xref: /linux/sound/sparc/dbri.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Based entirely upon drivers/sbus/audio/dbri.c which is:
6  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8  *
9  * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10  * on Sun SPARCstation 10, 20, LX and Voyager models.
11  *
12  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13  *   data time multiplexer with ISDN support (aka T7259)
14  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16  *   Documentation:
17  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18  *     Sparc Technology Business (courtesy of Sun Support)
19  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20  *     available from the Lucent (formarly AT&T microelectronics) home
21  *     page.
22  *   - http://www.freesoft.org/Linux/DBRI/
23  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
25  *   Documentation: from the Crystal Semiconductor home page.
26  *
27  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28  * memory and a serial device (long pipes, nr 0-15) or between two serial
29  * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30  * device (short pipes).
31  * A timeslot defines the bit-offset and nr of bits read from a serial device.
32  * The timeslots are linked to 6 circular lists, one for each direction for
33  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34  * (the second one is a monitor/tee pipe, valid only for serial input).
35  *
36  * The mmcodec is connected via the CHI bus and needs the data & some
37  * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38  * chunks. It also has a control mode, which serves for audio format setting.
39  *
40  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41  * the same CHI bus, so I thought perhaps it is possible to use the onboard
42  * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43  * audio devices. But the SUN HW group decided against it, at least on my
44  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45  * connected.
46  *
47  * I've tried to stick to the following function naming conventions:
48  * snd_*	ALSA stuff
49  * cs4215_*	CS4215 codec specfic stuff
50  * dbri_*	DBRI high-level stuff
51  * other	DBRI low-level stuff
52  */
53 
54 #include <sound/driver.h>
55 #include <linux/interrupt.h>
56 #include <linux/delay.h>
57 
58 #include <sound/core.h>
59 #include <sound/pcm.h>
60 #include <sound/pcm_params.h>
61 #include <sound/info.h>
62 #include <sound/control.h>
63 #include <sound/initval.h>
64 
65 #include <asm/irq.h>
66 #include <asm/io.h>
67 #include <asm/sbus.h>
68 #include <asm/atomic.h>
69 
70 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71 MODULE_DESCRIPTION("Sun DBRI");
72 MODULE_LICENSE("GPL");
73 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 
79 module_param_array(index, int, NULL, 0444);
80 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81 module_param_array(id, charp, NULL, 0444);
82 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83 module_param_array(enable, bool, NULL, 0444);
84 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
85 
86 #define DBRI_DEBUG
87 
88 #define D_INT	(1<<0)
89 #define D_GEN	(1<<1)
90 #define D_CMD	(1<<2)
91 #define D_MM	(1<<3)
92 #define D_USR	(1<<4)
93 #define D_DESC	(1<<5)
94 
95 static int dbri_debug;
96 module_param(dbri_debug, int, 0644);
97 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
98 
99 #ifdef DBRI_DEBUG
100 static char *cmds[] = {
101 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
103 };
104 
105 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
106 
107 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
108 				    (1 << 27) | \
109 				    value)
110 #else
111 #define dprintk(a, x...)
112 
113 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
114 				    (intr << 27) | \
115 				    value)
116 #endif				/* DBRI_DEBUG */
117 
118 /***************************************************************************
119 	CS4215 specific definitions and structures
120 ****************************************************************************/
121 
122 struct cs4215 {
123 	__u8 data[4];		/* Data mode: Time slots 5-8 */
124 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
125 	__u8 onboard;
126 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
127 	volatile __u32 status;
128 	volatile __u32 version;
129 	__u8 precision;		/* In bits, either 8 or 16 */
130 	__u8 channels;		/* 1 or 2 */
131 };
132 
133 /*
134  * Control mode first
135  */
136 
137 /* Time Slot 1, Status register */
138 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
139 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
140 				/* 0: line: 2.8V, speaker 8V */
141 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
142 #define CS4215_RSRVD_1  (1<<5)
143 
144 /* Time Slot 2, Data Format Register */
145 #define CS4215_DFR_LINEAR16	0
146 #define CS4215_DFR_ULAW		1
147 #define CS4215_DFR_ALAW		2
148 #define CS4215_DFR_LINEAR8	3
149 #define CS4215_DFR_STEREO	(1<<2)
150 static struct {
151 	unsigned short freq;
152 	unsigned char xtal;
153 	unsigned char csval;
154 } CS4215_FREQ[] = {
155 	{  8000, (1 << 4), (0 << 3) },
156 	{ 16000, (1 << 4), (1 << 3) },
157 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
158 	{ 32000, (1 << 4), (3 << 3) },
159      /* {    NA, (1 << 4), (4 << 3) }, */
160      /* {    NA, (1 << 4), (5 << 3) }, */
161 	{ 48000, (1 << 4), (6 << 3) },
162 	{  9600, (1 << 4), (7 << 3) },
163 	{  5513, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
164 	{ 11025, (2 << 4), (1 << 3) },
165 	{ 18900, (2 << 4), (2 << 3) },
166 	{ 22050, (2 << 4), (3 << 3) },
167 	{ 37800, (2 << 4), (4 << 3) },
168 	{ 44100, (2 << 4), (5 << 3) },
169 	{ 33075, (2 << 4), (6 << 3) },
170 	{  6615, (2 << 4), (7 << 3) },
171 	{ 0, 0, 0}
172 };
173 
174 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
175 
176 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
177 
178 /* Time Slot 3, Serial Port Control register */
179 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
180 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
181 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
182 #define CS4215_BSEL_128	(1<<2)
183 #define CS4215_BSEL_256	(2<<2)
184 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
185 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
186 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
187 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
188 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
189 
190 /* Time Slot 4, Test Register */
191 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
192 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
193 
194 /* Time Slot 5, Parallel Port Register */
195 /* Read only here and the same as the in data mode */
196 
197 /* Time Slot 6, Reserved  */
198 
199 /* Time Slot 7, Version Register  */
200 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
201 
202 /* Time Slot 8, Reserved  */
203 
204 /*
205  * Data mode
206  */
207 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
208 
209 /* Time Slot 5, Output Setting  */
210 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
211 #define CS4215_LE	(1<<6)	/* Line Out Enable */
212 #define CS4215_HE	(1<<7)	/* Headphone Enable */
213 
214 /* Time Slot 6, Output Setting  */
215 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_SE	(1<<6)	/* Speaker Enable */
217 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
218 
219 /* Time Slot 7, Input Setting */
220 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
221 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
222 #define CS4215_OVR	(1<<5)	/* 1: Overrange condition occurred */
223 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
224 #define CS4215_PIO1	(1<<7)
225 
226 /* Time Slot 8, Input Setting */
227 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
228 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
229 
230 /***************************************************************************
231 		DBRI specific definitions and structures
232 ****************************************************************************/
233 
234 /* DBRI main registers */
235 #define REG0	0x00UL		/* Status and Control */
236 #define REG1	0x04UL		/* Mode and Interrupt */
237 #define REG2	0x08UL		/* Parallel IO */
238 #define REG3	0x0cUL		/* Test */
239 #define REG8	0x20UL		/* Command Queue Pointer */
240 #define REG9	0x24UL		/* Interrupt Queue Pointer */
241 
242 #define DBRI_NO_CMDS	64
243 #define DBRI_NO_INTS	1	/* Note: the value of this define was
244 				 * originally 2.  The ringbuffer to store
245 				 * interrupts in dma is currently broken.
246 				 * This is a temporary fix until the ringbuffer
247 				 * is fixed.
248 				 */
249 #define DBRI_INT_BLK	64
250 #define DBRI_NO_DESCS	64
251 #define DBRI_NO_PIPES	32
252 
253 #define DBRI_MM_ONB	1
254 #define DBRI_MM_SB	2
255 
256 #define DBRI_REC	0
257 #define DBRI_PLAY	1
258 #define DBRI_NO_STREAMS	2
259 
260 /* One transmit/receive descriptor */
261 struct dbri_mem {
262 	volatile __u32 word1;
263 	volatile __u32 ba;	/* Transmit/Receive Buffer Address */
264 	volatile __u32 nda;	/* Next Descriptor Address */
265 	volatile __u32 word4;
266 };
267 
268 /* This structure is in a DMA region where it can accessed by both
269  * the CPU and the DBRI
270  */
271 struct dbri_dma {
272 	volatile s32 cmd[DBRI_NO_CMDS];	/* Place for commands       */
273 	volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK];	/* Interrupt field  */
274 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
275 };
276 
277 #define dbri_dma_off(member, elem)	\
278 	((u32)(unsigned long)		\
279 	 (&(((struct dbri_dma *)0)->member[elem])))
280 
281 enum in_or_out { PIPEinput, PIPEoutput };
282 
283 struct dbri_pipe {
284 	u32 sdp;		/* SDP command word */
285 	enum in_or_out direction;
286 	int nextpipe;		/* Next pipe in linked list */
287 	int prevpipe;
288 	int cycle;		/* Offset of timeslot (bits) */
289 	int length;		/* Length of timeslot (bits) */
290 	int first_desc;		/* Index of first descriptor */
291 	int desc;		/* Index of active descriptor */
292 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
293 };
294 
295 struct dbri_desc {
296 	int inuse;		/* Boolean flag */
297 	int next;		/* Index of next desc, or -1 */
298 	unsigned int len;
299 };
300 
301 /* Per stream (playback or record) information */
302 struct dbri_streaminfo {
303 	struct snd_pcm_substream *substream;
304 	u32 dvma_buffer;	/* Device view of Alsa DMA buffer */
305 	int left;		/* # of bytes left in DMA buffer  */
306 	int size;		/* Size of DMA buffer             */
307 	size_t offset;		/* offset in user buffer          */
308 	int pipe;		/* Data pipe used                 */
309 	int left_gain;		/* mixer elements                 */
310 	int right_gain;
311 	int balance;
312 };
313 
314 /* This structure holds the information for both chips (DBRI & CS4215) */
315 struct snd_dbri {
316 	struct snd_card *card;	/* ALSA card */
317 	struct snd_pcm *pcm;
318 
319 	int regs_size, irq;	/* Needed for unload */
320 	struct sbus_dev *sdev;	/* SBUS device info */
321 	spinlock_t lock;
322 
323 	volatile struct dbri_dma *dma;	/* Pointer to our DMA block */
324 	u32 dma_dvma;		/* DBRI visible DMA address */
325 
326 	void __iomem *regs;	/* dbri HW regs */
327 	int dbri_version;	/* 'e' and up is OK */
328 	int dbri_irqp;		/* intr queue pointer */
329 	int wait_send;		/* sequence of command buffers send */
330 	int wait_ackd;		/* sequence of command buffers acknowledged */
331 
332 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
333 	struct dbri_desc descs[DBRI_NO_DESCS];
334 
335 	int chi_in_pipe;
336 	int chi_out_pipe;
337 	int chi_bpf;
338 
339 	struct cs4215 mm;	/* mmcodec special info */
340 				/* per stream (playback/record) info */
341 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
342 
343 	struct snd_dbri *next;
344 };
345 
346 #define DBRI_MAX_VOLUME		63	/* Output volume */
347 #define DBRI_MAX_GAIN		15	/* Input gain */
348 #define DBRI_RIGHT_BALANCE	255
349 #define DBRI_MID_BALANCE	(DBRI_RIGHT_BALANCE >> 1)
350 
351 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
352 #define D_P		(1<<15)	/* Program command & queue pointer valid */
353 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
