1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 struct list_head list; 36 }; 37 38 /* clock refcounting */ 39 struct snd_usb_clock_ref { 40 unsigned char clock; 41 atomic_t locked; 42 int opened; 43 int rate; 44 bool need_setup; 45 struct list_head list; 46 }; 47 48 /* 49 * snd_usb_endpoint is a model that abstracts everything related to an 50 * USB endpoint and its streaming. 51 * 52 * There are functions to activate and deactivate the streaming URBs and 53 * optional callbacks to let the pcm logic handle the actual content of the 54 * packets for playback and record. Thus, the bus streaming and the audio 55 * handlers are fully decoupled. 56 * 57 * There are two different types of endpoints in audio applications. 58 * 59 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 60 * inbound and outbound traffic. 61 * 62 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 63 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 64 * (3 or 4 bytes). 65 * 66 * Each endpoint has to be configured prior to being used by calling 67 * snd_usb_endpoint_set_params(). 68 * 69 * The model incorporates a reference counting, so that multiple users 70 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 71 * only the first user will effectively start the URBs, and only the last 72 * one to stop it will tear the URBs down again. 73 */ 74 75 /* 76 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 77 * this will overflow at approx 524 kHz 78 */ 79 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 80 { 81 return ((rate << 13) + 62) / 125; 82 } 83 84 /* 85 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 86 * this will overflow at approx 4 MHz 87 */ 88 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 89 { 90 return ((rate << 10) + 62) / 125; 91 } 92 93 /* 94 * release a urb data 95 */ 96 static void release_urb_ctx(struct snd_urb_ctx *u) 97 { 98 if (u->buffer_size) 99 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 100 u->urb->transfer_buffer, 101 u->urb->transfer_dma); 102 usb_free_urb(u->urb); 103 u->urb = NULL; 104 } 105 106 static const char *usb_error_string(int err) 107 { 108 switch (err) { 109 case -ENODEV: 110 return "no device"; 111 case -ENOENT: 112 return "endpoint not enabled"; 113 case -EPIPE: 114 return "endpoint stalled"; 115 case -ENOSPC: 116 return "not enough bandwidth"; 117 case -ESHUTDOWN: 118 return "device disabled"; 119 case -EHOSTUNREACH: 120 return "device suspended"; 121 case -EINVAL: 122 case -EAGAIN: 123 case -EFBIG: 124 case -EMSGSIZE: 125 return "internal error"; 126 default: 127 return "unknown error"; 128 } 129 } 130 131 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 132 { 133 return atomic_read(&ep->state) == EP_STATE_RUNNING; 134 } 135 136 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 137 { 138 return atomic_try_cmpxchg(&ep->state, &old, new); 139 } 140 141 /** 142 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 143 * 144 * @ep: The snd_usb_endpoint 145 * 146 * Determine whether an endpoint is driven by an implicit feedback 147 * data endpoint source. 148 */ 149 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 150 { 151 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 152 } 153 154 /* 155 * Return the number of samples to be sent in the next packet 156 * for streaming based on information derived from sync endpoints 157 * 158 * This won't be used for implicit feedback which takes the packet size 159 * returned from the sync source 160 */ 161 static int slave_next_packet_size(struct snd_usb_endpoint *ep, 162 unsigned int avail) 163 { 164 unsigned long flags; 165 unsigned int phase; 166 int ret; 167 168 if (ep->fill_max) 169 return ep->maxframesize; 170 171 spin_lock_irqsave(&ep->lock, flags); 172 phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); 173 ret = min(phase >> 16, ep->maxframesize); 174 if (avail && ret >= avail) 175 ret = -EAGAIN; 176 else 177 ep->phase = phase; 178 spin_unlock_irqrestore(&ep->lock, flags); 179 180 return ret; 181 } 182 183 /* 184 * Return the number of samples to be sent in the next packet 185 * for adaptive and synchronous endpoints 186 */ 187 static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) 188 { 189 unsigned int sample_accum; 190 int ret; 191 192 if (ep->fill_max) 193 return ep->maxframesize; 194 195 sample_accum = ep->sample_accum + ep->sample_rem; 196 if (sample_accum >= ep->pps) { 197 sample_accum -= ep->pps; 198 ret = ep->packsize[1]; 199 } else { 200 ret = ep->packsize[0]; 201 } 202 if (avail && ret >= avail) 203 ret = -EAGAIN; 204 else 205 ep->sample_accum = sample_accum; 206 207 return ret; 208 } 209 210 /* 211 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 212 * in the next packet 213 * 214 * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN 215 * Exception: @avail = 0 for skipping the check. 216 */ 217 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 218 struct snd_urb_ctx *ctx, int idx, 219 unsigned int avail) 220 { 221 unsigned int packet; 222 223 packet = ctx->packet_size[idx]; 224 if (packet) { 225 if (avail && packet >= avail) 226 return -EAGAIN; 227 return packet; 228 } 229 230 if (ep->sync_source) 231 return slave_next_packet_size(ep, avail); 232 else 233 return next_packet_size(ep, avail); 234 } 235 236 static void call_retire_callback(struct snd_usb_endpoint *ep, 237 struct urb *urb) 238 { 239 struct snd_usb_substream *data_subs; 240 241 data_subs = READ_ONCE(ep->data_subs); 242 if (data_subs && ep->retire_data_urb) 243 ep->retire_data_urb(data_subs, urb); 244 } 245 246 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 247 struct snd_urb_ctx *urb_ctx) 248 { 249 call_retire_callback(ep, urb_ctx->urb); 250 } 251 252 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 253 struct snd_usb_endpoint *sender, 254 const struct urb *urb); 255 256 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 257 struct snd_urb_ctx *urb_ctx) 258 { 259 struct urb *urb = urb_ctx->urb; 260 struct snd_usb_endpoint *sync_sink; 261 262 if (unlikely(ep->skip_packets > 0)) { 263 ep->skip_packets--; 264 return; 265 } 266 267 sync_sink = READ_ONCE(ep->sync_sink); 268 if (sync_sink) 269 snd_usb_handle_sync_urb(sync_sink, ep, urb); 270 271 call_retire_callback(ep, urb); 272 } 273 274 static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) 275 { 276 return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; 277 } 278 279 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 280 struct snd_urb_ctx *ctx) 281 { 282 struct urb *urb = ctx->urb; 283 unsigned int offs = 0; 284 unsigned int extra = 0; 285 __le32 packet_length; 286 int i; 287 288 /* For tx_length_quirk, put packet length at start of packet */ 289 if (has_tx_length_quirk(ep->chip)) 290 extra = sizeof(packet_length); 291 292 for (i = 0; i < ctx->packets; ++i) { 293 unsigned int offset; 294 unsigned int length; 295 int counts; 296 297 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); 298 length = counts * ep->stride; /* number of silent bytes */ 299 offset = offs * ep->stride + extra * i; 300 urb->iso_frame_desc[i].offset = offset; 301 urb->iso_frame_desc[i].length = length + extra; 302 if (extra) { 303 packet_length = cpu_to_le32(length); 304 memcpy(urb->transfer_buffer + offset, 305 &packet_length, sizeof(packet_length)); 306 } 307 memset(urb->transfer_buffer + offset + extra, 308 ep->silence_value, length); 309 offs += counts; 310 } 311 312 urb->number_of_packets = ctx->packets; 313 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 314 ctx->queued = 0; 315 } 316 317 /* 318 * Prepare a PLAYBACK urb for submission to the bus. 319 */ 320 static int prepare_outbound_urb(struct snd_usb_endpoint *ep, 321 struct snd_urb_ctx *ctx, 322 bool in_stream_lock) 323 { 324 struct urb *urb = ctx->urb; 325 unsigned char *cp = urb->transfer_buffer; 326 struct snd_usb_substream *data_subs; 327 328 urb->dev = ep->chip->dev; /* we need to set this at each time */ 329 330 switch (ep->type) { 331 case SND_USB_ENDPOINT_TYPE_DATA: 332 data_subs = READ_ONCE(ep->data_subs); 333 if (data_subs && ep->prepare_data_urb) 334 return ep->prepare_data_urb(data_subs, urb, in_stream_lock); 335 /* no data provider, so send silence */ 336 prepare_silent_urb(ep, ctx); 337 break; 338 339 case SND_USB_ENDPOINT_TYPE_SYNC: 340 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 341 /* 342 * fill the length and offset of each urb descriptor. 343 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 344 */ 345 urb->iso_frame_desc[0].length = 4; 346 urb->iso_frame_desc[0].offset = 0; 347 cp[0] = ep->freqn; 348 cp[1] = ep->freqn >> 8; 349 cp[2] = ep->freqn >> 16; 350 cp[3] = ep->freqn >> 24; 351 } else { 352 /* 353 * fill the length and offset of each urb descriptor. 354 * the fixed 10.14 frequency is passed through the pipe. 355 */ 356 urb->iso_frame_desc[0].length = 3; 357 urb->iso_frame_desc[0].offset = 0; 358 cp[0] = ep->freqn >> 2; 359 cp[1] = ep->freqn >> 10; 360 cp[2] = ep->freqn >> 18; 361 } 362 363 break; 364 } 365 return 0; 366 } 367 368 /* 369 * Prepare a CAPTURE or SYNC urb for submission to the bus. 370 */ 371 static int prepare_inbound_urb(struct snd_usb_endpoint *ep, 372 struct snd_urb_ctx *urb_ctx) 373 { 374 int i, offs; 375 struct urb *urb = urb_ctx->urb; 376 377 urb->dev = ep->chip->dev; /* we need to set this at each time */ 378 379 switch (ep->type) { 380 case SND_USB_ENDPOINT_TYPE_DATA: 381 offs = 0; 382 for (i = 0; i < urb_ctx->packets; i++) { 383 urb->iso_frame_desc[i].offset = offs; 384 urb->iso_frame_desc[i].length = ep->curpacksize; 385 offs += ep->curpacksize; 386 } 387 388 urb->transfer_buffer_length = offs; 389 urb->number_of_packets = urb_ctx->packets; 390 break; 391 392 case SND_USB_ENDPOINT_TYPE_SYNC: 393 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 394 urb->iso_frame_desc[0].offset = 0; 395 break; 396 } 397 return 0; 398 } 399 400 /* notify an error as XRUN to the assigned PCM data substream */ 401 static void notify_xrun(struct snd_usb_endpoint *ep) 402 { 403 struct snd_usb_substream *data_subs; 404 405 data_subs = READ_ONCE(ep->data_subs); 406 if (data_subs && data_subs->pcm_substream) 407 snd_pcm_stop_xrun(data_subs->pcm_substream); 408 } 409 410 static struct snd_usb_packet_info * 411 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 412 { 413 struct snd_usb_packet_info *p; 414 415 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 416 ARRAY_SIZE(ep->next_packet); 417 ep->next_packet_queued++; 418 return p; 419 } 420 421 static struct snd_usb_packet_info * 422 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 423 { 424 struct snd_usb_packet_info *p; 425 426 p = ep->next_packet + ep->next_packet_head; 427 ep->next_packet_head++; 428 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 429 ep->next_packet_queued--; 430 return p; 431 } 432 433 static void push_back_to_ready_list(struct snd_usb_endpoint *ep, 434 struct snd_urb_ctx *ctx) 435 { 436 unsigned long flags; 437 438 spin_lock_irqsave(&ep->lock, flags); 439 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 440 spin_unlock_irqrestore(&ep->lock, flags); 441 } 442 443 /* 444 * Send output urbs that have been prepared previously. URBs are dequeued 445 * from ep->ready_playback_urbs and in case there aren't any available 446 * or there are no packets that have been prepared, this function does 447 * nothing. 448 * 449 * The reason why the functionality of sending and preparing URBs is separated 450 * is that host controllers don't guarantee the order in which they return 451 * inbound and outbound packets to their submitters. 452 * 453 * This function is used both for implicit feedback endpoints and in low- 454 * latency playback mode. 455 */ 456 void snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, 457 bool in_stream_lock) 458 { 459 bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); 460 461 while (ep_state_running(ep)) { 462 463 unsigned long flags; 464 struct snd_usb_packet_info *packet; 465 struct snd_urb_ctx *ctx = NULL; 466 int err, i; 467 468 spin_lock_irqsave(&ep->lock, flags); 469 if ((!implicit_fb || ep->next_packet_queued > 0) && 470 !list_empty(&ep->ready_playback_urbs)) { 471 /* take URB out of FIFO */ 472 ctx = list_first_entry(&ep->ready_playback_urbs, 473 struct snd_urb_ctx, ready_list); 474 list_del_init(&ctx->ready_list); 475 if (implicit_fb) 476 packet = next_packet_fifo_dequeue(ep); 477 } 478 spin_unlock_irqrestore(&ep->lock, flags); 479 480 if (ctx == NULL) 481 return; 482 483 /* copy over the length information */ 484 if (implicit_fb) { 485 for (i = 0; i < packet->packets; i++) 486 ctx->packet_size[i] = packet->packet_size[i]; 487 } 488 489 /* call the data handler to fill in playback data */ 490 err = prepare_outbound_urb(ep, ctx, in_stream_lock); 491 /* can be stopped during prepare callback */ 492 if (unlikely(!ep_state_running(ep))) 493 break; 494 if (err < 0) { 495 /* push back to ready list again for -EAGAIN */ 496 if (err == -EAGAIN) 497 push_back_to_ready_list(ep, ctx); 498 else 499 notify_xrun(ep); 500 return; 501 } 502 503 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 504 if (err < 0) { 505 usb_audio_err(ep->chip, 506 "Unable