xref: /linux/sound/sparc/dbri.c (revision 4e95bc268b915c3a19ec8b9110f61e4ea41a1ed0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for DBRI sound chip found on Sparcs.
4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5  *
6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7  *
8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11  *
12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13  * on Sun SPARCStation 10, 20, LX and Voyager models.
14  *
15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16  *   data time multiplexer with ISDN support (aka T7259)
17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19  *   Documentation:
20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21  *     Sparc Technology Business (courtesy of Sun Support)
22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23  *     available from the Lucent (formerly AT&T microelectronics) home
24  *     page.
25  *   - http://www.freesoft.org/Linux/DBRI/
26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28  *   Documentation: from the Crystal Semiconductor home page.
29  *
30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31  * memory and a serial device (long pipes, no. 0-15) or between two serial
32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33  * device (short pipes).
34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
35  * The timeslots are linked to 6 circular lists, one for each direction for
36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37  * (the second one is a monitor/tee pipe, valid only for serial input).
38  *
39  * The mmcodec is connected via the CHI bus and needs the data & some
40  * parameters (volume, output selection) time multiplexed in 8 byte
41  * chunks. It also has a control mode, which serves for audio format setting.
42  *
43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46  * audio devices. But the SUN HW group decided against it, at least on my
47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48  * connected.
49  *
50  * I've tried to stick to the following function naming conventions:
51  * snd_*	ALSA stuff
52  * cs4215_*	CS4215 codec specific stuff
53  * dbri_*	DBRI high-level stuff
54  * other	DBRI low-level stuff
55  */
56 
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63 
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
70 
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
75 
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
80 
81 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
82 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
83 /* Enable this card */
84 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
85 
86 module_param_array(index, int, NULL, 0444);
87 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
88 module_param_array(id, charp, NULL, 0444);
89 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
90 module_param_array(enable, bool, NULL, 0444);
91 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
92 
93 #undef DBRI_DEBUG
94 
95 #define D_INT	(1<<0)
96 #define D_GEN	(1<<1)
97 #define D_CMD	(1<<2)
98 #define D_MM	(1<<3)
99 #define D_USR	(1<<4)
100 #define D_DESC	(1<<5)
101 
102 static int dbri_debug;
103 module_param(dbri_debug, int, 0644);
104 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
105 
106 #ifdef DBRI_DEBUG
107 static char *cmds[] = {
108 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
109 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
110 };
111 
112 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
113 
114 #else
115 #define dprintk(a, x...) do { } while (0)
116 
117 #endif				/* DBRI_DEBUG */
118 
119 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
120 				    (intr << 27) |	\
121 				    value)
122 
123 /***************************************************************************
124 	CS4215 specific definitions and structures
125 ****************************************************************************/
126 
127 struct cs4215 {
128 	__u8 data[4];		/* Data mode: Time slots 5-8 */
129 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
130 	__u8 onboard;
131 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
132 	volatile __u32 status;
133 	volatile __u32 version;
134 	__u8 precision;		/* In bits, either 8 or 16 */
135 	__u8 channels;		/* 1 or 2 */
136 };
137 
138 /*
139  * Control mode first
140  */
141 
142 /* Time Slot 1, Status register */
143 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
144 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
145 				/* 0: line: 2.8V, speaker 8V */
146 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
147 #define CS4215_RSRVD_1  (1<<5)
148 
149 /* Time Slot 2, Data Format Register */
150 #define CS4215_DFR_LINEAR16	0
151 #define CS4215_DFR_ULAW		1
152 #define CS4215_DFR_ALAW		2
153 #define CS4215_DFR_LINEAR8	3
154 #define CS4215_DFR_STEREO	(1<<2)
155 static struct {
156 	unsigned short freq;
157 	unsigned char xtal;
158 	unsigned char csval;
159 } CS4215_FREQ[] = {
160 	{  8000, (1 << 4), (0 << 3) },
161 	{ 16000, (1 << 4), (1 << 3) },
162 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
163 	{ 32000, (1 << 4), (3 << 3) },
164      /* {    NA, (1 << 4), (4 << 3) }, */
165      /* {    NA, (1 << 4), (5 << 3) }, */
166 	{ 48000, (1 << 4), (6 << 3) },
167 	{  9600, (1 << 4), (7 << 3) },
168 	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
169 	{ 11025, (2 << 4), (1 << 3) },
170 	{ 18900, (2 << 4), (2 << 3) },
171 	{ 22050, (2 << 4), (3 << 3) },
172 	{ 37800, (2 << 4), (4 << 3) },
173 	{ 44100, (2 << 4), (5 << 3) },
174 	{ 33075, (2 << 4), (6 << 3) },
175 	{  6615, (2 << 4), (7 << 3) },
176 	{ 0, 0, 0}
177 };
178 
179 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
180 
181 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
182 
183 /* Time Slot 3, Serial Port Control register */
184 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
185 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
186 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
187 #define CS4215_BSEL_128	(1<<2)
188 #define CS4215_BSEL_256	(2<<2)
189 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
190 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
191 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
192 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
193 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
194 
195 /* Time Slot 4, Test Register */
196 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
197 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
198 
199 /* Time Slot 5, Parallel Port Register */
200 /* Read only here and the same as the in data mode */
201 
202 /* Time Slot 6, Reserved  */
203 
204 /* Time Slot 7, Version Register  */
205 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
206 
207 /* Time Slot 8, Reserved  */
208 
209 /*
210  * Data mode
211  */
212 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
213 
214 /* Time Slot 5, Output Setting  */
215 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_LE	(1<<6)	/* Line Out Enable */
217 #define CS4215_HE	(1<<7)	/* Headphone Enable */
218 
219 /* Time Slot 6, Output Setting  */
220 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
221 #define CS4215_SE	(1<<6)	/* Speaker Enable */
222 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
223 
224 /* Time Slot 7, Input Setting */
225 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
226 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
227 #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
228 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
229 #define CS4215_PIO1	(1<<7)
230 
231 /* Time Slot 8, Input Setting */
232 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
233 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
234 
235 /***************************************************************************
236 		DBRI specific definitions and structures
237 ****************************************************************************/
238 
239 /* DBRI main registers */
240 #define REG0	0x00		/* Status and Control */
241 #define REG1	0x04		/* Mode and Interrupt */
242 #define REG2	0x08		/* Parallel IO */
243 #define REG3	0x0c		/* Test */
244 #define REG8	0x20		/* Command Queue Pointer */
245 #define REG9	0x24		/* Interrupt Queue Pointer */
246 
247 #define DBRI_NO_CMDS	64
248 #define DBRI_INT_BLK	64
249 #define DBRI_NO_DESCS	64
250 #define DBRI_NO_PIPES	32
251 #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
252 
253 #define DBRI_REC	0
254 #define DBRI_PLAY	1
255 #define DBRI_NO_STREAMS	2
256 
257 /* One transmit/receive descriptor */
258 /* When ba != 0 descriptor is used */
259 struct dbri_mem {
260 	volatile __u32 word1;
261 	__u32 ba;	/* Transmit/Receive Buffer Address */
262 	__u32 nda;	/* Next Descriptor Address */
263 	volatile __u32 word4;
264 };
265 
266 /* This structure is in a DMA region where it can accessed by both
267  * the CPU and the DBRI
268  */
269 struct dbri_dma {
270 	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
271 	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
272 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
273 };
274 
275 #define dbri_dma_off(member, elem)	\
276 	((u32)(unsigned long)		\
277 	 (&(((struct dbri_dma *)0)->member[elem])))
278 
279 enum in_or_out { PIPEinput, PIPEoutput };
280 
281 struct dbri_pipe {
282 	u32 sdp;		/* SDP command word */
283 	int nextpipe;		/* Next pipe in linked list */
284 	int length;		/* Length of timeslot (bits) */
285 	int first_desc;		/* Index of first descriptor */
286 	int desc;		/* Index of active descriptor */
287 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
288 };
289 
290 /* Per stream (playback or record) information */
291 struct dbri_streaminfo {
292 	struct snd_pcm_substream *substream;
293 	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
294 	int size;		/* Size of DMA buffer             */
295 	size_t offset;		/* offset in user buffer          */
296 	int pipe;		/* Data pipe used                 */
297 	int left_gain;		/* mixer elements                 */
298 	int right_gain;
299 };
300 
301 /* This structure holds the information for both chips (DBRI & CS4215) */
302 struct snd_dbri {
303 	int regs_size, irq;	/* Needed for unload */
304 	struct platform_device *op;	/* OF device info */
305 	spinlock_t lock;
306 
307 	struct dbri_dma *dma;	/* Pointer to our DMA block */
308 	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
309 
310 	void __iomem *regs;	/* dbri HW regs */
311 	int dbri_irqp;		/* intr queue pointer */
312 
313 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
314 	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
315 	spinlock_t cmdlock;	/* Protects cmd queue accesses */
316 	s32 *cmdptr;		/* Pointer to the last queued cmd */
317 
318 	int chi_bpf;
319 
320 	struct cs4215 mm;	/* mmcodec special info */
321 				/* per stream (playback/record) info */
322 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
323 };
324 
325 #define DBRI_MAX_VOLUME		63	/* Output volume */
326 #define DBRI_MAX_GAIN		15	/* Input gain */
327 
328 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
329 #define D_P		(1<<15)	/* Program command & queue pointer valid */
330 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
331 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
332 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
333 #define D_X		(1<<7)	/* Sanity Timer Disable */
334 #define D_T		(1<<6)	/* Permit activation of the TE interface */
335 #define D_N		(1<<5)	/* Permit activation of the NT interface */
336 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
337 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
338 #define D_D		(1<<2)	/* Disable Master Mode */
339 #define D_H		(1<<1)	/* Halt for Analysis */
340 #define D_R		(1<<0)	/* Soft Reset */
341 
342 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
343 #define D_LITTLE_END	(1<<8)	/* Byte Order */
344 #define D_BIG_END	(0<<8)	/* Byte Order */
345 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
346 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
347 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
348 #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
349 #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
350 
351 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
352 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
353 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
354 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
355 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
356 #define D_ENPIO		(0xf0)	/* Enable all the pins */
357 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
358 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
359 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
360 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
361 
362 /* DBRI Commands (Page 20) */
363 #define D_WAIT		0x0	/* Stop execution */
364 #define D_PAUSE		0x1	/* Flush long pipes */
365 #define D_JUMP		0x2	/* New command queue */
366 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
