1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 struct list_head list; 36 }; 37 38 /* 39 * snd_usb_endpoint is a model that abstracts everything related to an 40 * USB endpoint and its streaming. 41 * 42 * There are functions to activate and deactivate the streaming URBs and 43 * optional callbacks to let the pcm logic handle the actual content of the 44 * packets for playback and record. Thus, the bus streaming and the audio 45 * handlers are fully decoupled. 46 * 47 * There are two different types of endpoints in audio applications. 48 * 49 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 50 * inbound and outbound traffic. 51 * 52 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 53 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 54 * (3 or 4 bytes). 55 * 56 * Each endpoint has to be configured prior to being used by calling 57 * snd_usb_endpoint_set_params(). 58 * 59 * The model incorporates a reference counting, so that multiple users 60 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 61 * only the first user will effectively start the URBs, and only the last 62 * one to stop it will tear the URBs down again. 63 */ 64 65 /* 66 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 67 * this will overflow at approx 524 kHz 68 */ 69 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 70 { 71 return ((rate << 13) + 62) / 125; 72 } 73 74 /* 75 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 76 * this will overflow at approx 4 MHz 77 */ 78 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 79 { 80 return ((rate << 10) + 62) / 125; 81 } 82 83 /* 84 * release a urb data 85 */ 86 static void release_urb_ctx(struct snd_urb_ctx *u) 87 { 88 if (u->buffer_size) 89 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 90 u->urb->transfer_buffer, 91 u->urb->transfer_dma); 92 usb_free_urb(u->urb); 93 u->urb = NULL; 94 } 95 96 static const char *usb_error_string(int err) 97 { 98 switch (err) { 99 case -ENODEV: 100 return "no device"; 101 case -ENOENT: 102 return "endpoint not enabled"; 103 case -EPIPE: 104 return "endpoint stalled"; 105 case -ENOSPC: 106 return "not enough bandwidth"; 107 case -ESHUTDOWN: 108 return "device disabled"; 109 case -EHOSTUNREACH: 110 return "device suspended"; 111 case -EINVAL: 112 case -EAGAIN: 113 case -EFBIG: 114 case -EMSGSIZE: 115 return "internal error"; 116 default: 117 return "unknown error"; 118 } 119 } 120 121 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 122 { 123 return atomic_read(&ep->state) == EP_STATE_RUNNING; 124 } 125 126 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 127 { 128 return atomic_cmpxchg(&ep->state, old, new) == old; 129 } 130 131 /** 132 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 133 * 134 * @ep: The snd_usb_endpoint 135 * 136 * Determine whether an endpoint is driven by an implicit feedback 137 * data endpoint source. 138 */ 139 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 140 { 141 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 142 } 143 144 /* 145 * Return the number of samples to be sent in the next packet 146 * for streaming based on information derived from sync endpoints 147 * 148 * This won't be used for implicit feedback which takes the packet size 149 * returned from the sync source 150 */ 151 static int slave_next_packet_size(struct snd_usb_endpoint *ep) 152 { 153 unsigned long flags; 154 int ret; 155 156 if (ep->fill_max) 157 return ep->maxframesize; 158 159 spin_lock_irqsave(&ep->lock, flags); 160 ep->phase = (ep->phase & 0xffff) 161 + (ep->freqm << ep->datainterval); 162 ret = min(ep->phase >> 16, ep->maxframesize); 163 spin_unlock_irqrestore(&ep->lock, flags); 164 165 return ret; 166 } 167 168 /* 169 * Return the number of samples to be sent in the next packet 170 * for adaptive and synchronous endpoints 171 */ 172 static int next_packet_size(struct snd_usb_endpoint *ep) 173 { 174 int ret; 175 176 if (ep->fill_max) 177 return ep->maxframesize; 178 179 ep->sample_accum += ep->sample_rem; 180 if (ep->sample_accum >= ep->pps) { 181 ep->sample_accum -= ep->pps; 182 ret = ep->packsize[1]; 183 } else { 184 ret = ep->packsize[0]; 185 } 186 187 return ret; 188 } 189 190 /* 191 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 192 * in the next packet 193 */ 194 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 195 struct snd_urb_ctx *ctx, int idx) 196 { 197 if (ctx->packet_size[idx]) 198 return ctx->packet_size[idx]; 199 else if (ep->sync_source) 200 return slave_next_packet_size(ep); 201 else 202 return next_packet_size(ep); 203 } 204 205 static void call_retire_callback(struct snd_usb_endpoint *ep, 206 struct urb *urb) 207 { 208 struct snd_usb_substream *data_subs; 209 210 data_subs = READ_ONCE(ep->data_subs); 211 if (data_subs && ep->retire_data_urb) 212 ep->retire_data_urb(data_subs, urb); 213 } 214 215 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 216 struct snd_urb_ctx *urb_ctx) 217 { 218 call_retire_callback(ep, urb_ctx->urb); 219 } 220 221 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 222 struct snd_usb_endpoint *sender, 223 const struct urb *urb); 224 225 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 226 struct snd_urb_ctx *urb_ctx) 227 { 228 struct urb *urb = urb_ctx->urb; 229 struct snd_usb_endpoint *sync_sink; 230 231 if (unlikely(ep->skip_packets > 0)) { 232 ep->skip_packets--; 233 return; 234 } 235 236 sync_sink = READ_ONCE(ep->sync_sink); 237 if (sync_sink) 238 snd_usb_handle_sync_urb(sync_sink, ep, urb); 239 240 call_retire_callback(ep, urb); 241 } 242 243 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 244 struct snd_urb_ctx *ctx) 245 { 246 struct urb *urb = ctx->urb; 247 unsigned int offs = 0; 248 unsigned int extra = 0; 249 __le32 packet_length; 250 int i; 251 252 /* For tx_length_quirk, put packet length at start of packet */ 