xref: /linux/sound/sparc/dbri.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Based entirely upon drivers/sbus/audio/dbri.c which is:
6  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8  *
9  * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10  * on Sun SPARCstation 10, 20, LX and Voyager models.
11  *
12  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13  *   data time multiplexer with ISDN support (aka T7259)
14  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16  *   Documentation:
17  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18  *     Sparc Technology Business (courtesy of Sun Support)
19  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20  *     available from the Lucent (formarly AT&T microelectronics) home
21  *     page.
22  *   - http://www.freesoft.org/Linux/DBRI/
23  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
25  *   Documentation: from the Crystal Semiconductor home page.
26  *
27  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28  * memory and a serial device (long pipes, nr 0-15) or between two serial
29  * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30  * device (short pipes).
31  * A timeslot defines the bit-offset and nr of bits read from a serial device.
32  * The timeslots are linked to 6 circular lists, one for each direction for
33  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34  * (the second one is a monitor/tee pipe, valid only for serial input).
35  *
36  * The mmcodec is connected via the CHI bus and needs the data & some
37  * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38  * chunks. It also has a control mode, which serves for audio format setting.
39  *
40  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41  * the same CHI bus, so I thought perhaps it is possible to use the onboard
42  * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43  * audio devices. But the SUN HW group decided against it, at least on my
44  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45  * connected.
46  */
47 
48 #include <sound/driver.h>
49 #include <linux/interrupt.h>
50 #include <linux/delay.h>
51 
52 #include <sound/core.h>
53 #include <sound/pcm.h>
54 #include <sound/pcm_params.h>
55 #include <sound/info.h>
56 #include <sound/control.h>
57 #include <sound/initval.h>
58 
59 #include <asm/irq.h>
60 #include <asm/io.h>
61 #include <asm/sbus.h>
62 #include <asm/atomic.h>
63 
64 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
65 MODULE_DESCRIPTION("Sun DBRI");
66 MODULE_LICENSE("GPL");
67 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
68 
69 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
70 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
71 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
72 
73 module_param_array(index, int, NULL, 0444);
74 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
75 module_param_array(id, charp, NULL, 0444);
76 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
77 module_param_array(enable, bool, NULL, 0444);
78 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
79 
80 #define DBRI_DEBUG
81 
82 #define D_INT	(1<<0)
83 #define D_GEN	(1<<1)
84 #define D_CMD	(1<<2)
85 #define D_MM	(1<<3)
86 #define D_USR	(1<<4)
87 #define D_DESC	(1<<5)
88 
89 static int dbri_debug = 0;
90 module_param(dbri_debug, int, 0444);
91 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
92 
93 #ifdef DBRI_DEBUG
94 static char *cmds[] = {
95 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
96 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
97 };
98 
99 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
100 
101 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
102 				    (1 << 27) | \
103 				    value)
104 #else
105 #define dprintk(a, x...)
106 
107 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
108 				    (intr << 27) | \
109 				    value)
110 #endif				/* DBRI_DEBUG */
111 
112 /***************************************************************************
113 	CS4215 specific definitions and structures
114 ****************************************************************************/
115 
116 struct cs4215 {
117 	__u8 data[4];		/* Data mode: Time slots 5-8 */
118 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
119 	__u8 onboard;
120 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
121 	volatile __u32 status;
122 	volatile __u32 version;
123 	__u8 precision;		/* In bits, either 8 or 16 */
124 	__u8 channels;		/* 1 or 2 */
125 };
126 
127 /*
128  * Control mode first
129  */
130 
131 /* Time Slot 1, Status register */
132 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
133 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
134 				/* 0: line: 2.8V, speaker 8V */
135 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
136 #define CS4215_RSRVD_1  (1<<5)
137 
138 /* Time Slot 2, Data Format Register */
139 #define CS4215_DFR_LINEAR16	0
140 #define CS4215_DFR_ULAW		1
141 #define CS4215_DFR_ALAW		2
142 #define CS4215_DFR_LINEAR8	3
143 #define CS4215_DFR_STEREO	(1<<2)
144 static struct {
145 	unsigned short freq;
146 	unsigned char xtal;
147 	unsigned char csval;
148 } CS4215_FREQ[] = {
149 	{  8000, (1 << 4), (0 << 3) },
150 	{ 16000, (1 << 4), (1 << 3) },
151 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
152 	{ 32000, (1 << 4), (3 << 3) },
153      /* {    NA, (1 << 4), (4 << 3) }, */
154      /* {    NA, (1 << 4), (5 << 3) }, */
155 	{ 48000, (1 << 4), (6 << 3) },
156 	{  9600, (1 << 4), (7 << 3) },
157 	{  5513, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
158 	{ 11025, (2 << 4), (1 << 3) },
159 	{ 18900, (2 << 4), (2 << 3) },
160 	{ 22050, (2 << 4), (3 << 3) },
161 	{ 37800, (2 << 4), (4 << 3) },
162 	{ 44100, (2 << 4), (5 << 3) },
163 	{ 33075, (2 << 4), (6 << 3) },
164 	{  6615, (2 << 4), (7 << 3) },
165 	{ 0, 0, 0}
166 };
167 
168 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
169 
170 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
171 
172 /* Time Slot 3, Serial Port Control register */
173 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
174 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
175 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
176 #define CS4215_BSEL_128	(1<<2)
177 #define CS4215_BSEL_256	(2<<2)
178 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
179 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
180 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
181 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
182 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
183 
184 /* Time Slot 4, Test Register */
185 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
186 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
187 
188 /* Time Slot 5, Parallel Port Register */
189 /* Read only here and the same as the in data mode */
190 
191 /* Time Slot 6, Reserved  */
192 
193 /* Time Slot 7, Version Register  */
194 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
195 
196 /* Time Slot 8, Reserved  */
197 
198 /*
199  * Data mode
200  */
201 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
202 
203 /* Time Slot 5, Output Setting  */
204 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
205 #define CS4215_LE	(1<<6)	/* Line Out Enable */
206 #define CS4215_HE	(1<<7)	/* Headphone Enable */
207 
208 /* Time Slot 6, Output Setting  */
209 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
210 #define CS4215_SE	(1<<6)	/* Speaker Enable */
211 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
212 
213 /* Time Slot 7, Input Setting */
214 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
215 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
216 #define CS4215_OVR	(1<<5)	/* 1: Overrange condition occurred */
217 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
218 #define CS4215_PIO1	(1<<7)
219 
220 /* Time Slot 8, Input Setting */
221 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
222 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
223 
224 /***************************************************************************
225 		DBRI specific definitions and structures
226 ****************************************************************************/
227 
228 /* DBRI main registers */
229 #define REG0	0x00UL		/* Status and Control */
230 #define REG1	0x04UL		/* Mode and Interrupt */
231 #define REG2	0x08UL		/* Parallel IO */
232 #define REG3	0x0cUL		/* Test */
233 #define REG8	0x20UL		/* Command Queue Pointer */
234 #define REG9	0x24UL		/* Interrupt Queue Pointer */
235 
236 #define DBRI_NO_CMDS	64
237 #define DBRI_NO_INTS	1	/* Note: the value of this define was
238 				 * originally 2.  The ringbuffer to store
239 				 * interrupts in dma is currently broken.
240 				 * This is a temporary fix until the ringbuffer
241 				 * is fixed.
242 				 */
243 #define DBRI_INT_BLK	64
244 #define DBRI_NO_DESCS	64
245 #define DBRI_NO_PIPES	32
246 
247 #define DBRI_MM_ONB	1
248 #define DBRI_MM_SB	2
249 
250 #define DBRI_REC	0
251 #define DBRI_PLAY	1
252 #define DBRI_NO_STREAMS	2
253 
254 /* One transmit/receive descriptor */
255 struct dbri_mem {
256 	volatile __u32 word1;
257 	volatile __u32 ba;	/* Transmit/Receive Buffer Address */
258 	volatile __u32 nda;	/* Next Descriptor Address */
259 	volatile __u32 word4;
260 };
261 
262 /* This structure is in a DMA region where it can accessed by both
263  * the CPU and the DBRI
264  */
265 struct dbri_dma {
266 	volatile s32 cmd[DBRI_NO_CMDS];	/* Place for commands       */
267 	volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK];	/* Interrupt field  */
268 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
269 };
270 
271 #define dbri_dma_off(member, elem)	\
272 	((u32)(unsigned long)		\
273 	 (&(((struct dbri_dma *)0)->member[elem])))
274 
275 enum in_or_out { PIPEinput, PIPEoutput };
276 
277 struct dbri_pipe {
278 	u32 sdp;		/* SDP command word */
279 	enum in_or_out direction;
280 	int nextpipe;		/* Next pipe in linked list */
281 	int prevpipe;
282 	int cycle;		/* Offset of timeslot (bits) */
283 	int length;		/* Length of timeslot (bits) */
284 	int first_desc;		/* Index of first descriptor */
285 	int desc;		/* Index of active descriptor */
286 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287 };
288 
289 struct dbri_desc {
290 	int inuse;		/* Boolean flag */
291 	int next;		/* Index of next desc, or -1 */
292 	unsigned int len;
293 };
294 
295 /* Per stream (playback or record) information */
296 typedef struct dbri_streaminfo {
297 	snd_pcm_substream_t *substream;
298 	u32 dvma_buffer;	/* Device view of Alsa DMA buffer */
299 	int left;		/* # of bytes left in DMA buffer  */
300 	int size;		/* Size of DMA buffer             */
301 	size_t offset;		/* offset in user buffer          */
302 	int pipe;		/* Data pipe used                 */
303 	int left_gain;		/* mixer elements                 */
304 	int right_gain;
305 	int balance;
306 } dbri_streaminfo_t;
307 
308 /* This structure holds the information for both chips (DBRI & CS4215) */
309 typedef struct snd_dbri {
310 	snd_card_t *card;	/* ALSA card */
311 	snd_pcm_t *pcm;
312 
313 	int regs_size, irq;	/* Needed for unload */
314 	struct sbus_dev *sdev;	/* SBUS device info */
315 	spinlock_t lock;
316 
317 	volatile struct dbri_dma *dma;	/* Pointer to our DMA block */
318 	u32 dma_dvma;		/* DBRI visible DMA address */
319 
320 	void __iomem *regs;	/* dbri HW regs */
321 	int dbri_version;	/* 'e' and up is OK */
322 	int dbri_irqp;		/* intr queue pointer */
323 	int wait_seen;
324 
325 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
326 	struct dbri_desc descs[DBRI_NO_DESCS];
327 
328 	int chi_in_pipe;
329 	int chi_out_pipe;
330 	int chi_bpf;
331 
332 	struct cs4215 mm;	/* mmcodec special info */
333 				/* per stream (playback/record) info */
334 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
335 
336 	struct snd_dbri *next;
337 } snd_dbri_t;
338 
339 /* Needed for the ALSA macros to work */
340 #define chip_t snd_dbri_t
341 
342 #define DBRI_MAX_VOLUME		63	/* Output volume */
343 #define DBRI_MAX_GAIN		15	/* Input gain */
344 #define DBRI_RIGHT_BALANCE	255
345 #define DBRI_MID_BALANCE	(DBRI_RIGHT_BALANCE >> 1)
346 
347 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
348 #define D_P		(1<<15)	/* Program command & queue pointer valid */
349 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
350 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
351 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
352 #define D_X		(1<<7)	/* Sanity Timer Disable */
353 #define D_T		(1<<6)	/* Permit activation of the TE interface */
354 #define D_N		(1<<5)	/* Permit activation of the NT interface */
355 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
356 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