367 #define D_REX		0x4	/* Report command execution via interrupt */
368 #define D_SDP		0x5	/* Setup Data Pipe */
369 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
370 #define D_DTS		0x7	/* Define Time Slot */
371 #define D_SSP		0x8	/* Set short Data Pipe */
372 #define D_CHI		0x9	/* Set CHI Global Mode */
373 #define D_NT		0xa	/* NT Command */
374 #define D_TE		0xb	/* TE Command */
375 #define D_CDEC		0xc	/* Codec setup */
376 #define D_TEST		0xd	/* No comment */
377 #define D_CDM		0xe	/* CHI Data mode command */
378 
379 /* Special bits for some commands */
380 #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
381 
382 /* Setup Data Pipe */
383 /* IRM */
384 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
385 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
386 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
387 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
388 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
389 
390 /* Pipe data MODE */
391 #define D_SDP_MEM	(0<<13)	/* To/from memory */
392 #define D_SDP_HDLC	(2<<13)
393 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
394 #define D_SDP_SER	(4<<13)	/* Serial to serial */
395 #define D_SDP_FIXED	(6<<13)	/* Short only */
396 #define D_SDP_MODE(v)	((v)&(7<<13))
397 
398 #define D_SDP_TO_SER	(1<<12)	/* Direction */
399 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
400 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
401 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
402 #define D_SDP_P		(1<<10)	/* Pointer Valid */
403 #define D_SDP_A		(1<<8)	/* Abort */
404 #define D_SDP_C		(1<<7)	/* Clear */
405 
406 /* Define Time Slot */
407 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
408 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
409 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
410 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
411 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
412 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
413 
414 /* Time Slot defines */
415 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
416 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
417 #define D_TS_DI		(1<<13)	/* Data Invert */
418 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
419 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
420 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
421 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
422 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
423 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
424 
425 /* Concentration Highway Interface Modes */
426 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
427 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
428 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
429 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
430 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
431 #define D_CHI_FD	(1<<11)	/* Frame Drive */
432 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
433 
434 /* NT: These are here for completeness */
435 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
436 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
437 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
438 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
439 #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
440 #define D_NT_FT		(1<<12)	/* Fixed Timing */
441 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
442 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
443 #define D_NT_ACT	(1<<9)	/* Activate Interface */
444 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
445 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
446 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
447 #define D_NT_FACT	(1<<1)	/* Force Activation */
448 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
449 
450 /* Codec Setup */
451 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
452 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
453 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
454 
455 /* Test */
456 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
457 #define D_TEST_SIZE(v)	((v)<<11)	/* */
458 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
459 #define D_TEST_PROC	0x6	/* Microprocessor test */
460 #define D_TEST_SER	0x7	/* Serial-Controller test */
461 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
462 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
463 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
464 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
465 #define D_TEST_DUMP	0xe	/* ROM Dump */
466 
467 /* CHI Data Mode */
468 #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
469 #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
470 #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
471 #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
472 #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
473 #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
474 
475 /* The Interrupts */
476 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
477 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
478 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
479 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
480 #define D_INTR_EOL	5	/* End of List */
481 #define D_INTR_CMDI	6	/* Command has bean read */
482 #define D_INTR_XCMP	8	/* Transmission of frame complete */
483 #define D_INTR_SBRI	9	/* BRI status change info */
484 #define D_INTR_FXDT	10	/* Fixed data change */
485 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
486 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
487 #define D_INTR_DBYT	12	/* Dropped by frame slip */
488 #define D_INTR_RBYT	13	/* Repeated by frame slip */
489 #define D_INTR_LINT	14	/* Lost Interrupt */
490 #define D_INTR_UNDR	15	/* DMA underrun */
491 
492 #define D_INTR_TE	32
493 #define D_INTR_NT	34
494 #define D_INTR_CHI	36
495 #define D_INTR_CMD	38
496 
497 #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
498 #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
499 #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
500 #define D_INTR_GETVAL(v)	((v) & 0xffff)
501 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
502 
503 #define D_P_0		0	/* TE receive anchor */
504 #define D_P_1		1	/* TE transmit anchor */
505 #define D_P_2		2	/* NT transmit anchor */
506 #define D_P_3		3	/* NT receive anchor */
507 #define D_P_4		4	/* CHI send data */
508 #define D_P_5		5	/* CHI receive data */
509 #define D_P_6		6	/* */
510 #define D_P_7		7	/* */
511 #define D_P_8		8	/* */
512 #define D_P_9		9	/* */
513 #define D_P_10		10	/* */
514 #define D_P_11		11	/* */
515 #define D_P_12		12	/* */
516 #define D_P_13		13	/* */
517 #define D_P_14		14	/* */
518 #define D_P_15		15	/* */
519 #define D_P_16		16	/* CHI anchor pipe */
520 #define D_P_17		17	/* CHI send */
521 #define D_P_18		18	/* CHI receive */
522 #define D_P_19		19	/* CHI receive */
523 #define D_P_20		20	/* CHI receive */
524 #define D_P_21		21	/* */
525 #define D_P_22		22	/* */
526 #define D_P_23		23	/* */
527 #define D_P_24		24	/* */
528 #define D_P_25		25	/* */
529 #define D_P_26		26	/* */
530 #define D_P_27		27	/* */
531 #define D_P_28		28	/* */
532 #define D_P_29		29	/* */
533 #define D_P_30		30	/* */
534 #define D_P_31		31	/* */
535 
536 /* Transmit descriptor defines */
537 #define DBRI_TD_F	(1 << 31)	/* End of Frame */
538 #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
539 #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
540 #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
541 #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
542 #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
543 #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
544 #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
545 #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
546 #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
547 #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
548 			/* Maximum buffer size per TD: almost 8KB */
549 #define DBRI_TD_MAXCNT	((1 << 13) - 4)
550 
551 /* Receive descriptor defines */
552 #define DBRI_RD_F	(1 << 31)	/* End of Frame */
553 #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
554 #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
555 #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
556 #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
557 #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
558 #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
559 #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
560 #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
561 #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
562 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
563 
564 /* stream_info[] access */
565 /* Translate the ALSA direction into the array index */
566 #define DBRI_STREAMNO(substream)				\
567 		(substream->stream ==				\
568 		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
569 
570 /* Return a pointer to dbri_streaminfo */
571 #define DBRI_STREAM(dbri, substream)	\
572 		&dbri->stream_info[DBRI_STREAMNO(substream)]
573 
574 /*
575  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576  * So we have to reverse the bits. Note: not all bit lengths are supported
577  */
578 static __u32 reverse_bytes(__u32 b, int len)
579 {
580 	switch (len) {
581 	case 32:
582 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583 	case 16:
584 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585 	case 8:
586 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
587 	case 4:
588 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
589 	case 2:
590 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
591 	case 1:
592 	case 0:
593 		break;
594 	default:
595 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
596 	}
597 
598 	return b;
599 }
600 
601 /*
602 ****************************************************************************
603 ************** DBRI initialization and command synchronization *************
604 ****************************************************************************
605 
606 Commands are sent to the DBRI by building a list of them in memory,
607 then writing the address of the first list item to DBRI register 8.
608 The list is terminated with a WAIT command, which generates a
609 CPU interrupt to signal completion.
610 
611 Since the DBRI can run in parallel with the CPU, several means of
612 synchronization present themselves. The method implemented here uses
613 the dbri_cmdwait() to wait for execution of batch of sent commands.
614 
615 A circular command buffer is used here. A new command is being added
616 while another can be executed. The scheme works by adding two WAIT commands
617 after each sent batch of commands. When the next batch is prepared it is
618 added after the WAIT commands then the WAITs are replaced with single JUMP
619 command to the new batch. The the DBRI is forced to reread the last WAIT
620 command (replaced by the JUMP by then). If the DBRI is still executing
621 previous commands the request to reread the WAIT command is ignored.
622 
623 Every time a routine wants to write commands to the DBRI, it must
624 first call dbri_cmdlock() and get pointer to a free space in
625 dbri->dma->cmd buffer. After this, the commands can be written to
626 the buffer, and dbri_cmdsend() is called with the final pointer value
627 to send them to the DBRI.
628 
629 */
630 
631 #define MAXLOOPS 20
632 /*
633  * Wait for the current command string to execute
634  */
635 static void dbri_cmdwait(struct snd_dbri *dbri)
636 {
637 	int maxloops = MAXLOOPS;
638 	unsigned long flags;
639 
640 	/* Delay if previous commands are still being processed */
641 	spin_lock_irqsave(&dbri->lock, flags);
642 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
643 		spin_unlock_irqrestore(&dbri->lock, flags);
644 		msleep_interruptible(1);
645 		spin_lock_irqsave(&dbri->lock, flags);
646 	}
647 	spin_unlock_irqrestore(&dbri->lock, flags);
648 
649 	if (maxloops == 0)
650 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
651 	else
652 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
653 			MAXLOOPS - maxloops - 1);
654 }
655 /*
656  * Lock the command queue and return pointer to space for len cmd words
657  * It locks the cmdlock spinlock.
658  */
659 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
660 {
661 	u32 dvma_addr = (u32)dbri->dma_dvma;
662 
663 	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
664 	len += 2;
665 	spin_lock(&dbri->cmdlock);
666 	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
667 		return dbri->cmdptr + 2;
668 	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
669 		return dbri->dma->cmd;
670 	else
671 		printk(KERN_ERR "DBRI: no space for commands.");
672 
673 	return NULL;
674 }
675 
676 /*
677  * Send prepared cmd string. It works by writing a JUMP cmd into
678  * the last WAIT cmd and force DBRI to reread the cmd.
679  * The JUMP cmd points to the new cmd string.
680  * It also releases the cmdlock spinlock.
681  *
682  * Lock must be held before calling this.