to submit urb #%d: %d at %s\n", 507 ctx->index, err, __func__); 508 notify_xrun(ep); 509 return; 510 } 511 512 set_bit(ctx->index, &ep->active_mask); 513 atomic_inc(&ep->submitted_urbs); 514 } 515 } 516 517 /* 518 * complete callback for urbs 519 */ 520 static void snd_complete_urb(struct urb *urb) 521 { 522 struct snd_urb_ctx *ctx = urb->context; 523 struct snd_usb_endpoint *ep = ctx->ep; 524 int err; 525 526 if (unlikely(urb->status == -ENOENT || /* unlinked */ 527 urb->status == -ENODEV || /* device removed */ 528 urb->status == -ECONNRESET || /* unlinked */ 529 urb->status == -ESHUTDOWN)) /* device disabled */ 530 goto exit_clear; 531 /* device disconnected */ 532 if (unlikely(atomic_read(&ep->chip->shutdown))) 533 goto exit_clear; 534 535 if (unlikely(!ep_state_running(ep))) 536 goto exit_clear; 537 538 if (usb_pipeout(ep->pipe)) { 539 retire_outbound_urb(ep, ctx); 540 /* can be stopped during retire callback */ 541 if (unlikely(!ep_state_running(ep))) 542 goto exit_clear; 543 544 /* in low-latency and implicit-feedback modes, push back the 545 * URB to ready list at first, then process as much as possible 546 */ 547 if (ep->lowlatency_playback || 548 snd_usb_endpoint_implicit_feedback_sink(ep)) { 549 push_back_to_ready_list(ep, ctx); 550 clear_bit(ctx->index, &ep->active_mask); 551 snd_usb_queue_pending_output_urbs(ep, false); 552 atomic_dec(&ep->submitted_urbs); /* decrement at last */ 553 return; 554 } 555 556 /* in non-lowlatency mode, no error handling for prepare */ 557 prepare_outbound_urb(ep, ctx, false); 558 /* can be stopped during prepare callback */ 559 if (unlikely(!ep_state_running(ep))) 560 goto exit_clear; 561 } else { 562 retire_inbound_urb(ep, ctx); 563 /* can be stopped during retire callback */ 564 if (unlikely(!ep_state_running(ep))) 565 goto exit_clear; 566 567 prepare_inbound_urb(ep, ctx); 568 } 569 570 err = usb_submit_urb(urb, GFP_ATOMIC); 571 if (err == 0) 572 return; 573 574 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 575 notify_xrun(ep); 576 577 exit_clear: 578 clear_bit(ctx->index, &ep->active_mask); 579 atomic_dec(&ep->submitted_urbs); 580 } 581 582 /* 583 * Find or create a refcount object for the given interface 584 * 585 * The objects are released altogether in snd_usb_endpoint_free_all() 586 */ 587 static struct snd_usb_iface_ref * 588 iface_ref_find(struct snd_usb_audio *chip, int iface) 589 { 590 struct snd_usb_iface_ref *ip; 591 592 list_for_each_entry(ip, &chip->iface_ref_list, list) 593 if (ip->iface == iface) 594 return ip; 595 596 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 597 if (!ip) 598 return NULL; 599 ip->iface = iface; 600 list_add_tail(&ip->list, &chip->iface_ref_list); 601 return ip; 602 } 603 604 /* Similarly, a refcount object for clock */ 605 static struct snd_usb_clock_ref * 606 clock_ref_find(struct snd_usb_audio *chip, int clock) 607 { 608 struct snd_usb_clock_ref *ref; 609 610 list_for_each_entry(ref, &chip->clock_ref_list, list) 611 if (ref->clock == clock) 612 return ref; 613 614 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 615 if (!ref) 616 return NULL; 617 ref->clock = clock; 618 atomic_set(&ref->locked, 0); 619 list_add_tail(&ref->list, &chip->clock_ref_list); 620 return ref; 621 } 622 623 /* 624 * Get the existing endpoint object corresponding EP 625 * Returns NULL if not present. 626 */ 627 struct snd_usb_endpoint * 628 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 629 { 630 struct snd_usb_endpoint *ep; 631 632 list_for_each_entry(ep, &chip->ep_list, list) { 633 if (ep->ep_num == ep_num) 634 return ep; 635 } 636 637 return NULL; 638 } 639 640 #define ep_type_name(type) \ 641 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 642 643 /** 644 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 645 * 646 * @chip: The chip 647 * @ep_num: The number of the endpoint to use 648 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 649 * 650 * If the requested endpoint has not been added to the given chip before, 651 * a new instance is created. 652 * 653 * Returns zero on success or a negative error code. 654 * 655 * New endpoints will be added to chip->ep_list and freed by 656 * calling snd_usb_endpoint_free_all(). 657 * 658 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 659 * bNumEndpoints > 1 beforehand. 660 */ 661 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 662 { 663 struct snd_usb_endpoint *ep; 664 bool is_playback; 665 666 ep = snd_usb_get_endpoint(chip, ep_num); 667 if (ep) 668 return 0; 669 670 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 671 ep_type_name(type), 672 ep_num); 673 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 674 if (!ep) 675 return -ENOMEM; 676 677 ep->chip = chip; 678 spin_lock_init(&ep->lock); 679 ep->type = type; 680 ep->ep_num = ep_num; 681 INIT_LIST_HEAD(&ep->ready_playback_urbs); 682 atomic_set(&ep->submitted_urbs, 0); 683 684 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 685 ep_num &= USB_ENDPOINT_NUMBER_MASK; 686 if (is_playback) 687 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 688 else 689 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 690 691 list_add_tail(&ep->list, &chip->ep_list); 692 return 0; 693 } 694 695 /* Set up syncinterval and maxsyncsize for a sync EP */ 696 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 697 struct snd_usb_endpoint *ep) 698 { 699 struct usb_host_interface *alts; 700 struct usb_endpoint_descriptor *desc; 701 702 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 703 if (!alts) 704 return; 705 706 desc = get_endpoint(alts, ep->ep_idx); 707 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 708 desc->bRefresh >= 1 && desc->bRefresh <= 9) 709 ep->syncinterval = desc->bRefresh; 710 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 711 ep->syncinterval = 1; 712 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 713 ep->syncinterval = desc->bInterval - 1; 714 else 715 ep->syncinterval = 3; 716 717 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 718 } 719 720 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 721 const struct audioformat *fp, 722 const struct snd_pcm_hw_params *params) 723 { 724 if (!ep->opened) 725 return false; 726 if (ep->cur_audiofmt != fp) 727 return false; 728 if (ep->cur_rate != params_rate(params) || 729 ep->cur_format != params_format(params) || 730 ep->cur_period_frames != params_period_size(params) || 731 ep->cur_buffer_periods != params_periods(params)) 732 return false; 733 return true; 734 } 735 736 /* 737 * Check whether the given fp and hw params are compatible with the current 738 * setup of the target EP for implicit feedback sync 739 */ 740 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 741 struct snd_usb_endpoint *ep, 742 const struct audioformat *fp, 743 const struct snd_pcm_hw_params *params) 744 { 745 bool ret; 746 747 mutex_lock(&chip->mutex); 748 ret = endpoint_compatible(ep, fp, params); 749 mutex_unlock(&chip->mutex); 750 return ret; 751 } 752 753 /* 754 * snd_usb_endpoint_open: Open the endpoint 755 * 756 * Called from hw_params to assign the endpoint to the substream. 