357 #define D_D		(1<<2)	/* Disable Master Mode */
358 #define D_H		(1<<1)	/* Halt for Analysis */
359 #define D_R		(1<<0)	/* Soft Reset */
360 
361 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
362 #define D_LITTLE_END	(1<<8)	/* Byte Order */
363 #define D_BIG_END	(0<<8)	/* Byte Order */
364 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (readonly) */
365 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (readonly) */
366 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (readonly) */
367 #define D_MBE		(1<<1)	/* Burst Error on SBus (readonly) */
368 #define D_IR		(1<<0)	/* Interrupt Indicator (readonly) */
369 
370 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
371 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
372 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
373 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
374 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
375 #define D_ENPIO		(0xf0)	/* Enable all the pins */
376 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
377 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
378 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
379 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
380 
381 /* DBRI Commands (Page 20) */
382 #define D_WAIT		0x0	/* Stop execution */
383 #define D_PAUSE		0x1	/* Flush long pipes */
384 #define D_JUMP		0x2	/* New command queue */
385 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
386 #define D_REX		0x4	/* Report command execution via interrupt */
387 #define D_SDP		0x5	/* Setup Data Pipe */
388 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
389 #define D_DTS		0x7	/* Define Time Slot */
390 #define D_SSP		0x8	/* Set short Data Pipe */
391 #define D_CHI		0x9	/* Set CHI Global Mode */
392 #define D_NT		0xa	/* NT Command */
393 #define D_TE		0xb	/* TE Command */
394 #define D_CDEC		0xc	/* Codec setup */
395 #define D_TEST		0xd	/* No comment */
396 #define D_CDM		0xe	/* CHI Data mode command */
397 
398 /* Special bits for some commands */
399 #define D_PIPE(v)      ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
400 
401 /* Setup Data Pipe */
402 /* IRM */
403 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value rcvd */
404 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
405 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
406 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
407 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
408 
409 /* Pipe data MODE */
410 #define D_SDP_MEM	(0<<13)	/* To/from memory */
411 #define D_SDP_HDLC	(2<<13)
412 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
413 #define D_SDP_SER	(4<<13)	/* Serial to serial */
414 #define D_SDP_FIXED	(6<<13)	/* Short only */
415 #define D_SDP_MODE(v)	((v)&(7<<13))
416 
417 #define D_SDP_TO_SER	(1<<12)	/* Direction */
418 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
419 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
420 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
421 #define D_SDP_P		(1<<10)	/* Pointer Valid */
422 #define D_SDP_A		(1<<8)	/* Abort */
423 #define D_SDP_C		(1<<7)	/* Clear */
424 
425 /* Define Time Slot */
426 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
427 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
428 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
429 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
430 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
431 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
432 
433 /* Time Slot defines */
434 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
435 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
436 #define D_TS_DI		(1<<13)	/* Data Invert */
437 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
438 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
439 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
440 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
441 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
442 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
443 
444 /* Concentration Highway Interface Modes */
445 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
446 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
447 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
448 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
449 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
450 #define D_CHI_FD	(1<<11)	/* Frame Drive */
451 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
452 
453 /* NT: These are here for completeness */
454 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
455 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
456 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
457 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
458 #define D_NT_ISNT	(1<<13)	/* Configfure interface as NT */
459 #define D_NT_FT		(1<<12)	/* Fixed Timing */
460 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
461 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
462 #define D_NT_ACT	(1<<9)	/* Activate Interface */
463 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
464 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
465 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
466 #define D_NT_FACT	(1<<1)	/* Force Activation */
467 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
468 
469 /* Codec Setup */
470 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
471 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
472 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
473 
474 /* Test */
475 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
476 #define D_TEST_SIZE(v)	((v)<<11)	/* */
477 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
478 #define D_TEST_PROC	0x6	/* MicroProcessor test */
479 #define D_TEST_SER	0x7	/* Serial-Controller test */
480 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
481 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
482 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
483 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
484 #define D_TEST_DUMP	0xe	/* ROM Dump */
485 
486 /* CHI Data Mode */
487 #define D_CDM_THI	(1<<8)	/* Transmit Data on CHIDR Pin */
488 #define D_CDM_RHI	(1<<7)	/* Receive Data on CHIDX Pin */
489 #define D_CDM_RCE	(1<<6)	/* Receive on Rising Edge of CHICK */
490 #define D_CDM_XCE	(1<<2)	/* Transmit Data on Rising Edge of CHICK */
491 #define D_CDM_XEN	(1<<1)	/* Transmit Highway Enable */
492 #define D_CDM_REN	(1<<0)	/* Receive Highway Enable */
493 
494 /* The Interrupts */
495 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
496 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
497 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
498 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
499 #define D_INTR_EOL	5	/* End of List */
500 #define D_INTR_CMDI	6	/* Command has bean read */
501 #define D_INTR_XCMP	8	/* Transmission of frame complete */
502 #define D_INTR_SBRI	9	/* BRI status change info */
503 #define D_INTR_FXDT	10	/* Fixed data change */
504 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
505 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
506 #define D_INTR_DBYT	12	/* Dropped by frame slip */
507 #define D_INTR_RBYT	13	/* Repeated by frame slip */
508 #define D_INTR_LINT	14	/* Lost Interrupt */
509 #define D_INTR_UNDR	15	/* DMA underrun */
510 
511 #define D_INTR_TE	32
512 #define D_INTR_NT	34
513 #define D_INTR_CHI	36
514 #define D_INTR_CMD	38
515 
516 #define D_INTR_GETCHAN(v)	(((v)>>24) & 0x3f)
517 #define D_INTR_GETCODE(v)	(((v)>>20) & 0xf)
518 #define D_INTR_GETCMD(v)	(((v)>>16) & 0xf)
519 #define D_INTR_GETVAL(v)	((v) & 0xffff)
520 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
521 
522 #define D_P_0		0	/* TE receive anchor */
523 #define D_P_1		1	/* TE transmit anchor */
524 #define D_P_2		2	/* NT transmit anchor */
525 #define D_P_3		3	/* NT receive anchor */
526 #define D_P_4		4	/* CHI send data */
527 #define D_P_5		5	/* CHI receive data */
528 #define D_P_6		6	/* */
529 #define D_P_7		7	/* */
530 #define D_P_8		8	/* */
531 #define D_P_9		9	/* */
532 #define D_P_10		10	/* */
533 #define D_P_11		11	/* */
534 #define D_P_12		12	/* */
535 #define D_P_13		13	/* */
536 #define D_P_14		14	/* */
537 #define D_P_15		15	/* */
538 #define D_P_16		16	/* CHI anchor pipe */
539 #define D_P_17		17	/* CHI send */
540 #define D_P_18		18	/* CHI receive */
541 #define D_P_19		19	/* CHI receive */
542 #define D_P_20		20	/* CHI receive */
543 #define D_P_21		21	/* */
544 #define D_P_22		22	/* */
545 #define D_P_23		23	/* */
546 #define D_P_24		24	/* */
547 #define D_P_25		25	/* */
548 #define D_P_26		26	/* */
549 #define D_P_27		27	/* */
550 #define D_P_28		28	/* */
551 #define D_P_29		29	/* */
552 #define D_P_30		30	/* */
553 #define D_P_31		31	/* */
554 
555 /* Transmit descriptor defines */
556 #define DBRI_TD_F	(1<<31)	/* End of Frame */
557 #define DBRI_TD_D	(1<<30)	/* Do not append CRC */
558 #define DBRI_TD_CNT(v)	((v)<<16)	/* Number of valid bytes in the buffer */
559 #define DBRI_TD_B	(1<<15)	/* Final interrupt */
560 #define DBRI_TD_M	(1<<14)	/* Marker interrupt */
561 #define DBRI_TD_I	(1<<13)	/* Transmit Idle Characters */
562 #define DBRI_TD_FCNT(v)	(v)	/* Flag Count */
563 #define DBRI_TD_UNR	(1<<3)	/* Underrun: transmitter is out of data */
564 #define DBRI_TD_ABT	(1<<2)	/* Abort: frame aborted */
565 #define DBRI_TD_TBC	(1<<0)	/* Transmit buffer Complete */
566 #define DBRI_TD_STATUS(v)       ((v)&0xff)	/* Transmit status */
567 			/* Maximum buffer size per TD: almost 8Kb */
568 #define DBRI_TD_MAXCNT	((1 << 13) - 1)
569 
570 /* Receive descriptor defines */
571 #define DBRI_RD_F	(1<<31)	/* End of Frame */
572 #define DBRI_RD_C	(1<<30)	/* Completed buffer */
573 #define DBRI_RD_B	(1<<15)	/* Final interrupt */
574 #define DBRI_RD_M	(1<<14)	/* Marker interrupt */
575 #define DBRI_RD_BCNT(v)	(v)	/* Buffer size */
576 #define DBRI_RD_CRC	(1<<7)	/* 0: CRC is correct */
577 #define DBRI_RD_BBC	(1<<6)	/* 1: Bad Byte received */
578 #define DBRI_RD_ABT	(1<<5)	/* Abort: frame aborted */
579 #define DBRI_RD_OVRN	(1<<3)	/* Overrun: data lost */
580 #define DBRI_RD_STATUS(v)      ((v)&0xff)	/* Receive status */
581 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff)	/* Valid bytes in the buffer */
582 
583 /* stream_info[] access */
584 /* Translate the ALSA direction into the array index */
585 #define DBRI_STREAMNO(substream)				\
586 		(substream->stream == 				\
587 		 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
588 
589 /* Return a pointer to dbri_streaminfo */
590 #define DBRI_STREAM(dbri, substream)	&dbri->stream_info[DBRI_STREAMNO(substream)]
591 
592 static snd_dbri_t *dbri_list = NULL;	/* All DBRI devices */
593 
594 /*
595  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
596  * So we have to reverse the bits. Note: not all bit lengths are supported
597  */
598 static __u32 reverse_bytes(__u32 b, int len)
599 {
600 	switch (len) {
601 	case 32:
602 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
603 	case 16:
604 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
605 	case 8:
606 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
607 	case 4:
608 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
609 	case 2:
610 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
611 	case 1:
612 	case 0:
613 		break;
614 	default:
615 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
616 	};
617 
618 	return b;
619 }
620 
621 /*
622 ****************************************************************************
623 ************** DBRI initialization and command synchronization *************
624 ****************************************************************************
625 
626 Commands are sent to the DBRI by building a list of them in memory,
627 then writing the address of the first list item to DBRI register 8.
628 The list is terminated with a WAIT command, which can generate a
629 CPU interrupt if required.
630 
631 Since the DBRI can run in parallel with the CPU, several means of
632 synchronization present themselves.  The original scheme (Rudolf's)
633 was to set a flag when we "cmdlock"ed the DBRI, clear the flag when
634 an interrupt signaled completion, and wait on a wait_queue if a routine
635 attempted to cmdlock while the flag was set.  The problems arose when
636 we tried to cmdlock from inside an interrupt handler, which might
637 cause scheduling in an interrupt (if we waited), etc, etc
638 
639 A more sophisticated scheme might involve a circular command buffer
640 or an array of command buffers.  A routine could fill one with
641 commands and link it onto a list.  When a interrupt signaled
642 completion of the current command buffer, look on the list for
643 the next one.