354 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
355 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
356 #define D_X		(1<<7)	/* Sanity Timer Disable */
357 #define D_T		(1<<6)	/* Permit activation of the TE interface */
358 #define D_N		(1<<5)	/* Permit activation of the NT interface */
359 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
360 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
361 #define D_D		(1<<2)	/* Disable Master Mode */
362 #define D_H		(1<<1)	/* Halt for Analysis */
363 #define D_R		(1<<0)	/* Soft Reset */
364 
365 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
366 #define D_LITTLE_END	(1<<8)	/* Byte Order */
367 #define D_BIG_END	(0<<8)	/* Byte Order */
368 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (readonly) */
369 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (readonly) */
370 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (readonly) */
371 #define D_MBE		(1<<1)	/* Burst Error on SBus (readonly) */
372 #define D_IR		(1<<0)	/* Interrupt Indicator (readonly) */
373 
374 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
375 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
376 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
377 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
378 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
379 #define D_ENPIO		(0xf0)	/* Enable all the pins */
380 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
381 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
382 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
383 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
384 
385 /* DBRI Commands (Page 20) */
386 #define D_WAIT		0x0	/* Stop execution */
387 #define D_PAUSE		0x1	/* Flush long pipes */
388 #define D_JUMP		0x2	/* New command queue */
389 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
390 #define D_REX		0x4	/* Report command execution via interrupt */
391 #define D_SDP		0x5	/* Setup Data Pipe */
392 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
393 #define D_DTS		0x7	/* Define Time Slot */
394 #define D_SSP		0x8	/* Set short Data Pipe */
395 #define D_CHI		0x9	/* Set CHI Global Mode */
396 #define D_NT		0xa	/* NT Command */
397 #define D_TE		0xb	/* TE Command */
398 #define D_CDEC		0xc	/* Codec setup */
399 #define D_TEST		0xd	/* No comment */
400 #define D_CDM		0xe	/* CHI Data mode command */
401 
402 /* Special bits for some commands */
403 #define D_PIPE(v)      ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
404 
405 /* Setup Data Pipe */
406 /* IRM */
407 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value rcvd */
408 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
409 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
410 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
411 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
412 
413 /* Pipe data MODE */
414 #define D_SDP_MEM	(0<<13)	/* To/from memory */
415 #define D_SDP_HDLC	(2<<13)
416 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
417 #define D_SDP_SER	(4<<13)	/* Serial to serial */
418 #define D_SDP_FIXED	(6<<13)	/* Short only */
419 #define D_SDP_MODE(v)	((v)&(7<<13))
420 
421 #define D_SDP_TO_SER	(1<<12)	/* Direction */
422 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
423 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
424 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
425 #define D_SDP_P		(1<<10)	/* Pointer Valid */
426 #define D_SDP_A		(1<<8)	/* Abort */
427 #define D_SDP_C		(1<<7)	/* Clear */
428 
429 /* Define Time Slot */
430 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
431 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
432 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
433 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
434 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
435 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
436 
437 /* Time Slot defines */
438 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
439 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
440 #define D_TS_DI		(1<<13)	/* Data Invert */
441 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
442 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
443 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
444 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
445 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
446 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
447 
448 /* Concentration Highway Interface Modes */
449 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
450 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
451 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
452 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
453 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
454 #define D_CHI_FD	(1<<11)	/* Frame Drive */
455 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
456 
457 /* NT: These are here for completeness */
458 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
459 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
460 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
461 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
462 #define D_NT_ISNT	(1<<13)	/* Configfure interface as NT */
463 #define D_NT_FT		(1<<12)	/* Fixed Timing */
464 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
465 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
466 #define D_NT_ACT	(1<<9)	/* Activate Interface */
467 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
468 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
469 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
470 #define D_NT_FACT	(1<<1)	/* Force Activation */
471 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
472 
473 /* Codec Setup */
474 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
475 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
476 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
477 
478 /* Test */
479 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
480 #define D_TEST_SIZE(v)	((v)<<11)	/* */
481 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
482 #define D_TEST_PROC	0x6	/* MicroProcessor test */
483 #define D_TEST_SER	0x7	/* Serial-Controller test */
484 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
485 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
486 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
487 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
488 #define D_TEST_DUMP	0xe	/* ROM Dump */
489 
490 /* CHI Data Mode */
491 #define D_CDM_THI	(1<<8)	/* Transmit Data on CHIDR Pin */
492 #define D_CDM_RHI	(1<<7)	/* Receive Data on CHIDX Pin */
493 #define D_CDM_RCE	(1<<6)	/* Receive on Rising Edge of CHICK */
494 #define D_CDM_XCE	(1<<2)	/* Transmit Data on Rising Edge of CHICK */
495 #define D_CDM_XEN	(1<<1)	/* Transmit Highway Enable */
496 #define D_CDM_REN	(1<<0)	/* Receive Highway Enable */
497 
498 /* The Interrupts */
499 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
500 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
501 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
502 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
503 #define D_INTR_EOL	5	/* End of List */
504 #define D_INTR_CMDI	6	/* Command has bean read */
505 #define D_INTR_XCMP	8	/* Transmission of frame complete */
506 #define D_INTR_SBRI	9	/* BRI status change info */
507 #define D_INTR_FXDT	10	/* Fixed data change */
508 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
509 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
510 #define D_INTR_DBYT	12	/* Dropped by frame slip */
511 #define D_INTR_RBYT	13	/* Repeated by frame slip */
512 #define D_INTR_LINT	14	/* Lost Interrupt */
513 #define D_INTR_UNDR	15	/* DMA underrun */
514 
515 #define D_INTR_TE	32
516 #define D_INTR_NT	34
517 #define D_INTR_CHI	36
518 #define D_INTR_CMD	38
519 
520 #define D_INTR_GETCHAN(v)	(((v)>>24) & 0x3f)
521 #define D_INTR_GETCODE(v)	(((v)>>20) & 0xf)
522 #define D_INTR_GETCMD(v)	(((v)>>16) & 0xf)
523 #define D_INTR_GETVAL(v)	((v) & 0xffff)
524 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
525 
526 #define D_P_0		0	/* TE receive anchor */
527 #define D_P_1		1	/* TE transmit anchor */
528 #define D_P_2		2	/* NT transmit anchor */
529 #define D_P_3		3	/* NT receive anchor */
530 #define D_P_4		4	/* CHI send data */
531 #define D_P_5		5	/* CHI receive data */
532 #define D_P_6		6	/* */
533 #define D_P_7		7	/* */
534 #define D_P_8		8	/* */
535 #define D_P_9		9	/* */
536 #define D_P_10		10	/* */
537 #define D_P_11		11	/* */
538 #define D_P_12		12	/* */
539 #define D_P_13		13	/* */
540 #define D_P_14		14	/* */
541 #define D_P_15		15	/* */
542 #define D_P_16		16	/* CHI anchor pipe */
543 #define D_P_17		17	/* CHI send */
544 #define D_P_18		18	/* CHI receive */
545 #define D_P_19		19	/* CHI receive */
546 #define D_P_20		20	/* CHI receive */
547 #define D_P_21		21	/* */
548 #define D_P_22		22	/* */
549 #define D_P_23		23	/* */
550 #define D_P_24		24	/* */
551 #define D_P_25		25	/* */
552 #define D_P_26		26	/* */
553 #define D_P_27		27	/* */
554 #define D_P_28		28	/* */
555 #define D_P_29		29	/* */
556 #define D_P_30		30	/* */
557 #define D_P_31		31	/* */
558 
559 /* Transmit descriptor defines */
560 #define DBRI_TD_F	(1<<31)	/* End of Frame */
561 #define DBRI_TD_D	(1<<30)	/* Do not append CRC */
562 #define DBRI_TD_CNT(v)	((v)<<16)	/* Number of valid bytes in the buffer */
563 #define DBRI_TD_B	(1<<15)	/* Final interrupt */
564 #define DBRI_TD_M	(1<<14)	/* Marker interrupt */
565 #define DBRI_TD_I	(1<<13)	/* Transmit Idle Characters */
566 #define DBRI_TD_FCNT(v)	(v)	/* Flag Count */
567 #define DBRI_TD_UNR	(1<<3)	/* Underrun: transmitter is out of data */
568 #define DBRI_TD_ABT	(1<<2)	/* Abort: frame aborted */
569 #define DBRI_TD_TBC	(1<<0)	/* Transmit buffer Complete */
570 #define DBRI_TD_STATUS(v)       ((v)&0xff)	/* Transmit status */
571 			/* Maximum buffer size per TD: almost 8Kb */
572 #define DBRI_TD_MAXCNT	((1 << 13) - 1)
573 
574 /* Receive descriptor defines */
575 #define DBRI_RD_F	(1<<31)	/* End of Frame */
576 #define DBRI_RD_C	(1<<30)	/* Completed buffer */
577 #define DBRI_RD_B	(1<<15)	/* Final interrupt */
578 #define DBRI_RD_M	(1<<14)	/* Marker interrupt */
579 #define DBRI_RD_BCNT(v)	(v)	/* Buffer size */
580 #define DBRI_RD_CRC	(1<<7)	/* 0: CRC is correct */
581 #define DBRI_RD_BBC	(1<<6)	/* 1: Bad Byte received */
582 #define DBRI_RD_ABT	(1<<5)	/* Abort: frame aborted */
583 #define DBRI_RD_OVRN	(1<<3)	/* Overrun: data lost */
584 #define DBRI_RD_STATUS(v)      ((v)&0xff)	/* Receive status */
585 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff)	/* Valid bytes in the buffer */
586 
587 /* stream_info[] access */
588 /* Translate the ALSA direction into the array index */
589 #define DBRI_STREAMNO(substream)				\
590 		(substream->stream == 				\
591 		 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
592 
593 /* Return a pointer to dbri_streaminfo */
594 #define DBRI_STREAM(dbri, substream)	&dbri->stream_info[DBRI_STREAMNO(substream)]
595 
596 static struct snd_dbri *dbri_list;	/* All DBRI devices */
597 
598 /*
599  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
600  * So we have to reverse the bits. Note: not all bit lengths are supported
601  */
602 static __u32 reverse_bytes(__u32 b, int len)
603 {
604 	switch (len) {
605 	case 32:
606 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
607 	case 16:
608 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
609 	case 8:
610 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
611 	case 4:
612 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
613 	case 2:
614 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
615 	case 1:
616 	case 0:
617 		break;
618 	default:
619 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
620 	};
621 
622 	return b;
623 }
624 
625 /*
626 ****************************************************************************
627 ************** DBRI initialization and command synchronization *************
628 ****************************************************************************
629 
630 Commands are sent to the DBRI by building a list of them in memory,
631 then writing the address of the first list item to DBRI register 8.
