1 /* 2 * usbmidi.c - ALSA USB MIDI driver 3 * 4 * Copyright (c) 2002-2009 Clemens Ladisch 5 * All rights reserved. 6 * 7 * Based on the OSS usb-midi driver by NAGANO Daisuke, 8 * NetBSD's umidi driver by Takuya SHIOZAKI, 9 * the "USB Device Class Definition for MIDI Devices" by Roland 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions, and the following disclaimer, 16 * without modification. 17 * 2. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed and/or modified under the 21 * terms of the GNU General Public License as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any later 23 * version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/types.h> 40 #include <linux/bitops.h> 41 #include <linux/interrupt.h> 42 #include <linux/spinlock.h> 43 #include <linux/string.h> 44 #include <linux/init.h> 45 #include <linux/slab.h> 46 #include <linux/timer.h> 47 #include <linux/usb.h> 48 #include <linux/wait.h> 49 #include <linux/usb/audio.h> 50 #include <linux/module.h> 51 52 #include <sound/core.h> 53 #include <sound/control.h> 54 #include <sound/rawmidi.h> 55 #include <sound/asequencer.h> 56 #include "usbaudio.h" 57 #include "midi.h" 58 #include "power.h" 59 #include "helper.h" 60 61 /* 62 * define this to log all USB packets 63 */ 64 /* #define DUMP_PACKETS */ 65 66 /* 67 * how long to wait after some USB errors, so that khubd can disconnect() us 68 * without too many spurious errors 69 */ 70 #define ERROR_DELAY_JIFFIES (HZ / 10) 71 72 #define OUTPUT_URBS 7 73 #define INPUT_URBS 7 74 75 76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); 77 MODULE_DESCRIPTION("USB Audio/MIDI helper module"); 78 MODULE_LICENSE("Dual BSD/GPL"); 79 80 81 struct usb_ms_header_descriptor { 82 __u8 bLength; 83 __u8 bDescriptorType; 84 __u8 bDescriptorSubtype; 85 __u8 bcdMSC[2]; 86 __le16 wTotalLength; 87 } __attribute__ ((packed)); 88 89 struct usb_ms_endpoint_descriptor { 90 __u8 bLength; 91 __u8 bDescriptorType; 92 __u8 bDescriptorSubtype; 93 __u8 bNumEmbMIDIJack; 94 __u8 baAssocJackID[0]; 95 } __attribute__ ((packed)); 96 97 struct snd_usb_midi_in_endpoint; 98 struct snd_usb_midi_out_endpoint; 99 struct snd_usb_midi_endpoint; 100 101 struct usb_protocol_ops { 102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); 103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); 104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); 105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*); 106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*); 107 }; 108 109 struct snd_usb_midi { 110 struct usb_device *dev; 111 struct snd_card *card; 112 struct usb_interface *iface; 113 const struct snd_usb_audio_quirk *quirk; 114 struct snd_rawmidi *rmidi; 115 struct usb_protocol_ops* usb_protocol_ops; 116 struct list_head list; 117 struct timer_list error_timer; 118 spinlock_t disc_lock; 119 struct rw_semaphore disc_rwsem; 120 struct mutex mutex; 121 u32 usb_id; 122 int next_midi_device; 123 124 struct snd_usb_midi_endpoint { 125 struct snd_usb_midi_out_endpoint *out; 126 struct snd_usb_midi_in_endpoint *in; 127 } endpoints[MIDI_MAX_ENDPOINTS]; 128 unsigned long input_triggered; 129 bool autopm_reference; 130 unsigned int opened[2]; 131 unsigned char disconnected; 132 unsigned char input_running; 133 134 struct snd_kcontrol *roland_load_ctl; 135 }; 136 137 struct snd_usb_midi_out_endpoint { 138 struct snd_usb_midi* umidi; 139 struct out_urb_context { 140 struct urb *urb; 141 struct snd_usb_midi_out_endpoint *ep; 142 } urbs[OUTPUT_URBS]; 143 unsigned int active_urbs; 144 unsigned int drain_urbs; 145 int max_transfer; /* size of urb buffer */ 146 struct tasklet_struct tasklet; 147 unsigned int next_urb; 148 spinlock_t buffer_lock; 149 150 struct usbmidi_out_port { 151 struct snd_usb_midi_out_endpoint* ep; 152 struct snd_rawmidi_substream *substream; 153 int active; 154 uint8_t cable; /* cable number << 4 */ 155 uint8_t state; 156 #define STATE_UNKNOWN 0 157 #define STATE_1PARAM 1 158 #define STATE_2PARAM_1 2 159 #define STATE_2PARAM_2 3 160 #define STATE_SYSEX_0 4 161 #define STATE_SYSEX_1 5 162 #define STATE_SYSEX_2 6 163 uint8_t data[2]; 164 } ports[0x10]; 165 int current_port; 166 167 wait_queue_head_t drain_wait; 168 }; 169 170 struct snd_usb_midi_in_endpoint { 171 struct snd_usb_midi* umidi; 172 struct urb* urbs[INPUT_URBS]; 173 struct usbmidi_in_port { 174 struct snd_rawmidi_substream *substream; 175 u8 running_status_length; 176 } ports[0x10]; 177 u8 seen_f5; 178 u8 error_resubmit; 179 int current_port; 180 }; 181 182 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep); 183 184 static const uint8_t snd_usbmidi_cin_length[] = { 185 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 186 }; 187 188 /* 189 * Submits the URB, with error handling. 190 */ 191 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags) 192 { 193 int err = usb_submit_urb(urb, flags); 194 if (err < 0 && err != -ENODEV) 195 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err); 196 return err; 197 } 198 199 /* 200 * Error handling for URB completion functions. 201 */ 202 static int snd_usbmidi_urb_error(int status) 203 { 204 switch (status) { 205 /* manually unlinked, or device gone */ 206 case -ENOENT: 207 case -ECONNRESET: 208 case -ESHUTDOWN: 209 case -ENODEV: 210 return -ENODEV; 211 /* errors that might occur during unplugging */ 212 case -EPROTO: 213 case -ETIME: 214 case -EILSEQ: 215 return -EIO; 216 default: 217 snd_printk(KERN_ERR "urb status %d\n", status); 218 return 0; /* continue */ 219 } 220 } 221 222 /* 223 * Receives a chunk of MIDI data. 224 */ 225 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx, 226 uint8_t* data, int length) 227 { 228 struct usbmidi_in_port* port = &ep->ports[portidx]; 229 230 if (!port->substream) { 231 snd_printd("unexpected port %d!\n", portidx); 232 return; 233 } 234 if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) 235 return; 236 snd_rawmidi_receive(port->substream, data, length); 237 } 238 239 #ifdef DUMP_PACKETS 240 static void dump_urb(const char *type, const u8 *data, int length) 241 { 242 snd_printk(KERN_DEBUG "%s packet: [", type); 243 for (; length > 0; ++data, --length) 244 printk(" %02x", *data); 245 printk(" ]\n"); 246 } 247 #else 248 #define dump_urb(type, data, length) /* nothing */ 249 #endif 250 251 /* 252 * Processes the data read from the device. 253 */ 254 static void snd_usbmidi_in_urb_complete(struct urb* urb) 255 { 256 struct snd_usb_midi_in_endpoint* ep = urb->context; 257 258 if (urb->status == 0) { 259 dump_urb("received", urb->transfer_buffer, urb->actual_length); 260 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, 261 urb->actual_length); 262 } else { 263 int err = snd_usbmidi_urb_error(urb->status); 264 if (err < 0) { 265 if (err != -ENODEV) { 266 ep->error_resubmit = 1; 267 mod_timer(&ep->umidi->error_timer, 268 jiffies + ERROR_DELAY_JIFFIES); 269 } 270 return; 271 } 272 } 273 274 urb->dev = ep->umidi->dev; 275 snd_usbmidi_submit_urb(urb, GFP_ATOMIC); 276 } 277 278 static void snd_usbmidi_out_urb_complete(struct urb* urb) 279 { 280 struct out_urb_context *context = urb->context; 281 struct snd_usb_midi_out_endpoint* ep = context->ep; 282 unsigned int urb_index; 283 284 spin_lock(&ep->buffer_lock); 285 urb_index = context - ep->urbs; 286 ep->active_urbs &= ~(1 << urb_index); 287 if (unlikely(ep->drain_urbs)) { 288 ep->drain_urbs &= ~(1 << urb_index); 289 wake_up(&ep->drain_wait); 290 } 291 spin_unlock(&ep->buffer_lock); 292 if (urb->status < 0) { 293 int err = snd_usbmidi_urb_error(urb->status); 294 if (err < 0) { 295 if (err != -ENODEV) 296 mod_timer(&ep->umidi->error_timer, 297 jiffies + ERROR_DELAY_JIFFIES); 298 return; 299 } 300 } 301 snd_usbmidi_do_output(ep); 302 } 303 304 /* 305 * This is called when some data should be transferred to the device 306 * (from one or more substreams). 307 */ 308 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep) 309 { 310 unsigned int urb_index; 311 struct urb* urb; 312 unsigned long flags; 313 314 spin_lock_irqsave(&ep->buffer_lock, flags); 315 if (ep->umidi->disconnected) { 316 spin_unlock_irqrestore(&ep->buffer_lock, flags); 317 return; 318 } 319 320 urb_index = ep->next_urb; 321 for (;;) { 322 if (!