253 if (ep->chip->tx_length_quirk) 254 extra = sizeof(packet_length); 255 256 for (i = 0; i < ctx->packets; ++i) { 257 unsigned int offset; 258 unsigned int length; 259 int counts; 260 261 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i); 262 length = counts * ep->stride; /* number of silent bytes */ 263 offset = offs * ep->stride + extra * i; 264 urb->iso_frame_desc[i].offset = offset; 265 urb->iso_frame_desc[i].length = length + extra; 266 if (extra) { 267 packet_length = cpu_to_le32(length); 268 memcpy(urb->transfer_buffer + offset, 269 &packet_length, sizeof(packet_length)); 270 } 271 memset(urb->transfer_buffer + offset + extra, 272 ep->silence_value, length); 273 offs += counts; 274 } 275 276 urb->number_of_packets = ctx->packets; 277 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 278 } 279 280 /* 281 * Prepare a PLAYBACK urb for submission to the bus. 282 */ 283 static void prepare_outbound_urb(struct snd_usb_endpoint *ep, 284 struct snd_urb_ctx *ctx) 285 { 286 struct urb *urb = ctx->urb; 287 unsigned char *cp = urb->transfer_buffer; 288 struct snd_usb_substream *data_subs; 289 290 urb->dev = ep->chip->dev; /* we need to set this at each time */ 291 292 switch (ep->type) { 293 case SND_USB_ENDPOINT_TYPE_DATA: 294 data_subs = READ_ONCE(ep->data_subs); 295 if (data_subs && ep->prepare_data_urb) 296 ep->prepare_data_urb(data_subs, urb); 297 else /* no data provider, so send silence */ 298 prepare_silent_urb(ep, ctx); 299 break; 300 301 case SND_USB_ENDPOINT_TYPE_SYNC: 302 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 303 /* 304 * fill the length and offset of each urb descriptor. 305 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 306 */ 307 urb->iso_frame_desc[0].length = 4; 308 urb->iso_frame_desc[0].offset = 0; 309 cp[0] = ep->freqn; 310 cp[1] = ep->freqn >> 8; 311 cp[2] = ep->freqn >> 16; 312 cp[3] = ep->freqn >> 24; 313 } else { 314 /* 315 * fill the length and offset of each urb descriptor. 316 * the fixed 10.14 frequency is passed through the pipe. 317 */ 318 urb->iso_frame_desc[0].length = 3; 319 urb->iso_frame_desc[0].offset = 0; 320 cp[0] = ep->freqn >> 2; 321 cp[1] = ep->freqn >> 10; 322 cp[2] = ep->freqn >> 18; 323 } 324 325 break; 326 } 327 } 328 329 /* 330 * Prepare a CAPTURE or SYNC urb for submission to the bus. 331 */ 332 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep, 333 struct snd_urb_ctx *urb_ctx) 334 { 335 int i, offs; 336 struct urb *urb = urb_ctx->urb; 337 338 urb->dev = ep->chip->dev; /* we need to set this at each time */ 339 340 switch (ep->type) { 341 case SND_USB_ENDPOINT_TYPE_DATA: 342 offs = 0; 343 for (i = 0; i < urb_ctx->packets; i++) { 344 urb->iso_frame_desc[i].offset = offs; 345 urb->iso_frame_desc[i].length = ep->curpacksize; 346 offs += ep->curpacksize; 347 } 348 349 urb->transfer_buffer_length = offs; 350 urb->number_of_packets = urb_ctx->packets; 351 break; 352 353 case SND_USB_ENDPOINT_TYPE_SYNC: 354 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 355 urb->iso_frame_desc[0].offset = 0; 356 break; 357 } 358 } 359 360 /* notify an error as XRUN to the assigned PCM data substream */ 361 static void notify_xrun(struct snd_usb_endpoint *ep) 362 { 363 struct snd_usb_substream *data_subs; 364 365 data_subs = READ_ONCE(ep->data_subs); 366 if (data_subs && data_subs->pcm_substream) 367 snd_pcm_stop_xrun(data_subs->pcm_substream); 368 } 369 370 static struct snd_usb_packet_info * 371 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 372 { 373 struct snd_usb_packet_info *p; 374 375 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 376 ARRAY_SIZE(ep->next_packet); 377 ep->next_packet_queued++; 378 return p; 379 } 380 381 static struct snd_usb_packet_info * 382 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 383 { 384 struct snd_usb_packet_info *p; 385 386 p = ep->next_packet + ep->next_packet_head; 387 ep->next_packet_head++; 388 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 389 ep->next_packet_queued--; 390 return p; 391 } 392 393 /* 394 * Send output urbs that have been prepared previously. URBs are dequeued 395 * from ep->ready_playback_urbs and in case there aren't any available 396 * or there are no packets that have been prepared, this function does 397 * nothing. 398 * 399 * The reason why the functionality of sending and preparing URBs is separated 400 * is that host controllers don't guarantee the order in which they return 401 * inbound and outbound packets to their submitters. 402 * 403 * This function is only used for implicit feedback endpoints. For endpoints 404 * driven by dedicated sync endpoints, URBs are immediately re-submitted 405 * from their completion handler. 406 */ 407 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep) 408 { 409 while (ep_state_running(ep)) { 410 411 unsigned long flags; 412 struct snd_usb_packet_info *packet; 413 struct snd_urb_ctx *ctx = NULL; 414 int err, i; 415 416 spin_lock_irqsave(&ep->lock, flags); 417 if (ep->next_packet_queued > 0 && 418 !list_empty(&ep->ready_playback_urbs)) { 419 /* take URB out of FIFO */ 420 ctx = list_first_entry(&ep->ready_playback_urbs, 421 struct snd_urb_ctx, ready_list); 422 list_del_init(&ctx->ready_list); 423 424 packet = next_packet_fifo_dequeue(ep); 425 } 426 spin_unlock_irqrestore(&ep->lock, flags); 427 428 if (ctx == NULL) 429 return; 430 431 /* copy over the length information */ 432 for (i = 0; i < packet->packets; i++) 433 ctx->packet_size[i] = packet->packet_size[i]; 434 435 /* call the data handler to fill in playback data */ 436 prepare_outbound_urb(ep, ctx); 437 438 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 439 if (err < 0) { 440 usb_audio_err(ep->chip, 441 "Unable to submit urb #%d: %d at %s\n", 442 ctx->index, err, __func__); 443 notify_xrun(ep); 444 return; 445 } 446 447 set_bit(ctx->index, &ep->active_mask); 