usbmidi_input_stop(&umidi->list);
1072 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1073 			  intfd->bAlternateSetting);
1074 	snd_usbmidi_input_start(&umidi->list);
1075 }
1076 
1077 static int substream_open(struct snd_rawmidi_substream *substream, int dir,
1078 			  int open)
1079 {
1080 	struct snd_usb_midi *umidi = substream->rmidi->private_data;
1081 	struct snd_kcontrol *ctl;
1082 
1083 	down_read(&umidi->disc_rwsem);
1084 	if (umidi->disconnected) {
1085 		up_read(&umidi->disc_rwsem);
1086 		return open ? -ENODEV : 0;
1087 	}
1088 
1089 	mutex_lock(&umidi->mutex);
1090 	if (open) {
1091 		if (!umidi->opened[0] && !umidi->opened[1]) {
1092 			if (umidi->roland_load_ctl) {
1093 				ctl = umidi->roland_load_ctl;
1094 				ctl->vd[0].access |=
1095 					SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1096 				snd_ctl_notify(umidi->card,
1097 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1098 				update_roland_altsetting(umidi);
1099 			}
1100 		}
1101 		umidi->opened[dir]++;
1102 		if (umidi->opened[1])
1103 			snd_usbmidi_input_start(&umidi->list);
1104 	} else {
1105 		umidi->opened[dir]--;
1106 		if (!umidi->opened[1])
1107 			snd_usbmidi_input_stop(&umidi->list);
1108 		if (!umidi->opened[0] && !umidi->opened[1]) {
1109 			if (umidi->roland_load_ctl) {
1110 				ctl = umidi->roland_load_ctl;
1111 				ctl->vd[0].access &=
1112 					~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1113 				snd_ctl_notify(umidi->card,
1114 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1115 			}
1116 		}
1117 	}
1118 	mutex_unlock(&umidi->mutex);
1119 	up_read(&umidi->disc_rwsem);
1120 	return 0;
1121 }
1122 
1123 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1124 {
1125 	struct snd_usb_midi *umidi = substream->rmidi->private_data;
1126 	struct usbmidi_out_port *port = NULL;
1127 	int i, j;
1128 
1129 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1130 		if (umidi->endpoints[i].out)
1131 			for (j = 0; j < 0x10; ++j)
1132 				if (umidi->endpoints[i].out->ports[j].substream == substream) {
1133 					port = &umidi->endpoints[i].out->ports[j];
1134 					break;
1135 				}
1136 	if (!port) {
1137 		snd_BUG();
1138 		return -ENXIO;
1139 	}
1140 
1141 	substream->runtime->private_data = port;
1142 	port->state = STATE_UNKNOWN;
1143 	return substream_open(substream, 0, 1);
1144 }
1145 
1146 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1147 {
1148 	return substream_open(substream, 0, 0);
1149 }
1150 
1151 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream,
1152 				       int up)
1153 {
1154 	struct usbmidi_out_port *port =
1155 		(struct usbmidi_out_port *)substream->runtime->private_data;
1156 
1157 	port->active = up;
1158 	if (up) {
1159 		if (port->ep->umidi->disconnected) {
1160 			/* gobble up remaining bytes to prevent wait in
1161 			 * snd_rawmidi_drain_output */
1162 			snd_rawmidi_proceed(substream);
1163 			return;
1164 		}
1165 		queue_work(system_highpri_wq, &port->ep->work);
1166 	}
1167 }
1168 
1169 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1170 {
1171 	struct usbmidi_out_port *port = substream->runtime->private_data;
1172 	struct snd_usb_midi_out_endpoint *ep = port->ep;
1173 	unsigned int drain_urbs;
1174 	DEFINE_WAIT(wait);
1175 	long timeout = msecs_to_jiffies(50);
1176 
1177 	if (ep->umidi->disconnected)
1178 		return;
1179 	/*
1180 	 * The substream buffer is empty, but some data might still be in the
1181 	 * currently active URBs, so we have to wait for those to complete.
1182 	 */
1183 	spin_lock_irq(&ep->buffer_lock);
1184 	drain_urbs = ep->active_urbs;
1185 	if (drain_urbs) {
1186 		ep->drain_urbs |= drain_urbs;
1187 		do {
1188 			prepare_to_wait(&ep->drain_wait, &wait,
1189 					TASK_UNINTERRUPTIBLE);
1190 			spin_unlock_irq(&ep->buffer_lock);
1191 			timeout = schedule_timeout(timeout);
1192 			spin_lock_irq(&ep->buffer_lock);
1193 			drain_urbs &= ep->drain_urbs;
1194 		} while (drain_urbs && timeout);
1195 		finish_wait(&ep->drain_wait, &wait);
1196 	}
1197 	spin_unlock_irq(&ep->buffer_lock);
1198 }
1199 
1200 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1201 {
1202 	return substream_open(substream, 1, 1);
1203 }
1204 
1205 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1206 {
1207 	return substream_open(substream, 1, 0);
1208 }
1209 
1210 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream,
1211 				      int up)
1212 {
1213 	struct snd_usb_midi *umidi = substream->rmidi->private_data;
1214 
1215 	if (up)
1216 		set_bit(substream->number, &umidi->input_triggered);
1217 	else
1218 		clear_bit(substream->number, &umidi->input_triggered);
1219 }
1220 
1221 static const struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1222 	.open = snd_usbmidi_output_open,
1223 	.close = snd_usbmidi_output_close,
1224 	.trigger = snd_usbmidi_output_trigger,
1225 	.drain = snd_usbmidi_output_drain,
1226 };
1227 
1228 static const struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1229 	.open = snd_usbmidi_input_open,
1230 	.close = snd_usbmidi_input_close,
1231 	.trigger = snd_usbmidi_input_trigger
1232 };
1233 
1234 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1235 				unsigned int buffer_length)
1236 {
1237 	usb_free_coherent(umidi->dev, buffer_length,
1238 			  urb->transfer_buffer, urb->transfer_dma);
1239 	usb_free_urb(urb);
1240 }
1241 
1242 /*
1243  * Frees an input endpoint.
1244  * May be called when ep hasn't been initialized completely.
1245  */
1246 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep)
1247 {
1248 	unsigned int i;
1249 
1250 	for (i = 0; i < INPUT_URBS; ++i)
1251 		if (ep->urbs[i])
1252 			free_urb_and_buffer(ep->umidi, ep->urbs[i],
1253 					    ep->urbs[i]->transfer_buffer_length);
1254 	kfree(ep);
1255 }
1256 
1257 /*
1258  * Creates an input endpoint.