757 * It's reference-counted, and only the first opener is allowed to set up 758 * arbitrary parameters. The later opener must be compatible with the 759 * former opened parameters. 760 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 761 * 762 * Note that this function doesn't configure the endpoint. The substream 763 * needs to set it up later via snd_usb_endpoint_set_params() and 764 * snd_usb_endpoint_prepare(). 765 */ 766 struct snd_usb_endpoint * 767 snd_usb_endpoint_open(struct snd_usb_audio *chip, 768 const struct audioformat *fp, 769 const struct snd_pcm_hw_params *params, 770 bool is_sync_ep) 771 { 772 struct snd_usb_endpoint *ep; 773 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 774 775 mutex_lock(&chip->mutex); 776 ep = snd_usb_get_endpoint(chip, ep_num); 777 if (!ep) { 778 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 779 goto unlock; 780 } 781 782 if (!ep->opened) { 783 if (is_sync_ep) { 784 ep->iface = fp->sync_iface; 785 ep->altsetting = fp->sync_altsetting; 786 ep->ep_idx = fp->sync_ep_idx; 787 } else { 788 ep->iface = fp->iface; 789 ep->altsetting = fp->altsetting; 790 ep->ep_idx = fp->ep_idx; 791 } 792 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 793 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 794 795 ep->iface_ref = iface_ref_find(chip, ep->iface); 796 if (!ep->iface_ref) { 797 ep = NULL; 798 goto unlock; 799 } 800 801 if (fp->protocol != UAC_VERSION_1) { 802 ep->clock_ref = clock_ref_find(chip, fp->clock); 803 if (!ep->clock_ref) { 804 ep = NULL; 805 goto unlock; 806 } 807 ep->clock_ref->opened++; 808 } 809 810 ep->cur_audiofmt = fp; 811 ep->cur_channels = fp->channels; 812 ep->cur_rate = params_rate(params); 813 ep->cur_format = params_format(params); 814 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 815 ep->cur_channels / 8; 816 ep->cur_period_frames = params_period_size(params); 817 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 818 ep->cur_buffer_periods = params_periods(params); 819 820 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 821 endpoint_set_syncinterval(chip, ep); 822 823 ep->implicit_fb_sync = fp->implicit_fb; 824 ep->need_setup = true; 825 826 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 827 ep->cur_channels, ep->cur_rate, 828 snd_pcm_format_name(ep->cur_format), 829 ep->cur_period_bytes, ep->cur_buffer_periods, 830 ep->implicit_fb_sync); 831 832 } else { 833 if (WARN_ON(!ep->iface_ref)) { 834 ep = NULL; 835 goto unlock; 836 } 837 838 if (!endpoint_compatible(ep, fp, params)) { 839 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 840 ep_num); 841 ep = NULL; 842 goto unlock; 843 } 844 845 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 846 ep_num, ep->opened); 847 } 848 849 if (!ep->iface_ref->opened++) 850 ep->iface_ref->need_setup = true; 851 852 ep->opened++; 853 854 unlock: 855 mutex_unlock(&chip->mutex); 856 return ep; 857 } 858 859 /* 860 * snd_usb_endpoint_set_sync: Link data and sync endpoints 861 * 862 * Pass NULL to sync_ep to unlink again 863 */ 864 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 865 struct snd_usb_endpoint *data_ep, 866 struct snd_usb_endpoint *sync_ep) 867 { 868 data_ep->sync_source = sync_ep; 869 } 870 871 /* 872 * Set data endpoint callbacks and the assigned data stream 873 * 874 * Called at PCM trigger and cleanups. 875 * Pass NULL to deactivate each callback. 876 */ 877 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 878 int (*prepare)(struct snd_usb_substream *subs, 879 struct urb *urb, 880 bool in_stream_lock), 881 void (*retire)(struct snd_usb_substream *subs, 882 struct urb *urb), 883 struct snd_usb_substream *data_subs) 884 { 885 ep->prepare_data_urb = prepare; 886 ep->retire_data_urb = retire; 887 if (data_subs) 888 ep->lowlatency_playback = data_subs->lowlatency_playback; 889 else 890 ep->lowlatency_playback = false; 891 WRITE_ONCE(ep->data_subs, data_subs); 892 } 893 894 static int endpoint_set_interface(struct snd_usb_audio *chip, 895 struct snd_usb_endpoint *ep, 896 bool set) 897 { 898 int altset = set ? ep->altsetting : 0; 899 int err; 900 901 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 902 ep->iface, altset, ep->ep_num); 903 err = usb_set_interface(chip->dev, ep->iface, altset); 904 if (err < 0) { 905 usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", 906 ep->iface, altset, err); 907 return err; 908 } 909 910 if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) 911 msleep(50); 912 return 0; 913 } 914 915 /* 916 * snd_usb_endpoint_close: Close the endpoint 917 * 918 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 919 */ 920 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 921 struct snd_usb_endpoint *ep) 922 { 923 mutex_lock(&chip->mutex); 924 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 925 ep->ep_num, ep->opened); 926 927 if (!--ep->iface_ref->opened) 928 endpoint_set_interface(chip, ep, false); 929 930 if (!--ep->opened) { 931 if (ep->clock_ref) { 932 if (!--ep->clock_ref->opened) 933 ep->clock_ref->rate = 0; 934 } 935 ep->iface = 0; 936 ep->altsetting = 0; 937 ep->cur_audiofmt = NULL; 938 ep->cur_rate = 0; 939 ep->iface_ref = NULL; 940 ep->clock_ref = NULL; 941 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 942 } 943 mutex_unlock(&chip->mutex); 944 } 945 946 /* Prepare for suspening EP, called from the main suspend handler */ 947 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 948 { 949 ep->need_setup = true; 950 if (ep->iface_ref) 951 ep->iface_ref->need_setup = true; 952 if (ep->clock_ref) 953 ep->clock_ref->rate = 0; 954 } 955 956 /* 957 * wait until all urbs are processed. 