xref: /linux/sound/soc/ti/omap-mcbsp.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23 
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27 
28 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29 
30 enum {
31 	OMAP_MCBSP_WORD_8 = 0,
32 	OMAP_MCBSP_WORD_12,
33 	OMAP_MCBSP_WORD_16,
34 	OMAP_MCBSP_WORD_20,
35 	OMAP_MCBSP_WORD_24,
36 	OMAP_MCBSP_WORD_32,
37 };
38 
39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 	dev_dbg(mcbsp->dev, "***********************\n");
56 }
57 
58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 	struct clk *fck_src;
61 	const char *src;
62 	int r;
63 
64 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 		src = "pad_fck";
66 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 		src = "prcm_fck";
68 	else
69 		return -EINVAL;
70 
71 	fck_src = clk_get(mcbsp->dev, src);
72 	if (IS_ERR(fck_src)) {
73 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 		return -EINVAL;
75 	}
76 
77 	pm_runtime_put_sync(mcbsp->dev);
78 
79 	r = clk_set_parent(mcbsp->fclk, fck_src);
80 	if (r)
81 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 			src);
83 
84 	pm_runtime_get_sync(mcbsp->dev);
85 
86 	clk_put(fck_src);
87 
88 	return r;
89 }
90 
91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
92 {
93 	struct omap_mcbsp *mcbsp = data;
94 	u16 irqst;
95 
96 	irqst = MCBSP_READ(mcbsp, IRQST);
97 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
98 
99 	if (irqst & RSYNCERREN)
100 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
101 	if (irqst & RFSREN)
102 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
103 	if (irqst & REOFEN)
104 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
105 	if (irqst & RRDYEN)
106 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
107 	if (irqst & RUNDFLEN)
108 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
109 	if (irqst & ROVFLEN)
110 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
111 
112 	if (irqst & XSYNCERREN)
113 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
114 	if (irqst & XFSXEN)
115 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
116 	if (irqst & XEOFEN)
117 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
118 	if (irqst & XRDYEN)
119 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
120 	if (irqst & XUNDFLEN)
121 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
122 	if (irqst & XOVFLEN)
123 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
124 	if (irqst & XEMPTYEOFEN)
125 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
126 
127 	MCBSP_WRITE(mcbsp, IRQST, irqst);
128 
129 	return IRQ_HANDLED;
130 }
131 
132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
133 {
134 	struct omap_mcbsp *mcbsp = data;
135 	u16 irqst_spcr2;
136 
137 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
138 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
139 
140 	if (irqst_spcr2 & XSYNC_ERR) {
141 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
142 			irqst_spcr2);
143 		/* Writing zero to XSYNC_ERR clears the IRQ */
144 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
145 	}
146 
147 	return IRQ_HANDLED;
148 }
149 
150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
151 {
152 	struct omap_mcbsp *mcbsp = data;
153 	u16 irqst_spcr1;
154 
155 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
156 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
157 
158 	if (irqst_spcr1 & RSYNC_ERR) {
159 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
160 			irqst_spcr1);
161 		/* Writing zero to RSYNC_ERR clears the IRQ */
162 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
163 	}
164 
165 	return IRQ_HANDLED;
166 }
167 
168 /*
169  * omap_mcbsp_config simply write a config to the
170  * appropriate McBSP.
171  * You either call this function or set the McBSP registers
172  * by yourself before calling omap_mcbsp_start().
173  */
174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
175 			      const struct omap_mcbsp_reg_cfg *config)
176 {
177 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
178 		mcbsp->id, mcbsp->phys_base);
179 
180 	/* We write the given config */
181 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
182 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
183 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
184 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
185 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
186 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
187 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
188 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
189 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
190 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
191 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
192 	if (mcbsp->pdata->has_ccr) {
193 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
194 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
195 	}
196 	/* Enable wakeup behavior */
197 	if (mcbsp->pdata->has_wakeup)
198 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
199 
200 	/* Enable TX/RX sync error interrupts by default */
201 	if (mcbsp->irq)
202 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
203 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
204 }
205 
206 /**
207  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
208  * @mcbsp: omap_mcbsp struct for the McBSP instance
209  * @stream: Stream direction (playback/capture)
210  *
211  * Returns the address of mcbsp data transmit register or data receive register
212  * to be used by DMA for transferring/receiving data
213  */
214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
215 				     unsigned int stream)
216 {
217 	int data_reg;
218 
219 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
220 		if (mcbsp->pdata->reg_size == 2)
221 			data_reg = OMAP_MCBSP_REG_DXR1;
222 		else
223 			data_reg = OMAP_MCBSP_REG_DXR;
224 	} else {
225 		if (mcbsp->pdata->reg_size == 2)
226 			data_reg = OMAP_MCBSP_REG_DRR1;
227 		else
228 			data_reg = OMAP_MCBSP_REG_DRR;
229 	}
230 
231 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
232 }
233 
234 /*
235  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
236  * The threshold parameter is 1 based, and it is converted (threshold - 1)
237  * for the THRSH2 register.
