1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 int altset; 36 struct list_head list; 37 }; 38 39 /* clock refcounting */ 40 struct snd_usb_clock_ref { 41 unsigned char clock; 42 atomic_t locked; 43 int opened; 44 int rate; 45 bool need_setup; 46 struct list_head list; 47 }; 48 49 /* 50 * snd_usb_endpoint is a model that abstracts everything related to an 51 * USB endpoint and its streaming. 52 * 53 * There are functions to activate and deactivate the streaming URBs and 54 * optional callbacks to let the pcm logic handle the actual content of the 55 * packets for playback and record. Thus, the bus streaming and the audio 56 * handlers are fully decoupled. 57 * 58 * There are two different types of endpoints in audio applications. 59 * 60 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 61 * inbound and outbound traffic. 62 * 63 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 64 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 65 * (3 or 4 bytes). 66 * 67 * Each endpoint has to be configured prior to being used by calling 68 * snd_usb_endpoint_set_params(). 69 * 70 * The model incorporates a reference counting, so that multiple users 71 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 72 * only the first user will effectively start the URBs, and only the last 73 * one to stop it will tear the URBs down again. 74 */ 75 76 /* 77 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 78 * this will overflow at approx 524 kHz 79 */ 80 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 81 { 82 return ((rate << 13) + 62) / 125; 83 } 84 85 /* 86 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 87 * this will overflow at approx 4 MHz 88 */ 89 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 90 { 91 return ((rate << 10) + 62) / 125; 92 } 93 94 /* 95 * release a urb data 96 */ 97 static void release_urb_ctx(struct snd_urb_ctx *u) 98 { 99 if (u->urb && u->buffer_size) 100 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 101 u->urb->transfer_buffer, 102 u->urb->transfer_dma); 103 usb_free_urb(u->urb); 104 u->urb = NULL; 105 u->buffer_size = 0; 106 } 107 108 static const char *usb_error_string(int err) 109 { 110 switch (err) { 111 case -ENODEV: 112 return "no device"; 113 case -ENOENT: 114 return "endpoint not enabled"; 115 case -EPIPE: 116 return "endpoint stalled"; 117 case -ENOSPC: 118 return "not enough bandwidth"; 119 case -ESHUTDOWN: 120 return "device disabled"; 121 case -EHOSTUNREACH: 122 return "device suspended"; 123 case -EINVAL: 124 case -EAGAIN: 125 case -EFBIG: 126 case -EMSGSIZE: 127 return "internal error"; 128 default: 129 return "unknown error"; 130 } 131 } 132 133 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 134 { 135 return atomic_read(&ep->state) == EP_STATE_RUNNING; 136 } 137 138 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 139 { 140 return atomic_try_cmpxchg(&ep->state, &old, new); 141 } 142 143 /** 144 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 145 * 146 * @ep: The snd_usb_endpoint 147 * 148 * Determine whether an endpoint is driven by an implicit feedback 149 * data endpoint source. 150 */ 151 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 152 { 153 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 154 } 155 156 /* 157 * Return the number of samples to be sent in the next packet 158 * for streaming based on information derived from sync endpoints 159 * 160 * This won't be used for implicit feedback which takes the packet size 161 * returned from the sync source 162 */ 163 static int slave_next_packet_size(struct snd_usb_endpoint *ep, 164 unsigned int avail) 165 { 166 unsigned long flags; 167 unsigned int phase; 168 int ret; 169 170 if (ep->fill_max) 171 return ep->maxframesize; 172 173 spin_lock_irqsave(&ep->lock, flags); 174 phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); 175 ret = min(phase >> 16, ep->maxframesize); 176 if (avail && ret >= avail) 177 ret = -EAGAIN; 178 else 179 ep->phase = phase; 180 spin_unlock_irqrestore(&ep->lock, flags); 181 182 return ret; 183 } 184 185 /* 186 * Return the number of samples to be sent in the next packet 187 * for adaptive and synchronous endpoints 188 */ 189 static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) 190 { 191 unsigned int sample_accum; 192 int ret; 193 194 if (ep->fill_max) 195 return ep->maxframesize; 196 197 sample_accum = ep->sample_accum + ep->sample_rem; 198 if (sample_accum >= ep->pps) { 199 sample_accum -= ep->pps; 200 ret = ep->packsize[1]; 201 } else { 202 ret = ep->packsize[0]; 203 } 204 if (avail && ret >= avail) 205 ret = -EAGAIN; 206 else 207 ep->sample_accum = sample_accum; 208 209 return ret; 210 } 211 212 /* 213 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 214 * in the next packet 215 * 216 * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN 217 * Exception: @avail = 0 for skipping the check. 218 */ 219 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 220 struct snd_urb_ctx *ctx, int idx, 221 unsigned int avail) 222 { 223 unsigned int packet; 224 225 packet = ctx->packet_size[idx]; 226 if (packet) { 227 if (avail && packet >= avail) 228 return -EAGAIN; 229 return packet; 230 } 231 232 if (ep->sync_source) 233 return slave_next_packet_size(ep, avail); 234 else 235 return next_packet_size(ep, avail); 236 } 237 238 static void call_retire_callback(struct snd_usb_endpoint *ep, 239 struct urb *urb) 240 { 241 struct snd_usb_substream *data_subs; 242 243 data_subs = READ_ONCE(ep->data_subs); 244 if (data_subs && ep->retire_data_urb) 245 ep->retire_data_urb(data_subs, urb); 246 } 247 248 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 249 struct snd_urb_ctx *urb_ctx) 250 { 251 call_retire_callback(ep, urb_ctx->urb); 252 } 253 254 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 255 struct snd_usb_endpoint *sender, 256 const struct urb *urb); 257 258 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 259 struct snd_urb_ctx *urb_ctx) 260 { 261 struct urb *urb = urb_ctx->urb; 262 struct snd_usb_endpoint *sync_sink; 263 264 if (unlikely(ep->skip_packets > 0)) { 265 ep->skip_packets--; 266 return; 267 } 268 269 sync_sink = READ_ONCE(ep->sync_sink); 270 if (sync_sink) 271 snd_usb_handle_sync_urb(sync_sink, ep, urb); 272 273 call_retire_callback(ep, urb); 274 } 275 276 static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) 277 { 278 return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; 279 } 280 281 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 282 struct snd_urb_ctx *ctx) 283 { 284 struct urb *urb = ctx->urb; 285 unsigned int offs = 0; 286 unsigned int extra = 0; 287 __le32 packet_length; 288 int i; 289 290 /* For tx_length_quirk, put packet length