1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 int altset; 36 struct list_head list; 37 }; 38 39 /* clock refcounting */ 40 struct snd_usb_clock_ref { 41 unsigned char clock; 42 atomic_t locked; 43 int opened; 44 int rate; 45 bool need_setup; 46 struct list_head list; 47 }; 48 49 /* 50 * snd_usb_endpoint is a model that abstracts everything related to an 51 * USB endpoint and its streaming. 52 * 53 * There are functions to activate and deactivate the streaming URBs and 54 * optional callbacks to let the pcm logic handle the actual content of the 55 * packets for playback and record. Thus, the bus streaming and the audio 56 * handlers are fully decoupled. 57 * 58 * There are two different types of endpoints in audio applications. 59 * 60 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 61 * inbound and outbound traffic. 62 * 63 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 64 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 65 * (3 or 4 bytes). 66 * 67 * Each endpoint has to be configured prior to being used by calling 68 * snd_usb_endpoint_set_params(). 69 * 70 * The model incorporates a reference counting, so that multiple users 71 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 72 * only the first user will effectively start the URBs, and only the last 73 * one to stop it will tear the URBs down again. 74 */ 75 76 /* 77 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 78 * this will overflow at approx 524 kHz 79 */ 80 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 81 { 82 return ((rate << 13) + 62) / 125; 83 } 84 85 /* 86 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 87 * this will overflow at approx 4 MHz 88 */ 89 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 90 { 91 return ((rate << 10) + 62) / 125; 92 } 93 94 /* 95 * release a urb data 96 */ 97 static void release_urb_ctx(struct snd_urb_ctx *u) 98 { 99 if (u->urb && u->buffer_size) 100 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 101 u->urb->transfer_buffer, 102 u->urb->transfer_dma); 103 usb_free_urb(u->urb); 104 u->urb = NULL; 105 u->buffer_size = 0; 106 } 107 108 static const char *usb_error_string(int err) 109 { 110 switch (err) { 111 case -ENODEV: 112 return "no device"; 113 case -ENOENT: 114 return "endpoint not enabled"; 115 case -EPIPE: 116 return "endpoint stalled"; 117 case -ENOSPC: 118 return "not enough bandwidth"; 119 case -ESHUTDOWN: 120 return "device disabled"; 121 case -EHOSTUNREACH: 122 return "device suspended"; 123 case -EINVAL: 124 case -EAGAIN: 125 case -EFBIG: 126 case -EMSGSIZE: 127 return "internal error"; 128 default: 129 return "unknown error"; 130 } 131 } 132 133 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 134 { 135 return atomic_read(&ep->state) == EP_STATE_RUNNING; 136 } 137 138 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 139 { 140 return atomic_try_cmpxchg(&ep->state, &old, new); 141 } 142 143 /** 144 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 145 * 146 * @ep: The snd_usb_endpoint 147 * 148 * Determine whether an endpoint is driven by an implicit feedback 149 * data endpoint source. 150 */ 151 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 152 { 153 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 154 } 155 156 /* 157 * Return the number of samples to be sent in the next packet 158 * for streaming based on information derived from sync endpoints 159 * 160 * This won't be used for implicit feedback which takes the packet size 161 * returned from the sync source 162 */ 163 static int slave_next_packet_size(struct snd_usb_endpoint *ep, 164 unsigned int avail) 165 { 166 unsigned long flags; 167 unsigned int phase; 168 int ret; 169 170 if (ep->fill_max) 171 return ep->maxframesize; 172 173 spin_lock_irqsave(&ep->lock, flags); 174 phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); 175 ret = min(phase >> 16, ep->maxframesize); 176 if (avail && ret >= avail) 177 ret = -EAGAIN; 178 else 179 ep->phase = phase; 180 spin_unlock_irqrestore(&ep->lock, flags); 181 182 return ret; 183 } 184 185 /* 186 * Return the number of samples to be sent in the next packet 187 * for adaptive and synchronous endpoints 188 */ 189 static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) 190 { 191 unsigned int sample_accum; 192 int ret; 193 194 if (ep->fill_max) 195 return ep->maxframesize; 196 197 sample_accum = ep->sample_accum + ep->sample_rem; 198 if (sample_accum >= ep->pps) { 199 sample_accum -= ep->pps; 200 ret = ep->packsize[1]; 201 } else { 202 ret = ep->packsize[0]; 203 } 204 if (avail && ret >= avail) 205 ret = -EAGAIN; 206 else 207 ep->sample_accum = sample_accum; 208 209 return ret; 210 } 211 212 /* 213 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 214 * in the next packet 215 * 216 * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN 217 * Exception: @avail = 0 for skipping the check. 218 */ 219 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 220 struct snd_urb_ctx *ctx, int idx, 221 unsigned int avail) 222 { 223 unsigned int packet; 224 225 packet = ctx->packet_size[idx]; 226 if (packet) { 227 if (avail && packet >= avail) 228 return -EAGAIN; 229 return packet; 230 } 231 232 if (ep->sync_source) 233 return slave_next_packet_size(ep, avail); 234 else 235 return next_packet_size(ep, avail); 236 } 237 238 static void call_retire_callback(struct snd_usb_endpoint *ep, 239 struct urb *urb) 240 { 241 struct snd_usb_substream *data_subs; 242 243 data_subs = READ_ONCE(ep->data_subs); 244 if (data_subs && ep->retire_data_urb) 245 ep->retire_data_urb(data_subs, urb); 246 } 247 248 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 249 struct snd_urb_ctx *urb_ctx) 250 { 251 call_retire_callback(ep, urb_ctx->urb); 252 } 253 254 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 255 struct snd_usb_endpoint *sender, 256 const struct urb *urb); 257 258 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 259 struct snd_urb_ctx *urb_ctx) 260 { 261 struct urb *urb = urb_ctx->urb; 262 struct snd_usb_endpoint *sync_sink; 263 264 if (unlikely(ep->skip_packets > 0)) { 265 ep->skip_packets--; 266 return; 267 } 268 269 sync_sink = READ_ONCE(ep->sync_sink); 270 if (sync_sink) 271 snd_usb_handle_sync_urb(sync_sink, ep, urb); 272 273 call_retire_callback(ep, urb); 274 } 275 276 static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) 277 { 278 return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; 279 } 280 281 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 282 struct snd_urb_ctx *ctx) 283 { 284 struct urb *urb = ctx->urb; 285 unsigned int offs = 0; 286 unsigned int extra = 0; 287 __le32 packet_length; 288 int i; 289 