xref: /linux/sound/usb/endpoint.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  *   This program is free software; you can redistribute it and/or modify
3  *   it under the terms of the GNU General Public License as published by
4  *   the Free Software Foundation; either version 2 of the License, or
5  *   (at your option) any later version.
6  *
7  *   This program is distributed in the hope that it will be useful,
8  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *   GNU General Public License for more details.
11  *
12  *   You should have received a copy of the GNU General Public License
13  *   along with this program; if not, write to the Free Software
14  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
15  *
16  */
17 
18 #include <linux/gfp.h>
19 #include <linux/init.h>
20 #include <linux/ratelimit.h>
21 #include <linux/usb.h>
22 #include <linux/usb/audio.h>
23 #include <linux/slab.h>
24 
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 
29 #include "usbaudio.h"
30 #include "helper.h"
31 #include "card.h"
32 #include "endpoint.h"
33 #include "pcm.h"
34 #include "quirks.h"
35 
36 #define EP_FLAG_RUNNING		1
37 #define EP_FLAG_STOPPING	2
38 
39 /*
40  * snd_usb_endpoint is a model that abstracts everything related to an
41  * USB endpoint and its streaming.
42  *
43  * There are functions to activate and deactivate the streaming URBs and
44  * optional callbacks to let the pcm logic handle the actual content of the
45  * packets for playback and record. Thus, the bus streaming and the audio
46  * handlers are fully decoupled.
47  *
48  * There are two different types of endpoints in audio applications.
49  *
50  * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
51  * inbound and outbound traffic.
52  *
53  * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
54  * expect the payload to carry Q10.14 / Q16.16 formatted sync information
55  * (3 or 4 bytes).
56  *
57  * Each endpoint has to be configured prior to being used by calling
58  * snd_usb_endpoint_set_params().
59  *
60  * The model incorporates a reference counting, so that multiple users
61  * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
62  * only the first user will effectively start the URBs, and only the last
63  * one to stop it will tear the URBs down again.
64  */
65 
66 /*
67  * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
68  * this will overflow at approx 524 kHz
69  */
70 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
71 {
72 	return ((rate << 13) + 62) / 125;
73 }
74 
75 /*
76  * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
77  * this will overflow at approx 4 MHz
78  */
79 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
80 {
81 	return ((rate << 10) + 62) / 125;
82 }
83 
84 /*
85  * release a urb data
86  */
87 static void release_urb_ctx(struct snd_urb_ctx *u)
88 {
89 	if (u->buffer_size)
90 		usb_free_coherent(u->ep->chip->dev, u->buffer_size,
91 				  u->urb->transfer_buffer,
92 				  u->urb->transfer_dma);
93 	usb_free_urb(u->urb);
94 	u->urb = NULL;
95 }
96 
97 static const char *usb_error_string(int err)
98 {
99 	switch (err) {
100 	case -ENODEV:
101 		return "no device";
102 	case -ENOENT:
103 		return "endpoint not enabled";
104 	case -EPIPE:
105 		return "endpoint stalled";
106 	case -ENOSPC:
107 		return "not enough bandwidth";
108 	case -ESHUTDOWN:
109 		return "device disabled";
110 	case -EHOSTUNREACH:
111 		return "device suspended";
112 	case -EINVAL:
113 	case -EAGAIN:
114 	case -EFBIG:
115 	case -EMSGSIZE:
116 		return "internal error";
117 	default:
118 		return "unknown error";
119 	}
120 }
121 
122 /**
123  * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
124  *
125  * @ep: The snd_usb_endpoint
126  *
127  * Determine whether an endpoint is driven by an implicit feedback
128  * data endpoint source.
129  */
130 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131 {
132 	return  ep->sync_master &&
133 		ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
134 		ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
135 		usb_pipeout(ep->pipe);
136 }
137 
138 /*
139  * For streaming based on information derived from sync endpoints,
140  * prepare_outbound_urb_sizes() will call next_packet_size() to
141  * determine the number of samples to be sent in the next packet.
142  *
143  * For implicit feedback, next_packet_size() is unused.
144  */
145 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146 {
147 	unsigned long flags;
148 	int ret;
149 
150 	if (ep->fill_max)
151 		return ep->maxframesize;
152 
153 	spin_lock_irqsave(&ep->lock, flags);
154 	ep->phase = (ep->phase & 0xffff)
155 		+ (ep->freqm << ep->datainterval);
156 	ret = min(ep->phase >> 16, ep->maxframesize);
157 	spin_unlock_irqrestore(&ep->lock, flags);
158 
159 	return ret;
160 }
161 
162 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
163 				struct snd_urb_ctx *urb_ctx)
164 {
165 	if (ep->retire_data_urb)
166 		ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
167 }
168 
169 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
170 			       struct snd_urb_ctx *urb_ctx)
171 {
172 	struct urb *urb = urb_ctx->urb;
173 
174 	if (unlikely(ep->skip_packets > 0)) {
175 		ep->skip_packets--;
176 		return;
177 	}
178 
179 	if (ep->sync_slave)
180 		snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
181 
182 	if (ep->retire_data_urb)
183 		ep->retire_data_urb(ep->data_subs, urb);
184 }
185 
186 /*
187  * Prepare a PLAYBACK urb for submission to the bus.