at start of packet */ 291 if (has_tx_length_quirk(ep->chip)) 292 extra = sizeof(packet_length); 293 294 for (i = 0; i < ctx->packets; ++i) { 295 unsigned int offset; 296 unsigned int length; 297 int counts; 298 299 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); 300 length = counts * ep->stride; /* number of silent bytes */ 301 offset = offs * ep->stride + extra * i; 302 urb->iso_frame_desc[i].offset = offset; 303 urb->iso_frame_desc[i].length = length + extra; 304 if (extra) { 305 packet_length = cpu_to_le32(length); 306 memcpy(urb->transfer_buffer + offset, 307 &packet_length, sizeof(packet_length)); 308 } 309 memset(urb->transfer_buffer + offset + extra, 310 ep->silence_value, length); 311 offs += counts; 312 } 313 314 urb->number_of_packets = ctx->packets; 315 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 316 ctx->queued = 0; 317 } 318 319 /* 320 * Prepare a PLAYBACK urb for submission to the bus. 321 */ 322 static int prepare_outbound_urb(struct snd_usb_endpoint *ep, 323 struct snd_urb_ctx *ctx, 324 bool in_stream_lock) 325 { 326 struct urb *urb = ctx->urb; 327 unsigned char *cp = urb->transfer_buffer; 328 struct snd_usb_substream *data_subs; 329 330 urb->dev = ep->chip->dev; /* we need to set this at each time */ 331 332 switch (ep->type) { 333 case SND_USB_ENDPOINT_TYPE_DATA: 334 data_subs = READ_ONCE(ep->data_subs); 335 if (data_subs && ep->prepare_data_urb) 336 return ep->prepare_data_urb(data_subs, urb, in_stream_lock); 337 /* no data provider, so send silence */ 338 prepare_silent_urb(ep, ctx); 339 break; 340 341 case SND_USB_ENDPOINT_TYPE_SYNC: 342 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 343 /* 344 * fill the length and offset of each urb descriptor. 345 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 346 */ 347 urb->iso_frame_desc[0].length = 4; 348 urb->iso_frame_desc[0].offset = 0; 349 cp[0] = ep->freqn; 350 cp[1] = ep->freqn >> 8; 351 cp[2] = ep->freqn >> 16; 352 cp[3] = ep->freqn >> 24; 353 } else { 354 /* 355 * fill the length and offset of each urb descriptor. 356 * the fixed 10.14 frequency is passed through the pipe. 357 */ 358 urb->iso_frame_desc[0].length = 3; 359 urb->iso_frame_desc[0].offset = 0; 360 cp[0] = ep->freqn >> 2; 361 cp[1] = ep->freqn >> 10; 362 cp[2] = ep->freqn >> 18; 363 } 364 365 break; 366 } 367 return 0; 368 } 369 370 /* 371 * Prepare a CAPTURE or SYNC urb for submission to the bus. 372 */ 373 static int prepare_inbound_urb(struct snd_usb_endpoint *ep, 374 struct snd_urb_ctx *urb_ctx) 375 { 376 int i, offs; 377 struct urb *urb = urb_ctx->urb; 378 379 urb->dev = ep->chip->dev; /* we need to set this at each time */ 380 381 switch (ep->type) { 382 case SND_USB_ENDPOINT_TYPE_DATA: 383 offs = 0; 384 for (i = 0; i < urb_ctx->packets; i++) { 385 urb->iso_frame_desc[i].offset = offs; 386 urb->iso_frame_desc[i].length = ep->curpacksize; 387 offs += ep->curpacksize; 388 } 389 390 urb->transfer_buffer_length = offs; 391 urb->number_of_packets = urb_ctx->packets; 392 break; 393 394 case SND_USB_ENDPOINT_TYPE_SYNC: 395 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 396 urb->iso_frame_desc[0].offset = 0; 397 break; 398 } 399 return 0; 400 } 401 402 /* notify an error as XRUN to the assigned PCM data substream */ 403 static void notify_xrun(struct snd_usb_endpoint *ep) 404 { 405 struct snd_usb_substream *data_subs; 406 struct snd_pcm_substream *psubs; 407 408 data_subs = READ_ONCE(ep->data_subs); 409 if (!data_subs) 410 return; 411 psubs = data_subs->pcm_substream; 412 if (psubs && psubs->runtime && 413 psubs->runtime->state == SNDRV_PCM_STATE_RUNNING) 414 snd_pcm_stop_xrun(psubs); 415 } 416 417 static struct snd_usb_packet_info * 418 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 419 { 420 struct snd_usb_packet_info *p; 421 422 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 423 ARRAY_SIZE(ep->next_packet); 424 ep->next_packet_queued++; 425 return p; 426 } 427 428 static struct snd_usb_packet_info * 429 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 430 { 431 struct snd_usb_packet_info *p; 432 433 p = ep->next_packet + ep->next_packet_head; 434 ep->next_packet_head++; 435 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 436 ep->next_packet_queued--; 437 return p; 438 } 439 440 static void push_back_to_ready_list(struct snd_usb_endpoint *ep, 441 struct snd_urb_ctx *ctx) 442 { 443 unsigned long flags; 444 445 spin_lock_irqsave(&ep->lock, flags); 446 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 447 spin_unlock_irqrestore(&ep->lock, flags); 448 } 449 450 /* 451 * Send output urbs that have been prepared previously. URBs are dequeued 452 * from ep->ready_playback_urbs and in case there aren't any available 453 * or there are no packets that have been prepared, this function does 454 * nothing. 455 * 456 * The reason why the functionality of sending and preparing URBs is separated 457 * is that host controllers don't guarantee the order in which they return 458 * inbound and outbound packets to their submitters. 459 * 460 * This function is used both for implicit feedback endpoints and in low- 461 * latency playback mode. 462 */ 463 int snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, 464 bool in_stream_lock) 465 { 466 bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); 467 468 while (ep_state_running(ep)) { 469 470 unsigned long flags; 471 struct snd_usb_packet_info *packet; 472 struct snd_urb_ctx *ctx = NULL; 473 int err, i; 474 475 spin_lock_irqsave(&ep->lock, flags); 476 if ((!implicit_fb || ep->next_packet_queued > 0) && 477 !list_empty(&ep->ready_playback_urbs)) { 478 /* take URB out of FIFO */ 479 ctx = list_first_entry(&ep->ready_playback_urbs, 480 struct snd_urb_ctx, ready_list); 481 list_del_init(&ctx->ready_list); 482 if (implicit_fb) 483 packet = next_packet_fifo_dequeue(ep); 484 } 485 spin_unlock_irqrestore(&ep->lock, flags); 486 487 if (ctx == NULL) 488 break; 489 490 /* copy over the length information */ 491 if (implicit_fb) { 492 for (i = 0; i < packet->packets; i++) 493 ctx->packet_size[i] = packet->packet_size[i]; 494 } 495 496 /* call the data handler to fill in playback data */ 497 err = prepare_outbound_urb(ep, ctx, in_stream_lock); 498 /* can be stopped during prepare callback */ 499 if (unlikely(!ep_state_running(ep))) 500 break; 501 if (err < 0) { 502 /* push back to ready list again for -EAGAIN */ 503 if (err == -EAGAIN) { 504 push_back_to_ready_list(ep, ctx); 505 break; 506 } 507 508 if (!in_stream_lock) 509 notify_xrun(ep); 510 return -EPIPE; 511 } 512 513 if (!atomic_read(&ep->chip->shutdown)) 514 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 515 else 516 err = -ENODEV; 517 if (err < 0) { 518 if (!atomic_read(&ep->chip->shutdown)) { 