683  */
684 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
685 {
686 	u32 dvma_addr = (u32)dbri->dma_dvma;
687 	s32 tmp, addr;
688 	static int wait_id = 0;
689 
690 	wait_id++;
691 	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
692 	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
693 	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
694 
695 	/* Replace the last command with JUMP */
696 	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
697 	*(dbri->cmdptr+1) = addr;
698 	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
699 
700 #ifdef DBRI_DEBUG
701 	if (cmd > dbri->cmdptr) {
702 		s32 *ptr;
703 
704 		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
705 			dprintk(D_CMD, "cmd: %lx:%08x\n",
706 				(unsigned long)ptr, *ptr);
707 	} else {
708 		s32 *ptr = dbri->cmdptr;
709 
710 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
711 		ptr++;
712 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
713 		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
714 			dprintk(D_CMD, "cmd: %lx:%08x\n",
715 				(unsigned long)ptr, *ptr);
716 	}
717 #endif
718 
719 	/* Reread the last command */
720 	tmp = sbus_readl(dbri->regs + REG0);
721 	tmp |= D_P;
722 	sbus_writel(tmp, dbri->regs + REG0);
723 
724 	dbri->cmdptr = cmd;
725 	spin_unlock(&dbri->cmdlock);
726 }
727 
728 /* Lock must be held when calling this */
729 static void dbri_reset(struct snd_dbri *dbri)
730 {
731 	int i;
732 	u32 tmp;
733 
734 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
735 		sbus_readl(dbri->regs + REG0),
736 		sbus_readl(dbri->regs + REG2),
737 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
738 
739 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
740 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
741 		udelay(10);
742 
743 	/* A brute approach - DBRI falls back to working burst size by itself
744 	 * On SS20 D_S does not work, so do not try so high. */
745 	tmp = sbus_readl(dbri->regs + REG0);
746 	tmp |= D_G | D_E;
747 	tmp &= ~D_S;
748 	sbus_writel(tmp, dbri->regs + REG0);
749 }
750 
751 /* Lock must not be held before calling this */
752 static void dbri_initialize(struct snd_dbri *dbri)
753 {
754 	u32 dvma_addr = (u32)dbri->dma_dvma;
755 	s32 *cmd;
756 	u32 dma_addr;
757 	unsigned long flags;
758 	int n;
759 
760 	spin_lock_irqsave(&dbri->lock, flags);
761 
762 	dbri_reset(dbri);
763 
764 	/* Initialize pipes */
765 	for (n = 0; n < DBRI_NO_PIPES; n++)
766 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
767 
768 	spin_lock_init(&dbri->cmdlock);
769 	/*
770 	 * Initialize the interrupt ring buffer.
771 	 */
772 	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
773 	dbri->dma->intr[0] = dma_addr;
774 	dbri->dbri_irqp = 1;
775 	/*
776 	 * Set up the interrupt queue
777 	 */
778 	spin_lock(&dbri->cmdlock);
779 	cmd = dbri->cmdptr = dbri->dma->cmd;
780 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
781 	*(cmd++) = dma_addr;
782 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
783 	dbri->cmdptr = cmd;
784 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
785 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
786 	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
787 	sbus_writel(dma_addr, dbri->regs + REG8);
788 	spin_unlock(&dbri->cmdlock);
789 
790 	spin_unlock_irqrestore(&dbri->lock, flags);
791 	dbri_cmdwait(dbri);
792 }
793 
794 /*
795 ****************************************************************************
796 ************************** DBRI data pipe management ***********************
797 ****************************************************************************
798 
799 While DBRI control functions use the command and interrupt buffers, the
800 main data path takes the form of data pipes, which can be short (command
801 and interrupt driven), or long (attached to DMA buffers).  These functions
802 provide a rudimentary means of setting up and managing the DBRI's pipes,
803 but the calling functions have to make sure they respect the pipes' linked
804 list ordering, among other things.  The transmit and receive functions
805 here interface closely with the transmit and receive interrupt code.
806 
807 */
808 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
809 {
810 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
811 }
812 
813 /* reset_pipe(dbri, pipe)
814  *
815  * Called on an in-use pipe to clear anything being transmitted or received
816  * Lock must be held before calling this.
817  */
818 static void reset_pipe(struct snd_dbri *dbri, int pipe)
819 {
820 	int sdp;
821 	int desc;
822 	s32 *cmd;
823 
824 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
825 		printk(KERN_ERR "DBRI: reset_pipe called with "
826 			"illegal pipe number\n");
827 		return;
828 	}
829 
830 	sdp = dbri->pipes[pipe].sdp;
831 	if (sdp == 0) {
832 		printk(KERN_ERR "DBRI: reset_pipe called "
833 			"on uninitialized pipe\n");
834 		return;
835 	}
836 
837 	cmd = dbri_cmdlock(dbri, 3);
838 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
839 	*(cmd++) = 0;
840 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
841 	dbri_cmdsend(dbri, cmd, 3);
842 
843 	desc = dbri->pipes[pipe].first_desc;
844 	if (desc >= 0)
845 		do {
846 			dbri->dma->desc[desc].ba = 0;
847 			dbri->dma->desc[desc].nda = 0;
848 			desc = dbri->next_desc[desc];
849 		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
850 
851 	dbri->pipes[pipe].desc = -1;
852 	dbri->pipes[pipe].first_desc = -1;
853 }
854 
855 /*
856  * Lock must be held before calling this.
857  */
858 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
859 {
860 	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
861 		printk(KERN_ERR "DBRI: setup_pipe called "
862 			"with illegal pipe number\n");
863 		return;
864 	}
865 
866 	if ((sdp & 0xf800) != sdp) {
867 		printk(KERN_ERR "DBRI: setup_pipe called "
868 			"with strange SDP value\n");
869 		/* sdp &= 0xf800; */
870 	}
871 
872 	/* If this is a fixed receive pipe, arrange for an interrupt
873 	 * every time its data changes
874 	 */
875 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
876 		sdp |= D_SDP_CHANGE;
877 
878 	sdp |= D_PIPE(pipe);
879 	dbri->pipes[pipe].sdp = sdp;
880 	dbri->pipes[pipe].desc = -1;
881 	dbri->pipes[pipe].first_desc = -1;
882 
883 	reset_pipe(dbri, pipe);
884 }
885 
886 /*
887  * Lock must be held before calling this.
888  */
889 static void link_time_slot(struct snd_dbri *dbri, int pipe,
890 			   int prevpipe, int nextpipe,
891 			   int length, int cycle)
892 {
893 	s32 *cmd;
894 	int val;
895 
896 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
897 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
898 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
899 		printk(KERN_ERR
900 		    "DBRI: link_time_slot called with illegal pipe number\n");
901 		return;
902 	}
903 
904 	if (dbri->pipes[pipe].sdp == 0
905 			|| dbri->pipes[prevpipe].sdp == 0
906 			|| dbri->pipes[nextpipe].sdp == 0) {
907 		printk(KERN_ERR "DBRI: link_time_slot called "
908 			"on uninitialized pipe\n");
909 		return;
910 	}
911 
912 	dbri->pipes[prevpipe].nextpipe = pipe;
913 	dbri->pipes[pipe].nextpipe = nextpipe;
914 	dbri->pipes[pipe].length = length;
915 
916 	cmd = dbri_cmdlock(dbri, 4);
917 
918 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
919 		/* Deal with CHI special case:
920 		 * "If transmission on edges 0 or 1 is desired, then cycle n
921 		 *  (where n = # of bit times per frame...) must be used."
922 		 *                  - DBRI data sheet, page 11
923 		 */
924 		if (prevpipe == 16 && cycle == 0)
925 			cycle = dbri->chi_bpf;
926 
927 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
928 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
929 		*(cmd++) = 0;
930 		*(cmd++) =
931 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
932 	} else {
933 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
934 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
935 		*(cmd++) =
936 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
937 		*(cmd++) = 0;
938 	}
939 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
940 
941 	dbri_cmdsend(dbri, cmd, 4);
942 }
943 
944 #if 0
945 /*
946  * Lock must be held before calling this.
947  */
948 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
949 			     enum in_or_out direction, int prevpipe,
950 			     int nextpipe)
951 {
952 	s32 *cmd;
953 	int val;
954 
955 	if (pipe < 0 || pipe > DBRI_MAX_PIPE
956 			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
957 			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
958 		printk(KERN_ERR
959 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
960 		return;
961 	}
962 
963 	cmd = dbri_cmdlock(dbri, 4);
964 
965 	if (direction == PIPEinput) {
966 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
967 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
968 		*(cmd++) = D_TS_NEXT(nextpipe);
969 		*(cmd++) = 0;
970 	} else {
971 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
972 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
973 		*(cmd++) = 0;
974 		*(cmd++) = D_TS_NEXT(nextpipe);
975 	}
976 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
977 
978 	dbri_cmdsend(dbri, cmd, 4);
979 }
980 #endif
981 
982 /* xmit_fixed() / recv_fixed()
983  *
984  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
985  * expected to change much, and which we don't need to buffer.
986  * The DBRI only interrupts us when the data changes (receive pipes),
987  * or only changes the data when this function is called (transmit pipes).
988  * Only short pipes (numbers 16-31) can be used in fixed data mode.
989  *
990  * These function operate on a 32-bit field, no matter how large
991  * the actual time slot is.  The interrupt handler takes care of bit
992  * ordering and alignment.  An 8-bit time slot will always end up
993  * in the low-order 8 bits, filled either MSB-first or LSB-first,
994  * depending on the settings passed to setup_pipe().
995  *
996  * Lock must not be held before calling it.