238  */
239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
240 {
241 	if (threshold && threshold <= mcbsp->max_tx_thres)
242 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
243 }
244 
245 /*
246  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
247  * The threshold parameter is 1 based, and it is converted (threshold - 1)
248  * for the THRSH1 register.
249  */
250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
251 {
252 	if (threshold && threshold <= mcbsp->max_rx_thres)
253 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
254 }
255 
256 /*
257  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
258  */
259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
260 {
261 	u16 buffstat;
262 
263 	/* Returns the number of free locations in the buffer */
264 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
265 
266 	/* Number of slots are different in McBSP ports */
267 	return mcbsp->pdata->buffer_size - buffstat;
268 }
269 
270 /*
271  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
272  * to reach the threshold value (when the DMA will be triggered to read it)
273  */
274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
275 {
276 	u16 buffstat, threshold;
277 
278 	/* Returns the number of used locations in the buffer */
279 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
280 	/* RX threshold */
281 	threshold = MCBSP_READ(mcbsp, THRSH1);
282 
283 	/* Return the number of location till we reach the threshold limit */
284 	if (threshold <= buffstat)
285 		return 0;
286 	else
287 		return threshold - buffstat;
288 }
289 
290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
291 {
292 	void *reg_cache;
293 	int err;
294 
295 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
296 	if (!reg_cache)
297 		return -ENOMEM;
298 
299 	spin_lock(&mcbsp->lock);
300 	if (!mcbsp->free) {
301 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
302 		err = -EBUSY;
303 		goto err_kfree;
304 	}
305 
306 	mcbsp->free = false;
307 	mcbsp->reg_cache = reg_cache;
308 	spin_unlock(&mcbsp->lock);
309 
310 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
311 		mcbsp->pdata->ops->request(mcbsp->id - 1);
312 
313 	/*
314 	 * Make sure that transmitter, receiver and sample-rate generator are
315 	 * not running before activating IRQs.
316 	 */
317 	MCBSP_WRITE(mcbsp, SPCR1, 0);
318 	MCBSP_WRITE(mcbsp, SPCR2, 0);
319 
320 	if (mcbsp->irq) {
321 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
322 				  "McBSP", (void *)mcbsp);
323 		if (err != 0) {
324 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
325 			goto err_clk_disable;
326 		}
327 	} else {
328 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
329 				  "McBSP TX", (void *)mcbsp);
330 		if (err != 0) {
331 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
332 			goto err_clk_disable;
333 		}
334 
335 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
336 				  "McBSP RX", (void *)mcbsp);
337 		if (err != 0) {
338 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
339 			goto err_free_irq;
340 		}
341 	}
342 
343 	return 0;
344 err_free_irq:
345 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
346 err_clk_disable:
347 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
348 		mcbsp->pdata->ops->free(mcbsp->id - 1);
349 
350 	/* Disable wakeup behavior */
351 	if (mcbsp->pdata->has_wakeup)
352 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
353 
354 	spin_lock(&mcbsp->lock);
355 	mcbsp->free = true;
356 	mcbsp->reg_cache = NULL;
357 err_kfree:
358 	spin_unlock(&mcbsp->lock);
359 	kfree(reg_cache);
360 
361 	return err;
362 }
363 
364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
365 {
366 	void *reg_cache;
367 
368 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
369 		mcbsp->pdata->ops->free(mcbsp->id - 1);
370 
371 	/* Disable wakeup behavior */
372 	if (mcbsp->pdata->has_wakeup)
373 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
374 
375 	/* Disable interrupt requests */
376 	if (mcbsp->irq) {
377 		MCBSP_WRITE(mcbsp, IRQEN, 0);
378 
379 		free_irq(mcbsp->irq, (void *)mcbsp);
380 	} else {
381 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
382 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
383 	}
384 
385 	reg_cache = mcbsp->reg_cache;
386 
387 	/*
388 	 * Select CLKS source from internal source unconditionally before
389 	 * marking the McBSP port as free.