188  */
189 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
190 				 struct snd_urb_ctx *ctx)
191 {
192 	int i;
193 	struct urb *urb = ctx->urb;
194 	unsigned char *cp = urb->transfer_buffer;
195 
196 	urb->dev = ep->chip->dev; /* we need to set this at each time */
197 
198 	switch (ep->type) {
199 	case SND_USB_ENDPOINT_TYPE_DATA:
200 		if (ep->prepare_data_urb) {
201 			ep->prepare_data_urb(ep->data_subs, urb);
202 		} else {
203 			/* no data provider, so send silence */
204 			unsigned int offs = 0;
205 			for (i = 0; i < ctx->packets; ++i) {
206 				int counts;
207 
208 				if (ctx->packet_size[i])
209 					counts = ctx->packet_size[i];
210 				else
211 					counts = snd_usb_endpoint_next_packet_size(ep);
212 
213 				urb->iso_frame_desc[i].offset = offs * ep->stride;
214 				urb->iso_frame_desc[i].length = counts * ep->stride;
215 				offs += counts;
216 			}
217 
218 			urb->number_of_packets = ctx->packets;
219 			urb->transfer_buffer_length = offs * ep->stride;
220 			memset(urb->transfer_buffer, ep->silence_value,
221 			       offs * ep->stride);
222 		}
223 		break;
224 
225 	case SND_USB_ENDPOINT_TYPE_SYNC:
226 		if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
227 			/*
228 			 * fill the length and offset of each urb descriptor.
229 			 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
230 			 */
231 			urb->iso_frame_desc[0].length = 4;
232 			urb->iso_frame_desc[0].offset = 0;
233 			cp[0] = ep->freqn;
234 			cp[1] = ep->freqn >> 8;
235 			cp[2] = ep->freqn >> 16;
236 			cp[3] = ep->freqn >> 24;
237 		} else {
238 			/*
239 			 * fill the length and offset of each urb descriptor.
240 			 * the fixed 10.14 frequency is passed through the pipe.
241 			 */
242 			urb->iso_frame_desc[0].length = 3;
243 			urb->iso_frame_desc[0].offset = 0;
244 			cp[0] = ep->freqn >> 2;
245 			cp[1] = ep->freqn >> 10;
246 			cp[2] = ep->freqn >> 18;
247 		}
248 
249 		break;
250 	}
251 }
252 
253 /*
254  * Prepare a CAPTURE or SYNC urb for submission to the bus.
255  */
256 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
257 				       struct snd_urb_ctx *urb_ctx)
258 {
259 	int i, offs;
260 	struct urb *urb = urb_ctx->urb;
261 
262 	urb->dev = ep->chip->dev; /* we need to set this at each time */
263 
264 	switch (ep->type) {
265 	case SND_USB_ENDPOINT_TYPE_DATA:
266 		offs = 0;
267 		for (i = 0; i < urb_ctx->packets; i++) {
268 			urb->iso_frame_desc[i].offset = offs;
269 			urb->iso_frame_desc[i].length = ep->curpacksize;
270 			offs += ep->curpacksize;
271 		}
272 
273 		urb->transfer_buffer_length = offs;
274 		urb->number_of_packets = urb_ctx->packets;
275 		break;
276 
277 	case SND_USB_ENDPOINT_TYPE_SYNC:
278 		urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
279 		urb->iso_frame_desc[0].offset = 0;
280 		break;
281 	}
282 }
283 
284 /*
285  * Send output urbs that have been prepared previously. URBs are dequeued
286  * from ep->ready_playback_urbs and in case there there aren't any available
287  * or there are no packets that have been prepared, this function does
288  * nothing.
289  *
290  * The reason why the functionality of sending and preparing URBs is separated
291  * is that host controllers don't guarantee the order in which they return
292  * inbound and outbound packets to their submitters.
293  *
294  * This function is only used for implicit feedback endpoints. For endpoints
295  * driven by dedicated sync endpoints, URBs are immediately re-submitted
296  * from their completion handler.