997  */
998 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
999 {
1000 	s32 *cmd;
1001 	unsigned long flags;
1002 
1003 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1004 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1005 		return;
1006 	}
1007 
1008 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009 		printk(KERN_ERR "DBRI: xmit_fixed: "
1010 			"Uninitialized pipe %d\n", pipe);
1011 		return;
1012 	}
1013 
1014 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1015 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1016 		return;
1017 	}
1018 
1019 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1020 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1021 			pipe);
1022 		return;
1023 	}
1024 
1025 	/* DBRI short pipes always transmit LSB first */
1026 
1027 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1028 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1029 
1030 	cmd = dbri_cmdlock(dbri, 3);
1031 
1032 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1033 	*(cmd++) = data;
1034 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1035 
1036 	spin_lock_irqsave(&dbri->lock, flags);
1037 	dbri_cmdsend(dbri, cmd, 3);
1038 	spin_unlock_irqrestore(&dbri->lock, flags);
1039 	dbri_cmdwait(dbri);
1040 
1041 }
1042 
1043 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1044 {
1045 	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1046 		printk(KERN_ERR "DBRI: recv_fixed called with "
1047 			"illegal pipe number\n");
1048 		return;
1049 	}
1050 
1051 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1052 		printk(KERN_ERR "DBRI: recv_fixed called on "
1053 			"non-fixed pipe %d\n", pipe);
1054 		return;
1055 	}
1056 
1057 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1058 		printk(KERN_ERR "DBRI: recv_fixed called on "
1059 			"transmit pipe %d\n", pipe);
1060 		return;
1061 	}
1062 
1063 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1064 }
1065 
1066 /* setup_descs()
1067  *
1068  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1069  * with a DMA buffer.
1070  *
1071  * Only pipe numbers 0-15 can be used in this mode.
1072  *
1073  * This function takes a stream number pointing to a data buffer,
1074  * and work by building chains of descriptors which identify the
1075  * data buffers.  Buffers too large for a single descriptor will
1076  * be spread across multiple descriptors.
1077  *
1078  * All descriptors create a ring buffer.
1079  *
1080  * Lock must be held before calling this.
1081  */
1082 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1083 {
1084 	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1085 	u32 dvma_addr = (u32)dbri->dma_dvma;
1086 	__u32 dvma_buffer;
1087 	int desc;
1088 	int len;
1089 	int first_desc = -1;
1090 	int last_desc = -1;
1091 
1092 	if (info->pipe < 0 || info->pipe > 15) {
1093 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1094 		return -2;
1095 	}
1096 
1097 	if (dbri->pipes[info->pipe].sdp == 0) {
1098 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1099 		       info->pipe);
1100 		return -2;
1101 	}
1102 
1103 	dvma_buffer = info->dvma_buffer;
1104 	len = info->size;
1105 
1106 	if (streamno == DBRI_PLAY) {
1107 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1108 			printk(KERN_ERR "DBRI: setup_descs: "
1109 				"Called on receive pipe %d\n", info->pipe);
1110 			return -2;
1111 		}
1112 	} else {
1113 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1114 			printk(KERN_ERR
1115 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1116 			     info->pipe);
1117 			return -2;
1118 		}
1119 		/* Should be able to queue multiple buffers
1120 		 * to receive on a pipe
1121 		 */
1122 		if (pipe_active(dbri, info->pipe)) {
1123 			printk(KERN_ERR "DBRI: recv_on_pipe: "
1124 				"Called on active pipe %d\n", info->pipe);
1125 			return -2;
1126 		}
1127 
1128 		/* Make sure buffer size is multiple of four */
1129 		len &= ~3;
1130 	}
1131 
1132 	/* Free descriptors if pipe has any */
1133 	desc = dbri->pipes[info->pipe].first_desc;
1134 	if (desc >= 0)
1135 		do {
1136 			dbri->dma->desc[desc].ba = 0;
1137 			dbri->dma->desc[desc].nda = 0;
1138 			desc = dbri->next_desc[desc];
1139 		} while (desc != -1 &&
1140 			 desc != dbri->pipes[info->pipe].first_desc);
1141 
1142 	dbri->pipes[info->pipe].desc = -1;
1143 	dbri->pipes[info->pipe].first_desc = -1;
1144 
1145 	desc = 0;
1146 	while (len > 0) {
1147 		int mylen;
1148 
1149 		for (; desc < DBRI_NO_DESCS; desc++) {
1150 			if (!dbri->dma->desc[desc].ba)
1151 				break;
1152 		}
1153 
1154 		if (desc == DBRI_NO_DESCS) {
1155 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1156 			return -1;
1157 		}
1158 
1159 		if (len > DBRI_TD_MAXCNT)
1160 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1161 		else
1162 			mylen = len;
1163 
1164 		if (mylen > period)
1165 			mylen = period;
1166 
1167 		dbri->next_desc[desc] = -1;
1168 		dbri->dma->desc[desc].ba = dvma_buffer;
1169 		dbri->dma->desc[desc].nda = 0;
1170 
1171 		if (streamno == DBRI_PLAY) {
1172 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1173 			dbri->dma->desc[desc].word4 = 0;
1174 			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1175 		} else {
1176 			dbri->dma->desc[desc].word1 = 0;
1177 			dbri->dma->desc[desc].word4 =
1178 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1179 		}
1180 
1181 		if (first_desc == -1)
1182 			first_desc = desc;
1183 		else {
1184 			dbri->next_desc[last_desc] = desc;
1185 			dbri->dma->desc[last_desc].nda =
1186 			    dvma_addr + dbri_dma_off(desc, desc);
1187 		}
1188 
1189 		last_desc = desc;
1190 		dvma_buffer += mylen;
1191 		len -= mylen;
1192 	}
1193 
1194 	if (first_desc == -1 || last_desc == -1) {
1195 		printk(KERN_ERR "DBRI: setup_descs: "
1196 			" Not enough descriptors available\n");
1197 		return -1;
1198 	}
1199 
1200 	dbri->dma->desc[last_desc].nda =
1201 	    dvma_addr + dbri_dma_off(desc, first_desc);
1202 	dbri->next_desc[last_desc] = first_desc;
1203 	dbri->pipes[info->pipe].first_desc = first_desc;
1204 	dbri->pipes[info->pipe].desc = first_desc;
1205 
1206 #ifdef DBRI_DEBUG
1207 	for (desc = first_desc; desc != -1;) {
1208 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1209 			desc,
1210 			dbri->dma->desc[desc].word1,
1211 			dbri->dma->desc[desc].ba,
1212 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1213 			desc = dbri->next_desc[desc];
1214 			if (desc == first_desc)
1215 				break;
1216 	}
1217 #endif
1218 	return 0;
1219 }
1220 
1221 /*
1222 ****************************************************************************
1223 ************************** DBRI - CHI interface ****************************
1224 ****************************************************************************
1225 
1226 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1227 multiplexed serial interface which the DBRI can operate in either master
1228 (give clock/frame sync) or slave (take clock/frame sync) mode.
1229 
1230 */
1231 
1232 enum master_or_slave { CHImaster, CHIslave };
1233 
1234 /*
1235  * Lock must not be held before calling it.
1236  */
1237 static void reset_chi(struct snd_dbri *dbri,
1238 		      enum master_or_slave master_or_slave,
1239 		      int bits_per_frame)
1240 {
1241 	s32 *cmd;
1242 	int val;
1243 
1244 	/* Set CHI Anchor: Pipe 16 */
1245 
1246 	cmd = dbri_cmdlock(dbri, 4);
1247 	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1248 		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1249 	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1250 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251 	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1252 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1253 	dbri_cmdsend(dbri, cmd, 4);
1254 
1255 	dbri->pipes[16].sdp = 1;
1256 	dbri->pipes[16].nextpipe = 16;
1257 
1258 	cmd = dbri_cmdlock(dbri, 4);
1259 
1260 	if (master_or_slave == CHIslave) {
1261 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1262 		 *
1263 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1264 		 * IR     = give immediate CHI status interrupt
1265 		 * EN     = give CHI status interrupt upon change
1266 		 */
1267 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1268 	} else {
1269 		/* Setup DBRI for CHI Master - generate clock, FS
1270 		 *
1271 		 * BPF				=  bits per 8 kHz frame
1272 		 * 12.288 MHz / CHICM_divisor	= clock rate
1273 		 * FD = 1 - drive CHIFS on rising edge of CHICK
1274 		 */
1275 		int clockrate = bits_per_frame * 8;
1276 		int divisor = 12288 / clockrate;
1277 
1278 		if (divisor > 255 || divisor * clockrate != 12288)
1279 			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1280 				"in setup_chi\n");
1281 
1282 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1283 				    | D_CHI_BPF(bits_per_frame));
1284 	}
1285 
1286 	dbri->chi_bpf = bits_per_frame;
1287 
1288 	/* CHI Data Mode
1289 	 *
1290 	 * RCE   =  0 - receive on falling edge of CHICK
1291 	 * XCE   =  1 - transmit on rising edge of CHICK
1292 	 * XEN   =  1 - enable transmitter
1293 	 * REN   =  1 - enable receiver
1294 	 */
1295 
1296 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1297 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1298 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1299 
1300 	dbri_cmdsend(dbri, cmd, 4);
1301 }
1302 
1303 /*
1304 ****************************************************************************
1305 *********************** CS4215 audio codec management **********************
1306 ****************************************************************************
1307 
1308 In the standard SPARC audio configuration, the CS4215 codec is attached
1309 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1310 
1311  * Lock must not be held before calling it.
1312 
1313 */
1314 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1315 {
1316 	unsigned long flags;
1317 
1318 	spin_lock_irqsave(&dbri->lock, flags);
1319 	/*
1320 	 * Data mode:
1321 	 * Pipe  4: Send timeslots 1-4 (audio data)
1322 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1323 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1324 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1325 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1326 	 *          not relevant for us (only for doublechecking).
1327 	 *
1328 	 * Control mode:
1329 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1330 	 * Pipe 18: Receive timeslot 1 (clb).
1331 	 * Pipe 19: Receive timeslot 7 (version).
1332 	 */
1333 
1334 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1335 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1336 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1337 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1338 
1339 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342 	spin_unlock_irqrestore(&dbri->lock, flags);
1343 
1344 	dbri_cmdwait(dbri);
1345 }
1346 
1347 static int cs4215_init_data(struct cs4215 *mm)
1348 {
1349 	/*
1350 	 * No action, memory resetting only.
1351 	 *
1352 	 * Data Time Slot 5-8
1353 	 * Speaker,Line and Headphone enable. Gain set to the half.
1354 	 * Input is mike.
