xref: /linux/sound/usb/midi.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "helper.h"
58 
59 /*
60  * define this to log all USB packets
61  */
62 /* #define DUMP_PACKETS */
63 
64 /*
65  * how long to wait after some USB errors, so that khubd can disconnect() us
66  * without too many spurious errors
67  */
68 #define ERROR_DELAY_JIFFIES (HZ / 10)
69 
70 #define OUTPUT_URBS 7
71 #define INPUT_URBS 7
72 
73 
74 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
75 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
76 MODULE_LICENSE("Dual BSD/GPL");
77 
78 
79 struct usb_ms_header_descriptor {
80 	__u8  bLength;
81 	__u8  bDescriptorType;
82 	__u8  bDescriptorSubtype;
83 	__u8  bcdMSC[2];
84 	__le16 wTotalLength;
85 } __attribute__ ((packed));
86 
87 struct usb_ms_endpoint_descriptor {
88 	__u8  bLength;
89 	__u8  bDescriptorType;
90 	__u8  bDescriptorSubtype;
91 	__u8  bNumEmbMIDIJack;
92 	__u8  baAssocJackID[0];
93 } __attribute__ ((packed));
94 
95 struct snd_usb_midi_in_endpoint;
96 struct snd_usb_midi_out_endpoint;
97 struct snd_usb_midi_endpoint;
98 
99 struct usb_protocol_ops {
100 	void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
101 	void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
102 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
103 	void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
104 	void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 };
106 
107 struct snd_usb_midi {
108 	struct usb_device *dev;
109 	struct snd_card *card;
110 	struct usb_interface *iface;
111 	const struct snd_usb_audio_quirk *quirk;
112 	struct snd_rawmidi *rmidi;
113 	struct usb_protocol_ops* usb_protocol_ops;
114 	struct list_head list;
115 	struct timer_list error_timer;
116 	spinlock_t disc_lock;
117 	struct mutex mutex;
118 	u32 usb_id;
119 	int next_midi_device;
120 
121 	struct snd_usb_midi_endpoint {
122 		struct snd_usb_midi_out_endpoint *out;
123 		struct snd_usb_midi_in_endpoint *in;
124 	} endpoints[MIDI_MAX_ENDPOINTS];
125 	unsigned long input_triggered;
126 	unsigned int opened;
127 	unsigned char disconnected;
128 
129 	struct snd_kcontrol *roland_load_ctl;
130 };
131 
132 struct snd_usb_midi_out_endpoint {
133 	struct snd_usb_midi* umidi;
134 	struct out_urb_context {
135 		struct urb *urb;
136 		struct snd_usb_midi_out_endpoint *ep;
137 	} urbs[OUTPUT_URBS];
138 	unsigned int active_urbs;
139 	unsigned int drain_urbs;
140 	int max_transfer;		/* size of urb buffer */
141 	struct tasklet_struct tasklet;
142 	unsigned int next_urb;
143 	spinlock_t buffer_lock;
144 
145 	struct usbmidi_out_port {
146 		struct snd_usb_midi_out_endpoint* ep;
147 		struct snd_rawmidi_substream *substream;
148 		int active;
149 		uint8_t cable;		/* cable number << 4 */
150 		uint8_t state;
151 #define STATE_UNKNOWN	0
152 #define STATE_1PARAM	1
153 #define STATE_2PARAM_1	2
154 #define STATE_2PARAM_2	3
155 #define STATE_SYSEX_0	4
156 #define STATE_SYSEX_1	5
157 #define STATE_SYSEX_2	6
158 		uint8_t data[2];
159 	} ports[0x10];
160 	int current_port;
161 
162 	wait_queue_head_t drain_wait;
163 };
164 
165 struct snd_usb_midi_in_endpoint {
166 	struct snd_usb_midi* umidi;
167 	struct urb* urbs[INPUT_URBS];
168 	struct usbmidi_in_port {
169 		struct snd_rawmidi_substream *substream;
170 		u8 running_status_length;
171 	} ports[0x10];
172 	u8 seen_f5;
173 	u8 error_resubmit;
174 	int current_port;
175 };
176 
177 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
178 
179 static const uint8_t snd_usbmidi_cin_length[] = {
180 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
181 };
182 
183 /*
184  * Submits the URB, with error handling.
185  */
186 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
187 {
188 	int err = usb_submit_urb(urb, flags);
189 	if (err < 0 && err != -ENODEV)
190 		snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
191 	return err;
192 }
193 
194 /*
195  * Error handling for URB completion functions.
196  */
197 static int snd_usbmidi_urb_error(int status)
198 {
199 	switch (status) {
200 	/* manually unlinked, or device gone */
201 	case -ENOENT:
202 	case -ECONNRESET:
203 	case -ESHUTDOWN:
204 	case -ENODEV:
205 		return -ENODEV;
206 	/* errors that might occur during unplugging */
207 	case -EPROTO:
208 	case -ETIME:
209 	case -EILSEQ:
210 		return -EIO;
211 	default:
212 		snd_printk(KERN_ERR "urb status %d\n", status);
213 		return 0; /* continue */
214 	}
215 }
216 
217 /*
218  * Receives a chunk of MIDI data.
219  */
220 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
221 				   uint8_t* data, int length)
222 {
223 	struct usbmidi_in_port* port = &ep->ports[portidx];
224 
225 	if (!port->substream) {
226 		snd_printd("unexpected port %d!\n", portidx);
227 		return;
228 	}
229 	if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
230 		return;
231 	snd_rawmidi_receive(port->substream, data, length);
232 }
233 
234 #ifdef DUMP_PACKETS
235 static void dump_urb(const char *type, const u8 *data, int length)
236 {
237 	snd_printk(KERN_DEBUG "%s packet: [", type);
238 	for (; length > 0; ++data, --length)
239 		printk(" %02x", *data);
240 	printk(" ]\n");
241 }
242 #else
243 #define dump_urb(type, data, length) /* nothing */
244 #endif
245 
246 /*
247  * Processes the data read from the device.
248  */
249 static void snd_usbmidi_in_urb_complete(struct urb* urb)
250 {
251 	struct snd_usb_midi_in_endpoint* ep = urb->context;
252 
253 	if (urb->status == 0) {
254 		dump_urb("received", urb->transfer_buffer, urb->actual_length);
255 		ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
256 						   urb->actual_length);
257 	} else {
258 		int err = snd_usbmidi_urb_error(urb->status);
259 		if (err < 0) {
260 			if (err != -ENODEV) {
261 				ep->error_resubmit = 1;
262 				mod_timer(&ep->umidi->error_timer,
263 					  jiffies + ERROR_DELAY_JIFFIES);
264 			}
265 			return;
266 		}
267 	}
268 
269 	urb->dev = ep->umidi->dev;
270 	snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
271 }
272 
273 static void snd_usbmidi_out_urb_complete(struct urb* urb)
274 {
275 	struct out_urb_context *context = urb->context;
276 	struct snd_usb_midi_out_endpoint* ep = context->ep;
277 	unsigned int urb_index;
278 
279 	spin_lock(&ep->buffer_lock);
280 	urb_index = context - ep->urbs;
281 	ep->active_urbs &= ~(1 << urb_index);
282 	if (unlikely(ep->drain_urbs)) {
283 		ep->drain_urbs &= ~(1 << urb_index);
284 		wake_up(&ep->drain_wait);
285 	}
286 	spin_unlock(&ep->buffer_lock);
287 	if (urb->status < 0) {
288 		int err = snd_usbmidi_urb_error(urb->status);
289 		if (err < 0) {
290 			if (err != -ENODEV)
291 				mod_timer(&ep->umidi->error_timer,
292 					  jiffies + ERROR_DELAY_JIFFIES);
293 			return;
294 		}
295 	}
296 	snd_usbmidi_do_output(ep);
297 }
298 
299 /*
300  * This is called when some data should be transferred to the device
301  * (from one or more substreams).