632 The list is terminated with a WAIT command, which generates a
633 CPU interrupt to signal completion.
634 
635 Since the DBRI can run in parallel with the CPU, several means of
636 synchronization present themselves.  The method implemented here is close
637 to the original scheme (Rudolf's), and uses 2 counters (wait_send and
638 wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
639 
640 A more sophisticated scheme might involve a circular command buffer
641 or an array of command buffers.  A routine could fill one with
642 commands and link it onto a list.  When a interrupt signaled
643 completion of the current command buffer, look on the list for
644 the next one.
645 
646 Every time a routine wants to write commands to the DBRI, it must
647 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
648 in return. dbri_cmdlock() will block if the previous commands have not
649 been completed yet. After this the commands can be written to the buffer,
650 and dbri_cmdsend() is called with the final pointer value to send them
651 to the DBRI.
652 
653 */
654 
655 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri);
656 
657 enum dbri_lock { NoGetLock, GetLock };
658 #define MAXLOOPS 10
659 
660 static volatile s32 *dbri_cmdlock(struct snd_dbri * dbri, enum dbri_lock get)
661 {
662 	int maxloops = MAXLOOPS;
663 
664 #ifndef SMP
665 	if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
666 		printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
667 	}
668 #endif
669 
670 	/* Delay if previous commands are still being processed */
671 	while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
672 		msleep_interruptible(1);
673 		/* If dbri_cmdlock() got called from inside the
674 		 * interrupt handler, this will do the processing.
675 		 */
676 		dbri_process_interrupt_buffer(dbri);
677 	}
678 	if (maxloops == 0) {
679 		printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
680 			dbri->wait_send);
681 	} else {
682 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
683 			MAXLOOPS - maxloops - 1);
684 	}
685 
686 	/*if (get == GetLock) spin_lock(&dbri->lock); */
687 	return &dbri->dma->cmd[0];
688 }
689 
690 static void dbri_cmdsend(struct snd_dbri * dbri, volatile s32 * cmd)
691 {
692 	volatile s32 *ptr;
693 	u32	reg;
694 
695 	for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
696 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
697 	}
698 
699 	if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
700 		printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
701 		/* Ignore the last part. */
702 		cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
703 	}
704 
705 	dbri->wait_send++;
706 	dbri->wait_send &= 0xffff;	/* restrict it to a 16 bit counter. */
707 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
708 	*(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
709 
710 	/* Set command pointer and signal it is valid. */
711 	sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
712 	reg = sbus_readl(dbri->regs + REG0);
713 	reg |= D_P;
714 	sbus_writel(reg, dbri->regs + REG0);
715 
716 	/*spin_unlock(&dbri->lock); */
717 }
718 
719 /* Lock must be held when calling this */
720 static void dbri_reset(struct snd_dbri * dbri)
721 {
722 	int i;
723 
724 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
725 		sbus_readl(dbri->regs + REG0),
726 		sbus_readl(dbri->regs + REG2),
727 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
728 
729 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
730 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
731 		udelay(10);
732 }
733 
734 /* Lock must not be held before calling this */
735 static void dbri_initialize(struct snd_dbri * dbri)
736 {
737 	volatile s32 *cmd;
738 	u32 dma_addr, tmp;
739 	unsigned long flags;
740 	int n;
741 
742 	spin_lock_irqsave(&dbri->lock, flags);
743 
744 	dbri_reset(dbri);
745 
746 	cmd = dbri_cmdlock(dbri, NoGetLock);
747 	dprintk(D_GEN, "init: cmd: %p, int: %p\n",
748 		&dbri->dma->cmd[0], &dbri->dma->intr[0]);
749 
750 	/*
751 	 * Initialize the interrupt ringbuffer.
752 	 */
753 	for (n = 0; n < DBRI_NO_INTS - 1; n++) {
754 		dma_addr = dbri->dma_dvma;
755 		dma_addr += dbri_dma_off(intr, ((n + 1) & DBRI_INT_BLK));
756 		dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
757 	}
758 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
759 	dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
760 	dbri->dbri_irqp = 1;
761 
762 	/* Initialize pipes */
763 	for (n = 0; n < DBRI_NO_PIPES; n++)
764 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
765 
766 	/* A brute approach - DBRI falls back to working burst size by itself
767 	 * On SS20 D_S does not work, so do not try so high. */
768 	tmp = sbus_readl(dbri->regs + REG0);
769 	tmp |= D_G | D_E;
770 	tmp &= ~D_S;
771 	sbus_writel(tmp, dbri->regs + REG0);
772 
773 	/*
774 	 * Set up the interrupt queue
775 	 */
776 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
777 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
778 	*(cmd++) = dma_addr;
779 
780 	dbri_cmdsend(dbri, cmd);
781 	spin_unlock_irqrestore(&dbri->lock, flags);
782 }
783 
784 /*
785 ****************************************************************************
786 ************************** DBRI data pipe management ***********************
787 ****************************************************************************
788 
789 While DBRI control functions use the command and interrupt buffers, the
790 main data path takes the form of data pipes, which can be short (command
791 and interrupt driven), or long (attached to DMA buffers).  These functions
792 provide a rudimentary means of setting up and managing the DBRI's pipes,
793 but the calling functions have to make sure they respect the pipes' linked
794 list ordering, among other things.  The transmit and receive functions
795 here interface closely with the transmit and receive interrupt code.
796 
797 */
798 static int pipe_active(struct snd_dbri * dbri, int pipe)
799 {
800 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
801 }
802 
803 /* reset_pipe(dbri, pipe)
804  *
805  * Called on an in-use pipe to clear anything being transmitted or received
806  * Lock must be held before calling this.
807  */
808 static void reset_pipe(struct snd_dbri * dbri, int pipe)
809 {
810 	int sdp;
811 	int desc;
812 	volatile int *cmd;
813 
814 	if (pipe < 0 || pipe > 31) {
815 		printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
816 		return;
817 	}
818 
819 	sdp = dbri->pipes[pipe].sdp;
820 	if (sdp == 0) {
821 		printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
822 		return;
823 	}
824 
825 	cmd = dbri_cmdlock(dbri, NoGetLock);
826 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
827 	*(cmd++) = 0;
828 	dbri_cmdsend(dbri, cmd);
829 
830 	desc = dbri->pipes[pipe].first_desc;
831 	while (desc != -1) {
832 		dbri->descs[desc].inuse = 0;
833 		desc = dbri->descs[desc].next;
834 	}
835 
836 	dbri->pipes[pipe].desc = -1;
837 	dbri->pipes[pipe].first_desc = -1;
838 }
839 
840 /* FIXME: direction as an argument? */
841 static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
842 {
843 	if (pipe < 0 || pipe > 31) {
844 		printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
845 		return;
846 	}
847 
848 	if ((sdp & 0xf800) != sdp) {
849 		printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
850 		/* sdp &= 0xf800; */
851 	}
852 
853 	/* If this is a fixed receive pipe, arrange for an interrupt
854 	 * every time its data changes
855 	 */
856 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
857 		sdp |= D_SDP_CHANGE;
858 
859 	sdp |= D_PIPE(pipe);
860 	dbri->pipes[pipe].sdp = sdp;
861 	dbri->pipes[pipe].desc = -1;
862 	dbri->pipes[pipe].first_desc = -1;
863 	if (sdp & D_SDP_TO_SER)
864 		dbri->pipes[pipe].direction = PIPEoutput;
865 	else
866 		dbri->pipes[pipe].direction = PIPEinput;
867 
868 	reset_pipe(dbri, pipe);
869 }
870 
871 /* FIXME: direction not needed */
872 static void link_time_slot(struct snd_dbri * dbri, int pipe,
873 			   enum in_or_out direction, int basepipe,
874 			   int length, int cycle)
875 {
876 	volatile s32 *cmd;
877 	int val;
878 	int prevpipe;
879 	int nextpipe;
880 
881 	if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
882 		printk(KERN_ERR
883 		    "DBRI: link_time_slot called with illegal pipe number\n");
884 		return;
885 	}
886 
887 	if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
888 		printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
889 		return;
890 	}
891 
892 	/* Deal with CHI special case:
893 	 * "If transmission on edges 0 or 1 is desired, then cycle n
894 	 *  (where n = # of bit times per frame...) must be used."
895 	 *                  - DBRI data sheet, page 11
896 	 */
897 	if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
898 		cycle = dbri->chi_bpf;
899 
900 	if (basepipe == pipe) {
901 		prevpipe = pipe;
902 		nextpipe = pipe;
903 	} else {
904 		/* We're not initializing a new linked list (basepipe != pipe),
905 		 * so run through the linked list and find where this pipe
906 		 * should be sloted in, based on its cycle.  CHI confuses
907 		 * things a bit, since it has a single anchor for both its
908 		 * transmit and receive lists.
909 		 */
910 		if (basepipe == 16) {
911 			if (direction == PIPEinput) {
912 				prevpipe = dbri->chi_in_pipe;
913 			} else {
914 				prevpipe = dbri->chi_out_pipe;
915 			}
916 		} else {
917 			prevpipe = basepipe;
918 		}
919 
920 		nextpipe = dbri->pipes[prevpipe].nextpipe;
921 
922 		while (dbri->pipes[nextpipe].cycle < cycle
923 		       && dbri->pipes[nextpipe].nextpipe != basepipe) {
924 			prevpipe = nextpipe;
925 			nextpipe = dbri->pipes[nextpipe].nextpipe;
926 		}
927 	}
928 
929 	if (prevpipe == 16) {
930 		if (direction == PIPEinput) {
931 			dbri->chi_in_pipe = pipe;
932 		} else {
933 			dbri->chi_out_pipe = pipe;
934 		}
935 	} else {
936 		dbri->pipes[prevpipe].nextpipe = pipe;
937 	}
938 
939 	dbri->pipes[pipe].nextpipe = nextpipe;
940 	dbri->pipes[pipe].cycle = cycle;
941 	dbri->pipes[pipe].length = length;
942 
943 	cmd = dbri_cmdlock(dbri, NoGetLock);
944 
945 	if (direction == PIPEinput) {
946 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
947 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
948 		*(cmd++) =
949 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
950 		*(cmd++) = 0;
951 	} else {
952 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
953 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
954 		*(cmd++) = 0;
955 		*(cmd++) =
956 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
957 	}
958 
959 	dbri_cmdsend(dbri, cmd);
960 }
961 
962 static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
963 			     enum in_or_out direction, int prevpipe,
964 			     int nextpipe)
965 {
966 	volatile s32 *cmd;
967 	int val;
968 
969 	if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
970 		printk(KERN_ERR
971 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
972 		return;
973 	}
974 
975 	cmd = dbri_cmdlock(dbri, NoGetLock);
976 
977 	if (direction == PIPEinput) {
978 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
979 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
980 		*(cmd++) = D_TS_NEXT(nextpipe);
981 		*(cmd++) = 0;
982 	} else {
983 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
984 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
985 		*(cmd++) = 0;
986 		*(cmd++) = D_TS_NEXT(nextpipe);
987 	}
988 
989 	dbri_cmdsend(dbri, cmd);
990 }
991 
992 /* xmit_fixed() / recv_fixed()
993  *
994  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
995  * expected to change much, and which we don't need to buffer.