297  */
298 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
299 {
300 	while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
301 
302 		unsigned long flags;
303 		struct snd_usb_packet_info *uninitialized_var(packet);
304 		struct snd_urb_ctx *ctx = NULL;
305 		struct urb *urb;
306 		int err, i;
307 
308 		spin_lock_irqsave(&ep->lock, flags);
309 		if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
310 			packet = ep->next_packet + ep->next_packet_read_pos;
311 			ep->next_packet_read_pos++;
312 			ep->next_packet_read_pos %= MAX_URBS;
313 
314 			/* take URB out of FIFO */
315 			if (!list_empty(&ep->ready_playback_urbs))
316 				ctx = list_first_entry(&ep->ready_playback_urbs,
317 					       struct snd_urb_ctx, ready_list);
318 		}
319 		spin_unlock_irqrestore(&ep->lock, flags);
320 
321 		if (ctx == NULL)
322 			return;
323 
324 		list_del_init(&ctx->ready_list);
325 		urb = ctx->urb;
326 
327 		/* copy over the length information */
328 		for (i = 0; i < packet->packets; i++)
329 			ctx->packet_size[i] = packet->packet_size[i];
330 
331 		/* call the data handler to fill in playback data */
332 		prepare_outbound_urb(ep, ctx);
333 
334 		err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
335 		if (err < 0)
336 			usb_audio_err(ep->chip,
337 				"Unable to submit urb #%d: %d (urb %p)\n",
338 				ctx->index, err, ctx->urb);
339 		else
340 			set_bit(ctx->index, &ep->active_mask);
341 	}
342 }
343 
344 /*
345  * complete callback for urbs
346  */
347 static void snd_complete_urb(struct urb *urb)
348 {
349 	struct snd_urb_ctx *ctx = urb->context;
350 	struct snd_usb_endpoint *ep = ctx->ep;
351 	struct snd_pcm_substream *substream;
352 	unsigned long flags;
353 	int err;
354 
355 	if (unlikely(urb->status == -ENOENT ||		/* unlinked */
356 		     urb->status == -ENODEV ||		/* device removed */
357 		     urb->status == -ECONNRESET ||	/* unlinked */
358 		     urb->status == -ESHUTDOWN ||	/* device disabled */
359 		     ep->chip->shutdown))		/* device disconnected */
360 		goto exit_clear;
361 
362 	if (usb_pipeout(ep->pipe)) {
363 		retire_outbound_urb(ep, ctx);
364 		/* can be stopped during retire callback */
365 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
366 			goto exit_clear;
367 
368 		if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
369 			spin_lock_irqsave(&ep->lock, flags);
370 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
371 			spin_unlock_irqrestore(&ep->lock, flags);
372 			queue_pending_output_urbs(ep);
373 
374 			goto exit_clear;
375 		}
376 
377 		prepare_outbound_urb(ep, ctx);
378 	} else {
379 		retire_inbound_urb(ep, ctx);
380 		/* can be stopped during retire callback */
381 		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
382 			goto exit_clear;
383 
384 		prepare_inbound_urb(ep, ctx);
385 	}
386 
387 	err = usb_submit_urb(urb, GFP_ATOMIC);
388 	if (err == 0)
389 		return;
390 
391 	usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
392 	if (ep->data_subs && ep->data_subs->pcm_substream) {
393 		substream = ep->data_subs->pcm_substream;
394 		snd_pcm_stop_xrun(substream);
395 	}
396 
397 exit_clear:
398 	clear_bit(ctx->index, &ep->active_mask);
399 }
400 
401 /**
402  * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
403  *
404  * @chip: The chip
405  * @alts: The USB host interface
406  * @ep_num: The number of the endpoint to use
407  * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
408  * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
409  *
410  * If the requested endpoint has not been added to the given chip before,
411  * a new instance is created. Otherwise, a pointer to the previoulsy
412  * created instance is returned. In case of any error, NULL is returned.
413  *
414  * New endpoints will be added to chip->ep_list and must be freed by
415  * calling snd_usb_endpoint_free().