519 usb_audio_err(ep->chip, 520 "Unable to submit urb #%d: %d at %s\n", 521 ctx->index, err, __func__); 522 if (!in_stream_lock) 523 notify_xrun(ep); 524 } 525 return -EPIPE; 526 } 527 528 set_bit(ctx->index, &ep->active_mask); 529 atomic_inc(&ep->submitted_urbs); 530 } 531 532 return 0; 533 } 534 535 /* 536 * complete callback for urbs 537 */ 538 static void snd_complete_urb(struct urb *urb) 539 { 540 struct snd_urb_ctx *ctx = urb->context; 541 struct snd_usb_endpoint *ep = ctx->ep; 542 int err; 543 544 if (unlikely(urb->status == -ENOENT || /* unlinked */ 545 urb->status == -ENODEV || /* device removed */ 546 urb->status == -ECONNRESET || /* unlinked */ 547 urb->status == -ESHUTDOWN)) /* device disabled */ 548 goto exit_clear; 549 /* device disconnected */ 550 if (unlikely(atomic_read(&ep->chip->shutdown))) 551 goto exit_clear; 552 553 if (unlikely(!ep_state_running(ep))) 554 goto exit_clear; 555 556 if (usb_pipeout(ep->pipe)) { 557 retire_outbound_urb(ep, ctx); 558 /* can be stopped during retire callback */ 559 if (unlikely(!ep_state_running(ep))) 560 goto exit_clear; 561 562 /* in low-latency and implicit-feedback modes, push back the 563 * URB to ready list at first, then process as much as possible 564 */ 565 if (ep->lowlatency_playback || 566 snd_usb_endpoint_implicit_feedback_sink(ep)) { 567 push_back_to_ready_list(ep, ctx); 568 clear_bit(ctx->index, &ep->active_mask); 569 snd_usb_queue_pending_output_urbs(ep, false); 570 /* decrement at last, and check xrun */ 571 if (atomic_dec_and_test(&ep->submitted_urbs) && 572 !snd_usb_endpoint_implicit_feedback_sink(ep)) 573 notify_xrun(ep); 574 return; 575 } 576 577 /* in non-lowlatency mode, no error handling for prepare */ 578 prepare_outbound_urb(ep, ctx, false); 579 /* can be stopped during prepare callback */ 580 if (unlikely(!ep_state_running(ep))) 581 goto exit_clear; 582 } else { 583 retire_inbound_urb(ep, ctx); 584 /* can be stopped during retire callback */ 585 if (unlikely(!ep_state_running(ep))) 586 goto exit_clear; 587 588 prepare_inbound_urb(ep, ctx); 589 } 590 591 if (!atomic_read(&ep->chip->shutdown)) 592 err = usb_submit_urb(urb, GFP_ATOMIC); 593 else 594 err = -ENODEV; 595 if (err == 0) 596 return; 597 598 if (!atomic_read(&ep->chip->shutdown)) { 599 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 600 notify_xrun(ep); 601 } 602 603 exit_clear: 604 clear_bit(ctx->index, &ep->active_mask); 605 atomic_dec(&ep->submitted_urbs); 606 } 607 608 /* 609 * Find or create a refcount object for the given interface 610 * 611 * The objects are released altogether in snd_usb_endpoint_free_all() 612 */ 613 static struct snd_usb_iface_ref * 614 iface_ref_find(struct snd_usb_audio *chip, int iface) 615 { 616 struct snd_usb_iface_ref *ip; 617 618 list_for_each_entry(ip, &chip->iface_ref_list, list) 619 if (ip->iface == iface) 620 return ip; 621 622 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 623 if (!ip) 624 return NULL; 625 ip->iface = iface; 626 list_add_tail(&ip->list, &chip->iface_ref_list); 627 return ip; 628 } 629 630 /* Similarly, a refcount object for clock */ 631 static struct snd_usb_clock_ref * 632 clock_ref_find(struct snd_usb_audio *chip, int clock) 633 { 634 struct snd_usb_clock_ref *ref; 635 636 list_for_each_entry(ref, &chip->clock_ref_list, list) 637 if (ref->clock == clock) 638 return ref; 639 640 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 641 if (!ref) 642 return NULL; 643 ref->clock = clock; 644 atomic_set(&ref->locked, 0); 645 list_add_tail(&ref->list, &chip->clock_ref_list); 646 return ref; 647 } 648 649 /* 650 * Get the existing endpoint object corresponding EP 651 * Returns NULL if not present. 652 */ 653 struct snd_usb_endpoint * 654 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 655 { 656 struct snd_usb_endpoint *ep; 657 658 list_for_each_entry(ep, &chip->ep_list, list) { 659 if (ep->ep_num == ep_num) 660 return ep; 661 } 662 663 return NULL; 664 } 665 666 #define ep_type_name(type) \ 667 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 668 669 /** 670 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 671 * 672 * @chip: The chip 673 * @ep_num: The number of the endpoint to use 674 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 675 * 676 * If the requested endpoint has not been added to the given chip before, 677 * a new instance is created. 678 * 679 * Returns zero on success or a negative error code. 680 * 681 * New endpoints will be added to chip->ep_list and freed by 682 * calling snd_usb_endpoint_free_all(). 683 * 684 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 685 * bNumEndpoints > 1 beforehand. 686 */ 687 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 688 { 689 struct snd_usb_endpoint *ep; 690 bool is_playback; 691 692 ep = snd_usb_get_endpoint(chip, ep_num); 693 if (ep) 694 return 0; 695 696 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 697 ep_type_name(type), 698 ep_num); 699 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 700 if (!ep) 701 return -ENOMEM; 702 703 ep->chip = chip; 704 spin_lock_init(&ep->lock); 705 ep->type = type; 706 ep->ep_num = ep_num; 707 INIT_LIST_HEAD(&ep->ready_playback_urbs); 708 atomic_set(&ep->submitted_urbs, 0); 709 710 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 711 ep_num &= USB_ENDPOINT_NUMBER_MASK; 712 if (is_playback) 713 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 714 else 715 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 716 717 list_add_tail(&ep->list, &chip->ep_list); 718 return 0; 719 } 720 721 /* Set up syncinterval and maxsyncsize for a sync EP */ 722 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 723 struct snd_usb_endpoint *ep) 724 { 725 struct usb_host_interface *alts; 726 struct usb_endpoint_descriptor *desc; 727 728 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 729 if (!alts) 730 return; 731 732 desc = get_endpoint(alts, ep->ep_idx); 733 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 734 desc->bRefresh >= 1 && desc->bRefresh <= 9) 735 ep->syncinterval = desc->bRefresh; 736 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 737 ep->syncinterval = 1; 738 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 739 ep->syncinterval = desc->bInterval - 1; 740 else 741 ep->syncinterval = 3; 742 743 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 744 } 745 746 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 747 const struct audioformat *fp, 748 const struct snd_pcm_hw_params *params) 749 { 750 if (!ep->opened) 751 return false; 752 if (ep->cur_audiofmt != fp) 753 return false; 754 if (ep->cur_rate != params_rate(params) || 755 ep->cur_format != params_format(params) || 756 ep->cur_period_frames != params_period_size(params) || 757 ep->cur_buffer_periods != params_periods(params)) 758 return false; 759 return true; 760 } 761 762 /* 763 * Check whether the given fp and hw params are compatible with the current 764 * setup of the target EP for implicit feedback sync 765 */ 766 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 767 struct snd_usb_endpoint *ep, 768 const struct audioformat *fp, 769 const struct snd_pcm_hw_params *params) 770 { 771 bool ret; 772 773 mutex_lock(&chip->mutex); 774 ret = endpoint_compatible(ep, fp, params); 775 mutex_unlock(&chip->mutex); 776 return ret; 777 } 778 779 /* 780 * snd_usb_endpoint_open: Open the endpoint 781 * 782 * Called from hw_params to assign the endpoint to the substream. 