644 
645 I've decided to implement something much simpler - after each command,
646 the CPU waits for the DBRI to finish the command by polling the P bit
647 in DBRI register 0.  I've tried to implement this in such a way
648 that might make implementing a more sophisticated scheme easier.
649 
650 Every time a routine wants to write commands to the DBRI, it must
651 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
652 in return.  After the commands have been writen, dbri_cmdsend() is
653 called with the final pointer value.
654 
655 */
656 
657 enum dbri_lock_t { NoGetLock, GetLock };
658 
659 static volatile s32 *dbri_cmdlock(snd_dbri_t * dbri, enum dbri_lock_t get)
660 {
661 #ifndef SMP
662 	if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
663 		printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
664 	}
665 #endif
666 
667 	/*if (get == GetLock) spin_lock(&dbri->lock); */
668 	return &dbri->dma->cmd[0];
669 }
670 
671 static void dbri_process_interrupt_buffer(snd_dbri_t *);
672 
673 static void dbri_cmdsend(snd_dbri_t * dbri, volatile s32 * cmd)
674 {
675 	int MAXLOOPS = 1000000;
676 	int maxloops = MAXLOOPS;
677 	volatile s32 *ptr;
678 
679 	for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
680 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
681 	}
682 
683 	if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
684 		printk("DBRI: Command buffer overflow! (bug in driver)\n");
685 		/* Ignore the last part. */
686 		cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
687 	}
688 
689 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
690 	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
691 	dbri->wait_seen = 0;
692 	sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
693 	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P))
694 		barrier();
695 	if (maxloops == 0) {
696 		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
697 		dprintk(D_CMD, "DBRI: Chip never completed command buffer\n");
698 	} else {
699 		while ((--maxloops) > 0 && (!dbri->wait_seen))
700 			dbri_process_interrupt_buffer(dbri);
701 		if (maxloops == 0) {
702 			printk(KERN_ERR "DBRI: Chip never acked WAIT\n");
703 			dprintk(D_CMD, "DBRI: Chip never acked WAIT\n");
704 		} else {
705 			dprintk(D_CMD, "Chip completed command "
706 				"buffer (%d)\n", MAXLOOPS - maxloops);
707 		}
708 	}
709 
710 	/*spin_unlock(&dbri->lock); */
711 }
712 
713 /* Lock must be held when calling this */
714 static void dbri_reset(snd_dbri_t * dbri)
715 {
716 	int i;
717 
718 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
719 		sbus_readl(dbri->regs + REG0),
720 		sbus_readl(dbri->regs + REG2),
721 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
722 
723 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
724 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
725 		udelay(10);
726 }
727 
728 /* Lock must not be held before calling this */
729 static void dbri_initialize(snd_dbri_t * dbri)
730 {
731 	volatile s32 *cmd;
732 	u32 dma_addr, tmp;
733 	unsigned long flags;
734 	int n;
735 
736 	spin_lock_irqsave(&dbri->lock, flags);
737 
738 	dbri_reset(dbri);
739 
740 	cmd = dbri_cmdlock(dbri, NoGetLock);
741 	dprintk(D_GEN, "init: cmd: %p, int: %p\n",
742 		&dbri->dma->cmd[0], &dbri->dma->intr[0]);
743 
744 	/*
745 	 * Initialize the interrupt ringbuffer.
746 	 */
747 	for (n = 0; n < DBRI_NO_INTS - 1; n++) {
748 		dma_addr = dbri->dma_dvma;
749 		dma_addr += dbri_dma_off(intr, ((n + 1) & DBRI_INT_BLK));
750 		dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
751 	}
752 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
753 	dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
754 	dbri->dbri_irqp = 1;
755 
756 	/* Initialize pipes */
757 	for (n = 0; n < DBRI_NO_PIPES; n++)
758 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
759 
760 	/* We should query the openprom to see what burst sizes this
761 	 * SBus supports.  For now, just disable all SBus bursts */
762 	tmp = sbus_readl(dbri->regs + REG0);
763 	tmp &= ~(D_G | D_S | D_E);
764 	sbus_writel(tmp, dbri->regs + REG0);
765 
766 	/*
767 	 * Set up the interrupt queue
768 	 */
769 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
770 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
771 	*(cmd++) = dma_addr;
772 
773 	dbri_cmdsend(dbri, cmd);
774 	spin_unlock_irqrestore(&dbri->lock, flags);
775 }
776 
777 /*
778 ****************************************************************************
779 ************************** DBRI data pipe management ***********************
780 ****************************************************************************
781 
782 While DBRI control functions use the command and interrupt buffers, the
783 main data path takes the form of data pipes, which can be short (command
784 and interrupt driven), or long (attached to DMA buffers).  These functions
785 provide a rudimentary means of setting up and managing the DBRI's pipes,
786 but the calling functions have to make sure they respect the pipes' linked
787 list ordering, among other things.  The transmit and receive functions
788 here interface closely with the transmit and receive interrupt code.
789 
790 */
791 static int pipe_active(snd_dbri_t * dbri, int pipe)
792 {
793 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
794 }
795 
796 /* reset_pipe(dbri, pipe)
797  *
798  * Called on an in-use pipe to clear anything being transmitted or received
799  * Lock must be held before calling this.
800  */
801 static void reset_pipe(snd_dbri_t * dbri, int pipe)
802 {
803 	int sdp;
804 	int desc;
805 	volatile int *cmd;
806 
807 	if (pipe < 0 || pipe > 31) {
808 		printk("DBRI: reset_pipe called with illegal pipe number\n");
809 		return;
810 	}
811 
812 	sdp = dbri->pipes[pipe].sdp;
813 	if (sdp == 0) {
814 		printk("DBRI: reset_pipe called on uninitialized pipe\n");
815 		return;
816 	}
817 
818 	cmd = dbri_cmdlock(dbri, NoGetLock);
819 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
820 	*(cmd++) = 0;
821 	dbri_cmdsend(dbri, cmd);
822 
823 	desc = dbri->pipes[pipe].first_desc;
824 	while (desc != -1) {
825 		dbri->descs[desc].inuse = 0;
826 		desc = dbri->descs[desc].next;
827 	}
828 
829 	dbri->pipes[pipe].desc = -1;
830 	dbri->pipes[pipe].first_desc = -1;
831 }
832 
833 /* FIXME: direction as an argument? */
834 static void setup_pipe(snd_dbri_t * dbri, int pipe, int sdp)
835 {
836 	if (pipe < 0 || pipe > 31) {
837 		printk("DBRI: setup_pipe called with illegal pipe number\n");
838 		return;
839 	}
840 
841 	if ((sdp & 0xf800) != sdp) {
842 		printk("DBRI: setup_pipe called with strange SDP value\n");
843 		/* sdp &= 0xf800; */
844 	}
845 
846 	/* If this is a fixed receive pipe, arrange for an interrupt
847 	 * every time its data changes
848 	 */
849 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
850 		sdp |= D_SDP_CHANGE;
851 
852 	sdp |= D_PIPE(pipe);
853 	dbri->pipes[pipe].sdp = sdp;
854 	dbri->pipes[pipe].desc = -1;
855 	dbri->pipes[pipe].first_desc = -1;
856 	if (sdp & D_SDP_TO_SER)
857 		dbri->pipes[pipe].direction = PIPEoutput;
858 	else
859 		dbri->pipes[pipe].direction = PIPEinput;
860 
861 	reset_pipe(dbri, pipe);
862 }
863 
864 /* FIXME: direction not needed */
865 static void link_time_slot(snd_dbri_t * dbri, int pipe,
866 			   enum in_or_out direction, int basepipe,
867 			   int length, int cycle)
868 {
869 	volatile s32 *cmd;
870 	int val;
871 	int prevpipe;
872 	int nextpipe;
873 
874 	if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
875 		printk
876 		    ("DBRI: link_time_slot called with illegal pipe number\n");
877 		return;
878 	}
879 
880 	if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
881 		printk("DBRI: link_time_slot called on uninitialized pipe\n");
882 		return;
883 	}
884 
885 	/* Deal with CHI special case:
886 	 * "If transmission on edges 0 or 1 is desired, then cycle n
887 	 *  (where n = # of bit times per frame...) must be used."
888 	 *                  - DBRI data sheet, page 11
889 	 */
890 	if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
891 		cycle = dbri->chi_bpf;
892 
893 	if (basepipe == pipe) {
894 		prevpipe = pipe;
895 		nextpipe = pipe;
896 	} else {
897 		/* We're not initializing a new linked list (basepipe != pipe),
898 		 * so run through the linked list and find where this pipe
899 		 * should be sloted in, based on its cycle.  CHI confuses
900 		 * things a bit, since it has a single anchor for both its
901 		 * transmit and receive lists.
902 		 */
903 		if (basepipe == 16) {
904 			if (direction == PIPEinput) {
905 				prevpipe = dbri->chi_in_pipe;
906 			} else {
907 				prevpipe = dbri->chi_out_pipe;
908 			}
909 		} else {
910 			prevpipe = basepipe;
911 		}
912 
913 		nextpipe = dbri->pipes[prevpipe].nextpipe;
914 
915 		while (dbri->pipes[nextpipe].cycle < cycle
916 		       && dbri->pipes[nextpipe].nextpipe != basepipe) {
917 			prevpipe = nextpipe;
918 			nextpipe = dbri->pipes[nextpipe].nextpipe;
919 		}
920 	}
921 
922 	if (prevpipe == 16) {
923 		if (direction == PIPEinput) {
924 			dbri->chi_in_pipe = pipe;
925 		} else {
926 			dbri->chi_out_pipe = pipe;
927 		}
928 	} else {
929 		dbri->pipes[prevpipe].nextpipe = pipe;
930 	}
931 
932 	dbri->pipes[pipe].nextpipe = nextpipe;
933 	dbri->pipes[pipe].cycle = cycle;
934 	dbri->pipes[pipe].length = length;
935 
936 	cmd = dbri_cmdlock(dbri, NoGetLock);
937 
938 	if (direction == PIPEinput) {
939 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
940 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
941 		*(cmd++) =
942 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
943 		*(cmd++) = 0;
944 	} else {
945 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
946 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
947 		*(cmd++) = 0;
948 		*(cmd++) =
949 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
950 	}
951 
952 	dbri_cmdsend(dbri, cmd);
953 }
954 
955 static void unlink_time_slot(snd_dbri_t * dbri, int pipe,
956 			     enum in_or_out direction, int prevpipe,
957 			     int nextpipe)
958 {
959 	volatile s32 *cmd;
960 	int val;
961 
962 	if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
963 		printk
964 		    ("DBRI: unlink_time_slot called with illegal pipe number\n");
965 		return;
966 	}
967 
968 	cmd = dbri_cmdlock(dbri, NoGetLock);
969 
970 	if (direction == PIPEinput) {
971 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
972 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
973 		*(cmd++) = D_TS_NEXT(nextpipe);
974 		*(cmd++) = 0;
975 	} else {
976 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
977 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
978 		*(cmd++) = 0;
979 		*(cmd++) = D_TS_NEXT(nextpipe);
980 	}
981 
982 	dbri_cmdsend(dbri, cmd);
983 }
984 
985 /* xmit_fixed() / recv_fixed()
986  *
987  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988  * expected to change much, and which we don't need to buffer.