416  */
417 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
418 					      struct usb_host_interface *alts,
419 					      int ep_num, int direction, int type)
420 {
421 	struct snd_usb_endpoint *ep;
422 	int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
423 
424 	if (WARN_ON(!alts))
425 		return NULL;
426 
427 	mutex_lock(&chip->mutex);
428 
429 	list_for_each_entry(ep, &chip->ep_list, list) {
430 		if (ep->ep_num == ep_num &&
431 		    ep->iface == alts->desc.bInterfaceNumber &&
432 		    ep->altsetting == alts->desc.bAlternateSetting) {
433 			usb_audio_dbg(ep->chip,
434 				      "Re-using EP %x in iface %d,%d @%p\n",
435 					ep_num, ep->iface, ep->altsetting, ep);
436 			goto __exit_unlock;
437 		}
438 	}
439 
440 	usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
441 		    is_playback ? "playback" : "capture",
442 		    type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
443 		    ep_num);
444 
445 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
446 	if (!ep)
447 		goto __exit_unlock;
448 
449 	ep->chip = chip;
450 	spin_lock_init(&ep->lock);
451 	ep->type = type;
452 	ep->ep_num = ep_num;
453 	ep->iface = alts->desc.bInterfaceNumber;
454 	ep->altsetting = alts->desc.bAlternateSetting;
455 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
456 	ep_num &= USB_ENDPOINT_NUMBER_MASK;
457 
458 	if (is_playback)
459 		ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
460 	else
461 		ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
462 
463 	if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
464 		if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
465 		    get_endpoint(alts, 1)->bRefresh >= 1 &&
466 		    get_endpoint(alts, 1)->bRefresh <= 9)
467 			ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
468 		else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
469 			ep->syncinterval = 1;
470 		else if (get_endpoint(alts, 1)->bInterval >= 1 &&
471 			 get_endpoint(alts, 1)->bInterval <= 16)
472 			ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
473 		else
474 			ep->syncinterval = 3;
475 
476 		ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
477 
478 		if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ &&
479 		    ep->syncmaxsize == 4)
480 			ep->udh01_fb_quirk = 1;
481 	}
482 
483 	list_add_tail(&ep->list, &chip->ep_list);
484 
485 __exit_unlock:
486 	mutex_unlock(&chip->mutex);
487 
488 	return ep;
489 }
490 
491 /*
492  *  wait until all urbs are processed.
493  */
494 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
495 {
496 	unsigned long end_time = jiffies + msecs_to_jiffies(1000);
497 	int alive;
498 
499 	do {
500 		alive = bitmap_weight(&ep->active_mask, ep->nurbs);
501 		if (!alive)
502 			break;
503 
504 		schedule_timeout_uninterruptible(1);
505 	} while (time_before(jiffies, end_time));
506 
507 	if (alive)
508 		usb_audio_err(ep->chip,
509 			"timeout: still %d active urbs on EP #%x\n",
510 			alive, ep->ep_num);
511 	clear_bit(EP_FLAG_STOPPING, &ep->flags);
512 
513 	return 0;
514 }
515 
516 /* sync the pending stop operation;
517  * this function itself doesn't trigger the stop operation
518  */
519 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
520 {
521 	if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
522 		wait_clear_urbs(ep);
523 }
524 
525 /*
526  * unlink active urbs.
527  */
528 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
529 {
530 	unsigned int i;
531 
532 	if (!force && ep->chip->shutdown) /* to be sure... */
533 		return -EBADFD;
534 
535 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
536 
537 	INIT_LIST_HEAD(&ep->ready_playback_urbs);
538 	ep->next_packet_read_pos = 0;
539 	ep->next_packet_write_pos = 0;
540 
541 	for (i = 0; i < ep->nurbs; i++) {
542 		if (test_bit(i, &ep->active_mask)) {
543 			if (!test_and_set_bit(i, &ep->unlink_mask)) {
544 				struct urb *u = ep->urb[i].urb;
545 				usb_unlink_urb(u);
546 			}
547 		}
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * release an endpoint's urbs
555  */
556 static void release_urbs(struct snd_usb_endpoint *ep, int force)
557 {
558 	int i;
559 
560 	/* route incoming urbs to nirvana */
561 	ep->retire_data_urb = NULL;
562 	ep->prepare_data_urb = NULL;
563 
564 	/* stop urbs */
565 	deactivate_urbs(ep, force);
566 	wait_clear_urbs(ep);
567 
568 	for (i = 0; i < ep->nurbs; i++)
569 		release_urb_ctx(&ep->urb[i]);
570 
571 	if (ep->syncbuf)
572 		usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
573 				  ep->syncbuf, ep->sync_dma);
574 
575 	ep->syncbuf = NULL;
576 	ep->nurbs = 0;
577 }
578 
579 /*
580  * configure a data endpoint
581  */
582 static int data_ep_set_params(struct snd_usb_endpoint *ep,
583 			      snd_pcm_format_t pcm_format,
584 			      unsigned int channels,
585 			      unsigned int period_bytes,
586 			      unsigned int frames_per_period,
587 			      unsigned int periods_per_buffer,
588 			      struct audioformat *fmt,
589 			      struct snd_usb_endpoint *sync_ep)
590 {
591 	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
592 	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
593 	unsigned int max_urbs, i;
594 	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
595 
596 	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
597 		/*
598 		 * When operating in DSD DOP mode, the size of a sample frame
599 		 * in hardware differs from the actual physical format width
600 		 * because we need to make room for the DOP markers.