390 	 * If the external clock source via MCBSP_CLKS pin has been selected the
391 	 * system will refuse to enter idle if the CLKS pin source is not reset
392 	 * back to internal source.
393 	 */
394 	if (!mcbsp_omap1())
395 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
396 
397 	spin_lock(&mcbsp->lock);
398 	if (mcbsp->free)
399 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
400 	else
401 		mcbsp->free = true;
402 	mcbsp->reg_cache = NULL;
403 	spin_unlock(&mcbsp->lock);
404 
405 	kfree(reg_cache);
406 }
407 
408 /*
409  * Here we start the McBSP, by enabling transmitter, receiver or both.
410  * If no transmitter or receiver is active prior calling, then sample-rate
411  * generator and frame sync are started.
412  */
413 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
414 {
415 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
416 	int rx = !tx;
417 	int enable_srg = 0;
418 	u16 w;
419 
420 	if (mcbsp->st_data)
421 		omap_mcbsp_st_start(mcbsp);
422 
423 	/* Only enable SRG, if McBSP is master */
424 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
425 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
426 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
427 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
428 
429 	if (enable_srg) {
430 		/* Start the sample generator */
431 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
432 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
433 	}
434 
435 	/* Enable transmitter and receiver */
436 	tx &= 1;
437 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
438 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
439 
440 	rx &= 1;
441 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
442 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
443 
444 	/*
445 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
446 	 * REVISIT: 100us may give enough time for two CLKSRG, however
447 	 * due to some unknown PM related, clock gating etc. reason it
448 	 * is now at 500us.
449 	 */
450 	udelay(500);
451 
452 	if (enable_srg) {
453 		/* Start frame sync */
454 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
455 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
456 	}
457 
458 	if (mcbsp->pdata->has_ccr) {
459 		/* Release the transmitter and receiver */
460 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
461 		w &= ~(tx ? XDISABLE : 0);
462 		MCBSP_WRITE(mcbsp, XCCR, w);
463 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
464 		w &= ~(rx ? RDISABLE : 0);
465 		MCBSP_WRITE(mcbsp, RCCR, w);
466 	}
467 
468 	/* Dump McBSP Regs */
469 	omap_mcbsp_dump_reg(mcbsp);
470 }
471 
472 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
473 {
474 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
475 	int rx = !tx;
476 	int idle;
477 	u16 w;
478 
479 	/* Reset transmitter */
480 	tx &= 1;
481 	if (mcbsp->pdata->has_ccr) {
482 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
483 		w |= (tx ? XDISABLE : 0);
484 		MCBSP_WRITE(mcbsp, XCCR, w);
485 	}
486 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
487 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
488 
489 	/* Reset receiver */
490 	rx &= 1;
491 	if (mcbsp->pdata->has_ccr) {
492 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
493 		w |= (rx ? RDISABLE : 0);
494 		MCBSP_WRITE(mcbsp, RCCR, w);
495 	}
496 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
497 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
498 
499 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
500 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
501 
502 	if (idle) {
503 		/* Reset the sample rate generator */
504 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
505 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
506 	}
507 
508 	if (mcbsp->st_data)
509 		omap_mcbsp_st_stop(mcbsp);
510 }
511 
512 #define max_thres(m)			(mcbsp->pdata->buffer_size)
513 #define valid_threshold(m, val)		((val) <= max_thres(m))
514 #define THRESHOLD_PROP_BUILDER(prop)					\
515 static ssize_t prop##_show(struct device *dev,				\
516 			struct device_attribute *attr, char *buf)	\
517 {									\
518 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
519 									\
520 	return sprintf(buf, "%u\n", mcbsp->prop);			\
521 }									\
522 									\
523 static ssize_t prop##_store(struct device *dev,				\
524 				struct device_attribute *attr,		\
525 				const char *buf, size_t size)		\
526 {									\
527 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
528 	unsigned long val;						\
529 	int status;							\
530 									\
531 	status = kstrtoul(buf, 0, &val);				\
532 	if (status)							\
533 		return status;						\
534 									\
535 	if (!valid_threshold(mcbsp, val))				\