989  * The DBRI only interrupts us when the data changes (receive pipes),
990  * or only changes the data when this function is called (transmit pipes).
991  * Only short pipes (numbers 16-31) can be used in fixed data mode.
992  *
993  * These function operate on a 32-bit field, no matter how large
994  * the actual time slot is.  The interrupt handler takes care of bit
995  * ordering and alignment.  An 8-bit time slot will always end up
996  * in the low-order 8 bits, filled either MSB-first or LSB-first,
997  * depending on the settings passed to setup_pipe()
998  */
999 static void xmit_fixed(snd_dbri_t * dbri, int pipe, unsigned int data)
1000 {
1001 	volatile s32 *cmd;
1002 
1003 	if (pipe < 16 || pipe > 31) {
1004 		printk("DBRI: xmit_fixed: Illegal pipe number\n");
1005 		return;
1006 	}
1007 
1008 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009 		printk("DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1010 		return;
1011 	}
1012 
1013 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014 		printk("DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015 		return;
1016 	}
1017 
1018 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019 		printk("DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1020 		return;
1021 	}
1022 
1023 	/* DBRI short pipes always transmit LSB first */
1024 
1025 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1026 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1027 
1028 	cmd = dbri_cmdlock(dbri, GetLock);
1029 
1030 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1031 	*(cmd++) = data;
1032 
1033 	dbri_cmdsend(dbri, cmd);
1034 }
1035 
1036 static void recv_fixed(snd_dbri_t * dbri, int pipe, volatile __u32 * ptr)
1037 {
1038 	if (pipe < 16 || pipe > 31) {
1039 		printk("DBRI: recv_fixed called with illegal pipe number\n");
1040 		return;
1041 	}
1042 
1043 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1044 		printk("DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1045 		return;
1046 	}
1047 
1048 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1049 		printk("DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1050 		return;
1051 	}
1052 
1053 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1054 }
1055 
1056 /* setup_descs()
1057  *
1058  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1059  * with a DMA buffer.
1060  *
1061  * Only pipe numbers 0-15 can be used in this mode.
1062  *
1063  * This function takes a stream number pointing to a data buffer,
1064  * and work by building chains of descriptors which identify the
1065  * data buffers.  Buffers too large for a single descriptor will
1066  * be spread across multiple descriptors.
1067  */
1068 static int setup_descs(snd_dbri_t * dbri, int streamno, unsigned int period)
1069 {
1070 	dbri_streaminfo_t *info = &dbri->stream_info[streamno];
1071 	__u32 dvma_buffer;
1072 	int desc = 0;
1073 	int len;
1074 	int first_desc = -1;
1075 	int last_desc = -1;
1076 
1077 	if (info->pipe < 0 || info->pipe > 15) {
1078 		printk("DBRI: setup_descs: Illegal pipe number\n");
1079 		return -2;
1080 	}
1081 
1082 	if (dbri->pipes[info->pipe].sdp == 0) {
1083 		printk("DBRI: setup_descs: Uninitialized pipe %d\n",
1084 		       info->pipe);
1085 		return -2;
1086 	}
1087 
1088 	dvma_buffer = info->dvma_buffer;
1089 	len = info->size;
1090 
1091 	if (streamno == DBRI_PLAY) {
1092 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1093 			printk("DBRI: setup_descs: Called on receive pipe %d\n",
1094 			       info->pipe);
1095 			return -2;
1096 		}
1097 	} else {
1098 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1099 			printk
1100 			    ("DBRI: setup_descs: Called on transmit pipe %d\n",
1101 			     info->pipe);
1102 			return -2;
1103 		}
1104 		/* Should be able to queue multiple buffers to receive on a pipe */
1105 		if (pipe_active(dbri, info->pipe)) {
1106 			printk("DBRI: recv_on_pipe: Called on active pipe %d\n",
1107 			       info->pipe);
1108 			return -2;
1109 		}
1110 
1111 		/* Make sure buffer size is multiple of four */
1112 		len &= ~3;
1113 	}
1114 
1115 	while (len > 0) {
1116 		int mylen;
1117 
1118 		for (; desc < DBRI_NO_DESCS; desc++) {
1119 			if (!dbri->descs[desc].inuse)
1120 				break;
1121 		}
1122 		if (desc == DBRI_NO_DESCS) {
1123 			printk("DBRI: setup_descs: No descriptors\n");
1124 			return -1;
1125 		}
1126 
1127 		if (len > DBRI_TD_MAXCNT) {
1128 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 1 */
1129 		} else {
1130 			mylen = len;
1131 		}
1132 		if (mylen > period) {
1133 			mylen = period;
1134 		}
1135 
1136 		dbri->descs[desc].inuse = 1;
1137 		dbri->descs[desc].next = -1;
1138 		dbri->dma->desc[desc].ba = dvma_buffer;
1139 		dbri->dma->desc[desc].nda = 0;
1140 
1141 		if (streamno == DBRI_PLAY) {
1142 			dbri->descs[desc].len = mylen;
1143 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1144 			dbri->dma->desc[desc].word4 = 0;
1145 			if (first_desc != -1)
1146 				dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1147 		} else {
1148 			dbri->descs[desc].len = 0;
1149 			dbri->dma->desc[desc].word1 = 0;
1150 			dbri->dma->desc[desc].word4 =
1151 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1152 		}
1153 
1154 		if (first_desc == -1) {
1155 			first_desc = desc;
1156 		} else {
1157 			dbri->descs[last_desc].next = desc;
1158 			dbri->dma->desc[last_desc].nda =
1159 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1160 		}
1161 
1162 		last_desc = desc;
1163 		dvma_buffer += mylen;
1164 		len -= mylen;
1165 	}
1166 
1167 	if (first_desc == -1 || last_desc == -1) {
1168 		printk("DBRI: setup_descs: Not enough descriptors available\n");
1169 		return -1;
1170 	}
1171 
1172 	dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1173 	if (streamno == DBRI_PLAY) {
1174 		dbri->dma->desc[last_desc].word1 |=
1175 		    DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1176 	}
1177 	dbri->pipes[info->pipe].first_desc = first_desc;
1178 	dbri->pipes[info->pipe].desc = first_desc;
1179 
1180 	for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1181 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1182 			desc,
1183 			dbri->dma->desc[desc].word1,
1184 			dbri->dma->desc[desc].ba,
1185 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1186 	}
1187 	return 0;
1188 }
1189 
1190 /*
1191 ****************************************************************************
1192 ************************** DBRI - CHI interface ****************************
1193 ****************************************************************************
1194 
1195 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1196 multiplexed serial interface which the DBRI can operate in either master
1197 (give clock/frame sync) or slave (take clock/frame sync) mode.
1198 
1199 */
1200 
1201 enum master_or_slave { CHImaster, CHIslave };
1202 
1203 static void reset_chi(snd_dbri_t * dbri, enum master_or_slave master_or_slave,
1204 		      int bits_per_frame)
1205 {
1206 	volatile s32 *cmd;
1207 	int val;
1208 	static int chi_initialized = 0;	/* FIXME: mutex? */
1209 
1210 	if (!chi_initialized) {
1211 
1212 		cmd = dbri_cmdlock(dbri, GetLock);
1213 
1214 		/* Set CHI Anchor: Pipe 16 */
1215 
1216 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1217 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1218 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1219 		*(cmd++) = 0;
1220 
1221 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1222 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1223 		*(cmd++) = 0;
1224 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1225 
1226 		dbri->pipes[16].sdp = 1;
1227 		dbri->pipes[16].nextpipe = 16;
1228 		dbri->chi_in_pipe = 16;
1229 		dbri->chi_out_pipe = 16;
1230 
1231 #if 0
1232 		chi_initialized++;
1233 #endif
1234 	} else {
1235 		int pipe;
1236 
1237 		for (pipe = dbri->chi_in_pipe;
1238 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1239 			unlink_time_slot(dbri, pipe, PIPEinput,
1240 					 16, dbri->pipes[pipe].nextpipe);
1241 		}
1242 		for (pipe = dbri->chi_out_pipe;
1243 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1244 			unlink_time_slot(dbri, pipe, PIPEoutput,
1245 					 16, dbri->pipes[pipe].nextpipe);
1246 		}
1247 
1248 		dbri->chi_in_pipe = 16;
1249 		dbri->chi_out_pipe = 16;
1250 
1251 		cmd = dbri_cmdlock(dbri, GetLock);
1252 	}
1253 
1254 	if (master_or_slave == CHIslave) {
1255 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256 		 *
1257 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1258 		 * IR     = give immediate CHI status interrupt
1259 		 * EN     = give CHI status interrupt upon change
1260 		 */
1261 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262 	} else {
1263 		/* Setup DBRI for CHI Master - generate clock, FS
1264 		 *
1265 		 * BPF                          =  bits per 8 kHz frame
1266 		 * 12.288 MHz / CHICM_divisor   = clock rate
1267 		 * FD  =  1 - drive CHIFS on rising edge of CHICK
1268 		 */
1269 		int clockrate = bits_per_frame * 8;
1270 		int divisor = 12288 / clockrate;
1271 
1272 		if (divisor > 255 || divisor * clockrate != 12288)
1273 			printk("DBRI: illegal bits_per_frame in setup_chi\n");
1274 
1275 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276 				    | D_CHI_BPF(bits_per_frame));
1277 	}
1278 
1279 	dbri->chi_bpf = bits_per_frame;
1280 
1281 	/* CHI Data Mode
1282 	 *
1283 	 * RCE   =  0 - receive on falling edge of CHICK
1284 	 * XCE   =  1 - transmit on rising edge of CHICK
1285 	 * XEN   =  1 - enable transmitter
1286 	 * REN   =  1 - enable receiver
1287 	 */
1288 
1289 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291 
1292 	dbri_cmdsend(dbri, cmd);
1293 }
1294 
1295 /*
1296 ****************************************************************************
1297 *********************** CS4215 audio codec management **********************
1298 ****************************************************************************
1299 
1300 In the standard SPARC audio configuration, the CS4215 codec is attached
1301 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302 
1303 */
1304 static void cs4215_setup_pipes(snd_dbri_t * dbri)
1305 {
1306 	/*
1307 	 * Data mode:
1308 	 * Pipe  4: Send timeslots 1-4 (audio data)
1309 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1310 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1311 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1312 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1313 	 *          not relevant for us (only for doublechecking).
1314 	 *
1315 	 * Control mode:
1316 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1317 	 * Pipe 18: Receive timeslot 1 (clb).
1318 	 * Pipe 19: Receive timeslot 7 (version).
1319 	 */
1320 
1321 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1322 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1323 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1324 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1325 
1326 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1327 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1328 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1329 }
1330 
1331 static int cs4215_init_data(struct cs4215 *mm)
1332 {
1333 	/*
1334 	 * No action, memory resetting only.
1335 	 *
1336 	 * Data Time Slot 5-8
1337 	 * Speaker,Line and Headphone enable. Gain set to the half.
1338 	 * Input is mike.