1259  */
1260 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi,
1261 					  struct snd_usb_midi_endpoint_info *ep_info,
1262 					  struct snd_usb_midi_endpoint *rep)
1263 {
1264 	struct snd_usb_midi_in_endpoint *ep;
1265 	void *buffer;
1266 	unsigned int pipe;
1267 	int length;
1268 	unsigned int i;
1269 	int err;
1270 
1271 	rep->in = NULL;
1272 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1273 	if (!ep)
1274 		return -ENOMEM;
1275 	ep->umidi = umidi;
1276 
1277 	for (i = 0; i < INPUT_URBS; ++i) {
1278 		ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1279 		if (!ep->urbs[i]) {
1280 			err = -ENOMEM;
1281 			goto error;
1282 		}
1283 	}
1284 	if (ep_info->in_interval)
1285 		pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1286 	else
1287 		pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1288 	length = usb_maxpacket(umidi->dev, pipe, 0);
1289 	for (i = 0; i < INPUT_URBS; ++i) {
1290 		buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1291 					    &ep->urbs[i]->transfer_dma);
1292 		if (!buffer) {
1293 			err = -ENOMEM;
1294 			goto error;
1295 		}
1296 		if (ep_info->in_interval)
1297 			usb_fill_int_urb(ep->urbs[i], umidi->dev,
1298 					 pipe, buffer, length,
1299 					 snd_usbmidi_in_urb_complete,
1300 					 ep, ep_info->in_interval);
1301 		else
1302 			usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1303 					  pipe, buffer, length,
1304 					  snd_usbmidi_in_urb_complete, ep);
1305 		ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1306 		err = usb_urb_ep_type_check(ep->urbs[i]);
1307 		if (err < 0) {
1308 			dev_err(&umidi->dev->dev, "invalid MIDI in EP %x\n",
1309 				ep_info->in_ep);
1310 			goto error;
1311 		}
1312 	}
1313 
1314 	rep->in = ep;
1315 	return 0;
1316 
1317  error:
1318 	snd_usbmidi_in_endpoint_delete(ep);
1319 	return err;
1320 }
1321 
1322 /*
1323  * Frees an output endpoint.
1324  * May be called when ep hasn't been initialized completely.
1325  */
1326 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1327 {
1328 	unsigned int i;
1329 
1330 	for (i = 0; i < OUTPUT_URBS; ++i)
1331 		if (ep->urbs[i].urb) {
1332 			free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1333 					    ep->max_transfer);
1334 			ep->urbs[i].urb = NULL;
1335 		}
1336 }
1337 
1338 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1339 {
1340 	snd_usbmidi_out_endpoint_clear(ep);
1341 	kfree(ep);
1342 }
1343 
1344 /*
1345  * Creates an output endpoint, and initializes output ports.
1346  */
1347 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi,
1348 					   struct snd_usb_midi_endpoint_info *ep_info,
1349 					   struct snd_usb_midi_endpoint *rep)
1350 {
1351 	struct snd_usb_midi_out_endpoint *ep;
1352 	unsigned int i;
1353 	unsigned int pipe;
1354 	void *buffer;
1355 	int err;
1356 
1357 	rep->out = NULL;
1358 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1359 	if (!ep)
1360 		return -ENOMEM;
1361 	ep->umidi = umidi;
1362 
1363 	for (i = 0; i < OUTPUT_URBS; ++i) {
1364 		ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1365 		if (!ep->urbs[i].urb) {
1366 			err = -ENOMEM;
1367 			goto error;
1368 		}
1369 		ep->urbs[i].ep = ep;
1370 	}
1371 	if (ep_info->out_interval)
1372 		pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1373 	else
1374 		pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1375 	switch (umidi->usb_id) {
1376 	default:
1377 		ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1378 		break;
1379 		/*
1380 		 * Various chips declare a packet size larger than 4 bytes, but
1381 		 * do not actually work with larger packets:
1382 		 */
1383 	case USB_ID(0x0a67, 0x5011): /* Medeli DD305 */
1384 	case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1385 	case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1386 	case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1387 	case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1388 	case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1389 	case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1390 		ep->max_transfer = 4;
1391 		break;
1392 		/*
1393 		 * Some devices only work with 9 bytes packet size:
1394 		 */
1395 	case USB_ID(0x0644, 0x800e): /* Tascam US-122L */
1396 	case USB_ID(0x0644, 0x800f): /* Tascam US-144 */
1397 		ep->max_transfer = 9;
1398 		break;
1399 	}
1400 	for (i = 0; i < OUTPUT_URBS; ++i) {
1401 		buffer = usb_alloc_coherent(umidi->dev,
1402 					    ep->max_transfer, GFP_KERNEL,
1403 					    &ep->urbs[i].urb->transfer_dma);
1404 		if (!buffer) {
1405 			err = -ENOMEM;
1406 			goto error;
1407 		}
1408 		if (ep_info->out_interval)
1409 			usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1410 					 pipe, buffer, ep->max_transfer,
1411 					 snd_usbmidi_out_urb_complete,
1412 					 &ep->urbs[i], ep_info->out_interval);
1413 		else
1414 			usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1415 					  pipe, buffer, ep->max_transfer,
1416 					  snd_usbmidi_out_urb_complete,
1417 					  &ep->urbs[i]);
1418 		err = usb_urb_ep_type_check(ep->urbs[i].urb);
1419 		if (err < 0) {
1420 			dev_err(&umidi->dev->dev, "invalid MIDI out EP %x\n",
1421 				ep_info->out_ep);
1422 			goto error;
1423 		}
1424 		ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1425 	}
1426 
1427 	spin_lock_init(&ep->buffer_lock);
1428 	INIT_WORK(&ep->work, snd_usbmidi_out_work);
1429 	init_waitqueue_head(&ep->drain_wait);
1430 
1431 	for (i = 0; i < 0x10; ++i)
1432 		if (ep_info->out_cables & (1 << i)) {
1433 			ep->ports[i].ep = ep;
1434 			ep->ports[i].cable = i << 4;
1435 		}
1436 
1437 	if (umidi->usb_protocol_ops->init_out_endpoint)
1438 		umidi->usb_protocol_ops->init_out_endpoint(ep);
1439 
1440 	rep->out = ep;
1441 	return 0;
1442 
1443  error:
1444 	snd_usbmidi_out_endpoint_delete(ep);
1445 	return err;
1446 }
1447 
1448 /*
1449  * Frees everything.
1450  */
1451 static void snd_usbmidi_free(struct snd_usb_midi *umidi)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1456 		struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1457 		if (ep->out)
1458 			snd_usbmidi_out_endpoint_delete(ep->out);
1459 		if (ep->in)
1460 			snd_usbmidi_in_endpoint_delete(ep->in);
1461 	}
1462 	mutex_destroy(&umidi->mutex);
1463 	kfree(umidi);
1464 }
1465 
1466 /*
1467  * Unlinks all URBs (must be done before the usb_device is deleted).