996  * The DBRI only interrupts us when the data changes (receive pipes),
997  * or only changes the data when this function is called (transmit pipes).
998  * Only short pipes (numbers 16-31) can be used in fixed data mode.
999  *
1000  * These function operate on a 32-bit field, no matter how large
1001  * the actual time slot is.  The interrupt handler takes care of bit
1002  * ordering and alignment.  An 8-bit time slot will always end up
1003  * in the low-order 8 bits, filled either MSB-first or LSB-first,
1004  * depending on the settings passed to setup_pipe()
1005  */
1006 static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
1007 {
1008 	volatile s32 *cmd;
1009 
1010 	if (pipe < 16 || pipe > 31) {
1011 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1012 		return;
1013 	}
1014 
1015 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1016 		printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1017 		return;
1018 	}
1019 
1020 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1021 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1022 		return;
1023 	}
1024 
1025 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1026 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1027 		return;
1028 	}
1029 
1030 	/* DBRI short pipes always transmit LSB first */
1031 
1032 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1033 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1034 
1035 	cmd = dbri_cmdlock(dbri, GetLock);
1036 
1037 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1038 	*(cmd++) = data;
1039 
1040 	dbri_cmdsend(dbri, cmd);
1041 }
1042 
1043 static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1044 {
1045 	if (pipe < 16 || pipe > 31) {
1046 		printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1047 		return;
1048 	}
1049 
1050 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1051 		printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1052 		return;
1053 	}
1054 
1055 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1056 		printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1057 		return;
1058 	}
1059 
1060 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1061 }
1062 
1063 /* setup_descs()
1064  *
1065  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1066  * with a DMA buffer.
1067  *
1068  * Only pipe numbers 0-15 can be used in this mode.
1069  *
1070  * This function takes a stream number pointing to a data buffer,
1071  * and work by building chains of descriptors which identify the
1072  * data buffers.  Buffers too large for a single descriptor will
1073  * be spread across multiple descriptors.
1074  */
1075 static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1076 {
1077 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1078 	__u32 dvma_buffer;
1079 	int desc = 0;
1080 	int len;
1081 	int first_desc = -1;
1082 	int last_desc = -1;
1083 
1084 	if (info->pipe < 0 || info->pipe > 15) {
1085 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1086 		return -2;
1087 	}
1088 
1089 	if (dbri->pipes[info->pipe].sdp == 0) {
1090 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1091 		       info->pipe);
1092 		return -2;
1093 	}
1094 
1095 	dvma_buffer = info->dvma_buffer;
1096 	len = info->size;
1097 
1098 	if (streamno == DBRI_PLAY) {
1099 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1100 			printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1101 			       info->pipe);
1102 			return -2;
1103 		}
1104 	} else {
1105 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1106 			printk(KERN_ERR
1107 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1108 			     info->pipe);
1109 			return -2;
1110 		}
1111 		/* Should be able to queue multiple buffers to receive on a pipe */
1112 		if (pipe_active(dbri, info->pipe)) {
1113 			printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1114 			       info->pipe);
1115 			return -2;
1116 		}
1117 
1118 		/* Make sure buffer size is multiple of four */
1119 		len &= ~3;
1120 	}
1121 
1122 	while (len > 0) {
1123 		int mylen;
1124 
1125 		for (; desc < DBRI_NO_DESCS; desc++) {
1126 			if (!dbri->descs[desc].inuse)
1127 				break;
1128 		}
1129 		if (desc == DBRI_NO_DESCS) {
1130 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1131 			return -1;
1132 		}
1133 
1134 		if (len > DBRI_TD_MAXCNT) {
1135 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 1 */
1136 		} else {
1137 			mylen = len;
1138 		}
1139 		if (mylen > period) {
1140 			mylen = period;
1141 		}
1142 
1143 		dbri->descs[desc].inuse = 1;
1144 		dbri->descs[desc].next = -1;
1145 		dbri->dma->desc[desc].ba = dvma_buffer;
1146 		dbri->dma->desc[desc].nda = 0;
1147 
1148 		if (streamno == DBRI_PLAY) {
1149 			dbri->descs[desc].len = mylen;
1150 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1151 			dbri->dma->desc[desc].word4 = 0;
1152 			if (first_desc != -1)
1153 				dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1154 		} else {
1155 			dbri->descs[desc].len = 0;
1156 			dbri->dma->desc[desc].word1 = 0;
1157 			dbri->dma->desc[desc].word4 =
1158 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1159 		}
1160 
1161 		if (first_desc == -1) {
1162 			first_desc = desc;
1163 		} else {
1164 			dbri->descs[last_desc].next = desc;
1165 			dbri->dma->desc[last_desc].nda =
1166 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1167 		}
1168 
1169 		last_desc = desc;
1170 		dvma_buffer += mylen;
1171 		len -= mylen;
1172 	}
1173 
1174 	if (first_desc == -1 || last_desc == -1) {
1175 		printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1176 		return -1;
1177 	}
1178 
1179 	dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1180 	if (streamno == DBRI_PLAY) {
1181 		dbri->dma->desc[last_desc].word1 |=
1182 		    DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1183 	}
1184 	dbri->pipes[info->pipe].first_desc = first_desc;
1185 	dbri->pipes[info->pipe].desc = first_desc;
1186 
1187 	for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1188 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1189 			desc,
1190 			dbri->dma->desc[desc].word1,
1191 			dbri->dma->desc[desc].ba,
1192 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1193 	}
1194 	return 0;
1195 }
1196 
1197 /*
1198 ****************************************************************************
1199 ************************** DBRI - CHI interface ****************************
1200 ****************************************************************************
1201 
1202 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1203 multiplexed serial interface which the DBRI can operate in either master
1204 (give clock/frame sync) or slave (take clock/frame sync) mode.
1205 
1206 */
1207 
1208 enum master_or_slave { CHImaster, CHIslave };
1209 
1210 static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1211 		      int bits_per_frame)
1212 {
1213 	volatile s32 *cmd;
1214 	int val;
1215 	static int chi_initialized = 0;	/* FIXME: mutex? */
1216 
1217 	if (!chi_initialized) {
1218 
1219 		cmd = dbri_cmdlock(dbri, GetLock);
1220 
1221 		/* Set CHI Anchor: Pipe 16 */
1222 
1223 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1224 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1225 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1226 		*(cmd++) = 0;
1227 
1228 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1229 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1230 		*(cmd++) = 0;
1231 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1232 
1233 		dbri->pipes[16].sdp = 1;
1234 		dbri->pipes[16].nextpipe = 16;
1235 		dbri->chi_in_pipe = 16;
1236 		dbri->chi_out_pipe = 16;
1237 
1238 #if 0
1239 		chi_initialized++;
1240 #endif
1241 	} else {
1242 		int pipe;
1243 
1244 		for (pipe = dbri->chi_in_pipe;
1245 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1246 			unlink_time_slot(dbri, pipe, PIPEinput,
1247 					 16, dbri->pipes[pipe].nextpipe);
1248 		}
1249 		for (pipe = dbri->chi_out_pipe;
1250 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1251 			unlink_time_slot(dbri, pipe, PIPEoutput,
1252 					 16, dbri->pipes[pipe].nextpipe);
1253 		}
1254 
1255 		dbri->chi_in_pipe = 16;
1256 		dbri->chi_out_pipe = 16;
1257 
1258 		cmd = dbri_cmdlock(dbri, GetLock);
1259 	}
1260 
1261 	if (master_or_slave == CHIslave) {
1262 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1263 		 *
1264 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1265 		 * IR     = give immediate CHI status interrupt
1266 		 * EN     = give CHI status interrupt upon change
1267 		 */
1268 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1269 	} else {
1270 		/* Setup DBRI for CHI Master - generate clock, FS
1271 		 *
1272 		 * BPF                          =  bits per 8 kHz frame
1273 		 * 12.288 MHz / CHICM_divisor   = clock rate
1274 		 * FD  =  1 - drive CHIFS on rising edge of CHICK
1275 		 */
1276 		int clockrate = bits_per_frame * 8;
1277 		int divisor = 12288 / clockrate;
1278 
1279 		if (divisor > 255 || divisor * clockrate != 12288)
1280 			printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1281 
1282 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1283 				    | D_CHI_BPF(bits_per_frame));
1284 	}
1285 
1286 	dbri->chi_bpf = bits_per_frame;
1287 
1288 	/* CHI Data Mode
1289 	 *
1290 	 * RCE   =  0 - receive on falling edge of CHICK
1291 	 * XCE   =  1 - transmit on rising edge of CHICK
1292 	 * XEN   =  1 - enable transmitter
1293 	 * REN   =  1 - enable receiver
1294 	 */
1295 
1296 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1297 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1298 
1299 	dbri_cmdsend(dbri, cmd);
1300 }
1301 
1302 /*
1303 ****************************************************************************
1304 *********************** CS4215 audio codec management **********************
1305 ****************************************************************************
1306 
1307 In the standard SPARC audio configuration, the CS4215 codec is attached
1308 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1309 
1310 */
1311 static void cs4215_setup_pipes(struct snd_dbri * dbri)
1312 {
1313 	/*
1314 	 * Data mode:
1315 	 * Pipe  4: Send timeslots 1-4 (audio data)
1316 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1317 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1318 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1319 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1320 	 *          not relevant for us (only for doublechecking).
1321 	 *
1322 	 * Control mode:
1323 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1324 	 * Pipe 18: Receive timeslot 1 (clb).
1325 	 * Pipe 19: Receive timeslot 7 (version).
1326 	 */
1327 
1328 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1329 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1330 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1331 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 
1333 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1334 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1336 }
1337 
1338 static int cs4215_init_data(struct cs4215 *mm)
1339 {
1340 	/*
1341 	 * No action, memory resetting only.