(ep->active_urbs & (1 << urb_index))) { 323 urb = ep->urbs[urb_index].urb; 324 urb->transfer_buffer_length = 0; 325 ep->umidi->usb_protocol_ops->output(ep, urb); 326 if (urb->transfer_buffer_length == 0) 327 break; 328 329 dump_urb("sending", urb->transfer_buffer, 330 urb->transfer_buffer_length); 331 urb->dev = ep->umidi->dev; 332 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) 333 break; 334 ep->active_urbs |= 1 << urb_index; 335 } 336 if (++urb_index >= OUTPUT_URBS) 337 urb_index = 0; 338 if (urb_index == ep->next_urb) 339 break; 340 } 341 ep->next_urb = urb_index; 342 spin_unlock_irqrestore(&ep->buffer_lock, flags); 343 } 344 345 static void snd_usbmidi_out_tasklet(unsigned long data) 346 { 347 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data; 348 349 snd_usbmidi_do_output(ep); 350 } 351 352 /* called after transfers had been interrupted due to some USB error */ 353 static void snd_usbmidi_error_timer(unsigned long data) 354 { 355 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data; 356 unsigned int i, j; 357 358 spin_lock(&umidi->disc_lock); 359 if (umidi->disconnected) { 360 spin_unlock(&umidi->disc_lock); 361 return; 362 } 363 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 364 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; 365 if (in && in->error_resubmit) { 366 in->error_resubmit = 0; 367 for (j = 0; j < INPUT_URBS; ++j) { 368 in->urbs[j]->dev = umidi->dev; 369 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); 370 } 371 } 372 if (umidi->endpoints[i].out) 373 snd_usbmidi_do_output(umidi->endpoints[i].out); 374 } 375 spin_unlock(&umidi->disc_lock); 376 } 377 378 /* helper function to send static data that may not DMA-able */ 379 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep, 380 const void *data, int len) 381 { 382 int err = 0; 383 void *buf = kmemdup(data, len, GFP_KERNEL); 384 if (!buf) 385 return -ENOMEM; 386 dump_urb("sending", buf, len); 387 if (ep->urbs[0].urb) 388 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, 389 buf, len, NULL, 250); 390 kfree(buf); 391 return err; 392 } 393 394 /* 395 * Standard USB MIDI protocol: see the spec. 396 * Midiman protocol: like the standard protocol, but the control byte is the 397 * fourth byte in each packet, and uses length instead of CIN. 398 */ 399 400 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep, 401 uint8_t* buffer, int buffer_length) 402 { 403 int i; 404 405 for (i = 0; i + 3 < buffer_length; i += 4) 406 if (buffer[i] != 0) { 407 int cable = buffer[i] >> 4; 408 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; 409 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 410 } 411 } 412 413 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep, 414 uint8_t* buffer, int buffer_length) 415 { 416 int i; 417 418 for (i = 0; i + 3 < buffer_length; i += 4) 419 if (buffer[i + 3] != 0) { 420 int port = buffer[i + 3] >> 4; 421 int length = buffer[i + 3] & 3; 422 snd_usbmidi_input_data(ep, port, &buffer[i], length); 423 } 424 } 425 426 /* 427 * Buggy M-Audio device: running status on input results in a packet that has 428 * the data bytes but not the status byte and that is marked with CIN 4. 429 */ 430 static void snd_usbmidi_maudio_broken_running_status_input( 431 struct snd_usb_midi_in_endpoint* ep, 432 uint8_t* buffer, int buffer_length) 433 { 434 int i; 435 436 for (i = 0; i + 3 < buffer_length; i += 4) 437 if (buffer[i] != 0) { 438 int cable = buffer[i] >> 4; 439 u8 cin = buffer[i] & 0x0f; 440 struct usbmidi_in_port *port = &ep->ports[cable]; 441 int length; 442 443 length = snd_usbmidi_cin_length[cin]; 444 if (cin == 0xf && buffer[i + 1] >= 0xf8) 445 ; /* realtime msg: no running status change */ 446 else if (cin >= 0x8 && cin <= 0xe) 447 /* channel msg */ 448 port->running_status_length = length - 1; 449 else if (cin == 0x4 && 450 port->running_status_length != 0 && 451 buffer[i + 1] < 0x80) 452 /* CIN 4 that is not a SysEx */ 453 length = port->running_status_length; 454 else 455 /* 456 * All other msgs cannot begin running status. 457 * (A channel msg sent as two or three CIN 0xF 458 * packets could in theory, but this device 459 * doesn't use this format.) 460 */ 461 port->running_status_length = 0; 462 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); 463 } 464 } 465 466 /* 467 * CME protocol: like the standard protocol, but SysEx commands are sent as a 468 * single USB packet preceded by a 0x0F byte. 469 */ 470 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, 471 uint8_t *buffer, int buffer_length) 472 { 473 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) 474 snd_usbmidi_standard_input(ep, buffer, buffer_length); 475 else 476 snd_usbmidi_input_data(ep, buffer[0] >> 4, 477 &buffer[1], buffer_length - 1); 478 } 479 480 /* 481 * Adds one USB MIDI packet to the output buffer. 482 */ 483 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0, 484 uint8_t p1, uint8_t p2, uint8_t p3) 485 { 486 487 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 488 buf[0] = p0; 489 buf[1] = p1; 490 buf[2] = p2; 491 buf[3] = p3; 492 urb->transfer_buffer_length += 4; 493 } 494 495 /* 496 * Adds one Midiman packet to the output buffer. 497 */ 498 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0, 499 uint8_t p1, uint8_t p2, uint8_t p3) 500 { 501 502 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; 503 buf[0] = p1; 504 buf[1] = p2; 505 buf[2] = p3; 506 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; 507 urb->transfer_buffer_length += 4; 508 } 509 510 /* 511 * Converts MIDI commands to USB MIDI packets. 512 */ 513 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port, 514 uint8_t b, struct urb* urb) 515 { 516 uint8_t p0 = port->cable; 517 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = 518 port->ep->umidi->usb_protocol_ops->output_packet; 519 520 if (b >= 0xf8) { 521 output_packet(urb, p0 | 0x0f, b, 0, 0); 522 } else if (b >= 0xf0) { 523 switch (b) { 524 case 0xf0: 525 port->data[0] = b; 526 port->state = STATE_SYSEX_1; 527 break; 528 case 0xf1: 529 case 0xf3: 530 port->data[0] = b; 531 port->state = STATE_1PARAM; 532 break; 533 case 0xf2: 534 port->data[0] = b; 535 port->state = STATE_2PARAM_1; 536 break; 537 case 0xf4: 538 case 0xf5: 539 port->state = STATE_UNKNOWN; 540 break; 541 case 0xf6: 542 output_packet(urb, p0 | 0x05, 0xf6, 0, 0); 543 port->state = STATE_UNKNOWN; 544 break; 545 case 0xf7: 546 switch (port->state) { 547 case STATE_SYSEX_0: 548 output_packet(urb, p0 | 0x05, 0xf7, 0, 0); 549 break; 550 case STATE_SYSEX_1: 551 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); 552 break; 553 case STATE_SYSEX_2: 554 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); 555 break; 556 } 557 port->state = STATE_UNKNOWN; 558 break; 559 } 560 } else if (b >= 0x80) { 561 port->data[0] = b; 562 if (b >= 0xc0 && b <= 0xdf) 563 port->state = STATE_1PARAM; 564 else 565 port->state = STATE_2PARAM_1; 566 } else { /* b < 0x80 */ 567 switch (port->state) { 568 case STATE_1PARAM: 569 if (port->data[0] < 0xf0) { 570 p0 |= port->data[0] >> 4; 571 } else { 572 p0 |= 0x02; 573 port->state = STATE_UNKNOWN; 574 } 575 output_packet(urb, p0, port->data[0], b, 0); 576 break; 577 case STATE_2PARAM_1: 578 port->data[1] = b; 579 port->state = STATE_2PARAM_2; 580 break; 581 case STATE_2PARAM_2: 582 if (port->data[0] < 0xf0) { 583 p0 |= port->data[0] >> 4; 584 port->state = STATE_2PARAM_1; 585 } else { 586 p0 |= 0x03; 587 port->state = STATE_UNKNOWN; 588 } 589 output_packet(urb, p0, port->data[0], port->data[1], b); 590 break; 591 case STATE_SYSEX_0: 592 port->data[0] = b; 593 port->state = STATE_SYSEX_1; 594 break; 595 case STATE_SYSEX_1: 596 port->data[1] = b; 597 port->state = STATE_SYSEX_2; 598 break; 599 case STATE_SYSEX_2: 600 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); 601 port->state = STATE_SYSEX_0; 602 break; 603 } 604 } 605 } 606 607 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep, 608 struct urb *urb) 609 { 610 int p; 611 612 /* FIXME: lower-numbered ports can starve higher-numbered ports */ 613 for (p = 0; p < 0x10; ++p) { 614 struct usbmidi_out_port* port = &ep->ports[p]; 615 if (!port->active) 616 continue; 617 while (urb->transfer_buffer_length + 3 < ep->max_transfer) { 618 uint8_t b; 619 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { 620 port->active = 0; 621 break; 622 } 623 snd_usbmidi_transmit_byte(port, b, urb); 624 } 625 } 626 } 627 628 static struct usb_protocol_ops snd_usbmidi_standard_ops = { 629 .input = snd_usbmidi_standard_input, 630 .output = snd_usbmidi_standard_output, 631 .output_packet = snd_usbmidi_output_standard_packet, 632 }; 633 634 static struct usb_protocol_ops snd_usbmidi_midiman_ops = { 635 .input = snd_usbmidi_midiman_input, 636 .output = snd_usbmidi_standard_output, 637 .output_packet = snd_usbmidi_output_midiman_packet, 638 }; 639 640 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { 641 .input = snd_usbmidi_maudio_broken_running_status_input, 642 .output = snd_usbmidi_standard_output, 643 .output_packet = snd_usbmidi_output_standard_packet, 644 }; 645 646 static struct usb_protocol_ops snd_usbmidi_cme_ops = { 647 .input = snd_usbmidi_cme_input, 648 .output = snd_usbmidi_standard_output, 649 .output_packet = snd_usbmidi_output_standard_packet, 650 }; 651 652 /* 653 * AKAI MPD16 protocol: 654 * 655 * For control port (endpoint 1): 656 * ============================== 657 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a 658 * SysEx message (msg_len=9 bytes long). 