290 /* For tx_length_quirk, put packet length at start of packet */ 291 if (has_tx_length_quirk(ep->chip)) 292 extra = sizeof(packet_length); 293 294 for (i = 0; i < ctx->packets; ++i) { 295 unsigned int offset; 296 unsigned int length; 297 int counts; 298 299 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); 300 length = counts * ep->stride; /* number of silent bytes */ 301 offset = offs * ep->stride + extra * i; 302 urb->iso_frame_desc[i].offset = offset; 303 urb->iso_frame_desc[i].length = length + extra; 304 if (extra) { 305 packet_length = cpu_to_le32(length); 306 memcpy(urb->transfer_buffer + offset, 307 &packet_length, sizeof(packet_length)); 308 } 309 memset(urb->transfer_buffer + offset + extra, 310 ep->silence_value, length); 311 offs += counts; 312 } 313 314 urb->number_of_packets = ctx->packets; 315 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 316 ctx->queued = 0; 317 } 318 319 /* 320 * Prepare a PLAYBACK urb for submission to the bus. 321 */ 322 static int prepare_outbound_urb(struct snd_usb_endpoint *ep, 323 struct snd_urb_ctx *ctx, 324 bool in_stream_lock) 325 { 326 struct urb *urb = ctx->urb; 327 unsigned char *cp = urb->transfer_buffer; 328 struct snd_usb_substream *data_subs; 329 330 urb->dev = ep->chip->dev; /* we need to set this at each time */ 331 332 switch (ep->type) { 333 case SND_USB_ENDPOINT_TYPE_DATA: 334 data_subs = READ_ONCE(ep->data_subs); 335 if (data_subs && ep->prepare_data_urb) 336 return ep->prepare_data_urb(data_subs, urb, in_stream_lock); 337 /* no data provider, so send silence */ 338 prepare_silent_urb(ep, ctx); 339 break; 340 341 case SND_USB_ENDPOINT_TYPE_SYNC: 342 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 343 /* 344 * fill the length and offset of each urb descriptor. 345 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 346 */ 347 urb->iso_frame_desc[0].length = 4; 348 urb->iso_frame_desc[0].offset = 0; 349 cp[0] = ep->freqn; 350 cp[1] = ep->freqn >> 8; 351 cp[2] = ep->freqn >> 16; 352 cp[3] = ep->freqn >> 24; 353 } else { 354 /* 355 * fill the length and offset of each urb descriptor. 356 * the fixed 10.14 frequency is passed through the pipe. 357 */ 358 urb->iso_frame_desc[0].length = 3; 359 urb->iso_frame_desc[0].offset = 0; 360 cp[0] = ep->freqn >> 2; 361 cp[1] = ep->freqn >> 10; 362 cp[2] = ep->freqn >> 18; 363 } 364 365 break; 366 } 367 return 0; 368 } 369 370 /* 371 * Prepare a CAPTURE or SYNC urb for submission to the bus. 372 */ 373 static int prepare_inbound_urb(struct snd_usb_endpoint *ep, 374 struct snd_urb_ctx *urb_ctx) 375 { 376 int i, offs; 377 struct urb *urb = urb_ctx->urb; 378 379 urb->dev = ep->chip->dev; /* we need to set this at each time */ 380 381 switch (ep->type) { 382 case SND_USB_ENDPOINT_TYPE_DATA: 383 offs = 0; 384 for (i = 0; i < urb_ctx->packets; i++) { 385 urb->iso_frame_desc[i].offset = offs; 386 urb->iso_frame_desc[i].length = ep->curpacksize; 387 offs += ep->curpacksize; 388 } 389 390 urb->transfer_buffer_length = offs; 391 urb->number_of_packets = urb_ctx->packets; 392 break; 393 394 case SND_USB_ENDPOINT_TYPE_SYNC: 395 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 396 urb->iso_frame_desc[0].offset = 0; 397 break; 398 } 399 return 0; 400 } 401 402 /* notify an error as XRUN to the assigned PCM data substream */ 403 static void notify_xrun(struct snd_usb_endpoint *ep) 404 { 405 struct snd_usb_substream *data_subs; 406 407 data_subs = READ_ONCE(ep->data_subs); 408 if (data_subs && data_subs->pcm_substream) 409 snd_pcm_stop_xrun(data_subs->pcm_substream); 410 } 411 412 static struct snd_usb_packet_info * 413 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 414 { 415 struct snd_usb_packet_info *p; 416 417 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 418 ARRAY_SIZE(ep->next_packet); 419 ep->next_packet_queued++; 420 return p; 421 } 422 423 static struct snd_usb_packet_info * 424 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 425 { 426 struct snd_usb_packet_info *p; 427 428 p = ep->next_packet + ep->next_packet_head; 429 ep->next_packet_head++; 430 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 431 ep->next_packet_queued--; 432 return p; 433 } 434 435 static void push_back_to_ready_list(struct snd_usb_endpoint *ep, 436 struct snd_urb_ctx *ctx) 437 { 438 unsigned long flags; 439 440 spin_lock_irqsave(&ep->lock, flags); 441 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 442 spin_unlock_irqrestore(&ep->lock, flags); 443 } 444 445 /* 446 * Send output urbs that have been prepared previously. URBs are dequeued 447 * from ep->ready_playback_urbs and in case there aren't any available 448 * or there are no packets that have been prepared, this function does 449 * nothing. 450 * 451 * The reason why the functionality of sending and preparing URBs is separated 452 * is that host controllers don't guarantee the order in which they return 453 * inbound and outbound packets to their submitters. 454 * 455 * This function is used both for implicit feedback endpoints and in low- 456 * latency playback mode. 457 */ 458 void snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, 459 bool in_stream_lock) 460 { 461 bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); 462 463 while (ep_state_running(ep)) { 464 465 unsigned long flags; 466 struct snd_usb_packet_info *packet; 467 struct snd_urb_ctx *ctx = NULL; 468 int err, i; 469 470 spin_lock_irqsave(&ep->lock, flags); 471 if ((!implicit_fb || ep->next_packet_queued > 0) && 472 !list_empty(&ep->ready_playback_urbs)) { 473 /* take URB out of FIFO */ 474 ctx = list_first_entry(&ep->ready_playback_urbs, 475 struct snd_urb_ctx, ready_list); 476 list_del_init(&ctx->ready_list); 477 if (implicit_fb) 478 packet = next_packet_fifo_dequeue(ep); 479 } 480 spin_unlock_irqrestore(&ep->lock, flags); 481 482 if (ctx == NULL) 483 return; 484 485 /* copy over the length information */ 486 if (implicit_fb) { 487 for (i = 0; i < packet->packets; i++) 488 ctx->packet_size[i] = packet->packet_size[i]; 489 } 490 491 /* call the data handler to fill in playback data */ 492 err = prepare_outbound_urb(ep, ctx, in_stream_lock); 493 /* can be stopped during prepare callback */ 494 if (unlikely(!ep_state_running(ep))) 495 break; 496 if (err < 0) { 497 /* push back to ready list again for -EAGAIN */ 498 if (err == -EAGAIN) 499 push_back_to_ready_list(ep, ctx); 500 else 501 notify_xrun(ep); 502 return; 503 } 504 505 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 506 if (err < 0) { 507 usb_audio_err(ep->chip, 508 "Unable to submit urb #%d: %d at %s\n", 509 ctx->index, err, __func__); 510 notify_xrun(ep); 511 return; 512 } 513 514 set_bit(ctx->index, &ep->active_mask); 