1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 51 #include <sound/core.h> 52 #include <sound/control.h> 53 #include <sound/rawmidi.h> 54 #include <sound/asequencer.h> 55 #include "usbaudio.h" 56 #include "midi.h" 57 #include "helper.h" 58 59 /* 60 * define this to log all USB packets 61 */ 62 /* #define DUMP_PACKETS */ 63 64 /* 65 * how long to wait after some USB errors, so that khubd can disconnect() us 66 * without too many spurious errors 67 */ 68 #define ERROR_DELAY_JIFFIES (HZ / 10) 69 70 #define OUTPUT_URBS 7 71 #define INPUT_URBS 7 72 73 74 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 75 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 76 MODULE_LICENSE("Dual BSD/GPL"); 77 78 79 struct usb_ms_header_descriptor { 80 __u8 bLength; 81 __u8 bDescriptorType; 82 __u8 bDescriptorSubtype; 83 __u8 bcdMSC[2]; 84 __le16 wTotalLength; 85 } __attribute__ ((packed)); 86 87 struct usb_ms_endpoint_descriptor { 88 __u8 bLength; 89 __u8 bDescriptorType; 90 __u8 bDescriptorSubtype; 91 __u8 bNumEmbMIDIJack; 92 __u8 baAssocJackID[0]; 93 } __attribute__ ((packed)); 94 95 struct snd_usb_midi_in_endpoint; 96 struct snd_usb_midi_out_endpoint; 97 struct snd_usb_midi_endpoint; 98 99 struct usb_protocol_ops { 100 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 101 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 102 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 103 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*); 104 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*); 105 }; 106 107 struct snd_usb_midi { 108 struct usb_device *dev; 109 struct snd_card *card; 110 struct usb_interface *iface; 111 const struct snd_usb_audio_quirk *quirk; 112 struct snd_rawmidi *rmidi; 113 struct usb_protocol_ops* usb_protocol_ops; 114 struct list_head list; 115 struct timer_list error_timer; 116 spinlock_t disc_lock; 117 struct mutex mutex; 118 u32 usb_id; 119 int next_midi_device; 120 121 struct snd_usb_midi_endpoint { 122 struct snd_usb_midi_out_endpoint *out; 123 struct snd_usb_midi_in_endpoint *in; 124 } endpoints[MIDI_MAX_ENDPOINTS]; 125 unsigned long input_triggered; 126 unsigned int opened; 127 unsigned char disconnected; 128 129 struct snd_kcontrol *roland_load_ctl; 130 }; 131 132 struct snd_usb_midi_out_endpoint { 133 struct snd_usb_midi* umidi; 134 struct out_urb_context { 135 struct urb *urb; 136 struct snd_usb_midi_out_endpoint *ep; 137 } urbs[OUTPUT_URBS]; 138 unsigned int active_urbs; 139 unsigned int drain_urbs; 140 int max_transfer; /* size of urb buffer */ 141 struct tasklet_struct tasklet; 142 unsigned int next_urb; 143 spinlock_t buffer_lock; 144 145 struct usbmidi_out_port { 146 struct snd_usb_midi_out_endpoint* ep; 147 struct snd_rawmidi_substream *substream; 148 int active; 149 uint8_t cable; /* cable number << 4 */ 150 uint8_t state; 151 #define STATE_UNKNOWN 0 152 #define STATE_1PARAM 1 153 #define STATE_2PARAM_1 2 154 #define STATE_2PARAM_2 3 155 #define STATE_SYSEX_0 4 156 #define STATE_SYSEX_1 5 157 #define STATE_SYSEX_2 6 158 uint8_t data[2]; 159 } ports[0x10]; 160 int current_port; 161 162 wait_queue_head_t drain_wait; 163 }; 164 165 struct snd_usb_midi_in_endpoint { 166 struct snd_usb_midi* umidi; 167 struct urb* urbs[INPUT_URBS]; 168 struct usbmidi_in_port { 169 struct snd_rawmidi_substream *substream; 170 u8 running_status_length; 171 } ports[0x10]; 172 u8 seen_f5; 173 u8 error_resubmit; 174 int current_port; 175 }; 176 177 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep); 178 179 static const uint8_t snd_usbmidi_cin_length[] = { 180 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 181 }; 182 183 /* 184 * Submits the URB, with error handling. 185 */ 186 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags) 187 { 188 int err = usb_submit_urb(urb, flags); 189 if (err < 0 && err != -ENODEV) 190 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err); 191 return err; 192 } 193 194 /* 195 * Error handling for URB completion functions. 196 */ 197 static int snd_usbmidi_urb_error(int status) 198 { 199 switch (status) { 200 /* manually unlinked, or device gone */ 201 case -ENOENT: 202 case -ECONNRESET: 203 case -ESHUTDOWN: 204 case -ENODEV: 205 return -ENODEV; 206 /* errors that might occur during unplugging */ 207 case -EPROTO: 208 case -ETIME: 209 case -EILSEQ: 210 return -EIO; 211 default: 212 snd_printk(KERN_ERR "urb status %d\n", status); 213 return 0; /* continue */ 214 } 215 } 216 217 /* 218 * Receives a chunk of MIDI data. 219 */ 220 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx, 221 uint8_t* data, int length) 222 { 223 struct usbmidi_in_port* port = &ep->ports[portidx]; 224 225 if (!port->substream) { 226 snd_printd("unexpected port %d!\n", portidx); 227 return; 228 } 229 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 230 return; 231 snd_rawmidi_receive(port->substream, data, length); 232 } 233 234 #ifdef DUMP_PACKETS 235 static void dump_urb(const char *type, const u8 *data, int length) 236 { 237 snd_printk(KERN_DEBUG "%s packet: [", type); 238 for (; length > 0; ++data, --length) 239 printk(" %02x", *data); 240 printk(" ]\n"); 241 } 242 #else 243 #define dump_urb(type, data, length) /* nothing */ 244 #endif 245 246 /* 247 * Processes the data read from the device. 248 */ 249 static void snd_usbmidi_in_urb_complete(struct urb* urb) 250 { 251 struct snd_usb_midi_in_endpoint* ep = urb->context; 252 253 if (urb->status == 0) { 254 dump_urb("received", urb->transfer_buffer, urb->actual_length); 255 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 256 urb->actual_length); 257 } else { 258 int err = snd_usbmidi_urb_error(urb->status); 259 if (err < 0) { 260 if (err != -ENODEV) { 261 ep->error_resubmit = 1; 262 mod_timer(&ep->umidi->error_timer, 263 jiffies + ERROR_DELAY_JIFFIES); 264 } 265 return; 266 } 267 } 268 269 urb->dev = ep->umidi->dev; 270 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 271 } 272 273 static void snd_usbmidi_out_urb_complete(struct urb* urb) 274 { 275 struct out_urb_context *context = urb->context; 276 struct snd_usb_midi_out_endpoint* ep = context->ep; 277 unsigned int urb_index; 278 279 spin_lock(&ep->buffer_lock); 280 urb_index = context - ep->urbs; 281 ep->active_urbs &= ~(1 << urb_index); 282 if (unlikely(ep->drain_urbs)) { 283 ep->drain_urbs &= ~(1 << urb_index); 284 wake_up(&ep->drain_wait); 285 } 286 spin_unlock(&ep->buffer_lock); 287 if (urb->status < 0) { 288 int err = snd_usbmidi_urb_error(urb->status); 289 if (err < 0) { 290 if (err != -ENODEV) 291 mod_timer(&ep->umidi->error_timer, 292 jiffies + ERROR_DELAY_JIFFIES); 293 return; 294 } 295 } 296 snd_usbmidi_do_output(ep); 297 } 298 299 /* 300 * This is called when some data should be transferred to the device 301 * (from one or more substreams). 302 */ 303 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep) 304 { 305 unsigned int urb_index; 306 struct urb* urb; 307 unsigned long flags; 308 309 spin_lock_irqsave(&ep->buffer_lock, flags); 310 if (ep->umidi->disconnected) { 311 spin_unlock_irqrestore(&ep->buffer_lock, flags); 312 return; 313 } 314 315 urb_index = ep->next_urb; 316 for (;;) { 317 if (!