601 		 */
602 		frame_bits += channels << 3;
603 	}
604 
605 	ep->datainterval = fmt->datainterval;
606 	ep->stride = frame_bits >> 3;
607 	ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
608 
609 	/* assume max. frequency is 25% higher than nominal */
610 	ep->freqmax = ep->freqn + (ep->freqn >> 2);
611 	maxsize = ((ep->freqmax + 0xffff) * (frame_bits >> 3))
612 				>> (16 - ep->datainterval);
613 	/* but wMaxPacketSize might reduce this */
614 	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
615 		/* whatever fits into a max. size packet */
616 		maxsize = ep->maxpacksize;
617 		ep->freqmax = (maxsize / (frame_bits >> 3))
618 				<< (16 - ep->datainterval);
619 	}
620 
621 	if (ep->fill_max)
622 		ep->curpacksize = ep->maxpacksize;
623 	else
624 		ep->curpacksize = maxsize;
625 
626 	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
627 		packs_per_ms = 8 >> ep->datainterval;
628 		max_packs_per_urb = MAX_PACKS_HS;
629 	} else {
630 		packs_per_ms = 1;
631 		max_packs_per_urb = MAX_PACKS;
632 	}
633 	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
634 		max_packs_per_urb = min(max_packs_per_urb,
635 					1U << sync_ep->syncinterval);
636 	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
637 
638 	/*
639 	 * Capture endpoints need to use small URBs because there's no way
640 	 * to tell in advance where the next period will end, and we don't
641 	 * want the next URB to complete much after the period ends.
642 	 *
643 	 * Playback endpoints with implicit sync much use the same parameters
644 	 * as their corresponding capture endpoint.
645 	 */
646 	if (usb_pipein(ep->pipe) ||
647 			snd_usb_endpoint_implicit_feedback_sink(ep)) {
648 
649 		urb_packs = packs_per_ms;
650 		/*
651 		 * Wireless devices can poll at a max rate of once per 4ms.
652 		 * For dataintervals less than 5, increase the packet count to
653 		 * allow the host controller to use bursting to fill in the
654 		 * gaps.
655 		 */
656 		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
657 			int interval = ep->datainterval;
658 			while (interval < 5) {
659 				urb_packs <<= 1;
660 				++interval;
661 			}
662 		}
663 		/* make capture URBs <= 1 ms and smaller than a period */
664 		urb_packs = min(max_packs_per_urb, urb_packs);
665 		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
666 			urb_packs >>= 1;
667 		ep->nurbs = MAX_URBS;
668 
669 	/*
670 	 * Playback endpoints without implicit sync are adjusted so that
671 	 * a period fits as evenly as possible in the smallest number of
672 	 * URBs.  The total number of URBs is adjusted to the size of the
673 	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
674 	 */
675 	} else {
676 		/* determine how small a packet can be */
677 		minsize = (ep->freqn >> (16 - ep->datainterval)) *
678 				(frame_bits >> 3);
679 		/* with sync from device, assume it can be 12% lower */
680 		if (sync_ep)
681 			minsize -= minsize >> 3;
682 		minsize = max(minsize, 1u);
683 
684 		/* how many packets will contain an entire ALSA period? */
685 		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
686 
687 		/* how many URBs will contain a period? */
688 		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
689 				max_packs_per_urb);
690 		/* how many packets are needed in each URB? */
691 		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
692 
693 		/* limit the number of frames in a single URB */
694 		ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
695 					urbs_per_period);
696 
697 		/* try to use enough URBs to contain an entire ALSA buffer */
698 		max_urbs = min((unsigned) MAX_URBS,
699 				MAX_QUEUE * packs_per_ms / urb_packs);
700 		ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
701 	}
702 
703 	/* allocate and initialize data urbs */
704 	for (i = 0; i < ep->nurbs; i++) {
705 		struct snd_urb_ctx *u = &ep->urb[i];
706 		u->index = i;
707 		u->ep = ep;
708 		u->packets = urb_packs;
709 		u->buffer_size = maxsize * u->packets;
710 
711 		if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
712 			u->packets++; /* for transfer delimiter */
713 		u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
714 		if (!u->urb)
715 			goto out_of_memory;
716 
717 		u->urb->transfer_buffer =
718 			usb_alloc_coherent(ep->chip->dev, u->buffer_size,
719 					   GFP_KERNEL, &u->urb->transfer_dma);
720 		if (!u->urb->transfer_buffer)
721 			goto out_of_memory;
722 		u->urb->pipe = ep->pipe;
723 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
724 		u->urb->interval = 1 << ep->datainterval;
725 		u->urb->context = u;
726 		u->urb->complete = snd_complete_urb;
727 		INIT_LIST_HEAD(&u->ready_list);
728 	}
729 
730 	return 0;
731 
732 out_of_memory:
733 	release_urbs(ep, 0);
734 	return -ENOMEM;
735 }
736 
737 /*
738  * configure a sync endpoint
739  */
740 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
741 {
742 	int i;
743 
744 	ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
745 					 GFP_KERNEL, &ep->sync_dma);
746 	if (!ep->syncbuf)
747 		return -ENOMEM;
748 
749 	for (i = 0; i < SYNC_URBS; i++) {
750 		struct snd_urb_ctx *u = &ep->urb[i];
751 		u->index = i;
752 		u->ep = ep;
753 		u->packets = 1;
754 		u->urb = usb_alloc_urb(1, GFP_KERNEL);
755 		if (!u->urb)
756 			goto out_of_memory;
757 		u->urb->transfer_buffer = ep->syncbuf + i * 4;
758 		u->urb->transfer_dma = ep->sync_dma + i * 4;
759 		u->urb->transfer_buffer_length = 4;
760 		u->urb->pipe = ep->pipe;
761 		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
762 		u->urb->number_of_packets = 1;
763 		u->urb->interval = 1 << ep->syncinterval;
764 		u->urb->context = u;
765 		u->urb->complete = snd_complete_urb;
766 	}
767 
768 	ep->nurbs = SYNC_URBS;
769 
770 	return 0;
771 
772 out_of_memory:
773 	release_urbs(ep, 0);
774 	return -ENOMEM;
775 }
776 
777 /**
778  * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
779  *
780  * @ep: the snd_usb_endpoint to configure
781  * @pcm_format: the audio fomat.