515 atomic_inc(&ep->submitted_urbs); 516 } 517 } 518 519 /* 520 * complete callback for urbs 521 */ 522 static void snd_complete_urb(struct urb *urb) 523 { 524 struct snd_urb_ctx *ctx = urb->context; 525 struct snd_usb_endpoint *ep = ctx->ep; 526 int err; 527 528 if (unlikely(urb->status == -ENOENT || /* unlinked */ 529 urb->status == -ENODEV || /* device removed */ 530 urb->status == -ECONNRESET || /* unlinked */ 531 urb->status == -ESHUTDOWN)) /* device disabled */ 532 goto exit_clear; 533 /* device disconnected */ 534 if (unlikely(atomic_read(&ep->chip->shutdown))) 535 goto exit_clear; 536 537 if (unlikely(!ep_state_running(ep))) 538 goto exit_clear; 539 540 if (usb_pipeout(ep->pipe)) { 541 retire_outbound_urb(ep, ctx); 542 /* can be stopped during retire callback */ 543 if (unlikely(!ep_state_running(ep))) 544 goto exit_clear; 545 546 /* in low-latency and implicit-feedback modes, push back the 547 * URB to ready list at first, then process as much as possible 548 */ 549 if (ep->lowlatency_playback || 550 snd_usb_endpoint_implicit_feedback_sink(ep)) { 551 push_back_to_ready_list(ep, ctx); 552 clear_bit(ctx->index, &ep->active_mask); 553 snd_usb_queue_pending_output_urbs(ep, false); 554 atomic_dec(&ep->submitted_urbs); /* decrement at last */ 555 return; 556 } 557 558 /* in non-lowlatency mode, no error handling for prepare */ 559 prepare_outbound_urb(ep, ctx, false); 560 /* can be stopped during prepare callback */ 561 if (unlikely(!ep_state_running(ep))) 562 goto exit_clear; 563 } else { 564 retire_inbound_urb(ep, ctx); 565 /* can be stopped during retire callback */ 566 if (unlikely(!ep_state_running(ep))) 567 goto exit_clear; 568 569 prepare_inbound_urb(ep, ctx); 570 } 571 572 err = usb_submit_urb(urb, GFP_ATOMIC); 573 if (err == 0) 574 return; 575 576 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 577 notify_xrun(ep); 578 579 exit_clear: 580 clear_bit(ctx->index, &ep->active_mask); 581 atomic_dec(&ep->submitted_urbs); 582 } 583 584 /* 585 * Find or create a refcount object for the given interface 586 * 587 * The objects are released altogether in snd_usb_endpoint_free_all() 588 */ 589 static struct snd_usb_iface_ref * 590 iface_ref_find(struct snd_usb_audio *chip, int iface) 591 { 592 struct snd_usb_iface_ref *ip; 593 594 list_for_each_entry(ip, &chip->iface_ref_list, list) 595 if (ip->iface == iface) 596 return ip; 597 598 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 599 if (!ip) 600 return NULL; 601 ip->iface = iface; 602 list_add_tail(&ip->list, &chip->iface_ref_list); 603 return ip; 604 } 605 606 /* Similarly, a refcount object for clock */ 607 static struct snd_usb_clock_ref * 608 clock_ref_find(struct snd_usb_audio *chip, int clock) 609 { 610 struct snd_usb_clock_ref *ref; 611 612 list_for_each_entry(ref, &chip->clock_ref_list, list) 613 if (ref->clock == clock) 614 return ref; 615 616 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 617 if (!ref) 618 return NULL; 619 ref->clock = clock; 620 atomic_set(&ref->locked, 0); 621 list_add_tail(&ref->list, &chip->clock_ref_list); 622 return ref; 623 } 624 625 /* 626 * Get the existing endpoint object corresponding EP 627 * Returns NULL if not present. 628 */ 629 struct snd_usb_endpoint * 630 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 631 { 632 struct snd_usb_endpoint *ep; 633 634 list_for_each_entry(ep, &chip->ep_list, list) { 635 if (ep->ep_num == ep_num) 636 return ep; 637 } 638 639 return NULL; 640 } 641 642 #define ep_type_name(type) \ 643 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 644 645 /** 646 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 647 * 648 * @chip: The chip 649 * @ep_num: The number of the endpoint to use 650 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 651 * 652 * If the requested endpoint has not been added to the given chip before, 653 * a new instance is created. 654 * 655 * Returns zero on success or a negative error code. 656 * 657 * New endpoints will be added to chip->ep_list and freed by 658 * calling snd_usb_endpoint_free_all(). 659 * 660 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 661 * bNumEndpoints > 1 beforehand. 662 */ 663 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 664 { 665 struct snd_usb_endpoint *ep; 666 bool is_playback; 667 668 ep = snd_usb_get_endpoint(chip, ep_num); 669 if (ep) 670 return 0; 671 672 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 673 ep_type_name(type), 674 ep_num); 675 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 676 if (!ep) 677 return -ENOMEM; 678 679 ep->chip = chip; 680 spin_lock_init(&ep->lock); 681 ep->type = type; 682 ep->ep_num = ep_num; 683 INIT_LIST_HEAD(&ep->ready_playback_urbs); 684 atomic_set(&ep->submitted_urbs, 0); 685 686 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 687 ep_num &= USB_ENDPOINT_NUMBER_MASK; 688 if (is_playback) 689 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 690 else 691 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 692 693 list_add_tail(&ep->list, &chip->ep_list); 694 return 0; 695 } 696 697 /* Set up syncinterval and maxsyncsize for a sync EP */ 698 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 699 struct snd_usb_endpoint *ep) 700 { 701 struct usb_host_interface *alts; 702 struct usb_endpoint_descriptor *desc; 703 704 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 705 if (!alts) 706 return; 707 708 desc = get_endpoint(alts, ep->ep_idx); 709 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 710 desc->bRefresh >= 1 && desc->bRefresh <= 9) 711 ep->syncinterval = desc->bRefresh; 712 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 713 ep->syncinterval = 1; 714 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 715 ep->syncinterval = desc->bInterval - 1; 716 else 717 ep->syncinterval = 3; 718 719 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 720 } 721 722 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 723 const struct audioformat *fp, 724 const struct snd_pcm_hw_params *params) 725 { 726 if (!ep->opened) 727 return false; 728 if (ep->cur_audiofmt != fp) 729 return false; 730 if (ep->cur_rate != params_rate(params) || 731 ep->cur_format != params_format(params) || 732 ep->cur_period_frames != params_period_size(params) || 733 ep->cur_buffer_periods != params_periods(params)) 734 return false; 735 return true; 736 } 737 738 /* 739 * Check whether the given fp and hw params are compatible with the current 740 * setup of the target EP for implicit feedback sync 741 */ 742 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 743 struct snd_usb_endpoint *ep, 744 const struct audioformat *fp, 745 const struct snd_pcm_hw_params *params) 746 { 747 bool ret; 748 749 mutex_lock(&chip->mutex); 750 ret = endpoint_compatible(ep, fp, params); 751 mutex_unlock(&chip->mutex); 752 return ret; 753 } 754 755 /* 756 * snd_usb_endpoint_open: Open the endpoint 757 * 758 * Called from hw_params to assign the endpoint to the substream. 