302  */
303 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
304 {
305 	unsigned int urb_index;
306 	struct urb* urb;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&ep->buffer_lock, flags);
310 	if (ep->umidi->disconnected) {
311 		spin_unlock_irqrestore(&ep->buffer_lock, flags);
312 		return;
313 	}
314 
315 	urb_index = ep->next_urb;
316 	for (;;) {
317 		if (!(ep->active_urbs & (1 << urb_index))) {
318 			urb = ep->urbs[urb_index].urb;
319 			urb->transfer_buffer_length = 0;
320 			ep->umidi->usb_protocol_ops->output(ep, urb);
321 			if (urb->transfer_buffer_length == 0)
322 				break;
323 
324 			dump_urb("sending", urb->transfer_buffer,
325 				 urb->transfer_buffer_length);
326 			urb->dev = ep->umidi->dev;
327 			if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
328 				break;
329 			ep->active_urbs |= 1 << urb_index;
330 		}
331 		if (++urb_index >= OUTPUT_URBS)
332 			urb_index = 0;
333 		if (urb_index == ep->next_urb)
334 			break;
335 	}
336 	ep->next_urb = urb_index;
337 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
338 }
339 
340 static void snd_usbmidi_out_tasklet(unsigned long data)
341 {
342 	struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
343 
344 	snd_usbmidi_do_output(ep);
345 }
346 
347 /* called after transfers had been interrupted due to some USB error */
348 static void snd_usbmidi_error_timer(unsigned long data)
349 {
350 	struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
351 	unsigned int i, j;
352 
353 	spin_lock(&umidi->disc_lock);
354 	if (umidi->disconnected) {
355 		spin_unlock(&umidi->disc_lock);
356 		return;
357 	}
358 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
359 		struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
360 		if (in && in->error_resubmit) {
361 			in->error_resubmit = 0;
362 			for (j = 0; j < INPUT_URBS; ++j) {
363 				in->urbs[j]->dev = umidi->dev;
364 				snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
365 			}
366 		}
367 		if (umidi->endpoints[i].out)
368 			snd_usbmidi_do_output(umidi->endpoints[i].out);
369 	}
370 	spin_unlock(&umidi->disc_lock);
371 }
372 
373 /* helper function to send static data that may not DMA-able */
374 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
375 				 const void *data, int len)
376 {
377 	int err = 0;
378 	void *buf = kmemdup(data, len, GFP_KERNEL);
379 	if (!buf)
380 		return -ENOMEM;
381 	dump_urb("sending", buf, len);
382 	if (ep->urbs[0].urb)
383 		err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
384 				   buf, len, NULL, 250);
385 	kfree(buf);
386 	return err;
387 }
388 
389 /*
390  * Standard USB MIDI protocol: see the spec.
391  * Midiman protocol: like the standard protocol, but the control byte is the
392  * fourth byte in each packet, and uses length instead of CIN.
393  */
394 
395 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
396 				       uint8_t* buffer, int buffer_length)
397 {
398 	int i;
399 
400 	for (i = 0; i + 3 < buffer_length; i += 4)
401 		if (buffer[i] != 0) {
402 			int cable = buffer[i] >> 4;
403 			int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
404 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
405 		}
406 }
407 
408 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
409 				      uint8_t* buffer, int buffer_length)
410 {
411 	int i;
412 
413 	for (i = 0; i + 3 < buffer_length; i += 4)
414 		if (buffer[i + 3] != 0) {
415 			int port = buffer[i + 3] >> 4;
416 			int length = buffer[i + 3] & 3;
417 			snd_usbmidi_input_data(ep, port, &buffer[i], length);
418 		}
419 }
420 
421 /*
422  * Buggy M-Audio device: running status on input results in a packet that has
423  * the data bytes but not the status byte and that is marked with CIN 4.
424  */
425 static void snd_usbmidi_maudio_broken_running_status_input(
426 					struct snd_usb_midi_in_endpoint* ep,
427 					uint8_t* buffer, int buffer_length)
428 {
429 	int i;
430 
431 	for (i = 0; i + 3 < buffer_length; i += 4)
432 		if (buffer[i] != 0) {
433 			int cable = buffer[i] >> 4;
434 			u8 cin = buffer[i] & 0x0f;
435 			struct usbmidi_in_port *port = &ep->ports[cable];
436 			int length;
437 
438 			length = snd_usbmidi_cin_length[cin];
439 			if (cin == 0xf && buffer[i + 1] >= 0xf8)
440 				; /* realtime msg: no running status change */
441 			else if (cin >= 0x8 && cin <= 0xe)
442 				/* channel msg */
443 				port->running_status_length = length - 1;
444 			else if (cin == 0x4 &&
445 				 port->running_status_length != 0 &&
446 				 buffer[i + 1] < 0x80)
447 				/* CIN 4 that is not a SysEx */
448 				length = port->running_status_length;
449 			else
450 				/*
451 				 * All other msgs cannot begin running status.
452 				 * (A channel msg sent as two or three CIN 0xF
453 				 * packets could in theory, but this device
454 				 * doesn't use this format.)
455 				 */
456 				port->running_status_length = 0;
457 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
458 		}
459 }
460 
461 /*
462  * CME protocol: like the standard protocol, but SysEx commands are sent as a
463  * single USB packet preceded by a 0x0F byte.
464  */
465 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
466 				  uint8_t *buffer, int buffer_length)
467 {
468 	if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
469 		snd_usbmidi_standard_input(ep, buffer, buffer_length);
470 	else
471 		snd_usbmidi_input_data(ep, buffer[0] >> 4,
472 				       &buffer[1], buffer_length - 1);
473 }
474 
475 /*
476  * Adds one USB MIDI packet to the output buffer.
477  */
478 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
479 					       uint8_t p1, uint8_t p2, uint8_t p3)
480 {
481 
482 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
483 	buf[0] = p0;
484 	buf[1] = p1;
485 	buf[2] = p2;
486 	buf[3] = p3;
487 	urb->transfer_buffer_length += 4;
488 }
489 
490 /*
491  * Adds one Midiman packet to the output buffer.
492  */
493 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
494 					      uint8_t p1, uint8_t p2, uint8_t p3)
495 {
496 
497 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
498 	buf[0] = p1;
499 	buf[1] = p2;
500 	buf[2] = p3;
501 	buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
502 	urb->transfer_buffer_length += 4;
503 }
504 
505 /*
506  * Converts MIDI commands to USB MIDI packets.
507  */
508 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
509 				      uint8_t b, struct urb* urb)
510 {
511 	uint8_t p0 = port->cable;
512 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
513 		port->ep->umidi->usb_protocol_ops->output_packet;
514 
515 	if (b >= 0xf8) {
516 		output_packet(urb, p0 | 0x0f, b, 0, 0);
517 	} else if (b >= 0xf0) {
518 		switch (b) {
519 		case 0xf0:
520 			port->data[0] = b;
521 			port->state = STATE_SYSEX_1;
522 			break;
523 		case 0xf1:
524 		case 0xf3:
525 			port->data[0] = b;
526 			port->state = STATE_1PARAM;
527 			break;
528 		case 0xf2:
529 			port->data[0] = b;
530 			port->state = STATE_2PARAM_1;
531 			break;
532 		case 0xf4:
533 		case 0xf5:
534 			port->state = STATE_UNKNOWN;
535 			break;
536 		case 0xf6:
537 			output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
538 			port->state = STATE_UNKNOWN;
539 			break;
540 		case 0xf7:
541 			switch (port->state) {
542 			case STATE_SYSEX_0:
543 				output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
544 				break;
545 			case STATE_SYSEX_1:
546 				output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
547 				break;
548 			case STATE_SYSEX_2:
549 				output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
550 				break;
551 			}
552 			port->state = STATE_UNKNOWN;
553 			break;
554 		}
555 	} else if (b >= 0x80) {
556 		port->data[0] = b;
557 		if (b >= 0xc0 && b <= 0xdf)
558 			port->state = STATE_1PARAM;
559 		else
560 			port->state = STATE_2PARAM_1;
561 	} else { /* b < 0x80 */
562 		switch (port->state) {
563 		case STATE_1PARAM:
564 			if (port->data[0] < 0xf0) {
565 				p0 |= port->data[0] >> 4;
566 			} else {
567 				p0 |= 0x02;
568 				port->state = STATE_UNKNOWN;
569 			}
570 			output_packet(urb, p0, port->data[0], b, 0);
571 			break;
572 		case STATE_2PARAM_1:
573 			port->data[1] = b;
574 			port->state = STATE_2PARAM_2;
575 			break;
576 		case STATE_2PARAM_2:
577 			if (port->data[0] < 0xf0) {
578 				p0 |= port->data[0] >> 4;
579 				port->state = STATE_2PARAM_1;
580 			} else {
581 				p0 |= 0x03;
582 				port->state = STATE_UNKNOWN;
583 			}
584 			output_packet(urb, p0, port->data[0], port->data[1], b);
585 			break;
586 		case STATE_SYSEX_0:
587 			port->data[0] = b;
588 			port->state = STATE_SYSEX_1;
589 			break;
590 		case STATE_SYSEX_1:
591 			port->data[1] = b;
592 			port->state = STATE_SYSEX_2;
593 			break;
594 		case STATE_SYSEX_2:
595 			output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
596 			port->state = STATE_SYSEX_0;
597 			break;
598 		}
599 	}
600 }
601 
602 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
603 					struct urb *urb)
604 {
605 	int p;
606 
607 	/* FIXME: lower-numbered ports can starve higher-numbered ports */
608 	for (p = 0; p < 0x10; ++p) {
609 		struct usbmidi_out_port* port = &ep->ports[p];
610 		if (!port->active)
611 			continue;
612 		while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
613 			uint8_t b;
614 			if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
615 				port->active = 0;
616 				break;
617 			}
618 			snd_usbmidi_transmit_byte(port, b, urb);
619 		}
620 	}
621 }
622 
623 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
624 	.input = snd_usbmidi_standard_input,
625 	.output = snd_usbmidi_standard_output,
626 	.output_packet = snd_usbmidi_output_standard_packet,
627 };
628 
629 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
630 	.input = snd_usbmidi_midiman_input,
631 	.output = snd_usbmidi_standard_output,
632 	.output_packet = snd_usbmidi_output_midiman_packet,
633 };
634 
635 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
636 	.input = snd_usbmidi_maudio_broken_running_status_input,
637 	.output = snd_usbmidi_standard_output,
638 	.output_packet = snd_usbmidi_output_standard_packet,
639 };
640 
641 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
642 	.input = snd_usbmidi_cme_input,
643 	.output = snd_usbmidi_standard_output,
644 	.output_packet = snd_usbmidi_output_standard_packet,
645 };
646 
647 /*
648  * AKAI MPD16 protocol:
649  *
650  * For control port (endpoint 1):
651  * ==============================
652  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
653  * SysEx message (msg_len=9 bytes long).