1342 	 *
1343 	 * Data Time Slot 5-8
1344 	 * Speaker,Line and Headphone enable. Gain set to the half.
1345 	 * Input is mike.
1346 	 */
1347 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1348 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1349 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1350 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1351 
1352 	/*
1353 	 * Control Time Slot 1-4
1354 	 * 0: Default I/O voltage scale
1355 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1356 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1357 	 * 3: Tests disabled
1358 	 */
1359 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1360 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1361 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1362 	mm->ctrl[3] = 0;
1363 
1364 	mm->status = 0;
1365 	mm->version = 0xff;
1366 	mm->precision = 8;	/* For ULAW */
1367 	mm->channels = 2;
1368 
1369 	return 0;
1370 }
1371 
1372 static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1373 {
1374 	if (muted) {
1375 		dbri->mm.data[0] |= 63;
1376 		dbri->mm.data[1] |= 63;
1377 		dbri->mm.data[2] &= ~15;
1378 		dbri->mm.data[3] &= ~15;
1379 	} else {
1380 		/* Start by setting the playback attenuation. */
1381 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1382 		int left_gain = info->left_gain % 64;
1383 		int right_gain = info->right_gain % 64;
1384 
1385 		if (info->balance < DBRI_MID_BALANCE) {
1386 			right_gain *= info->balance;
1387 			right_gain /= DBRI_MID_BALANCE;
1388 		} else {
1389 			left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1390 			left_gain /= DBRI_MID_BALANCE;
1391 		}
1392 
1393 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1394 		dbri->mm.data[1] &= ~0x3f;
1395 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1396 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1397 
1398 		/* Now set the recording gain. */
1399 		info = &dbri->stream_info[DBRI_REC];
1400 		left_gain = info->left_gain % 16;
1401 		right_gain = info->right_gain % 16;
1402 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1403 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1404 	}
1405 
1406 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1407 }
1408 
1409 /*
1410  * Set the CS4215 to data mode.
1411  */
1412 static void cs4215_open(struct snd_dbri * dbri)
1413 {
1414 	int data_width;
1415 	u32 tmp;
1416 
1417 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1418 		dbri->mm.channels, dbri->mm.precision);
1419 
1420 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1421 	 * to make sure this takes.  This avoids clicking noises.
1422 	 */
1423 
1424 	cs4215_setdata(dbri, 1);
1425 	udelay(125);
1426 
1427 	/*
1428 	 * Data mode:
1429 	 * Pipe  4: Send timeslots 1-4 (audio data)
1430 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1431 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1432 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1433 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1434 	 *          not relevant for us (only for doublechecking).
1435 	 *
1436 	 * Just like in control mode, the time slots are all offset by eight
1437 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1438 	 * even if it's the CHI master.  Don't ask me...
1439 	 */
1440 	tmp = sbus_readl(dbri->regs + REG0);
1441 	tmp &= ~(D_C);		/* Disable CHI */
1442 	sbus_writel(tmp, dbri->regs + REG0);
1443 
1444 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1445 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1446 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1447 
1448 	reset_chi(dbri, CHIslave, 128);
1449 
1450 	/* Note: this next doesn't work for 8-bit stereo, because the two
1451 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1452 	 * (See CS4215 datasheet Fig 15)
1453 	 *
1454 	 * DBRI non-contiguous mode would be required to make this work.
1455 	 */
1456 	data_width = dbri->mm.channels * dbri->mm.precision;
1457 
1458 	link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1459 	link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1460 	link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1461 	link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1462 
1463 	/* FIXME: enable CHI after _setdata? */
1464 	tmp = sbus_readl(dbri->regs + REG0);
1465 	tmp |= D_C;		/* Enable CHI */
1466 	sbus_writel(tmp, dbri->regs + REG0);
1467 
1468 	cs4215_setdata(dbri, 0);
1469 }
1470 
1471 /*
1472  * Send the control information (i.e. audio format)
1473  */
1474 static int cs4215_setctrl(struct snd_dbri * dbri)
1475 {
1476 	int i, val;
1477 	u32 tmp;
1478 
1479 	/* FIXME - let the CPU do something useful during these delays */
1480 
1481 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1482 	 * to make sure this takes.  This avoids clicking noises.
1483 	 */
1484 	cs4215_setdata(dbri, 1);
1485 	udelay(125);
1486 
1487 	/*
1488 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1489 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1490 	 */
1491 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1492 	sbus_writel(val, dbri->regs + REG2);
1493 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1494 	udelay(34);
1495 
1496 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1497 	 * operate as CHI master, supplying clocking and frame synchronization.
1498 	 *
1499 	 * In Data mode, however, the CS4215 must be CHI master to insure
1500 	 * that its data stream is synchronous with its codec.
1501 	 *
1502 	 * The upshot of all this?  We start by putting the DBRI into master
1503 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1504 	 * into Data mode and put the DBRI into slave mode.  Various timing
1505 	 * requirements must be observed along the way.
1506 	 *
1507 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1508 	 * others?), the addressing of the CS4215's time slots is
1509 	 * offset by eight bits, so we add eight to all the "cycle"
1510 	 * values in the Define Time Slot (DTS) commands.  This is
1511 	 * done in hardware by a TI 248 that delays the DBRI->4215
1512 	 * frame sync signal by eight clock cycles.  Anybody know why?
1513 	 */
1514 	tmp = sbus_readl(dbri->regs + REG0);
1515 	tmp &= ~D_C;		/* Disable CHI */
1516 	sbus_writel(tmp, dbri->regs + REG0);
1517 
1518 	reset_chi(dbri, CHImaster, 128);
1519 
1520 	/*
1521 	 * Control mode:
1522 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1523 	 * Pipe 18: Receive timeslot 1 (clb).
1524 	 * Pipe 19: Receive timeslot 7 (version).
1525 	 */
1526 
1527 	link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1528 	link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1529 	link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1530 
1531 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1534 
1535 	tmp = sbus_readl(dbri->regs + REG0);
1536 	tmp |= D_C;		/* Enable CHI */
1537 	sbus_writel(tmp, dbri->regs + REG0);
1538 
1539 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1540 		msleep_interruptible(1);
1541 	}
1542 	if (i == 0) {
1543 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1544 			dbri->mm.status);
1545 		return -1;
1546 	}
1547 
1548 	/* Disable changes to our copy of the version number, as we are about
1549 	 * to leave control mode.
1550 	 */
1551 	recv_fixed(dbri, 19, NULL);
1552 
1553 	/* Terminate CS4215 control mode - data sheet says
1554 	 * "Set CLB=1 and send two more frames of valid control info"
1555 	 */
1556 	dbri->mm.ctrl[0] |= CS4215_CLB;
1557 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1558 
1559 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1560 	udelay(250);
1561 
1562 	cs4215_setdata(dbri, 0);
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Setup the codec with the sampling rate, audio format and number of
1569  * channels.
1570  * As part of the process we resend the settings for the data
1571  * timeslots as well.
1572  */
1573 static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1574 			  snd_pcm_format_t format, unsigned int channels)
1575 {
1576 	int freq_idx;
1577 	int ret = 0;
1578 
1579 	/* Lookup index for this rate */
1580 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1581 		if (CS4215_FREQ[freq_idx].freq == rate)
1582 			break;
1583 	}
1584 	if (CS4215_FREQ[freq_idx].freq != rate) {
1585 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1586 		return -1;
1587 	}
1588 
1589 	switch (format) {
1590 	case SNDRV_PCM_FORMAT_MU_LAW:
1591 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1592 		dbri->mm.precision = 8;
1593 		break;
1594 	case SNDRV_PCM_FORMAT_A_LAW:
1595 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1596 		dbri->mm.precision = 8;
1597 		break;
1598 	case SNDRV_PCM_FORMAT_U8:
1599 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1600 		dbri->mm.precision = 8;
1601 		break;
1602 	case SNDRV_PCM_FORMAT_S16_BE:
1603 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1604 		dbri->mm.precision = 16;
1605 		break;
1606 	default:
1607 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1608 		return -1;
1609 	}
1610 
1611 	/* Add rate parameters */
1612 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1613 	dbri->mm.ctrl[2] = CS4215_XCLK |
1614 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1615 
1616 	dbri->mm.channels = channels;
1617 	/* Stereo bit: 8 bit stereo not working yet. */
1618 	if ((channels > 1) && (dbri->mm.precision == 16))
1619 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1620 
1621 	ret = cs4215_setctrl(dbri);
1622 	if (ret == 0)
1623 		cs4215_open(dbri);	/* set codec to data mode */
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  *
1630  */
1631 static int cs4215_init(struct snd_dbri * dbri)
1632 {
1633 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1634 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1635 
1636 	/* Look for the cs4215 chips */
1637 	if (reg2 & D_PIO2) {
1638 		dprintk(D_MM, "Onboard CS4215 detected\n");
1639 		dbri->mm.onboard = 1;
1640 	}
1641 	if (reg2 & D_PIO0) {
1642 		dprintk(D_MM, "Speakerbox detected\n");
1643 		dbri->mm.onboard = 0;
1644 
1645 		if (reg2 & D_PIO2) {
1646 			printk(KERN_INFO "DBRI: Using speakerbox / "
1647 			       "ignoring onboard mmcodec.\n");
1648 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1649 		}
1650 	}
1651 
1652 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1653 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1654 		return -EIO;
1655 	}
1656 
1657 	cs4215_setup_pipes(dbri);
1658 
1659 	cs4215_init_data(&dbri->mm);
1660 
1661 	/* Enable capture of the status & version timeslots. */
1662 	recv_fixed(dbri, 18, &dbri->mm.status);
1663 	recv_fixed(dbri, 19, &dbri->mm.version);
1664 
1665 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668 			dbri->mm.offset);
1669 		return -EIO;
1670 	}
1671 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677 ****************************************************************************
1678 *************************** DBRI interrupt handler *************************
1679 ****************************************************************************
1680 
1681 The DBRI communicates with the CPU mainly via a circular interrupt
1682 buffer.  When an interrupt is signaled, the CPU walks through the
1683 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684 Complicated interrupts are handled by dedicated functions (which
1685 appear first in this file).  Any pending interrupts can be serviced by
1686 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687 interrupts are disabled.  This function is used by dbri_cmdlock()
1688 to make sure we're synced up with the chip before each command sequence,
1689 even if we're running cli'ed.
1690 
1691 */
1692 
1693 /* xmit_descs()
1694  *
1695  * Transmit the current TD's for recording/playing, if needed.
1696  * For playback, ALSA has filled the DMA memory with new data (we hope).