1468  */
1469 void snd_usbmidi_disconnect(struct list_head *p)
1470 {
1471 	struct snd_usb_midi *umidi;
1472 	unsigned int i, j;
1473 
1474 	umidi = list_entry(p, struct snd_usb_midi, list);
1475 	/*
1476 	 * an URB's completion handler may start the timer and
1477 	 * a timer may submit an URB. To reliably break the cycle
1478 	 * a flag under lock must be used
1479 	 */
1480 	down_write(&umidi->disc_rwsem);
1481 	spin_lock_irq(&umidi->disc_lock);
1482 	umidi->disconnected = 1;
1483 	spin_unlock_irq(&umidi->disc_lock);
1484 	up_write(&umidi->disc_rwsem);
1485 
1486 	del_timer_sync(&umidi->error_timer);
1487 
1488 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1489 		struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1490 		if (ep->out)
1491 			cancel_work_sync(&ep->out->work);
1492 		if (ep->out) {
1493 			for (j = 0; j < OUTPUT_URBS; ++j)
1494 				usb_kill_urb(ep->out->urbs[j].urb);
1495 			if (umidi->usb_protocol_ops->finish_out_endpoint)
1496 				umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1497 			ep->out->active_urbs = 0;
1498 			if (ep->out->drain_urbs) {
1499 				ep->out->drain_urbs = 0;
1500 				wake_up(&ep->out->drain_wait);
1501 			}
1502 		}
1503 		if (ep->in)
1504 			for (j = 0; j < INPUT_URBS; ++j)
1505 				usb_kill_urb(ep->in->urbs[j]);
1506 		/* free endpoints here; later call can result in Oops */
1507 		if (ep->out)
1508 			snd_usbmidi_out_endpoint_clear(ep->out);
1509 		if (ep->in) {
1510 			snd_usbmidi_in_endpoint_delete(ep->in);
1511 			ep->in = NULL;
1512 		}
1513 	}
1514 }
1515 EXPORT_SYMBOL(snd_usbmidi_disconnect);
1516 
1517 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1518 {
1519 	struct snd_usb_midi *umidi = rmidi->private_data;
1520 	snd_usbmidi_free(umidi);
1521 }
1522 
1523 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi,
1524 								int stream,
1525 								int number)
1526 {
1527 	struct snd_rawmidi_substream *substream;
1528 
1529 	list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams,
1530 			    list) {
1531 		if (substream->number == number)
1532 			return substream;
1533 	}
1534 	return NULL;
1535 }
1536 
1537 /*
1538  * This list specifies names for ports that do not fit into the standard
1539  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1540  * such as internal control or synthesizer ports.
1541  */
1542 static struct port_info {
1543 	u32 id;
1544 	short int port;
1545 	short int voices;
1546 	const char *name;
1547 	unsigned int seq_flags;
1548 } snd_usbmidi_port_info[] = {
1549 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1550 	{ .id = USB_ID(vendor, product), \
1551 	  .port = num, .voices = voices_, \
1552 	  .name = name_, .seq_flags = flags }
1553 #define EXTERNAL_PORT(vendor, product, num, name) \
1554 	PORT_INFO(vendor, product, num, name, 0, \
1555 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1556 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1557 		  SNDRV_SEQ_PORT_TYPE_PORT)
1558 #define CONTROL_PORT(vendor, product, num, name) \
1559 	PORT_INFO(vendor, product, num, name, 0, \
1560 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1561 		  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1562 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \
1563 	PORT_INFO(vendor, product, num, name, voices, \
1564 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1565 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1566 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1567 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1568 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1569 	PORT_INFO(vendor, product, num, name, voices, \
1570 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1571 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1572 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1573 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1574 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1575 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1576 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1577 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1578 	PORT_INFO(vendor, product, num, name, voices, \
1579 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1580 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1581 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1582 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1583 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1584 		  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1585 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1586 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1587 	/* Yamaha MOTIF XF */
1588 	GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128),
1589 	CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"),
1590 	EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"),
1591 	CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"),
1592 	/* Roland UA-100 */
1593 	CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1594 	/* Roland SC-8850 */
1595 	SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1596 	SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1597 	SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1598 	SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1599 	EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1600 	EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1601 	/* Roland U-8 */
1602 	EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1603 	CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1604 	/* Roland SC-8820 */
1605 	SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1606 	SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1607 	EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1608 	/* Roland SK-500 */
1609 	SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1610 	SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1611 	EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1612 	/* Roland SC-D70 */
1613 	SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1614 	SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1615 	EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1616 	/* Edirol UM-880 */
1617 	CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1618 	/* Edirol SD-90 */
1619 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1620 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1621 	EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1622 	EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1623 	/* Edirol UM-550 */
1624 	CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1625 	/* Edirol SD-20 */
1626 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1627 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1628 	EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1629 	/* Edirol SD-80 */
1630 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1631 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1632 	EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1633 	EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1634 	/* Edirol UA-700 */
1635 	EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1636 	CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1637 	/* Roland VariOS */
1638 	EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1639 	EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1640 	EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1641 	/* Edirol PCR */
1642 	EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1643 	EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1644 	EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1645 	/* BOSS GS-10 */
1646 	EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1647 	CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1648 	/* Edirol UA-1000 */
1649 	EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1650 	CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1651 	/* Edirol UR-80 */
1652 	EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1653 	EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1654 	EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1655 	/* Edirol PCR-A */
1656 	EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1657 	EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1658 	EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1659 	/* BOSS GT-PRO */
1660 	CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"),
1661 	/* Edirol UM-3EX */
1662 	CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1663 	/* Roland VG-99 */
1664 	CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"),
1665 	EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"),
1666 	/* Cakewalk Sonar V-Studio 100 */
1667 	EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"),
1668 	CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"),
1669 	/* Roland VB-99 */
1670 	CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"),