759 * It's reference-counted, and only the first opener is allowed to set up 760 * arbitrary parameters. The later opener must be compatible with the 761 * former opened parameters. 762 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 763 * 764 * Note that this function doesn't configure the endpoint. The substream 765 * needs to set it up later via snd_usb_endpoint_set_params() and 766 * snd_usb_endpoint_prepare(). 767 */ 768 struct snd_usb_endpoint * 769 snd_usb_endpoint_open(struct snd_usb_audio *chip, 770 const struct audioformat *fp, 771 const struct snd_pcm_hw_params *params, 772 bool is_sync_ep, 773 bool fixed_rate) 774 { 775 struct snd_usb_endpoint *ep; 776 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 777 778 mutex_lock(&chip->mutex); 779 ep = snd_usb_get_endpoint(chip, ep_num); 780 if (!ep) { 781 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 782 goto unlock; 783 } 784 785 if (!ep->opened) { 786 if (is_sync_ep) { 787 ep->iface = fp->sync_iface; 788 ep->altsetting = fp->sync_altsetting; 789 ep->ep_idx = fp->sync_ep_idx; 790 } else { 791 ep->iface = fp->iface; 792 ep->altsetting = fp->altsetting; 793 ep->ep_idx = fp->ep_idx; 794 } 795 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 796 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 797 798 ep->iface_ref = iface_ref_find(chip, ep->iface); 799 if (!ep->iface_ref) { 800 ep = NULL; 801 goto unlock; 802 } 803 804 if (fp->protocol != UAC_VERSION_1) { 805 ep->clock_ref = clock_ref_find(chip, fp->clock); 806 if (!ep->clock_ref) { 807 ep = NULL; 808 goto unlock; 809 } 810 ep->clock_ref->opened++; 811 } 812 813 ep->cur_audiofmt = fp; 814 ep->cur_channels = fp->channels; 815 ep->cur_rate = params_rate(params); 816 ep->cur_format = params_format(params); 817 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 818 ep->cur_channels / 8; 819 ep->cur_period_frames = params_period_size(params); 820 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 821 ep->cur_buffer_periods = params_periods(params); 822 823 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 824 endpoint_set_syncinterval(chip, ep); 825 826 ep->implicit_fb_sync = fp->implicit_fb; 827 ep->need_setup = true; 828 ep->need_prepare = true; 829 ep->fixed_rate = fixed_rate; 830 831 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 832 ep->cur_channels, ep->cur_rate, 833 snd_pcm_format_name(ep->cur_format), 834 ep->cur_period_bytes, ep->cur_buffer_periods, 835 ep->implicit_fb_sync); 836 837 } else { 838 if (WARN_ON(!ep->iface_ref)) { 839 ep = NULL; 840 goto unlock; 841 } 842 843 if (!endpoint_compatible(ep, fp, params)) { 844 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 845 ep_num); 846 ep = NULL; 847 goto unlock; 848 } 849 850 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 851 ep_num, ep->opened); 852 } 853 854 if (!ep->iface_ref->opened++) 855 ep->iface_ref->need_setup = true; 856 857 ep->opened++; 858 859 unlock: 860 mutex_unlock(&chip->mutex); 861 return ep; 862 } 863 864 /* 865 * snd_usb_endpoint_set_sync: Link data and sync endpoints 866 * 867 * Pass NULL to sync_ep to unlink again 868 */ 869 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 870 struct snd_usb_endpoint *data_ep, 871 struct snd_usb_endpoint *sync_ep) 872 { 873 data_ep->sync_source = sync_ep; 874 } 875 876 /* 877 * Set data endpoint callbacks and the assigned data stream 878 * 879 * Called at PCM trigger and cleanups. 880 * Pass NULL to deactivate each callback. 881 */ 882 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 883 int (*prepare)(struct snd_usb_substream *subs, 884 struct urb *urb, 885 bool in_stream_lock), 886 void (*retire)(struct snd_usb_substream *subs, 887 struct urb *urb), 888 struct snd_usb_substream *data_subs) 889 { 890 ep->prepare_data_urb = prepare; 891 ep->retire_data_urb = retire; 892 if (data_subs) 893 ep->lowlatency_playback = data_subs->lowlatency_playback; 894 else 895 ep->lowlatency_playback = false; 896 WRITE_ONCE(ep->data_subs, data_subs); 897 } 898 899 static int endpoint_set_interface(struct snd_usb_audio *chip, 900 struct snd_usb_endpoint *ep, 901 bool set) 902 { 903 int altset = set ? ep->altsetting : 0; 904 int err; 905 906 if (ep->iface_ref->altset == altset) 907 return 0; 908 909 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 910 ep->iface, altset, ep->ep_num); 911 err = usb_set_interface(chip->dev, ep->iface, altset); 912 if (err < 0) { 913 usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", 914 ep->iface, altset, err); 915 return err; 916 } 917 918 if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) 919 msleep(50); 920 ep->iface_ref->altset = altset; 921 return 0; 922 } 923 924 /* 925 * snd_usb_endpoint_close: Close the endpoint 926 * 927 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 928 */ 929 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 930 struct snd_usb_endpoint *ep) 931 { 932 mutex_lock(&chip->mutex); 933 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 934 ep->ep_num, ep->opened); 935 936 if (!--ep->iface_ref->opened && 937 !(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE)) 938 endpoint_set_interface(chip, ep, false); 939 940 if (!--ep->opened) { 941 if (ep->clock_ref) { 942 if (!--ep->clock_ref->opened) 943 ep->clock_ref->rate = 0; 944 } 945 ep->iface = 0; 946 ep->altsetting = 0; 947 ep->cur_audiofmt = NULL; 948 ep->cur_rate = 0; 949 ep->iface_ref = NULL; 950 ep->clock_ref = NULL; 951 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 952 } 953 mutex_unlock(&chip->mutex); 954 } 955 956 /* Prepare for suspening EP, called from the main suspend handler */ 957 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 958 { 959 ep->need_prepare = true; 960 if (ep->iface_ref) 961 ep->iface_ref->need_setup = true; 962 if (ep->clock_ref) 963 ep->clock_ref->rate = 0; 964 } 965 966 /* 967 * wait until all urbs are processed. 