1697  */
1698 static void xmit_descs(unsigned long data)
1699 {
1700 	struct snd_dbri *dbri = (struct snd_dbri *) data;
1701 	struct dbri_streaminfo *info;
1702 	volatile s32 *cmd;
1703 	unsigned long flags;
1704 	int first_td;
1705 
1706 	if (dbri == NULL)
1707 		return;		/* Disabled */
1708 
1709 	/* First check the recording stream for buffer overflow */
1710 	info = &dbri->stream_info[DBRI_REC];
1711 	spin_lock_irqsave(&dbri->lock, flags);
1712 
1713 	if ((info->left >= info->size) && (info->pipe >= 0)) {
1714 		first_td = dbri->pipes[info->pipe].first_desc;
1715 
1716 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1717 
1718 		/* Stream could be closed by the time we run. */
1719 		if (first_td < 0) {
1720 			goto play;
1721 		}
1722 
1723 		cmd = dbri_cmdlock(dbri, NoGetLock);
1724 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1725 				    dbri->pipes[info->pipe].sdp
1726 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1727 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1728 		dbri_cmdsend(dbri, cmd);
1729 
1730 		/* Reset our admin of the pipe & bytes read. */
1731 		dbri->pipes[info->pipe].desc = first_td;
1732 		info->left = 0;
1733 	}
1734 
1735 play:
1736 	spin_unlock_irqrestore(&dbri->lock, flags);
1737 
1738 	/* Now check the playback stream for buffer underflow */
1739 	info = &dbri->stream_info[DBRI_PLAY];
1740 	spin_lock_irqsave(&dbri->lock, flags);
1741 
1742 	if ((info->left <= 0) && (info->pipe >= 0)) {
1743 		first_td = dbri->pipes[info->pipe].first_desc;
1744 
1745 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1746 
1747 		/* Stream could be closed by the time we run. */
1748 		if (first_td < 0) {
1749 			spin_unlock_irqrestore(&dbri->lock, flags);
1750 			return;
1751 		}
1752 
1753 		cmd = dbri_cmdlock(dbri, NoGetLock);
1754 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1755 				    dbri->pipes[info->pipe].sdp
1756 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1757 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1758 		dbri_cmdsend(dbri, cmd);
1759 
1760 		/* Reset our admin of the pipe & bytes written. */
1761 		dbri->pipes[info->pipe].desc = first_td;
1762 		info->left = info->size;
1763 	}
1764 	spin_unlock_irqrestore(&dbri->lock, flags);
1765 }
1766 
1767 static DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1768 
1769 /* transmission_complete_intr()
1770  *
1771  * Called by main interrupt handler when DBRI signals transmission complete
1772  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1773  *
1774  * Walks through the pipe's list of transmit buffer descriptors and marks
1775  * them as available. Stops when the first descriptor is found without
1776  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1777  *
1778  * The DMA buffers are not released, but re-used. Since the transmit buffer
1779  * descriptors are not clobbered, they can be re-submitted as is. This is
1780  * done by the xmit_descs() tasklet above since that could take longer.
1781  */
1782 
1783 static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1784 {
1785 	struct dbri_streaminfo *info;
1786 	int td;
1787 	int status;
1788 
1789 	info = &dbri->stream_info[DBRI_PLAY];
1790 
1791 	td = dbri->pipes[pipe].desc;
1792 	while (td >= 0) {
1793 		if (td >= DBRI_NO_DESCS) {
1794 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1795 			return;
1796 		}
1797 
1798 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1799 		if (!(status & DBRI_TD_TBC)) {
1800 			break;
1801 		}
1802 
1803 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1804 
1805 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1806 		info->offset += dbri->descs[td].len;
1807 		info->left -= dbri->descs[td].len;
1808 
1809 		/* On the last TD, transmit them all again. */
1810 		if (dbri->descs[td].next == -1) {
1811 			if (info->left > 0) {
1812 				printk(KERN_WARNING
1813 				       "%d bytes left after last transfer.\n",
1814 				       info->left);
1815 				info->left = 0;
1816 			}
1817 			tasklet_schedule(&xmit_descs_task);
1818 		}
1819 
1820 		td = dbri->descs[td].next;
1821 		dbri->pipes[pipe].desc = td;
1822 	}
1823 
1824 	/* Notify ALSA */
1825 	if (spin_is_locked(&dbri->lock)) {
1826 		spin_unlock(&dbri->lock);
1827 		snd_pcm_period_elapsed(info->substream);
1828 		spin_lock(&dbri->lock);
1829 	} else
1830 		snd_pcm_period_elapsed(info->substream);
1831 }
1832 
1833 static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1834 {
1835 	struct dbri_streaminfo *info;
1836 	int rd = dbri->pipes[pipe].desc;
1837 	s32 status;
1838 
1839 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1840 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1841 		return;
1842 	}
1843 
1844 	dbri->descs[rd].inuse = 0;
1845 	dbri->pipes[pipe].desc = dbri->descs[rd].next;
1846 	status = dbri->dma->desc[rd].word1;
1847 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1848 
1849 	info = &dbri->stream_info[DBRI_REC];
1850 	info->offset += DBRI_RD_CNT(status);
1851 	info->left += DBRI_RD_CNT(status);
1852 
1853 	/* FIXME: Check status */
1854 
1855 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1856 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1857 
1858 	/* On the last TD, transmit them all again. */
1859 	if (dbri->descs[rd].next == -1) {
1860 		if (info->left > info->size) {
1861 			printk(KERN_WARNING
1862 			       "%d bytes recorded in %d size buffer.\n",
1863 			       info->left, info->size);
1864 		}
1865 		tasklet_schedule(&xmit_descs_task);
1866 	}
1867 
1868 	/* Notify ALSA */
1869 	if (spin_is_locked(&dbri->lock)) {
1870 		spin_unlock(&dbri->lock);
1871 		snd_pcm_period_elapsed(info->substream);
1872 		spin_lock(&dbri->lock);
1873 	} else
1874 		snd_pcm_period_elapsed(info->substream);
1875 }
1876 
1877 static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1878 {
1879 	int val = D_INTR_GETVAL(x);
1880 	int channel = D_INTR_GETCHAN(x);
1881 	int command = D_INTR_GETCMD(x);
1882 	int code = D_INTR_GETCODE(x);
1883 #ifdef DBRI_DEBUG
1884 	int rval = D_INTR_GETRVAL(x);
1885 #endif
1886 
1887 	if (channel == D_INTR_CMD) {
1888 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1889 			cmds[command], val);
1890 	} else {
1891 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1892 			channel, code, rval);
1893 	}
1894 
1895 	if (channel == D_INTR_CMD && command == D_WAIT) {
1896 		dbri->wait_ackd = val;
1897 		if (dbri->wait_send != val) {
1898 			printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1899 			       val, dbri->wait_send);
1900 		}
1901 		return;
1902 	}
1903 
1904 	switch (code) {
1905 	case D_INTR_BRDY:
1906 		reception_complete_intr(dbri, channel);
1907 		break;
1908 	case D_INTR_XCMP:
1909 	case D_INTR_MINT:
1910 		transmission_complete_intr(dbri, channel);
1911 		break;
1912 	case D_INTR_UNDR:
1913 		/* UNDR - Transmission underrun
1914 		 * resend SDP command with clear pipe bit (C) set
1915 		 */
1916 		{
1917 			volatile s32 *cmd;
1918 
1919 			int pipe = channel;
1920 			int td = dbri->pipes[pipe].desc;
1921 
1922 			dbri->dma->desc[td].word4 = 0;
1923 			cmd = dbri_cmdlock(dbri, NoGetLock);
1924 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1925 					    dbri->pipes[pipe].sdp
1926 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1927 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1928 			dbri_cmdsend(dbri, cmd);
1929 		}
1930 		break;
1931 	case D_INTR_FXDT:
1932 		/* FXDT - Fixed data change */
1933 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1934 			val = reverse_bytes(val, dbri->pipes[channel].length);
1935 
1936 		if (dbri->pipes[channel].recv_fixed_ptr)
1937 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1938 		break;
1939 	default:
1940 		if (channel != D_INTR_CMD)
1941 			printk(KERN_WARNING
1942 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1943 	}
1944 }
1945 
1946 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1947  * buffer until it finds a zero word (indicating nothing more to do
1948  * right now).  Non-zero words require processing and are handed off
1949  * to dbri_process_one_interrupt AFTER advancing the pointer.  This
1950  * order is important since we might recurse back into this function
1951  * and need to make sure the pointer has been advanced first.
1952  */
1953 static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1954 {
1955 	s32 x;
1956 
1957 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1958 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1959 		dbri->dbri_irqp++;
1960 		if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1961 			dbri->dbri_irqp = 1;
1962 		else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1963 			dbri->dbri_irqp++;
1964 
1965 		dbri_process_one_interrupt(dbri, x);
1966 	}
1967 }
1968 
1969 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1970 				      struct pt_regs *regs)
1971 {
1972 	struct snd_dbri *dbri = dev_id;
1973 	static int errcnt = 0;
1974 	int x;
1975 
1976 	if (dbri == NULL)
1977 		return IRQ_NONE;
1978 	spin_lock(&dbri->lock);
1979 
1980 	/*
1981 	 * Read it, so the interrupt goes away.
1982 	 */
1983 	x = sbus_readl(dbri->regs + REG1);
1984 
1985 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1986 		u32 tmp;
1987 
1988 		if (x & D_MRR)
1989 			printk(KERN_ERR
1990 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1991 			       x);
1992 		if (x & D_MLE)
1993 			printk(KERN_ERR
1994 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1995 			       x);
1996 		if (x & D_LBG)
1997 			printk(KERN_ERR
1998 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1999 		if (x & D_MBE)
2000 			printk(KERN_ERR
2001 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
2002 
2003 		/* Some of these SBus errors cause the chip's SBus circuitry
2004 		 * to be disabled, so just re-enable and try to keep going.
2005 		 *
2006 		 * The only one I've seen is MRR, which will be triggered
2007 		 * if you let a transmit pipe underrun, then try to CDP it.
2008 		 *
2009 		 * If these things persist, we reset the chip.