782  * @channels: the number of audio channels.
783  * @period_bytes: the number of bytes in one alsa period.
784  * @period_frames: the number of frames in one alsa period.
785  * @buffer_periods: the number of periods in one alsa buffer.
786  * @rate: the frame rate.
787  * @fmt: the USB audio format information
788  * @sync_ep: the sync endpoint to use, if any
789  *
790  * Determine the number of URBs to be used on this endpoint.
791  * An endpoint must be configured before it can be started.
792  * An endpoint that is already running can not be reconfigured.
793  */
794 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
795 				snd_pcm_format_t pcm_format,
796 				unsigned int channels,
797 				unsigned int period_bytes,
798 				unsigned int period_frames,
799 				unsigned int buffer_periods,
800 				unsigned int rate,
801 				struct audioformat *fmt,
802 				struct snd_usb_endpoint *sync_ep)
803 {
804 	int err;
805 
806 	if (ep->use_count != 0) {
807 		usb_audio_warn(ep->chip,
808 			 "Unable to change format on ep #%x: already in use\n",
809 			 ep->ep_num);
810 		return -EBUSY;
811 	}
812 
813 	/* release old buffers, if any */
814 	release_urbs(ep, 0);
815 
816 	ep->datainterval = fmt->datainterval;
817 	ep->maxpacksize = fmt->maxpacksize;
818 	ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
819 
820 	if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
821 		ep->freqn = get_usb_full_speed_rate(rate);
822 	else
823 		ep->freqn = get_usb_high_speed_rate(rate);
824 
825 	/* calculate the frequency in 16.16 format */
826 	ep->freqm = ep->freqn;
827 	ep->freqshift = INT_MIN;
828 
829 	ep->phase = 0;
830 
831 	switch (ep->type) {
832 	case  SND_USB_ENDPOINT_TYPE_DATA:
833 		err = data_ep_set_params(ep, pcm_format, channels,
834 					 period_bytes, period_frames,
835 					 buffer_periods, fmt, sync_ep);
836 		break;
837 	case  SND_USB_ENDPOINT_TYPE_SYNC:
838 		err = sync_ep_set_params(ep);
839 		break;
840 	default:
841 		err = -EINVAL;
842 	}
843 
844 	usb_audio_dbg(ep->chip,
845 		"Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
846 		ep->ep_num, ep->type, ep->nurbs, err);
847 
848 	return err;
849 }
850 
851 /**
852  * snd_usb_endpoint_start: start an snd_usb_endpoint
853  *
854  * @ep:		the endpoint to start
855  * @can_sleep:	flag indicating whether the operation is executed in
856  * 		non-atomic context
857  *
858  * A call to this function will increment the use count of the endpoint.
859  * In case it is not already running, the URBs for this endpoint will be
860  * submitted. Otherwise, this function does nothing.
861  *
862  * Must be balanced to calls of snd_usb_endpoint_stop().
863  *
864  * Returns an error if the URB submission failed, 0 in all other cases.
865  */
866 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
867 {
868 	int err;
869 	unsigned int i;
870 
871 	if (ep->chip->shutdown)
872 		return -EBADFD;
873 
874 	/* already running? */
875 	if (++ep->use_count != 1)
876 		return 0;
877 
878 	/* just to be sure */
879 	deactivate_urbs(ep, false);
880 	if (can_sleep)
881 		wait_clear_urbs(ep);
882 
883 	ep->active_mask = 0;
884 	ep->unlink_mask = 0;
885 	ep->phase = 0;
886 
887 	snd_usb_endpoint_start_quirk(ep);
888 
889 	/*
890 	 * If this endpoint has a data endpoint as implicit feedback source,
891 	 * don't start the urbs here. Instead, mark them all as available,
892 	 * wait for the record urbs to return and queue the playback urbs
893 	 * from that context.