968 */ 969 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 970 { 971 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 972 int alive; 973 974 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 975 return 0; 976 977 do { 978 alive = atomic_read(&ep->submitted_urbs); 979 if (!alive) 980 break; 981 982 schedule_timeout_uninterruptible(1); 983 } while (time_before(jiffies, end_time)); 984 985 if (alive) 986 usb_audio_err(ep->chip, 987 "timeout: still %d active urbs on EP #%x\n", 988 alive, ep->ep_num); 989 990 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 991 ep->sync_sink = NULL; 992 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 993 } 994 995 return 0; 996 } 997 998 /* sync the pending stop operation; 999 * this function itself doesn't trigger the stop operation 1000 */ 1001 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 1002 { 1003 if (ep) 1004 wait_clear_urbs(ep); 1005 } 1006 1007 /* 1008 * Stop active urbs 1009 * 1010 * This function moves the EP to STOPPING state if it's being RUNNING. 1011 */ 1012 static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) 1013 { 1014 unsigned int i; 1015 unsigned long flags; 1016 1017 if (!force && atomic_read(&ep->running)) 1018 return -EBUSY; 1019 1020 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 1021 return 0; 1022 1023 spin_lock_irqsave(&ep->lock, flags); 1024 INIT_LIST_HEAD(&ep->ready_playback_urbs); 1025 ep->next_packet_head = 0; 1026 ep->next_packet_queued = 0; 1027 spin_unlock_irqrestore(&ep->lock, flags); 1028 1029 if (keep_pending) 1030 return 0; 1031 1032 for (i = 0; i < ep->nurbs; i++) { 1033 if (test_bit(i, &ep->active_mask)) { 1034 if (!test_and_set_bit(i, &ep->unlink_mask)) { 1035 struct urb *u = ep->urb[i].urb; 1036 usb_unlink_urb(u); 1037 } 1038 } 1039 } 1040 1041 return 0; 1042 } 1043 1044 /* 1045 * release an endpoint's urbs 1046 */ 1047 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 1048 { 1049 int i, err; 1050 1051 /* route incoming urbs to nirvana */ 1052 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1053 1054 /* stop and unlink urbs */ 1055 err = stop_urbs(ep, force, false); 1056 if (err) 1057 return err; 1058 1059 wait_clear_urbs(ep); 1060 1061 for (i = 0; i < ep->nurbs; i++) 1062 release_urb_ctx(&ep->urb[i]); 1063 1064 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 1065 ep->syncbuf, ep->sync_dma); 1066 1067 ep->syncbuf = NULL; 1068 ep->nurbs = 0; 1069 return 0; 1070 } 1071 1072 /* 1073 * configure a data endpoint 1074 */ 1075 static int data_ep_set_params(struct snd_usb_endpoint *ep) 1076 { 1077 struct snd_usb_audio *chip = ep->chip; 1078 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 1079 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 1080 unsigned int max_urbs, i; 1081 const struct audioformat *fmt = ep->cur_audiofmt; 1082 int frame_bits = ep->cur_frame_bytes * 8; 1083 int tx_length_quirk = (has_tx_length_quirk(chip) && 1084 usb_pipeout(ep->pipe)); 1085 1086 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 1087 ep->ep_num, ep->pipe); 1088 1089 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 1090 /* 1091 * When operating in DSD DOP mode, the size of a sample frame 1092 * in hardware differs from the actual physical format width 1093 * because we need to make room for the DOP markers. 1094 */ 1095 frame_bits += ep->cur_channels << 3; 1096 } 1097 1098 ep->datainterval = fmt->datainterval; 1099 ep->stride = frame_bits >> 3; 1100 1101 switch (ep->cur_format) { 1102 case SNDRV_PCM_FORMAT_U8: 1103 ep->silence_value = 0x80; 1104 break; 1105 case SNDRV_PCM_FORMAT_DSD_U8: 1106 case SNDRV_PCM_FORMAT_DSD_U16_LE: 1107 case SNDRV_PCM_FORMAT_DSD_U32_LE: 1108 case SNDRV_PCM_FORMAT_DSD_U16_BE: 1109 case SNDRV_PCM_FORMAT_DSD_U32_BE: 1110 ep->silence_value = 0x69; 1111 break; 1112 default: 1113 ep->silence_value = 0; 1114 } 1115 1116 /* assume max. frequency is 50% higher than nominal */ 1117 ep->freqmax = ep->freqn + (ep->freqn >> 1); 1118 /* Round up freqmax to nearest integer in order to calculate maximum 1119 * packet size, which must represent a whole number of frames. 1120 * This is accomplished by adding 0x0.ffff before converting the 1121 * Q16.16 format into integer. 1122 * In order to accurately calculate the maximum packet size when 1123 * the data interval is more than 1 (i.e. ep->datainterval > 0), 1124 * multiply by the data interval prior to rounding. For instance, 1125 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 1126 * frames with a data interval of 1, but 11 (10.25) frames with a 1127 * data interval of 2. 1128 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1129 * maximum datainterval value of 3, at USB full speed, higher for 1130 * USB high speed, noting that ep->freqmax is in units of 1131 * frames per packet in Q16.16 format.) 1132 */ 1133 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1134 (frame_bits >> 3); 1135 if (tx_length_quirk) 1136 maxsize += sizeof(__le32); /* Space for length descriptor */ 1137 /* but wMaxPacketSize might reduce this */ 1138 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1139 /* whatever fits into a max. size packet */ 1140 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1141 1142 if (tx_length_quirk) 1143 /* Need to remove the length descriptor to calc freq */ 1144 data_maxsize -= sizeof(__le32); 1145 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1146 << (16 - ep->datainterval); 1147 } 1148 1149 if (ep->fill_max) 1150 ep->curpacksize = ep->maxpacksize; 1151 else 1152 ep->curpacksize = maxsize; 1153 1154 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1155 packs_per_ms = 8 >> ep->datainterval; 1156 max_packs_per_urb = MAX_PACKS_HS; 1157 } else { 1158 packs_per_ms = 1; 1159 max_packs_per_urb = MAX_PACKS; 1160 } 1161 if (ep->sync_source && !ep->implicit_fb_sync) 1162 max_packs_per_urb = min(max_packs_per_urb, 1163 1U << ep->sync_source->syncinterval); 1164 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1165 1166 /* 1167 * Capture endpoints need to use small URBs because there's no way 1168 * to tell in advance where the next period will end, and we don't 1169 * want the next URB to complete much after the period ends. 1170 * 1171 * Playback endpoints with implicit sync much use the same parameters 1172 * as their corresponding capture endpoint. 