(ep->active_urbs & (1 << urb_index))) { 318 urb = ep->urbs[urb_index].urb; 319 urb->transfer_buffer_length = 0; 320 ep->umidi->usb_protocol_ops->output(ep, urb); 321 if (urb->transfer_buffer_length == 0) 322 break; 323 324 dump_urb("sending", urb->transfer_buffer, 325 urb->transfer_buffer_length); 326 urb->dev = ep->umidi->dev; 327 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 328 break; 329 ep->active_urbs |= 1 << urb_index; 330 } 331 if (++urb_index >= OUTPUT_URBS) 332 urb_index = 0; 333 if (urb_index == ep->next_urb) 334 break; 335 } 336 ep->next_urb = urb_index; 337 spin_unlock_irqrestore(&ep->buffer_lock, flags); 338 } 339 340 static void snd_usbmidi_out_tasklet(unsigned long data) 341 { 342 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data; 343 344 snd_usbmidi_do_output(ep); 345 } 346 347 /* called after transfers had been interrupted due to some USB error */ 348 static void snd_usbmidi_error_timer(unsigned long data) 349 { 350 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data; 351 unsigned int i, j; 352 353 spin_lock(&umidi->disc_lock); 354 if (umidi->disconnected) { 355 spin_unlock(&umidi->disc_lock); 356 return; 357 } 358 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 359 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 360 if (in && in->error_resubmit) { 361 in->error_resubmit = 0; 362 for (j = 0; j < INPUT_URBS; ++j) { 363 in->urbs[j]->dev = umidi->dev; 364 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 365 } 366 } 367 if (umidi->endpoints[i].out) 368 snd_usbmidi_do_output(umidi->endpoints[i].out); 369 } 370 spin_unlock(&umidi->disc_lock); 371 } 372 373 /* helper function to send static data that may not DMA-able */ 374 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep, 375 const void *data, int len) 376 { 377 int err = 0; 378 void *buf = kmemdup(data, len, GFP_KERNEL); 379 if (!buf) 380 return -ENOMEM; 381 dump_urb("sending", buf, len); 382 if (ep->urbs[0].urb) 383 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 384 buf, len, NULL, 250); 385 kfree(buf); 386 return err; 387 } 388 389 /* 390 * Standard USB MIDI protocol: see the spec. 391 * Midiman protocol: like the standard protocol, but the control byte is the 392 * fourth byte in each packet, and uses length instead of CIN. 393 */ 394 395 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep, 396 uint8_t* buffer, int buffer_length) 397 { 398 int i; 399 400 for (i = 0; i + 3 < buffer_length; i += 4) 401 if (buffer[i] != 0) { 402 int cable = buffer[i] >> 4; 403 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 404 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 405 } 406 } 407 408 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep, 409 uint8_t* buffer, int buffer_length) 410 { 411 int i; 412 413 for (i = 0; i + 3 < buffer_length; i += 4) 414 if (buffer[i + 3] != 0) { 415 int port = buffer[i + 3] >> 4; 416 int length = buffer[i + 3] & 3; 417 snd_usbmidi_input_data(ep, port, &buffer[i], length); 418 } 419 } 420 421 /* 422 * Buggy M-Audio device: running status on input results in a packet that has 423 * the data bytes but not the status byte and that is marked with CIN 4. 424 */ 425 static void snd_usbmidi_maudio_broken_running_status_input( 426 struct snd_usb_midi_in_endpoint* ep, 427 uint8_t* buffer, int buffer_length) 428 { 429 int i; 430 431 for (i = 0; i + 3 < buffer_length; i += 4) 432 if (buffer[i] != 0) { 433 int cable = buffer[i] >> 4; 434 u8 cin = buffer[i] & 0x0f; 435 struct usbmidi_in_port *port = &ep->ports[cable]; 436 int length; 437 438 length = snd_usbmidi_cin_length[cin]; 439 if (cin == 0xf && buffer[i + 1] >= 0xf8) 440 ; /* realtime msg: no running status change */ 441 else if (cin >= 0x8 && cin <= 0xe) 442 /* channel msg */ 443 port->running_status_length = length - 1; 444 else if (cin == 0x4 && 445 port->running_status_length != 0 && 446 buffer[i + 1] < 0x80) 447 /* CIN 4 that is not a SysEx */ 448 length = port->running_status_length; 449 else 450 /* 451 * All other msgs cannot begin running status. 452 * (A channel msg sent as two or three CIN 0xF 453 * packets could in theory, but this device 454 * doesn't use this format.) 455 */ 456 port->running_status_length = 0; 457 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 458 } 459 } 460 461 /* 462 * CME protocol: like the standard protocol, but SysEx commands are sent as a 463 * single USB packet preceded by a 0x0F byte. 464 */ 465 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 466 uint8_t *buffer, int buffer_length) 467 { 468 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 469 snd_usbmidi_standard_input(ep, buffer, buffer_length); 470 else 471 snd_usbmidi_input_data(ep, buffer[0] >> 4, 472 &buffer[1], buffer_length - 1); 473 } 474 475 /* 476 * Adds one USB MIDI packet to the output buffer. 477 */ 478 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0, 479 uint8_t p1, uint8_t p2, uint8_t p3) 480 { 481 482 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 483 buf[0] = p0; 484 buf[1] = p1; 485 buf[2] = p2; 486 buf[3] = p3; 487 urb->transfer_buffer_length += 4; 488 } 489 490 /* 491 * Adds one Midiman packet to the output buffer. 492 */ 493 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0, 494 uint8_t p1, uint8_t p2, uint8_t p3) 495 { 496 497 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 498 buf[0] = p1; 499 buf[1] = p2; 500 buf[2] = p3; 501 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 502 urb->transfer_buffer_length += 4; 503 } 504 505 /* 506 * Converts MIDI commands to USB MIDI packets. 507 */ 508 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port, 509 uint8_t b, struct urb* urb) 510 { 511 uint8_t p0 = port->cable; 512 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 513 port->ep->umidi->usb_protocol_ops->output_packet; 514 515 if (b >= 0xf8) { 516 output_packet(urb, p0 | 0x0f, b, 0, 0); 517 } else if (b >= 0xf0) { 518 switch (b) { 519 case 0xf0: 520 port->data[0] = b; 521 port->state = STATE_SYSEX_1; 522 break; 523 case 0xf1: 524 case 0xf3: 525 port->data[0] = b; 526 port->state = STATE_1PARAM; 527 break; 528 case 0xf2: 529 port->data[0] = b; 530 port->state = STATE_2PARAM_1; 531 break; 532 case 0xf4: 533 case 0xf5: 534 port->state = STATE_UNKNOWN; 535 break; 536 case 0xf6: 537 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 538 port->state = STATE_UNKNOWN; 539 break; 540 case 0xf7: 541 switch (port->state) { 542 case STATE_SYSEX_0: 543 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 544 break; 545 case STATE_SYSEX_1: 546 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); 547 break; 548 case STATE_SYSEX_2: 549 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); 550 break; 551 } 552 port->state = STATE_UNKNOWN; 553 break; 554 } 555 } else if (b >= 0x80) { 556 port->data[0] = b; 557 if (b >= 0xc0 && b <= 0xdf) 558 port->state = STATE_1PARAM; 559 else 560 port->state = STATE_2PARAM_1; 561 } else { /* b < 0x80 */ 562 switch (port->state) { 563 case STATE_1PARAM: 564 if (port->data[0] < 0xf0) { 565 p0 |= port->data[0] >> 4; 566 } else { 567 p0 |= 0x02; 568 port->state = STATE_UNKNOWN; 569 } 570 output_packet(urb, p0, port->data[0], b, 0); 571 break; 572 case STATE_2PARAM_1: 573 port->data[1] = b; 574 port->state = STATE_2PARAM_2; 575 break; 576 case STATE_2PARAM_2: 577 if (port->data[0] < 0xf0) { 578 p0 |= port->data[0] >> 4; 579 port->state = STATE_2PARAM_1; 580 } else { 581 p0 |= 0x03; 582 port->state = STATE_UNKNOWN; 583 } 584 output_packet(urb, p0, port->data[0], port->data[1], b); 585 break; 586 case STATE_SYSEX_0: 587 port->data[0] = b; 588 port->state = STATE_SYSEX_1; 589 break; 590 case STATE_SYSEX_1: 591 port->data[1] = b; 592 port->state = STATE_SYSEX_2; 593 break; 594 case STATE_SYSEX_2: 595 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); 596 port->state = STATE_SYSEX_0; 597 break; 598 } 599 } 600 } 601 602 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep, 603 struct urb *urb) 604 { 605 int p; 606 607 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 608 for (p = 0; p < 0x10; ++p) { 609 struct usbmidi_out_port* port = &ep->ports[p]; 610 if (!port->active) 611 continue; 612 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 613 uint8_t b; 614 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 615 port->active = 0; 616 break; 617 } 618 snd_usbmidi_transmit_byte(port, b, urb); 619 } 620 } 621 } 622 623 static struct usb_protocol_ops snd_usbmidi_standard_ops = { 624 .input = snd_usbmidi_standard_input, 625 .output = snd_usbmidi_standard_output, 626 .output_packet = snd_usbmidi_output_standard_packet, 627 }; 628 629 static struct usb_protocol_ops snd_usbmidi_midiman_ops = { 630 .input = snd_usbmidi_midiman_input, 631 .output = snd_usbmidi_standard_output, 632 .output_packet = snd_usbmidi_output_midiman_packet, 633 }; 634 635 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 636 .input = snd_usbmidi_maudio_broken_running_status_input, 637 .output = snd_usbmidi_standard_output, 638 .output_packet = snd_usbmidi_output_standard_packet, 639 }; 640 641 static struct usb_protocol_ops snd_usbmidi_cme_ops = { 642 .input = snd_usbmidi_cme_input, 643 .output = snd_usbmidi_standard_output, 644 .output_packet = snd_usbmidi_output_standard_packet, 645 }; 646 647 /* 648 * AKAI MPD16 protocol: 649 * 650 * For control port (endpoint 1): 651 * ============================== 652 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 653 * SysEx message (msg_len=9 bytes long). 