958 */ 959 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 960 { 961 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 962 int alive; 963 964 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 965 return 0; 966 967 do { 968 alive = atomic_read(&ep->submitted_urbs); 969 if (!alive) 970 break; 971 972 schedule_timeout_uninterruptible(1); 973 } while (time_before(jiffies, end_time)); 974 975 if (alive) 976 usb_audio_err(ep->chip, 977 "timeout: still %d active urbs on EP #%x\n", 978 alive, ep->ep_num); 979 980 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 981 ep->sync_sink = NULL; 982 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 983 } 984 985 return 0; 986 } 987 988 /* sync the pending stop operation; 989 * this function itself doesn't trigger the stop operation 990 */ 991 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 992 { 993 if (ep) 994 wait_clear_urbs(ep); 995 } 996 997 /* 998 * Stop active urbs 999 * 1000 * This function moves the EP to STOPPING state if it's being RUNNING. 1001 */ 1002 static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) 1003 { 1004 unsigned int i; 1005 unsigned long flags; 1006 1007 if (!force && atomic_read(&ep->running)) 1008 return -EBUSY; 1009 1010 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 1011 return 0; 1012 1013 spin_lock_irqsave(&ep->lock, flags); 1014 INIT_LIST_HEAD(&ep->ready_playback_urbs); 1015 ep->next_packet_head = 0; 1016 ep->next_packet_queued = 0; 1017 spin_unlock_irqrestore(&ep->lock, flags); 1018 1019 if (keep_pending) 1020 return 0; 1021 1022 for (i = 0; i < ep->nurbs; i++) { 1023 if (test_bit(i, &ep->active_mask)) { 1024 if (!test_and_set_bit(i, &ep->unlink_mask)) { 1025 struct urb *u = ep->urb[i].urb; 1026 usb_unlink_urb(u); 1027 } 1028 } 1029 } 1030 1031 return 0; 1032 } 1033 1034 /* 1035 * release an endpoint's urbs 1036 */ 1037 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 1038 { 1039 int i, err; 1040 1041 /* route incoming urbs to nirvana */ 1042 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1043 1044 /* stop and unlink urbs */ 1045 err = stop_urbs(ep, force, false); 1046 if (err) 1047 return err; 1048 1049 wait_clear_urbs(ep); 1050 1051 for (i = 0; i < ep->nurbs; i++) 1052 release_urb_ctx(&ep->urb[i]); 1053 1054 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 1055 ep->syncbuf, ep->sync_dma); 1056 1057 ep->syncbuf = NULL; 1058 ep->nurbs = 0; 1059 return 0; 1060 } 1061 1062 /* 1063 * configure a data endpoint 1064 */ 1065 static int data_ep_set_params(struct snd_usb_endpoint *ep) 1066 { 1067 struct snd_usb_audio *chip = ep->chip; 1068 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 1069 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 1070 unsigned int max_urbs, i; 1071 const struct audioformat *fmt = ep->cur_audiofmt; 1072 int frame_bits = ep->cur_frame_bytes * 8; 1073 int tx_length_quirk = (has_tx_length_quirk(chip) && 1074 usb_pipeout(ep->pipe)); 1075 1076 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 1077 ep->ep_num, ep->pipe); 1078 1079 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 1080 /* 1081 * When operating in DSD DOP mode, the size of a sample frame 1082 * in hardware differs from the actual physical format width 1083 * because we need to make room for the DOP markers. 1084 */ 1085 frame_bits += ep->cur_channels << 3; 1086 } 1087 1088 ep->datainterval = fmt->datainterval; 1089 ep->stride = frame_bits >> 3; 1090 1091 switch (ep->cur_format) { 1092 case SNDRV_PCM_FORMAT_U8: 1093 ep->silence_value = 0x80; 1094 break; 1095 case SNDRV_PCM_FORMAT_DSD_U8: 1096 case SNDRV_PCM_FORMAT_DSD_U16_LE: 1097 case SNDRV_PCM_FORMAT_DSD_U32_LE: 1098 case SNDRV_PCM_FORMAT_DSD_U16_BE: 1099 case SNDRV_PCM_FORMAT_DSD_U32_BE: 1100 ep->silence_value = 0x69; 1101 break; 1102 default: 1103 ep->silence_value = 0; 1104 } 1105 1106 /* assume max. frequency is 50% higher than nominal */ 1107 ep->freqmax = ep->freqn + (ep->freqn >> 1); 1108 /* Round up freqmax to nearest integer in order to calculate maximum 1109 * packet size, which must represent a whole number of frames. 1110 * This is accomplished by adding 0x0.ffff before converting the 1111 * Q16.16 format into integer. 1112 * In order to accurately calculate the maximum packet size when 1113 * the data interval is more than 1 (i.e. ep->datainterval > 0), 1114 * multiply by the data interval prior to rounding. For instance, 1115 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 1116 * frames with a data interval of 1, but 11 (10.25) frames with a 1117 * data interval of 2. 1118 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1119 * maximum datainterval value of 3, at USB full speed, higher for 1120 * USB high speed, noting that ep->freqmax is in units of 1121 * frames per packet in Q16.16 format.) 1122 */ 1123 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1124 (frame_bits >> 3); 1125 if (tx_length_quirk) 1126 maxsize += sizeof(__le32); /* Space for length descriptor */ 1127 /* but wMaxPacketSize might reduce this */ 1128 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1129 /* whatever fits into a max. size packet */ 1130 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1131 1132 if (tx_length_quirk) 1133 /* Need to remove the length descriptor to calc freq */ 1134 data_maxsize -= sizeof(__le32); 1135 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1136 << (16 - ep->datainterval); 1137 } 1138 1139 if (ep->fill_max) 1140 ep->curpacksize = ep->maxpacksize; 1141 else 1142 ep->curpacksize = maxsize; 1143 1144 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1145 packs_per_ms = 8 >> ep->datainterval; 1146 max_packs_per_urb = MAX_PACKS_HS; 1147 } else { 1148 packs_per_ms = 1; 1149 max_packs_per_urb = MAX_PACKS; 1150 } 1151 if (ep->sync_source && !ep->implicit_fb_sync) 1152 max_packs_per_urb = min(max_packs_per_urb, 1153 1U << ep->sync_source->syncinterval); 1154 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1155 1156 /* 1157 * Capture endpoints need to use small URBs because there's no way 1158 * to tell in advance where the next period will end, and we don't 1159 * want the next URB to complete much after the period ends. 1160 * 1161 * Playback endpoints with implicit sync much use the same parameters 1162 * as their corresponding capture endpoint. 