1355 	 */
1356 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1357 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1358 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1359 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1360 
1361 	/*
1362 	 * Control Time Slot 1-4
1363 	 * 0: Default I/O voltage scale
1364 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1365 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1366 	 * 3: Tests disabled
1367 	 */
1368 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1369 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1370 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1371 	mm->ctrl[3] = 0;
1372 
1373 	mm->status = 0;
1374 	mm->version = 0xff;
1375 	mm->precision = 8;	/* For ULAW */
1376 	mm->channels = 1;
1377 
1378 	return 0;
1379 }
1380 
1381 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1382 {
1383 	if (muted) {
1384 		dbri->mm.data[0] |= 63;
1385 		dbri->mm.data[1] |= 63;
1386 		dbri->mm.data[2] &= ~15;
1387 		dbri->mm.data[3] &= ~15;
1388 	} else {
1389 		/* Start by setting the playback attenuation. */
1390 		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1391 		int left_gain = info->left_gain & 0x3f;
1392 		int right_gain = info->right_gain & 0x3f;
1393 
1394 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1395 		dbri->mm.data[1] &= ~0x3f;
1396 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1397 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1398 
1399 		/* Now set the recording gain. */
1400 		info = &dbri->stream_info[DBRI_REC];
1401 		left_gain = info->left_gain & 0xf;
1402 		right_gain = info->right_gain & 0xf;
1403 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1404 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1405 	}
1406 
1407 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1408 }
1409 
1410 /*
1411  * Set the CS4215 to data mode.
1412  */
1413 static void cs4215_open(struct snd_dbri *dbri)
1414 {
1415 	int data_width;
1416 	u32 tmp;
1417 	unsigned long flags;
1418 
1419 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1420 		dbri->mm.channels, dbri->mm.precision);
1421 
1422 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1423 	 * to make sure this takes.  This avoids clicking noises.
1424 	 */
1425 
1426 	cs4215_setdata(dbri, 1);
1427 	udelay(125);
1428 
1429 	/*
1430 	 * Data mode:
1431 	 * Pipe  4: Send timeslots 1-4 (audio data)
1432 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1433 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1434 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1435 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1436 	 *          not relevant for us (only for doublechecking).
1437 	 *
1438 	 * Just like in control mode, the time slots are all offset by eight
1439 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1440 	 * even if it's the CHI master.  Don't ask me...
1441 	 */
1442 	spin_lock_irqsave(&dbri->lock, flags);
1443 	tmp = sbus_readl(dbri->regs + REG0);
1444 	tmp &= ~(D_C);		/* Disable CHI */
1445 	sbus_writel(tmp, dbri->regs + REG0);
1446 
1447 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1448 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1449 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1450 
1451 	reset_chi(dbri, CHIslave, 128);
1452 
1453 	/* Note: this next doesn't work for 8-bit stereo, because the two
1454 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1455 	 * (See CS4215 datasheet Fig 15)
1456 	 *
1457 	 * DBRI non-contiguous mode would be required to make this work.
1458 	 */
1459 	data_width = dbri->mm.channels * dbri->mm.precision;
1460 
1461 	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1462 	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1463 	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1464 	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1465 
1466 	/* FIXME: enable CHI after _setdata? */
1467 	tmp = sbus_readl(dbri->regs + REG0);
1468 	tmp |= D_C;		/* Enable CHI */
1469 	sbus_writel(tmp, dbri->regs + REG0);
1470 	spin_unlock_irqrestore(&dbri->lock, flags);
1471 
1472 	cs4215_setdata(dbri, 0);
1473 }
1474 
1475 /*
1476  * Send the control information (i.e. audio format)
1477  */
1478 static int cs4215_setctrl(struct snd_dbri *dbri)
1479 {
1480 	int i, val;
1481 	u32 tmp;
1482 	unsigned long flags;
1483 
1484 	/* FIXME - let the CPU do something useful during these delays */
1485 
1486 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1487 	 * to make sure this takes.  This avoids clicking noises.
1488 	 */
1489 	cs4215_setdata(dbri, 1);
1490 	udelay(125);
1491 
1492 	/*
1493 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1494 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1495 	 */
1496 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1497 	sbus_writel(val, dbri->regs + REG2);
1498 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1499 	udelay(34);
1500 
1501 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1502 	 * operate as CHI master, supplying clocking and frame synchronization.
1503 	 *
1504 	 * In Data mode, however, the CS4215 must be CHI master to insure
1505 	 * that its data stream is synchronous with its codec.
1506 	 *
1507 	 * The upshot of all this?  We start by putting the DBRI into master
1508 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1509 	 * into Data mode and put the DBRI into slave mode.  Various timing
1510 	 * requirements must be observed along the way.
1511 	 *
1512 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1513 	 * others?), the addressing of the CS4215's time slots is
1514 	 * offset by eight bits, so we add eight to all the "cycle"
1515 	 * values in the Define Time Slot (DTS) commands.  This is
1516 	 * done in hardware by a TI 248 that delays the DBRI->4215
1517 	 * frame sync signal by eight clock cycles.  Anybody know why?
1518 	 */
1519 	spin_lock_irqsave(&dbri->lock, flags);
1520 	tmp = sbus_readl(dbri->regs + REG0);
1521 	tmp &= ~D_C;		/* Disable CHI */
1522 	sbus_writel(tmp, dbri->regs + REG0);
1523 
1524 	reset_chi(dbri, CHImaster, 128);
1525 
1526 	/*
1527 	 * Control mode:
1528 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1529 	 * Pipe 18: Receive timeslot 1 (clb).
1530 	 * Pipe 19: Receive timeslot 7 (version).
1531 	 */
1532 
1533 	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1534 	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1535 	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1536 	spin_unlock_irqrestore(&dbri->lock, flags);
1537 
1538 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1539 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1540 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1541 
1542 	spin_lock_irqsave(&dbri->lock, flags);
1543 	tmp = sbus_readl(dbri->regs + REG0);
1544 	tmp |= D_C;		/* Enable CHI */
1545 	sbus_writel(tmp, dbri->regs + REG0);
1546 	spin_unlock_irqrestore(&dbri->lock, flags);
1547 
1548 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1549 		msleep_interruptible(1);
1550 
1551 	if (i == 0) {
1552 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1553 			dbri->mm.status);
1554 		return -1;
1555 	}
1556 
1557 	/* Disable changes to our copy of the version number, as we are about
1558 	 * to leave control mode.
1559 	 */
1560 	recv_fixed(dbri, 19, NULL);
1561 
1562 	/* Terminate CS4215 control mode - data sheet says
1563 	 * "Set CLB=1 and send two more frames of valid control info"
1564 	 */
1565 	dbri->mm.ctrl[0] |= CS4215_CLB;
1566 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1567 
1568 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1569 	udelay(250);
1570 
1571 	cs4215_setdata(dbri, 0);
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Setup the codec with the sampling rate, audio format and number of
1578  * channels.
1579  * As part of the process we resend the settings for the data
1580  * timeslots as well.
1581  */
1582 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1583 			  snd_pcm_format_t format, unsigned int channels)
1584 {
1585 	int freq_idx;
1586 	int ret = 0;
1587 
1588 	/* Lookup index for this rate */
1589 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1590 		if (CS4215_FREQ[freq_idx].freq == rate)
1591 			break;
1592 	}
1593 	if (CS4215_FREQ[freq_idx].freq != rate) {
1594 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1595 		return -1;
1596 	}
1597 
1598 	switch (format) {
1599 	case SNDRV_PCM_FORMAT_MU_LAW:
1600 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1601 		dbri->mm.precision = 8;
1602 		break;
1603 	case SNDRV_PCM_FORMAT_A_LAW:
1604 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1605 		dbri->mm.precision = 8;
1606 		break;
1607 	case SNDRV_PCM_FORMAT_U8:
1608 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1609 		dbri->mm.precision = 8;
1610 		break;
1611 	case SNDRV_PCM_FORMAT_S16_BE:
1612 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1613 		dbri->mm.precision = 16;
1614 		break;
1615 	default:
1616 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1617 		return -1;
1618 	}
1619 
1620 	/* Add rate parameters */
1621 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1622 	dbri->mm.ctrl[2] = CS4215_XCLK |
1623 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1624 
1625 	dbri->mm.channels = channels;
1626 	if (channels == 2)
1627 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1628 
1629 	ret = cs4215_setctrl(dbri);
1630 	if (ret == 0)
1631 		cs4215_open(dbri);	/* set codec to data mode */
1632 
1633 	return ret;
1634 }
1635 
1636 /*
1637  *
1638  */
1639 static int cs4215_init(struct snd_dbri *dbri)
1640 {
1641 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1642 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1643 
1644 	/* Look for the cs4215 chips */
1645 	if (reg2 & D_PIO2) {
1646 		dprintk(D_MM, "Onboard CS4215 detected\n");
1647 		dbri->mm.onboard = 1;
1648 	}
1649 	if (reg2 & D_PIO0) {
1650 		dprintk(D_MM, "Speakerbox detected\n");
1651 		dbri->mm.onboard = 0;
1652 
1653 		if (reg2 & D_PIO2) {
1654 			printk(KERN_INFO "DBRI: Using speakerbox / "
1655 			       "ignoring onboard mmcodec.\n");
1656 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1657 		}
1658 	}
1659 
1660 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1661 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1662 		return -EIO;
1663 	}
1664 
1665 	cs4215_setup_pipes(dbri);
1666 	cs4215_init_data(&dbri->mm);
1667 
1668 	/* Enable capture of the status & version timeslots. */
1669 	recv_fixed(dbri, 18, &dbri->mm.status);
1670 	recv_fixed(dbri, 19, &dbri->mm.version);
1671 
1672 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1673 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1674 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1675 			dbri->mm.offset);
1676 		return -EIO;
1677 	}
1678 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1679 
1680 	return 0;
1681 }
1682 
1683 /*
1684 ****************************************************************************
1685 *************************** DBRI interrupt handler *************************
1686 ****************************************************************************
1687 
1688 The DBRI communicates with the CPU mainly via a circular interrupt
1689 buffer.  When an interrupt is signaled, the CPU walks through the
1690 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1691 Complicated interrupts are handled by dedicated functions (which
1692 appear first in this file).  Any pending interrupts can be serviced by
1693 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1694 interrupts are disabled.
1695 
1696 */
1697 
1698 /* xmit_descs()
1699  *
1700  * Starts transmitting the current TD's for recording/playing.
1701  * For playback, ALSA has filled the DMA memory with new data (we hope).