1671 	EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"),
1672 	/* Roland A-PRO */
1673 	EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"),
1674 	CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"),
1675 	CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"),
1676 	/* Roland SD-50 */
1677 	ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128),
1678 	EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"),
1679 	CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"),
1680 	/* Roland OCTA-CAPTURE */
1681 	EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"),
1682 	CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"),
1683 	EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"),
1684 	CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"),
1685 	/* Roland SPD-SX */
1686 	CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"),
1687 	EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"),
1688 	/* Roland A-Series */
1689 	CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"),
1690 	EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"),
1691 	/* Roland INTEGRA-7 */
1692 	ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128),
1693 	CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"),
1694 	/* M-Audio MidiSport 8x8 */
1695 	CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1696 	CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1697 	/* MOTU Fastlane */
1698 	EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1699 	EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1700 	/* Emagic Unitor8/AMT8/MT4 */
1701 	EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1702 	EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1703 	EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1704 	/* Akai MPD16 */
1705 	CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1706 	PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1707 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1708 		SNDRV_SEQ_PORT_TYPE_HARDWARE),
1709 	/* Access Music Virus TI */
1710 	EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1711 	PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1712 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1713 		SNDRV_SEQ_PORT_TYPE_HARDWARE |
1714 		SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1715 };
1716 
1717 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number)
1718 {
1719 	int i;
1720 
1721 	for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1722 		if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1723 		    snd_usbmidi_port_info[i].port == number)
1724 			return &snd_usbmidi_port_info[i];
1725 	}
1726 	return NULL;
1727 }
1728 
1729 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1730 				      struct snd_seq_port_info *seq_port_info)
1731 {
1732 	struct snd_usb_midi *umidi = rmidi->private_data;
1733 	struct port_info *port_info;
1734 
1735 	/* TODO: read port flags from descriptors */
1736 	port_info = find_port_info(umidi, number);
1737 	if (port_info) {
1738 		seq_port_info->type = port_info->seq_flags;
1739 		seq_port_info->midi_voices = port_info->voices;
1740 	}
1741 }
1742 
1743 static struct usb_midi_in_jack_descriptor *find_usb_in_jack_descriptor(
1744 					struct usb_host_interface *hostif, uint8_t jack_id)
1745 {
1746 	unsigned char *extra = hostif->extra;
1747 	int extralen = hostif->extralen;
1748 
1749 	while (extralen > 4) {
1750 		struct usb_midi_in_jack_descriptor *injd =
1751 				(struct usb_midi_in_jack_descriptor *)extra;
1752 
1753 		if (injd->bLength > 4 &&
1754 		    injd->bDescriptorType == USB_DT_CS_INTERFACE &&
1755 		    injd->bDescriptorSubtype == UAC_MIDI_IN_JACK &&
1756 				injd->bJackID == jack_id)
1757 			return injd;
1758 		if (!extra[0])
1759 			break;
1760 		extralen -= extra[0];
1761 		extra += extra[0];
1762 	}
1763 	return NULL;
1764 }
1765 
1766 static struct usb_midi_out_jack_descriptor *find_usb_out_jack_descriptor(
1767 					struct usb_host_interface *hostif, uint8_t jack_id)
1768 {
1769 	unsigned char *extra = hostif->extra;
1770 	int extralen = hostif->extralen;
1771 
1772 	while (extralen > 4) {
1773 		struct usb_midi_out_jack_descriptor *outjd =
1774 				(struct usb_midi_out_jack_descriptor *)extra;
1775 
1776 		if (outjd->bLength > 4 &&
1777 		    outjd->bDescriptorType == USB_DT_CS_INTERFACE &&
1778 		    outjd->bDescriptorSubtype == UAC_MIDI_OUT_JACK &&
1779 				outjd->bJackID == jack_id)
1780 			return outjd;
1781 		if (!extra[0])
1782 			break;
1783 		extralen -= extra[0];
1784 		extra += extra[0];
1785 	}
1786 	return NULL;
1787 }
1788 
1789 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi,
1790 				       int stream, int number, int jack_id,
1791 				       struct snd_rawmidi_substream **rsubstream)
1792 {
1793 	struct port_info *port_info;
1794 	const char *name_format;
1795 	struct usb_interface *intf;
1796 	struct usb_host_interface *hostif;
1797 	struct usb_midi_in_jack_descriptor *injd;
1798 	struct usb_midi_out_jack_descriptor *outjd;
1799 	uint8_t jack_name_buf[32];
1800 	uint8_t *default_jack_name = "MIDI";
1801 	uint8_t *jack_name = default_jack_name;
1802 	uint8_t iJack;
1803 	size_t sz;
1804 	int res;
1805 
1806 	struct snd_rawmidi_substream *substream =
1807 		snd_usbmidi_find_substream(umidi, stream, number);
1808 	if (!substream) {
1809 		dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream,
1810 			number);
1811 		return;
1812 	}
1813 
1814 	intf = umidi->iface;
1815 	if (intf && jack_id >= 0) {
1816 		hostif = intf->cur_altsetting;
1817 		iJack = 0;
1818 		if (stream != SNDRV_RAWMIDI_STREAM_OUTPUT) {
1819 			/* in jacks connect to outs */
1820 			outjd = find_usb_out_jack_descriptor(hostif, jack_id);
1821 			if (outjd) {
1822 				sz = USB_DT_MIDI_OUT_SIZE(outjd->bNrInputPins);
1823 				iJack = *(((uint8_t *) outjd) + sz - sizeof(uint8_t));
1824 			}
1825 		} else {
1826 			/* and out jacks connect to ins */
1827 			injd = find_usb_in_jack_descriptor(hostif, jack_id);
1828 			if (injd)
1829 				iJack = injd->iJack;
1830 		}
1831 		if (iJack != 0) {
1832 			res = usb_string(umidi->dev, iJack, jack_name_buf,
1833 			  ARRAY_SIZE(jack_name_buf));
1834 			if (res)
1835 				jack_name = jack_name_buf;
1836 		}
1837 	}
1838 
1839 	port_info = find_port_info(umidi, number);
1840 	name_format = port_info ? port_info->name :
1841 		(jack_name != default_jack_name  ? "%s %s" : "%s %s %d");
1842 	snprintf(substream->name, sizeof(substream->name),
1843 		 name_format, umidi->card->shortname, jack_name, number + 1);
1844 
1845 	*rsubstream = substream;
1846 }
1847 
1848 /*
1849  * Creates the endpoints and their ports.
1850  */
1851 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi,
1852 					struct snd_usb_midi_endpoint_info *endpoints)
1853 {
1854 	int i, j, err;
1855 	int out_ports = 0, in_ports = 0;
1856 
1857 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1858 		if (endpoints[i].out_cables) {
1859 			err = snd_usbmidi_out_endpoint_create(umidi,
1860 							      &endpoints[i],
1861 							      &umidi->endpoints[i]);
1862 			if (err < 0)
1863 				return err;
1864 		}
1865 		if (endpoints[i].in_cables) {
1866 			err = snd_usbmidi_in_endpoint_create(umidi,
1867 							     &endpoints[i],
1868 							     &umidi->endpoints[i]);
1869 			if (err < 0)
1870 				return err;
1871 		}
1872 
1873 		for (j = 0; j < 0x10; ++j) {
1874 			if (endpoints[i].out_cables & (1 << j)) {
1875 				snd_usbmidi_init_substream(umidi,
1876 							   SNDRV_RAWMIDI_STREAM_OUTPUT,
1877 							   out_ports,
1878 							   endpoints[i].assoc_out_jacks[j],
1879 							   &umidi->endpoints[i].out->ports[j].substream);
1880 				++out_ports;
1881 			}
1882 			if (endpoints[i].in_cables & (1 << j)) {
1883 				snd_usbmidi_init_substream(umidi,
1884 							   SNDRV_RAWMIDI_STREAM_INPUT,
1885 							   in_ports,
1886 							   endpoints[i].assoc_in_jacks[j],
1887 							   &umidi->endpoints[i].in->ports[j].substream);
1888 				++in_ports;
1889 			}
1890 		}
1891 	}
1892 	dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n",
1893 		    out_ports, in_ports);
1894 	return 0;
1895 }
1896 
1897 static struct usb_ms_endpoint_descriptor *find_usb_ms_endpoint_descriptor(
1898 					struct usb_host_endpoint *hostep)
1899 {
1900 	unsigned char *extra = hostep->extra;
1901 	int extralen = hostep->extralen;
1902 
1903 	while (extralen > 3) {
1904 		struct usb_ms_endpoint_descriptor *ms_ep =
1905 				(struct usb_ms_endpoint_descriptor *)extra;
1906 
1907 		if (ms_ep->bLength > 3 &&
1908 		    ms_ep->bDescriptorType == USB_DT_CS_ENDPOINT &&
1909 		    ms_ep->bDescriptorSubtype == UAC_MS_GENERAL)
1910 			return ms_ep;
1911 		if (!extra[0])
1912 			break;
1913 		extralen -= extra[0];
1914 		extra += extra[0];
1915 	}
1916 	return NULL;
1917 }
1918 
1919 /*
1920  * Returns MIDIStreaming device capabilities.