1339 	 */
1340 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1341 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1342 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1343 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1344 
1345 	/*
1346 	 * Control Time Slot 1-4
1347 	 * 0: Default I/O voltage scale
1348 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1349 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1350 	 * 3: Tests disabled
1351 	 */
1352 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1353 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1354 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1355 	mm->ctrl[3] = 0;
1356 
1357 	mm->status = 0;
1358 	mm->version = 0xff;
1359 	mm->precision = 8;	/* For ULAW */
1360 	mm->channels = 2;
1361 
1362 	return 0;
1363 }
1364 
1365 static void cs4215_setdata(snd_dbri_t * dbri, int muted)
1366 {
1367 	if (muted) {
1368 		dbri->mm.data[0] |= 63;
1369 		dbri->mm.data[1] |= 63;
1370 		dbri->mm.data[2] &= ~15;
1371 		dbri->mm.data[3] &= ~15;
1372 	} else {
1373 		/* Start by setting the playback attenuation. */
1374 		dbri_streaminfo_t *info = &dbri->stream_info[DBRI_PLAY];
1375 		int left_gain = info->left_gain % 64;
1376 		int right_gain = info->right_gain % 64;
1377 
1378 		if (info->balance < DBRI_MID_BALANCE) {
1379 			right_gain *= info->balance;
1380 			right_gain /= DBRI_MID_BALANCE;
1381 		} else {
1382 			left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1383 			left_gain /= DBRI_MID_BALANCE;
1384 		}
1385 
1386 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1387 		dbri->mm.data[1] &= ~0x3f;
1388 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390 
1391 		/* Now set the recording gain. */
1392 		info = &dbri->stream_info[DBRI_REC];
1393 		left_gain = info->left_gain % 16;
1394 		right_gain = info->right_gain % 16;
1395 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1396 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1397 	}
1398 
1399 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400 }
1401 
1402 /*
1403  * Set the CS4215 to data mode.
1404  */
1405 static void cs4215_open(snd_dbri_t * dbri)
1406 {
1407 	int data_width;
1408 	u32 tmp;
1409 
1410 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1411 		dbri->mm.channels, dbri->mm.precision);
1412 
1413 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1414 	 * to make sure this takes.  This avoids clicking noises.
1415 	 */
1416 
1417 	cs4215_setdata(dbri, 1);
1418 	udelay(125);
1419 
1420 	/*
1421 	 * Data mode:
1422 	 * Pipe  4: Send timeslots 1-4 (audio data)
1423 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1424 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1425 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1426 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1427 	 *          not relevant for us (only for doublechecking).
1428 	 *
1429 	 * Just like in control mode, the time slots are all offset by eight
1430 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1431 	 * even if it's the CHI master.  Don't ask me...
1432 	 */
1433 	tmp = sbus_readl(dbri->regs + REG0);
1434 	tmp &= ~(D_C);		/* Disable CHI */
1435 	sbus_writel(tmp, dbri->regs + REG0);
1436 
1437 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1438 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1439 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1440 
1441 	reset_chi(dbri, CHIslave, 128);
1442 
1443 	/* Note: this next doesn't work for 8-bit stereo, because the two
1444 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1445 	 * (See CS4215 datasheet Fig 15)
1446 	 *
1447 	 * DBRI non-contiguous mode would be required to make this work.
1448 	 */
1449 	data_width = dbri->mm.channels * dbri->mm.precision;
1450 
1451 	link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1452 	link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1453 	link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1454 	link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1455 
1456 	/* FIXME: enable CHI after _setdata? */
1457 	tmp = sbus_readl(dbri->regs + REG0);
1458 	tmp |= D_C;		/* Enable CHI */
1459 	sbus_writel(tmp, dbri->regs + REG0);
1460 
1461 	cs4215_setdata(dbri, 0);
1462 }
1463 
1464 /*
1465  * Send the control information (i.e. audio format)
1466  */
1467 static int cs4215_setctrl(snd_dbri_t * dbri)
1468 {
1469 	int i, val;
1470 	u32 tmp;
1471 
1472 	/* FIXME - let the CPU do something useful during these delays */
1473 
1474 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1475 	 * to make sure this takes.  This avoids clicking noises.
1476 	 */
1477 
1478 	cs4215_setdata(dbri, 1);
1479 	udelay(125);
1480 
1481 	/*
1482 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1483 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1484 	 */
1485 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1486 	sbus_writel(val, dbri->regs + REG2);
1487 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1488 	udelay(34);
1489 
1490 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1491 	 * operate as CHI master, supplying clocking and frame synchronization.
1492 	 *
1493 	 * In Data mode, however, the CS4215 must be CHI master to insure
1494 	 * that its data stream is synchronous with its codec.
1495 	 *
1496 	 * The upshot of all this?  We start by putting the DBRI into master
1497 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1498 	 * into Data mode and put the DBRI into slave mode.  Various timing
1499 	 * requirements must be observed along the way.
1500 	 *
1501 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1502 	 * others?), the addressing of the CS4215's time slots is
1503 	 * offset by eight bits, so we add eight to all the "cycle"
1504 	 * values in the Define Time Slot (DTS) commands.  This is
1505 	 * done in hardware by a TI 248 that delays the DBRI->4215
1506 	 * frame sync signal by eight clock cycles.  Anybody know why?
1507 	 */
1508 	tmp = sbus_readl(dbri->regs + REG0);
1509 	tmp &= ~D_C;		/* Disable CHI */
1510 	sbus_writel(tmp, dbri->regs + REG0);
1511 
1512 	reset_chi(dbri, CHImaster, 128);
1513 
1514 	/*
1515 	 * Control mode:
1516 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1517 	 * Pipe 18: Receive timeslot 1 (clb).
1518 	 * Pipe 19: Receive timeslot 7 (version).
1519 	 */
1520 
1521 	link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1522 	link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1523 	link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1524 
1525 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1526 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1527 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1528 
1529 	tmp = sbus_readl(dbri->regs + REG0);
1530 	tmp |= D_C;		/* Enable CHI */
1531 	sbus_writel(tmp, dbri->regs + REG0);
1532 
1533 	for (i = 64; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1534 		udelay(125);
1535 	}
1536 	if (i == 0) {
1537 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1538 			dbri->mm.status);
1539 		return -1;
1540 	}
1541 
1542 	/* Disable changes to our copy of the version number, as we are about
1543 	 * to leave control mode.
1544 	 */
1545 	recv_fixed(dbri, 19, NULL);
1546 
1547 	/* Terminate CS4215 control mode - data sheet says
1548 	 * "Set CLB=1 and send two more frames of valid control info"
1549 	 */
1550 	dbri->mm.ctrl[0] |= CS4215_CLB;
1551 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1552 
1553 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1554 	udelay(250);
1555 
1556 	cs4215_setdata(dbri, 0);
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Setup the codec with the sampling rate, audio format and number of
1563  * channels.
1564  * As part of the process we resend the settings for the data
1565  * timeslots as well.
1566  */
1567 static int cs4215_prepare(snd_dbri_t * dbri, unsigned int rate,
1568 			  snd_pcm_format_t format, unsigned int channels)
1569 {
1570 	int freq_idx;
1571 	int ret = 0;
1572 
1573 	/* Lookup index for this rate */
1574 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1575 		if (CS4215_FREQ[freq_idx].freq == rate)
1576 			break;
1577 	}
1578 	if (CS4215_FREQ[freq_idx].freq != rate) {
1579 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1580 		return -1;
1581 	}
1582 
1583 	switch (format) {
1584 	case SNDRV_PCM_FORMAT_MU_LAW:
1585 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1586 		dbri->mm.precision = 8;
1587 		break;
1588 	case SNDRV_PCM_FORMAT_A_LAW:
1589 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1590 		dbri->mm.precision = 8;
1591 		break;
1592 	case SNDRV_PCM_FORMAT_U8:
1593 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1594 		dbri->mm.precision = 8;
1595 		break;
1596 	case SNDRV_PCM_FORMAT_S16_BE:
1597 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1598 		dbri->mm.precision = 16;
1599 		break;
1600 	default:
1601 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1602 		return -1;
1603 	}
1604 
1605 	/* Add rate parameters */
1606 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1607 	dbri->mm.ctrl[2] = CS4215_XCLK |
1608 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1609 
1610 	dbri->mm.channels = channels;
1611 	/* Stereo bit: 8 bit stereo not working yet. */
1612 	if ((channels > 1) && (dbri->mm.precision == 16))
1613 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1614 
1615 	ret = cs4215_setctrl(dbri);
1616 	if (ret == 0)
1617 		cs4215_open(dbri);	/* set codec to data mode */
1618 
1619 	return ret;
1620 }
1621 
1622 /*
1623  *
1624  */
1625 static int cs4215_init(snd_dbri_t * dbri)
1626 {
1627 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1628 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1629 
1630 	/* Look for the cs4215 chips */
1631 	if (reg2 & D_PIO2) {
1632 		dprintk(D_MM, "Onboard CS4215 detected\n");
1633 		dbri->mm.onboard = 1;
1634 	}
1635 	if (reg2 & D_PIO0) {
1636 		dprintk(D_MM, "Speakerbox detected\n");
1637 		dbri->mm.onboard = 0;
1638 
1639 		if (reg2 & D_PIO2) {
1640 			printk(KERN_INFO "DBRI: Using speakerbox / "
1641 			       "ignoring onboard mmcodec.\n");
1642 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1643 		}
1644 	}
1645 
1646 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1647 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1648 		return -EIO;
1649 	}
1650 
1651 	cs4215_setup_pipes(dbri);
1652 
1653 	cs4215_init_data(&dbri->mm);
1654 
1655 	/* Enable capture of the status & version timeslots. */
1656 	recv_fixed(dbri, 18, &dbri->mm.status);
1657 	recv_fixed(dbri, 19, &dbri->mm.version);
1658 
1659 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1660 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1661 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1662 			dbri->mm.offset);
1663 		return -EIO;
1664 	}
1665 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1666 
1667 	return 0;
1668 }
1669 
1670 /*
1671 ****************************************************************************
1672 *************************** DBRI interrupt handler *************************
1673 ****************************************************************************
1674 
1675 The DBRI communicates with the CPU mainly via a circular interrupt
1676 buffer.  When an interrupt is signaled, the CPU walks through the
1677 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1678 Complicated interrupts are handled by dedicated functions (which
1679 appear first in this file).  Any pending interrupts can be serviced by
1680 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1681 interrupts are disabled.  This function is used by dbri_cmdsend()
1682 to make sure we're synced up with the chip after each command sequence,
1683 even if we're running cli'ed.
1684 
1685 */
1686 
1687 /* xmit_descs()
1688  *
1689  * Transmit the current TD's for recording/playing, if needed.
1690  * For playback, ALSA has filled the DMA memory with new data (we hope).