654  *
655  * For data port (endpoint 2):
656  * ===========================
657  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
658  * MIDI message (msg_len bytes long)
659  *
660  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
661  */
662 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
663 				   uint8_t *buffer, int buffer_length)
664 {
665 	unsigned int pos = 0;
666 	unsigned int len = (unsigned int)buffer_length;
667 	while (pos < len) {
668 		unsigned int port = (buffer[pos] >> 4) - 1;
669 		unsigned int msg_len = buffer[pos] & 0x0f;
670 		pos++;
671 		if (pos + msg_len <= len && port < 2)
672 			snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
673 		pos += msg_len;
674 	}
675 }
676 
677 #define MAX_AKAI_SYSEX_LEN 9
678 
679 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
680 				    struct urb *urb)
681 {
682 	uint8_t *msg;
683 	int pos, end, count, buf_end;
684 	uint8_t tmp[MAX_AKAI_SYSEX_LEN];
685 	struct snd_rawmidi_substream *substream = ep->ports[0].substream;
686 
687 	if (!ep->ports[0].active)
688 		return;
689 
690 	msg = urb->transfer_buffer + urb->transfer_buffer_length;
691 	buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
692 
693 	/* only try adding more data when there's space for at least 1 SysEx */
694 	while (urb->transfer_buffer_length < buf_end) {
695 		count = snd_rawmidi_transmit_peek(substream,
696 						  tmp, MAX_AKAI_SYSEX_LEN);
697 		if (!count) {
698 			ep->ports[0].active = 0;
699 			return;
700 		}
701 		/* try to skip non-SysEx data */
702 		for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
703 			;
704 
705 		if (pos > 0) {
706 			snd_rawmidi_transmit_ack(substream, pos);
707 			continue;
708 		}
709 
710 		/* look for the start or end marker */
711 		for (end = 1; end < count && tmp[end] < 0xF0; end++)
712 			;
713 
714 		/* next SysEx started before the end of current one */
715 		if (end < count && tmp[end] == 0xF0) {
716 			/* it's incomplete - drop it */
717 			snd_rawmidi_transmit_ack(substream, end);
718 			continue;
719 		}
720 		/* SysEx complete */
721 		if (end < count && tmp[end] == 0xF7) {
722 			/* queue it, ack it, and get the next one */
723 			count = end + 1;
724 			msg[0] = 0x10 | count;
725 			memcpy(&msg[1], tmp, count);
726 			snd_rawmidi_transmit_ack(substream, count);
727 			urb->transfer_buffer_length += count + 1;
728 			msg += count + 1;
729 			continue;
730 		}
731 		/* less than 9 bytes and no end byte - wait for more */
732 		if (count < MAX_AKAI_SYSEX_LEN) {
733 			ep->ports[0].active = 0;
734 			return;
735 		}
736 		/* 9 bytes and no end marker in sight - malformed, skip it */
737 		snd_rawmidi_transmit_ack(substream, count);
738 	}
739 }
740 
741 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
742 	.input = snd_usbmidi_akai_input,
743 	.output = snd_usbmidi_akai_output,
744 };
745 
746 /*
747  * Novation USB MIDI protocol: number of data bytes is in the first byte
748  * (when receiving) (+1!) or in the second byte (when sending); data begins
749  * at the third byte.
750  */
751 
752 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
753 				       uint8_t* buffer, int buffer_length)
754 {
755 	if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
756 		return;
757 	snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
758 }
759 
760 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
761 					struct urb *urb)
762 {
763 	uint8_t* transfer_buffer;
764 	int count;
765 
766 	if (!ep->ports[0].active)
767 		return;
768 	transfer_buffer = urb->transfer_buffer;
769 	count = snd_rawmidi_transmit(ep->ports[0].substream,
770 				     &transfer_buffer[2],
771 				     ep->max_transfer - 2);
772 	if (count < 1) {
773 		ep->ports[0].active = 0;
774 		return;
775 	}
776 	transfer_buffer[0] = 0;
777 	transfer_buffer[1] = count;
778 	urb->transfer_buffer_length = 2 + count;
779 }
780 
781 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
782 	.input = snd_usbmidi_novation_input,
783 	.output = snd_usbmidi_novation_output,
784 };
785 
786 /*
787  * "raw" protocol: used by the MOTU FastLane.