1921  */
1922 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi,
1923 				   struct snd_usb_midi_endpoint_info *endpoints)
1924 {
1925 	struct usb_interface *intf;
1926 	struct usb_host_interface *hostif;
1927 	struct usb_interface_descriptor *intfd;
1928 	struct usb_ms_header_descriptor *ms_header;
1929 	struct usb_host_endpoint *hostep;
1930 	struct usb_endpoint_descriptor *ep;
1931 	struct usb_ms_endpoint_descriptor *ms_ep;
1932 	int i, j, epidx;
1933 
1934 	intf = umidi->iface;
1935 	if (!intf)
1936 		return -ENXIO;
1937 	hostif = &intf->altsetting[0];
1938 	intfd = get_iface_desc(hostif);
1939 	ms_header = (struct usb_ms_header_descriptor *)hostif->extra;
1940 	if (hostif->extralen >= 7 &&
1941 	    ms_header->bLength >= 7 &&
1942 	    ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1943 	    ms_header->bDescriptorSubtype == UAC_HEADER)
1944 		dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n",
1945 			    ((uint8_t *)&ms_header->bcdMSC)[1], ((uint8_t *)&ms_header->bcdMSC)[0]);
1946 	else
1947 		dev_warn(&umidi->dev->dev,
1948 			 "MIDIStreaming interface descriptor not found\n");
1949 
1950 	epidx = 0;
1951 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1952 		hostep = &hostif->endpoint[i];
1953 		ep = get_ep_desc(hostep);
1954 		if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1955 			continue;
1956 		ms_ep = find_usb_ms_endpoint_descriptor(hostep);
1957 		if (!ms_ep)
1958 			continue;
1959 		if (ms_ep->bNumEmbMIDIJack > 0x10)
1960 			continue;
1961 		if (usb_endpoint_dir_out(ep)) {
1962 			if (endpoints[epidx].out_ep) {
1963 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1964 					dev_warn(&umidi->dev->dev,
1965 						 "too many endpoints\n");
1966 					break;
1967 				}
1968 			}
1969 			endpoints[epidx].out_ep = usb_endpoint_num(ep);
1970 			if (usb_endpoint_xfer_int(ep))
1971 				endpoints[epidx].out_interval = ep->bInterval;
1972 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1973 				/*
1974 				 * Low speed bulk transfers don't exist, so
1975 				 * force interrupt transfers for devices like
1976 				 * ESI MIDI Mate that try to use them anyway.
1977 				 */
1978 				endpoints[epidx].out_interval = 1;
1979 			endpoints[epidx].out_cables =
1980 				(1 << ms_ep->bNumEmbMIDIJack) - 1;
1981 			for (j = 0; j < ms_ep->bNumEmbMIDIJack; ++j)
1982 				endpoints[epidx].assoc_out_jacks[j] = ms_ep->baAssocJackID[j];
1983 			for (; j < ARRAY_SIZE(endpoints[epidx].assoc_out_jacks); ++j)
1984 				endpoints[epidx].assoc_out_jacks[j] = -1;
1985 			dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
1986 				ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1987 		} else {
1988 			if (endpoints[epidx].in_ep) {
1989 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1990 					dev_warn(&umidi->dev->dev,
1991 						 "too many endpoints\n");
1992 					break;
1993 				}
1994 			}
1995 			endpoints[epidx].in_ep = usb_endpoint_num(ep);
1996 			if (usb_endpoint_xfer_int(ep))
1997 				endpoints[epidx].in_interval = ep->bInterval;
1998 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1999 				endpoints[epidx].in_interval = 1;
2000 			endpoints[epidx].in_cables =
2001 				(1 << ms_ep->bNumEmbMIDIJack) - 1;
2002 			for (j = 0; j < ms_ep->bNumEmbMIDIJack; ++j)
2003 				endpoints[epidx].assoc_in_jacks[j] = ms_ep->baAssocJackID[j];
2004 			for (; j < ARRAY_SIZE(endpoints[epidx].assoc_in_jacks); ++j)
2005 				endpoints[epidx].assoc_in_jacks[j] = -1;
2006 			dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
2007 				ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
2008 		}
2009 	}
2010 	return 0;
2011 }
2012 
2013 static int roland_load_info(struct snd_kcontrol *kcontrol,
2014 			    struct snd_ctl_elem_info *info)
2015 {
2016 	static const char *const names[] = { "High Load", "Light Load" };
2017 
2018 	return snd_ctl_enum_info(info, 1, 2, names);
2019 }
2020 
2021 static int roland_load_get(struct snd_kcontrol *kcontrol,
2022 			   struct snd_ctl_elem_value *value)
2023 {
2024 	value->value.enumerated.item[0] = kcontrol->private_value;
2025 	return 0;
2026 }
2027 
2028 static int roland_load_put(struct snd_kcontrol *kcontrol,
2029 			   struct snd_ctl_elem_value *value)
2030 {
2031 	struct snd_usb_midi *umidi = kcontrol->private_data;
2032 	int changed;
2033 
2034 	if (value->value.enumerated.item[0] > 1)
2035 		return -EINVAL;
2036 	mutex_lock(&umidi->mutex);
2037 	changed = value->value.enumerated.item[0] != kcontrol->private_value;
2038 	if (changed)
2039 		kcontrol->private_value = value->value.enumerated.item[0];
2040 	mutex_unlock(&umidi->mutex);
2041 	return changed;
2042 }
2043 
2044 static const struct snd_kcontrol_new roland_load_ctl = {
2045 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2046 	.name = "MIDI Input Mode",
2047 	.info = roland_load_info,
2048 	.get = roland_load_get,
2049 	.put = roland_load_put,
2050 	.private_value = 1,
2051 };
2052 
2053 /*
2054  * On Roland devices, use the second alternate setting to be able to use
2055  * the interrupt input endpoint.