783 * It's reference-counted, and only the first opener is allowed to set up 784 * arbitrary parameters. The later opener must be compatible with the 785 * former opened parameters. 786 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 787 * 788 * Note that this function doesn't configure the endpoint. The substream 789 * needs to set it up later via snd_usb_endpoint_set_params() and 790 * snd_usb_endpoint_prepare(). 791 */ 792 struct snd_usb_endpoint * 793 snd_usb_endpoint_open(struct snd_usb_audio *chip, 794 const struct audioformat *fp, 795 const struct snd_pcm_hw_params *params, 796 bool is_sync_ep, 797 bool fixed_rate) 798 { 799 struct snd_usb_endpoint *ep; 800 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 801 802 mutex_lock(&chip->mutex); 803 ep = snd_usb_get_endpoint(chip, ep_num); 804 if (!ep) { 805 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 806 goto unlock; 807 } 808 809 if (!ep->opened) { 810 if (is_sync_ep) { 811 ep->iface = fp->sync_iface; 812 ep->altsetting = fp->sync_altsetting; 813 ep->ep_idx = fp->sync_ep_idx; 814 } else { 815 ep->iface = fp->iface; 816 ep->altsetting = fp->altsetting; 817 ep->ep_idx = fp->ep_idx; 818 } 819 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 820 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 821 822 ep->iface_ref = iface_ref_find(chip, ep->iface); 823 if (!ep->iface_ref) { 824 ep = NULL; 825 goto unlock; 826 } 827 828 if (fp->protocol != UAC_VERSION_1) { 829 ep->clock_ref = clock_ref_find(chip, fp->clock); 830 if (!ep->clock_ref) { 831 ep = NULL; 832 goto unlock; 833 } 834 ep->clock_ref->opened++; 835 } 836 837 ep->cur_audiofmt = fp; 838 ep->cur_channels = fp->channels; 839 ep->cur_rate = params_rate(params); 840 ep->cur_format = params_format(params); 841 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 842 ep->cur_channels / 8; 843 ep->cur_period_frames = params_period_size(params); 844 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 845 ep->cur_buffer_periods = params_periods(params); 846 847 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 848 endpoint_set_syncinterval(chip, ep); 849 850 ep->implicit_fb_sync = fp->implicit_fb; 851 ep->need_setup = true; 852 ep->need_prepare = true; 853 ep->fixed_rate = fixed_rate; 854 855 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 856 ep->cur_channels, ep->cur_rate, 857 snd_pcm_format_name(ep->cur_format), 858 ep->cur_period_bytes, ep->cur_buffer_periods, 859 ep->implicit_fb_sync); 860 861 } else { 862 if (WARN_ON(!ep->iface_ref)) { 863 ep = NULL; 864 goto unlock; 865 } 866 867 if (!endpoint_compatible(ep, fp, params)) { 868 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 869 ep_num); 870 ep = NULL; 871 goto unlock; 872 } 873 874 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 875 ep_num, ep->opened); 876 } 877 878 if (!ep->iface_ref->opened++) 879 ep->iface_ref->need_setup = true; 880 881 ep->opened++; 882 883 unlock: 884 mutex_unlock(&chip->mutex); 885 return ep; 886 } 887 888 /* 889 * snd_usb_endpoint_set_sync: Link data and sync endpoints 890 * 891 * Pass NULL to sync_ep to unlink again 892 */ 893 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 894 struct snd_usb_endpoint *data_ep, 895 struct snd_usb_endpoint *sync_ep) 896 { 897 data_ep->sync_source = sync_ep; 898 } 899 900 /* 901 * Set data endpoint callbacks and the assigned data stream 902 * 903 * Called at PCM trigger and cleanups. 904 * Pass NULL to deactivate each callback. 905 */ 906 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 907 int (*prepare)(struct snd_usb_substream *subs, 908 struct urb *urb, 909 bool in_stream_lock), 910 void (*retire)(struct snd_usb_substream *subs, 911 struct urb *urb), 912 struct snd_usb_substream *data_subs) 913 { 914 ep->prepare_data_urb = prepare; 915 ep->retire_data_urb = retire; 916 if (data_subs) 917 ep->lowlatency_playback = data_subs->lowlatency_playback; 918 else 919 ep->lowlatency_playback = false; 920 WRITE_ONCE(ep->data_subs, data_subs); 921 } 922 923 static int endpoint_set_interface(struct snd_usb_audio *chip, 924 struct snd_usb_endpoint *ep, 925 bool set) 926 { 927 int altset = set ? ep->altsetting : 0; 928 int err; 929 930 if (ep->iface_ref->altset == altset) 931 return 0; 932 /* already disconnected? */ 933 if (unlikely(atomic_read(&chip->shutdown))) 934 return -ENODEV; 935 936 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 937 ep->iface, altset, ep->ep_num); 938 err = usb_set_interface(chip->dev, ep->iface, altset); 939 if (err < 0) { 940 usb_audio_err_ratelimited( 941 chip, "%d:%d: usb_set_interface failed (%d)\n", 942 ep->iface, altset, err); 943 return err; 944 } 945 946 if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) 947 msleep(50); 948 ep->iface_ref->altset = altset; 949 return 0; 950 } 951 952 /* 953 * snd_usb_endpoint_close: Close the endpoint 954 * 955 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 956 */ 957 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 958 struct snd_usb_endpoint *ep) 959 { 960 mutex_lock(&chip->mutex); 961 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 962 ep->ep_num, ep->opened); 963 964 if (!--ep->iface_ref->opened && 965 !(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE)) 966 endpoint_set_interface(chip, ep, false); 967 968 if (!--ep->opened) { 969 if (ep->clock_ref) { 970 if (!--ep->clock_ref->opened) 971 ep->clock_ref->rate = 0; 972 } 973 ep->iface = 0; 974 ep->altsetting = 0; 975 ep->cur_audiofmt = NULL; 976 ep->cur_rate = 0; 977 ep->iface_ref = NULL; 978 ep->clock_ref = NULL; 979 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 980 } 981 mutex_unlock(&chip->mutex); 982 } 983 984 /* Prepare for suspening EP, called from the main suspend handler */ 985 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 986 { 987 ep->need_prepare = true; 988 if (ep->iface_ref) 989 ep->iface_ref->need_setup = true; 990 if (ep->clock_ref) 991 ep->clock_ref->rate = 0; 992 } 993 994 /* 995 * wait until all urbs are processed. 