1702  */
1703 static void xmit_descs(struct snd_dbri *dbri)
1704 {
1705 	struct dbri_streaminfo *info;
1706 	u32 dvma_addr;
1707 	s32 *cmd;
1708 	unsigned long flags;
1709 	int first_td;
1710 
1711 	if (dbri == NULL)
1712 		return;		/* Disabled */
1713 
1714 	dvma_addr = (u32)dbri->dma_dvma;
1715 	info = &dbri->stream_info[DBRI_REC];
1716 	spin_lock_irqsave(&dbri->lock, flags);
1717 
1718 	if (info->pipe >= 0) {
1719 		first_td = dbri->pipes[info->pipe].first_desc;
1720 
1721 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1722 
1723 		/* Stream could be closed by the time we run. */
1724 		if (first_td >= 0) {
1725 			cmd = dbri_cmdlock(dbri, 2);
1726 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1727 					    dbri->pipes[info->pipe].sdp
1728 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1729 			*(cmd++) = dvma_addr +
1730 				   dbri_dma_off(desc, first_td);
1731 			dbri_cmdsend(dbri, cmd, 2);
1732 
1733 			/* Reset our admin of the pipe. */
1734 			dbri->pipes[info->pipe].desc = first_td;
1735 		}
1736 	}
1737 
1738 	info = &dbri->stream_info[DBRI_PLAY];
1739 
1740 	if (info->pipe >= 0) {
1741 		first_td = dbri->pipes[info->pipe].first_desc;
1742 
1743 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1744 
1745 		/* Stream could be closed by the time we run. */
1746 		if (first_td >= 0) {
1747 			cmd = dbri_cmdlock(dbri, 2);
1748 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1749 					    dbri->pipes[info->pipe].sdp
1750 					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 			*(cmd++) = dvma_addr +
1752 				   dbri_dma_off(desc, first_td);
1753 			dbri_cmdsend(dbri, cmd, 2);
1754 
1755 			/* Reset our admin of the pipe. */
1756 			dbri->pipes[info->pipe].desc = first_td;
1757 		}
1758 	}
1759 
1760 	spin_unlock_irqrestore(&dbri->lock, flags);
1761 }
1762 
1763 /* transmission_complete_intr()
1764  *
1765  * Called by main interrupt handler when DBRI signals transmission complete
1766  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1767  *
1768  * Walks through the pipe's list of transmit buffer descriptors and marks
1769  * them as available. Stops when the first descriptor is found without
1770  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1771  *
1772  * The DMA buffers are not released. They form a ring buffer and
1773  * they are filled by ALSA while others are transmitted by DMA.
1774  *
1775  */
1776 
1777 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1778 {
1779 	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1780 	int td = dbri->pipes[pipe].desc;
1781 	int status;
1782 
1783 	while (td >= 0) {
1784 		if (td >= DBRI_NO_DESCS) {
1785 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1786 			return;
1787 		}
1788 
1789 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1790 		if (!(status & DBRI_TD_TBC))
1791 			break;
1792 
1793 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1794 
1795 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1796 		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1797 
1798 		td = dbri->next_desc[td];
1799 		dbri->pipes[pipe].desc = td;
1800 	}
1801 
1802 	/* Notify ALSA */
1803 	spin_unlock(&dbri->lock);
1804 	snd_pcm_period_elapsed(info->substream);
1805 	spin_lock(&dbri->lock);
1806 }
1807 
1808 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1809 {
1810 	struct dbri_streaminfo *info;
1811 	int rd = dbri->pipes[pipe].desc;
1812 	s32 status;
1813 
1814 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1815 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1816 		return;
1817 	}
1818 
1819 	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1820 	status = dbri->dma->desc[rd].word1;
1821 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1822 
1823 	info = &dbri->stream_info[DBRI_REC];
1824 	info->offset += DBRI_RD_CNT(status);
1825 
1826 	/* FIXME: Check status */
1827 
1828 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1829 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1830 
1831 	/* Notify ALSA */
1832 	spin_unlock(&dbri->lock);
1833 	snd_pcm_period_elapsed(info->substream);
1834 	spin_lock(&dbri->lock);
1835 }
1836 
1837 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1838 {
1839 	int val = D_INTR_GETVAL(x);
1840 	int channel = D_INTR_GETCHAN(x);
1841 	int command = D_INTR_GETCMD(x);
1842 	int code = D_INTR_GETCODE(x);
1843 #ifdef DBRI_DEBUG
1844 	int rval = D_INTR_GETRVAL(x);
1845 #endif
1846 
1847 	if (channel == D_INTR_CMD) {
1848 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1849 			cmds[command], val);
1850 	} else {
1851 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1852 			channel, code, rval);
1853 	}
1854 
1855 	switch (code) {
1856 	case D_INTR_CMDI:
1857 		if (command != D_WAIT)
1858 			printk(KERN_ERR "DBRI: Command read interrupt\n");
1859 		break;
1860 	case D_INTR_BRDY:
1861 		reception_complete_intr(dbri, channel);
1862 		break;
1863 	case D_INTR_XCMP:
1864 	case D_INTR_MINT:
1865 		transmission_complete_intr(dbri, channel);
1866 		break;
1867 	case D_INTR_UNDR:
1868 		/* UNDR - Transmission underrun
1869 		 * resend SDP command with clear pipe bit (C) set
1870 		 */
1871 		{
1872 	/* FIXME: do something useful in case of underrun */
1873 			printk(KERN_ERR "DBRI: Underrun error\n");
1874 #if 0
1875 			s32 *cmd;
1876 			int pipe = channel;
1877 			int td = dbri->pipes[pipe].desc;
1878 
1879 			dbri->dma->desc[td].word4 = 0;
1880 			cmd = dbri_cmdlock(dbri, NoGetLock);
1881 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1882 					    dbri->pipes[pipe].sdp
1883 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1884 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1885 			dbri_cmdsend(dbri, cmd);
1886 #endif
1887 		}
1888 		break;
1889 	case D_INTR_FXDT:
1890 		/* FXDT - Fixed data change */
1891 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1892 			val = reverse_bytes(val, dbri->pipes[channel].length);
1893 
1894 		if (dbri->pipes[channel].recv_fixed_ptr)
1895 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1896 		break;
1897 	default:
1898 		if (channel != D_INTR_CMD)
1899 			printk(KERN_WARNING
1900 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1901 	}
1902 }
1903 
1904 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1905  * buffer until it finds a zero word (indicating nothing more to do
1906  * right now).  Non-zero words require processing and are handed off
1907  * to dbri_process_one_interrupt AFTER advancing the pointer.
1908  */
1909 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1910 {
1911 	s32 x;
1912 
1913 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1914 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1915 		dbri->dbri_irqp++;
1916 		if (dbri->dbri_irqp == DBRI_INT_BLK)
1917 			dbri->dbri_irqp = 1;
1918 
1919 		dbri_process_one_interrupt(dbri, x);
1920 	}
1921 }
1922 
1923 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1924 {
1925 	struct snd_dbri *dbri = dev_id;
1926 	static int errcnt = 0;
1927 	int x;
1928 
1929 	if (dbri == NULL)
1930 		return IRQ_NONE;
1931 	spin_lock(&dbri->lock);
1932 
1933 	/*
1934 	 * Read it, so the interrupt goes away.
1935 	 */
1936 	x = sbus_readl(dbri->regs + REG1);
1937 
1938 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1939 		u32 tmp;
1940 
1941 		if (x & D_MRR)
1942 			printk(KERN_ERR
1943 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1944 			       x);
1945 		if (x & D_MLE)
1946 			printk(KERN_ERR
1947 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1948 			       x);
1949 		if (x & D_LBG)
1950 			printk(KERN_ERR
1951 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1952 		if (x & D_MBE)
1953 			printk(KERN_ERR
1954 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1955 
1956 		/* Some of these SBus errors cause the chip's SBus circuitry
1957 		 * to be disabled, so just re-enable and try to keep going.
1958 		 *
1959 		 * The only one I've seen is MRR, which will be triggered
1960 		 * if you let a transmit pipe underrun, then try to CDP it.
1961 		 *
1962 		 * If these things persist, we reset the chip.