448 } 449 } 450 451 /* 452 * complete callback for urbs 453 */ 454 static void snd_complete_urb(struct urb *urb) 455 { 456 struct snd_urb_ctx *ctx = urb->context; 457 struct snd_usb_endpoint *ep = ctx->ep; 458 unsigned long flags; 459 int err; 460 461 if (unlikely(urb->status == -ENOENT || /* unlinked */ 462 urb->status == -ENODEV || /* device removed */ 463 urb->status == -ECONNRESET || /* unlinked */ 464 urb->status == -ESHUTDOWN)) /* device disabled */ 465 goto exit_clear; 466 /* device disconnected */ 467 if (unlikely(atomic_read(&ep->chip->shutdown))) 468 goto exit_clear; 469 470 if (unlikely(!ep_state_running(ep))) 471 goto exit_clear; 472 473 if (usb_pipeout(ep->pipe)) { 474 retire_outbound_urb(ep, ctx); 475 /* can be stopped during retire callback */ 476 if (unlikely(!ep_state_running(ep))) 477 goto exit_clear; 478 479 if (snd_usb_endpoint_implicit_feedback_sink(ep)) { 480 spin_lock_irqsave(&ep->lock, flags); 481 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 482 clear_bit(ctx->index, &ep->active_mask); 483 spin_unlock_irqrestore(&ep->lock, flags); 484 queue_pending_output_urbs(ep); 485 return; 486 } 487 488 prepare_outbound_urb(ep, ctx); 489 /* can be stopped during prepare callback */ 490 if (unlikely(!ep_state_running(ep))) 491 goto exit_clear; 492 } else { 493 retire_inbound_urb(ep, ctx); 494 /* can be stopped during retire callback */ 495 if (unlikely(!ep_state_running(ep))) 496 goto exit_clear; 497 498 prepare_inbound_urb(ep, ctx); 499 } 500 501 err = usb_submit_urb(urb, GFP_ATOMIC); 502 if (err == 0) 503 return; 504 505 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 506 notify_xrun(ep); 507 508 exit_clear: 509 clear_bit(ctx->index, &ep->active_mask); 510 } 511 512 /* 513 * Find or create a refcount object for the given interface 514 * 515 * The objects are released altogether in snd_usb_endpoint_free_all() 516 */ 517 static struct snd_usb_iface_ref * 518 iface_ref_find(struct snd_usb_audio *chip, int iface) 519 { 520 struct snd_usb_iface_ref *ip; 521 522 list_for_each_entry(ip, &chip->iface_ref_list, list) 523 if (ip->iface == iface) 524 return ip; 525 526 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 527 if (!ip) 528 return NULL; 529 ip->iface = iface; 530 list_add_tail(&ip->list, &chip->iface_ref_list); 531 return ip; 532 } 533 534 /* 535 * Get the existing endpoint object corresponding EP 536 * Returns NULL if not present. 537 */ 538 struct snd_usb_endpoint * 539 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 540 { 541 struct snd_usb_endpoint *ep; 542 543 list_for_each_entry(ep, &chip->ep_list, list) { 544 if (ep->ep_num == ep_num) 545 return ep; 546 } 547 548 return NULL; 549 } 550 551 #define ep_type_name(type) \ 552 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 553 554 /** 555 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 556 * 557 * @chip: The chip 558 * @ep_num: The number of the endpoint to use 559 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 560 * 561 * If the requested endpoint has not been added to the given chip before, 562 * a new instance is created. 563 * 564 * Returns zero on success or a negative error code. 565 * 566 * New endpoints will be added to chip->ep_list and freed by 567 * calling snd_usb_endpoint_free_all(). 568 * 569 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 570 * bNumEndpoints > 1 beforehand. 571 */ 572 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 573 { 574 struct snd_usb_endpoint *ep; 575 bool is_playback; 576 577 ep = snd_usb_get_endpoint(chip, ep_num); 578 if (ep) 579 return 0; 580 581 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 582 ep_type_name(type), 583 ep_num); 584 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 585 if (!ep) 586 return -ENOMEM; 587 588 ep->chip = chip; 589 spin_lock_init(&ep->lock); 590 ep->type = type; 591 ep->ep_num = ep_num; 592 INIT_LIST_HEAD(&ep->ready_playback_urbs); 593 594 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 595 ep_num &= USB_ENDPOINT_NUMBER_MASK; 596 if (is_playback) 597 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 598 else 599 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 600 601 list_add_tail(&ep->list, &chip->ep_list); 602 return 0; 603 } 604 605 /* Set up syncinterval and maxsyncsize for a sync EP */ 606 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 607 struct snd_usb_endpoint *ep) 608 { 609 struct usb_host_interface *alts; 610 struct usb_endpoint_descriptor *desc; 611 612 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 613 if (!alts) 614 return; 615 616 desc = get_endpoint(alts, ep->ep_idx); 617 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 618 desc->bRefresh >= 1 && desc->bRefresh <= 9) 619 ep->syncinterval = desc->bRefresh; 620 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 621 ep->syncinterval = 1; 622 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 623 ep->syncinterval = desc->bInterval - 1; 624 else 625 ep->syncinterval = 3; 626 627 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 628 } 629 630 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 631 const struct audioformat *fp, 632 const struct snd_pcm_hw_params *params) 633 { 634 if (!ep->opened) 635 return false; 636 if (ep->cur_audiofmt != fp) 637 return false; 638 if (ep->cur_rate != params_rate(params) || 639 ep->cur_format != params_format(params) || 640 ep->cur_period_frames != params_period_size(params) || 641 ep->cur_buffer_periods != params_periods(params)) 642 return false; 643 return true; 644 } 645 646 /* 647 * Check whether the given fp and hw params are compatbile with the current 648 * setup of the target EP for implicit feedback sync 649 */ 650 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 651 struct snd_usb_endpoint *ep, 652 const struct audioformat *fp, 653 const struct snd_pcm_hw_params *params) 654 { 655 bool ret; 656 657 mutex_lock(&chip->mutex); 658 ret = endpoint_compatible(ep, fp, params); 659 mutex_unlock(&chip->mutex); 660 return ret; 661 } 662 663 /* 664 * snd_usb_endpoint_open: Open the endpoint 665 * 666 * Called from hw_params to assign the endpoint to the substream. 