788  */
789 
790 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
791 				  uint8_t* buffer, int buffer_length)
792 {
793 	snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
794 }
795 
796 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
797 				   struct urb *urb)
798 {
799 	int count;
800 
801 	if (!ep->ports[0].active)
802 		return;
803 	count = snd_rawmidi_transmit(ep->ports[0].substream,
804 				     urb->transfer_buffer,
805 				     ep->max_transfer);
806 	if (count < 1) {
807 		ep->ports[0].active = 0;
808 		return;
809 	}
810 	urb->transfer_buffer_length = count;
811 }
812 
813 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
814 	.input = snd_usbmidi_raw_input,
815 	.output = snd_usbmidi_raw_output,
816 };
817 
818 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
819 				     uint8_t *buffer, int buffer_length)
820 {
821 	if (buffer_length != 9)
822 		return;
823 	buffer_length = 8;
824 	while (buffer_length && buffer[buffer_length - 1] == 0xFD)
825 		buffer_length--;
826 	if (buffer_length)
827 		snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
828 }
829 
830 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
831 				      struct urb *urb)
832 {
833 	int count;
834 
835 	if (!ep->ports[0].active)
836 		return;
837 	count = snd_usb_get_speed(ep->umidi->dev) == USB_SPEED_HIGH ? 1 : 2;
838 	count = snd_rawmidi_transmit(ep->ports[0].substream,
839 				     urb->transfer_buffer,
840 				     count);
841 	if (count < 1) {
842 		ep->ports[0].active = 0;
843 		return;
844 	}
845 
846 	memset(urb->transfer_buffer + count, 0xFD, 9 - count);
847 	urb->transfer_buffer_length = count;
848 }
849 
850 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
851 	.input = snd_usbmidi_us122l_input,
852 	.output = snd_usbmidi_us122l_output,
853 };
854 
855 /*
856  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
857  */
858 
859 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
860 {
861 	static const u8 init_data[] = {
862 		/* initialization magic: "get version" */
863 		0xf0,
864 		0x00, 0x20, 0x31,	/* Emagic */
865 		0x64,			/* Unitor8 */
866 		0x0b,			/* version number request */
867 		0x00,			/* command version */
868 		0x00,			/* EEPROM, box 0 */
869 		0xf7
870 	};
871 	send_bulk_static_data(ep, init_data, sizeof(init_data));
872 	/* while we're at it, pour on more magic */
873 	send_bulk_static_data(ep, init_data, sizeof(init_data));
874 }
875 
876 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
877 {
878 	static const u8 finish_data[] = {
879 		/* switch to patch mode with last preset */
880 		0xf0,
881 		0x00, 0x20, 0x31,	/* Emagic */
882 		0x64,			/* Unitor8 */
883 		0x10,			/* patch switch command */
884 		0x00,			/* command version */
885 		0x7f,			/* to all boxes */
886 		0x40,			/* last preset in EEPROM */
887 		0xf7
888 	};
889 	send_bulk_static_data(ep, finish_data, sizeof(finish_data));
890 }
891 
892 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
893 				     uint8_t* buffer, int buffer_length)
894 {
895 	int i;
896 
897 	/* FF indicates end of valid data */
898 	for (i = 0; i < buffer_length; ++i)
899 		if (buffer[i] == 0xff) {
900 			buffer_length = i;
901 			break;
902 		}
903 
904 	/* handle F5 at end of last buffer */
905 	if (ep->seen_f5)
906 		goto switch_port;
907 
908 	while (buffer_length > 0) {
909 		/* determine size of data until next F5 */
910 		for (i = 0; i < buffer_length; ++i)
911 			if (buffer[i] == 0xf5)
912 				break;
913 		snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
914 		buffer += i;
915 		buffer_length -= i;
916 
917 		if (buffer_length <= 0)
918 			break;
919 		/* assert(buffer[0] == 0xf5); */
920 		ep->seen_f5 = 1;
921 		++buffer;
922 		--buffer_length;
923 
924 	switch_port:
925 		if (buffer_length <= 0)
926 			break;
927 		if (buffer[0] < 0x80) {
928 			ep->current_port = (buffer[0] - 1) & 15;
929 			++buffer;
930 			--buffer_length;
931 		}
932 		ep->seen_f5 = 0;
933 	}
934 }
935 
936 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
937 				      struct urb *urb)
938 {
939 	int port0 = ep->current_port;
940 	uint8_t* buf = urb->transfer_buffer;
941 	int buf_free = ep->max_transfer;
942 	int length, i;
943 
944 	for (i = 0; i < 0x10; ++i) {
945 		/* round-robin, starting at the last current port */
946 		int portnum = (port0 + i) & 15;
947 		struct usbmidi_out_port* port = &ep->ports[portnum];
948 
949 		if (!port->active)
950 			continue;
951 		if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
952 			port->active = 0;
953 			continue;
954 		}
955 
956 		if (portnum != ep->current_port) {
957 			if (buf_free < 2)
958 				break;
959 			ep->current_port = portnum;
960 			buf[0] = 0xf5;
961 			buf[1] = (portnum + 1) & 15;
962 			buf += 2;
963 			buf_free -= 2;
964 		}
965 
966 		if (buf_free < 1)
967 			break;
968 		length = snd_rawmidi_transmit(port->substream, buf, buf_free);
969 		if (length > 0) {
970 			buf += length;
971 			buf_free -= length;
972 			if (buf_free < 1)
973 				break;
974 		}
975 	}
976 	if (buf_free < ep->max_transfer && buf_free > 0) {
977 		*buf = 0xff;
978 		--buf_free;
979 	}
980 	urb->transfer_buffer_length = ep->max_transfer - buf_free;
981 }
982 
983 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
984 	.input = snd_usbmidi_emagic_input,
985 	.output = snd_usbmidi_emagic_output,
986 	.init_out_endpoint = snd_usbmidi_emagic_init_out,
987 	.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
988 };
989 
990 
991 static void update_roland_altsetting(struct snd_usb_midi* umidi)
992 {
993 	struct usb_interface *intf;
994 	struct usb_host_interface *hostif;
995 	struct usb_interface_descriptor *intfd;
996 	int is_light_load;
997 
998 	intf = umidi->iface;
999 	is_light_load = intf->cur_altsetting != intf->altsetting;
1000 	if (umidi->roland_load_ctl->private_value == is_light_load)
1001 		return;
1002 	hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1003 	intfd = get_iface_desc(hostif);
1004 	snd_usbmidi_input_stop(&umidi->list);
1005 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1006 			  intfd->bAlternateSetting);
1007 	snd_usbmidi_input_start(&umidi->list);
1008 }
1009 
1010 static void substream_open(struct snd_rawmidi_substream *substream, int open)
1011 {
1012 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1013 	struct snd_kcontrol *ctl;
1014 
1015 	mutex_lock(&umidi->mutex);
1016 	if (open) {
1017 		if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1018 			ctl = umidi->roland_load_ctl;
1019 			ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1020 			snd_ctl_notify(umidi->card,
1021 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1022 			update_roland_altsetting(umidi);
1023 		}
1024 	} else {
1025 		if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1026 			ctl = umidi->roland_load_ctl;
1027 			ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1028 			snd_ctl_notify(umidi->card,
1029 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1030 		}
1031 	}
1032 	mutex_unlock(&umidi->mutex);
1033 }
1034 
1035 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1036 {
1037 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1038 	struct usbmidi_out_port* port = NULL;
1039 	int i, j;
1040 
1041 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1042 		if (umidi->endpoints[i].out)
1043 			for (j = 0; j < 0x10; ++j)
1044 				if (umidi->endpoints[i].out->ports[j].substream == substream) {
1045 					port = &umidi->endpoints[i].out->ports[j];
1046 					break;
1047 				}
1048 	if (!port) {
1049 		snd_BUG();
1050 		return -ENXIO;
1051 	}
1052 	substream->runtime->private_data = port;
1053 	port->state = STATE_UNKNOWN;
1054 	substream_open(substream, 1);
1055 	return 0;
1056 }
1057 
1058 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1059 {
1060 	substream_open(substream, 0);
1061 	return 0;
1062 }
1063 
1064 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1065 {
1066 	struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1067 
1068 	port->active = up;
1069 	if (up) {
1070 		if (port->ep->umidi->disconnected) {
1071 			/* gobble up remaining bytes to prevent wait in
1072 			 * snd_rawmidi_drain_output */
1073 			while (!snd_rawmidi_transmit_empty(substream))
1074 				snd_rawmidi_transmit_ack(substream, 1);
1075 			return;
1076 		}
1077 		tasklet_schedule(&port->ep->tasklet);
1078 	}
1079 }
1080 
1081 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1082 {
1083 	struct usbmidi_out_port* port = substream->runtime->private_data;
1084 	struct snd_usb_midi_out_endpoint *ep = port->ep;
1085 	unsigned int drain_urbs;
1086 	DEFINE_WAIT(wait);
1087 	long timeout = msecs_to_jiffies(50);
1088 
1089 	if (ep->umidi->disconnected)
1090 		return;
1091 	/*
1092 	 * The substream buffer is empty, but some data might still be in the
1093 	 * currently active URBs, so we have to wait for those to complete.
1094 	 */
1095 	spin_lock_irq(&ep->buffer_lock);
1096 	drain_urbs = ep->active_urbs;
1097 	if (drain_urbs) {
1098 		ep->drain_urbs |= drain_urbs;
1099 		do {
1100 			prepare_to_wait(&ep->drain_wait, &wait,
1101 					TASK_UNINTERRUPTIBLE);
1102 			spin_unlock_irq(&ep->buffer_lock);
1103 			timeout = schedule_timeout(timeout);
1104 			spin_lock_irq(&ep->buffer_lock);
1105 			drain_urbs &= ep->drain_urbs;
1106 		} while (drain_urbs && timeout);
1107 		finish_wait(&ep->drain_wait, &wait);
1108 	}
1109 	spin_unlock_irq(&ep->buffer_lock);
1110 }
1111 
1112 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1113 {
1114 	substream_open(substream, 1);
1115 	return 0;
1116 }
1117 
1118 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1119 {
1120 	substream_open(substream, 0);
1121 	return 0;
1122 }
1123 
1124 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1125 {
1126 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1127 
1128 	if (up)
1129 		set_bit(substream->number, &umidi->input_triggered);
1130 	else
1131 		clear_bit(substream->number, &umidi->input_triggered);
1132 }
1133 
1134 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1135 	.open = snd_usbmidi_output_open,
1136 	.close = snd_usbmidi_output_close,
1137 	.trigger = snd_usbmidi_output_trigger,
1138 	.drain = snd_usbmidi_output_drain,
1139 };
1140 
1141 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1142 	.open = snd_usbmidi_input_open,
1143 	.close = snd_usbmidi_input_close,
1144 	.trigger = snd_usbmidi_input_trigger
1145 };
1146 
1147 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1148 				unsigned int buffer_length)
1149 {
1150 	usb_free_coherent(umidi->dev, buffer_length,
1151 			  urb->transfer_buffer, urb->transfer_dma);
1152 	usb_free_urb(urb);
1153 }
1154 
1155 /*
1156  * Frees an input endpoint.