1963 		 */
1964 		if ((++errcnt) % 10 == 0) {
1965 			dprintk(D_INT, "Interrupt errors exceeded.\n");
1966 			dbri_reset(dbri);
1967 		} else {
1968 			tmp = sbus_readl(dbri->regs + REG0);
1969 			tmp &= ~(D_D);
1970 			sbus_writel(tmp, dbri->regs + REG0);
1971 		}
1972 	}
1973 
1974 	dbri_process_interrupt_buffer(dbri);
1975 
1976 	spin_unlock(&dbri->lock);
1977 
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 /****************************************************************************
1982 		PCM Interface
1983 ****************************************************************************/
1984 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1985 	.info		= SNDRV_PCM_INFO_MMAP |
1986 			  SNDRV_PCM_INFO_INTERLEAVED |
1987 			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1988 			  SNDRV_PCM_INFO_MMAP_VALID |
1989 			  SNDRV_PCM_INFO_BATCH,
1990 	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1991 			  SNDRV_PCM_FMTBIT_A_LAW |
1992 			  SNDRV_PCM_FMTBIT_U8 |
1993 			  SNDRV_PCM_FMTBIT_S16_BE,
1994 	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1995 	.rate_min		= 5512,
1996 	.rate_max		= 48000,
1997 	.channels_min		= 1,
1998 	.channels_max		= 2,
1999 	.buffer_bytes_max	= 64 * 1024,
2000 	.period_bytes_min	= 1,
2001 	.period_bytes_max	= DBRI_TD_MAXCNT,
2002 	.periods_min		= 1,
2003 	.periods_max		= 1024,
2004 };
2005 
2006 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2007 			      struct snd_pcm_hw_rule *rule)
2008 {
2009 	struct snd_interval *c = hw_param_interval(params,
2010 				SNDRV_PCM_HW_PARAM_CHANNELS);
2011 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2012 	struct snd_mask fmt;
2013 
2014 	snd_mask_any(&fmt);
2015 	if (c->min > 1) {
2016 		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2017 		return snd_mask_refine(f, &fmt);
2018 	}
2019 	return 0;
2020 }
2021 
2022 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2023 				struct snd_pcm_hw_rule *rule)
2024 {
2025 	struct snd_interval *c = hw_param_interval(params,
2026 				SNDRV_PCM_HW_PARAM_CHANNELS);
2027 	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2028 	struct snd_interval ch;
2029 
2030 	snd_interval_any(&ch);
2031 	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2032 		ch.min = 1;
2033 		ch.max = 1;
2034 		ch.integer = 1;
2035 		return snd_interval_refine(c, &ch);
2036 	}
2037 	return 0;
2038 }
2039 
2040 static int snd_dbri_open(struct snd_pcm_substream *substream)
2041 {
2042 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2043 	struct snd_pcm_runtime *runtime = substream->runtime;
2044 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2045 	unsigned long flags;
2046 
2047 	dprintk(D_USR, "open audio output.\n");
2048 	runtime->hw = snd_dbri_pcm_hw;
2049 
2050 	spin_lock_irqsave(&dbri->lock, flags);
2051 	info->substream = substream;
2052 	info->offset = 0;
2053 	info->dvma_buffer = 0;
2054 	info->pipe = -1;
2055 	spin_unlock_irqrestore(&dbri->lock, flags);
2056 
2057 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2058 			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2059 			    -1);
2060 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2061 			    snd_hw_rule_channels, NULL,
2062 			    SNDRV_PCM_HW_PARAM_CHANNELS,
2063 			    -1);
2064 
2065 	cs4215_open(dbri);
2066 
2067 	return 0;
2068 }
2069 
2070 static int snd_dbri_close(struct snd_pcm_substream *substream)
2071 {
2072 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2073 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2074 
2075 	dprintk(D_USR, "close audio output.\n");
2076 	info->substream = NULL;
2077 	info->offset = 0;
2078 
2079 	return 0;
2080 }
2081 
2082 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2083 			      struct snd_pcm_hw_params *hw_params)
2084 {
2085 	struct snd_pcm_runtime *runtime = substream->runtime;
2086 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2087 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2088 	int direction;
2089 	int ret;
2090 
2091 	/* set sampling rate, audio format and number of channels */
2092 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2093 			     params_format(hw_params),
2094 			     params_channels(hw_params));
2095 	if (ret != 0)
2096 		return ret;
2097 
2098 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2099 				params_buffer_bytes(hw_params))) < 0) {
2100 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2101 		return ret;
2102 	}
2103 
2104 	/* hw_params can get called multiple times. Only map the DMA once.
2105 	 */
2106 	if (info->dvma_buffer == 0) {
2107 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2108 			direction = DMA_TO_DEVICE;
2109 		else
2110 			direction = DMA_FROM_DEVICE;
2111 
2112 		info->dvma_buffer =
2113 			dma_map_single(&dbri->op->dev,
2114 				       runtime->dma_area,
2115 				       params_buffer_bytes(hw_params),
2116 				       direction);
2117 	}
2118 
2119 	direction = params_buffer_bytes(hw_params);
2120 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2121 		direction, info->dvma_buffer);
2122 	return 0;
2123 }
2124 
2125 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2126 {
2127 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2128 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2129 	int direction;
2130 
2131 	dprintk(D_USR, "hw_free.\n");
2132 
2133 	/* hw_free can get called multiple times. Only unmap the DMA once.
2134 	 */
2135 	if (info->dvma_buffer) {
2136 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2137 			direction = DMA_TO_DEVICE;
2138 		else
2139 			direction = DMA_FROM_DEVICE;
2140 
2141 		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2142 				 substream->runtime->buffer_size, direction);
2143 		info->dvma_buffer = 0;
2144 	}
2145 	if (info->pipe != -1) {
2146 		reset_pipe(dbri, info->pipe);
2147 		info->pipe = -1;
2148 	}
2149 
2150 	return snd_pcm_lib_free_pages(substream);
2151 }
2152 
2153 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2154 {
2155 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2156 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2157 	int ret;
2158 
2159 	info->size = snd_pcm_lib_buffer_bytes(substream);
2160 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2161 		info->pipe = 4;	/* Send pipe */
2162 	else
2163 		info->pipe = 6;	/* Receive pipe */
2164 
2165 	spin_lock_irq(&dbri->lock);
2166 	info->offset = 0;
2167 
2168 	/* Setup the all the transmit/receive descriptors to cover the
2169 	 * whole DMA buffer.
2170 	 */
2171 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2172 			  snd_pcm_lib_period_bytes(substream));
2173 
2174 	spin_unlock_irq(&dbri->lock);
2175 
2176 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2177 	return ret;
2178 }
2179 
2180 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2181 {
2182 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2183 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2184 	int ret = 0;
2185 
2186 	switch (cmd) {
2187 	case SNDRV_PCM_TRIGGER_START:
2188 		dprintk(D_USR, "start audio, period is %d bytes\n",
2189 			(int)snd_pcm_lib_period_bytes(substream));
2190 		/* Re-submit the TDs. */
2191 		xmit_descs(dbri);
2192 		break;
2193 	case SNDRV_PCM_TRIGGER_STOP:
2194 		dprintk(D_USR, "stop audio.\n");
2195 		reset_pipe(dbri, info->pipe);
2196 		break;
2197 	default:
2198 		ret = -EINVAL;
2199 	}
2200 
2201 	return ret;
2202 }
2203 
2204 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2205 {
2206 	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2207 	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2208 	snd_pcm_uframes_t ret;
2209 
2210 	ret = bytes_to_frames(substream->runtime, info->offset)
2211 		% substream->runtime->buffer_size;
2212 	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2213 		ret, substream->runtime->buffer_size);
2214 	return ret;
2215 }
2216 
2217 static const struct snd_pcm_ops snd_dbri_ops = {
2218 	.open = snd_dbri_open,
2219 	.close = snd_dbri_close,
2220 	.ioctl = snd_pcm_lib_ioctl,
2221 	.hw_params = snd_dbri_hw_params,
2222 	.hw_free = snd_dbri_hw_free,
2223 	.prepare = snd_dbri_prepare,
2224 	.trigger = snd_dbri_trigger,
2225 	.pointer = snd_dbri_pointer,
2226 };
2227 
2228 static int snd_dbri_pcm(struct snd_card *card)
2229 {
2230 	struct snd_pcm *pcm;
2231 	int err;
2232 
2233 	if ((err = snd_pcm_new(card,
2234 			       /* ID */		    "sun_dbri",
2235 			       /* device */	    0,
2236 			       /* playback count */ 1,
2237 			       /* capture count */  1, &pcm)) < 0)
2238 		return err;
2239 
2240 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2242 
2243 	pcm->private_data = card->private_data;
2244 	pcm->info_flags = 0;
2245 	strcpy(pcm->name, card->shortname);
2246 
2247 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2248 					      snd_dma_continuous_data(GFP_KERNEL),
2249 					      64 * 1024, 64 * 1024);
2250 	return 0;
2251 }
2252 
2253 /*****************************************************************************
2254 			Mixer interface
2255 *****************************************************************************/
2256 
2257 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2258 				  struct snd_ctl_elem_info *uinfo)
2259 {
2260 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2261 	uinfo->count = 2;
2262 	uinfo->value.integer.min = 0;
2263 	if (kcontrol->private_value == DBRI_PLAY)
2264 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2265 	else
2266 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2267 	return 0;
2268 }
2269 
2270 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2271 				 struct snd_ctl_elem_value *ucontrol)
2272 {
2273 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2274 	struct dbri_streaminfo *info;
2275 
2276 	if (snd_BUG_ON(!dbri))
2277 		return -EINVAL;
2278 	info = &dbri->stream_info[kcontrol->private_value];
2279 
2280 	ucontrol->value.integer.value[0] = info->left_gain;
2281 	ucontrol->value.integer.value[1] = info->right_gain;
2282 	return 0;
2283 }
2284 
2285 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2286 				 struct snd_ctl_elem_value *ucontrol)
2287 {
2288 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2289 	struct dbri_streaminfo *info =
2290 				&dbri->stream_info[kcontrol->private_value];
2291 	unsigned int vol[2];
2292 	int changed = 0;
2293 
2294 	vol[0] = ucontrol->value.integer.value[0];
2295 	vol[1] = ucontrol->value.integer.value[1];
2296 	if (kcontrol->private_value == DBRI_PLAY) {
2297 		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2298 			return -EINVAL;
2299 	} else {
2300 		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2301 			return -EINVAL;
2302 	}
2303 
2304 	if (info->left_gain != vol[0]) {
2305 		info->left_gain = vol[0];
2306 		changed = 1;
2307 	}
2308 	if (info->right_gain != vol[1]) {
2309 		info->right_gain = vol[1];
2310 		changed = 1;
2311 	}
2312 	if (changed) {
2313 		/* First mute outputs, and wait 1/8000 sec (125 us)
2314 		 * to make sure this takes.  This avoids clicking noises.
2315 		 */
2316 		cs4215_setdata(dbri, 1);
2317 		udelay(125);
2318 		cs4215_setdata(dbri, 0);
2319 	}
2320 	return changed;
2321 }
2322 
2323 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2324 				  struct snd_ctl_elem_info *uinfo)
2325 {
2326 	int mask = (kcontrol->private_value >> 16) & 0xff;
2327 
2328 	uinfo->type = (mask == 1) ?