667 * It's reference-counted, and only the first opener is allowed to set up 668 * arbitrary parameters. The later opener must be compatible with the 669 * former opened parameters. 670 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 671 * 672 * Note that this function doesn't configure the endpoint. The substream 673 * needs to set it up later via snd_usb_endpoint_configure(). 674 */ 675 struct snd_usb_endpoint * 676 snd_usb_endpoint_open(struct snd_usb_audio *chip, 677 const struct audioformat *fp, 678 const struct snd_pcm_hw_params *params, 679 bool is_sync_ep) 680 { 681 struct snd_usb_endpoint *ep; 682 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 683 684 mutex_lock(&chip->mutex); 685 ep = snd_usb_get_endpoint(chip, ep_num); 686 if (!ep) { 687 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 688 goto unlock; 689 } 690 691 if (!ep->opened) { 692 if (is_sync_ep) { 693 ep->iface = fp->sync_iface; 694 ep->altsetting = fp->sync_altsetting; 695 ep->ep_idx = fp->sync_ep_idx; 696 } else { 697 ep->iface = fp->iface; 698 ep->altsetting = fp->altsetting; 699 ep->ep_idx = fp->ep_idx; 700 } 701 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 702 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 703 704 ep->iface_ref = iface_ref_find(chip, ep->iface); 705 if (!ep->iface_ref) { 706 ep = NULL; 707 goto unlock; 708 } 709 710 ep->cur_audiofmt = fp; 711 ep->cur_channels = fp->channels; 712 ep->cur_rate = params_rate(params); 713 ep->cur_format = params_format(params); 714 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 715 ep->cur_channels / 8; 716 ep->cur_period_frames = params_period_size(params); 717 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 718 ep->cur_buffer_periods = params_periods(params); 719 720 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 721 endpoint_set_syncinterval(chip, ep); 722 723 ep->implicit_fb_sync = fp->implicit_fb; 724 ep->need_setup = true; 725 726 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 727 ep->cur_channels, ep->cur_rate, 728 snd_pcm_format_name(ep->cur_format), 729 ep->cur_period_bytes, ep->cur_buffer_periods, 730 ep->implicit_fb_sync); 731 732 } else { 733 if (WARN_ON(!ep->iface_ref)) { 734 ep = NULL; 735 goto unlock; 736 } 737 738 if (!endpoint_compatible(ep, fp, params)) { 739 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 740 ep_num); 741 ep = NULL; 742 goto unlock; 743 } 744 745 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 746 ep_num, ep->opened); 747 } 748 749 if (!ep->iface_ref->opened++) 750 ep->iface_ref->need_setup = true; 751 752 ep->opened++; 753 754 unlock: 755 mutex_unlock(&chip->mutex); 756 return ep; 757 } 758 759 /* 760 * snd_usb_endpoint_set_sync: Link data and sync endpoints 761 * 762 * Pass NULL to sync_ep to unlink again 763 */ 764 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 765 struct snd_usb_endpoint *data_ep, 766 struct snd_usb_endpoint *sync_ep) 767 { 768 data_ep->sync_source = sync_ep; 769 } 770 771 /* 772 * Set data endpoint callbacks and the assigned data stream 773 * 774 * Called at PCM trigger and cleanups. 775 * Pass NULL to deactivate each callback. 776 */ 777 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 778 void (*prepare)(struct snd_usb_substream *subs, 779 struct urb *urb), 780 void (*retire)(struct snd_usb_substream *subs, 781 struct urb *urb), 782 struct snd_usb_substream *data_subs) 783 { 784 ep->prepare_data_urb = prepare; 785 ep->retire_data_urb = retire; 786 WRITE_ONCE(ep->data_subs, data_subs); 787 } 788 789 static int endpoint_set_interface(struct snd_usb_audio *chip, 790 struct snd_usb_endpoint *ep, 791 bool set) 792 { 793 int altset = set ? ep->altsetting : 0; 794 int err; 795 796 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 797 ep->iface, altset, ep->ep_num); 798 err = usb_set_interface(chip->dev, ep->iface, altset); 799 if (err < 0) { 800 usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", 801 ep->iface, altset, err); 802 return err; 803 } 804 805 snd_usb_set_interface_quirk(chip); 806 return 0; 807 } 808 809 /* 810 * snd_usb_endpoint_close: Close the endpoint 811 * 812 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 813 */ 814 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 815 struct snd_usb_endpoint *ep) 816 { 817 mutex_lock(&chip->mutex); 818 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 819 ep->ep_num, ep->opened); 820 821 if (!--ep->iface_ref->opened) 822 endpoint_set_interface(chip, ep, false); 823 824 if (!--ep->opened) { 825 ep->iface = 0; 826 ep->altsetting = 0; 827 ep->cur_audiofmt = NULL; 828 ep->cur_rate = 0; 829 ep->iface_ref = NULL; 830 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 831 } 832 mutex_unlock(&chip->mutex); 833 } 834 835 /* Prepare for suspening EP, called from the main suspend handler */ 836 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 837 { 838 ep->need_setup = true; 839 if (ep->iface_ref) 840 ep->iface_ref->need_setup = true; 841 } 842 843 /* 844 * wait until all urbs are processed. 