1163 */ 1164 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1165 1166 urb_packs = packs_per_ms; 1167 /* 1168 * Wireless devices can poll at a max rate of once per 4ms. 1169 * For dataintervals less than 5, increase the packet count to 1170 * allow the host controller to use bursting to fill in the 1171 * gaps. 1172 */ 1173 if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { 1174 int interval = ep->datainterval; 1175 while (interval < 5) { 1176 urb_packs <<= 1; 1177 ++interval; 1178 } 1179 } 1180 /* make capture URBs <= 1 ms and smaller than a period */ 1181 urb_packs = min(max_packs_per_urb, urb_packs); 1182 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1183 urb_packs >>= 1; 1184 ep->nurbs = MAX_URBS; 1185 1186 /* 1187 * Playback endpoints without implicit sync are adjusted so that 1188 * a period fits as evenly as possible in the smallest number of 1189 * URBs. The total number of URBs is adjusted to the size of the 1190 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1191 */ 1192 } else { 1193 /* determine how small a packet can be */ 1194 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1195 (frame_bits >> 3); 1196 /* with sync from device, assume it can be 12% lower */ 1197 if (ep->sync_source) 1198 minsize -= minsize >> 3; 1199 minsize = max(minsize, 1u); 1200 1201 /* how many packets will contain an entire ALSA period? */ 1202 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1203 1204 /* how many URBs will contain a period? */ 1205 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1206 max_packs_per_urb); 1207 /* how many packets are needed in each URB? */ 1208 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1209 1210 /* limit the number of frames in a single URB */ 1211 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1212 urbs_per_period); 1213 1214 /* try to use enough URBs to contain an entire ALSA buffer */ 1215 max_urbs = min((unsigned) MAX_URBS, 1216 MAX_QUEUE * packs_per_ms / urb_packs); 1217 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1218 } 1219 1220 /* allocate and initialize data urbs */ 1221 for (i = 0; i < ep->nurbs; i++) { 1222 struct snd_urb_ctx *u = &ep->urb[i]; 1223 u->index = i; 1224 u->ep = ep; 1225 u->packets = urb_packs; 1226 u->buffer_size = maxsize * u->packets; 1227 1228 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1229 u->packets++; /* for transfer delimiter */ 1230 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1231 if (!u->urb) 1232 goto out_of_memory; 1233 1234 u->urb->transfer_buffer = 1235 usb_alloc_coherent(chip->dev, u->buffer_size, 1236 GFP_KERNEL, &u->urb->transfer_dma); 1237 if (!u->urb->transfer_buffer) 1238 goto out_of_memory; 1239 u->urb->pipe = ep->pipe; 1240 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1241 u->urb->interval = 1 << ep->datainterval; 1242 u->urb->context = u; 1243 u->urb->complete = snd_complete_urb; 1244 INIT_LIST_HEAD(&u->ready_list); 1245 } 1246 1247 return 0; 1248 1249 out_of_memory: 1250 release_urbs(ep, false); 1251 return -ENOMEM; 1252 } 1253 1254 /* 1255 * configure a sync endpoint 1256 */ 1257 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1258 { 1259 struct snd_usb_audio *chip = ep->chip; 1260 int i; 1261 1262 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1263 ep->ep_num, ep->pipe); 1264 1265 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1266 GFP_KERNEL, &ep->sync_dma); 1267 if (!ep->syncbuf) 1268 return -ENOMEM; 1269 1270 for (i = 0; i < SYNC_URBS; i++) { 1271 struct snd_urb_ctx *u = &ep->urb[i]; 1272 u->index = i; 1273 u->ep = ep; 1274 u->packets = 1; 1275 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1276 if (!u->urb) 1277 goto out_of_memory; 1278 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1279 u->urb->transfer_dma = ep->sync_dma + i * 4; 1280 u->urb->transfer_buffer_length = 4; 1281 u->urb->pipe = ep->pipe; 1282 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1283 u->urb->number_of_packets = 1; 1284 u->urb->interval = 1 << ep->syncinterval; 1285 u->urb->context = u; 1286 u->urb->complete = snd_complete_urb; 1287 } 1288 1289 ep->nurbs = SYNC_URBS; 1290 1291 return 0; 1292 1293 out_of_memory: 1294 release_urbs(ep, false); 1295 return -ENOMEM; 1296 } 1297 1298 /* update the rate of the referred clock; return the actual rate */ 1299 static int update_clock_ref_rate(struct snd_usb_audio *chip, 1300 struct snd_usb_endpoint *ep) 1301 { 1302 struct snd_usb_clock_ref *clock = ep->clock_ref; 1303 int rate = ep->cur_rate; 1304 1305 if (!clock || clock->rate == rate) 1306 return rate; 1307 if (clock->rate) { 1308 if (atomic_read(&clock->locked)) 1309 return clock->rate; 1310 if (clock->rate != rate) { 1311 usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n", 1312 clock->rate, rate, ep->ep_num); 1313 return clock->rate; 1314 } 1315 } 1316 clock->rate = rate; 1317 clock->need_setup = true; 1318 return rate; 1319 } 1320 1321 /* 1322 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1323 * 1324 * It's called either from hw_params callback. 1325 * Determine the number of URBs to be used on this endpoint. 1326 * An endpoint must be configured before it can be started. 1327 * An endpoint that is already running can not be reconfigured. 1328 */ 1329 int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1330 struct snd_usb_endpoint *ep) 1331 { 1332 const struct audioformat *fmt = ep->cur_audiofmt; 1333 int err; 1334 1335 /* release old buffers, if any */ 1336 err = release_urbs(ep, false); 1337 if (err < 0) 1338 return err; 1339 1340 ep->datainterval = fmt->datainterval; 1341 ep->maxpacksize = fmt->maxpacksize; 1342 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1343 1344 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1345 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1346 ep->pps = 1000 >> ep->datainterval; 1347 } else { 1348 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1349 ep->pps = 8000 >> ep->datainterval; 1350 } 1351 1352 ep->sample_rem = ep->cur_rate % ep->pps; 1353 ep->packsize[0] = ep->cur_rate / ep->pps; 1354 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1355 1356 /* calculate the frequency in 16.16 format */ 1357 ep->freqm = ep->freqn; 1358 ep->freqshift = INT_MIN; 1359 1360 ep->phase = 0; 1361 1362 switch (ep->type) { 1363 case SND_USB_ENDPOINT_TYPE_DATA: 1364 err = data_ep_set_params(ep); 1365 break; 1366 case SND_USB_ENDPOINT_TYPE_SYNC: 1367 err = sync_ep_set_params(ep); 1368 break; 1369 default: 1370 err = -EINVAL; 1371 } 1372 1373 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1374 1375 if (err < 0) 1376 return err; 1377 1378 /* some unit conversions in runtime */ 1379 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1380 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1381 1382 return update_clock_ref_rate(chip, ep); 1383 } 1384 1385 static int init_sample_rate(struct snd_usb_audio *chip, 1386 struct snd_usb_endpoint *ep) 1387 { 1388 struct snd_usb_clock_ref *clock = ep->clock_ref; 1389 int rate, err; 1390 1391 rate = update_clock_ref_rate(chip, ep); 1392 if (rate < 0) 1393 return rate; 1394 if (clock && !clock->need_setup) 1395 return 0; 1396 1397 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate); 1398 if (err < 0) { 1399 if (clock) 1400 clock->rate = 0; /* reset rate */ 1401 return err; 1402 } 1403 1404 if (clock) 1405 clock->need_setup = false; 1406 return 0; 1407 } 1408 1409 /* 1410 * snd_usb_endpoint_prepare: Prepare the endpoint 1411 * 1412 * This function sets up the EP to be fully usable state. 