1157  * May be called when ep hasn't been initialized completely.
1158  */
1159 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1160 {
1161 	unsigned int i;
1162 
1163 	for (i = 0; i < INPUT_URBS; ++i)
1164 		if (ep->urbs[i])
1165 			free_urb_and_buffer(ep->umidi, ep->urbs[i],
1166 					    ep->urbs[i]->transfer_buffer_length);
1167 	kfree(ep);
1168 }
1169 
1170 /*
1171  * Creates an input endpoint.
1172  */
1173 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1174 					  struct snd_usb_midi_endpoint_info* ep_info,
1175 					  struct snd_usb_midi_endpoint* rep)
1176 {
1177 	struct snd_usb_midi_in_endpoint* ep;
1178 	void* buffer;
1179 	unsigned int pipe;
1180 	int length;
1181 	unsigned int i;
1182 
1183 	rep->in = NULL;
1184 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1185 	if (!ep)
1186 		return -ENOMEM;
1187 	ep->umidi = umidi;
1188 
1189 	for (i = 0; i < INPUT_URBS; ++i) {
1190 		ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1191 		if (!ep->urbs[i]) {
1192 			snd_usbmidi_in_endpoint_delete(ep);
1193 			return -ENOMEM;
1194 		}
1195 	}
1196 	if (ep_info->in_interval)
1197 		pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1198 	else
1199 		pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1200 	length = usb_maxpacket(umidi->dev, pipe, 0);
1201 	for (i = 0; i < INPUT_URBS; ++i) {
1202 		buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1203 					    &ep->urbs[i]->transfer_dma);
1204 		if (!buffer) {
1205 			snd_usbmidi_in_endpoint_delete(ep);
1206 			return -ENOMEM;
1207 		}
1208 		if (ep_info->in_interval)
1209 			usb_fill_int_urb(ep->urbs[i], umidi->dev,
1210 					 pipe, buffer, length,
1211 					 snd_usbmidi_in_urb_complete,
1212 					 ep, ep_info->in_interval);
1213 		else
1214 			usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1215 					  pipe, buffer, length,
1216 					  snd_usbmidi_in_urb_complete, ep);
1217 		ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1218 	}
1219 
1220 	rep->in = ep;
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Frees an output endpoint.
1226  * May be called when ep hasn't been initialized completely.
1227  */
1228 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1229 {
1230 	unsigned int i;
1231 
1232 	for (i = 0; i < OUTPUT_URBS; ++i)
1233 		if (ep->urbs[i].urb) {
1234 			free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1235 					    ep->max_transfer);
1236 			ep->urbs[i].urb = NULL;
1237 		}
1238 }
1239 
1240 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1241 {
1242 	snd_usbmidi_out_endpoint_clear(ep);
1243 	kfree(ep);
1244 }
1245 
1246 /*
1247  * Creates an output endpoint, and initializes output ports.
1248  */
1249 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1250 					   struct snd_usb_midi_endpoint_info* ep_info,
1251 			 		   struct snd_usb_midi_endpoint* rep)
1252 {
1253 	struct snd_usb_midi_out_endpoint* ep;
1254 	unsigned int i;
1255 	unsigned int pipe;
1256 	void* buffer;
1257 
1258 	rep->out = NULL;
1259 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1260 	if (!ep)
1261 		return -ENOMEM;
1262 	ep->umidi = umidi;
1263 
1264 	for (i = 0; i < OUTPUT_URBS; ++i) {
1265 		ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1266 		if (!ep->urbs[i].urb) {
1267 			snd_usbmidi_out_endpoint_delete(ep);
1268 			return -ENOMEM;
1269 		}
1270 		ep->urbs[i].ep = ep;
1271 	}
1272 	if (ep_info->out_interval)
1273 		pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1274 	else
1275 		pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1276 	switch (umidi->usb_id) {
1277 	default:
1278 		ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1279 		break;
1280 		/*
1281 		 * Various chips declare a packet size larger than 4 bytes, but
1282 		 * do not actually work with larger packets:
1283 		 */
1284 	case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1285 	case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1286 	case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1287 	case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1288 	case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1289 		ep->max_transfer = 4;
1290 		break;
1291 	}
1292 	for (i = 0; i < OUTPUT_URBS; ++i) {
1293 		buffer = usb_alloc_coherent(umidi->dev,
1294 					    ep->max_transfer, GFP_KERNEL,
1295 					    &ep->urbs[i].urb->transfer_dma);
1296 		if (!buffer) {
1297 			snd_usbmidi_out_endpoint_delete(ep);
1298 			return -ENOMEM;
1299 		}
1300 		if (ep_info->out_interval)
1301 			usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1302 					 pipe, buffer, ep->max_transfer,
1303 					 snd_usbmidi_out_urb_complete,
1304 					 &ep->urbs[i], ep_info->out_interval);
1305 		else
1306 			usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1307 					  pipe, buffer, ep->max_transfer,
1308 					  snd_usbmidi_out_urb_complete,
1309 					  &ep->urbs[i]);
1310 		ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1311 	}
1312 
1313 	spin_lock_init(&ep->buffer_lock);
1314 	tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1315 	init_waitqueue_head(&ep->drain_wait);
1316 
1317 	for (i = 0; i < 0x10; ++i)
1318 		if (ep_info->out_cables & (1 << i)) {
1319 			ep->ports[i].ep = ep;
1320 			ep->ports[i].cable = i << 4;
1321 		}
1322 
1323 	if (umidi->usb_protocol_ops->init_out_endpoint)
1324 		umidi->usb_protocol_ops->init_out_endpoint(ep);
1325 
1326 	rep->out = ep;
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Frees everything.
1332  */
1333 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1334 {
1335 	int i;
1336 
1337 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1338 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1339 		if (ep->out)
1340 			snd_usbmidi_out_endpoint_delete(ep->out);
1341 		if (ep->in)
1342 			snd_usbmidi_in_endpoint_delete(ep->in);
1343 	}
1344 	mutex_destroy(&umidi->mutex);
1345 	kfree(umidi);
1346 }
1347 
1348 /*
1349  * Unlinks all URBs (must be done before the usb_device is deleted).
1350  */
1351 void snd_usbmidi_disconnect(struct list_head* p)
1352 {
1353 	struct snd_usb_midi* umidi;
1354 	unsigned int i, j;
1355 
1356 	umidi = list_entry(p, struct snd_usb_midi, list);
1357 	/*
1358 	 * an URB's completion handler may start the timer and
1359 	 * a timer may submit an URB. To reliably break the cycle
1360 	 * a flag under lock must be used
1361 	 */
1362 	spin_lock_irq(&umidi->disc_lock);
1363 	umidi->disconnected = 1;
1364 	spin_unlock_irq(&umidi->disc_lock);
1365 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1366 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1367 		if (ep->out)
1368 			tasklet_kill(&ep->out->tasklet);
1369 		if (ep->out) {
1370 			for (j = 0; j < OUTPUT_URBS; ++j)
1371 				usb_kill_urb(ep->out->urbs[j].urb);
1372 			if (umidi->usb_protocol_ops->finish_out_endpoint)
1373 				umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1374 			ep->out->active_urbs = 0;
1375 			if (ep->out->drain_urbs) {
1376 				ep->out->drain_urbs = 0;
1377 				wake_up(&ep->out->drain_wait);
1378 			}
1379 		}
1380 		if (ep->in)
1381 			for (j = 0; j < INPUT_URBS; ++j)
1382 				usb_kill_urb(ep->in->urbs[j]);
1383 		/* free endpoints here; later call can result in Oops */
1384 		if (ep->out)
1385 			snd_usbmidi_out_endpoint_clear(ep->out);
1386 		if (ep->in) {
1387 			snd_usbmidi_in_endpoint_delete(ep->in);
1388 			ep->in = NULL;
1389 		}
1390 	}
1391 	del_timer_sync(&umidi->error_timer);
1392 }
1393 
1394 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1395 {
1396 	struct snd_usb_midi* umidi = rmidi->private_data;
1397 	snd_usbmidi_free(umidi);
1398 }
1399 
1400 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1401 							   int stream, int number)
1402 {
1403 	struct list_head* list;
1404 
1405 	list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1406 		struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1407 		if (substream->number == number)
1408 			return substream;
1409 	}
1410 	return NULL;
1411 }
1412 
1413 /*
1414  * This list specifies names for ports that do not fit into the standard
1415  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1416  * such as internal control or synthesizer ports.