845 */ 846 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 847 { 848 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 849 int alive; 850 851 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 852 return 0; 853 854 do { 855 alive = bitmap_weight(&ep->active_mask, ep->nurbs); 856 if (!alive) 857 break; 858 859 schedule_timeout_uninterruptible(1); 860 } while (time_before(jiffies, end_time)); 861 862 if (alive) 863 usb_audio_err(ep->chip, 864 "timeout: still %d active urbs on EP #%x\n", 865 alive, ep->ep_num); 866 867 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 868 ep->sync_sink = NULL; 869 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 870 } 871 872 return 0; 873 } 874 875 /* sync the pending stop operation; 876 * this function itself doesn't trigger the stop operation 877 */ 878 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 879 { 880 if (ep) 881 wait_clear_urbs(ep); 882 } 883 884 /* 885 * Stop active urbs 886 * 887 * This function moves the EP to STOPPING state if it's being RUNNING. 888 */ 889 static int stop_urbs(struct snd_usb_endpoint *ep, bool force) 890 { 891 unsigned int i; 892 893 if (!force && atomic_read(&ep->running)) 894 return -EBUSY; 895 896 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 897 return 0; 898 899 INIT_LIST_HEAD(&ep->ready_playback_urbs); 900 ep->next_packet_head = 0; 901 ep->next_packet_queued = 0; 902 903 for (i = 0; i < ep->nurbs; i++) { 904 if (test_bit(i, &ep->active_mask)) { 905 if (!test_and_set_bit(i, &ep->unlink_mask)) { 906 struct urb *u = ep->urb[i].urb; 907 usb_unlink_urb(u); 908 } 909 } 910 } 911 912 return 0; 913 } 914 915 /* 916 * release an endpoint's urbs 917 */ 918 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 919 { 920 int i, err; 921 922 /* route incoming urbs to nirvana */ 923 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 924 925 /* stop and unlink urbs */ 926 err = stop_urbs(ep, force); 927 if (err) 928 return err; 929 930 wait_clear_urbs(ep); 931 932 for (i = 0; i < ep->nurbs; i++) 933 release_urb_ctx(&ep->urb[i]); 934 935 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 936 ep->syncbuf, ep->sync_dma); 937 938 ep->syncbuf = NULL; 939 ep->nurbs = 0; 940 return 0; 941 } 942 943 /* 944 * configure a data endpoint 945 */ 946 static int data_ep_set_params(struct snd_usb_endpoint *ep) 947 { 948 struct snd_usb_audio *chip = ep->chip; 949 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 950 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 951 unsigned int max_urbs, i; 952 const struct audioformat *fmt = ep->cur_audiofmt; 953 int frame_bits = ep->cur_frame_bytes * 8; 954 int tx_length_quirk = (chip->tx_length_quirk && 955 usb_pipeout(ep->pipe)); 956 957 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 958 ep->ep_num, ep->pipe); 959 960 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 961 /* 962 * When operating in DSD DOP mode, the size of a sample frame 963 * in hardware differs from the actual physical format width 964 * because we need to make room for the DOP markers. 965 */ 966 frame_bits += ep->cur_channels << 3; 967 } 968 969 ep->datainterval = fmt->datainterval; 970 ep->stride = frame_bits >> 3; 971 972 switch (ep->cur_format) { 973 case SNDRV_PCM_FORMAT_U8: 974 ep->silence_value = 0x80; 975 break; 976 case SNDRV_PCM_FORMAT_DSD_U8: 977 case SNDRV_PCM_FORMAT_DSD_U16_LE: 978 case SNDRV_PCM_FORMAT_DSD_U32_LE: 979 case SNDRV_PCM_FORMAT_DSD_U16_BE: 980 case SNDRV_PCM_FORMAT_DSD_U32_BE: 981 ep->silence_value = 0x69; 982 break; 983 default: 984 ep->silence_value = 0; 985 } 986 987 /* assume max. frequency is 50% higher than nominal */ 988 ep->freqmax = ep->freqn + (ep->freqn >> 1); 989 /* Round up freqmax to nearest integer in order to calculate maximum 990 * packet size, which must represent a whole number of frames. 991 * This is accomplished by adding 0x0.ffff before converting the 992 * Q16.16 format into integer. 993 * In order to accurately calculate the maximum packet size when 994 * the data interval is more than 1 (i.e. ep->datainterval > 0), 995 * multiply by the data interval prior to rounding. For instance, 996 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 997 * frames with a data interval of 1, but 11 (10.25) frames with a 998 * data interval of 2. 999 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1000 * maximum datainterval value of 3, at USB full speed, higher for 1001 * USB high speed, noting that ep->freqmax is in units of 1002 * frames per packet in Q16.16 format.) 1003 */ 1004 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1005 (frame_bits >> 3); 1006 if (tx_length_quirk) 1007 maxsize += sizeof(__le32); /* Space for length descriptor */ 1008 /* but wMaxPacketSize might reduce this */ 1009 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1010 /* whatever fits into a max. size packet */ 1011 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1012 1013 if (tx_length_quirk) 1014 /* Need to remove the length descriptor to calc freq */ 1015 data_maxsize -= sizeof(__le32); 1016 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1017 << (16 - ep->datainterval); 1018 } 1019 1020 if (ep->fill_max) 1021 ep->curpacksize = ep->maxpacksize; 1022 else 1023 ep->curpacksize = maxsize; 1024 1025 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1026 packs_per_ms = 8 >> ep->datainterval; 1027 max_packs_per_urb = MAX_PACKS_HS; 1028 } else { 1029 packs_per_ms = 1; 1030 max_packs_per_urb = MAX_PACKS; 1031 } 1032 if (ep->sync_source && !ep->implicit_fb_sync) 1033 max_packs_per_urb = min(max_packs_per_urb, 1034 1U << ep->sync_source->syncinterval); 1035 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1036 1037 /* 1038 * Capture endpoints need to use small URBs because there's no way 1039 * to tell in advance where the next period will end, and we don't 1040 * want the next URB to complete much after the period ends. 1041 * 1042 * Playback endpoints with implicit sync much use the same parameters 1043 * as their corresponding capture endpoint. 