894 	 */
895 
896 	set_bit(EP_FLAG_RUNNING, &ep->flags);
897 
898 	if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
899 		for (i = 0; i < ep->nurbs; i++) {
900 			struct snd_urb_ctx *ctx = ep->urb + i;
901 			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
902 		}
903 
904 		return 0;
905 	}
906 
907 	for (i = 0; i < ep->nurbs; i++) {
908 		struct urb *urb = ep->urb[i].urb;
909 
910 		if (snd_BUG_ON(!urb))
911 			goto __error;
912 
913 		if (usb_pipeout(ep->pipe)) {
914 			prepare_outbound_urb(ep, urb->context);
915 		} else {
916 			prepare_inbound_urb(ep, urb->context);
917 		}
918 
919 		err = usb_submit_urb(urb, GFP_ATOMIC);
920 		if (err < 0) {
921 			usb_audio_err(ep->chip,
922 				"cannot submit urb %d, error %d: %s\n",
923 				i, err, usb_error_string(err));
924 			goto __error;
925 		}
926 		set_bit(i, &ep->active_mask);
927 	}
928 
929 	return 0;
930 
931 __error:
932 	clear_bit(EP_FLAG_RUNNING, &ep->flags);
933 	ep->use_count--;
934 	deactivate_urbs(ep, false);
935 	return -EPIPE;
936 }
937 
938 /**
939  * snd_usb_endpoint_stop: stop an snd_usb_endpoint
940  *
941  * @ep: the endpoint to stop (may be NULL)
942  *
943  * A call to this function will decrement the use count of the endpoint.
944  * In case the last user has requested the endpoint stop, the URBs will
945  * actually be deactivated.
946  *
947  * Must be balanced to calls of snd_usb_endpoint_start().
948  *
949  * The caller needs to synchronize the pending stop operation via
950  * snd_usb_endpoint_sync_pending_stop().
951  */
952 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
953 {
954 	if (!ep)
955 		return;
956 
957 	if (snd_BUG_ON(ep->use_count == 0))
958 		return;
959 
960 	if (--ep->use_count == 0) {
961 		deactivate_urbs(ep, false);
962 		ep->data_subs = NULL;
963 		ep->sync_slave = NULL;
964 		ep->retire_data_urb = NULL;
965 		ep->prepare_data_urb = NULL;
966 		set_bit(EP_FLAG_STOPPING, &ep->flags);
967 	}
968 }
969 
970 /**
971  * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
972  *
973  * @ep: the endpoint to deactivate
974  *
975  * If the endpoint is not currently in use, this functions will
976  * deactivate its associated URBs.
977  *
978  * In case of any active users, this functions does nothing.
979  */
980 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
981 {
982 	if (!ep)
983 		return;
984 
985 	if (ep->use_count != 0)
986 		return;
987 
988 	deactivate_urbs(ep, true);
989 	wait_clear_urbs(ep);
990 }
991 
992 /**
993  * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
994  *
995  * @ep: the endpoint to release
996  *
997  * This function does not care for the endpoint's use count but will tear
998  * down all the streaming URBs immediately.
999  */
1000 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1001 {
1002 	release_urbs(ep, 1);
1003 }
1004 
1005 /**
1006  * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1007  *
1008  * @ep: the endpoint to free
1009  *
1010  * This free all resources of the given ep.
1011  */
1012 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1013 {
1014 	kfree(ep);
1015 }
1016 
1017 /**
1018  * snd_usb_handle_sync_urb: parse an USB sync packet
1019  *
1020  * @ep: the endpoint to handle the packet
1021  * @sender: the sending endpoint
1022  * @urb: the received packet
1023  *
1024  * This function is called from the context of an endpoint that received
1025  * the packet and is used to let another endpoint object handle the payload.
1026  */
1027 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1028 			     struct snd_usb_endpoint *sender,
1029 			     const struct urb *urb)
1030 {
1031 	int shift;
1032 	unsigned int f;
1033 	unsigned long flags;
1034 
1035 	snd_BUG_ON(ep == sender);
1036 
1037 	/*
1038 	 * In case the endpoint is operating in implicit feedback mode, prepare
1039 	 * a new outbound URB that has the same layout as the received packet
1040 	 * and add it to the list of pending urbs. queue_pending_output_urbs()
1041 	 * will take care of them later.