996 */ 997 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 998 { 999 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 1000 int alive; 1001 1002 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 1003 return 0; 1004 1005 do { 1006 alive = atomic_read(&ep->submitted_urbs); 1007 if (!alive) 1008 break; 1009 1010 schedule_timeout_uninterruptible(1); 1011 } while (time_before(jiffies, end_time)); 1012 1013 if (alive) 1014 usb_audio_err(ep->chip, 1015 "timeout: still %d active urbs on EP #%x\n", 1016 alive, ep->ep_num); 1017 1018 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 1019 ep->sync_sink = NULL; 1020 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* sync the pending stop operation; 1027 * this function itself doesn't trigger the stop operation 1028 */ 1029 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 1030 { 1031 if (ep) 1032 wait_clear_urbs(ep); 1033 } 1034 1035 /* 1036 * Stop active urbs 1037 * 1038 * This function moves the EP to STOPPING state if it's being RUNNING. 1039 */ 1040 static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) 1041 { 1042 unsigned int i; 1043 unsigned long flags; 1044 1045 if (!force && atomic_read(&ep->running)) 1046 return -EBUSY; 1047 1048 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 1049 return 0; 1050 1051 spin_lock_irqsave(&ep->lock, flags); 1052 INIT_LIST_HEAD(&ep->ready_playback_urbs); 1053 ep->next_packet_head = 0; 1054 ep->next_packet_queued = 0; 1055 spin_unlock_irqrestore(&ep->lock, flags); 1056 1057 if (keep_pending) 1058 return 0; 1059 1060 for (i = 0; i < ep->nurbs; i++) { 1061 if (test_bit(i, &ep->active_mask)) { 1062 if (!test_and_set_bit(i, &ep->unlink_mask)) { 1063 struct urb *u = ep->urb[i].urb; 1064 usb_unlink_urb(u); 1065 } 1066 } 1067 } 1068 1069 return 0; 1070 } 1071 1072 /* 1073 * release an endpoint's urbs 1074 */ 1075 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 1076 { 1077 int i, err; 1078 1079 /* route incoming urbs to nirvana */ 1080 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1081 1082 /* stop and unlink urbs */ 1083 err = stop_urbs(ep, force, false); 1084 if (err) 1085 return err; 1086 1087 wait_clear_urbs(ep); 1088 1089 for (i = 0; i < ep->nurbs; i++) 1090 release_urb_ctx(&ep->urb[i]); 1091 1092 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 1093 ep->syncbuf, ep->sync_dma); 1094 1095 ep->syncbuf = NULL; 1096 ep->nurbs = 0; 1097 return 0; 1098 } 1099 1100 /* 1101 * configure a data endpoint 1102 */ 1103 static int data_ep_set_params(struct snd_usb_endpoint *ep) 1104 { 1105 struct snd_usb_audio *chip = ep->chip; 1106 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 1107 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 1108 unsigned int max_urbs, i; 1109 const struct audioformat *fmt = ep->cur_audiofmt; 1110 int frame_bits = ep->cur_frame_bytes * 8; 1111 int tx_length_quirk = (has_tx_length_quirk(chip) && 1112 usb_pipeout(ep->pipe)); 1113 1114 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 1115 ep->ep_num, ep->pipe); 1116 1117 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 1118 /* 1119 * When operating in DSD DOP mode, the size of a sample frame 1120 * in hardware differs from the actual physical format width 1121 * because we need to make room for the DOP markers. 1122 */ 1123 frame_bits += ep->cur_channels << 3; 1124 } 1125 1126 ep->datainterval = fmt->datainterval; 1127 ep->stride = frame_bits >> 3; 1128 1129 switch (ep->cur_format) { 1130 case SNDRV_PCM_FORMAT_U8: 1131 ep->silence_value = 0x80; 1132 break; 1133 case SNDRV_PCM_FORMAT_DSD_U8: 1134 case SNDRV_PCM_FORMAT_DSD_U16_LE: 1135 case SNDRV_PCM_FORMAT_DSD_U32_LE: 1136 case SNDRV_PCM_FORMAT_DSD_U16_BE: 1137 case SNDRV_PCM_FORMAT_DSD_U32_BE: 1138 ep->silence_value = 0x69; 1139 break; 1140 default: 1141 ep->silence_value = 0; 1142 } 1143 1144 /* assume max. frequency is 50% higher than nominal */ 1145 ep->freqmax = ep->freqn + (ep->freqn >> 1); 1146 /* Round up freqmax to nearest integer in order to calculate maximum 1147 * packet size, which must represent a whole number of frames. 1148 * This is accomplished by adding 0x0.ffff before converting the 1149 * Q16.16 format into integer. 1150 * In order to accurately calculate the maximum packet size when 1151 * the data interval is more than 1 (i.e. ep->datainterval > 0), 1152 * multiply by the data interval prior to rounding. For instance, 1153 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 1154 * frames with a data interval of 1, but 11 (10.25) frames with a 1155 * data interval of 2. 1156 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1157 * maximum datainterval value of 3, at USB full speed, higher for 1158 * USB high speed, noting that ep->freqmax is in units of 1159 * frames per packet in Q16.16 format.) 1160 */ 1161 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1162 (frame_bits >> 3); 1163 if (tx_length_quirk) 1164 maxsize += sizeof(__le32); /* Space for length descriptor */ 1165 /* but wMaxPacketSize might reduce this */ 1166 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1167 /* whatever fits into a max. size packet */ 1168 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1169 1170 if (tx_length_quirk) 1171 /* Need to remove the length descriptor to calc freq */ 1172 data_maxsize -= sizeof(__le32); 1173 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1174 << (16 - ep->datainterval); 1175 } 1176 1177 if (ep->fill_max) 1178 ep->curpacksize = ep->maxpacksize; 1179 else 1180 ep->curpacksize = maxsize; 1181 1182 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1183 packs_per_ms = 8 >> ep->datainterval; 1184 max_packs_per_urb = MAX_PACKS_HS; 1185 } else { 1186 packs_per_ms = 1; 1187 max_packs_per_urb = MAX_PACKS; 1188 } 1189 if (ep->sync_source && !ep->implicit_fb_sync) 1190 max_packs_per_urb = min(max_packs_per_urb, 1191 1U << ep->sync_source->syncinterval); 1192 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1193 1194 /* 1195 * Capture endpoints need to use small URBs because there's no way 1196 * to tell in advance where the next period will end, and we don't 1197 * want the next URB to complete much after the period ends. 1198 * 1199 * Playback endpoints with implicit sync much use the same parameters 1200 * as their corresponding capture endpoint. 