1691  */
1692 static void xmit_descs(unsigned long data)
1693 {
1694 	snd_dbri_t *dbri = (snd_dbri_t *) data;
1695 	dbri_streaminfo_t *info;
1696 	volatile s32 *cmd;
1697 	unsigned long flags;
1698 	int first_td;
1699 
1700 	if (dbri == NULL)
1701 		return;		/* Disabled */
1702 
1703 	/* First check the recording stream for buffer overflow */
1704 	info = &dbri->stream_info[DBRI_REC];
1705 	spin_lock_irqsave(&dbri->lock, flags);
1706 
1707 	if ((info->left >= info->size) && (info->pipe >= 0)) {
1708 		first_td = dbri->pipes[info->pipe].first_desc;
1709 
1710 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1711 
1712 		/* Stream could be closed by the time we run. */
1713 		if (first_td < 0) {
1714 			goto play;
1715 		}
1716 
1717 		cmd = dbri_cmdlock(dbri, NoGetLock);
1718 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1719 				    dbri->pipes[info->pipe].sdp
1720 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1722 		dbri_cmdsend(dbri, cmd);
1723 
1724 		/* Reset our admin of the pipe & bytes read. */
1725 		dbri->pipes[info->pipe].desc = first_td;
1726 		info->left = 0;
1727 	}
1728 
1729 play:
1730 	spin_unlock_irqrestore(&dbri->lock, flags);
1731 
1732 	/* Now check the playback stream for buffer underflow */
1733 	info = &dbri->stream_info[DBRI_PLAY];
1734 	spin_lock_irqsave(&dbri->lock, flags);
1735 
1736 	if ((info->left <= 0) && (info->pipe >= 0)) {
1737 		first_td = dbri->pipes[info->pipe].first_desc;
1738 
1739 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1740 
1741 		/* Stream could be closed by the time we run. */
1742 		if (first_td < 0) {
1743 			spin_unlock_irqrestore(&dbri->lock, flags);
1744 			return;
1745 		}
1746 
1747 		cmd = dbri_cmdlock(dbri, NoGetLock);
1748 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1749 				    dbri->pipes[info->pipe].sdp
1750 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1752 		dbri_cmdsend(dbri, cmd);
1753 
1754 		/* Reset our admin of the pipe & bytes written. */
1755 		dbri->pipes[info->pipe].desc = first_td;
1756 		info->left = info->size;
1757 	}
1758 	spin_unlock_irqrestore(&dbri->lock, flags);
1759 }
1760 
1761 DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1762 
1763 /* transmission_complete_intr()
1764  *
1765  * Called by main interrupt handler when DBRI signals transmission complete
1766  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1767  *
1768  * Walks through the pipe's list of transmit buffer descriptors, releasing
1769  * each one's DMA buffer (if present), flagging the descriptor available,
1770  * and signaling its callback routine (if present), before proceeding
1771  * to the next one.  Stops when the first descriptor is found without
1772  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1773  */
1774 
1775 static void transmission_complete_intr(snd_dbri_t * dbri, int pipe)
1776 {
1777 	dbri_streaminfo_t *info;
1778 	int td;
1779 	int status;
1780 
1781 	info = &dbri->stream_info[DBRI_PLAY];
1782 
1783 	td = dbri->pipes[pipe].desc;
1784 	while (td >= 0) {
1785 		if (td >= DBRI_NO_DESCS) {
1786 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1787 			return;
1788 		}
1789 
1790 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1791 		if (!(status & DBRI_TD_TBC)) {
1792 			break;
1793 		}
1794 
1795 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1796 
1797 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1798 		info->offset += dbri->descs[td].len;
1799 		info->left -= dbri->descs[td].len;
1800 
1801 		/* On the last TD, transmit them all again. */
1802 		if (dbri->descs[td].next == -1) {
1803 			if (info->left > 0) {
1804 				printk(KERN_WARNING
1805 				       "%d bytes left after last transfer.\n",
1806 				       info->left);
1807 				info->left = 0;
1808 			}
1809 			tasklet_schedule(&xmit_descs_task);
1810 		}
1811 
1812 		td = dbri->descs[td].next;
1813 		dbri->pipes[pipe].desc = td;
1814 	}
1815 
1816 	/* Notify ALSA */
1817 	if (spin_is_locked(&dbri->lock)) {
1818 		spin_unlock(&dbri->lock);
1819 		snd_pcm_period_elapsed(info->substream);
1820 		spin_lock(&dbri->lock);
1821 	} else
1822 		snd_pcm_period_elapsed(info->substream);
1823 }
1824 
1825 static void reception_complete_intr(snd_dbri_t * dbri, int pipe)
1826 {
1827 	dbri_streaminfo_t *info;
1828 	int rd = dbri->pipes[pipe].desc;
1829 	s32 status;
1830 
1831 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1832 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1833 		return;
1834 	}
1835 
1836 	dbri->descs[rd].inuse = 0;
1837 	dbri->pipes[pipe].desc = dbri->descs[rd].next;
1838 	status = dbri->dma->desc[rd].word1;
1839 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1840 
1841 	info = &dbri->stream_info[DBRI_REC];
1842 	info->offset += DBRI_RD_CNT(status);
1843 	info->left += DBRI_RD_CNT(status);
1844 
1845 	/* FIXME: Check status */
1846 
1847 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1848 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1849 
1850 	/* On the last TD, transmit them all again. */
1851 	if (dbri->descs[rd].next == -1) {
1852 		if (info->left > info->size) {
1853 			printk(KERN_WARNING
1854 			       "%d bytes recorded in %d size buffer.\n",
1855 			       info->left, info->size);
1856 		}
1857 		tasklet_schedule(&xmit_descs_task);
1858 	}
1859 
1860 	/* Notify ALSA */
1861 	if (spin_is_locked(&dbri->lock)) {
1862 		spin_unlock(&dbri->lock);
1863 		snd_pcm_period_elapsed(info->substream);
1864 		spin_lock(&dbri->lock);
1865 	} else
1866 		snd_pcm_period_elapsed(info->substream);
1867 }
1868 
1869 static void dbri_process_one_interrupt(snd_dbri_t * dbri, int x)
1870 {
1871 	int val = D_INTR_GETVAL(x);
1872 	int channel = D_INTR_GETCHAN(x);
1873 	int command = D_INTR_GETCMD(x);
1874 	int code = D_INTR_GETCODE(x);
1875 #ifdef DBRI_DEBUG
1876 	int rval = D_INTR_GETRVAL(x);
1877 #endif
1878 
1879 	if (channel == D_INTR_CMD) {
1880 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1881 			cmds[command], val);
1882 	} else {
1883 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1884 			channel, code, rval);
1885 	}
1886 
1887 	if (channel == D_INTR_CMD && command == D_WAIT) {
1888 		dbri->wait_seen++;
1889 		return;
1890 	}
1891 
1892 	switch (code) {
1893 	case D_INTR_BRDY:
1894 		reception_complete_intr(dbri, channel);
1895 		break;
1896 	case D_INTR_XCMP:
1897 	case D_INTR_MINT:
1898 		transmission_complete_intr(dbri, channel);
1899 		break;
1900 	case D_INTR_UNDR:
1901 		/* UNDR - Transmission underrun
1902 		 * resend SDP command with clear pipe bit (C) set
1903 		 */
1904 		{
1905 			volatile s32 *cmd;
1906 
1907 			int pipe = channel;
1908 			int td = dbri->pipes[pipe].desc;
1909 
1910 			dbri->dma->desc[td].word4 = 0;
1911 			cmd = dbri_cmdlock(dbri, NoGetLock);
1912 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1913 					    dbri->pipes[pipe].sdp
1914 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1915 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1916 			dbri_cmdsend(dbri, cmd);
1917 		}
1918 		break;
1919 	case D_INTR_FXDT:
1920 		/* FXDT - Fixed data change */
1921 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1922 			val = reverse_bytes(val, dbri->pipes[channel].length);
1923 
1924 		if (dbri->pipes[channel].recv_fixed_ptr)
1925 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1926 		break;
1927 	default:
1928 		if (channel != D_INTR_CMD)
1929 			printk(KERN_WARNING
1930 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1931 	}
1932 }
1933 
1934 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1935  * buffer until it finds a zero word (indicating nothing more to do
1936  * right now).  Non-zero words require processing and are handed off
1937  * to dbri_process_one_interrupt AFTER advancing the pointer.  This
1938  * order is important since we might recurse back into this function
1939  * and need to make sure the pointer has been advanced first.
1940  */
1941 static void dbri_process_interrupt_buffer(snd_dbri_t * dbri)
1942 {
1943 	s32 x;
1944 
1945 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1946 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1947 		dbri->dbri_irqp++;
1948 		if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1949 			dbri->dbri_irqp = 1;
1950 		else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1951 			dbri->dbri_irqp++;
1952 
1953 		dbri_process_one_interrupt(dbri, x);
1954 	}
1955 }
1956 
1957 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1958 				      struct pt_regs *regs)
1959 {
1960 	snd_dbri_t *dbri = dev_id;
1961 	static int errcnt = 0;
1962 	int x;
1963 
1964 	if (dbri == NULL)
1965 		return IRQ_NONE;
1966 	spin_lock(&dbri->lock);
1967 
1968 	/*
1969 	 * Read it, so the interrupt goes away.
1970 	 */
1971 	x = sbus_readl(dbri->regs + REG1);
1972 
1973 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1974 		u32 tmp;
1975 
1976 		if (x & D_MRR)
1977 			printk(KERN_ERR
1978 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1979 			       x);
1980 		if (x & D_MLE)
1981 			printk(KERN_ERR
1982 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1983 			       x);
1984 		if (x & D_LBG)
1985 			printk(KERN_ERR
1986 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1987 		if (x & D_MBE)
1988 			printk(KERN_ERR
1989 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1990 
1991 		/* Some of these SBus errors cause the chip's SBus circuitry
1992 		 * to be disabled, so just re-enable and try to keep going.
1993 		 *
1994 		 * The only one I've seen is MRR, which will be triggered
1995 		 * if you let a transmit pipe underrun, then try to CDP it.
1996 		 *
1997 		 * If these things persist, we should probably reset
1998 		 * and re-init the chip.
1999 		 */
2000 		if ((++errcnt) % 10 == 0) {
2001 			dprintk(D_INT, "Interrupt errors exceeded.\n");
2002 			dbri_reset(dbri);
2003 		} else {
2004 			tmp = sbus_readl(dbri->regs + REG0);
2005 			tmp &= ~(D_D);
2006 			sbus_writel(tmp, dbri->regs + REG0);
2007 		}
2008 	}
2009 
2010 	dbri_process_interrupt_buffer(dbri);
2011 
2012 	/* FIXME: Write 0 into regs to ACK interrupt */
2013 
2014 	spin_unlock(&dbri->lock);
2015 
2016 	return IRQ_HANDLED;
2017 }
2018 
2019 /****************************************************************************
2020 		PCM Interface
2021 ****************************************************************************/
2022 static snd_pcm_hardware_t snd_dbri_pcm_hw = {
2023 	.info			= (SNDRV_PCM_INFO_MMAP |
2024 				   SNDRV_PCM_INFO_INTERLEAVED |
2025 				   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2026 				   SNDRV_PCM_INFO_MMAP_VALID),
2027 	.formats		= SNDRV_PCM_FMTBIT_MU_LAW |
2028 				  SNDRV_PCM_FMTBIT_A_LAW |
2029 				  SNDRV_PCM_FMTBIT_U8 |
2030 				  SNDRV_PCM_FMTBIT_S16_BE,
2031 	.rates			= SNDRV_PCM_RATE_8000_48000,
2032 	.rate_min		= 8000,
2033 	.rate_max		= 48000,
2034 	.channels_min		= 1,
2035 	.channels_max		= 2,
2036 	.buffer_bytes_max	= (64 * 1024),
2037 	.period_bytes_min	= 1,
2038 	.period_bytes_max	= DBRI_TD_MAXCNT,
2039 	.periods_min		= 1,
2040 	.periods_max		= 1024,
2041 };
2042 
2043 static int snd_dbri_open(snd_pcm_substream_t * substream)
2044 {
2045 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2046 	snd_pcm_runtime_t *runtime = substream->runtime;
2047 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2048 	unsigned long flags;
2049 
2050 	dprintk(D_USR, "open audio output.\n");
2051 	runtime->hw = snd_dbri_pcm_hw;
2052 
2053 	spin_lock_irqsave(&dbri->lock, flags);
2054 	info->substream = substream;
2055 	info->left = 0;
2056 	info->offset = 0;
2057 	info->dvma_buffer = 0;
2058 	info->pipe = -1;
2059 	spin_unlock_irqrestore(&dbri->lock, flags);
2060 
2061 	cs4215_open(dbri);
2062 
2063 	return 0;
2064 }
2065 
2066 static int snd_dbri_close(snd_pcm_substream_t * substream)
2067 {
2068 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2069 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2070 
2071 	dprintk(D_USR, "close audio output.\n");
2072 	info->substream = NULL;
2073 	info->left = 0;
2074 	info->offset = 0;
2075 
2076 	return 0;
2077 }
2078 
2079 static int snd_dbri_hw_params(snd_pcm_substream_t * substream,
2080 			      snd_pcm_hw_params_t * hw_params)
2081 {
2082 	snd_pcm_runtime_t *runtime = substream->runtime;
2083 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2084 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2085 	int direction;
2086 	int ret;
2087 
2088 	/* set sampling rate, audio format and number of channels */
2089 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2090 			     params_format(hw_params),
2091 			     params_channels(hw_params));
2092 	if (ret != 0)
2093 		return ret;
2094 
2095 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2096 				params_buffer_bytes(hw_params))) < 0) {
2097 		snd_printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2098 		return ret;
2099 	}
2100 
2101 	/* hw_params can get called multiple times. Only map the DMA once.