2056  */
2057 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi)
2058 {
2059 	struct usb_interface *intf;
2060 	struct usb_host_interface *hostif;
2061 	struct usb_interface_descriptor *intfd;
2062 
2063 	intf = umidi->iface;
2064 	if (!intf || intf->num_altsetting != 2)
2065 		return;
2066 
2067 	hostif = &intf->altsetting[1];
2068 	intfd = get_iface_desc(hostif);
2069        /* If either or both of the endpoints support interrupt transfer,
2070         * then use the alternate setting
2071         */
2072 	if (intfd->bNumEndpoints != 2 ||
2073 	    !((get_endpoint(hostif, 0)->bmAttributes &
2074 	       USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT ||
2075 	      (get_endpoint(hostif, 1)->bmAttributes &
2076 	       USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT))
2077 		return;
2078 
2079 	dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n",
2080 		    intfd->bAlternateSetting);
2081 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
2082 			  intfd->bAlternateSetting);
2083 
2084 	umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
2085 	if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
2086 		umidi->roland_load_ctl = NULL;
2087 }
2088 
2089 /*
2090  * Try to find any usable endpoints in the interface.
2091  */
2092 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi,
2093 					struct snd_usb_midi_endpoint_info *endpoint,
2094 					int max_endpoints)
2095 {
2096 	struct usb_interface *intf;
2097 	struct usb_host_interface *hostif;
2098 	struct usb_interface_descriptor *intfd;
2099 	struct usb_endpoint_descriptor *epd;
2100 	int i, out_eps = 0, in_eps = 0;
2101 
2102 	if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
2103 		snd_usbmidi_switch_roland_altsetting(umidi);
2104 
2105 	if (endpoint[0].out_ep || endpoint[0].in_ep)
2106 		return 0;
2107 
2108 	intf = umidi->iface;
2109 	if (!intf || intf->num_altsetting < 1)
2110 		return -ENOENT;
2111 	hostif = intf->cur_altsetting;
2112 	intfd = get_iface_desc(hostif);
2113 
2114 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
2115 		epd = get_endpoint(hostif, i);
2116 		if (!usb_endpoint_xfer_bulk(epd) &&
2117 		    !usb_endpoint_xfer_int(epd))
2118 			continue;
2119 		if (out_eps < max_endpoints &&
2120 		    usb_endpoint_dir_out(epd)) {
2121 			endpoint[out_eps].out_ep = usb_endpoint_num(epd);
2122 			if (usb_endpoint_xfer_int(epd))
2123 				endpoint[out_eps].out_interval = epd->bInterval;
2124 			++out_eps;
2125 		}
2126 		if (in_eps < max_endpoints &&
2127 		    usb_endpoint_dir_in(epd)) {
2128 			endpoint[in_eps].in_ep = usb_endpoint_num(epd);
2129 			if (usb_endpoint_xfer_int(epd))
2130 				endpoint[in_eps].in_interval = epd->bInterval;
2131 			++in_eps;
2132 		}
2133 	}
2134 	return (out_eps || in_eps) ? 0 : -ENOENT;
2135 }
2136 
2137 /*
2138  * Detects the endpoints for one-port-per-endpoint protocols.
2139  */
2140 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi,
2141 						 struct snd_usb_midi_endpoint_info *endpoints)
2142 {
2143 	int err, i;
2144 
2145 	err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
2146 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2147 		if (endpoints[i].out_ep)
2148 			endpoints[i].out_cables = 0x0001;
2149 		if (endpoints[i].in_ep)
2150 			endpoints[i].in_cables = 0x0001;
2151 	}
2152 	return err;
2153 }
2154 
2155 /*
2156  * Detects the endpoints and ports of Yamaha devices.
2157  */
2158 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi,
2159 				     struct snd_usb_midi_endpoint_info *endpoint)
2160 {
2161 	struct usb_interface *intf;
2162 	struct usb_host_interface *hostif;
2163 	struct usb_interface_descriptor *intfd;
2164 	uint8_t *cs_desc;
2165 
2166 	intf = umidi->iface;
2167 	if (!intf)
2168 		return -ENOENT;
2169 	hostif = intf->altsetting;
2170 	intfd = get_iface_desc(hostif);
2171 	if (intfd->bNumEndpoints < 1)
2172 		return -ENOENT;
2173 
2174 	/*
2175 	 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
2176 	 * necessarily with any useful contents.  So simply count 'em.
2177 	 */
2178 	for (cs_desc = hostif->extra;
2179 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2180 	     cs_desc += cs_desc[0]) {
2181 		if (cs_desc[1] == USB_DT_CS_INTERFACE) {
2182 			if (cs_desc[2] == UAC_MIDI_IN_JACK)
2183 				endpoint->in_cables =
2184 					(endpoint->in_cables << 1) | 1;
2185 			else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
2186 				endpoint->out_cables =
2187 					(endpoint->out_cables << 1) | 1;
2188 		}
2189 	}
2190 	if (!endpoint->in_cables && !endpoint->out_cables)
2191 		return -ENOENT;
2192 
2193 	return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2194 }
2195 
2196 /*
2197  * Detects the endpoints and ports of Roland devices.
2198  */
2199 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi,
2200 				     struct snd_usb_midi_endpoint_info *endpoint)
2201 {
2202 	struct usb_interface *intf;
2203 	struct usb_host_interface *hostif;
2204 	u8 *cs_desc;
2205 
2206 	intf = umidi->iface;
2207 	if (!intf)
2208 		return -ENOENT;
2209 	hostif = intf->altsetting;
2210 	/*
2211 	 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>,
2212 	 * some have standard class descriptors, or both kinds, or neither.
2213 	 */
2214 	for (cs_desc = hostif->extra;
2215 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2216 	     cs_desc += cs_desc[0]) {
2217 		if (cs_desc[0] >= 6 &&
2218 		    cs_desc[1] == USB_DT_CS_INTERFACE &&
2219 		    cs_desc[2] == 0xf1 &&
2220 		    cs_desc[3] == 0x02) {
2221 			if (cs_desc[4] > 0x10 || cs_desc[5] > 0x10)
2222 				continue;
2223 			endpoint->in_cables  = (1 << cs_desc[4]) - 1;
2224 			endpoint->out_cables = (1 << cs_desc[5]) - 1;
2225 			return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2226 		} else if (cs_desc[0] >= 7 &&
2227 			   cs_desc[1] == USB_DT_CS_INTERFACE &&
2228 			   cs_desc[2] == UAC_HEADER) {
2229 			return snd_usbmidi_get_ms_info(umidi, endpoint);
2230 		}
2231 	}
2232 
2233 	return -ENODEV;
2234 }
2235 
2236 /*
2237  * Creates the endpoints and their ports for Midiman devices.