659 * 660 * For data port (endpoint 2): 661 * =========================== 662 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a 663 * MIDI message (msg_len bytes long) 664 * 665 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. 666 */ 667 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, 668 uint8_t *buffer, int buffer_length) 669 { 670 unsigned int pos = 0; 671 unsigned int len = (unsigned int)buffer_length; 672 while (pos < len) { 673 unsigned int port = (buffer[pos] >> 4) - 1; 674 unsigned int msg_len = buffer[pos] & 0x0f; 675 pos++; 676 if (pos + msg_len <= len && port < 2) 677 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); 678 pos += msg_len; 679 } 680 } 681 682 #define MAX_AKAI_SYSEX_LEN 9 683 684 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, 685 struct urb *urb) 686 { 687 uint8_t *msg; 688 int pos, end, count, buf_end; 689 uint8_t tmp[MAX_AKAI_SYSEX_LEN]; 690 struct snd_rawmidi_substream *substream = ep->ports[0].substream; 691 692 if (!ep->ports[0].active) 693 return; 694 695 msg = urb->transfer_buffer + urb->transfer_buffer_length; 696 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; 697 698 /* only try adding more data when there's space for at least 1 SysEx */ 699 while (urb->transfer_buffer_length < buf_end) { 700 count = snd_rawmidi_transmit_peek(substream, 701 tmp, MAX_AKAI_SYSEX_LEN); 702 if (!count) { 703 ep->ports[0].active = 0; 704 return; 705 } 706 /* try to skip non-SysEx data */ 707 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) 708 ; 709 710 if (pos > 0) { 711 snd_rawmidi_transmit_ack(substream, pos); 712 continue; 713 } 714 715 /* look for the start or end marker */ 716 for (end = 1; end < count && tmp[end] < 0xF0; end++) 717 ; 718 719 /* next SysEx started before the end of current one */ 720 if (end < count && tmp[end] == 0xF0) { 721 /* it's incomplete - drop it */ 722 snd_rawmidi_transmit_ack(substream, end); 723 continue; 724 } 725 /* SysEx complete */ 726 if (end < count && tmp[end] == 0xF7) { 727 /* queue it, ack it, and get the next one */ 728 count = end + 1; 729 msg[0] = 0x10 | count; 730 memcpy(&msg[1], tmp, count); 731 snd_rawmidi_transmit_ack(substream, count); 732 urb->transfer_buffer_length += count + 1; 733 msg += count + 1; 734 continue; 735 } 736 /* less than 9 bytes and no end byte - wait for more */ 737 if (count < MAX_AKAI_SYSEX_LEN) { 738 ep->ports[0].active = 0; 739 return; 740 } 741 /* 9 bytes and no end marker in sight - malformed, skip it */ 742 snd_rawmidi_transmit_ack(substream, count); 743 } 744 } 745 746 static struct usb_protocol_ops snd_usbmidi_akai_ops = { 747 .input = snd_usbmidi_akai_input, 748 .output = snd_usbmidi_akai_output, 749 }; 750 751 /* 752 * Novation USB MIDI protocol: number of data bytes is in the first byte 753 * (when receiving) (+1!) or in the second byte (when sending); data begins 754 * at the third byte. 755 */ 756 757 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep, 758 uint8_t* buffer, int buffer_length) 759 { 760 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) 761 return; 762 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); 763 } 764 765 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep, 766 struct urb *urb) 767 { 768 uint8_t* transfer_buffer; 769 int count; 770 771 if (!ep->ports[0].active) 772 return; 773 transfer_buffer = urb->transfer_buffer; 774 count = snd_rawmidi_transmit(ep->ports[0].substream, 775 &transfer_buffer[2], 776 ep->max_transfer - 2); 777 if (count < 1) { 778 ep->ports[0].active = 0; 779 return; 780 } 781 transfer_buffer[0] = 0; 782 transfer_buffer[1] = count; 783 urb->transfer_buffer_length = 2 + count; 784 } 785 786 static struct usb_protocol_ops snd_usbmidi_novation_ops = { 787 .input = snd_usbmidi_novation_input, 788 .output = snd_usbmidi_novation_output, 789 }; 790 791 /* 792 * "raw" protocol: just move raw MIDI bytes from/to the endpoint 793 */ 794 795 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep, 796 uint8_t* buffer, int buffer_length) 797 { 798 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 799 } 800 801 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep, 802 struct urb *urb) 803 { 804 int count; 805 806 if (!ep->ports[0].active) 807 return; 808 count = snd_rawmidi_transmit(ep->ports[0].substream, 809 urb->transfer_buffer, 810 ep->max_transfer); 811 if (count < 1) { 812 ep->ports[0].active = 0; 813 return; 814 } 815 urb->transfer_buffer_length = count; 816 } 817 818 static struct usb_protocol_ops snd_usbmidi_raw_ops = { 819 .input = snd_usbmidi_raw_input, 820 .output = snd_usbmidi_raw_output, 821 }; 822 823 /* 824 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. 825 */ 826 827 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep, 828 uint8_t* buffer, int buffer_length) 829 { 830 if (buffer_length > 2) 831 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); 832 } 833 834 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = { 835 .input = snd_usbmidi_ftdi_input, 836 .output = snd_usbmidi_raw_output, 837 }; 838 839 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, 840 uint8_t *buffer, int buffer_length) 841 { 842 if (buffer_length != 9) 843 return; 844 buffer_length = 8; 845 while (buffer_length && buffer[buffer_length - 1] == 0xFD) 846 buffer_length--; 847 if (buffer_length) 848 snd_usbmidi_input_data(ep, 0, buffer, buffer_length); 849 } 850 851 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, 852 struct urb *urb) 853 { 854 int count; 855 856 if (!ep->ports[0].active) 857 return; 858 switch (snd_usb_get_speed(ep->umidi->dev)) { 859 case USB_SPEED_HIGH: 860 case USB_SPEED_SUPER: 861 count = 1; 862 break; 863 default: 864 count = 2; 865 } 866 count = snd_rawmidi_transmit(ep->ports[0].substream, 867 urb->transfer_buffer, 868 count); 869 if (count < 1) { 870 ep->ports[0].active = 0; 871 return; 872 } 873 874 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); 875 urb->transfer_buffer_length = ep->max_transfer; 876 } 877 878 static struct usb_protocol_ops snd_usbmidi_122l_ops = { 879 .input = snd_usbmidi_us122l_input, 880 .output = snd_usbmidi_us122l_output, 881 }; 882 883 /* 884 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. 885 */ 886 887 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep) 888 { 889 static const u8 init_data[] = { 890 /* initialization magic: "get version" */ 891 0xf0, 892 0x00, 0x20, 0x31, /* Emagic */ 893 0x64, /* Unitor8 */ 894 0x0b, /* version number request */ 895 0x00, /* command version */ 896 0x00, /* EEPROM, box 0 */ 897 0xf7 898 }; 899 send_bulk_static_data(ep, init_data, sizeof(init_data)); 900 /* while we're at it, pour on more magic */ 901 send_bulk_static_data(ep, init_data, sizeof(init_data)); 902 } 903 904 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep) 905 { 906 static const u8 finish_data[] = { 907 /* switch to patch mode with last preset */ 908 0xf0, 909 0x00, 0x20, 0x31, /* Emagic */ 910 0x64, /* Unitor8 */ 911 0x10, /* patch switch command */ 912 0x00, /* command version */ 913 0x7f, /* to all boxes */ 914 0x40, /* last preset in EEPROM */ 915 0xf7 916 }; 917 send_bulk_static_data(ep, finish_data, sizeof(finish_data)); 918 } 919 920 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep, 921 uint8_t* buffer, int buffer_length) 922 { 923 int i; 924 925 /* FF indicates end of valid data */ 926 for (i = 0; i < buffer_length; ++i) 927 if (buffer[i] == 0xff) { 928 buffer_length = i; 929 break; 930 } 931 932 /* handle F5 at end of last buffer */ 933 if (ep->seen_f5) 934 goto switch_port; 935 936 while (buffer_length > 0) { 937 /* determine size of data until next F5 */ 938 for (i = 0; i < buffer_length; ++i) 939 if (buffer[i] == 0xf5) 940 break; 941 snd_usbmidi_input_data(ep, ep->current_port, buffer, i); 942 buffer += i; 943 buffer_length -= i; 944 945 if (buffer_length <= 0) 946 break; 947 /* assert(buffer[0] == 0xf5); */ 948 ep->seen_f5 = 1; 949 ++buffer; 950 --buffer_length; 951 952 switch_port: 953 if (buffer_length <= 0) 954 break; 955 if (buffer[0] < 0x80) { 956 ep->current_port = (buffer[0] - 1) & 15; 957 ++buffer; 958 --buffer_length; 959 } 960 ep->seen_f5 = 0; 961 } 962 } 963 964 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep, 965 struct urb *urb) 966 { 967 int port0 = ep->current_port; 968 uint8_t* buf = urb->transfer_buffer; 969 int buf_free = ep->max_transfer; 970 int length, i; 971 972 for (i = 0; i < 0x10; ++i) { 973 /* round-robin, starting at the last current port */ 974 int portnum = (port0 + i) & 15; 975 struct usbmidi_out_port* port = &ep->ports[portnum]; 976 977 if (!port->active) 978 continue; 979 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { 980 port->active = 0; 981 continue; 982 } 983 984 if (portnum != ep->current_port) { 985 if (buf_free < 2) 986 break; 987 ep->current_port = portnum; 988 buf[0] = 0xf5; 989 buf[1] = (portnum + 1) & 15; 990 buf += 2; 991 buf_free -= 2; 992 } 993 994 if (buf_free < 1) 995 break; 996 length = snd_rawmidi_transmit(port->substream, buf, buf_free); 997 if (length > 0) { 998 buf += length; 999 buf_free -= length; 1000 if (buf_free < 1) 1001 break; 1002 } 1003 } 1004 if (buf_free < ep->max_transfer && buf_free > 0) { 1005 *buf = 0xff; 1006 --buf_free; 1007 } 1008 urb->transfer_buffer_length = ep->max_transfer - buf_free; 1009 } 1010 1011 static struct usb_protocol_ops snd_usbmidi_emagic_ops = { 1012 .input = snd_usbmidi_emagic_input, 1013 .output = snd_usbmidi_emagic_output, 1014 .init_out_endpoint = snd_usbmidi_emagic_init_out, 1015 .finish_out_endpoint = snd_usbmidi_emagic_finish_out, 1016 }; 1017 1018 1019 static void update_roland_altsetting(struct snd_usb_midi* umidi) 1020 { 1021 struct usb_interface *intf; 1022 struct usb_host_interface *hostif; 1023 struct usb_interface_descriptor *intfd; 1024 int is_light_load; 1025 1026 intf = umidi->iface; 1027 is_light_load = intf->cur_altsetting != intf->altsetting; 1028 if (umidi->roland_load_ctl->private_value == is_light_load) 1029 return; 1030 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; 1031 intfd = get_iface_desc(hostif); 1032 snd_usbmidi_input_stop(&umidi->list); 1033 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1034 intfd->bAlternateSetting); 1035 snd_usbmidi_input_start(&umidi->list); 1036 } 1037 1038 static int substream_open(struct snd_rawmidi_substream *substream, int dir, 1039 int open) 1040 { 1041 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1042 struct snd_kcontrol *ctl; 1043 int err; 1044 1045 down_read(&umidi->disc_rwsem); 1046 if (umidi->disconnected) { 1047 up_read(&umidi->disc_rwsem); 1048 return open ? -ENODEV : 0; 1049 } 1050 1051 mutex_lock(&umidi->mutex); 1052 if (open) { 1053 if (!umidi->opened[0] && !umidi->opened[1]) { 1054 err = usb_autopm_get_interface(umidi->iface); 1055 umidi->autopm_reference = err >= 0; 1056 if (err < 0 && err != -EACCES) { 1057 mutex_unlock(&umidi->mutex); 1058 up_read(&umidi->disc_rwsem); 1059 return -EIO; 1060 } 1061 if (umidi->roland_load_ctl) { 1062 ctl = umidi->roland_load_ctl; 1063 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1064 snd_ctl_notify(umidi->card, 1065 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1066 update_roland_altsetting(umidi); 1067 } 1068 } 1069 umidi->opened[dir]++; 1070 if (umidi->opened[1]) 1071 snd_usbmidi_input_start(&umidi->list); 1072 } else { 1073 umidi->opened[dir]--; 1074 if (!umidi->opened[1]) 1075 snd_usbmidi_input_stop(&umidi->list); 1076 if (!umidi->opened[0] && !umidi->opened[1]) { 1077 if (umidi->roland_load_ctl) { 1078 ctl = umidi->roland_load_ctl; 1079 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1080 snd_ctl_notify(umidi->card, 1081 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); 1082 } 1083 if (umidi->autopm_reference) 1084 usb_autopm_put_interface(umidi->iface); 1085 } 1086 } 1087 mutex_unlock(&umidi->mutex); 1088 up_read(&umidi->disc_rwsem); 1089 return 0; 1090 } 1091 1092 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) 1093 { 1094 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1095 struct usbmidi_out_port* port = NULL; 1096 int i, j; 1097 1098 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 1099 if (umidi->endpoints[i].out) 1100 for (j = 0; j < 0x10; ++j) 1101 if (umidi->endpoints[i].out->ports[j].substream == substream) { 1102 port = &umidi->endpoints[i].out->ports[j]; 1103 break; 1104 } 1105 if (!port) { 1106 snd_BUG(); 1107 return -ENXIO; 1108 } 1109 1110 substream->runtime->private_data = port; 1111 port->state = STATE_UNKNOWN; 1112 return substream_open(substream, 0, 1); 1113 } 1114 1115 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) 1116 { 1117 return substream_open(substream, 0, 0); 1118 } 1119 1120 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1121 { 1122 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data; 1123 1124 port->active = up; 1125 if (up) { 1126 if (port->ep->umidi->disconnected) { 1127 /* gobble up remaining bytes to prevent wait in 1128 * snd_rawmidi_drain_output */ 1129 while (!snd_rawmidi_transmit_empty(substream)) 1130 snd_rawmidi_transmit_ack(substream, 1); 1131 return; 1132 } 1133 tasklet_schedule(&port->ep->tasklet); 1134 } 1135 } 1136 1137 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) 1138 { 1139 struct usbmidi_out_port* port = substream->runtime->private_data; 1140 struct snd_usb_midi_out_endpoint *ep = port->ep; 1141 unsigned int drain_urbs; 1142 DEFINE_WAIT(wait); 1143 long timeout = msecs_to_jiffies(50); 1144 1145 if (ep->umidi->disconnected) 1146 return; 1147 /* 1148 * The substream buffer is empty, but some data might still be in the 1149 * currently active URBs, so we have to wait for those to complete. 1150 */ 1151 spin_lock_irq(&ep->buffer_lock); 1152 drain_urbs = ep->active_urbs; 1153 if (drain_urbs) { 1154 ep->drain_urbs |= drain_urbs; 1155 do { 1156 prepare_to_wait(&ep->drain_wait, &wait, 1157 TASK_UNINTERRUPTIBLE); 1158 spin_unlock_irq(&ep->buffer_lock); 1159 timeout = schedule_timeout(timeout); 1160 spin_lock_irq(&ep->buffer_lock); 1161 drain_urbs &= ep->drain_urbs; 1162 } while (drain_urbs && timeout); 1163 finish_wait(&ep->drain_wait, &wait); 1164 } 1165 spin_unlock_irq(&ep->buffer_lock); 1166 } 1167 1168 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) 1169 { 1170 return substream_open(substream, 1, 1); 1171 } 1172 1173 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) 1174 { 1175 return substream_open(substream, 1, 0); 1176 } 1177 1178 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1179 { 1180 struct snd_usb_midi* umidi = substream->rmidi->private_data; 1181 1182 if (up) 1183 set_bit(substream->number, &umidi->input_triggered); 1184 else 1185 clear_bit(substream->number, &umidi->input_triggered); 1186 } 1187 1188 static struct snd_rawmidi_ops snd_usbmidi_output_ops = { 1189 .open = snd_usbmidi_output_open, 1190 .close = snd_usbmidi_output_close, 1191 .trigger = snd_usbmidi_output_trigger, 1192 .drain = snd_usbmidi_output_drain, 1193 }; 1194 1195 static struct snd_rawmidi_ops snd_usbmidi_input_ops = { 1196 .open = snd_usbmidi_input_open, 1197 .close = snd_usbmidi_input_close, 1198 .trigger = snd_usbmidi_input_trigger 1199 }; 1200 1201 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, 1202 unsigned int buffer_length) 1203 { 1204 usb_free_coherent(umidi->dev, buffer_length, 1205 urb->transfer_buffer, urb->transfer_dma); 1206 usb_free_urb(urb); 1207 } 1208 1209 /* 1210 * Frees an input endpoint. 1211 * May be called when ep hasn't been initialized completely. 1212 */ 1213 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep) 1214 { 1215 unsigned int i; 1216 1217 for (i = 0; i < INPUT_URBS; ++i) 1218 if (ep->urbs[i]) 1219 free_urb_and_buffer(ep->umidi, ep->urbs[i], 1220 ep->urbs[i]->transfer_buffer_length); 1221 kfree(ep); 1222 } 1223 1224 /* 1225 * Creates an input endpoint. 1226 */ 1227 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi, 1228 struct snd_usb_midi_endpoint_info* ep_info, 1229 struct snd_usb_midi_endpoint* rep) 1230 { 1231 struct snd_usb_midi_in_endpoint* ep; 1232 void* buffer; 1233 unsigned int pipe; 1234 int length; 1235 unsigned int i; 1236 1237 rep->in = NULL; 1238 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1239 if (!ep) 1240 return -ENOMEM; 1241 ep->umidi = umidi; 1242 1243 for (i = 0; i < INPUT_URBS; ++i) { 1244 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 1245 if (!ep->urbs[i]) { 1246 snd_usbmidi_in_endpoint_delete(ep); 1247 return -ENOMEM; 1248 } 1249 } 1250 if (ep_info->in_interval) 1251 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); 1252 else 1253 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); 1254 length = usb_maxpacket(umidi->dev, pipe, 0); 1255 for (i = 0; i < INPUT_URBS; ++i) { 1256 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, 1257 &ep->urbs[i]->transfer_dma); 1258 if (!buffer) { 1259 snd_usbmidi_in_endpoint_delete(ep); 1260 return -ENOMEM; 1261 } 1262 if (ep_info->in_interval) 1263 usb_fill_int_urb(ep->urbs[i], umidi->dev, 1264 pipe, buffer, length, 1265 snd_usbmidi_in_urb_complete, 1266 ep, ep_info->in_interval); 1267 else 1268 usb_fill_bulk_urb(ep->urbs[i], umidi->dev, 1269 pipe, buffer, length, 1270 snd_usbmidi_in_urb_complete, ep); 1271 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1272 } 1273 1274 rep->in = ep; 1275 return 0; 1276 } 1277 1278 /* 1279 * Frees an output endpoint. 