1042 	 */
1043 	if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1044 	    ep->use_count != 0) {
1045 
1046 		/* implicit feedback case */
1047 		int i, bytes = 0;
1048 		struct snd_urb_ctx *in_ctx;
1049 		struct snd_usb_packet_info *out_packet;
1050 
1051 		in_ctx = urb->context;
1052 
1053 		/* Count overall packet size */
1054 		for (i = 0; i < in_ctx->packets; i++)
1055 			if (urb->iso_frame_desc[i].status == 0)
1056 				bytes += urb->iso_frame_desc[i].actual_length;
1057 
1058 		/*
1059 		 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1060 		 * streaming once it received a 0-byte OUT URB
1061 		 */
1062 		if (bytes == 0)
1063 			return;
1064 
1065 		spin_lock_irqsave(&ep->lock, flags);
1066 		out_packet = ep->next_packet + ep->next_packet_write_pos;
1067 
1068 		/*
1069 		 * Iterate through the inbound packet and prepare the lengths
1070 		 * for the output packet. The OUT packet we are about to send
1071 		 * will have the same amount of payload bytes per stride as the
1072 		 * IN packet we just received. Since the actual size is scaled
1073 		 * by the stride, use the sender stride to calculate the length
1074 		 * in case the number of channels differ between the implicitly
1075 		 * fed-back endpoint and the synchronizing endpoint.
1076 		 */
1077 
1078 		out_packet->packets = in_ctx->packets;
1079 		for (i = 0; i < in_ctx->packets; i++) {
1080 			if (urb->iso_frame_desc[i].status == 0)
1081 				out_packet->packet_size[i] =
1082 					urb->iso_frame_desc[i].actual_length / sender->stride;
1083 			else
1084 				out_packet->packet_size[i] = 0;
1085 		}
1086 
1087 		ep->next_packet_write_pos++;
1088 		ep->next_packet_write_pos %= MAX_URBS;
1089 		spin_unlock_irqrestore(&ep->lock, flags);
1090 		queue_pending_output_urbs(ep);
1091 
1092 		return;
1093 	}
1094 
1095 	/*
1096 	 * process after playback sync complete
1097 	 *
1098 	 * Full speed devices report feedback values in 10.14 format as samples
1099 	 * per frame, high speed devices in 16.16 format as samples per
1100 	 * microframe.
1101 	 *
1102 	 * Because the Audio Class 1 spec was written before USB 2.0, many high
1103 	 * speed devices use a wrong interpretation, some others use an
1104 	 * entirely different format.
1105 	 *
1106 	 * Therefore, we cannot predict what format any particular device uses
1107 	 * and must detect it automatically.
1108 	 */
1109 
1110 	if (urb->iso_frame_desc[0].status != 0 ||
1111 	    urb->iso_frame_desc[0].actual_length < 3)
1112 		return;
1113 
1114 	f = le32_to_cpup(urb->transfer_buffer);
1115 	if (urb->iso_frame_desc[0].actual_length == 3)
1116 		f &= 0x00ffffff;
1117 	else
1118 		f &= 0x0fffffff;
1119 
1120 	if (f == 0)
1121 		return;
1122 
1123 	if (unlikely(sender->udh01_fb_quirk)) {
1124 		/*
1125 		 * The TEAC UD-H01 firmware sometimes changes the feedback value
1126 		 * by +/- 0x1.0000.
1127 		 */
1128 		if (f < ep->freqn - 0x8000)
1129 			f += 0x10000;
1130 		else if (f > ep->freqn + 0x8000)
1131 			f -= 0x10000;
1132 	} else if (unlikely(ep->freqshift == INT_MIN)) {
1133 		/*
1134 		 * The first time we see a feedback value, determine its format
1135 		 * by shifting it left or right until it matches the nominal
1136 		 * frequency value.  This assumes that the feedback does not
1137 		 * differ from the nominal value more than +50% or -25%.
1138 		 */
1139 		shift = 0;
1140 		while (f < ep->freqn - ep->freqn / 4) {
1141 			f <<= 1;
1142 			shift++;
1143 		}
1144 		while (f > ep->freqn + ep->freqn / 2) {
1145 			f >>= 1;
1146 			shift--;
1147 		}
1148 		ep->freqshift = shift;
1149 	} else if (ep->freqshift >= 0)
1150 		f <<= ep->freqshift;
1151 	else
1152 		f >>= -ep->freqshift;
1153 
1154 	if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1155 		/*
1156 		 * If the frequency looks valid, set it.
1157 		 * This value is referred to in prepare_playback_urb().
1158 		 */
1159 		spin_lock_irqsave(&ep->lock, flags);
1160 		ep->freqm = f;
1161 		spin_unlock_irqrestore(&ep->lock, flags);
1162 	} else {
1163 		/*
1164 		 * Out of range; maybe the shift value is wrong.
1165 		 * Reset it so that we autodetect again the next time.
1166 		 */
1167 		ep->freqshift = INT_MIN;
1168 	}
1169 }
1170 
1171