1044 */ 1045 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1046 1047 urb_packs = packs_per_ms; 1048 /* 1049 * Wireless devices can poll at a max rate of once per 4ms. 1050 * For dataintervals less than 5, increase the packet count to 1051 * allow the host controller to use bursting to fill in the 1052 * gaps. 1053 */ 1054 if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { 1055 int interval = ep->datainterval; 1056 while (interval < 5) { 1057 urb_packs <<= 1; 1058 ++interval; 1059 } 1060 } 1061 /* make capture URBs <= 1 ms and smaller than a period */ 1062 urb_packs = min(max_packs_per_urb, urb_packs); 1063 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1064 urb_packs >>= 1; 1065 ep->nurbs = MAX_URBS; 1066 1067 /* 1068 * Playback endpoints without implicit sync are adjusted so that 1069 * a period fits as evenly as possible in the smallest number of 1070 * URBs. The total number of URBs is adjusted to the size of the 1071 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1072 */ 1073 } else { 1074 /* determine how small a packet can be */ 1075 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1076 (frame_bits >> 3); 1077 /* with sync from device, assume it can be 12% lower */ 1078 if (ep->sync_source) 1079 minsize -= minsize >> 3; 1080 minsize = max(minsize, 1u); 1081 1082 /* how many packets will contain an entire ALSA period? */ 1083 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1084 1085 /* how many URBs will contain a period? */ 1086 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1087 max_packs_per_urb); 1088 /* how many packets are needed in each URB? */ 1089 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1090 1091 /* limit the number of frames in a single URB */ 1092 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1093 urbs_per_period); 1094 1095 /* try to use enough URBs to contain an entire ALSA buffer */ 1096 max_urbs = min((unsigned) MAX_URBS, 1097 MAX_QUEUE * packs_per_ms / urb_packs); 1098 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1099 } 1100 1101 /* allocate and initialize data urbs */ 1102 for (i = 0; i < ep->nurbs; i++) { 1103 struct snd_urb_ctx *u = &ep->urb[i]; 1104 u->index = i; 1105 u->ep = ep; 1106 u->packets = urb_packs; 1107 u->buffer_size = maxsize * u->packets; 1108 1109 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1110 u->packets++; /* for transfer delimiter */ 1111 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1112 if (!u->urb) 1113 goto out_of_memory; 1114 1115 u->urb->transfer_buffer = 1116 usb_alloc_coherent(chip->dev, u->buffer_size, 1117 GFP_KERNEL, &u->urb->transfer_dma); 1118 if (!u->urb->transfer_buffer) 1119 goto out_of_memory; 1120 u->urb->pipe = ep->pipe; 1121 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1122 u->urb->interval = 1 << ep->datainterval; 1123 u->urb->context = u; 1124 u->urb->complete = snd_complete_urb; 1125 INIT_LIST_HEAD(&u->ready_list); 1126 } 1127 1128 return 0; 1129 1130 out_of_memory: 1131 release_urbs(ep, false); 1132 return -ENOMEM; 1133 } 1134 1135 /* 1136 * configure a sync endpoint 1137 */ 1138 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1139 { 1140 struct snd_usb_audio *chip = ep->chip; 1141 int i; 1142 1143 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1144 ep->ep_num, ep->pipe); 1145 1146 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1147 GFP_KERNEL, &ep->sync_dma); 1148 if (!ep->syncbuf) 1149 return -ENOMEM; 1150 1151 for (i = 0; i < SYNC_URBS; i++) { 1152 struct snd_urb_ctx *u = &ep->urb[i]; 1153 u->index = i; 1154 u->ep = ep; 1155 u->packets = 1; 1156 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1157 if (!u->urb) 1158 goto out_of_memory; 1159 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1160 u->urb->transfer_dma = ep->sync_dma + i * 4; 1161 u->urb->transfer_buffer_length = 4; 1162 u->urb->pipe = ep->pipe; 1163 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1164 u->urb->number_of_packets = 1; 1165 u->urb->interval = 1 << ep->syncinterval; 1166 u->urb->context = u; 1167 u->urb->complete = snd_complete_urb; 1168 } 1169 1170 ep->nurbs = SYNC_URBS; 1171 1172 return 0; 1173 1174 out_of_memory: 1175 release_urbs(ep, false); 1176 return -ENOMEM; 1177 } 1178 1179 /* 1180 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1181 * 1182 * Determine the number of URBs to be used on this endpoint. 1183 * An endpoint must be configured before it can be started. 1184 * An endpoint that is already running can not be reconfigured. 1185 */ 1186 static int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1187 struct snd_usb_endpoint *ep) 1188 { 1189 const struct audioformat *fmt = ep->cur_audiofmt; 1190 int err; 1191 1192 /* release old buffers, if any */ 1193 err = release_urbs(ep, false); 1194 if (err < 0) 1195 return err; 1196 1197 ep->datainterval = fmt->datainterval; 1198 ep->maxpacksize = fmt->maxpacksize; 1199 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1200 1201 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1202 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1203 ep->pps = 1000 >> ep->datainterval; 1204 } else { 1205 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1206 ep->pps = 8000 >> ep->datainterval; 1207 } 1208 1209 ep->sample_rem = ep->cur_rate % ep->pps; 1210 ep->packsize[0] = ep->cur_rate / ep->pps; 1211 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1212 1213 /* calculate the frequency in 16.16 format */ 1214 ep->freqm = ep->freqn; 1215 ep->freqshift = INT_MIN; 1216 1217 ep->phase = 0; 1218 1219 switch (ep->type) { 1220 case SND_USB_ENDPOINT_TYPE_DATA: 1221 err = data_ep_set_params(ep); 1222 break; 1223 case SND_USB_ENDPOINT_TYPE_SYNC: 1224 err = sync_ep_set_params(ep); 1225 break; 1226 default: 1227 err = -EINVAL; 1228 } 1229 1230 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1231 1232 if (err < 0) 1233 return err; 1234 1235 /* some unit conversions in runtime */ 1236 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1237 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1238 1239 return 0; 1240 } 1241 1242 /* 1243 * snd_usb_endpoint_configure: Configure the endpoint 1244 * 1245 * This function sets up the EP to be fully usable state. 