1413 * It's called either from prepare callback. 1414 * The function checks need_setup flag, and performs nothing unless needed, 1415 * so it's safe to call this multiple times. 1416 * 1417 * This returns zero if unchanged, 1 if the configuration has changed, 1418 * or a negative error code. 1419 */ 1420 int snd_usb_endpoint_prepare(struct snd_usb_audio *chip, 1421 struct snd_usb_endpoint *ep) 1422 { 1423 bool iface_first; 1424 int err = 0; 1425 1426 mutex_lock(&chip->mutex); 1427 if (WARN_ON(!ep->iface_ref)) 1428 goto unlock; 1429 if (!ep->need_setup) 1430 goto unlock; 1431 1432 /* If the interface has been already set up, just set EP parameters */ 1433 if (!ep->iface_ref->need_setup) { 1434 /* sample rate setup of UAC1 is per endpoint, and we need 1435 * to update at each EP configuration 1436 */ 1437 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1438 err = init_sample_rate(chip, ep); 1439 if (err < 0) 1440 goto unlock; 1441 } 1442 goto done; 1443 } 1444 1445 /* Need to deselect altsetting at first */ 1446 endpoint_set_interface(chip, ep, false); 1447 1448 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1449 * to be set up before parameter setups 1450 */ 1451 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1452 /* Workaround for devices that require the interface setup at first like UAC1 */ 1453 if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) 1454 iface_first = true; 1455 if (iface_first) { 1456 err = endpoint_set_interface(chip, ep, true); 1457 if (err < 0) 1458 goto unlock; 1459 } 1460 1461 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1462 if (err < 0) 1463 goto unlock; 1464 1465 err = init_sample_rate(chip, ep); 1466 if (err < 0) 1467 goto unlock; 1468 1469 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1470 if (err < 0) 1471 goto unlock; 1472 1473 /* for UAC2/3, enable the interface altset here at last */ 1474 if (!iface_first) { 1475 err = endpoint_set_interface(chip, ep, true); 1476 if (err < 0) 1477 goto unlock; 1478 } 1479 1480 ep->iface_ref->need_setup = false; 1481 1482 done: 1483 ep->need_setup = false; 1484 err = 1; 1485 1486 unlock: 1487 mutex_unlock(&chip->mutex); 1488 return err; 1489 } 1490 1491 /* get the current rate set to the given clock by any endpoint */ 1492 int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) 1493 { 1494 struct snd_usb_clock_ref *ref; 1495 int rate = 0; 1496 1497 if (!clock) 1498 return 0; 1499 mutex_lock(&chip->mutex); 1500 list_for_each_entry(ref, &chip->clock_ref_list, list) { 1501 if (ref->clock == clock) { 1502 rate = ref->rate; 1503 break; 1504 } 1505 } 1506 mutex_unlock(&chip->mutex); 1507 return rate; 1508 } 1509 1510 /** 1511 * snd_usb_endpoint_start: start an snd_usb_endpoint 1512 * 1513 * @ep: the endpoint to start 1514 * 1515 * A call to this function will increment the running count of the endpoint. 1516 * In case it is not already running, the URBs for this endpoint will be 1517 * submitted. Otherwise, this function does nothing. 1518 * 1519 * Must be balanced to calls of snd_usb_endpoint_stop(). 1520 * 1521 * Returns an error if the URB submission failed, 0 in all other cases. 1522 */ 1523 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1524 { 1525 bool is_playback = usb_pipeout(ep->pipe); 1526 int err; 1527 unsigned int i; 1528 1529 if (atomic_read(&ep->chip->shutdown)) 1530 return -EBADFD; 1531 1532 if (ep->sync_source) 1533 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1534 1535 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1536 ep_type_name(ep->type), ep->ep_num, 1537 atomic_read(&ep->running)); 1538 1539 /* already running? */ 1540 if (atomic_inc_return(&ep->running) != 1) 1541 return 0; 1542 1543 if (ep->clock_ref) 1544 atomic_inc(&ep->clock_ref->locked); 1545 1546 ep->active_mask = 0; 1547 ep->unlink_mask = 0; 1548 ep->phase = 0; 1549 ep->sample_accum = 0; 1550 1551 snd_usb_endpoint_start_quirk(ep); 1552 1553 /* 1554 * If this endpoint has a data endpoint as implicit feedback source, 1555 * don't start the urbs here. Instead, mark them all as available, 1556 * wait for the record urbs to return and queue the playback urbs 1557 * from that context. 1558 */ 1559 1560 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1561 goto __error; 1562 1563 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1564 !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { 1565 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1566 i = 0; 1567 goto fill_rest; 1568 } 1569 1570 for (i = 0; i < ep->nurbs; i++) { 1571 struct urb *urb = ep->urb[i].urb; 1572 1573 if (snd_BUG_ON(!urb)) 1574 goto __error; 1575 1576 if (is_playback) 1577 err = prepare_outbound_urb(ep, urb->context, true); 1578 else 1579 err = prepare_inbound_urb(ep, urb->context); 1580 if (err < 0) { 1581 /* stop filling at applptr */ 1582 if (err == -EAGAIN) 1583 break; 1584 usb_audio_dbg(ep->chip, 1585 "EP 0x%x: failed to prepare urb: %d\n", 1586 ep->ep_num, err); 1587 goto __error; 1588 } 1589 1590 err = usb_submit_urb(urb, GFP_ATOMIC); 1591 if (err < 0) { 1592 usb_audio_err(ep->chip, 1593 "cannot submit urb %d, error %d: %s\n", 1594 i, err, usb_error_string(err)); 1595 goto __error; 1596 } 1597 set_bit(i, &ep->active_mask); 1598 atomic_inc(&ep->submitted_urbs); 1599 } 1600 1601 if (!i) { 1602 usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", 1603 ep->ep_num); 1604 goto __error; 1605 } 1606 1607 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1608 i, ep->ep_num); 1609 1610 fill_rest: 1611 /* put the remaining URBs to ready list */ 1612 if (is_playback) { 1613 for (; i < ep->nurbs; i++) 1614 push_back_to_ready_list(ep, ep->urb + i); 1615 } 1616 1617 return 0; 1618 1619 __error: 1620 snd_usb_endpoint_stop(ep, false); 1621 return -EPIPE; 1622 } 1623 1624 /** 1625 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1626 * 1627 * @ep: the endpoint to stop (may be NULL) 1628 * @keep_pending: keep in-flight URBs 1629 * 1630 * A call to this function will decrement the running count of the endpoint. 1631 * In case the last user has requested the endpoint stop, the URBs will 1632 * actually be deactivated. 1633 * 1634 * Must be balanced to calls of snd_usb_endpoint_start(). 1635 * 1636 * The caller needs to synchronize the pending stop operation via 1637 * snd_usb_endpoint_sync_pending_stop(). 