1417  */
1418 static struct port_info {
1419 	u32 id;
1420 	short int port;
1421 	short int voices;
1422 	const char *name;
1423 	unsigned int seq_flags;
1424 } snd_usbmidi_port_info[] = {
1425 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1426 	{ .id = USB_ID(vendor, product), \
1427 	  .port = num, .voices = voices_, \
1428 	  .name = name_, .seq_flags = flags }
1429 #define EXTERNAL_PORT(vendor, product, num, name) \
1430 	PORT_INFO(vendor, product, num, name, 0, \
1431 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1432 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1433 		  SNDRV_SEQ_PORT_TYPE_PORT)
1434 #define CONTROL_PORT(vendor, product, num, name) \
1435 	PORT_INFO(vendor, product, num, name, 0, \
1436 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1437 		  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1438 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1439 	PORT_INFO(vendor, product, num, name, voices, \
1440 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1441 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1442 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1443 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1444 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1445 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1446 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1447 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1448 	PORT_INFO(vendor, product, num, name, voices, \
1449 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1450 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1451 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1452 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1453 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1454 		  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1455 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1456 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1457 	/* Roland UA-100 */
1458 	CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1459 	/* Roland SC-8850 */
1460 	SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1461 	SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1462 	SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1463 	SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1464 	EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1465 	EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1466 	/* Roland U-8 */
1467 	EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1468 	CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1469 	/* Roland SC-8820 */
1470 	SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1471 	SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1472 	EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1473 	/* Roland SK-500 */
1474 	SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1475 	SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1476 	EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1477 	/* Roland SC-D70 */
1478 	SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1479 	SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1480 	EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1481 	/* Edirol UM-880 */
1482 	CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1483 	/* Edirol SD-90 */
1484 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1485 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1486 	EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1487 	EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1488 	/* Edirol UM-550 */
1489 	CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1490 	/* Edirol SD-20 */
1491 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1492 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1493 	EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1494 	/* Edirol SD-80 */
1495 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1496 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1497 	EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1498 	EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1499 	/* Edirol UA-700 */
1500 	EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1501 	CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1502 	/* Roland VariOS */
1503 	EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1504 	EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1505 	EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1506 	/* Edirol PCR */
1507 	EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1508 	EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1509 	EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1510 	/* BOSS GS-10 */
1511 	EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1512 	CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1513 	/* Edirol UA-1000 */
1514 	EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1515 	CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1516 	/* Edirol UR-80 */
1517 	EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1518 	EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1519 	EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1520 	/* Edirol PCR-A */
1521 	EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1522 	EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1523 	EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1524 	/* Edirol UM-3EX */
1525 	CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1526 	/* M-Audio MidiSport 8x8 */
1527 	CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1528 	CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1529 	/* MOTU Fastlane */
1530 	EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1531 	EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1532 	/* Emagic Unitor8/AMT8/MT4 */
1533 	EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1534 	EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1535 	EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1536 	/* Akai MPD16 */
1537 	CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1538 	PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1539 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1540 		SNDRV_SEQ_PORT_TYPE_HARDWARE),
1541 	/* Access Music Virus TI */
1542 	EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1543 	PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1544 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1545 		SNDRV_SEQ_PORT_TYPE_HARDWARE |
1546 		SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1547 };
1548 
1549 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1550 {
1551 	int i;
1552 
1553 	for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1554 		if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1555 		    snd_usbmidi_port_info[i].port == number)
1556 			return &snd_usbmidi_port_info[i];
1557 	}
1558 	return NULL;
1559 }
1560 
1561 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1562 				      struct snd_seq_port_info *seq_port_info)
1563 {
1564 	struct snd_usb_midi *umidi = rmidi->private_data;
1565 	struct port_info *port_info;
1566 
1567 	/* TODO: read port flags from descriptors */
1568 	port_info = find_port_info(umidi, number);
1569 	if (port_info) {
1570 		seq_port_info->type = port_info->seq_flags;
1571 		seq_port_info->midi_voices = port_info->voices;
1572 	}
1573 }
1574 
1575 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1576 				       int stream, int number,
1577 				       struct snd_rawmidi_substream ** rsubstream)
1578 {
1579 	struct port_info *port_info;
1580 	const char *name_format;
1581 
1582 	struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1583 	if (!substream) {
1584 		snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1585 		return;
1586 	}
1587 
1588 	/* TODO: read port name from jack descriptor */
1589 	port_info = find_port_info(umidi, number);
1590 	name_format = port_info ? port_info->name : "%s MIDI %d";
1591 	snprintf(substream->name, sizeof(substream->name),
1592 		 name_format, umidi->card->shortname, number + 1);
1593 
1594 	*rsubstream = substream;
1595 }
1596 
1597 /*
1598  * Creates the endpoints and their ports.
1599  */
1600 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1601 					struct snd_usb_midi_endpoint_info* endpoints)
1602 {
1603 	int i, j, err;
1604 	int out_ports = 0, in_ports = 0;
1605 
1606 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1607 		if (endpoints[i].out_cables) {
1608 			err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1609 							      &umidi->endpoints[i]);
1610 			if (err < 0)
1611 				return err;
1612 		}
1613 		if (endpoints[i].in_cables) {
1614 			err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1615 							     &umidi->endpoints[i]);
1616 			if (err < 0)
1617 				return err;
1618 		}
1619 
1620 		for (j = 0; j < 0x10; ++j) {
1621 			if (endpoints[i].out_cables & (1 << j)) {
1622 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1623 							   &umidi->endpoints[i].out->ports[j].substream);
1624 				++out_ports;
1625 			}
1626 			if (endpoints[i].in_cables & (1 << j)) {
1627 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1628 							   &umidi->endpoints[i].in->ports[j].substream);
1629 				++in_ports;
1630 			}
1631 		}
1632 	}
1633 	snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1634 		    out_ports, in_ports);
1635 	return 0;
1636 }
1637 
1638 /*
1639  * Returns MIDIStreaming device capabilities.
1640  */
1641 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1642 			   	   struct snd_usb_midi_endpoint_info* endpoints)
1643 {
1644 	struct usb_interface* intf;
1645 	struct usb_host_interface *hostif;
1646 	struct usb_interface_descriptor* intfd;
1647 	struct usb_ms_header_descriptor* ms_header;
1648 	struct usb_host_endpoint *hostep;
1649 	struct usb_endpoint_descriptor* ep;
1650 	struct usb_ms_endpoint_descriptor* ms_ep;
1651 	int i, epidx;
1652 
1653 	intf = umidi->iface;
1654 	if (!intf)
1655 		return -ENXIO;
1656 	hostif = &intf->altsetting[0];
1657 	intfd = get_iface_desc(hostif);
1658 	ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1659 	if (hostif->extralen >= 7 &&
1660 	    ms_header->bLength >= 7 &&
1661 	    ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1662 	    ms_header->bDescriptorSubtype == UAC_HEADER)
1663 		snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1664 			    ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1665 	else
1666 		snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1667 
1668 	epidx = 0;
1669 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1670 		hostep = &hostif->endpoint[i];
1671 		ep = get_ep_desc(hostep);
1672 		if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1673 			continue;
1674 		ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1675 		if (hostep->extralen < 4 ||
1676 		    ms_ep->bLength < 4 ||
1677 		    ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1678 		    ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1679 			continue;
1680 		if (usb_endpoint_dir_out(ep)) {
1681 			if (endpoints[epidx].out_ep) {
1682 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1683 					snd_printk(KERN_WARNING "too many endpoints\n");
1684 					break;
1685 				}
1686 			}
1687 			endpoints[epidx].out_ep = usb_endpoint_num(ep);
1688 			if (usb_endpoint_xfer_int(ep))
1689 				endpoints[epidx].out_interval = ep->bInterval;
1690 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1691 				/*
1692 				 * Low speed bulk transfers don't exist, so
1693 				 * force interrupt transfers for devices like
1694 				 * ESI MIDI Mate that try to use them anyway.