2329 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2330 	uinfo->count = 1;
2331 	uinfo->value.integer.min = 0;
2332 	uinfo->value.integer.max = mask;
2333 	return 0;
2334 }
2335 
2336 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2337 				 struct snd_ctl_elem_value *ucontrol)
2338 {
2339 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2340 	int elem = kcontrol->private_value & 0xff;
2341 	int shift = (kcontrol->private_value >> 8) & 0xff;
2342 	int mask = (kcontrol->private_value >> 16) & 0xff;
2343 	int invert = (kcontrol->private_value >> 24) & 1;
2344 
2345 	if (snd_BUG_ON(!dbri))
2346 		return -EINVAL;
2347 
2348 	if (elem < 4)
2349 		ucontrol->value.integer.value[0] =
2350 		    (dbri->mm.data[elem] >> shift) & mask;
2351 	else
2352 		ucontrol->value.integer.value[0] =
2353 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2354 
2355 	if (invert == 1)
2356 		ucontrol->value.integer.value[0] =
2357 		    mask - ucontrol->value.integer.value[0];
2358 	return 0;
2359 }
2360 
2361 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2362 				 struct snd_ctl_elem_value *ucontrol)
2363 {
2364 	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2365 	int elem = kcontrol->private_value & 0xff;
2366 	int shift = (kcontrol->private_value >> 8) & 0xff;
2367 	int mask = (kcontrol->private_value >> 16) & 0xff;
2368 	int invert = (kcontrol->private_value >> 24) & 1;
2369 	int changed = 0;
2370 	unsigned short val;
2371 
2372 	if (snd_BUG_ON(!dbri))
2373 		return -EINVAL;
2374 
2375 	val = (ucontrol->value.integer.value[0] & mask);
2376 	if (invert == 1)
2377 		val = mask - val;
2378 	val <<= shift;
2379 
2380 	if (elem < 4) {
2381 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2382 				       ~(mask << shift)) | val;
2383 		changed = (val != dbri->mm.data[elem]);
2384 	} else {
2385 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2386 					   ~(mask << shift)) | val;
2387 		changed = (val != dbri->mm.ctrl[elem - 4]);
2388 	}
2389 
2390 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2391 		"mixer-value=%ld, mm-value=0x%x\n",
2392 		mask, changed, ucontrol->value.integer.value[0],
2393 		dbri->mm.data[elem & 3]);
2394 
2395 	if (changed) {
2396 		/* First mute outputs, and wait 1/8000 sec (125 us)
2397 		 * to make sure this takes.  This avoids clicking noises.
2398 		 */
2399 		cs4215_setdata(dbri, 1);
2400 		udelay(125);
2401 		cs4215_setdata(dbri, 0);
2402 	}
2403 	return changed;
2404 }
2405 
2406 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2407    timeslots. Shift is the bit offset in the timeslot, mask defines the
2408    number of bits. invert is a boolean for use with attenuation.
2409  */
2410 #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2411 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2412   .info = snd_cs4215_info_single,				\
2413   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2414   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2415 			((invert) << 24) },
2416 
2417 static struct snd_kcontrol_new dbri_controls[] = {
2418 	{
2419 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420 	 .name  = "Playback Volume",
2421 	 .info  = snd_cs4215_info_volume,
2422 	 .get   = snd_cs4215_get_volume,
2423 	 .put   = snd_cs4215_put_volume,
2424 	 .private_value = DBRI_PLAY,
2425 	 },
2426 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2429 	{
2430 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 	 .name  = "Capture Volume",
2432 	 .info  = snd_cs4215_info_volume,
2433 	 .get   = snd_cs4215_get_volume,
2434 	 .put   = snd_cs4215_put_volume,
2435 	 .private_value = DBRI_REC,
2436 	 },
2437 	/* FIXME: mic/line switch */
2438 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2442 };
2443 
2444 static int snd_dbri_mixer(struct snd_card *card)
2445 {
2446 	int idx, err;
2447 	struct snd_dbri *dbri;
2448 
2449 	if (snd_BUG_ON(!card || !card->private_data))
2450 		return -EINVAL;
2451 	dbri = card->private_data;
2452 
2453 	strcpy(card->mixername, card->shortname);
2454 
2455 	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2456 		err = snd_ctl_add(card,
2457 				snd_ctl_new1(&dbri_controls[idx], dbri));
2458 		if (err < 0)
2459 			return err;
2460 	}
2461 
2462 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2463 		dbri->stream_info[idx].left_gain = 0;
2464 		dbri->stream_info[idx].right_gain = 0;
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 /****************************************************************************
2471 			/proc interface
2472 ****************************************************************************/
2473 static void dbri_regs_read(struct snd_info_entry *entry,
2474 			   struct snd_info_buffer *buffer)
2475 {
2476 	struct snd_dbri *dbri = entry->private_data;
2477 
2478 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2479 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2480 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2481 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2482 }
2483 
2484 #ifdef DBRI_DEBUG
2485 static void dbri_debug_read(struct snd_info_entry *entry,
2486 			    struct snd_info_buffer *buffer)
2487 {
2488 	struct snd_dbri *dbri = entry->private_data;
2489 	int pipe;
2490 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2491 
2492 	for (pipe = 0; pipe < 32; pipe++) {
2493 		if (pipe_active(dbri, pipe)) {
2494 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2495 			snd_iprintf(buffer,
2496 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2497 				    "len=%d next %d\n",
2498 				    pipe,
2499 				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2500 								 "input",
2501 				    pptr->sdp, pptr->desc,
2502 				    pptr->length, pptr->nextpipe);
2503 		}
2504 	}
2505 }
2506 #endif
2507 
2508 static void snd_dbri_proc(struct snd_card *card)
2509 {
2510 	struct snd_dbri *dbri = card->private_data;
2511 
2512 	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2513 #ifdef DBRI_DEBUG
2514 	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2515 #endif
2516 }
2517 
2518 /*
2519 ****************************************************************************
2520 **************************** Initialization ********************************
2521 ****************************************************************************
2522 */
2523 static void snd_dbri_free(struct snd_dbri *dbri);
2524 
2525 static int snd_dbri_create(struct snd_card *card,
2526 			   struct platform_device *op,
2527 			   int irq, int dev)
2528 {
2529 	struct snd_dbri *dbri = card->private_data;
2530 	int err;
2531 
2532 	spin_lock_init(&dbri->lock);
2533 	dbri->op = op;
2534 	dbri->irq = irq;
2535 
2536 	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2537 				       &dbri->dma_dvma, GFP_KERNEL);
2538 	if (!dbri->dma)
2539 		return -ENOMEM;
2540 
2541 	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2542 		dbri->dma, dbri->dma_dvma);
2543 
2544 	/* Map the registers into memory. */
2545 	dbri->regs_size = resource_size(&op->resource[0]);
2546 	dbri->regs = of_ioremap(&op->resource[0], 0,
2547 				dbri->regs_size, "DBRI Registers");
2548 	if (!dbri->regs) {
2549 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2550 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2551 				  (void *)dbri->dma, dbri->dma_dvma);
2552 		return -EIO;
2553 	}
2554 
2555 	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2556 			  "DBRI audio", dbri);
2557 	if (err) {
2558 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2559 		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2560 		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2561 				  (void *)dbri->dma, dbri->dma_dvma);
2562 		return err;
2563 	}
2564 
2565 	/* Do low level initialization of the DBRI and CS4215 chips */
2566 	dbri_initialize(dbri);
2567 	err = cs4215_init(dbri);
2568 	if (err) {
2569 		snd_dbri_free(dbri);
2570 		return err;
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static void snd_dbri_free(struct snd_dbri *dbri)
2577 {
2578 	dprintk(D_GEN, "snd_dbri_free\n");
2579 	dbri_reset(dbri);
2580 
2581 	if (dbri->irq)
2582 		free_irq(dbri->irq, dbri);
2583 
2584 	if (dbri->regs)
2585 		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2586 
2587 	if (dbri->dma)
2588 		dma_free_coherent(&dbri->op->dev,
2589 				  sizeof(struct dbri_dma),
2590 				  (void *)dbri->dma, dbri->dma_dvma);
2591 }
2592 
2593 static int dbri_probe(struct platform_device *op)
2594 {
2595 	struct snd_dbri *dbri;
2596 	struct resource *rp;
2597 	struct snd_card *card;
2598 	static int dev = 0;
2599 	int irq;
2600 	int err;
2601 
2602 	if (dev >= SNDRV_CARDS)
2603 		return -ENODEV;
2604 	if (!enable[dev]) {
2605 		dev++;
2606 		return -ENOENT;
2607 	}
2608 
2609 	irq = op->archdata.irqs[0];
2610 	if (irq <= 0) {
2611 		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2612 		return -ENODEV;
2613 	}
2614 
2615 	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2616 			   sizeof(struct snd_dbri), &card);
2617 	if (err < 0)
2618 		return err;
2619 
2620 	strcpy(card->driver, "DBRI");
2621 	strcpy(card->shortname, "Sun DBRI");
2622 	rp = &op->resource[0];
2623 	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2624 		card->shortname,
2625 		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2626 
2627 	err = snd_dbri_create(card, op, irq, dev);
2628 	if (err < 0) {
2629 		snd_card_free(card);
2630 		return err;
2631 	}
2632 
2633 	dbri = card->private_data;
2634 	err = snd_dbri_pcm(card);
2635 	if (err < 0)
2636 		goto _err;
2637 
2638 	err = snd_dbri_mixer(card);
2639 	if (err < 0)
2640 		goto _err;
2641 
2642 	/* /proc file handling */
2643 	snd_dbri_proc(card);
2644 	dev_set_drvdata(&op->dev, card);
2645 
2646 	err = snd_card_register(card);
2647 	if (err < 0)
2648 		goto _err;
2649 
2650 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2651 	       dev, dbri->regs,
2652 	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2653 	dev++;
2654 
2655 	return 0;
2656 
2657 _err:
2658 	snd_dbri_free(dbri);
2659 	snd_card_free(card);
2660 	return err;
2661 }
2662 
2663 static int dbri_remove(struct platform_device *op)
2664 {
2665 	struct snd_card *card = dev_get_drvdata(&op->dev);
2666 
2667 	snd_dbri_free(card->private_data);
2668 	snd_card_free(card);
2669 
2670 	return 0;
2671 }
2672 
2673 static const struct of_device_id dbri_match[] = {
2674 	{
2675 		.name = "SUNW,DBRIe",
2676 	},
2677 	{
2678 		.name = "SUNW,DBRIf",
2679 	},
2680 	{},
2681 };
2682 
2683 MODULE_DEVICE_TABLE(of, dbri_match);
2684 
2685 static struct platform_driver dbri_sbus_driver = {
2686 	.driver = {
2687 		.name = "dbri",
2688 		.of_match_table = dbri_match,
2689 	},
2690 	.probe		= dbri_probe,
2691 	.remove		= dbri_remove,
2692 };
2693 
2694 module_platform_driver(dbri_sbus_driver);
2695