1201 */ 1202 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1203 1204 /* make capture URBs <= 1 ms and smaller than a period */ 1205 urb_packs = min(max_packs_per_urb, packs_per_ms); 1206 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1207 urb_packs >>= 1; 1208 ep->nurbs = MAX_URBS; 1209 1210 /* 1211 * Playback endpoints without implicit sync are adjusted so that 1212 * a period fits as evenly as possible in the smallest number of 1213 * URBs. The total number of URBs is adjusted to the size of the 1214 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1215 */ 1216 } else { 1217 /* determine how small a packet can be */ 1218 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1219 (frame_bits >> 3); 1220 /* with sync from device, assume it can be 12% lower */ 1221 if (ep->sync_source) 1222 minsize -= minsize >> 3; 1223 minsize = max(minsize, 1u); 1224 1225 /* how many packets will contain an entire ALSA period? */ 1226 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1227 1228 /* how many URBs will contain a period? */ 1229 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1230 max_packs_per_urb); 1231 /* how many packets are needed in each URB? */ 1232 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1233 1234 /* limit the number of frames in a single URB */ 1235 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1236 urbs_per_period); 1237 1238 /* try to use enough URBs to contain an entire ALSA buffer */ 1239 max_urbs = min((unsigned) MAX_URBS, 1240 MAX_QUEUE * packs_per_ms / urb_packs); 1241 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1242 } 1243 1244 /* allocate and initialize data urbs */ 1245 for (i = 0; i < ep->nurbs; i++) { 1246 struct snd_urb_ctx *u = &ep->urb[i]; 1247 u->index = i; 1248 u->ep = ep; 1249 u->packets = urb_packs; 1250 u->buffer_size = maxsize * u->packets; 1251 1252 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1253 u->packets++; /* for transfer delimiter */ 1254 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1255 if (!u->urb) 1256 goto out_of_memory; 1257 1258 u->urb->transfer_buffer = 1259 usb_alloc_coherent(chip->dev, u->buffer_size, 1260 GFP_KERNEL, &u->urb->transfer_dma); 1261 if (!u->urb->transfer_buffer) 1262 goto out_of_memory; 1263 u->urb->pipe = ep->pipe; 1264 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1265 u->urb->interval = 1 << ep->datainterval; 1266 u->urb->context = u; 1267 u->urb->complete = snd_complete_urb; 1268 INIT_LIST_HEAD(&u->ready_list); 1269 } 1270 1271 return 0; 1272 1273 out_of_memory: 1274 release_urbs(ep, false); 1275 return -ENOMEM; 1276 } 1277 1278 /* 1279 * configure a sync endpoint 1280 */ 1281 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1282 { 1283 struct snd_usb_audio *chip = ep->chip; 1284 int i; 1285 1286 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1287 ep->ep_num, ep->pipe); 1288 1289 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1290 GFP_KERNEL, &ep->sync_dma); 1291 if (!ep->syncbuf) 1292 return -ENOMEM; 1293 1294 ep->nurbs = SYNC_URBS; 1295 for (i = 0; i < SYNC_URBS; i++) { 1296 struct snd_urb_ctx *u = &ep->urb[i]; 1297 u->index = i; 1298 u->ep = ep; 1299 u->packets = 1; 1300 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1301 if (!u->urb) 1302 goto out_of_memory; 1303 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1304 u->urb->transfer_dma = ep->sync_dma + i * 4; 1305 u->urb->transfer_buffer_length = 4; 1306 u->urb->pipe = ep->pipe; 1307 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1308 u->urb->number_of_packets = 1; 1309 u->urb->interval = 1 << ep->syncinterval; 1310 u->urb->context = u; 1311 u->urb->complete = snd_complete_urb; 1312 } 1313 1314 return 0; 1315 1316 out_of_memory: 1317 release_urbs(ep, false); 1318 return -ENOMEM; 1319 } 1320 1321 /* update the rate of the referred clock; return the actual rate */ 1322 static int update_clock_ref_rate(struct snd_usb_audio *chip, 1323 struct snd_usb_endpoint *ep) 1324 { 1325 struct snd_usb_clock_ref *clock = ep->clock_ref; 1326 int rate = ep->cur_rate; 1327 1328 if (!clock || clock->rate == rate) 1329 return rate; 1330 if (clock->rate) { 1331 if (atomic_read(&clock->locked)) 1332 return clock->rate; 1333 if (clock->rate != rate) { 1334 usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n", 1335 clock->rate, rate, ep->ep_num); 1336 return clock->rate; 1337 } 1338 } 1339 clock->rate = rate; 1340 clock->need_setup = true; 1341 return rate; 1342 } 1343 1344 /* 1345 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1346 * 1347 * It's called either from hw_params callback. 1348 * Determine the number of URBs to be used on this endpoint. 1349 * An endpoint must be configured before it can be started. 1350 * An endpoint that is already running can not be reconfigured. 1351 */ 1352 int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1353 struct snd_usb_endpoint *ep) 1354 { 1355 const struct audioformat *fmt = ep->cur_audiofmt; 1356 int err = 0; 1357 1358 mutex_lock(&chip->mutex); 1359 if (!ep->need_setup) 1360 goto unlock; 1361 1362 /* release old buffers, if any */ 1363 err = release_urbs(ep, false); 1364 if (err < 0) 1365 goto unlock; 1366 1367 ep->datainterval = fmt->datainterval; 1368 ep->maxpacksize = fmt->maxpacksize; 1369 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1370 1371 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1372 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1373 ep->pps = 1000 >> ep->datainterval; 1374 } else { 1375 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1376 ep->pps = 8000 >> ep->datainterval; 1377 } 1378 1379 ep->sample_rem = ep->cur_rate % ep->pps; 1380 ep->packsize[0] = ep->cur_rate / ep->pps; 1381 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1382 1383 /* calculate the frequency in 16.16 format */ 1384 ep->freqm = ep->freqn; 1385 ep->freqshift = INT_MIN; 1386 1387 ep->phase = 0; 1388 1389 switch (ep->type) { 1390 case SND_USB_ENDPOINT_TYPE_DATA: 1391 err = data_ep_set_params(ep); 1392 break; 1393 case SND_USB_ENDPOINT_TYPE_SYNC: 1394 err = sync_ep_set_params(ep); 1395 break; 1396 default: 1397 err = -EINVAL; 1398 } 1399 1400 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1401 1402 if (err < 0) 1403 goto unlock; 1404 1405 /* some unit conversions in runtime */ 1406 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1407 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1408 1409 err = update_clock_ref_rate(chip, ep); 1410 if (err >= 0) { 1411 ep->need_setup = false; 1412 err = 0; 1413 } 1414 1415 unlock: 1416 mutex_unlock(&chip->mutex); 1417 return err; 1418 } 1419 1420 static int init_sample_rate(struct snd_usb_audio *chip, 1421 struct snd_usb_endpoint *ep) 1422 { 1423 struct snd_usb_clock_ref *clock = ep->clock_ref; 1424 int rate, err; 1425 1426 rate = update_clock_ref_rate(chip, ep); 1427 if (rate < 0) 1428 return rate; 1429 if (clock && !clock->need_setup) 1430 return 0; 1431 1432 if (!ep->fixed_rate) { 1433 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate); 1434 if (err < 0) { 1435 if (clock) 1436 clock->rate = 0; /* reset rate */ 1437 return err; 1438 } 1439 } 1440 1441 if (clock) 1442 clock->need_setup = false; 1443 return 0; 1444 } 1445 1446 /* 1447 * snd_usb_endpoint_prepare: Prepare the endpoint 1448 * 1449 * This function sets up the EP to be fully usable state. 