2102 	 */
2103 	if (info->dvma_buffer == 0) {
2104 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105 			direction = SBUS_DMA_TODEVICE;
2106 		else
2107 			direction = SBUS_DMA_FROMDEVICE;
2108 
2109 		info->dvma_buffer = sbus_map_single(dbri->sdev,
2110 					runtime->dma_area,
2111 					params_buffer_bytes(hw_params),
2112 					direction);
2113 	}
2114 
2115 	direction = params_buffer_bytes(hw_params);
2116 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2117 		direction, info->dvma_buffer);
2118 	return 0;
2119 }
2120 
2121 static int snd_dbri_hw_free(snd_pcm_substream_t * substream)
2122 {
2123 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2124 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2125 	int direction;
2126 	dprintk(D_USR, "hw_free.\n");
2127 
2128 	/* hw_free can get called multiple times. Only unmap the DMA once.
2129 	 */
2130 	if (info->dvma_buffer) {
2131 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2132 			direction = SBUS_DMA_TODEVICE;
2133 		else
2134 			direction = SBUS_DMA_FROMDEVICE;
2135 
2136 		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2137 				  substream->runtime->buffer_size, direction);
2138 		info->dvma_buffer = 0;
2139 	}
2140 	info->pipe = -1;
2141 
2142 	return snd_pcm_lib_free_pages(substream);
2143 }
2144 
2145 static int snd_dbri_prepare(snd_pcm_substream_t * substream)
2146 {
2147 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2148 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2149 	snd_pcm_runtime_t *runtime = substream->runtime;
2150 	int ret;
2151 
2152 	info->size = snd_pcm_lib_buffer_bytes(substream);
2153 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2154 		info->pipe = 4;	/* Send pipe */
2155 	else {
2156 		info->pipe = 6;	/* Receive pipe */
2157 		info->left = info->size;	/* To trigger submittal */
2158 	}
2159 
2160 	spin_lock_irq(&dbri->lock);
2161 
2162 	/* Setup the all the transmit/receive desciptors to cover the
2163 	 * whole DMA buffer.
2164 	 */
2165 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2166 			  snd_pcm_lib_period_bytes(substream));
2167 
2168 	runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2169 
2170 	spin_unlock_irq(&dbri->lock);
2171 
2172 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2173 	return ret;
2174 }
2175 
2176 static int snd_dbri_trigger(snd_pcm_substream_t * substream, int cmd)
2177 {
2178 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2179 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2180 	int ret = 0;
2181 
2182 	switch (cmd) {
2183 	case SNDRV_PCM_TRIGGER_START:
2184 		dprintk(D_USR, "start audio, period is %d bytes\n",
2185 			(int)snd_pcm_lib_period_bytes(substream));
2186 		/* Enable & schedule the tasklet that re-submits the TDs. */
2187 		xmit_descs_task.data = (unsigned long)dbri;
2188 		tasklet_schedule(&xmit_descs_task);
2189 		break;
2190 	case SNDRV_PCM_TRIGGER_STOP:
2191 		dprintk(D_USR, "stop audio.\n");
2192 		/* Make the tasklet bail out immediately. */
2193 		xmit_descs_task.data = 0;
2194 		reset_pipe(dbri, info->pipe);
2195 		break;
2196 	default:
2197 		ret = -EINVAL;
2198 	}
2199 
2200 	return ret;
2201 }
2202 
2203 static snd_pcm_uframes_t snd_dbri_pointer(snd_pcm_substream_t * substream)
2204 {
2205 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2206 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2207 	snd_pcm_uframes_t ret;
2208 
2209 	ret = bytes_to_frames(substream->runtime, info->offset)
2210 		% substream->runtime->buffer_size;
2211 	dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2212 		ret, info->left);
2213 	return ret;
2214 }
2215 
2216 static snd_pcm_ops_t snd_dbri_ops = {
2217 	.open = snd_dbri_open,
2218 	.close = snd_dbri_close,
2219 	.ioctl = snd_pcm_lib_ioctl,
2220 	.hw_params = snd_dbri_hw_params,
2221 	.hw_free = snd_dbri_hw_free,
2222 	.prepare = snd_dbri_prepare,
2223 	.trigger = snd_dbri_trigger,
2224 	.pointer = snd_dbri_pointer,
2225 };
2226 
2227 static int __devinit snd_dbri_pcm(snd_dbri_t * dbri)
2228 {
2229 	snd_pcm_t *pcm;
2230 	int err;
2231 
2232 	if ((err = snd_pcm_new(dbri->card,
2233 			       /* ID */		    "sun_dbri",
2234 			       /* device */	    0,
2235 			       /* playback count */ 1,
2236 			       /* capture count */  1, &pcm)) < 0)
2237 		return err;
2238 	snd_assert(pcm != NULL, return -EINVAL);
2239 
2240 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2242 
2243 	pcm->private_data = dbri;
2244 	pcm->info_flags = 0;
2245 	strcpy(pcm->name, dbri->card->shortname);
2246 	dbri->pcm = pcm;
2247 
2248 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2249 			SNDRV_DMA_TYPE_CONTINUOUS,
2250 			snd_dma_continuous_data(GFP_KERNEL),
2251 			64 * 1024, 64 * 1024)) < 0) {
2252 		return err;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 /*****************************************************************************
2259 			Mixer interface
2260 *****************************************************************************/
2261 
2262 static int snd_cs4215_info_volume(snd_kcontrol_t * kcontrol,
2263 				  snd_ctl_elem_info_t * uinfo)
2264 {
2265 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2266 	uinfo->count = 2;
2267 	uinfo->value.integer.min = 0;
2268 	if (kcontrol->private_value == DBRI_PLAY) {
2269 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2270 	} else {
2271 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2272 	}
2273 	return 0;
2274 }
2275 
2276 static int snd_cs4215_get_volume(snd_kcontrol_t * kcontrol,
2277 				 snd_ctl_elem_value_t * ucontrol)
2278 {
2279 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2280 	dbri_streaminfo_t *info;
2281 	snd_assert(dbri != NULL, return -EINVAL);
2282 	info = &dbri->stream_info[kcontrol->private_value];
2283 	snd_assert(info != NULL, return -EINVAL);
2284 
2285 	ucontrol->value.integer.value[0] = info->left_gain;
2286 	ucontrol->value.integer.value[1] = info->right_gain;
2287 	return 0;
2288 }
2289 
2290 static int snd_cs4215_put_volume(snd_kcontrol_t * kcontrol,
2291 				 snd_ctl_elem_value_t * ucontrol)
2292 {
2293 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2294 	dbri_streaminfo_t *info = &dbri->stream_info[kcontrol->private_value];
2295 	unsigned long flags;
2296 	int changed = 0;
2297 
2298 	if (info->left_gain != ucontrol->value.integer.value[0]) {
2299 		info->left_gain = ucontrol->value.integer.value[0];
2300 		changed = 1;
2301 	}
2302 	if (info->right_gain != ucontrol->value.integer.value[1]) {
2303 		info->right_gain = ucontrol->value.integer.value[1];
2304 		changed = 1;
2305 	}
2306 	if (changed == 1) {
2307 		/* First mute outputs, and wait 1/8000 sec (125 us)
2308 		 * to make sure this takes.  This avoids clicking noises.
2309 		 */
2310 		spin_lock_irqsave(&dbri->lock, flags);
2311 
2312 		cs4215_setdata(dbri, 1);
2313 		udelay(125);
2314 		cs4215_setdata(dbri, 0);
2315 
2316 		spin_unlock_irqrestore(&dbri->lock, flags);
2317 	}
2318 	return changed;
2319 }
2320 
2321 static int snd_cs4215_info_single(snd_kcontrol_t * kcontrol,
2322 				  snd_ctl_elem_info_t * uinfo)
2323 {
2324 	int mask = (kcontrol->private_value >> 16) & 0xff;
2325 
2326 	uinfo->type = (mask == 1) ?
2327 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2328 	uinfo->count = 1;
2329 	uinfo->value.integer.min = 0;
2330 	uinfo->value.integer.max = mask;
2331 	return 0;
2332 }
2333 
2334 static int snd_cs4215_get_single(snd_kcontrol_t * kcontrol,
2335 				 snd_ctl_elem_value_t * ucontrol)
2336 {
2337 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2338 	int elem = kcontrol->private_value & 0xff;
2339 	int shift = (kcontrol->private_value >> 8) & 0xff;
2340 	int mask = (kcontrol->private_value >> 16) & 0xff;
2341 	int invert = (kcontrol->private_value >> 24) & 1;
2342 	snd_assert(dbri != NULL, return -EINVAL);
2343 
2344 	if (elem < 4) {
2345 		ucontrol->value.integer.value[0] =
2346 		    (dbri->mm.data[elem] >> shift) & mask;
2347 	} else {
2348 		ucontrol->value.integer.value[0] =
2349 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350 	}
2351 
2352 	if (invert == 1) {
2353 		ucontrol->value.integer.value[0] =
2354 		    mask - ucontrol->value.integer.value[0];
2355 	}
2356 	return 0;
2357 }
2358 
2359 static int snd_cs4215_put_single(snd_kcontrol_t * kcontrol,
2360 				 snd_ctl_elem_value_t * ucontrol)
2361 {
2362 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2363 	unsigned long flags;
2364 	int elem = kcontrol->private_value & 0xff;
2365 	int shift = (kcontrol->private_value >> 8) & 0xff;
2366 	int mask = (kcontrol->private_value >> 16) & 0xff;
2367 	int invert = (kcontrol->private_value >> 24) & 1;
2368 	int changed = 0;
2369 	unsigned short val;
2370 	snd_assert(dbri != NULL, return -EINVAL);
2371 
2372 	val = (ucontrol->value.integer.value[0] & mask);
2373 	if (invert == 1)
2374 		val = mask - val;
2375 	val <<= shift;
2376 
2377 	if (elem < 4) {
2378 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2379 				       ~(mask << shift)) | val;
2380 		changed = (val != dbri->mm.data[elem]);
2381 	} else {
2382 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2383 					   ~(mask << shift)) | val;
2384 		changed = (val != dbri->mm.ctrl[elem - 4]);
2385 	}
2386 
2387 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2388 		"mixer-value=%ld, mm-value=0x%x\n",
2389 		mask, changed, ucontrol->value.integer.value[0],
2390 		dbri->mm.data[elem & 3]);
2391 
2392 	if (changed) {
2393 		/* First mute outputs, and wait 1/8000 sec (125 us)
2394 		 * to make sure this takes.  This avoids clicking noises.