1246 * It's called either from hw_params or prepare callback. 1247 * The function checks need_setup flag, and perfoms nothing unless needed, 1248 * so it's safe to call this multiple times. 1249 * 1250 * This returns zero if unchanged, 1 if the configuration has changed, 1251 * or a negative error code. 1252 */ 1253 int snd_usb_endpoint_configure(struct snd_usb_audio *chip, 1254 struct snd_usb_endpoint *ep) 1255 { 1256 bool iface_first; 1257 int err = 0; 1258 1259 mutex_lock(&chip->mutex); 1260 if (WARN_ON(!ep->iface_ref)) 1261 goto unlock; 1262 if (!ep->need_setup) 1263 goto unlock; 1264 1265 /* If the interface has been already set up, just set EP parameters */ 1266 if (!ep->iface_ref->need_setup) { 1267 /* sample rate setup of UAC1 is per endpoint, and we need 1268 * to update at each EP configuration 1269 */ 1270 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1271 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, 1272 ep->cur_rate); 1273 if (err < 0) 1274 goto unlock; 1275 } 1276 err = snd_usb_endpoint_set_params(chip, ep); 1277 if (err < 0) 1278 goto unlock; 1279 goto done; 1280 } 1281 1282 /* Need to deselect altsetting at first */ 1283 endpoint_set_interface(chip, ep, false); 1284 1285 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1286 * to be set up before parameter setups 1287 */ 1288 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1289 if (iface_first) { 1290 err = endpoint_set_interface(chip, ep, true); 1291 if (err < 0) 1292 goto unlock; 1293 } 1294 1295 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1296 if (err < 0) 1297 goto unlock; 1298 1299 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, ep->cur_rate); 1300 if (err < 0) 1301 goto unlock; 1302 1303 err = snd_usb_endpoint_set_params(chip, ep); 1304 if (err < 0) 1305 goto unlock; 1306 1307 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1308 if (err < 0) 1309 goto unlock; 1310 1311 /* for UAC2/3, enable the interface altset here at last */ 1312 if (!iface_first) { 1313 err = endpoint_set_interface(chip, ep, true); 1314 if (err < 0) 1315 goto unlock; 1316 } 1317 1318 ep->iface_ref->need_setup = false; 1319 1320 done: 1321 ep->need_setup = false; 1322 err = 1; 1323 1324 unlock: 1325 mutex_unlock(&chip->mutex); 1326 return err; 1327 } 1328 1329 /** 1330 * snd_usb_endpoint_start: start an snd_usb_endpoint 1331 * 1332 * @ep: the endpoint to start 1333 * 1334 * A call to this function will increment the running count of the endpoint. 1335 * In case it is not already running, the URBs for this endpoint will be 1336 * submitted. Otherwise, this function does nothing. 1337 * 1338 * Must be balanced to calls of snd_usb_endpoint_stop(). 1339 * 1340 * Returns an error if the URB submission failed, 0 in all other cases. 1341 */ 1342 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1343 { 1344 int err; 1345 unsigned int i; 1346 1347 if (atomic_read(&ep->chip->shutdown)) 1348 return -EBADFD; 1349 1350 if (ep->sync_source) 1351 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1352 1353 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1354 ep_type_name(ep->type), ep->ep_num, 1355 atomic_read(&ep->running)); 1356 1357 /* already running? */ 1358 if (atomic_inc_return(&ep->running) != 1) 1359 return 0; 1360 1361 ep->active_mask = 0; 1362 ep->unlink_mask = 0; 1363 ep->phase = 0; 1364 ep->sample_accum = 0; 1365 1366 snd_usb_endpoint_start_quirk(ep); 1367 1368 /* 1369 * If this endpoint has a data endpoint as implicit feedback source, 1370 * don't start the urbs here. Instead, mark them all as available, 1371 * wait for the record urbs to return and queue the playback urbs 1372 * from that context. 1373 */ 1374 1375 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1376 goto __error; 1377 1378 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1379 !ep->chip->playback_first) { 1380 for (i = 0; i < ep->nurbs; i++) { 1381 struct snd_urb_ctx *ctx = ep->urb + i; 1382 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 1383 } 1384 1385 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1386 return 0; 1387 } 1388 1389 for (i = 0; i < ep->nurbs; i++) { 1390 struct urb *urb = ep->urb[i].urb; 1391 1392 if (snd_BUG_ON(!urb)) 1393 goto __error; 1394 1395 if (usb_pipeout(ep->pipe)) { 1396 prepare_outbound_urb(ep, urb->context); 1397 } else { 1398 prepare_inbound_urb(ep, urb->context); 1399 } 1400 1401 err = usb_submit_urb(urb, GFP_ATOMIC); 1402 if (err < 0) { 1403 usb_audio_err(ep->chip, 1404 "cannot submit urb %d, error %d: %s\n", 1405 i, err, usb_error_string(err)); 1406 goto __error; 1407 } 1408 set_bit(i, &ep->active_mask); 1409 } 1410 1411 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1412 ep->nurbs, ep->ep_num); 1413 return 0; 1414 1415 __error: 1416 snd_usb_endpoint_stop(ep); 1417 return -EPIPE; 1418 } 1419 1420 /** 1421 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1422 * 1423 * @ep: the endpoint to stop (may be NULL) 1424 * 1425 * A call to this function will decrement the running count of the endpoint. 1426 * In case the last user has requested the endpoint stop, the URBs will 1427 * actually be deactivated. 1428 * 1429 * Must be balanced to calls of snd_usb_endpoint_start(). 1430 * 1431 * The caller needs to synchronize the pending stop operation via 1432 * snd_usb_endpoint_sync_pending_stop(). 1433 */ 1434 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep) 1435 { 1436 if (!ep) 1437 return; 1438 1439 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1440 ep_type_name(ep->type), ep->ep_num, 1441 atomic_read(&ep->running)); 1442 1443 if (snd_BUG_ON(!atomic_read(&ep->running))) 1444 return; 1445 1446 if (!atomic_dec_return(&ep->running)) { 1447 if (ep->sync_source) 1448 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1449 stop_urbs(ep, false); 1450 } 1451 } 1452 1453 /** 1454 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1455 * 1456 * @ep: the endpoint to release 1457 * 1458 * This function does not care for the endpoint's running count but will tear 1459 * down all the streaming URBs immediately. 