654 * 655 * For data port (endpoint 2): 656 * =========================== 657 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 658 * MIDI message (msg_len bytes long) 659 * 660 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 661 */ 662 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 663 uint8_t *buffer, int buffer_length) 664 { 665 unsigned int pos = 0; 666 unsigned int len = (unsigned int)buffer_length; 667 while (pos < len) { 668 unsigned int port = (buffer[pos] >> 4) - 1; 669 unsigned int msg_len = buffer[pos] & 0x0f; 670 pos++; 671 if (pos + msg_len <= len && port < 2) 672 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 673 pos += msg_len; 674 } 675 } 676 677 #define MAX_AKAI_SYSEX_LEN 9 678 679 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 680 struct urb *urb) 681 { 682 uint8_t *msg; 683 int pos, end, count, buf_end; 684 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 685 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 686 687 if (!ep->ports[0].active) 688 return; 689 690 msg = urb->transfer_buffer + urb->transfer_buffer_length; 691 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 692 693 /* only try adding more data when there's space for at least 1 SysEx */ 694 while (urb->transfer_buffer_length < buf_end) { 695 count = snd_rawmidi_transmit_peek(substream, 696 tmp, MAX_AKAI_SYSEX_LEN); 697 if (!count) { 698 ep->ports[0].active = 0; 699 return; 700 } 701 /* try to skip non-SysEx data */ 702 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 703 ; 704 705 if (pos > 0) { 706 snd_rawmidi_transmit_ack(substream, pos); 707 continue; 708 } 709 710 /* look for the start or end marker */ 711 for (end = 1; end < count && tmp[end] < 0xF0; end++) 712 ; 713 714 /* next SysEx started before the end of current one */ 715 if (end < count && tmp[end] == 0xF0) { 716 /* it's incomplete - drop it */ 717 snd_rawmidi_transmit_ack(substream, end); 718 continue; 719 } 720 /* SysEx complete */ 721 if (end < count && tmp[end] == 0xF7) { 722 /* queue it, ack it, and get the next one */ 723 count = end + 1; 724 msg[0] = 0x10 | count; 725 memcpy(&msg[1], tmp, count); 726 snd_rawmidi_transmit_ack(substream, count); 727 urb->transfer_buffer_length += count + 1; 728 msg += count + 1; 729 continue; 730 } 731 /* less than 9 bytes and no end byte - wait for more */ 732 if (count < MAX_AKAI_SYSEX_LEN) { 733 ep->ports[0].active = 0; 734 return; 735 } 736 /* 9 bytes and no end marker in sight - malformed, skip it */ 737 snd_rawmidi_transmit_ack(substream, count); 738 } 739 } 740 741 static struct usb_protocol_ops snd_usbmidi_akai_ops = { 742 .input = snd_usbmidi_akai_input, 743 .output = snd_usbmidi_akai_output, 744 }; 745 746 /* 747 * Novation USB MIDI protocol: number of data bytes is in the first byte 748 * (when receiving) (+1!) or in the second byte (when sending); data begins 749 * at the third byte. 750 */ 751 752 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep, 753 uint8_t* buffer, int buffer_length) 754 { 755 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 756 return; 757 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 758 } 759 760 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep, 761 struct urb *urb) 762 { 763 uint8_t* transfer_buffer; 764 int count; 765 766 if (!ep->ports[0].active) 767 return; 768 transfer_buffer = urb->transfer_buffer; 769 count = snd_rawmidi_transmit(ep->ports[0].substream, 770 &transfer_buffer[2], 771 ep->max_transfer - 2); 772 if (count < 1) { 773 ep->ports[0].active = 0; 774 return; 775 } 776 transfer_buffer[0] = 0; 777 transfer_buffer[1] = count; 778 urb->transfer_buffer_length = 2 + count; 779 } 780 781 static struct usb_protocol_ops snd_usbmidi_novation_ops = { 782 .input = snd_usbmidi_novation_input, 783 .output = snd_usbmidi_novation_output, 784 }; 785 786 /* 787 * "raw" protocol: used by the MOTU FastLane. 788 */ 789 790 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep, 791 uint8_t* buffer, int buffer_length) 792 { 793 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 794 } 795 796 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep, 797 struct urb *urb) 798 { 799 int count; 800 801 if (!ep->ports[0].active) 802 return; 803 count = snd_rawmidi_transmit(ep->ports[0].substream, 804 urb->transfer_buffer, 805 ep->max_transfer); 806 if (count < 1) { 807 ep->ports[0].active = 0; 808 return; 809 } 810 urb->transfer_buffer_length = count; 811 } 812 813 static struct usb_protocol_ops snd_usbmidi_raw_ops = { 814 .input = snd_usbmidi_raw_input, 815 .output = snd_usbmidi_raw_output, 816 }; 817 818 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 819 uint8_t *buffer, int buffer_length) 820 { 821 if (buffer_length != 9) 822 return; 823 buffer_length = 8; 824 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 825 buffer_length--; 826 if (buffer_length) 827 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 828 } 829 830 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 831 struct urb *urb) 832 { 833 int count; 834 835 if (!ep->ports[0].active) 836 return; 837 count = snd_usb_get_speed(ep->umidi->dev) == USB_SPEED_HIGH ? 1 : 2; 838 count = snd_rawmidi_transmit(ep->ports[0].substream, 839 urb->transfer_buffer, 840 count); 841 if (count < 1) { 842 ep->ports[0].active = 0; 843 return; 844 } 845 846 memset(urb->transfer_buffer + count, 0xFD, 9 - count); 847 urb->transfer_buffer_length = count; 848 } 849 850 static struct usb_protocol_ops snd_usbmidi_122l_ops = { 851 .input = snd_usbmidi_us122l_input, 852 .output = snd_usbmidi_us122l_output, 853 }; 854 855 /* 856 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 857 */ 858 859 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep) 860 { 861 static const u8 init_data[] = { 862 /* initialization magic: "get version" */ 863 0xf0, 864 0x00, 0x20, 0x31, /* Emagic */ 865 0x64, /* Unitor8 */ 866 0x0b, /* version number request */ 867 0x00, /* command version */ 868 0x00, /* EEPROM, box 0 */ 869 0xf7 870 }; 871 send_bulk_static_data(ep, init_data, sizeof(init_data)); 872 /* while we're at it, pour on more magic */ 873 send_bulk_static_data(ep, init_data, sizeof(init_data)); 874 } 875 876 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep) 877 { 878 static const u8 finish_data[] = { 879 /* switch to patch mode with last preset */ 880 0xf0, 881 0x00, 0x20, 0x31, /* Emagic */ 882 0x64, /* Unitor8 */ 883 0x10, /* patch switch command */ 884 0x00, /* command version */ 885 0x7f, /* to all boxes */ 886 0x40, /* last preset in EEPROM */ 887 0xf7 888 }; 889 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 890 } 891 892 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep, 893 uint8_t* buffer, int buffer_length) 894 { 895 int i; 896 897 /* FF indicates end of valid data */ 898 for (i = 0; i < buffer_length; ++i) 899 if (buffer[i] == 0xff) { 900 buffer_length = i; 901 break; 902 } 903 904 /* handle F5 at end of last buffer */ 905 if (ep->seen_f5) 906 goto switch_port; 907 908 while (buffer_length > 0) { 909 /* determine size of data until next F5 */ 910 for (i = 0; i < buffer_length; ++i) 911 if (buffer[i] == 0xf5) 912 break; 913 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 914 buffer += i; 915 buffer_length -= i; 916 917 if (buffer_length <= 0) 918 break; 919 /* assert(buffer[0] == 0xf5); */ 920 ep->seen_f5 = 1; 921 ++buffer; 922 --buffer_length; 923 924 switch_port: 925 if (buffer_length <= 0) 926 break; 927 if (buffer[0] < 0x80) { 928 ep->current_port = (buffer[0] - 1) & 15; 929 ++buffer; 930 --buffer_length; 931 } 932 ep->seen_f5 = 0; 933 } 934 } 935 936 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep, 937 struct urb *urb) 938 { 939 int port0 = ep->current_port; 940 uint8_t* buf = urb->transfer_buffer; 941 int buf_free = ep->max_transfer; 942 int length, i; 943 944 for (i = 0; i < 0x10; ++i) { 945 /* round-robin, starting at the last current port */ 946 int portnum = (port0 + i) & 15; 947 struct usbmidi_out_port* port = &ep->ports[portnum]; 948 949 if (!port->active) 950 continue; 951 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 952 port->active = 0; 953 continue; 