2395 		 */
2396 		spin_lock_irqsave(&dbri->lock, flags);
2397 
2398 		cs4215_setdata(dbri, 1);
2399 		udelay(125);
2400 		cs4215_setdata(dbri, 0);
2401 
2402 		spin_unlock_irqrestore(&dbri->lock, flags);
2403 	}
2404 	return changed;
2405 }
2406 
2407 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2408    timeslots. Shift is the bit offset in the timeslot, mask defines the
2409    number of bits. invert is a boolean for use with attenuation.
2410  */
2411 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2412 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2413   .info = snd_cs4215_info_single, \
2414   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2415   .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2416 
2417 static snd_kcontrol_new_t dbri_controls[] __devinitdata = {
2418 	{
2419 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420 	 .name  = "Playback Volume",
2421 	 .info  = snd_cs4215_info_volume,
2422 	 .get   = snd_cs4215_get_volume,
2423 	 .put   = snd_cs4215_put_volume,
2424 	 .private_value = DBRI_PLAY,
2425 	 },
2426 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2429 	{
2430 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431 	 .name  = "Capture Volume",
2432 	 .info  = snd_cs4215_info_volume,
2433 	 .get   = snd_cs4215_get_volume,
2434 	 .put   = snd_cs4215_put_volume,
2435 	 .private_value = DBRI_REC,
2436 	 },
2437 	/* FIXME: mic/line switch */
2438 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2442 };
2443 
2444 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(snd_kcontrol_new_t))
2445 
2446 static int __init snd_dbri_mixer(snd_dbri_t * dbri)
2447 {
2448 	snd_card_t *card;
2449 	int idx, err;
2450 
2451 	snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2452 
2453 	card = dbri->card;
2454 	strcpy(card->mixername, card->shortname);
2455 
2456 	for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2457 		if ((err = snd_ctl_add(card,
2458 				       snd_ctl_new1(&dbri_controls[idx],
2459 						    dbri))) < 0)
2460 			return err;
2461 	}
2462 
2463 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2464 		dbri->stream_info[idx].left_gain = 0;
2465 		dbri->stream_info[idx].right_gain = 0;
2466 		dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2467 	}
2468 
2469 	return 0;
2470 }
2471 
2472 /****************************************************************************
2473 			/proc interface
2474 ****************************************************************************/
2475 static void dbri_regs_read(snd_info_entry_t * entry, snd_info_buffer_t * buffer)
2476 {
2477 	snd_dbri_t *dbri = entry->private_data;
2478 
2479 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2480 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2481 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2482 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2483 }
2484 
2485 #ifdef DBRI_DEBUG
2486 static void dbri_debug_read(snd_info_entry_t * entry,
2487 			    snd_info_buffer_t * buffer)
2488 {
2489 	snd_dbri_t *dbri = entry->private_data;
2490 	int pipe;
2491 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2492 
2493 	snd_iprintf(buffer, "CHI pipe in=%d, out=%d\n",
2494 		    dbri->chi_in_pipe, dbri->chi_out_pipe);
2495 	for (pipe = 0; pipe < 32; pipe++) {
2496 		if (pipe_active(dbri, pipe)) {
2497 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2498 			snd_iprintf(buffer,
2499 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2500 				    "len=%d @ %d prev: %d next %d\n",
2501 				    pipe,
2502 				    (pptr->direction ==
2503 				     PIPEinput ? "input" : "output"), pptr->sdp,
2504 				    pptr->desc, pptr->length, pptr->cycle,
2505 				    pptr->prevpipe, pptr->nextpipe);
2506 		}
2507 	}
2508 }
2509 
2510 static void dbri_debug_write(snd_info_entry_t * entry,
2511 			     snd_info_buffer_t * buffer)
2512 {
2513 	char line[80];
2514 	int i;
2515 
2516 	if (snd_info_get_line(buffer, line, 80) == 0) {
2517 		sscanf(line, "%d\n", &i);
2518 		dbri_debug = i & 0x3f;
2519 	}
2520 }
2521 #endif
2522 
2523 void snd_dbri_proc(snd_dbri_t * dbri)
2524 {
2525 	snd_info_entry_t *entry;
2526 	int err;
2527 
2528 	err = snd_card_proc_new(dbri->card, "regs", &entry);
2529 	snd_info_set_text_ops(entry, dbri, 1024, dbri_regs_read);
2530 
2531 #ifdef DBRI_DEBUG
2532 	err = snd_card_proc_new(dbri->card, "debug", &entry);
2533 	snd_info_set_text_ops(entry, dbri, 4096, dbri_debug_read);
2534 	entry->mode = S_IFREG | S_IRUGO | S_IWUSR; /* Writable for root */
2535 	entry->c.text.write_size = 256;
2536 	entry->c.text.write = dbri_debug_write;
2537 #endif
2538 }
2539 
2540 /*
2541 ****************************************************************************
2542 **************************** Initialization ********************************
2543 ****************************************************************************
2544 */
2545 static void snd_dbri_free(snd_dbri_t * dbri);
2546 
2547 static int __init snd_dbri_create(snd_card_t * card,
2548 				  struct sbus_dev *sdev,
2549 				  struct linux_prom_irqs *irq, int dev)
2550 {
2551 	snd_dbri_t *dbri = card->private_data;
2552 	int err;
2553 
2554 	spin_lock_init(&dbri->lock);
2555 	dbri->card = card;
2556 	dbri->sdev = sdev;
2557 	dbri->irq = irq->pri;
2558 	dbri->dbri_version = sdev->prom_name[9];
2559 
2560 	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2561 					  &dbri->dma_dvma);
2562 	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2563 
2564 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2565 		dbri->dma, dbri->dma_dvma);
2566 
2567 	/* Map the registers into memory. */
2568 	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2569 	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2570 				  dbri->regs_size, "DBRI Registers");
2571 	if (!dbri->regs) {
2572 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2573 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2574 				     (void *)dbri->dma, dbri->dma_dvma);
2575 		return -EIO;
2576 	}
2577 
2578 	err = request_irq(dbri->irq, snd_dbri_interrupt, SA_SHIRQ,
2579 			  "DBRI audio", dbri);
2580 	if (err) {
2581 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2582 		sbus_iounmap(dbri->regs, dbri->regs_size);
2583 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2584 				     (void *)dbri->dma, dbri->dma_dvma);
2585 		return err;
2586 	}
2587 
2588 	/* Do low level initialization of the DBRI and CS4215 chips */
2589 	dbri_initialize(dbri);
2590 	err = cs4215_init(dbri);
2591 	if (err) {
2592 		snd_dbri_free(dbri);
2593 		return err;
2594 	}
2595 
2596 	dbri->next = dbri_list;
2597 	dbri_list = dbri;
2598 
2599 	return 0;
2600 }
2601 
2602 static void snd_dbri_free(snd_dbri_t * dbri)
2603 {
2604 	dprintk(D_GEN, "snd_dbri_free\n");
2605 	dbri_reset(dbri);
2606 
2607 	if (dbri->irq)
2608 		free_irq(dbri->irq, dbri);
2609 
2610 	if (dbri->regs)
2611 		sbus_iounmap(dbri->regs, dbri->regs_size);
2612 
2613 	if (dbri->dma)
2614 		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2615 				     (void *)dbri->dma, dbri->dma_dvma);
2616 }
2617 
2618 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2619 {
2620 	snd_dbri_t *dbri;
2621 	struct linux_prom_irqs irq;
2622 	struct resource *rp;
2623 	snd_card_t *card;
2624 	static int dev = 0;
2625 	int err;
2626 
2627 	if (sdev->prom_name[9] < 'e') {
2628 		printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2629 		       sdev->prom_name[9]);
2630 		return -EIO;
2631 	}
2632 
2633 	if (dev >= SNDRV_CARDS)
2634 		return -ENODEV;
2635 	if (!enable[dev]) {
2636 		dev++;
2637 		return -ENOENT;
2638 	}
2639 
2640 	prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2641 
2642 	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2643 			    sizeof(snd_dbri_t));
2644 	if (card == NULL)
2645 		return -ENOMEM;
2646 
2647 	strcpy(card->driver, "DBRI");
2648 	strcpy(card->shortname, "Sun DBRI");
2649 	rp = &sdev->resource[0];
2650 	sprintf(card->longname, "%s at 0x%02lx:0x%08lx, irq %s",
2651 		card->shortname,
2652 		rp->flags & 0xffL, rp->start, __irq_itoa(irq.pri));
2653 
2654 	if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2655 		snd_card_free(card);
2656 		return err;
2657 	}
2658 
2659 	dbri = (snd_dbri_t *) card->private_data;
2660 	if ((err = snd_dbri_pcm(dbri)) < 0) {
2661 		snd_dbri_free(dbri);
2662 		snd_card_free(card);
2663 		return err;
2664 	}
2665 
2666 	if ((err = snd_dbri_mixer(dbri)) < 0) {
2667 		snd_dbri_free(dbri);
2668 		snd_card_free(card);
2669 		return err;
2670 	}
2671 
2672 	/* /proc file handling */
2673 	snd_dbri_proc(dbri);
2674 
2675 	if ((err = snd_card_register(card)) < 0) {
2676 		snd_dbri_free(dbri);
2677 		snd_card_free(card);
2678 		return err;
2679 	}
2680 
2681 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2682 	       dev, dbri->regs,
2683 	       dbri->irq, dbri->dbri_version, dbri->mm.version);
2684 	dev++;
2685 
2686 	return 0;
2687 }
2688 
2689 /* Probe for the dbri chip and then attach the driver. */
2690 static int __init dbri_init(void)
2691 {
2692 	struct sbus_bus *sbus;
2693 	struct sbus_dev *sdev;
2694 	int found = 0;
2695 
2696 	/* Probe each SBUS for the DBRI chip(s). */
2697 	for_all_sbusdev(sdev, sbus) {
2698 		/*
2699 		 * The version is coded in the last character
2700 		 */
2701 		if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2702 			dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2703 				sdev->prom_name, sdev->slot);
2704 
2705 			if (dbri_attach(sdev->prom_node, sdev) == 0)
2706 				found++;
2707 		}
2708 	}
2709 
2710 	return (found > 0) ? 0 : -EIO;
2711 }
2712 
2713 static void __exit dbri_exit(void)
2714 {
2715 	snd_dbri_t *this = dbri_list;
2716 
2717 	while (this != NULL) {
2718 		snd_dbri_t *next = this->next;
2719 		snd_card_t *card = this->card;
2720 
2721 		snd_dbri_free(this);
2722 		snd_card_free(card);
2723 		this = next;
2724 	}
2725 	dbri_list = NULL;
2726 }
2727 
2728 module_init(dbri_init);
2729 module_exit(dbri_exit);
2730