2010 		 */
2011 		if ((++errcnt) % 10 == 0) {
2012 			dprintk(D_INT, "Interrupt errors exceeded.\n");
2013 			dbri_reset(dbri);
2014 		} else {
2015 			tmp = sbus_readl(dbri->regs + REG0);
2016 			tmp &= ~(D_D);
2017 			sbus_writel(tmp, dbri->regs + REG0);
2018 		}
2019 	}
2020 
2021 	dbri_process_interrupt_buffer(dbri);
2022 
2023 	/* FIXME: Write 0 into regs to ACK interrupt */
2024 
2025 	spin_unlock(&dbri->lock);
2026 
2027 	return IRQ_HANDLED;
2028 }
2029 
2030 /****************************************************************************
2031 		PCM Interface
2032 ****************************************************************************/
2033 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
2034 	.info			= (SNDRV_PCM_INFO_MMAP |
2035 				   SNDRV_PCM_INFO_INTERLEAVED |
2036 				   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2037 				   SNDRV_PCM_INFO_MMAP_VALID),
2038 	.formats		= SNDRV_PCM_FMTBIT_MU_LAW |
2039 				  SNDRV_PCM_FMTBIT_A_LAW |
2040 				  SNDRV_PCM_FMTBIT_U8 |
2041 				  SNDRV_PCM_FMTBIT_S16_BE,
2042 	.rates			= SNDRV_PCM_RATE_8000_48000,
2043 	.rate_min		= 8000,
2044 	.rate_max		= 48000,
2045 	.channels_min		= 1,
2046 	.channels_max		= 2,
2047 	.buffer_bytes_max	= (64 * 1024),
2048 	.period_bytes_min	= 1,
2049 	.period_bytes_max	= DBRI_TD_MAXCNT,
2050 	.periods_min		= 1,
2051 	.periods_max		= 1024,
2052 };
2053 
2054 static int snd_dbri_open(struct snd_pcm_substream *substream)
2055 {
2056 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2057 	struct snd_pcm_runtime *runtime = substream->runtime;
2058 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2059 	unsigned long flags;
2060 
2061 	dprintk(D_USR, "open audio output.\n");
2062 	runtime->hw = snd_dbri_pcm_hw;
2063 
2064 	spin_lock_irqsave(&dbri->lock, flags);
2065 	info->substream = substream;
2066 	info->left = 0;
2067 	info->offset = 0;
2068 	info->dvma_buffer = 0;
2069 	info->pipe = -1;
2070 	spin_unlock_irqrestore(&dbri->lock, flags);
2071 
2072 	cs4215_open(dbri);
2073 
2074 	return 0;
2075 }
2076 
2077 static int snd_dbri_close(struct snd_pcm_substream *substream)
2078 {
2079 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2080 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2081 
2082 	dprintk(D_USR, "close audio output.\n");
2083 	info->substream = NULL;
2084 	info->left = 0;
2085 	info->offset = 0;
2086 
2087 	return 0;
2088 }
2089 
2090 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2091 			      struct snd_pcm_hw_params *hw_params)
2092 {
2093 	struct snd_pcm_runtime *runtime = substream->runtime;
2094 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2095 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2096 	int direction;
2097 	int ret;
2098 
2099 	/* set sampling rate, audio format and number of channels */
2100 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2101 			     params_format(hw_params),
2102 			     params_channels(hw_params));
2103 	if (ret != 0)
2104 		return ret;
2105 
2106 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2107 				params_buffer_bytes(hw_params))) < 0) {
2108 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2109 		return ret;
2110 	}
2111 
2112 	/* hw_params can get called multiple times. Only map the DMA once.
2113 	 */
2114 	if (info->dvma_buffer == 0) {
2115 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2116 			direction = SBUS_DMA_TODEVICE;
2117 		else
2118 			direction = SBUS_DMA_FROMDEVICE;
2119 
2120 		info->dvma_buffer = sbus_map_single(dbri->sdev,
2121 					runtime->dma_area,
2122 					params_buffer_bytes(hw_params),
2123 					direction);
2124 	}
2125 
2126 	direction = params_buffer_bytes(hw_params);
2127 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2128 		direction, info->dvma_buffer);
2129 	return 0;
2130 }
2131 
2132 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2133 {
2134 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2135 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2136 	int direction;
2137 	dprintk(D_USR, "hw_free.\n");
2138 
2139 	/* hw_free can get called multiple times. Only unmap the DMA once.
2140 	 */
2141 	if (info->dvma_buffer) {
2142 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2143 			direction = SBUS_DMA_TODEVICE;
2144 		else
2145 			direction = SBUS_DMA_FROMDEVICE;
2146 
2147 		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2148 				  substream->runtime->buffer_size, direction);
2149 		info->dvma_buffer = 0;
2150 	}
2151 	info->pipe = -1;
2152 
2153 	return snd_pcm_lib_free_pages(substream);
2154 }
2155 
2156 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2157 {
2158 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2159 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2160 	struct snd_pcm_runtime *runtime = substream->runtime;
2161 	int ret;
2162 
2163 	info->size = snd_pcm_lib_buffer_bytes(substream);
2164 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2165 		info->pipe = 4;	/* Send pipe */
2166 	else {
2167 		info->pipe = 6;	/* Receive pipe */
2168 		info->left = info->size;	/* To trigger submittal */
2169 	}
2170 
2171 	spin_lock_irq(&dbri->lock);
2172 
2173 	/* Setup the all the transmit/receive desciptors to cover the
2174 	 * whole DMA buffer.
2175 	 */
2176 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2177 			  snd_pcm_lib_period_bytes(substream));
2178 
2179 	runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2180 
2181 	spin_unlock_irq(&dbri->lock);
2182 
2183 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2184 	return ret;
2185 }
2186 
2187 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2188 {
2189 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2190 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2191 	int ret = 0;
2192 
2193 	switch (cmd) {
2194 	case SNDRV_PCM_TRIGGER_START:
2195 		dprintk(D_USR, "start audio, period is %d bytes\n",
2196 			(int)snd_pcm_lib_period_bytes(substream));
2197 		/* Enable & schedule the tasklet that re-submits the TDs. */
2198 		xmit_descs_task.data = (unsigned long)dbri;
2199 		tasklet_schedule(&xmit_descs_task);
2200 		break;
2201 	case SNDRV_PCM_TRIGGER_STOP:
2202 		dprintk(D_USR, "stop audio.\n");
2203 		/* Make the tasklet bail out immediately. */
2204 		xmit_descs_task.data = 0;
2205 		reset_pipe(dbri, info->pipe);
2206 		break;
2207 	default:
2208 		ret = -EINVAL;
2209 	}
2210 
2211 	return ret;
2212 }
2213 
2214 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2215 {
2216 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2217 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2218 	snd_pcm_uframes_t ret;
2219 
2220 	ret = bytes_to_frames(substream->runtime, info->offset)
2221 		% substream->runtime->buffer_size;
2222 	dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2223 		ret, info->left);
2224 	return ret;
2225 }
2226 
2227 static struct snd_pcm_ops snd_dbri_ops = {
2228 	.open = snd_dbri_open,
2229 	.close = snd_dbri_close,
2230 	.ioctl = snd_pcm_lib_ioctl,
2231 	.hw_params = snd_dbri_hw_params,
2232 	.hw_free = snd_dbri_hw_free,
2233 	.prepare = snd_dbri_prepare,
2234 	.trigger = snd_dbri_trigger,
2235 	.pointer = snd_dbri_pointer,
2236 };
2237 
2238 static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2239 {
2240 	struct snd_pcm *pcm;
2241 	int err;
2242 
2243 	if ((err = snd_pcm_new(dbri->card,
2244 			       /* ID */		    "sun_dbri",
2245 			       /* device */	    0,
2246 			       /* playback count */ 1,
2247 			       /* capture count */  1, &pcm)) < 0)
2248 		return err;
2249 	snd_assert(pcm != NULL, return -EINVAL);
2250 
2251 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2252 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2253 
2254 	pcm->private_data = dbri;
2255 	pcm->info_flags = 0;
2256 	strcpy(pcm->name, dbri->card->shortname);
2257 	dbri->pcm = pcm;
2258 
2259 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2260 			SNDRV_DMA_TYPE_CONTINUOUS,
2261 			snd_dma_continuous_data(GFP_KERNEL),
2262 			64 * 1024, 64 * 1024)) < 0) {
2263 		return err;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 /*****************************************************************************
2270 			Mixer interface
2271 *****************************************************************************/
2272 
2273 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2274 				  struct snd_ctl_elem_info *uinfo)
2275 {
2276 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2277 	uinfo->count = 2;
2278 	uinfo->value.integer.min = 0;
2279 	if (kcontrol->private_value == DBRI_PLAY) {
2280 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2281 	} else {
2282 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2283 	}
2284 	return 0;
2285 }
2286 
2287 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2288 				 struct snd_ctl_elem_value *ucontrol)
2289 {
2290 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2291 	struct dbri_streaminfo *info;
2292 	snd_assert(dbri != NULL, return -EINVAL);
2293 	info = &dbri->stream_info[kcontrol->private_value];
2294 	snd_assert(info != NULL, return -EINVAL);
2295 
2296 	ucontrol->value.integer.value[0] = info->left_gain;
2297 	ucontrol->value.integer.value[1] = info->right_gain;
2298 	return 0;
2299 }
2300 
2301 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2302 				 struct snd_ctl_elem_value *ucontrol)
2303 {
2304 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2305 	struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2306 	unsigned long flags;
2307 	int changed = 0;
2308 
2309 	if (info->left_gain != ucontrol->value.integer.value[0]) {
2310 		info->left_gain = ucontrol->value.integer.value[0];
2311 		changed = 1;
2312 	}
2313 	if (info->right_gain != ucontrol->value.integer.value[1]) {
2314 		info->right_gain = ucontrol->value.integer.value[1];
2315 		changed = 1;
2316 	}
2317 	if (changed == 1) {
2318 		/* First mute outputs, and wait 1/8000 sec (125 us)
2319 		 * to make sure this takes.  This avoids clicking noises.
2320 		 */
2321 		spin_lock_irqsave(&dbri->lock, flags);
2322 
2323 		cs4215_setdata(dbri, 1);
2324 		udelay(125);
2325 		cs4215_setdata(dbri, 0);
2326 
2327 		spin_unlock_irqrestore(&dbri->lock, flags);
2328 	}
2329 	return changed;
2330 }
2331 
2332 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2333 				  struct snd_ctl_elem_info *uinfo)
2334 {
2335 	int mask = (kcontrol->private_value >> 16) & 0xff;
2336 
2337 	uinfo->type = (mask == 1) ?