954 } 955 956 if (portnum != ep->current_port) { 957 if (buf_free < 2) 958 break; 959 ep->current_port = portnum; 960 buf[0] = 0xf5; 961 buf[1] = (portnum + 1) & 15; 962 buf += 2; 963 buf_free -= 2; 964 } 965 966 if (buf_free < 1) 967 break; 968 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 969 if (length > 0) { 970 buf += length; 971 buf_free -= length; 972 if (buf_free < 1) 973 break; 974 } 975 } 976 if (buf_free < ep->max_transfer && buf_free > 0) { 977 *buf = 0xff; 978 --buf_free; 979 } 980 urb->transfer_buffer_length = ep->max_transfer - buf_free; 981 } 982 983 static struct usb_protocol_ops snd_usbmidi_emagic_ops = { 984 .input = snd_usbmidi_emagic_input, 985 .output = snd_usbmidi_emagic_output, 986 .init_out_endpoint = snd_usbmidi_emagic_init_out, 987 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 988 }; 989 990 991 static void update_roland_altsetting(struct snd_usb_midi* umidi) 992 { 993 struct usb_interface *intf; 994 struct usb_host_interface *hostif; 995 struct usb_interface_descriptor *intfd; 996 int is_light_load; 997 998 intf = umidi->iface; 999 is_light_load = intf->cur_altsetting != intf->altsetting; 1000 if (umidi->roland_load_ctl->private_value == is_light_load) 1001 return; 1002 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1003 intfd = get_iface_desc(hostif); 1004 snd_usbmidi_input_stop(&umidi->list); 1005 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1006 intfd->bAlternateSetting); 1007 snd_usbmidi_input_start(&umidi->list); 1008 } 1009 1010 static void substream_open(struct snd_rawmidi_substream *substream, int open) 1011 { 1012 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1013 struct snd_kcontrol *ctl; 1014 1015 mutex_lock(&umidi->mutex); 1016 if (open) { 1017 if (umidi->opened++ == 0 && umidi->roland_load_ctl) { 1018 ctl = umidi->roland_load_ctl; 1019 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1020 snd_ctl_notify(umidi->card, 1021 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1022 update_roland_altsetting(umidi); 1023 } 1024 } else { 1025 if (--umidi->opened == 0 && umidi->roland_load_ctl) { 1026 ctl = umidi->roland_load_ctl; 1027 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1028 snd_ctl_notify(umidi->card, 1029 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1030 } 1031 } 1032 mutex_unlock(&umidi->mutex); 1033 } 1034 1035 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1036 { 1037 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1038 struct usbmidi_out_port* port = NULL; 1039 int i, j; 1040 1041 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1042 if (umidi->endpoints[i].out) 1043 for (j = 0; j < 0x10; ++j) 1044 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1045 port = &umidi->endpoints[i].out->ports[j]; 1046 break; 1047 } 1048 if (!port) { 1049 snd_BUG(); 1050 return -ENXIO; 1051 } 1052 substream->runtime->private_data = port; 1053 port->state = STATE_UNKNOWN; 1054 substream_open(substream, 1); 1055 return 0; 1056 } 1057 1058 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1059 { 1060 substream_open(substream, 0); 1061 return 0; 1062 } 1063 1064 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1065 { 1066 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data; 1067 1068 port->active = up; 1069 if (up) { 1070 if (port->ep->umidi->disconnected) { 1071 /* gobble up remaining bytes to prevent wait in 1072 * snd_rawmidi_drain_output */ 1073 while (!snd_rawmidi_transmit_empty(substream)) 1074 snd_rawmidi_transmit_ack(substream, 1); 1075 return; 1076 } 1077 tasklet_schedule(&port->ep->tasklet); 1078 } 1079 } 1080 1081 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1082 { 1083 struct usbmidi_out_port* port = substream->runtime->private_data; 1084 struct snd_usb_midi_out_endpoint *ep = port->ep; 1085 unsigned int drain_urbs; 1086 DEFINE_WAIT(wait); 1087 long timeout = msecs_to_jiffies(50); 1088 1089 if (ep->umidi->disconnected) 1090 return; 1091 /* 1092 * The substream buffer is empty, but some data might still be in the 1093 * currently active URBs, so we have to wait for those to complete. 1094 */ 1095 spin_lock_irq(&ep->buffer_lock); 1096 drain_urbs = ep->active_urbs; 1097 if (drain_urbs) { 1098 ep->drain_urbs |= drain_urbs; 1099 do { 1100 prepare_to_wait(&ep->drain_wait, &wait, 1101 TASK_UNINTERRUPTIBLE); 1102 spin_unlock_irq(&ep->buffer_lock); 1103 timeout = schedule_timeout(timeout); 1104 spin_lock_irq(&ep->buffer_lock); 1105 drain_urbs &= ep->drain_urbs; 1106 } while (drain_urbs && timeout); 1107 finish_wait(&ep->drain_wait, &wait); 1108 } 1109 spin_unlock_irq(&ep->buffer_lock); 1110 } 1111 1112 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1113 { 1114 substream_open(substream, 1); 1115 return 0; 1116 } 1117 1118 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1119 { 1120 substream_open(substream, 0); 1121 return 0; 1122 } 1123 1124 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1125 { 1126 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1127 1128 if (up) 1129 set_bit(substream->number, &umidi->input_triggered); 1130 else 1131 clear_bit(substream->number, &umidi->input_triggered); 1132 } 1133 1134 static struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1135 .open = snd_usbmidi_output_open, 1136 .close = snd_usbmidi_output_close, 1137 .trigger = snd_usbmidi_output_trigger, 1138 .drain = snd_usbmidi_output_drain, 1139 }; 1140 1141 static struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1142 .open = snd_usbmidi_input_open, 1143 .close = snd_usbmidi_input_close, 1144 .trigger = snd_usbmidi_input_trigger 1145 }; 1146 1147 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1148 unsigned int buffer_length) 1149 { 1150 usb_free_coherent(umidi->dev, buffer_length, 1151 urb->transfer_buffer, urb->transfer_dma); 1152 usb_free_urb(urb); 1153 } 1154 1155 /* 1156 * Frees an input endpoint. 1157 * May be called when ep hasn't been initialized completely. 1158 */ 1159 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep) 1160 { 1161 unsigned int i; 1162 1163 for (i = 0; i < INPUT_URBS; ++i) 1164 if (ep->urbs[i]) 1165 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1166 ep->urbs[i]->transfer_buffer_length); 1167 kfree(ep); 1168 } 1169 1170 /* 1171 * Creates an input endpoint. 1172 */ 1173 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi, 1174 struct snd_usb_midi_endpoint_info* ep_info, 1175 struct snd_usb_midi_endpoint* rep) 1176 { 1177 struct snd_usb_midi_in_endpoint* ep; 1178 void* buffer; 1179 unsigned int pipe; 1180 int length; 1181 unsigned int i; 1182 1183 rep->in = NULL; 1184 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1185 if (!ep) 1186 return -ENOMEM; 1187 ep->umidi = umidi; 1188 1189 for (i = 0; i < INPUT_URBS; ++i) { 1190 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1191 if (!ep->urbs[i]) { 1192 snd_usbmidi_in_endpoint_delete(ep); 1193 return -ENOMEM; 1194 } 1195 } 1196 if (ep_info->in_interval) 1197 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1198 else 1199 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1200 length = usb_maxpacket(umidi->dev, pipe, 0); 1201 for (i = 0; i < INPUT_URBS; ++i) { 1202 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1203 &ep->urbs[i]->transfer_dma); 1204 if (!buffer) { 1205 snd_usbmidi_in_endpoint_delete(ep); 1206 return -ENOMEM; 1207 } 1208 if (ep_info->in_interval) 1209 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1210 pipe, buffer, length, 1211 snd_usbmidi_in_urb_complete, 1212 ep, ep_info->in_interval); 1213 else 1214 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1215 pipe, buffer, length, 1216 snd_usbmidi_in_urb_complete, ep); 1217 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1218 } 1219 1220 rep->in = ep; 1221 return 0; 1222 } 1223 1224 /* 1225 * Frees an output endpoint. 1226 * May be called when ep hasn't been initialized completely. 1227 */ 1228 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1229 { 1230 unsigned int i; 1231 1232 for (i = 0; i < OUTPUT_URBS; ++i) 1233 if (ep->urbs[i].urb) { 1234 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1235 ep->max_transfer); 1236 ep->urbs[i].urb = NULL; 1237 } 1238 } 1239 1240 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1241 { 1242 snd_usbmidi_out_endpoint_clear(ep); 1243 kfree(ep); 1244 } 1245 1246 /* 1247 * Creates an output endpoint, and initializes output ports. 