1280 * May be called when ep hasn't been initialized completely. 1281 */ 1282 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) 1283 { 1284 unsigned int i; 1285 1286 for (i = 0; i < OUTPUT_URBS; ++i) 1287 if (ep->urbs[i].urb) { 1288 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, 1289 ep->max_transfer); 1290 ep->urbs[i].urb = NULL; 1291 } 1292 } 1293 1294 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) 1295 { 1296 snd_usbmidi_out_endpoint_clear(ep); 1297 kfree(ep); 1298 } 1299 1300 /* 1301 * Creates an output endpoint, and initializes output ports. 1302 */ 1303 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi, 1304 struct snd_usb_midi_endpoint_info* ep_info, 1305 struct snd_usb_midi_endpoint* rep) 1306 { 1307 struct snd_usb_midi_out_endpoint* ep; 1308 unsigned int i; 1309 unsigned int pipe; 1310 void* buffer; 1311 1312 rep->out = NULL; 1313 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1314 if (!ep) 1315 return -ENOMEM; 1316 ep->umidi = umidi; 1317 1318 for (i = 0; i < OUTPUT_URBS; ++i) { 1319 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); 1320 if (!ep->urbs[i].urb) { 1321 snd_usbmidi_out_endpoint_delete(ep); 1322 return -ENOMEM; 1323 } 1324 ep->urbs[i].ep = ep; 1325 } 1326 if (ep_info->out_interval) 1327 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); 1328 else 1329 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); 1330 switch (umidi->usb_id) { 1331 default: 1332 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); 1333 break; 1334 /* 1335 * Various chips declare a packet size larger than 4 bytes, but 1336 * do not actually work with larger packets: 1337 */ 1338 case USB_ID(0x0a92, 0x1020): /* ESI M4U */ 1339 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ 1340 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ 1341 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ 1342 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ 1343 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ 1344 ep->max_transfer = 4; 1345 break; 1346 /* 1347 * Some devices only work with 9 bytes packet size: 1348 */ 1349 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */ 1350 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */ 1351 ep->max_transfer = 9; 1352 break; 1353 } 1354 for (i = 0; i < OUTPUT_URBS; ++i) { 1355 buffer = usb_alloc_coherent(umidi->dev, 1356 ep->max_transfer, GFP_KERNEL, 1357 &ep->urbs[i].urb->transfer_dma); 1358 if (!buffer) { 1359 snd_usbmidi_out_endpoint_delete(ep); 1360 return -ENOMEM; 1361 } 1362 if (ep_info->out_interval) 1363 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, 1364 pipe, buffer, ep->max_transfer, 1365 snd_usbmidi_out_urb_complete, 1366 &ep->urbs[i], ep_info->out_interval); 1367 else 1368 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, 1369 pipe, buffer, ep->max_transfer, 1370 snd_usbmidi_out_urb_complete, 1371 &ep->urbs[i]); 1372 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1373 } 1374 1375 spin_lock_init(&ep->buffer_lock); 1376 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); 1377 init_waitqueue_head(&ep->drain_wait); 1378 1379 for (i = 0; i < 0x10; ++i) 1380 if (ep_info->out_cables & (1 << i)) { 1381 ep->ports[i].ep = ep; 1382 ep->ports[i].cable = i << 4; 1383 } 1384 1385 if (umidi->usb_protocol_ops->init_out_endpoint) 1386 umidi->usb_protocol_ops->init_out_endpoint(ep); 1387 1388 rep->out = ep; 1389 return 0; 1390 } 1391 1392 /* 1393 * Frees everything. 1394 */ 1395 static void snd_usbmidi_free(struct snd_usb_midi* umidi) 1396 { 1397 int i; 1398 1399 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1400 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1401 if (ep->out) 1402 snd_usbmidi_out_endpoint_delete(ep->out); 1403 if (ep->in) 1404 snd_usbmidi_in_endpoint_delete(ep->in); 1405 } 1406 mutex_destroy(&umidi->mutex); 1407 kfree(umidi); 1408 } 1409 1410 /* 1411 * Unlinks all URBs (must be done before the usb_device is deleted). 1412 */ 1413 void snd_usbmidi_disconnect(struct list_head* p) 1414 { 1415 struct snd_usb_midi* umidi; 1416 unsigned int i, j; 1417 1418 umidi = list_entry(p, struct snd_usb_midi, list); 1419 /* 1420 * an URB's completion handler may start the timer and 1421 * a timer may submit an URB. To reliably break the cycle 1422 * a flag under lock must be used 1423 */ 1424 down_write(&umidi->disc_rwsem); 1425 spin_lock_irq(&umidi->disc_lock); 1426 umidi->disconnected = 1; 1427 spin_unlock_irq(&umidi->disc_lock); 1428 up_write(&umidi->disc_rwsem); 1429 1430 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1431 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 1432 if (ep->out) 1433 tasklet_kill(&ep->out->tasklet); 1434 if (ep->out) { 1435 for (j = 0; j < OUTPUT_URBS; ++j) 1436 usb_kill_urb(ep->out->urbs[j].urb); 1437 if (umidi->usb_protocol_ops->finish_out_endpoint) 1438 umidi->usb_protocol_ops->finish_out_endpoint(ep->out); 1439 ep->out->active_urbs = 0; 1440 if (ep->out->drain_urbs) { 1441 ep->out->drain_urbs = 0; 1442 wake_up(&ep->out->drain_wait); 1443 } 1444 } 1445 if (ep->in) 1446 for (j = 0; j < INPUT_URBS; ++j) 1447 usb_kill_urb(ep->in->urbs[j]); 1448 /* free endpoints here; later call can result in Oops */ 1449 if (ep->out) 1450 snd_usbmidi_out_endpoint_clear(ep->out); 1451 if (ep->in) { 1452 snd_usbmidi_in_endpoint_delete(ep->in); 1453 ep->in = NULL; 1454 } 1455 } 1456 del_timer_sync(&umidi->error_timer); 1457 } 1458 1459 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) 1460 { 1461 struct snd_usb_midi* umidi = rmidi->private_data; 1462 snd_usbmidi_free(umidi); 1463 } 1464 1465 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi, 1466 int stream, int number) 1467 { 1468 struct list_head* list; 1469 1470 list_for_each(list, &umidi->rmidi->streams[stream].substreams) { 1471 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list); 1472 if (substream->number == number) 1473 return substream; 1474 } 1475 return NULL; 1476 } 1477 1478 /* 1479 * This list specifies names for ports that do not fit into the standard 1480 * "(product) MIDI (n)" schema because they aren't external MIDI ports, 1481 * such as internal control or synthesizer ports. 1482 */ 1483 static struct port_info { 1484 u32 id; 1485 short int port; 1486 short int voices; 1487 const char *name; 1488 unsigned int seq_flags; 1489 } snd_usbmidi_port_info[] = { 1490 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ 1491 { .id = USB_ID(vendor, product), \ 1492 .port = num, .voices = voices_, \ 1493 .name = name_, .seq_flags = flags } 1494 #define EXTERNAL_PORT(vendor, product, num, name) \ 1495 PORT_INFO(vendor, product, num, name, 0, \ 1496 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1497 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1498 SNDRV_SEQ_PORT_TYPE_PORT) 1499 #define CONTROL_PORT(vendor, product, num, name) \ 1500 PORT_INFO(vendor, product, num, name, 0, \ 1501 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1502 SNDRV_SEQ_PORT_TYPE_HARDWARE) 1503 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ 1504 PORT_INFO(vendor, product, num, name, voices, \ 1505 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1506 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1507 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1508 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1509 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1510 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1511 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1512 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ 1513 PORT_INFO(vendor, product, num, name, voices, \ 1514 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ 1515 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ 1516 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ 1517 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ 1518 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ 1519 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ 1520 SNDRV_SEQ_PORT_TYPE_HARDWARE | \ 1521 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) 1522 /* Roland UA-100 */ 1523 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), 1524 /* Roland SC-8850 */ 1525 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), 1526 