1695 				 */
1696 				endpoints[epidx].out_interval = 1;
1697 			endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1698 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1699 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1700 		} else {
1701 			if (endpoints[epidx].in_ep) {
1702 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1703 					snd_printk(KERN_WARNING "too many endpoints\n");
1704 					break;
1705 				}
1706 			}
1707 			endpoints[epidx].in_ep = usb_endpoint_num(ep);
1708 			if (usb_endpoint_xfer_int(ep))
1709 				endpoints[epidx].in_interval = ep->bInterval;
1710 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1711 				endpoints[epidx].in_interval = 1;
1712 			endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1713 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1714 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1715 		}
1716 	}
1717 	return 0;
1718 }
1719 
1720 static int roland_load_info(struct snd_kcontrol *kcontrol,
1721 			    struct snd_ctl_elem_info *info)
1722 {
1723 	static const char *const names[] = { "High Load", "Light Load" };
1724 
1725 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1726 	info->count = 1;
1727 	info->value.enumerated.items = 2;
1728 	if (info->value.enumerated.item > 1)
1729 		info->value.enumerated.item = 1;
1730 	strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
1731 	return 0;
1732 }
1733 
1734 static int roland_load_get(struct snd_kcontrol *kcontrol,
1735 			   struct snd_ctl_elem_value *value)
1736 {
1737 	value->value.enumerated.item[0] = kcontrol->private_value;
1738 	return 0;
1739 }
1740 
1741 static int roland_load_put(struct snd_kcontrol *kcontrol,
1742 			   struct snd_ctl_elem_value *value)
1743 {
1744 	struct snd_usb_midi* umidi = kcontrol->private_data;
1745 	int changed;
1746 
1747 	if (value->value.enumerated.item[0] > 1)
1748 		return -EINVAL;
1749 	mutex_lock(&umidi->mutex);
1750 	changed = value->value.enumerated.item[0] != kcontrol->private_value;
1751 	if (changed)
1752 		kcontrol->private_value = value->value.enumerated.item[0];
1753 	mutex_unlock(&umidi->mutex);
1754 	return changed;
1755 }
1756 
1757 static struct snd_kcontrol_new roland_load_ctl = {
1758 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1759 	.name = "MIDI Input Mode",
1760 	.info = roland_load_info,
1761 	.get = roland_load_get,
1762 	.put = roland_load_put,
1763 	.private_value = 1,
1764 };
1765 
1766 /*
1767  * On Roland devices, use the second alternate setting to be able to use
1768  * the interrupt input endpoint.
1769  */
1770 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1771 {
1772 	struct usb_interface* intf;
1773 	struct usb_host_interface *hostif;
1774 	struct usb_interface_descriptor* intfd;
1775 
1776 	intf = umidi->iface;
1777 	if (!intf || intf->num_altsetting != 2)
1778 		return;
1779 
1780 	hostif = &intf->altsetting[1];
1781 	intfd = get_iface_desc(hostif);
1782 	if (intfd->bNumEndpoints != 2 ||
1783 	    (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1784 	    (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1785 		return;
1786 
1787 	snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1788 		    intfd->bAlternateSetting);
1789 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1790 			  intfd->bAlternateSetting);
1791 
1792 	umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1793 	if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1794 		umidi->roland_load_ctl = NULL;
1795 }
1796 
1797 /*
1798  * Try to find any usable endpoints in the interface.
1799  */
1800 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1801 					struct snd_usb_midi_endpoint_info* endpoint,
1802 					int max_endpoints)
1803 {
1804 	struct usb_interface* intf;
1805 	struct usb_host_interface *hostif;
1806 	struct usb_interface_descriptor* intfd;
1807 	struct usb_endpoint_descriptor* epd;
1808 	int i, out_eps = 0, in_eps = 0;
1809 
1810 	if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1811 		snd_usbmidi_switch_roland_altsetting(umidi);
1812 
1813 	if (endpoint[0].out_ep || endpoint[0].in_ep)
1814 		return 0;
1815 
1816 	intf = umidi->iface;
1817 	if (!intf || intf->num_altsetting < 1)
1818 		return -ENOENT;
1819 	hostif = intf->cur_altsetting;
1820 	intfd = get_iface_desc(hostif);
1821 
1822 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1823 		epd = get_endpoint(hostif, i);
1824 		if (!usb_endpoint_xfer_bulk(epd) &&
1825 		    !usb_endpoint_xfer_int(epd))
1826 			continue;
1827 		if (out_eps < max_endpoints &&
1828 		    usb_endpoint_dir_out(epd)) {
1829 			endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1830 			if (usb_endpoint_xfer_int(epd))
1831 				endpoint[out_eps].out_interval = epd->bInterval;
1832 			++out_eps;
1833 		}
1834 		if (in_eps < max_endpoints &&
1835 		    usb_endpoint_dir_in(epd)) {
1836 			endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1837 			if (usb_endpoint_xfer_int(epd))
1838 				endpoint[in_eps].in_interval = epd->bInterval;
1839 			++in_eps;
1840 		}
1841 	}
1842 	return (out_eps || in_eps) ? 0 : -ENOENT;
1843 }
1844 
1845 /*
1846  * Detects the endpoints for one-port-per-endpoint protocols.
1847  */
1848 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1849 						 struct snd_usb_midi_endpoint_info* endpoints)
1850 {
1851 	int err, i;
1852 
1853 	err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1854 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1855 		if (endpoints[i].out_ep)
1856 			endpoints[i].out_cables = 0x0001;
1857 		if (endpoints[i].in_ep)
1858 			endpoints[i].in_cables = 0x0001;
1859 	}
1860 	return err;
1861 }
1862 
1863 /*
1864  * Detects the endpoints and ports of Yamaha devices.
1865  */
1866 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1867 				     struct snd_usb_midi_endpoint_info* endpoint)
1868 {
1869 	struct usb_interface* intf;
1870 	struct usb_host_interface *hostif;
1871 	struct usb_interface_descriptor* intfd;
1872 	uint8_t* cs_desc;
1873 
1874 	intf = umidi->iface;
1875 	if (!intf)
1876 		return -ENOENT;
1877 	hostif = intf->altsetting;
1878 	intfd = get_iface_desc(hostif);
1879 	if (intfd->bNumEndpoints < 1)
1880 		return -ENOENT;
1881 
1882 	/*
1883 	 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1884 	 * necessarily with any useful contents.  So simply count 'em.
1885 	 */
1886 	for (cs_desc = hostif->extra;
1887 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1888 	     cs_desc += cs_desc[0]) {
1889 		if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1890 			if (cs_desc[2] == UAC_MIDI_IN_JACK)
1891 				endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1892 			else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1893 				endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1894 		}
1895 	}
1896 	if (!endpoint->in_cables && !endpoint->out_cables)
1897 		return -ENOENT;
1898 
1899 	return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1900 }
1901 
1902 /*
1903  * Creates the endpoints and their ports for Midiman devices.
1904  */
1905 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1906 						struct snd_usb_midi_endpoint_info* endpoint)
1907 {
1908 	struct snd_usb_midi_endpoint_info ep_info;
1909 	struct usb_interface* intf;
1910 	struct usb_host_interface *hostif;
1911 	struct usb_interface_descriptor* intfd;
1912 	struct usb_endpoint_descriptor* epd;
1913 	int cable, err;
1914 
1915 	intf = umidi->iface;
1916 	if (!intf)
1917 		return -ENOENT;
1918 	hostif = intf->altsetting;
1919 	intfd = get_iface_desc(hostif);
1920 	/*
1921 	 * The various MidiSport devices have more or less random endpoint
1922 	 * numbers, so we have to identify the endpoints by their index in
1923 	 * the descriptor array, like the driver for that other OS does.
1924 	 *
1925 	 * There is one interrupt input endpoint for all input ports, one
1926 	 * bulk output endpoint for even-numbered ports, and one for odd-
1927 	 * numbered ports.  Both bulk output endpoints have corresponding
1928 	 * input bulk endpoints (at indices 1 and 3) which aren't used.