1460 */ 1461 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1462 { 1463 release_urbs(ep, true); 1464 } 1465 1466 /** 1467 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1468 * @chip: The chip 1469 * 1470 * This free all endpoints and those resources 1471 */ 1472 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1473 { 1474 struct snd_usb_endpoint *ep, *en; 1475 struct snd_usb_iface_ref *ip, *in; 1476 1477 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1478 kfree(ep); 1479 1480 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1481 kfree(ip); 1482 } 1483 1484 /* 1485 * snd_usb_handle_sync_urb: parse an USB sync packet 1486 * 1487 * @ep: the endpoint to handle the packet 1488 * @sender: the sending endpoint 1489 * @urb: the received packet 1490 * 1491 * This function is called from the context of an endpoint that received 1492 * the packet and is used to let another endpoint object handle the payload. 1493 */ 1494 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1495 struct snd_usb_endpoint *sender, 1496 const struct urb *urb) 1497 { 1498 int shift; 1499 unsigned int f; 1500 unsigned long flags; 1501 1502 snd_BUG_ON(ep == sender); 1503 1504 /* 1505 * In case the endpoint is operating in implicit feedback mode, prepare 1506 * a new outbound URB that has the same layout as the received packet 1507 * and add it to the list of pending urbs. queue_pending_output_urbs() 1508 * will take care of them later. 1509 */ 1510 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1511 atomic_read(&ep->running)) { 1512 1513 /* implicit feedback case */ 1514 int i, bytes = 0; 1515 struct snd_urb_ctx *in_ctx; 1516 struct snd_usb_packet_info *out_packet; 1517 1518 in_ctx = urb->context; 1519 1520 /* Count overall packet size */ 1521 for (i = 0; i < in_ctx->packets; i++) 1522 if (urb->iso_frame_desc[i].status == 0) 1523 bytes += urb->iso_frame_desc[i].actual_length; 1524 1525 /* 1526 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1527 * streaming once it received a 0-byte OUT URB 1528 */ 1529 if (bytes == 0) 1530 return; 1531 1532 spin_lock_irqsave(&ep->lock, flags); 1533 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1534 spin_unlock_irqrestore(&ep->lock, flags); 1535 usb_audio_err(ep->chip, 1536 "next package FIFO overflow EP 0x%x\n", 1537 ep->ep_num); 1538 notify_xrun(ep); 1539 return; 1540 } 1541 1542 out_packet = next_packet_fifo_enqueue(ep); 1543 1544 /* 1545 * Iterate through the inbound packet and prepare the lengths 1546 * for the output packet. The OUT packet we are about to send 1547 * will have the same amount of payload bytes per stride as the 1548 * IN packet we just received. Since the actual size is scaled 1549 * by the stride, use the sender stride to calculate the length 1550 * in case the number of channels differ between the implicitly 1551 * fed-back endpoint and the synchronizing endpoint. 1552 */ 1553 1554 out_packet->packets = in_ctx->packets; 1555 for (i = 0; i < in_ctx->packets; i++) { 1556 if (urb->iso_frame_desc[i].status == 0) 1557 out_packet->packet_size[i] = 1558 urb->iso_frame_desc[i].actual_length / sender->stride; 1559 else 1560 out_packet->packet_size[i] = 0; 1561 } 1562 1563 spin_unlock_irqrestore(&ep->lock, flags); 1564 queue_pending_output_urbs(ep); 1565 1566 return; 1567 } 1568 1569 /* 1570 * process after playback sync complete 1571 * 1572 * Full speed devices report feedback values in 10.14 format as samples 1573 * per frame, high speed devices in 16.16 format as samples per 1574 * microframe. 1575 * 1576 * Because the Audio Class 1 spec was written before USB 2.0, many high 1577 * speed devices use a wrong interpretation, some others use an 1578 * entirely different format. 1579 * 1580 * Therefore, we cannot predict what format any particular device uses 1581 * and must detect it automatically. 1582 */ 1583 1584 if (urb->iso_frame_desc[0].status != 0 || 1585 urb->iso_frame_desc[0].actual_length < 3) 1586 return; 1587 1588 f = le32_to_cpup(urb->transfer_buffer); 1589 if (urb->iso_frame_desc[0].actual_length == 3) 1590 f &= 0x00ffffff; 1591 else 1592 f &= 0x0fffffff; 1593 1594 if (f == 0) 1595 return; 1596 1597 if (unlikely(sender->tenor_fb_quirk)) { 1598 /* 1599 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1600 * and others) sometimes change the feedback value 1601 * by +/- 0x1.0000. 1602 */ 1603 if (f < ep->freqn - 0x8000) 1604 f += 0xf000; 1605 else if (f > ep->freqn + 0x8000) 1606 f -= 0xf000; 1607 } else if (unlikely(ep->freqshift == INT_MIN)) { 1608 /* 1609 * The first time we see a feedback value, determine its format 1610 * by shifting it left or right until it matches the nominal 1611 * frequency value. This assumes that the feedback does not 1612 * differ from the nominal value more than +50% or -25%. 1613 */ 1614 shift = 0; 1615 while (f < ep->freqn - ep->freqn / 4) { 1616 f <<= 1; 1617 shift++; 1618 } 1619 while (f > ep->freqn + ep->freqn / 2) { 1620 f >>= 1; 1621 shift--; 1622 } 1623 ep->freqshift = shift; 1624 } else if (ep->freqshift >= 0) 1625 f <<= ep->freqshift; 1626 else 1627 f >>= -ep->freqshift; 1628 1629 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1630 /* 1631 * If the frequency looks valid, set it. 1632 * This value is referred to in prepare_playback_urb(). 1633 */ 1634 spin_lock_irqsave(&ep->lock, flags); 1635 ep->freqm = f; 1636 spin_unlock_irqrestore(&ep->lock, flags); 1637 } else { 1638 /* 1639 * Out of range; maybe the shift value is wrong. 1640 * Reset it so that we autodetect again the next time. 1641 */ 1642 ep->freqshift = INT_MIN; 1643 } 1644 } 1645 1646