1450 * It's called either from prepare callback. 1451 * The function checks need_setup flag, and performs nothing unless needed, 1452 * so it's safe to call this multiple times. 1453 * 1454 * This returns zero if unchanged, 1 if the configuration has changed, 1455 * or a negative error code. 1456 */ 1457 int snd_usb_endpoint_prepare(struct snd_usb_audio *chip, 1458 struct snd_usb_endpoint *ep) 1459 { 1460 bool iface_first; 1461 int err = 0; 1462 1463 mutex_lock(&chip->mutex); 1464 if (WARN_ON(!ep->iface_ref)) 1465 goto unlock; 1466 if (!ep->need_prepare) 1467 goto unlock; 1468 1469 /* If the interface has been already set up, just set EP parameters */ 1470 if (!ep->iface_ref->need_setup) { 1471 /* sample rate setup of UAC1 is per endpoint, and we need 1472 * to update at each EP configuration 1473 */ 1474 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1475 err = init_sample_rate(chip, ep); 1476 if (err < 0) 1477 goto unlock; 1478 } 1479 goto done; 1480 } 1481 1482 /* Need to deselect altsetting at first */ 1483 endpoint_set_interface(chip, ep, false); 1484 1485 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1486 * to be set up before parameter setups 1487 */ 1488 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1489 /* Workaround for devices that require the interface setup at first like UAC1 */ 1490 if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) 1491 iface_first = true; 1492 if (iface_first) { 1493 err = endpoint_set_interface(chip, ep, true); 1494 if (err < 0) 1495 goto unlock; 1496 } 1497 1498 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1499 if (err < 0) 1500 goto unlock; 1501 1502 err = init_sample_rate(chip, ep); 1503 if (err < 0) 1504 goto unlock; 1505 1506 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1507 if (err < 0) 1508 goto unlock; 1509 1510 /* for UAC2/3, enable the interface altset here at last */ 1511 if (!iface_first) { 1512 err = endpoint_set_interface(chip, ep, true); 1513 if (err < 0) 1514 goto unlock; 1515 } 1516 1517 ep->iface_ref->need_setup = false; 1518 1519 done: 1520 ep->need_prepare = false; 1521 err = 1; 1522 1523 unlock: 1524 mutex_unlock(&chip->mutex); 1525 return err; 1526 } 1527 1528 /* get the current rate set to the given clock by any endpoint */ 1529 int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) 1530 { 1531 struct snd_usb_clock_ref *ref; 1532 int rate = 0; 1533 1534 if (!clock) 1535 return 0; 1536 mutex_lock(&chip->mutex); 1537 list_for_each_entry(ref, &chip->clock_ref_list, list) { 1538 if (ref->clock == clock) { 1539 rate = ref->rate; 1540 break; 1541 } 1542 } 1543 mutex_unlock(&chip->mutex); 1544 return rate; 1545 } 1546 1547 /** 1548 * snd_usb_endpoint_start: start an snd_usb_endpoint 1549 * 1550 * @ep: the endpoint to start 1551 * 1552 * A call to this function will increment the running count of the endpoint. 1553 * In case it is not already running, the URBs for this endpoint will be 1554 * submitted. Otherwise, this function does nothing. 1555 * 1556 * Must be balanced to calls of snd_usb_endpoint_stop(). 1557 * 1558 * Returns an error if the URB submission failed, 0 in all other cases. 1559 */ 1560 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1561 { 1562 bool is_playback = usb_pipeout(ep->pipe); 1563 int err; 1564 unsigned int i; 1565 1566 if (atomic_read(&ep->chip->shutdown)) 1567 return -EBADFD; 1568 1569 if (ep->sync_source) 1570 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1571 1572 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1573 ep_type_name(ep->type), ep->ep_num, 1574 atomic_read(&ep->running)); 1575 1576 /* already running? */ 1577 if (atomic_inc_return(&ep->running) != 1) 1578 return 0; 1579 1580 if (ep->clock_ref) 1581 atomic_inc(&ep->clock_ref->locked); 1582 1583 ep->active_mask = 0; 1584 ep->unlink_mask = 0; 1585 ep->phase = 0; 1586 ep->sample_accum = 0; 1587 1588 snd_usb_endpoint_start_quirk(ep); 1589 1590 /* 1591 * If this endpoint has a data endpoint as implicit feedback source, 1592 * don't start the urbs here. Instead, mark them all as available, 1593 * wait for the record urbs to return and queue the playback urbs 1594 * from that context. 1595 */ 1596 1597 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1598 goto __error; 1599 1600 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1601 !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { 1602 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1603 i = 0; 1604 goto fill_rest; 1605 } 1606 1607 for (i = 0; i < ep->nurbs; i++) { 1608 struct urb *urb = ep->urb[i].urb; 1609 1610 if (snd_BUG_ON(!urb)) 1611 goto __error; 1612 1613 if (is_playback) 1614 err = prepare_outbound_urb(ep, urb->context, true); 1615 else 1616 err = prepare_inbound_urb(ep, urb->context); 1617 if (err < 0) { 1618 /* stop filling at applptr */ 1619 if (err == -EAGAIN) 1620 break; 1621 usb_audio_dbg(ep->chip, 1622 "EP 0x%x: failed to prepare urb: %d\n", 1623 ep->ep_num, err); 1624 goto __error; 1625 } 1626 1627 if (!atomic_read(&ep->chip->shutdown)) 1628 err = usb_submit_urb(urb, GFP_ATOMIC); 1629 else 1630 err = -ENODEV; 1631 if (err < 0) { 1632 if (!atomic_read(&ep->chip->shutdown)) 1633 usb_audio_err(ep->chip, 1634 "cannot submit urb %d, error %d: %s\n", 1635 i, err, usb_error_string(err)); 1636 goto __error; 1637 } 1638 set_bit(i, &ep->active_mask); 1639 atomic_inc(&ep->submitted_urbs); 1640 } 1641 1642 if (!i) { 1643 usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", 1644 ep->ep_num); 1645 goto __error; 1646 } 1647 1648 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1649 i, ep->ep_num); 1650 1651 fill_rest: 1652 /* put the remaining URBs to ready list */ 1653 if (is_playback) { 1654 for (; i < ep->nurbs; i++) 1655 push_back_to_ready_list(ep, ep->urb + i); 1656 } 1657 1658 return 0; 1659 1660 __error: 1661 snd_usb_endpoint_stop(ep, false); 1662 return -EPIPE; 1663 } 1664 1665 /** 1666 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1667 * 1668 * @ep: the endpoint to stop (may be NULL) 1669 * @keep_pending: keep in-flight URBs 1670 * 1671 * A call to this function will decrement the running count of the endpoint. 1672 * In case the last user has requested the endpoint stop, the URBs will 1673 * actually be deactivated. 1674 * 1675 * Must be balanced to calls of snd_usb_endpoint_start(). 1676 * 1677 * The caller needs to synchronize the pending stop operation via 1678 * snd_usb_endpoint_sync_pending_stop(). 