1248 */ 1249 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi, 1250 struct snd_usb_midi_endpoint_info* ep_info, 1251 struct snd_usb_midi_endpoint* rep) 1252 { 1253 struct snd_usb_midi_out_endpoint* ep; 1254 unsigned int i; 1255 unsigned int pipe; 1256 void* buffer; 1257 1258 rep->out = NULL; 1259 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1260 if (!ep) 1261 return -ENOMEM; 1262 ep->umidi = umidi; 1263 1264 for (i = 0; i < OUTPUT_URBS; ++i) { 1265 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1266 if (!ep->urbs[i].urb) { 1267 snd_usbmidi_out_endpoint_delete(ep); 1268 return -ENOMEM; 1269 } 1270 ep->urbs[i].ep = ep; 1271 } 1272 if (ep_info->out_interval) 1273 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1274 else 1275 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1276 switch (umidi->usb_id) { 1277 default: 1278 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1279 break; 1280 /* 1281 * Various chips declare a packet size larger than 4 bytes, but 1282 * do not actually work with larger packets: 1283 */ 1284 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1285 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1286 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1287 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1288 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1289 ep->max_transfer = 4; 1290 break; 1291 } 1292 for (i = 0; i < OUTPUT_URBS; ++i) { 1293 buffer = usb_alloc_coherent(umidi->dev, 1294 ep->max_transfer, GFP_KERNEL, 1295 &ep->urbs[i].urb->transfer_dma); 1296 if (!buffer) { 1297 snd_usbmidi_out_endpoint_delete(ep); 1298 return -ENOMEM; 1299 } 1300 if (ep_info->out_interval) 1301 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1302 pipe, buffer, ep->max_transfer, 1303 snd_usbmidi_out_urb_complete, 1304 &ep->urbs[i], ep_info->out_interval); 1305 else 1306 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1307 pipe, buffer, ep->max_transfer, 1308 snd_usbmidi_out_urb_complete, 1309 &ep->urbs[i]); 1310 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1311 } 1312 1313 spin_lock_init(&ep->buffer_lock); 1314 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1315 init_waitqueue_head(&ep->drain_wait); 1316 1317 for (i = 0; i < 0x10; ++i) 1318 if (ep_info->out_cables & (1 << i)) { 1319 ep->ports[i].ep = ep; 1320 ep->ports[i].cable = i << 4; 1321 } 1322 1323 if (umidi->usb_protocol_ops->init_out_endpoint) 1324 umidi->usb_protocol_ops->init_out_endpoint(ep); 1325 1326 rep->out = ep; 1327 return 0; 1328 } 1329 1330 /* 1331 * Frees everything. 1332 */ 1333 static void snd_usbmidi_free(struct snd_usb_midi* umidi) 1334 { 1335 int i; 1336 1337 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1338 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1339 if (ep->out) 1340 snd_usbmidi_out_endpoint_delete(ep->out); 1341 if (ep->in) 1342 snd_usbmidi_in_endpoint_delete(ep->in); 1343 } 1344 mutex_destroy(&umidi->mutex); 1345 kfree(umidi); 1346 } 1347 1348 /* 1349 * Unlinks all URBs (must be done before the usb_device is deleted). 1350 */ 1351 void snd_usbmidi_disconnect(struct list_head* p) 1352 { 1353 struct snd_usb_midi* umidi; 1354 unsigned int i, j; 1355 1356 umidi = list_entry(p, struct snd_usb_midi, list); 1357 /* 1358 * an URB's completion handler may start the timer and 1359 * a timer may submit an URB. To reliably break the cycle 1360 * a flag under lock must be used 1361 */ 1362 spin_lock_irq(&umidi->disc_lock); 1363 umidi->disconnected = 1; 1364 spin_unlock_irq(&umidi->disc_lock); 1365 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1366 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1367 if (ep->out) 1368 tasklet_kill(&ep->out->tasklet); 1369 if (ep->out) { 1370 for (j = 0; j < OUTPUT_URBS; ++j) 1371 usb_kill_urb(ep->out->urbs[j].urb); 1372 if (umidi->usb_protocol_ops->finish_out_endpoint) 1373 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1374 ep->out->active_urbs = 0; 1375 if (ep->out->drain_urbs) { 1376 ep->out->drain_urbs = 0; 1377 wake_up(&ep->out->drain_wait); 1378 } 1379 } 1380 if (ep->in) 1381 for (j = 0; j < INPUT_URBS; ++j) 1382 usb_kill_urb(ep->in->urbs[j]); 1383 /* free endpoints here; later call can result in Oops */ 1384 if (ep->out) 1385 snd_usbmidi_out_endpoint_clear(ep->out); 1386 if (ep->in) { 1387 snd_usbmidi_in_endpoint_delete(ep->in); 1388 ep->in = NULL; 1389 } 1390 } 1391 del_timer_sync(&umidi->error_timer); 1392 } 1393 1394 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1395 { 1396 struct snd_usb_midi* umidi = rmidi->private_data; 1397 snd_usbmidi_free(umidi); 1398 } 1399 1400 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi, 1401 int stream, int number) 1402 { 1403 struct list_head* list; 1404 1405 list_for_each(list, &umidi->rmidi->streams[stream].substreams) { 1406 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list); 1407 if (substream->number == number) 1408 return substream; 1409 } 1410 return NULL; 1411 } 1412 1413 /* 1414 * This list specifies names for ports that do not fit into the standard 1415 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1416 * such as internal control or synthesizer ports. 1417 */ 1418 static struct port_info { 1419 u32 id; 1420 short int port; 1421 short int voices; 1422 const char *name; 1423 unsigned int seq_flags; 1424 } snd_usbmidi_port_info[] = { 1425 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1426 { .id = USB_ID(vendor, product), \ 1427 .port = num, .voices = voices_, \ 1428 .name = name_, .seq_flags = flags } 1429 #define EXTERNAL_PORT(vendor, product, num, name) \ 1430 PORT_INFO(vendor, product, num, name, 0, \ 1431 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1432 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1433 SNDRV_SEQ_PORT_TYPE_PORT) 1434 #define CONTROL_PORT(vendor, product, num, name) \ 1435 PORT_INFO(vendor, product, num, name, 0, \ 1436 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1437 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1438 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1439 PORT_INFO(vendor, product, num, name, voices, \ 1440 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1441 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1442 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1443 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1444 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1445 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1446 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1447 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1448 PORT_INFO(vendor, product, num, name, voices, \ 1449 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1450 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1451 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1452 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1453 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1454 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1455 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1456 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1457 /* Roland UA-100 */ 1458 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1459 /* Roland SC-8850 */ 1460 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1461 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1462 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1463 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1464 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1465 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1466 /* Roland U-8 */ 1467 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1468 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1469 /* Roland SC-8820 */ 1470 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1471 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1472 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1473 /* Roland SK-500 */ 1474 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1475 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1476 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1477 /* Roland SC-D70 */ 1478 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1479 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1480 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1481 /* Edirol UM-880 */ 1482 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1483 /* Edirol SD-90 */ 1484 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1485 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1486 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1487 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1488 /* Edirol UM-550 */ 1489 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1490 /* Edirol SD-20 */ 1491 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1492 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1493 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1494 /* Edirol SD-80 */ 1495 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1496 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1497 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1498 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1499 /* Edirol UA-700 */ 1500 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1501 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1502 /* Roland VariOS */ 1503 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1504 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1505 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1506 /* Edirol PCR */ 1507 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1508 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1509 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1510 /* BOSS GS-10 */ 1511 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1512 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1513 /* Edirol UA-1000 */ 1514 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1515 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1516 /* Edirol UR-80 */ 1517 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1518 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1519 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1520 /* Edirol PCR-A */ 1521 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1522 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1523 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1524 /* Edirol UM-3EX */ 1525 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1526 /* M-Audio MidiSport 8x8 */ 1527 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1528 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1529 /* MOTU Fastlane */ 1530 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1531 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1532 /* Emagic Unitor8/AMT8/MT4 */ 1533 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1534 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1535 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1536 /* Akai MPD16 */ 1537 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1538 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1539 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1540 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1541 /* Access Music Virus TI */ 1542 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1543 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1544 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1545 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1546 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1547 }; 1548 1549 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number) 1550 { 1551 int i; 1552 1553 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1554 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1555 snd_usbmidi_port_info[i].port == number) 1556 return &snd_usbmidi_port_info[i]; 1557 } 1558 return NULL; 1559 } 1560 1561 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1562 struct snd_seq_port_info *seq_port_info) 1563 { 1564 struct snd_usb_midi *umidi = rmidi->private_data; 1565 struct port_info *port_info; 1566 1567 /* TODO: read port flags from descriptors */ 1568 port_info = find_port_info(umidi, number); 1569 if (port_info) { 1570 seq_port_info->type = port_info->seq_flags; 1571 seq_port_info->midi_voices = port_info->voices; 1572 } 1573 } 1574 1575 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi, 1576 int stream, int number, 1577 struct snd_rawmidi_substream ** rsubstream) 1578 { 1579 struct port_info *port_info; 1580 const char *name_format; 1581 1582 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number); 1583 if (!substream) { 1584 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number); 1585 return; 1586 } 1587 1588 /* TODO: read port name from jack descriptor */ 1589 port_info = find_port_info(umidi, number); 1590 name_format = port_info ? port_info->name : "%s MIDI %d"; 1591 snprintf(substream->name, sizeof(substream->name), 1592 name_format, umidi->card->shortname, number + 1); 1593 1594 *rsubstream = substream; 1595 } 1596 1597 /* 1598 * Creates the endpoints and their ports. 1599 */ 1600 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi, 1601 struct snd_usb_midi_endpoint_info* endpoints) 1602 { 1603 int i, j, err; 1604 int out_ports = 0, in_ports = 0; 1605 1606 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1607 if (endpoints[i].out_cables) { 1608 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], 1609 &umidi->endpoints[i]); 1610 if (err < 0) 1611 return err; 1612 } 1613 if (endpoints[i].in_cables) { 1614 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], 1615 &umidi->endpoints[i]); 1616 if (err < 0) 1617 return err; 1618 } 1619 1620 for (j = 0; j < 0x10; ++j) { 1621 if (endpoints[i].out_cables & (1 << j)) { 1622 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, 1623 &umidi->endpoints[i].out->ports[j].substream); 1624 ++out_ports; 1625 } 1626 if (endpoints[i].in_cables & (1 << j)) { 1627 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, 1628 &umidi->endpoints[i].in->ports[j].substream); 1629 ++in_ports; 1630 } 1631 } 1632 } 1633 snd_printdd(KERN_INFO "created %d output and %d input ports\n", 1634 out_ports, in_ports); 1635 return 0; 1636 } 1637 1638 /* 1639 * Returns MIDIStreaming device capabilities. 1640 */ 1641 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi, 1642 struct snd_usb_midi_endpoint_info* endpoints) 1643 { 1644 struct usb_interface* intf; 1645 struct usb_host_interface *hostif; 1646 struct usb_interface_descriptor* intfd; 1647 struct usb_ms_header_descriptor* ms_header; 1648 struct usb_host_endpoint *hostep; 1649 struct usb_endpoint_descriptor* ep; 1650 struct usb_ms_endpoint_descriptor* ms_ep; 1651 int i, epidx; 1652 1653 intf = umidi->iface; 1654 if (!intf) 1655 return -ENXIO; 1656 hostif = &intf->altsetting[0]; 1657 intfd = get_iface_desc(hostif); 1658 ms_header = (struct usb_ms_header_descriptor*)hostif->extra; 1659 if (hostif->extralen >= 7 && 1660 ms_header->bLength >= 7 && 1661 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1662 ms_header->bDescriptorSubtype == UAC_HEADER) 1663 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n", 1664 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1665 else 1666 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n"); 1667 1668 epidx = 0; 1669 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1670 hostep = &hostif->endpoint[i]; 1671 ep = get_ep_desc(hostep); 1672 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1673 continue; 1674 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; 1675 if (hostep->extralen < 4 || 1676 ms_ep->bLength < 4 || 1677 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || 1678 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) 1679 continue; 1680 if (usb_endpoint_dir_out(ep)) { 1681 if (endpoints[epidx].out_ep) { 1682 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1683 snd_printk(KERN_WARNING "too many endpoints\n"); 1684 break; 1685 } 1686 } 1687 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1688 if (usb_endpoint_xfer_int(ep)) 1689 endpoints[epidx].out_interval = ep->bInterval; 1690 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1691 /* 1692 * Low speed bulk transfers don't exist, so 1693 * force interrupt transfers for devices like 1694 * ESI MIDI Mate that try to use them anyway. 