1173 */ 1174 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1175 1176 urb_packs = packs_per_ms; 1177 /* 1178 * Wireless devices can poll at a max rate of once per 4ms. 1179 * For dataintervals less than 5, increase the packet count to 1180 * allow the host controller to use bursting to fill in the 1181 * gaps. 1182 */ 1183 if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { 1184 int interval = ep->datainterval; 1185 while (interval < 5) { 1186 urb_packs <<= 1; 1187 ++interval; 1188 } 1189 } 1190 /* make capture URBs <= 1 ms and smaller than a period */ 1191 urb_packs = min(max_packs_per_urb, urb_packs); 1192 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1193 urb_packs >>= 1; 1194 ep->nurbs = MAX_URBS; 1195 1196 /* 1197 * Playback endpoints without implicit sync are adjusted so that 1198 * a period fits as evenly as possible in the smallest number of 1199 * URBs. The total number of URBs is adjusted to the size of the 1200 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1201 */ 1202 } else { 1203 /* determine how small a packet can be */ 1204 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1205 (frame_bits >> 3); 1206 /* with sync from device, assume it can be 12% lower */ 1207 if (ep->sync_source) 1208 minsize -= minsize >> 3; 1209 minsize = max(minsize, 1u); 1210 1211 /* how many packets will contain an entire ALSA period? */ 1212 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1213 1214 /* how many URBs will contain a period? */ 1215 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1216 max_packs_per_urb); 1217 /* how many packets are needed in each URB? */ 1218 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1219 1220 /* limit the number of frames in a single URB */ 1221 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1222 urbs_per_period); 1223 1224 /* try to use enough URBs to contain an entire ALSA buffer */ 1225 max_urbs = min((unsigned) MAX_URBS, 1226 MAX_QUEUE * packs_per_ms / urb_packs); 1227 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1228 } 1229 1230 /* allocate and initialize data urbs */ 1231 for (i = 0; i < ep->nurbs; i++) { 1232 struct snd_urb_ctx *u = &ep->urb[i]; 1233 u->index = i; 1234 u->ep = ep; 1235 u->packets = urb_packs; 1236 u->buffer_size = maxsize * u->packets; 1237 1238 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1239 u->packets++; /* for transfer delimiter */ 1240 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1241 if (!u->urb) 1242 goto out_of_memory; 1243 1244 u->urb->transfer_buffer = 1245 usb_alloc_coherent(chip->dev, u->buffer_size, 1246 GFP_KERNEL, &u->urb->transfer_dma); 1247 if (!u->urb->transfer_buffer) 1248 goto out_of_memory; 1249 u->urb->pipe = ep->pipe; 1250 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1251 u->urb->interval = 1 << ep->datainterval; 1252 u->urb->context = u; 1253 u->urb->complete = snd_complete_urb; 1254 INIT_LIST_HEAD(&u->ready_list); 1255 } 1256 1257 return 0; 1258 1259 out_of_memory: 1260 release_urbs(ep, false); 1261 return -ENOMEM; 1262 } 1263 1264 /* 1265 * configure a sync endpoint 1266 */ 1267 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1268 { 1269 struct snd_usb_audio *chip = ep->chip; 1270 int i; 1271 1272 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1273 ep->ep_num, ep->pipe); 1274 1275 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1276 GFP_KERNEL, &ep->sync_dma); 1277 if (!ep->syncbuf) 1278 return -ENOMEM; 1279 1280 ep->nurbs = SYNC_URBS; 1281 for (i = 0; i < SYNC_URBS; i++) { 1282 struct snd_urb_ctx *u = &ep->urb[i]; 1283 u->index = i; 1284 u->ep = ep; 1285 u->packets = 1; 1286 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1287 if (!u->urb) 1288 goto out_of_memory; 1289 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1290 u->urb->transfer_dma = ep->sync_dma + i * 4; 1291 u->urb->transfer_buffer_length = 4; 1292 u->urb->pipe = ep->pipe; 1293 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1294 u->urb->number_of_packets = 1; 1295 u->urb->interval = 1 << ep->syncinterval; 1296 u->urb->context = u; 1297 u->urb->complete = snd_complete_urb; 1298 } 1299 1300 return 0; 1301 1302 out_of_memory: 1303 release_urbs(ep, false); 1304 return -ENOMEM; 1305 } 1306 1307 /* update the rate of the referred clock; return the actual rate */ 1308 static int update_clock_ref_rate(struct snd_usb_audio *chip, 1309 struct snd_usb_endpoint *ep) 1310 { 1311 struct snd_usb_clock_ref *clock = ep->clock_ref; 1312 int rate = ep->cur_rate; 1313 1314 if (!clock || clock->rate == rate) 1315 return rate; 1316 if (clock->rate) { 1317 if (atomic_read(&clock->locked)) 1318 return clock->rate; 1319 if (clock->rate != rate) { 1320 usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n", 1321 clock->rate, rate, ep->ep_num); 1322 return clock->rate; 1323 } 1324 } 1325 clock->rate = rate; 1326 clock->need_setup = true; 1327 return rate; 1328 } 1329 1330 /* 1331 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1332 * 1333 * It's called either from hw_params callback. 1334 * Determine the number of URBs to be used on this endpoint. 1335 * An endpoint must be configured before it can be started. 1336 * An endpoint that is already running can not be reconfigured. 1337 */ 1338 int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1339 struct snd_usb_endpoint *ep) 1340 { 1341 const struct audioformat *fmt = ep->cur_audiofmt; 1342 int err = 0; 1343 1344 mutex_lock(&chip->mutex); 1345 if (!ep->need_setup) 1346 goto unlock; 1347 1348 /* release old buffers, if any */ 1349 err = release_urbs(ep, false); 1350 if (err < 0) 1351 goto unlock; 1352 1353 ep->datainterval = fmt->datainterval; 1354 ep->maxpacksize = fmt->maxpacksize; 1355 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1356 1357 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1358 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1359 ep->pps = 1000 >> ep->datainterval; 1360 } else { 1361 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1362 ep->pps = 8000 >> ep->datainterval; 1363 } 1364 1365 ep->sample_rem = ep->cur_rate % ep->pps; 1366 ep->packsize[0] = ep->cur_rate / ep->pps; 1367 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1368 1369 /* calculate the frequency in 16.16 format */ 1370 ep->freqm = ep->freqn; 1371 ep->freqshift = INT_MIN; 1372 1373 ep->phase = 0; 1374 1375 switch (ep->type) { 1376 case SND_USB_ENDPOINT_TYPE_DATA: 1377 err = data_ep_set_params(ep); 1378 break; 1379 case SND_USB_ENDPOINT_TYPE_SYNC: 1380 err = sync_ep_set_params(ep); 1381 break; 1382 default: 1383 err = -EINVAL; 1384 } 1385 1386 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1387 1388 if (err < 0) 1389 goto unlock; 1390 1391 /* some unit conversions in runtime */ 1392 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1393 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1394 1395 err = update_clock_ref_rate(chip, ep); 1396 if (err >= 0) { 1397 ep->need_setup = false; 1398 err = 0; 1399 } 1400 1401 unlock: 1402 mutex_unlock(&chip->mutex); 1403 return err; 1404 } 1405 1406 static int init_sample_rate(struct snd_usb_audio *chip, 1407 struct snd_usb_endpoint *ep) 1408 { 1409 struct snd_usb_clock_ref *clock = ep->clock_ref; 1410 int rate, err; 1411 1412 rate = update_clock_ref_rate(chip, ep); 1413 if (rate < 0) 1414 return rate; 1415 if (clock && !clock->need_setup) 1416 return 0; 1417 1418 if (!ep->fixed_rate) { 1419 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate); 1420 if (err < 0) { 1421 if (clock) 1422 clock->rate = 0; /* reset rate */ 1423 return err; 1424 } 1425 } 1426 1427 if (clock) 1428 clock->need_setup = false; 1429 return 0; 1430 } 1431 1432 /* 1433 * snd_usb_endpoint_prepare: Prepare the endpoint 1434 * 1435 * This function sets up the EP to be fully usable state. 