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), 1527 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), 1528 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), 1529 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), 1530 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), 1531 /* Roland U-8 */ 1532 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), 1533 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), 1534 /* Roland SC-8820 */ 1535 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), 1536 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), 1537 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), 1538 /* Roland SK-500 */ 1539 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), 1540 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), 1541 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), 1542 /* Roland SC-D70 */ 1543 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), 1544 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), 1545 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), 1546 /* Edirol UM-880 */ 1547 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), 1548 /* Edirol SD-90 */ 1549 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), 1550 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), 1551 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), 1552 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), 1553 /* Edirol UM-550 */ 1554 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), 1555 /* Edirol SD-20 */ 1556 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), 1557 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), 1558 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), 1559 /* Edirol SD-80 */ 1560 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), 1561 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), 1562 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), 1563 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), 1564 /* Edirol UA-700 */ 1565 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), 1566 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), 1567 /* Roland VariOS */ 1568 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), 1569 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), 1570 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), 1571 /* Edirol PCR */ 1572 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), 1573 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), 1574 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), 1575 /* BOSS GS-10 */ 1576 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), 1577 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), 1578 /* Edirol UA-1000 */ 1579 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), 1580 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), 1581 /* Edirol UR-80 */ 1582 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), 1583 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), 1584 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), 1585 /* Edirol PCR-A */ 1586 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), 1587 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), 1588 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), 1589 /* Edirol UM-3EX */ 1590 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), 1591 /* M-Audio MidiSport 8x8 */ 1592 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), 1593 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), 1594 /* MOTU Fastlane */ 1595 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), 1596 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), 1597 /* Emagic Unitor8/AMT8/MT4 */ 1598 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), 1599 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), 1600 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), 1601 /* Akai MPD16 */ 1602 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), 1603 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, 1604 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1605 SNDRV_SEQ_PORT_TYPE_HARDWARE), 1606 /* Access Music Virus TI */ 1607 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), 1608 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, 1609 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | 1610 SNDRV_SEQ_PORT_TYPE_HARDWARE | 1611 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), 1612 }; 1613 1614 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number) 1615 { 1616 int i; 1617 1618 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { 1619 if (snd_usbmidi_port_info[i].id == umidi->usb_id && 1620 snd_usbmidi_port_info[i].port == number) 1621 return &snd_usbmidi_port_info[i]; 1622 } 1623 return NULL; 1624 } 1625 1626 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, 1627 struct snd_seq_port_info *seq_port_info) 1628 { 1629 struct snd_usb_midi *umidi = rmidi->private_data; 1630 struct port_info *port_info; 1631 1632 /* TODO: read port flags from descriptors */ 1633 port_info = find_port_info(umidi, number); 1634 if (port_info) { 1635 seq_port_info->type = port_info->seq_flags; 1636 seq_port_info->midi_voices = port_info->voices; 1637 } 1638 } 1639 1640 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi, 1641 int stream, int number, 1642 struct snd_rawmidi_substream ** rsubstream) 1643 { 1644 struct port_info *port_info; 1645 const char *name_format; 1646 1647 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number); 1648 if (!substream) { 1649 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number); 1650 return; 1651 } 1652 1653 /* TODO: read port name from jack descriptor */ 1654 port_info = find_port_info(umidi, number); 1655 name_format = port_info ? port_info->name : "%s MIDI %d"; 1656 snprintf(substream->name, sizeof(substream->name), 1657 name_format, umidi->card->shortname, number + 1); 1658 1659 *rsubstream = substream; 1660 } 1661 1662 /* 1663 * Creates the endpoints and their ports. 1664 */ 1665 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi, 1666 struct snd_usb_midi_endpoint_info* endpoints) 1667 { 1668 int i, j, err; 1669 int out_ports = 0, in_ports = 0; 1670 1671 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1672 if (endpoints[i].out_cables) { 1673 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], 1674 &umidi->endpoints[i]); 1675 if (err < 0) 1676 return err; 1677 } 1678 if (endpoints[i].in_cables) { 1679 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], 1680 &umidi->endpoints[i]); 1681 if (err < 0) 1682 return err; 1683 } 1684 1685 for (j = 0; j < 0x10; ++j) { 1686 if (endpoints[i].out_cables & (1 << j)) { 1687 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, 1688 &umidi->endpoints[i].out->ports[j].substream); 1689 ++out_ports; 1690 } 1691 if (endpoints[i].in_cables & (1 << j)) { 1692 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, 1693 &umidi->endpoints[i].in->ports[j].substream); 1694 ++in_ports; 1695 } 1696 } 1697 } 1698 snd_printdd(KERN_INFO "created %d output and %d input ports\n", 1699 out_ports, in_ports); 1700 return 0; 1701 } 1702 1703 /* 1704 * Returns MIDIStreaming device capabilities. 1705 */ 1706 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi, 1707 struct snd_usb_midi_endpoint_info* endpoints) 1708 { 1709 struct usb_interface* intf; 1710 struct usb_host_interface *hostif; 1711 struct usb_interface_descriptor* intfd; 1712 struct usb_ms_header_descriptor* ms_header; 1713 struct usb_host_endpoint *hostep; 1714 struct usb_endpoint_descriptor* ep; 1715 struct usb_ms_endpoint_descriptor* ms_ep; 1716 int i, epidx; 1717 1718 intf = umidi->iface; 1719 if (!intf) 1720 return -ENXIO; 1721 hostif = &intf->altsetting[0]; 1722 intfd = get_iface_desc(hostif); 1723 ms_header = (struct usb_ms_header_descriptor*)hostif->extra; 1724 if (hostif->extralen >= 7 && 1725 ms_header->bLength >= 7 && 1726 ms_header->bDescriptorType == USB_DT_CS_INTERFACE && 1727 ms_header->bDescriptorSubtype == UAC_HEADER) 1728 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n", 1729 ms_header->bcdMSC[1], ms_header->bcdMSC[0]); 1730 else 1731 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n"); 1732 1733 epidx = 0; 1734 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1735 hostep = &hostif->endpoint[i]; 1736 ep = get_ep_desc(hostep); 1737 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) 1738 continue; 1739 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; 1740 if (hostep->extralen < 4 || 1741 ms_ep->bLength < 4 || 1742 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || 1743 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) 1744 continue; 1745 if (usb_endpoint_dir_out(ep)) { 1746 if (endpoints[epidx].out_ep) { 1747 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1748 snd_printk(KERN_WARNING "too many endpoints\n"); 1749 break; 1750 } 1751 } 1752 endpoints[epidx].out_ep = usb_endpoint_num(ep); 1753 if (usb_endpoint_xfer_int(ep)) 1754 endpoints[epidx].out_interval = ep->bInterval; 1755 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1756 /* 1757 * Low speed bulk transfers don't exist, so 1758 * force interrupt transfers for devices like 1759 * ESI MIDI Mate that try to use them anyway. 