2338 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2339 	uinfo->count = 1;
2340 	uinfo->value.integer.min = 0;
2341 	uinfo->value.integer.max = mask;
2342 	return 0;
2343 }
2344 
2345 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2346 				 struct snd_ctl_elem_value *ucontrol)
2347 {
2348 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2349 	int elem = kcontrol->private_value & 0xff;
2350 	int shift = (kcontrol->private_value >> 8) & 0xff;
2351 	int mask = (kcontrol->private_value >> 16) & 0xff;
2352 	int invert = (kcontrol->private_value >> 24) & 1;
2353 	snd_assert(dbri != NULL, return -EINVAL);
2354 
2355 	if (elem < 4) {
2356 		ucontrol->value.integer.value[0] =
2357 		    (dbri->mm.data[elem] >> shift) & mask;
2358 	} else {
2359 		ucontrol->value.integer.value[0] =
2360 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2361 	}
2362 
2363 	if (invert == 1) {
2364 		ucontrol->value.integer.value[0] =
2365 		    mask - ucontrol->value.integer.value[0];
2366 	}
2367 	return 0;
2368 }
2369 
2370 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2371 				 struct snd_ctl_elem_value *ucontrol)
2372 {
2373 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2374 	unsigned long flags;
2375 	int elem = kcontrol->private_value & 0xff;
2376 	int shift = (kcontrol->private_value >> 8) & 0xff;
2377 	int mask = (kcontrol->private_value >> 16) & 0xff;
2378 	int invert = (kcontrol->private_value >> 24) & 1;
2379 	int changed = 0;
2380 	unsigned short val;
2381 	snd_assert(dbri != NULL, return -EINVAL);
2382 
2383 	val = (ucontrol->value.integer.value[0] & mask);
2384 	if (invert == 1)
2385 		val = mask - val;
2386 	val <<= shift;
2387 
2388 	if (elem < 4) {
2389 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2390 				       ~(mask << shift)) | val;
2391 		changed = (val != dbri->mm.data[elem]);
2392 	} else {
2393 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2394 					   ~(mask << shift)) | val;
2395 		changed = (val != dbri->mm.ctrl[elem - 4]);
2396 	}
2397 
2398 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2399 		"mixer-value=%ld, mm-value=0x%x\n",
2400 		mask, changed, ucontrol->value.integer.value[0],
2401 		dbri->mm.data[elem & 3]);
2402 
2403 	if (changed) {
2404 		/* First mute outputs, and wait 1/8000 sec (125 us)
2405 		 * to make sure this takes.  This avoids clicking noises.
2406 		 */
2407 		spin_lock_irqsave(&dbri->lock, flags);
2408 
2409 		cs4215_setdata(dbri, 1);
2410 		udelay(125);
2411 		cs4215_setdata(dbri, 0);
2412 
2413 		spin_unlock_irqrestore(&dbri->lock, flags);
2414 	}
2415 	return changed;
2416 }
2417 
2418 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2419    timeslots. Shift is the bit offset in the timeslot, mask defines the
2420    number of bits. invert is a boolean for use with attenuation.
2421  */
2422 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2423 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2424   .info = snd_cs4215_info_single, \
2425   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2426   .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2427 
2428 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2429 	{
2430 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 	 .name  = "Playback Volume",
2432 	 .info  = snd_cs4215_info_volume,
2433 	 .get   = snd_cs4215_get_volume,
2434 	 .put   = snd_cs4215_put_volume,
2435 	 .private_value = DBRI_PLAY,
2436 	 },
2437 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2438 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2439 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2440 	{
2441 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2442 	 .name  = "Capture Volume",
2443 	 .info  = snd_cs4215_info_volume,
2444 	 .get   = snd_cs4215_get_volume,
2445 	 .put   = snd_cs4215_put_volume,
2446 	 .private_value = DBRI_REC,
2447 	 },
2448 	/* FIXME: mic/line switch */
2449 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2450 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2451 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2452 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2453 };
2454 
2455 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2456 
2457 static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2458 {
2459 	struct snd_card *card;
2460 	int idx, err;
2461 
2462 	snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2463 
2464 	card = dbri->card;
2465 	strcpy(card->mixername, card->shortname);
2466 
2467 	for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2468 		if ((err = snd_ctl_add(card,
2469 				snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2470 			return err;
2471 	}
2472 
2473 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2474 		dbri->stream_info[idx].left_gain = 0;
2475 		dbri->stream_info[idx].right_gain = 0;
2476 		dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 /****************************************************************************
2483 			/proc interface
2484 ****************************************************************************/
2485 static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2486 {
2487 	struct snd_dbri *dbri = entry->private_data;
2488 
2489 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2490 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2491 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2492 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2493 }
2494 
2495 #ifdef DBRI_DEBUG
2496 static void dbri_debug_read(struct snd_info_entry * entry,
2497 			    struct snd_info_buffer *buffer)
2498 {
2499 	struct snd_dbri *dbri = entry->private_data;
2500 	int pipe;
2501 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2502 
2503 	for (pipe = 0; pipe < 32; pipe++) {
2504 		if (pipe_active(dbri, pipe)) {
2505 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2506 			snd_iprintf(buffer,
2507 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2508 				    "len=%d @ %d prev: %d next %d\n",
2509 				    pipe,
2510 				    (pptr->direction ==
2511 				     PIPEinput ? "input" : "output"), pptr->sdp,
2512 				    pptr->desc, pptr->length, pptr->cycle,
2513 				    pptr->prevpipe, pptr->nextpipe);
2514 		}
2515 	}
2516 }
2517 #endif
2518 
2519 void snd_dbri_proc(struct snd_dbri * dbri)
2520 {
2521 	struct snd_info_entry *entry;
2522 
2523 	if (! snd_card_proc_new(dbri->card, "regs", &entry))
2524 		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2525 
2526 #ifdef DBRI_DEBUG
2527 	if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2528 		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2529 		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2530 	}
2531 #endif
2532 }
2533 
2534 /*
2535 ****************************************************************************
2536 **************************** Initialization ********************************
2537 ****************************************************************************
2538 */
2539 static void snd_dbri_free(struct snd_dbri * dbri);
2540 
2541 static int __init snd_dbri_create(struct snd_card *card,
2542 				  struct sbus_dev *sdev,
2543 				  struct linux_prom_irqs *irq, int dev)
2544 {
2545 	struct snd_dbri *dbri = card->private_data;
2546 	int err;
2547 
2548 	spin_lock_init(&dbri->lock);
2549 	dbri->card = card;
2550 	dbri->sdev = sdev;
2551 	dbri->irq = irq->pri;
2552 	dbri->dbri_version = sdev->prom_name[9];
2553 
2554 	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2555 					  &dbri->dma_dvma);
2556 	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2557 
2558 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2559 		dbri->dma, dbri->dma_dvma);
2560 
2561 	/* Map the registers into memory. */
2562 	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2563 	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2564 				  dbri->regs_size, "DBRI Registers");
2565 	if (!dbri->regs) {
2566 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2567 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2568 				     (void *)dbri->dma, dbri->dma_dvma);
2569 		return -EIO;
2570 	}
2571 
2572 	err = request_irq(dbri->irq, snd_dbri_interrupt, SA_SHIRQ,
2573 			  "DBRI audio", dbri);
2574 	if (err) {
2575 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2576 		sbus_iounmap(dbri->regs, dbri->regs_size);
2577 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2578 				     (void *)dbri->dma, dbri->dma_dvma);
2579 		return err;
2580 	}
2581 
2582 	/* Do low level initialization of the DBRI and CS4215 chips */
2583 	dbri_initialize(dbri);
2584 	err = cs4215_init(dbri);
2585 	if (err) {
2586 		snd_dbri_free(dbri);
2587 		return err;
2588 	}
2589 
2590 	dbri->next = dbri_list;
2591 	dbri_list = dbri;
2592 
2593 	return 0;
2594 }
2595 
2596 static void snd_dbri_free(struct snd_dbri * dbri)
2597 {
2598 	dprintk(D_GEN, "snd_dbri_free\n");
2599 	dbri_reset(dbri);
2600 
2601 	if (dbri->irq)
2602 		free_irq(dbri->irq, dbri);
2603 
2604 	if (dbri->regs)
2605 		sbus_iounmap(dbri->regs, dbri->regs_size);
2606 
2607 	if (dbri->dma)
2608 		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2609 				     (void *)dbri->dma, dbri->dma_dvma);
2610 }
2611 
2612 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2613 {
2614 	struct snd_dbri *dbri;
2615 	struct linux_prom_irqs irq;
2616 	struct resource *rp;
2617 	struct snd_card *card;
2618 	static int dev = 0;
2619 	int err;
2620 
2621 	if (sdev->prom_name[9] < 'e') {
2622 		printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2623 		       sdev->prom_name[9]);
2624 		return -EIO;
2625 	}
2626 
2627 	if (dev >= SNDRV_CARDS)
2628 		return -ENODEV;
2629 	if (!enable[dev]) {
2630 		dev++;
2631 		return -ENOENT;
2632 	}
2633 
2634 	err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2635 	if (err < 0) {
2636 		printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2637 		return -ENODEV;
2638 	}
2639 
2640 	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2641 			    sizeof(struct snd_dbri));
2642 	if (card == NULL)
2643 		return -ENOMEM;
2644 
2645 	strcpy(card->driver, "DBRI");
2646 	strcpy(card->shortname, "Sun DBRI");
2647 	rp = &sdev->resource[0];
2648 	sprintf(card->longname, "%s at 0x%02lx:0x%08lx, irq %d",
2649 		card->shortname,
2650 		rp->flags & 0xffL, rp->start, irq.pri);
2651 
2652 	if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2653 		snd_card_free(card);
2654 		return err;
2655 	}
2656 
2657 	dbri = card->private_data;
2658 	if ((err = snd_dbri_pcm(dbri)) < 0)
2659 		goto _err;
2660 
2661 	if ((err = snd_dbri_mixer(dbri)) < 0)
2662 		goto _err;
2663 
2664 	/* /proc file handling */
2665 	snd_dbri_proc(dbri);
2666 
2667 	if ((err = snd_card_register(card)) < 0)
2668 		goto _err;
2669 
2670 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2671 	       dev, dbri->regs,
2672 	       dbri->irq, dbri->dbri_version, dbri->mm.version);
2673 	dev++;
2674 
2675 	return 0;
2676 
2677  _err:
2678 	snd_dbri_free(dbri);
2679 	snd_card_free(card);
2680 	return err;
2681 }
2682 
2683 /* Probe for the dbri chip and then attach the driver. */
2684 static int __init dbri_init(void)
2685 {
2686 	struct sbus_bus *sbus;
2687 	struct sbus_dev *sdev;
2688 	int found = 0;
2689 
2690 	/* Probe each SBUS for the DBRI chip(s). */
2691 	for_all_sbusdev(sdev, sbus) {
2692 		/*
2693 		 * The version is coded in the last character
2694 		 */
2695 		if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2696 			dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2697 				sdev->prom_name, sdev->slot);
2698 
2699 			if (dbri_attach(sdev->prom_node, sdev) == 0)
2700 				found++;
2701 		}
2702 	}
2703 
2704 	return (found > 0) ? 0 : -EIO;
2705 }
2706 
2707 static void __exit dbri_exit(void)
2708 {
2709 	struct snd_dbri *this = dbri_list;
2710 
2711 	while (this != NULL) {
2712 		struct snd_dbri *next = this->next;
2713 		struct snd_card *card = this->card;
2714 
2715 		snd_dbri_free(this);
2716 		snd_card_free(card);
2717 		this = next;
2718 	}
2719 	dbri_list = NULL;
2720 }
2721 
2722 module_init(dbri_init);
2723 module_exit(dbri_exit);
2724