1436 * It's called either from prepare callback. 1437 * The function checks need_setup flag, and performs nothing unless needed, 1438 * so it's safe to call this multiple times. 1439 * 1440 * This returns zero if unchanged, 1 if the configuration has changed, 1441 * or a negative error code. 1442 */ 1443 int snd_usb_endpoint_prepare(struct snd_usb_audio *chip, 1444 struct snd_usb_endpoint *ep) 1445 { 1446 bool iface_first; 1447 int err = 0; 1448 1449 mutex_lock(&chip->mutex); 1450 if (WARN_ON(!ep->iface_ref)) 1451 goto unlock; 1452 if (!ep->need_prepare) 1453 goto unlock; 1454 1455 /* If the interface has been already set up, just set EP parameters */ 1456 if (!ep->iface_ref->need_setup) { 1457 /* sample rate setup of UAC1 is per endpoint, and we need 1458 * to update at each EP configuration 1459 */ 1460 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1461 err = init_sample_rate(chip, ep); 1462 if (err < 0) 1463 goto unlock; 1464 } 1465 goto done; 1466 } 1467 1468 /* Need to deselect altsetting at first */ 1469 endpoint_set_interface(chip, ep, false); 1470 1471 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1472 * to be set up before parameter setups 1473 */ 1474 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1475 /* Workaround for devices that require the interface setup at first like UAC1 */ 1476 if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) 1477 iface_first = true; 1478 if (iface_first) { 1479 err = endpoint_set_interface(chip, ep, true); 1480 if (err < 0) 1481 goto unlock; 1482 } 1483 1484 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1485 if (err < 0) 1486 goto unlock; 1487 1488 err = init_sample_rate(chip, ep); 1489 if (err < 0) 1490 goto unlock; 1491 1492 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1493 if (err < 0) 1494 goto unlock; 1495 1496 /* for UAC2/3, enable the interface altset here at last */ 1497 if (!iface_first) { 1498 err = endpoint_set_interface(chip, ep, true); 1499 if (err < 0) 1500 goto unlock; 1501 } 1502 1503 ep->iface_ref->need_setup = false; 1504 1505 done: 1506 ep->need_prepare = false; 1507 err = 1; 1508 1509 unlock: 1510 mutex_unlock(&chip->mutex); 1511 return err; 1512 } 1513 1514 /* get the current rate set to the given clock by any endpoint */ 1515 int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) 1516 { 1517 struct snd_usb_clock_ref *ref; 1518 int rate = 0; 1519 1520 if (!clock) 1521 return 0; 1522 mutex_lock(&chip->mutex); 1523 list_for_each_entry(ref, &chip->clock_ref_list, list) { 1524 if (ref->clock == clock) { 1525 rate = ref->rate; 1526 break; 1527 } 1528 } 1529 mutex_unlock(&chip->mutex); 1530 return rate; 1531 } 1532 1533 /** 1534 * snd_usb_endpoint_start: start an snd_usb_endpoint 1535 * 1536 * @ep: the endpoint to start 1537 * 1538 * A call to this function will increment the running count of the endpoint. 1539 * In case it is not already running, the URBs for this endpoint will be 1540 * submitted. Otherwise, this function does nothing. 1541 * 1542 * Must be balanced to calls of snd_usb_endpoint_stop(). 1543 * 1544 * Returns an error if the URB submission failed, 0 in all other cases. 1545 */ 1546 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1547 { 1548 bool is_playback = usb_pipeout(ep->pipe); 1549 int err; 1550 unsigned int i; 1551 1552 if (atomic_read(&ep->chip->shutdown)) 1553 return -EBADFD; 1554 1555 if (ep->sync_source) 1556 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1557 1558 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1559 ep_type_name(ep->type), ep->ep_num, 1560 atomic_read(&ep->running)); 1561 1562 /* already running? */ 1563 if (atomic_inc_return(&ep->running) != 1) 1564 return 0; 1565 1566 if (ep->clock_ref) 1567 atomic_inc(&ep->clock_ref->locked); 1568 1569 ep->active_mask = 0; 1570 ep->unlink_mask = 0; 1571 ep->phase = 0; 1572 ep->sample_accum = 0; 1573 1574 snd_usb_endpoint_start_quirk(ep); 1575 1576 /* 1577 * If this endpoint has a data endpoint as implicit feedback source, 1578 * don't start the urbs here. Instead, mark them all as available, 1579 * wait for the record urbs to return and queue the playback urbs 1580 * from that context. 1581 */ 1582 1583 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1584 goto __error; 1585 1586 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1587 !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { 1588 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1589 i = 0; 1590 goto fill_rest; 1591 } 1592 1593 for (i = 0; i < ep->nurbs; i++) { 1594 struct urb *urb = ep->urb[i].urb; 1595 1596 if (snd_BUG_ON(!urb)) 1597 goto __error; 1598 1599 if (is_playback) 1600 err = prepare_outbound_urb(ep, urb->context, true); 1601 else 1602 err = prepare_inbound_urb(ep, urb->context); 1603 if (err < 0) { 1604 /* stop filling at applptr */ 1605 if (err == -EAGAIN) 1606 break; 1607 usb_audio_dbg(ep->chip, 1608 "EP 0x%x: failed to prepare urb: %d\n", 1609 ep->ep_num, err); 1610 goto __error; 1611 } 1612 1613 err = usb_submit_urb(urb, GFP_ATOMIC); 1614 if (err < 0) { 1615 usb_audio_err(ep->chip, 1616 "cannot submit urb %d, error %d: %s\n", 1617 i, err, usb_error_string(err)); 1618 goto __error; 1619 } 1620 set_bit(i, &ep->active_mask); 1621 atomic_inc(&ep->submitted_urbs); 1622 } 1623 1624 if (!i) { 1625 usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", 1626 ep->ep_num); 1627 goto __error; 1628 } 1629 1630 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1631 i, ep->ep_num); 1632 1633 fill_rest: 1634 /* put the remaining URBs to ready list */ 1635 if (is_playback) { 1636 for (; i < ep->nurbs; i++) 1637 push_back_to_ready_list(ep, ep->urb + i); 1638 } 1639 1640 return 0; 1641 1642 __error: 1643 snd_usb_endpoint_stop(ep, false); 1644 return -EPIPE; 1645 } 1646 1647 /** 1648 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1649 * 1650 * @ep: the endpoint to stop (may be NULL) 1651 * @keep_pending: keep in-flight URBs 1652 * 1653 * A call to this function will decrement the running count of the endpoint. 1654 * In case the last user has requested the endpoint stop, the URBs will 1655 * actually be deactivated. 1656 * 1657 * Must be balanced to calls of snd_usb_endpoint_start(). 1658 * 1659 * The caller needs to synchronize the pending stop operation via 1660 * snd_usb_endpoint_sync_pending_stop(). 