2238  */
2239 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi,
2240 						struct snd_usb_midi_endpoint_info *endpoint)
2241 {
2242 	struct snd_usb_midi_endpoint_info ep_info;
2243 	struct usb_interface *intf;
2244 	struct usb_host_interface *hostif;
2245 	struct usb_interface_descriptor *intfd;
2246 	struct usb_endpoint_descriptor *epd;
2247 	int cable, err;
2248 
2249 	intf = umidi->iface;
2250 	if (!intf)
2251 		return -ENOENT;
2252 	hostif = intf->altsetting;
2253 	intfd = get_iface_desc(hostif);
2254 	/*
2255 	 * The various MidiSport devices have more or less random endpoint
2256 	 * numbers, so we have to identify the endpoints by their index in
2257 	 * the descriptor array, like the driver for that other OS does.
2258 	 *
2259 	 * There is one interrupt input endpoint for all input ports, one
2260 	 * bulk output endpoint for even-numbered ports, and one for odd-
2261 	 * numbered ports.  Both bulk output endpoints have corresponding
2262 	 * input bulk endpoints (at indices 1 and 3) which aren't used.
2263 	 */
2264 	if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
2265 		dev_dbg(&umidi->dev->dev, "not enough endpoints\n");
2266 		return -ENOENT;
2267 	}
2268 
2269 	epd = get_endpoint(hostif, 0);
2270 	if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
2271 		dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n");
2272 		return -ENXIO;
2273 	}
2274 	epd = get_endpoint(hostif, 2);
2275 	if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
2276 		dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n");
2277 		return -ENXIO;
2278 	}
2279 	if (endpoint->out_cables > 0x0001) {
2280 		epd = get_endpoint(hostif, 4);
2281 		if (!usb_endpoint_dir_out(epd) ||
2282 		    !usb_endpoint_xfer_bulk(epd)) {
2283 			dev_dbg(&umidi->dev->dev,
2284 				"endpoint[4] isn't bulk output\n");
2285 			return -ENXIO;
2286 		}
2287 	}
2288 
2289 	ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress &
2290 		USB_ENDPOINT_NUMBER_MASK;
2291 	ep_info.out_interval = 0;
2292 	ep_info.out_cables = endpoint->out_cables & 0x5555;
2293 	err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2294 					      &umidi->endpoints[0]);
2295 	if (err < 0)
2296 		return err;
2297 
2298 	ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress &
2299 		USB_ENDPOINT_NUMBER_MASK;
2300 	ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
2301 	ep_info.in_cables = endpoint->in_cables;
2302 	err = snd_usbmidi_in_endpoint_create(umidi, &ep_info,
2303 					     &umidi->endpoints[0]);
2304 	if (err < 0)
2305 		return err;
2306 
2307 	if (endpoint->out_cables > 0x0001) {
2308 		ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress &
2309 			USB_ENDPOINT_NUMBER_MASK;
2310 		ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2311 		err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2312 						      &umidi->endpoints[1]);
2313 		if (err < 0)
2314 			return err;
2315 	}
2316 
2317 	for (cable = 0; cable < 0x10; ++cable) {
2318 		if (endpoint->out_cables & (1 << cable))
2319 			snd_usbmidi_init_substream(umidi,
2320 						   SNDRV_RAWMIDI_STREAM_OUTPUT,
2321 						   cable,
2322 						   -1 /* prevent trying to find jack */,
2323 						   &umidi->endpoints[cable & 1].out->ports[cable].substream);
2324 		if (endpoint->in_cables & (1 << cable))
2325 			snd_usbmidi_init_substream(umidi,
2326 						   SNDRV_RAWMIDI_STREAM_INPUT,
2327 						   cable,
2328 						   -1 /* prevent trying to find jack */,
2329 						   &umidi->endpoints[0].in->ports[cable].substream);
2330 	}
2331 	return 0;
2332 }
2333 
2334 static const struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2335 	.get_port_info = snd_usbmidi_get_port_info,
2336 };
2337 
2338 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi,
2339 				      int out_ports, int in_ports)
2340 {
2341 	struct snd_rawmidi *rmidi;
2342 	int err;
2343 
2344 	err = snd_rawmidi_new(umidi->card, "USB MIDI",
2345 			      umidi->next_midi_device++,
2346 			      out_ports, in_ports, &rmidi);
2347 	if (err < 0)
2348 		return err;
2349 	strcpy(rmidi->name, umidi->card->shortname);
2350 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2351 			    SNDRV_RAWMIDI_INFO_INPUT |
2352 			    SNDRV_RAWMIDI_INFO_DUPLEX;
2353 	rmidi->ops = &snd_usbmidi_ops;
2354 	rmidi->private_data = umidi;
2355 	rmidi->private_free = snd_usbmidi_rawmidi_free;
2356 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
2357 			    &snd_usbmidi_output_ops);
2358 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
2359 			    &snd_usbmidi_input_ops);
2360 
2361 	umidi->rmidi = rmidi;
2362 	return 0;
2363 }
2364 
2365 /*
2366  * Temporarily stop input.
2367  */
2368 void snd_usbmidi_input_stop(struct list_head *p)
2369 {
2370 	struct snd_usb_midi *umidi;
2371 	unsigned int i, j;
2372 
2373 	umidi = list_entry(p, struct snd_usb_midi, list);
2374 	if (!umidi->input_running)
2375 		return;
2376 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2377 		struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
2378 		if (ep->in)
2379 			for (j = 0; j < INPUT_URBS; ++j)
2380 				usb_kill_urb(ep->in->urbs[j]);
2381 	}
2382 	umidi->input_running = 0;
2383 }
2384 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2385 
2386 static void snd_usbmidi_input_start_ep(struct snd_usb_midi *umidi,
2387 				       struct snd_usb_midi_in_endpoint *ep)
2388 {
2389 	unsigned int i;
2390 	unsigned long flags;
2391 
2392 	if (!ep)
2393 		return;
2394 	for (i = 0; i < INPUT_URBS; ++i) {
2395 		struct urb *urb = ep->urbs[i];
2396 		spin_lock_irqsave(&umidi->disc_lock, flags);
2397 		if (!atomic_read(&urb->use_count)) {
2398 			urb->dev = ep->umidi->dev;
2399 			snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
2400 		}
2401 		spin_unlock_irqrestore(&umidi->disc_lock, flags);
2402 	}
2403 }
2404 
2405 /*
2406  * Resume input after a call to snd_usbmidi_input_stop().
2407  */
2408 void snd_usbmidi_input_start(struct list_head *p)
2409 {
2410 	struct snd_usb_midi *umidi;
2411 	int i;
2412 
2413 	umidi = list_entry(p, struct snd_usb_midi, list);
2414 	if (umidi->input_running || !umidi->opened[1])
2415 		return;
2416 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2417 		snd_usbmidi_input_start_ep(umidi, umidi->endpoints[i].in);
2418 	umidi->input_running = 1;
2419 }
2420 EXPORT_SYMBOL(snd_usbmidi_input_start);
2421 
2422 /*
2423  * Prepare for suspend. Typically called from the USB suspend callback.