1679 */ 1680 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) 1681 { 1682 if (!ep) 1683 return; 1684 1685 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1686 ep_type_name(ep->type), ep->ep_num, 1687 atomic_read(&ep->running)); 1688 1689 if (snd_BUG_ON(!atomic_read(&ep->running))) 1690 return; 1691 1692 if (!atomic_dec_return(&ep->running)) { 1693 if (ep->sync_source) 1694 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1695 stop_urbs(ep, false, keep_pending); 1696 if (ep->clock_ref) 1697 atomic_dec(&ep->clock_ref->locked); 1698 1699 if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET && 1700 usb_pipeout(ep->pipe)) { 1701 ep->need_prepare = true; 1702 if (ep->iface_ref) 1703 ep->iface_ref->need_setup = true; 1704 } 1705 } 1706 } 1707 1708 /** 1709 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1710 * 1711 * @ep: the endpoint to release 1712 * 1713 * This function does not care for the endpoint's running count but will tear 1714 * down all the streaming URBs immediately. 1715 */ 1716 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1717 { 1718 release_urbs(ep, true); 1719 } 1720 1721 /** 1722 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1723 * @chip: The chip 1724 * 1725 * This free all endpoints and those resources 1726 */ 1727 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1728 { 1729 struct snd_usb_endpoint *ep, *en; 1730 struct snd_usb_iface_ref *ip, *in; 1731 struct snd_usb_clock_ref *cp, *cn; 1732 1733 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1734 kfree(ep); 1735 1736 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1737 kfree(ip); 1738 1739 list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list) 1740 kfree(cp); 1741 } 1742 1743 /* 1744 * snd_usb_handle_sync_urb: parse an USB sync packet 1745 * 1746 * @ep: the endpoint to handle the packet 1747 * @sender: the sending endpoint 1748 * @urb: the received packet 1749 * 1750 * This function is called from the context of an endpoint that received 1751 * the packet and is used to let another endpoint object handle the payload. 1752 */ 1753 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1754 struct snd_usb_endpoint *sender, 1755 const struct urb *urb) 1756 { 1757 int shift; 1758 unsigned int f; 1759 unsigned long flags; 1760 1761 snd_BUG_ON(ep == sender); 1762 1763 /* 1764 * In case the endpoint is operating in implicit feedback mode, prepare 1765 * a new outbound URB that has the same layout as the received packet 1766 * and add it to the list of pending urbs. queue_pending_output_urbs() 1767 * will take care of them later. 1768 */ 1769 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1770 atomic_read(&ep->running)) { 1771 1772 /* implicit feedback case */ 1773 int i, bytes = 0; 1774 struct snd_urb_ctx *in_ctx; 1775 struct snd_usb_packet_info *out_packet; 1776 1777 in_ctx = urb->context; 1778 1779 /* Count overall packet size */ 1780 for (i = 0; i < in_ctx->packets; i++) 1781 if (urb->iso_frame_desc[i].status == 0) 1782 bytes += urb->iso_frame_desc[i].actual_length; 1783 1784 /* 1785 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1786 * streaming once it received a 0-byte OUT URB 1787 */ 1788 if (bytes == 0) 1789 return; 1790 1791 spin_lock_irqsave(&ep->lock, flags); 1792 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1793 spin_unlock_irqrestore(&ep->lock, flags); 1794 usb_audio_err(ep->chip, 1795 "next package FIFO overflow EP 0x%x\n", 1796 ep->ep_num); 1797 notify_xrun(ep); 1798 return; 1799 } 1800 1801 out_packet = next_packet_fifo_enqueue(ep); 1802 1803 /* 1804 * Iterate through the inbound packet and prepare the lengths 1805 * for the output packet. The OUT packet we are about to send 1806 * will have the same amount of payload bytes per stride as the 1807 * IN packet we just received. Since the actual size is scaled 1808 * by the stride, use the sender stride to calculate the length 1809 * in case the number of channels differ between the implicitly 1810 * fed-back endpoint and the synchronizing endpoint. 1811 */ 1812 1813 out_packet->packets = in_ctx->packets; 1814 for (i = 0; i < in_ctx->packets; i++) { 1815 if (urb->iso_frame_desc[i].status == 0) 1816 out_packet->packet_size[i] = 1817 urb->iso_frame_desc[i].actual_length / sender->stride; 1818 else 1819 out_packet->packet_size[i] = 0; 1820 } 1821 1822 spin_unlock_irqrestore(&ep->lock, flags); 1823 snd_usb_queue_pending_output_urbs(ep, false); 1824 1825 return; 1826 } 1827 1828 /* 1829 * process after playback sync complete 1830 * 1831 * Full speed devices report feedback values in 10.14 format as samples 1832 * per frame, high speed devices in 16.16 format as samples per 1833 * microframe. 1834 * 1835 * Because the Audio Class 1 spec was written before USB 2.0, many high 1836 * speed devices use a wrong interpretation, some others use an 1837 * entirely different format. 1838 * 1839 * Therefore, we cannot predict what format any particular device uses 1840 * and must detect it automatically. 1841 */ 1842 1843 if (urb->iso_frame_desc[0].status != 0 || 1844 urb->iso_frame_desc[0].actual_length < 3) 1845 return; 1846 1847 f = le32_to_cpup(urb->transfer_buffer); 1848 if (urb->iso_frame_desc[0].actual_length == 3) 1849 f &= 0x00ffffff; 1850 else 1851 f &= 0x0fffffff; 1852 1853 if (f == 0) 1854 return; 1855 1856 if (unlikely(sender->tenor_fb_quirk)) { 1857 /* 1858 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1859 * and others) sometimes change the feedback value 1860 * by +/- 0x1.0000. 1861 */ 1862 if (f < ep->freqn - 0x8000) 1863 f += 0xf000; 1864 else if (f > ep->freqn + 0x8000) 1865 f -= 0xf000; 1866 } else if (unlikely(ep->freqshift == INT_MIN)) { 1867 /* 1868 * The first time we see a feedback value, determine its format 1869 * by shifting it left or right until it matches the nominal 1870 * frequency value. This assumes that the feedback does not 1871 * differ from the nominal value more than +50% or -25%. 1872 */ 1873 shift = 0; 1874 while (f < ep->freqn - ep->freqn / 4) { 1875 f <<= 1; 1876 shift++; 1877 } 1878 while (f > ep->freqn + ep->freqn / 2) { 1879 f >>= 1; 1880 shift--; 1881 } 1882 ep->freqshift = shift; 1883 } else if (ep->freqshift >= 0) 1884 f <<= ep->freqshift; 1885 else 1886 f >>= -ep->freqshift; 1887 1888 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1889 /* 1890 * If the frequency looks valid, set it. 1891 * This value is referred to in prepare_playback_urb(). 1892 */ 1893 spin_lock_irqsave(&ep->lock, flags); 1894 ep->freqm = f; 1895 spin_unlock_irqrestore(&ep->lock, flags); 1896 } else { 1897 /* 1898 * Out of range; maybe the shift value is wrong. 1899 * Reset it so that we autodetect again the next time. 1900 */ 1901 ep->freqshift = INT_MIN; 1902 } 1903 } 1904 1905