1661 */ 1662 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) 1663 { 1664 if (!ep) 1665 return; 1666 1667 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1668 ep_type_name(ep->type), ep->ep_num, 1669 atomic_read(&ep->running)); 1670 1671 if (snd_BUG_ON(!atomic_read(&ep->running))) 1672 return; 1673 1674 if (!atomic_dec_return(&ep->running)) { 1675 if (ep->sync_source) 1676 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1677 stop_urbs(ep, false, keep_pending); 1678 if (ep->clock_ref) 1679 atomic_dec(&ep->clock_ref->locked); 1680 1681 if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET && 1682 usb_pipeout(ep->pipe)) { 1683 ep->need_prepare = true; 1684 if (ep->iface_ref) 1685 ep->iface_ref->need_setup = true; 1686 } 1687 } 1688 } 1689 1690 /** 1691 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1692 * 1693 * @ep: the endpoint to release 1694 * 1695 * This function does not care for the endpoint's running count but will tear 1696 * down all the streaming URBs immediately. 1697 */ 1698 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1699 { 1700 release_urbs(ep, true); 1701 } 1702 1703 /** 1704 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1705 * @chip: The chip 1706 * 1707 * This free all endpoints and those resources 1708 */ 1709 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1710 { 1711 struct snd_usb_endpoint *ep, *en; 1712 struct snd_usb_iface_ref *ip, *in; 1713 struct snd_usb_clock_ref *cp, *cn; 1714 1715 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1716 kfree(ep); 1717 1718 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1719 kfree(ip); 1720 1721 list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list) 1722 kfree(cp); 1723 } 1724 1725 /* 1726 * snd_usb_handle_sync_urb: parse an USB sync packet 1727 * 1728 * @ep: the endpoint to handle the packet 1729 * @sender: the sending endpoint 1730 * @urb: the received packet 1731 * 1732 * This function is called from the context of an endpoint that received 1733 * the packet and is used to let another endpoint object handle the payload. 1734 */ 1735 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1736 struct snd_usb_endpoint *sender, 1737 const struct urb *urb) 1738 { 1739 int shift; 1740 unsigned int f; 1741 unsigned long flags; 1742 1743 snd_BUG_ON(ep == sender); 1744 1745 /* 1746 * In case the endpoint is operating in implicit feedback mode, prepare 1747 * a new outbound URB that has the same layout as the received packet 1748 * and add it to the list of pending urbs. queue_pending_output_urbs() 1749 * will take care of them later. 1750 */ 1751 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1752 atomic_read(&ep->running)) { 1753 1754 /* implicit feedback case */ 1755 int i, bytes = 0; 1756 struct snd_urb_ctx *in_ctx; 1757 struct snd_usb_packet_info *out_packet; 1758 1759 in_ctx = urb->context; 1760 1761 /* Count overall packet size */ 1762 for (i = 0; i < in_ctx->packets; i++) 1763 if (urb->iso_frame_desc[i].status == 0) 1764 bytes += urb->iso_frame_desc[i].actual_length; 1765 1766 /* 1767 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1768 * streaming once it received a 0-byte OUT URB 1769 */ 1770 if (bytes == 0) 1771 return; 1772 1773 spin_lock_irqsave(&ep->lock, flags); 1774 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1775 spin_unlock_irqrestore(&ep->lock, flags); 1776 usb_audio_err(ep->chip, 1777 "next package FIFO overflow EP 0x%x\n", 1778 ep->ep_num); 1779 notify_xrun(ep); 1780 return; 1781 } 1782 1783 out_packet = next_packet_fifo_enqueue(ep); 1784 1785 /* 1786 * Iterate through the inbound packet and prepare the lengths 1787 * for the output packet. The OUT packet we are about to send 1788 * will have the same amount of payload bytes per stride as the 1789 * IN packet we just received. Since the actual size is scaled 1790 * by the stride, use the sender stride to calculate the length 1791 * in case the number of channels differ between the implicitly 1792 * fed-back endpoint and the synchronizing endpoint. 1793 */ 1794 1795 out_packet->packets = in_ctx->packets; 1796 for (i = 0; i < in_ctx->packets; i++) { 1797 if (urb->iso_frame_desc[i].status == 0) 1798 out_packet->packet_size[i] = 1799 urb->iso_frame_desc[i].actual_length / sender->stride; 1800 else 1801 out_packet->packet_size[i] = 0; 1802 } 1803 1804 spin_unlock_irqrestore(&ep->lock, flags); 1805 snd_usb_queue_pending_output_urbs(ep, false); 1806 1807 return; 1808 } 1809 1810 /* 1811 * process after playback sync complete 1812 * 1813 * Full speed devices report feedback values in 10.14 format as samples 1814 * per frame, high speed devices in 16.16 format as samples per 1815 * microframe. 1816 * 1817 * Because the Audio Class 1 spec was written before USB 2.0, many high 1818 * speed devices use a wrong interpretation, some others use an 1819 * entirely different format. 1820 * 1821 * Therefore, we cannot predict what format any particular device uses 1822 * and must detect it automatically. 1823 */ 1824 1825 if (urb->iso_frame_desc[0].status != 0 || 1826 urb->iso_frame_desc[0].actual_length < 3) 1827 return; 1828 1829 f = le32_to_cpup(urb->transfer_buffer); 1830 if (urb->iso_frame_desc[0].actual_length == 3) 1831 f &= 0x00ffffff; 1832 else 1833 f &= 0x0fffffff; 1834 1835 if (f == 0) 1836 return; 1837 1838 if (unlikely(sender->tenor_fb_quirk)) { 1839 /* 1840 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1841 * and others) sometimes change the feedback value 1842 * by +/- 0x1.0000. 1843 */ 1844 if (f < ep->freqn - 0x8000) 1845 f += 0xf000; 1846 else if (f > ep->freqn + 0x8000) 1847 f -= 0xf000; 1848 } else if (unlikely(ep->freqshift == INT_MIN)) { 1849 /* 1850 * The first time we see a feedback value, determine its format 1851 * by shifting it left or right until it matches the nominal 1852 * frequency value. This assumes that the feedback does not 1853 * differ from the nominal value more than +50% or -25%. 1854 */ 1855 shift = 0; 1856 while (f < ep->freqn - ep->freqn / 4) { 1857 f <<= 1; 1858 shift++; 1859 } 1860 while (f > ep->freqn + ep->freqn / 2) { 1861 f >>= 1; 1862 shift--; 1863 } 1864 ep->freqshift = shift; 1865 } else if (ep->freqshift >= 0) 1866 f <<= ep->freqshift; 1867 else 1868 f >>= -ep->freqshift; 1869 1870 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1871 /* 1872 * If the frequency looks valid, set it. 1873 * This value is referred to in prepare_playback_urb(). 1874 */ 1875 spin_lock_irqsave(&ep->lock, flags); 1876 ep->freqm = f; 1877 spin_unlock_irqrestore(&ep->lock, flags); 1878 } else { 1879 /* 1880 * Out of range; maybe the shift value is wrong. 1881 * Reset it so that we autodetect again the next time. 1882 */ 1883 ep->freqshift = INT_MIN; 1884 } 1885 } 1886 1887