1638 */ 1639 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) 1640 { 1641 if (!ep) 1642 return; 1643 1644 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1645 ep_type_name(ep->type), ep->ep_num, 1646 atomic_read(&ep->running)); 1647 1648 if (snd_BUG_ON(!atomic_read(&ep->running))) 1649 return; 1650 1651 if (!atomic_dec_return(&ep->running)) { 1652 if (ep->sync_source) 1653 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1654 stop_urbs(ep, false, keep_pending); 1655 if (ep->clock_ref) 1656 atomic_dec(&ep->clock_ref->locked); 1657 } 1658 } 1659 1660 /** 1661 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1662 * 1663 * @ep: the endpoint to release 1664 * 1665 * This function does not care for the endpoint's running count but will tear 1666 * down all the streaming URBs immediately. 1667 */ 1668 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1669 { 1670 release_urbs(ep, true); 1671 } 1672 1673 /** 1674 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1675 * @chip: The chip 1676 * 1677 * This free all endpoints and those resources 1678 */ 1679 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1680 { 1681 struct snd_usb_endpoint *ep, *en; 1682 struct snd_usb_iface_ref *ip, *in; 1683 struct snd_usb_clock_ref *cp, *cn; 1684 1685 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1686 kfree(ep); 1687 1688 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1689 kfree(ip); 1690 1691 list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list) 1692 kfree(cp); 1693 } 1694 1695 /* 1696 * snd_usb_handle_sync_urb: parse an USB sync packet 1697 * 1698 * @ep: the endpoint to handle the packet 1699 * @sender: the sending endpoint 1700 * @urb: the received packet 1701 * 1702 * This function is called from the context of an endpoint that received 1703 * the packet and is used to let another endpoint object handle the payload. 1704 */ 1705 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1706 struct snd_usb_endpoint *sender, 1707 const struct urb *urb) 1708 { 1709 int shift; 1710 unsigned int f; 1711 unsigned long flags; 1712 1713 snd_BUG_ON(ep == sender); 1714 1715 /* 1716 * In case the endpoint is operating in implicit feedback mode, prepare 1717 * a new outbound URB that has the same layout as the received packet 1718 * and add it to the list of pending urbs. queue_pending_output_urbs() 1719 * will take care of them later. 1720 */ 1721 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1722 atomic_read(&ep->running)) { 1723 1724 /* implicit feedback case */ 1725 int i, bytes = 0; 1726 struct snd_urb_ctx *in_ctx; 1727 struct snd_usb_packet_info *out_packet; 1728 1729 in_ctx = urb->context; 1730 1731 /* Count overall packet size */ 1732 for (i = 0; i < in_ctx->packets; i++) 1733 if (urb->iso_frame_desc[i].status == 0) 1734 bytes += urb->iso_frame_desc[i].actual_length; 1735 1736 /* 1737 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1738 * streaming once it received a 0-byte OUT URB 1739 */ 1740 if (bytes == 0) 1741 return; 1742 1743 spin_lock_irqsave(&ep->lock, flags); 1744 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1745 spin_unlock_irqrestore(&ep->lock, flags); 1746 usb_audio_err(ep->chip, 1747 "next package FIFO overflow EP 0x%x\n", 1748 ep->ep_num); 1749 notify_xrun(ep); 1750 return; 1751 } 1752 1753 out_packet = next_packet_fifo_enqueue(ep); 1754 1755 /* 1756 * Iterate through the inbound packet and prepare the lengths 1757 * for the output packet. The OUT packet we are about to send 1758 * will have the same amount of payload bytes per stride as the 1759 * IN packet we just received. Since the actual size is scaled 1760 * by the stride, use the sender stride to calculate the length 1761 * in case the number of channels differ between the implicitly 1762 * fed-back endpoint and the synchronizing endpoint. 1763 */ 1764 1765 out_packet->packets = in_ctx->packets; 1766 for (i = 0; i < in_ctx->packets; i++) { 1767 if (urb->iso_frame_desc[i].status == 0) 1768 out_packet->packet_size[i] = 1769 urb->iso_frame_desc[i].actual_length / sender->stride; 1770 else 1771 out_packet->packet_size[i] = 0; 1772 } 1773 1774 spin_unlock_irqrestore(&ep->lock, flags); 1775 snd_usb_queue_pending_output_urbs(ep, false); 1776 1777 return; 1778 } 1779 1780 /* 1781 * process after playback sync complete 1782 * 1783 * Full speed devices report feedback values in 10.14 format as samples 1784 * per frame, high speed devices in 16.16 format as samples per 1785 * microframe. 1786 * 1787 * Because the Audio Class 1 spec was written before USB 2.0, many high 1788 * speed devices use a wrong interpretation, some others use an 1789 * entirely different format. 1790 * 1791 * Therefore, we cannot predict what format any particular device uses 1792 * and must detect it automatically. 1793 */ 1794 1795 if (urb->iso_frame_desc[0].status != 0 || 1796 urb->iso_frame_desc[0].actual_length < 3) 1797 return; 1798 1799 f = le32_to_cpup(urb->transfer_buffer); 1800 if (urb->iso_frame_desc[0].actual_length == 3) 1801 f &= 0x00ffffff; 1802 else 1803 f &= 0x0fffffff; 1804 1805 if (f == 0) 1806 return; 1807 1808 if (unlikely(sender->tenor_fb_quirk)) { 1809 /* 1810 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1811 * and others) sometimes change the feedback value 1812 * by +/- 0x1.0000. 1813 */ 1814 if (f < ep->freqn - 0x8000) 1815 f += 0xf000; 1816 else if (f > ep->freqn + 0x8000) 1817 f -= 0xf000; 1818 } else if (unlikely(ep->freqshift == INT_MIN)) { 1819 /* 1820 * The first time we see a feedback value, determine its format 1821 * by shifting it left or right until it matches the nominal 1822 * frequency value. This assumes that the feedback does not 1823 * differ from the nominal value more than +50% or -25%. 1824 */ 1825 shift = 0; 1826 while (f < ep->freqn - ep->freqn / 4) { 1827 f <<= 1; 1828 shift++; 1829 } 1830 while (f > ep->freqn + ep->freqn / 2) { 1831 f >>= 1; 1832 shift--; 1833 } 1834 ep->freqshift = shift; 1835 } else if (ep->freqshift >= 0) 1836 f <<= ep->freqshift; 1837 else 1838 f >>= -ep->freqshift; 1839 1840 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1841 /* 1842 * If the frequency looks valid, set it. 1843 * This value is referred to in prepare_playback_urb(). 1844 */ 1845 spin_lock_irqsave(&ep->lock, flags); 1846 ep->freqm = f; 1847 spin_unlock_irqrestore(&ep->lock, flags); 1848 } else { 1849 /* 1850 * Out of range; maybe the shift value is wrong. 1851 * Reset it so that we autodetect again the next time. 1852 */ 1853 ep->freqshift = INT_MIN; 1854 } 1855 } 1856 1857