1760 */ 1761 endpoints[epidx].out_interval = 1; 1762 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1763 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", 1764 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1765 } else { 1766 if (endpoints[epidx].in_ep) { 1767 if (++epidx >= MIDI_MAX_ENDPOINTS) { 1768 snd_printk(KERN_WARNING "too many endpoints\n"); 1769 break; 1770 } 1771 } 1772 endpoints[epidx].in_ep = usb_endpoint_num(ep); 1773 if (usb_endpoint_xfer_int(ep)) 1774 endpoints[epidx].in_interval = ep->bInterval; 1775 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) 1776 endpoints[epidx].in_interval = 1; 1777 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; 1778 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", 1779 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); 1780 } 1781 } 1782 return 0; 1783 } 1784 1785 static int roland_load_info(struct snd_kcontrol *kcontrol, 1786 struct snd_ctl_elem_info *info) 1787 { 1788 static const char *const names[] = { "High Load", "Light Load" }; 1789 1790 return snd_ctl_enum_info(info, 1, 2, names); 1791 } 1792 1793 static int roland_load_get(struct snd_kcontrol *kcontrol, 1794 struct snd_ctl_elem_value *value) 1795 { 1796 value->value.enumerated.item[0] = kcontrol->private_value; 1797 return 0; 1798 } 1799 1800 static int roland_load_put(struct snd_kcontrol *kcontrol, 1801 struct snd_ctl_elem_value *value) 1802 { 1803 struct snd_usb_midi* umidi = kcontrol->private_data; 1804 int changed; 1805 1806 if (value->value.enumerated.item[0] > 1) 1807 return -EINVAL; 1808 mutex_lock(&umidi->mutex); 1809 changed = value->value.enumerated.item[0] != kcontrol->private_value; 1810 if (changed) 1811 kcontrol->private_value = value->value.enumerated.item[0]; 1812 mutex_unlock(&umidi->mutex); 1813 return changed; 1814 } 1815 1816 static struct snd_kcontrol_new roland_load_ctl = { 1817 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1818 .name = "MIDI Input Mode", 1819 .info = roland_load_info, 1820 .get = roland_load_get, 1821 .put = roland_load_put, 1822 .private_value = 1, 1823 }; 1824 1825 /* 1826 * On Roland devices, use the second alternate setting to be able to use 1827 * the interrupt input endpoint. 1828 */ 1829 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi) 1830 { 1831 struct usb_interface* intf; 1832 struct usb_host_interface *hostif; 1833 struct usb_interface_descriptor* intfd; 1834 1835 intf = umidi->iface; 1836 if (!intf || intf->num_altsetting != 2) 1837 return; 1838 1839 hostif = &intf->altsetting[1]; 1840 intfd = get_iface_desc(hostif); 1841 if (intfd->bNumEndpoints != 2 || 1842 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || 1843 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) 1844 return; 1845 1846 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n", 1847 intfd->bAlternateSetting); 1848 usb_set_interface(umidi->dev, intfd->bInterfaceNumber, 1849 intfd->bAlternateSetting); 1850 1851 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); 1852 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) 1853 umidi->roland_load_ctl = NULL; 1854 } 1855 1856 /* 1857 * Try to find any usable endpoints in the interface. 1858 */ 1859 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi, 1860 struct snd_usb_midi_endpoint_info* endpoint, 1861 int max_endpoints) 1862 { 1863 struct usb_interface* intf; 1864 struct usb_host_interface *hostif; 1865 struct usb_interface_descriptor* intfd; 1866 struct usb_endpoint_descriptor* epd; 1867 int i, out_eps = 0, in_eps = 0; 1868 1869 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) 1870 snd_usbmidi_switch_roland_altsetting(umidi); 1871 1872 if (endpoint[0].out_ep || endpoint[0].in_ep) 1873 return 0; 1874 1875 intf = umidi->iface; 1876 if (!intf || intf->num_altsetting < 1) 1877 return -ENOENT; 1878 hostif = intf->cur_altsetting; 1879 intfd = get_iface_desc(hostif); 1880 1881 for (i = 0; i < intfd->bNumEndpoints; ++i) { 1882 epd = get_endpoint(hostif, i); 1883 if (!usb_endpoint_xfer_bulk(epd) && 1884 !usb_endpoint_xfer_int(epd)) 1885 continue; 1886 if (out_eps < max_endpoints && 1887 usb_endpoint_dir_out(epd)) { 1888 endpoint[out_eps].out_ep = usb_endpoint_num(epd); 1889 if (usb_endpoint_xfer_int(epd)) 1890 endpoint[out_eps].out_interval = epd->bInterval; 1891 ++out_eps; 1892 } 1893 if (in_eps < max_endpoints && 1894 usb_endpoint_dir_in(epd)) { 1895 endpoint[in_eps].in_ep = usb_endpoint_num(epd); 1896 if (usb_endpoint_xfer_int(epd)) 1897 endpoint[in_eps].in_interval = epd->bInterval; 1898 ++in_eps; 1899 } 1900 } 1901 return (out_eps || in_eps) ? 0 : -ENOENT; 1902 } 1903 1904 /* 1905 * Detects the endpoints for one-port-per-endpoint protocols. 1906 */ 1907 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi, 1908 struct snd_usb_midi_endpoint_info* endpoints) 1909 { 1910 int err, i; 1911 1912 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); 1913 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 1914 if (endpoints[i].out_ep) 1915 endpoints[i].out_cables = 0x0001; 1916 if (endpoints[i].in_ep) 1917 endpoints[i].in_cables = 0x0001; 1918 } 1919 return err; 1920 } 1921 1922 /* 1923 * Detects the endpoints and ports of Yamaha devices. 1924 */ 1925 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi, 1926 struct snd_usb_midi_endpoint_info* endpoint) 1927 { 1928 struct usb_interface* intf; 1929 struct usb_host_interface *hostif; 1930 struct usb_interface_descriptor* intfd; 1931 uint8_t* cs_desc; 1932 1933 intf = umidi->iface; 1934 if (!intf) 1935 return -ENOENT; 1936 hostif = intf->altsetting; 1937 intfd = get_iface_desc(hostif); 1938 if (intfd->bNumEndpoints < 1) 1939 return -ENOENT; 1940 1941 /* 1942 * For each port there is one MIDI_IN/OUT_JACK descriptor, not 1943 * necessarily with any useful contents. So simply count 'em. 1944 */ 1945 for (cs_desc = hostif->extra; 1946 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; 1947 cs_desc += cs_desc[0]) { 1948 if (cs_desc[1] == USB_DT_CS_INTERFACE) { 1949 if (cs_desc[2] == UAC_MIDI_IN_JACK) 1950 endpoint->in_cables = (endpoint->in_cables << 1) | 1; 1951 else if (cs_desc[2] == UAC_MIDI_OUT_JACK) 1952 endpoint->out_cables = (endpoint->out_cables << 1) | 1; 1953 } 1954 } 1955 if (!endpoint->in_cables && !endpoint->out_cables) 1956 return -ENOENT; 1957 1958 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); 1959 } 1960 1961 /* 1962 * Creates the endpoints and their ports for Midiman devices. 1963 */ 1964 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi, 1965 struct snd_usb_midi_endpoint_info* endpoint) 1966 { 1967 struct snd_usb_midi_endpoint_info ep_info; 1968 struct usb_interface* intf; 1969 struct usb_host_interface *hostif; 1970 struct usb_interface_descriptor* intfd; 1971 struct usb_endpoint_descriptor* epd; 1972 int cable, err; 1973 1974 intf = umidi->iface; 1975 if (!intf) 1976 return -ENOENT; 1977 hostif = intf->altsetting; 1978 intfd = get_iface_desc(hostif); 1979 /* 1980 * The various MidiSport devices have more or less random endpoint 1981 * numbers, so we have to identify the endpoints by their index in 1982 * the descriptor array, like the driver for that other OS does. 1983 * 1984 * There is one interrupt input endpoint for all input ports, one 1985 * bulk output endpoint for even-numbered ports, and one for odd- 1986 * numbered ports. Both bulk output endpoints have corresponding 1987 * input bulk endpoints (at indices 1 and 3) which aren't used. 1988 */ 1989 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { 1990 snd_printdd(KERN_ERR "not enough endpoints\n"); 1991 return -ENOENT; 1992 } 1993 1994 epd = get_endpoint(hostif, 0); 1995 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { 1996 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n"); 1997 return -ENXIO; 1998 } 1999 epd = get_endpoint(hostif, 2); 2000 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { 2001 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n"); 2002 return -ENXIO; 2003 } 2004 if (endpoint->out_cables > 0x0001) { 2005 epd = get_endpoint(hostif, 4); 2006 if (!usb_endpoint_dir_out(epd) || 2007 !usb_endpoint_xfer_bulk(epd)) { 2008 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n"); 2009 return -ENXIO; 2010 } 2011 } 2012 2013 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2014 ep_info.out_interval = 0; 2015 ep_info.out_cables = endpoint->out_cables & 0x5555; 2016 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 2017 if (err < 0) 2018 return err; 2019 2020 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2021 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; 2022 ep_info.in_cables = endpoint->in_cables; 2023 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); 2024 if (err < 0) 2025 return err; 2026 2027 if (endpoint->out_cables > 0x0001) { 2028 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 2029 ep_info.out_cables = endpoint->out_cables & 0xaaaa; 2030 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); 2031 if (err < 0) 2032 return err; 2033 } 2034 2035 for (cable = 0; cable < 0x10; ++cable) { 2036 if (endpoint->out_cables & (1 << cable)) 2037 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, 2038 &umidi->endpoints[cable & 1].out->ports[cable].substream); 2039 if (endpoint->in_cables & (1 << cable)) 2040 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, 2041 &umidi->endpoints[0].in->ports[cable].substream); 2042 } 2043 return 0; 2044 } 2045 2046 static struct snd_rawmidi_global_ops snd_usbmidi_ops = { 2047 .get_port_info = snd_usbmidi_get_port_info, 2048 }; 2049 2050 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi, 2051 int out_ports, int in_ports) 2052 { 2053 struct snd_rawmidi *rmidi; 2054 int err; 2055 2056 err = snd_rawmidi_new(umidi->card, "USB MIDI", 2057 umidi->next_midi_device++, 2058 out_ports, in_ports, &rmidi); 2059 if (err < 0) 2060 return err; 2061 strcpy(rmidi->name, umidi->card->shortname); 2062 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 2063 SNDRV_RAWMIDI_INFO_INPUT | 2064 SNDRV_RAWMIDI_INFO_DUPLEX; 2065 rmidi->ops = &snd_usbmidi_ops; 2066 rmidi->private_data = umidi; 2067 rmidi->private_free = snd_usbmidi_rawmidi_free; 2068 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); 2069 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); 2070 2071 umidi->rmidi = rmidi; 2072 return 0; 2073 } 2074 2075 /* 2076 * Temporarily stop input. 2077 */ 2078 void snd_usbmidi_input_stop(struct list_head* p) 2079 { 2080 struct snd_usb_midi* umidi; 2081 unsigned int i, j; 2082 2083 umidi = list_entry(p, struct snd_usb_midi, list); 2084 if (!umidi->input_running) 2085 return; 2086 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2087 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; 2088 if (ep->in) 2089 for (j = 0; j < INPUT_URBS; ++j) 2090 usb_kill_urb(ep->in->urbs[j]); 2091 } 2092 umidi->input_running = 0; 2093 } 2094 2095 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep) 2096 { 2097 unsigned int i; 2098 2099 if (!ep) 2100 return; 2101 for (i = 0; i < INPUT_URBS; ++i) { 2102 struct urb* urb = ep->urbs[i]; 2103 urb->dev = ep->umidi->dev; 2104 snd_usbmidi_submit_urb(urb, GFP_KERNEL); 2105 } 2106 } 2107 2108 /* 2109 * Resume input after a call to snd_usbmidi_input_stop(). 2110 */ 2111 void snd_usbmidi_input_start(struct list_head* p) 2112 { 2113 struct snd_usb_midi* umidi; 2114 int i; 2115 2116 umidi = list_entry(p, struct snd_usb_midi, list); 2117 if (umidi->input_running || !umidi->opened[1]) 2118 return; 2119 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) 2120 snd_usbmidi_input_start_ep(umidi->endpoints[i].in); 2121 umidi->input_running = 1; 2122 } 2123 2124 /* 2125 * Creates and registers everything needed for a MIDI streaming interface. 2126 */ 2127 int snd_usbmidi_create(struct snd_card *card, 2128 struct usb_interface* iface, 2129 struct list_head *midi_list, 2130 const struct snd_usb_audio_quirk* quirk) 2131 { 2132 struct snd_usb_midi* umidi; 2133 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; 2134 int out_ports, in_ports; 2135 int i, err; 2136 2137 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); 2138 if (!umidi) 2139 return -ENOMEM; 2140 umidi->dev = interface_to_usbdev(iface); 2141 umidi->card = card; 2142 umidi->iface = iface; 2143 umidi->quirk = quirk; 2144 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; 2145 init_timer(&umidi->error_timer); 2146 spin_lock_init(&umidi->disc_lock); 2147 init_rwsem(&umidi->disc_rwsem); 2148 mutex_init(&umidi->mutex); 2149 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), 2150 le16_to_cpu(umidi->dev->descriptor.idProduct)); 2151 umidi->error_timer.function = snd_usbmidi_error_timer; 2152 umidi->error_timer.data = (unsigned long)umidi; 2153 2154 /* detect the endpoint(s) to use */ 2155 memset(endpoints, 0, sizeof(endpoints)); 2156 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { 2157 case QUIRK_MIDI_STANDARD_INTERFACE: 2158 err = snd_usbmidi_get_ms_info(umidi, endpoints); 2159 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ 2160 umidi->usb_protocol_ops = 2161 &snd_usbmidi_maudio_broken_running_status_ops; 2162 break; 2163 case QUIRK_MIDI_US122L: 2164 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; 2165 /* fall through */ 2166 case QUIRK_MIDI_FIXED_ENDPOINT: 2167 memcpy(&endpoints[0], quirk->data, 2168 sizeof(struct snd_usb_midi_endpoint_info)); 2169 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2170 break; 2171 case QUIRK_MIDI_YAMAHA: 2172 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); 2173 break; 2174 case QUIRK_MIDI_MIDIMAN: 2175 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; 2176 memcpy(&endpoints[0], quirk->data, 2177 sizeof(struct snd_usb_midi_endpoint_info)); 2178 err = 0; 2179 break; 2180 case QUIRK_MIDI_NOVATION: 2181 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; 2182 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2183 break; 2184 case QUIRK_MIDI_RAW_BYTES: 2185 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; 2186 /* 2187 * Interface 1 contains isochronous endpoints, but with the same 2188 * numbers as in interface 0. Since it is interface 1 that the 2189 * USB core has most recently seen, these descriptors are now 2190 * associated with the endpoint numbers. This will foul up our 2191 * attempts to submit bulk/interrupt URBs to the endpoints in 2192 * interface 0, so we have to make sure that the USB core looks 2193 * again at interface 0 by calling usb_set_interface() on it. 2194 */ 2195 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ 2196 usb_set_interface(umidi->dev, 0, 0); 2197 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2198 break; 2199 case QUIRK_MIDI_EMAGIC: 2200 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; 2201 memcpy(&endpoints[0], quirk->data, 2202 sizeof(struct snd_usb_midi_endpoint_info)); 2203 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); 2204 break; 2205 case QUIRK_MIDI_CME: 2206 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; 2207 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2208 break; 2209 case QUIRK_MIDI_AKAI: 2210 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; 2211 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2212 /* endpoint 1 is input-only */ 2213 endpoints[1].out_cables = 0; 2214 break; 2215 case QUIRK_MIDI_FTDI: 2216 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; 2217 2218 /* set baud rate to 31250 (48 MHz / 16 / 96) */ 2219 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 2220 3, 0x40, 0x60, 0, NULL, 0, 1000); 2221 if (err < 0) 2222 break; 2223 2224 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); 2225 break; 2226 default: 2227 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); 2228 err = -ENXIO; 2229 break; 2230 } 2231 if (err < 0) { 2232 kfree(umidi); 2233 return err; 2234 } 2235 2236 /* create rawmidi device */ 2237 out_ports = 0; 2238 in_ports = 0; 2239 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { 2240 out_ports += hweight16(endpoints[i].out_cables); 2241 in_ports += hweight16(endpoints[i].in_cables); 2242 } 2243 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); 2244 if (err < 0) { 2245 kfree(umidi); 2246 return err; 2247 } 2248 2249 /* create endpoint/port structures */ 2250 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) 2251 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); 2252 else 2253 err = snd_usbmidi_create_endpoints(umidi, endpoints); 2254 if (err < 0) { 2255 snd_usbmidi_free(umidi); 2256 return err; 2257 } 2258 2259 list_add_tail(&umidi->list, midi_list); 2260 return 0; 2261 } 2262 2263 EXPORT_SYMBOL(snd_usbmidi_create); 2264 EXPORT_SYMBOL(snd_usbmidi_input_stop); 2265 EXPORT_SYMBOL(snd_usbmidi_input_start); 2266 EXPORT_SYMBOL(snd_usbmidi_disconnect); 2267