2424  */
2425 void snd_usbmidi_suspend(struct list_head *p)
2426 {
2427 	struct snd_usb_midi *umidi;
2428 
2429 	umidi = list_entry(p, struct snd_usb_midi, list);
2430 	mutex_lock(&umidi->mutex);
2431 	snd_usbmidi_input_stop(p);
2432 	mutex_unlock(&umidi->mutex);
2433 }
2434 EXPORT_SYMBOL(snd_usbmidi_suspend);
2435 
2436 /*
2437  * Resume. Typically called from the USB resume callback.
2438  */
2439 void snd_usbmidi_resume(struct list_head *p)
2440 {
2441 	struct snd_usb_midi *umidi;
2442 
2443 	umidi = list_entry(p, struct snd_usb_midi, list);
2444 	mutex_lock(&umidi->mutex);
2445 	snd_usbmidi_input_start(p);
2446 	mutex_unlock(&umidi->mutex);
2447 }
2448 EXPORT_SYMBOL(snd_usbmidi_resume);
2449 
2450 /*
2451  * Creates and registers everything needed for a MIDI streaming interface.
2452  */
2453 int __snd_usbmidi_create(struct snd_card *card,
2454 			 struct usb_interface *iface,
2455 			 struct list_head *midi_list,
2456 			 const struct snd_usb_audio_quirk *quirk,
2457 			 unsigned int usb_id)
2458 {
2459 	struct snd_usb_midi *umidi;
2460 	struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2461 	int out_ports, in_ports;
2462 	int i, err;
2463 
2464 	umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2465 	if (!umidi)
2466 		return -ENOMEM;
2467 	umidi->dev = interface_to_usbdev(iface);
2468 	umidi->card = card;
2469 	umidi->iface = iface;
2470 	umidi->quirk = quirk;
2471 	umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2472 	spin_lock_init(&umidi->disc_lock);
2473 	init_rwsem(&umidi->disc_rwsem);
2474 	mutex_init(&umidi->mutex);
2475 	if (!usb_id)
2476 		usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2477 			       le16_to_cpu(umidi->dev->descriptor.idProduct));
2478 	umidi->usb_id = usb_id;
2479 	timer_setup(&umidi->error_timer, snd_usbmidi_error_timer, 0);
2480 
2481 	/* detect the endpoint(s) to use */
2482 	memset(endpoints, 0, sizeof(endpoints));
2483 	switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2484 	case QUIRK_MIDI_STANDARD_INTERFACE:
2485 		err = snd_usbmidi_get_ms_info(umidi, endpoints);
2486 		if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2487 			umidi->usb_protocol_ops =
2488 				&snd_usbmidi_maudio_broken_running_status_ops;
2489 		break;
2490 	case QUIRK_MIDI_US122L:
2491 		umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2492 		fallthrough;
2493 	case QUIRK_MIDI_FIXED_ENDPOINT:
2494 		memcpy(&endpoints[0], quirk->data,
2495 		       sizeof(struct snd_usb_midi_endpoint_info));
2496 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2497 		break;
2498 	case QUIRK_MIDI_YAMAHA:
2499 		err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2500 		break;
2501 	case QUIRK_MIDI_ROLAND:
2502 		err = snd_usbmidi_detect_roland(umidi, &endpoints[0]);
2503 		break;
2504 	case QUIRK_MIDI_MIDIMAN:
2505 		umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2506 		memcpy(&endpoints[0], quirk->data,
2507 		       sizeof(struct snd_usb_midi_endpoint_info));
2508 		err = 0;
2509 		break;
2510 	case QUIRK_MIDI_NOVATION:
2511 		umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2512 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2513 		break;
2514 	case QUIRK_MIDI_RAW_BYTES:
2515 		umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2516 		/*
2517 		 * Interface 1 contains isochronous endpoints, but with the same
2518 		 * numbers as in interface 0.  Since it is interface 1 that the
2519 		 * USB core has most recently seen, these descriptors are now
2520 		 * associated with the endpoint numbers.  This will foul up our
2521 		 * attempts to submit bulk/interrupt URBs to the endpoints in
2522 		 * interface 0, so we have to make sure that the USB core looks
2523 		 * again at interface 0 by calling usb_set_interface() on it.
2524 		 */
2525 		if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2526 			usb_set_interface(umidi->dev, 0, 0);
2527 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2528 		break;
2529 	case QUIRK_MIDI_EMAGIC:
2530 		umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2531 		memcpy(&endpoints[0], quirk->data,
2532 		       sizeof(struct snd_usb_midi_endpoint_info));
2533 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2534 		break;
2535 	case QUIRK_MIDI_CME:
2536 		umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2537 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2538 		break;
2539 	case QUIRK_MIDI_AKAI:
2540 		umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2541 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2542 		/* endpoint 1 is input-only */
2543 		endpoints[1].out_cables = 0;
2544 		break;
2545 	case QUIRK_MIDI_FTDI:
2546 		umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2547 
2548 		/* set baud rate to 31250 (48 MHz / 16 / 96) */
2549 		err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2550 				      3, 0x40, 0x60, 0, NULL, 0, 1000);
2551 		if (err < 0)
2552 			break;
2553 
2554 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2555 		break;
2556 	case QUIRK_MIDI_CH345:
2557 		umidi->usb_protocol_ops = &snd_usbmidi_ch345_broken_sysex_ops;
2558 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2559 		break;
2560 	default:
2561 		dev_err(&umidi->dev->dev, "invalid quirk type %d\n",
2562 			quirk->type);
2563 		err = -ENXIO;
2564 		break;
2565 	}
2566 	if (err < 0)
2567 		goto free_midi;
2568 
2569 	/* create rawmidi device */
2570 	out_ports = 0;
2571 	in_ports = 0;
2572 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2573 		out_ports += hweight16(endpoints[i].out_cables);
2574 		in_ports += hweight16(endpoints[i].in_cables);
2575 	}
2576 	err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2577 	if (err < 0)
2578 		goto free_midi;
2579 
2580 	/* create endpoint/port structures */
2581 	if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2582 		err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2583 	else
2584 		err = snd_usbmidi_create_endpoints(umidi, endpoints);
2585 	if (err < 0)
2586 		goto exit;
2587 
2588 	usb_autopm_get_interface_no_resume(umidi->iface);
2589 
2590 	list_add_tail(&umidi->list, midi_list);
2591 	return 0;
2592 
2593 free_midi:
2594 	kfree(umidi);
2595 exit:
2596 	return err;
2597 }
2598 EXPORT_SYMBOL(__snd_usbmidi_create);
2599