1929 	 */
1930 	if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1931 		snd_printdd(KERN_ERR "not enough endpoints\n");
1932 		return -ENOENT;
1933 	}
1934 
1935 	epd = get_endpoint(hostif, 0);
1936 	if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1937 		snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1938 		return -ENXIO;
1939 	}
1940 	epd = get_endpoint(hostif, 2);
1941 	if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1942 		snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1943 		return -ENXIO;
1944 	}
1945 	if (endpoint->out_cables > 0x0001) {
1946 		epd = get_endpoint(hostif, 4);
1947 		if (!usb_endpoint_dir_out(epd) ||
1948 		    !usb_endpoint_xfer_bulk(epd)) {
1949 			snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1950 			return -ENXIO;
1951 		}
1952 	}
1953 
1954 	ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1955 	ep_info.out_interval = 0;
1956 	ep_info.out_cables = endpoint->out_cables & 0x5555;
1957 	err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1958 	if (err < 0)
1959 		return err;
1960 
1961 	ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1962 	ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1963 	ep_info.in_cables = endpoint->in_cables;
1964 	err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1965 	if (err < 0)
1966 		return err;
1967 
1968 	if (endpoint->out_cables > 0x0001) {
1969 		ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1970 		ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1971 		err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1972 		if (err < 0)
1973 			return err;
1974 	}
1975 
1976 	for (cable = 0; cable < 0x10; ++cable) {
1977 		if (endpoint->out_cables & (1 << cable))
1978 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1979 						   &umidi->endpoints[cable & 1].out->ports[cable].substream);
1980 		if (endpoint->in_cables & (1 << cable))
1981 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1982 						   &umidi->endpoints[0].in->ports[cable].substream);
1983 	}
1984 	return 0;
1985 }
1986 
1987 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
1988 	.get_port_info = snd_usbmidi_get_port_info,
1989 };
1990 
1991 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
1992 				      int out_ports, int in_ports)
1993 {
1994 	struct snd_rawmidi *rmidi;
1995 	int err;
1996 
1997 	err = snd_rawmidi_new(umidi->card, "USB MIDI",
1998 			      umidi->next_midi_device++,
1999 			      out_ports, in_ports, &rmidi);
2000 	if (err < 0)
2001 		return err;
2002 	strcpy(rmidi->name, umidi->card->shortname);
2003 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2004 			    SNDRV_RAWMIDI_INFO_INPUT |
2005 			    SNDRV_RAWMIDI_INFO_DUPLEX;
2006 	rmidi->ops = &snd_usbmidi_ops;
2007 	rmidi->private_data = umidi;
2008 	rmidi->private_free = snd_usbmidi_rawmidi_free;
2009 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2010 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2011 
2012 	umidi->rmidi = rmidi;
2013 	return 0;
2014 }
2015 
2016 /*
2017  * Temporarily stop input.
2018  */
2019 void snd_usbmidi_input_stop(struct list_head* p)
2020 {
2021 	struct snd_usb_midi* umidi;
2022 	unsigned int i, j;
2023 
2024 	umidi = list_entry(p, struct snd_usb_midi, list);
2025 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2026 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2027 		if (ep->in)
2028 			for (j = 0; j < INPUT_URBS; ++j)
2029 				usb_kill_urb(ep->in->urbs[j]);
2030 	}
2031 }
2032 
2033 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2034 {
2035 	unsigned int i;
2036 
2037 	if (!ep)
2038 		return;
2039 	for (i = 0; i < INPUT_URBS; ++i) {
2040 		struct urb* urb = ep->urbs[i];
2041 		urb->dev = ep->umidi->dev;
2042 		snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2043 	}
2044 }
2045 
2046 /*
2047  * Resume input after a call to snd_usbmidi_input_stop().
2048  */
2049 void snd_usbmidi_input_start(struct list_head* p)
2050 {
2051 	struct snd_usb_midi* umidi;
2052 	int i;
2053 
2054 	umidi = list_entry(p, struct snd_usb_midi, list);
2055 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2056 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2057 }
2058 
2059 /*
2060  * Creates and registers everything needed for a MIDI streaming interface.
2061  */
2062 int snd_usbmidi_create(struct snd_card *card,
2063 		       struct usb_interface* iface,
2064 		       struct list_head *midi_list,
2065 		       const struct snd_usb_audio_quirk* quirk)
2066 {
2067 	struct snd_usb_midi* umidi;
2068 	struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2069 	int out_ports, in_ports;
2070 	int i, err;
2071 
2072 	umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2073 	if (!umidi)
2074 		return -ENOMEM;
2075 	umidi->dev = interface_to_usbdev(iface);
2076 	umidi->card = card;
2077 	umidi->iface = iface;
2078 	umidi->quirk = quirk;
2079 	umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2080 	init_timer(&umidi->error_timer);
2081 	spin_lock_init(&umidi->disc_lock);
2082 	mutex_init(&umidi->mutex);
2083 	umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2084 			       le16_to_cpu(umidi->dev->descriptor.idProduct));
2085 	umidi->error_timer.function = snd_usbmidi_error_timer;
2086 	umidi->error_timer.data = (unsigned long)umidi;
2087 
2088 	/* detect the endpoint(s) to use */
2089 	memset(endpoints, 0, sizeof(endpoints));
2090 	switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2091 	case QUIRK_MIDI_STANDARD_INTERFACE:
2092 		err = snd_usbmidi_get_ms_info(umidi, endpoints);
2093 		if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2094 			umidi->usb_protocol_ops =
2095 				&snd_usbmidi_maudio_broken_running_status_ops;
2096 		break;
2097 	case QUIRK_MIDI_US122L:
2098 		umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2099 		/* fall through */
2100 	case QUIRK_MIDI_FIXED_ENDPOINT:
2101 		memcpy(&endpoints[0], quirk->data,
2102 		       sizeof(struct snd_usb_midi_endpoint_info));
2103 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2104 		break;
2105 	case QUIRK_MIDI_YAMAHA:
2106 		err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2107 		break;
2108 	case QUIRK_MIDI_MIDIMAN:
2109 		umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2110 		memcpy(&endpoints[0], quirk->data,
2111 		       sizeof(struct snd_usb_midi_endpoint_info));
2112 		err = 0;
2113 		break;
2114 	case QUIRK_MIDI_NOVATION:
2115 		umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2116 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2117 		break;
2118 	case QUIRK_MIDI_FASTLANE:
2119 		umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2120 		/*
2121 		 * Interface 1 contains isochronous endpoints, but with the same
2122 		 * numbers as in interface 0.  Since it is interface 1 that the
2123 		 * USB core has most recently seen, these descriptors are now
2124 		 * associated with the endpoint numbers.  This will foul up our
2125 		 * attempts to submit bulk/interrupt URBs to the endpoints in
2126 		 * interface 0, so we have to make sure that the USB core looks
2127 		 * again at interface 0 by calling usb_set_interface() on it.
2128 		 */
2129 		usb_set_interface(umidi->dev, 0, 0);
2130 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2131 		break;
2132 	case QUIRK_MIDI_EMAGIC:
2133 		umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2134 		memcpy(&endpoints[0], quirk->data,
2135 		       sizeof(struct snd_usb_midi_endpoint_info));
2136 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2137 		break;
2138 	case QUIRK_MIDI_CME:
2139 		umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2140 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2141 		break;
2142 	case QUIRK_MIDI_AKAI:
2143 		umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2144 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2145 		/* endpoint 1 is input-only */
2146 		endpoints[1].out_cables = 0;
2147 		break;
2148 	default:
2149 		snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2150 		err = -ENXIO;
2151 		break;
2152 	}
2153 	if (err < 0) {
2154 		kfree(umidi);
2155 		return err;
2156 	}
2157 
2158 	/* create rawmidi device */
2159 	out_ports = 0;
2160 	in_ports = 0;
2161 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2162 		out_ports += hweight16(endpoints[i].out_cables);
2163 		in_ports += hweight16(endpoints[i].in_cables);
2164 	}
2165 	err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2166 	if (err < 0) {
2167 		kfree(umidi);
2168 		return err;
2169 	}
2170 
2171 	/* create endpoint/port structures */
2172 	if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2173 		err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2174 	else
2175 		err = snd_usbmidi_create_endpoints(umidi, endpoints);
2176 	if (err < 0) {
2177 		snd_usbmidi_free(umidi);
2178 		return err;
2179 	}
2180 
2181 	list_add_tail(&umidi->list, midi_list);
2182 
2183 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2184 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2185 	return 0;
2186 }
2187 
2188 EXPORT_SYMBOL(snd_usbmidi_create);
2189 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2190 EXPORT_SYMBOL(snd_usbmidi_input_start);
2191 EXPORT_SYMBOL(snd_usbmidi_disconnect);
2192