1695 */ 1696 endpoints[epidx].out_interval = 1; 1697 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1698 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", 1699 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1700 } else { 1701 if (endpoints[epidx].in_ep) { 1702 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1703 snd_printk(KERN_WARNING "too many endpoints\n"); 1704 break; 1705 } 1706 } 1707 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1708 if (usb_endpoint_xfer_int(ep)) 1709 endpoints[epidx].in_interval = ep->bInterval; 1710 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1711 endpoints[epidx].in_interval = 1; 1712 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1713 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", 1714 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1715 } 1716 } 1717 return 0; 1718 } 1719 1720 static int roland_load_info(struct snd_kcontrol *kcontrol, 1721 struct snd_ctl_elem_info *info) 1722 { 1723 static const char *const names[] = { "High Load", "Light Load" }; 1724 1725 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1726 info->count = 1; 1727 info->value.enumerated.items = 2; 1728 if (info->value.enumerated.item > 1) 1729 info->value.enumerated.item = 1; 1730 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]); 1731 return 0; 1732 } 1733 1734 static int roland_load_get(struct snd_kcontrol *kcontrol, 1735 struct snd_ctl_elem_value *value) 1736 { 1737 value->value.enumerated.item[0] = kcontrol->private_value; 1738 return 0; 1739 } 1740 1741 static int roland_load_put(struct snd_kcontrol *kcontrol, 1742 struct snd_ctl_elem_value *value) 1743 { 1744 struct snd_usb_midi* umidi = kcontrol->private_data; 1745 int changed; 1746 1747 if (value->value.enumerated.item[0] > 1) 1748 return -EINVAL; 1749 mutex_lock(&umidi->mutex); 1750 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1751 if (changed) 1752 kcontrol->private_value = value->value.enumerated.item[0]; 1753 mutex_unlock(&umidi->mutex); 1754 return changed; 1755 } 1756 1757 static struct snd_kcontrol_new roland_load_ctl = { 1758 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1759 .name = "MIDI Input Mode", 1760 .info = roland_load_info, 1761 .get = roland_load_get, 1762 .put = roland_load_put, 1763 .private_value = 1, 1764 }; 1765 1766 /* 1767 * On Roland devices, use the second alternate setting to be able to use 1768 * the interrupt input endpoint. 1769 */ 1770 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi) 1771 { 1772 struct usb_interface* intf; 1773 struct usb_host_interface *hostif; 1774 struct usb_interface_descriptor* intfd; 1775 1776 intf = umidi->iface; 1777 if (!intf || intf->num_altsetting != 2) 1778 return; 1779 1780 hostif = &intf->altsetting[1]; 1781 intfd = get_iface_desc(hostif); 1782 if (intfd->bNumEndpoints != 2 || 1783 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || 1784 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) 1785 return; 1786 1787 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n", 1788 intfd->bAlternateSetting); 1789 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1790 intfd->bAlternateSetting); 1791 1792 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 1793 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 1794 umidi->roland_load_ctl = NULL; 1795 } 1796 1797 /* 1798 * Try to find any usable endpoints in the interface. 1799 */ 1800 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi, 1801 struct snd_usb_midi_endpoint_info* endpoint, 1802 int max_endpoints) 1803 { 1804 struct usb_interface* intf; 1805 struct usb_host_interface *hostif; 1806 struct usb_interface_descriptor* intfd; 1807 struct usb_endpoint_descriptor* epd; 1808 int i, out_eps = 0, in_eps = 0; 1809 1810 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 1811 snd_usbmidi_switch_roland_altsetting(umidi); 1812 1813 if (endpoint[0].out_ep || endpoint[0].in_ep) 1814 return 0; 1815 1816 intf = umidi->iface; 1817 if (!intf || intf->num_altsetting < 1) 1818 return -ENOENT; 1819 hostif = intf->cur_altsetting; 1820 intfd = get_iface_desc(hostif); 1821 1822 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1823 epd = get_endpoint(hostif, i); 1824 if (!usb_endpoint_xfer_bulk(epd) && 1825 !usb_endpoint_xfer_int(epd)) 1826 continue; 1827 if (out_eps < max_endpoints && 1828 usb_endpoint_dir_out(epd)) { 1829 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 1830 if (usb_endpoint_xfer_int(epd)) 1831 endpoint[out_eps].out_interval = epd->bInterval; 1832 ++out_eps; 1833 } 1834 if (in_eps < max_endpoints && 1835 usb_endpoint_dir_in(epd)) { 1836 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 1837 if (usb_endpoint_xfer_int(epd)) 1838 endpoint[in_eps].in_interval = epd->bInterval; 1839 ++in_eps; 1840 } 1841 } 1842 return (out_eps || in_eps) ? 0 : -ENOENT; 1843 } 1844 1845 /* 1846 * Detects the endpoints for one-port-per-endpoint protocols. 1847 */ 1848 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi, 1849 struct snd_usb_midi_endpoint_info* endpoints) 1850 { 1851 int err, i; 1852 1853 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 1854 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1855 if (endpoints[i].out_ep) 1856 endpoints[i].out_cables = 0x0001; 1857 if (endpoints[i].in_ep) 1858 endpoints[i].in_cables = 0x0001; 1859 } 1860 return err; 1861 } 1862 1863 /* 1864 * Detects the endpoints and ports of Yamaha devices. 1865 */ 1866 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi, 1867 struct snd_usb_midi_endpoint_info* endpoint) 1868 { 1869 struct usb_interface* intf; 1870 struct usb_host_interface *hostif; 1871 struct usb_interface_descriptor* intfd; 1872 uint8_t* cs_desc; 1873 1874 intf = umidi->iface; 1875 if (!intf) 1876 return -ENOENT; 1877 hostif = intf->altsetting; 1878 intfd = get_iface_desc(hostif); 1879 if (intfd->bNumEndpoints < 1) 1880 return -ENOENT; 1881 1882 /* 1883 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 1884 * necessarily with any useful contents. So simply count 'em. 1885 */ 1886 for (cs_desc = hostif->extra; 1887 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 1888 cs_desc += cs_desc[0]) { 1889 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 1890 if (cs_desc[2] == UAC_MIDI_IN_JACK) 1891 endpoint->in_cables = (endpoint->in_cables << 1) | 1; 1892 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 1893 endpoint->out_cables = (endpoint->out_cables << 1) | 1; 1894 } 1895 } 1896 if (!endpoint->in_cables && !endpoint->out_cables) 1897 return -ENOENT; 1898 1899 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 1900 } 1901 1902 /* 1903 * Creates the endpoints and their ports for Midiman devices. 1904 */ 1905 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi, 1906 struct snd_usb_midi_endpoint_info* endpoint) 1907 { 1908 struct snd_usb_midi_endpoint_info ep_info; 1909 struct usb_interface* intf; 1910 struct usb_host_interface *hostif; 1911 struct usb_interface_descriptor* intfd; 1912 struct usb_endpoint_descriptor* epd; 1913 int cable, err; 1914 1915 intf = umidi->iface; 1916 if (!intf) 1917 return -ENOENT; 1918 hostif = intf->altsetting; 1919 intfd = get_iface_desc(hostif); 1920 /* 1921 * The various MidiSport devices have more or less random endpoint 1922 * numbers, so we have to identify the endpoints by their index in 1923 * the descriptor array, like the driver for that other OS does. 1924 * 1925 * There is one interrupt input endpoint for all input ports, one 1926 * bulk output endpoint for even-numbered ports, and one for odd- 1927 * numbered ports. Both bulk output endpoints have corresponding 1928 * input bulk endpoints (at indices 1 and 3) which aren't used. 1929 */ 1930 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 1931 snd_printdd(KERN_ERR "not enough endpoints\n"); 1932 return -ENOENT; 1933 } 1934 1935 epd = get_endpoint(hostif, 0); 1936 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 1937 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n"); 1938 return -ENXIO; 1939 } 1940 epd = get_endpoint(hostif, 2); 1941 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 1942 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n"); 1943 return -ENXIO; 1944 } 1945 if (endpoint->out_cables > 0x0001) { 1946 epd = get_endpoint(hostif, 4); 1947 if (!usb_endpoint_dir_out(epd) || 1948 !usb_endpoint_xfer_bulk(epd)) { 1949 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n"); 1950 return -ENXIO; 1951 } 1952 } 1953 1954 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 1955 ep_info.out_interval = 0; 1956 ep_info.out_cables = endpoint->out_cables & 0x5555; 1957 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 1958 if (err < 0) 1959 return err; 1960 1961 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 1962 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 1963 ep_info.in_cables = endpoint->in_cables; 1964 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 1965 if (err < 0) 1966 return err; 1967 1968 if (endpoint->out_cables > 0x0001) { 1969 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 1970 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 1971 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); 1972 if (err < 0) 1973 return err; 1974 } 1975 1976 for (cable = 0; cable < 0x10; ++cable) { 1977 if (endpoint->out_cables & (1 << cable)) 1978 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, 1979 &umidi->endpoints[cable & 1].out->ports[cable].substream); 1980 if (endpoint->in_cables & (1 << cable)) 1981 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, 1982 &umidi->endpoints[0].in->ports[cable].substream); 1983 } 1984 return 0; 1985 } 1986 1987 static struct snd_rawmidi_global_ops snd_usbmidi_ops = { 1988 .get_port_info = snd_usbmidi_get_port_info, 1989 }; 1990 1991 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi, 1992 int out_ports, int in_ports) 1993 { 1994 struct snd_rawmidi *rmidi; 1995 int err; 1996 1997 err = snd_rawmidi_new(umidi->card, "USB MIDI", 1998 umidi->next_midi_device++, 1999 out_ports, in_ports, &rmidi); 2000 if (err < 0) 2001 return err; 2002 strcpy(rmidi->name, umidi->card->shortname); 2003 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2004 SNDRV_RAWMIDI_INFO_INPUT | 2005 SNDRV_RAWMIDI_INFO_DUPLEX; 2006 rmidi->ops = &snd_usbmidi_ops; 2007 rmidi->private_data = umidi; 2008 rmidi->private_free = snd_usbmidi_rawmidi_free; 2009 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); 2010 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); 2011 2012 umidi->rmidi = rmidi; 2013 return 0; 2014 } 2015 2016 /* 2017 * Temporarily stop input. 2018 */ 2019 void snd_usbmidi_input_stop(struct list_head* p) 2020 { 2021 struct snd_usb_midi* umidi; 2022 unsigned int i, j; 2023 2024 umidi = list_entry(p, struct snd_usb_midi, list); 2025 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2026 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 2027 if (ep->in) 2028 for (j = 0; j < INPUT_URBS; ++j) 2029 usb_kill_urb(ep->in->urbs[j]); 2030 } 2031 } 2032 2033 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep) 2034 { 2035 unsigned int i; 2036 2037 if (!ep) 2038 return; 2039 for (i = 0; i < INPUT_URBS; ++i) { 2040 struct urb* urb = ep->urbs[i]; 2041 urb->dev = ep->umidi->dev; 2042 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2043 } 2044 } 2045 2046 /* 2047 * Resume input after a call to snd_usbmidi_input_stop(). 2048 */ 2049 void snd_usbmidi_input_start(struct list_head* p) 2050 { 2051 struct snd_usb_midi* umidi; 2052 int i; 2053 2054 umidi = list_entry(p, struct snd_usb_midi, list); 2055 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2056 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2057 } 2058 2059 /* 2060 * Creates and registers everything needed for a MIDI streaming interface. 2061 */ 2062 int snd_usbmidi_create(struct snd_card *card, 2063 struct usb_interface* iface, 2064 struct list_head *midi_list, 2065 const struct snd_usb_audio_quirk* quirk) 2066 { 2067 struct snd_usb_midi* umidi; 2068 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2069 int out_ports, in_ports; 2070 int i, err; 2071 2072 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2073 if (!umidi) 2074 return -ENOMEM; 2075 umidi->dev = interface_to_usbdev(iface); 2076 umidi->card = card; 2077 umidi->iface = iface; 2078 umidi->quirk = quirk; 2079 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2080 init_timer(&umidi->error_timer); 2081 spin_lock_init(&umidi->disc_lock); 2082 mutex_init(&umidi->mutex); 2083 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2084 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2085 umidi->error_timer.function = snd_usbmidi_error_timer; 2086 umidi->error_timer.data = (unsigned long)umidi; 2087 2088 /* detect the endpoint(s) to use */ 2089 memset(endpoints, 0, sizeof(endpoints)); 2090 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2091 case QUIRK_MIDI_STANDARD_INTERFACE: 2092 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2093 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2094 umidi->usb_protocol_ops = 2095 &snd_usbmidi_maudio_broken_running_status_ops; 2096 break; 2097 case QUIRK_MIDI_US122L: 2098 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2099 /* fall through */ 2100 case QUIRK_MIDI_FIXED_ENDPOINT: 2101 memcpy(&endpoints[0], quirk->data, 2102 sizeof(struct snd_usb_midi_endpoint_info)); 2103 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2104 break; 2105 case QUIRK_MIDI_YAMAHA: 2106 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2107 break; 2108 case QUIRK_MIDI_MIDIMAN: 2109 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2110 memcpy(&endpoints[0], quirk->data, 2111 sizeof(struct snd_usb_midi_endpoint_info)); 2112 err = 0; 2113 break; 2114 case QUIRK_MIDI_NOVATION: 2115 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2116 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2117 break; 2118 case QUIRK_MIDI_FASTLANE: 2119 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2120 /* 2121 * Interface 1 contains isochronous endpoints, but with the same 2122 * numbers as in interface 0. Since it is interface 1 that the 2123 * USB core has most recently seen, these descriptors are now 2124 * associated with the endpoint numbers. This will foul up our 2125 * attempts to submit bulk/interrupt URBs to the endpoints in 2126 * interface 0, so we have to make sure that the USB core looks 2127 * again at interface 0 by calling usb_set_interface() on it. 2128 */ 2129 usb_set_interface(umidi->dev, 0, 0); 2130 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2131 break; 2132 case QUIRK_MIDI_EMAGIC: 2133 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2134 memcpy(&endpoints[0], quirk->data, 2135 sizeof(struct snd_usb_midi_endpoint_info)); 2136 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2137 break; 2138 case QUIRK_MIDI_CME: 2139 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2140 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2141 break; 2142 case QUIRK_MIDI_AKAI: 2143 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2144 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2145 /* endpoint 1 is input-only */ 2146 endpoints[1].out_cables = 0; 2147 break; 2148 default: 2149 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); 2150 err = -ENXIO; 2151 break; 2152 } 2153 if (err < 0) { 2154 kfree(umidi); 2155 return err; 2156 } 2157 2158 /* create rawmidi device */ 2159 out_ports = 0; 2160 in_ports = 0; 2161 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2162 out_ports += hweight16(endpoints[i].out_cables); 2163 in_ports += hweight16(endpoints[i].in_cables); 2164 } 2165 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2166 if (err < 0) { 2167 kfree(umidi); 2168 return err; 2169 } 2170 2171 /* create endpoint/port structures */ 2172 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2173 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2174 else 2175 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2176 if (err < 0) { 2177 snd_usbmidi_free(umidi); 2178 return err; 2179 } 2180 2181 list_add_tail(&umidi->list, midi_list); 2182 2183 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2184 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2185 return 0; 2186 } 2187 2188 EXPORT_SYMBOL(snd_usbmidi_create); 2189 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2190 EXPORT_SYMBOL(snd_usbmidi_input_start); 2191 EXPORT_SYMBOL(snd_usbmidi_disconnect); 2192