536 		return -EDOM;						\
537 									\
538 	mcbsp->prop = val;						\
539 	return size;							\
540 }									\
541 									\
542 static DEVICE_ATTR_RW(prop)
543 
544 THRESHOLD_PROP_BUILDER(max_tx_thres);
545 THRESHOLD_PROP_BUILDER(max_rx_thres);
546 
547 static const char * const dma_op_modes[] = {
548 	"element", "threshold",
549 };
550 
551 static ssize_t dma_op_mode_show(struct device *dev,
552 				struct device_attribute *attr, char *buf)
553 {
554 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
555 	int dma_op_mode, i = 0;
556 	ssize_t len = 0;
557 	const char * const *s;
558 
559 	dma_op_mode = mcbsp->dma_op_mode;
560 
561 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
562 		if (dma_op_mode == i)
563 			len += sprintf(buf + len, "[%s] ", *s);
564 		else
565 			len += sprintf(buf + len, "%s ", *s);
566 	}
567 	len += sprintf(buf + len, "\n");
568 
569 	return len;
570 }
571 
572 static ssize_t dma_op_mode_store(struct device *dev,
573 				 struct device_attribute *attr, const char *buf,
574 				 size_t size)
575 {
576 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
577 	int i;
578 
579 	i = sysfs_match_string(dma_op_modes, buf);
580 	if (i < 0)
581 		return i;
582 
583 	spin_lock_irq(&mcbsp->lock);
584 	if (!mcbsp->free) {
585 		size = -EBUSY;
586 		goto unlock;
587 	}
588 	mcbsp->dma_op_mode = i;
589 
590 unlock:
591 	spin_unlock_irq(&mcbsp->lock);
592 
593 	return size;
594 }
595 
596 static DEVICE_ATTR_RW(dma_op_mode);
597 
598 static const struct attribute *additional_attrs[] = {
599 	&dev_attr_max_tx_thres.attr,
600 	&dev_attr_max_rx_thres.attr,
601 	&dev_attr_dma_op_mode.attr,
602 	NULL,
603 };
604 
605 static const struct attribute_group additional_attr_group = {
606 	.attrs = (struct attribute **)additional_attrs,
607 };
608 
609 /*
610  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
611  * 730 has only 2 McBSP, and both of them are MPU peripherals.
612  */
613 static int omap_mcbsp_init(struct platform_device *pdev)
614 {
615 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
616 	struct resource *res;
617 	int ret = 0;
618 
619 	spin_lock_init(&mcbsp->lock);
620 	mcbsp->free = true;
621 
622 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
623 	if (!res)
624 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625 
626 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
627 	if (IS_ERR(mcbsp->io_base))
628 		return PTR_ERR(mcbsp->io_base);
629 
630 	mcbsp->phys_base = res->start;
631 	mcbsp->reg_cache_size = resource_size(res);
632 
633 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
634 	if (!res)
635 		mcbsp->phys_dma_base = mcbsp->phys_base;
636 	else
637 		mcbsp->phys_dma_base = res->start;
638 
639 	/*
640 	 * OMAP1, 2 uses two interrupt lines: TX, RX
641 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
642 	 * OMAP4 and newer SoC only have the combined IRQ line.
643 	 * Use the combined IRQ if available since it gives better debugging
644 	 * possibilities.
645 	 */
646 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
647 	if (mcbsp->irq == -ENXIO) {
648 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
649 
650 		if (mcbsp->tx_irq == -ENXIO) {
651 			mcbsp->irq = platform_get_irq(pdev, 0);
652 			mcbsp->tx_irq = 0;
653 		} else {
654 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
655 			mcbsp->irq = 0;
656 		}
657 	}
658 
659 	if (!pdev->dev.of_node) {
660 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
661 		if (!res) {
662 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
663 			return -ENODEV;
664 		}
665 		mcbsp->dma_req[0] = res->start;
666 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
667 
668 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
669 		if (!res) {
670 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
671 			return -ENODEV;
672 		}
673 		mcbsp->dma_req[1] = res->start;
674 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
675 	} else {
676 		mcbsp->dma_data[0].filter_data = "tx";
677 		mcbsp->dma_data[1].filter_data = "rx";
678 	}
679 
680 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
681 						SNDRV_PCM_STREAM_PLAYBACK);
682 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
683 						SNDRV_PCM_STREAM_CAPTURE);
684 
685 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
686 	if (IS_ERR(mcbsp->fclk)) {
687 		ret = PTR_ERR(mcbsp->fclk);
688 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
689 		return ret;
690 	}
691 
692 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
693 	if (mcbsp->pdata->buffer_size) {
694 		/*
695 		 * Initially configure the maximum thresholds to a safe value.
696 		 * The McBSP FIFO usage with these values should not go under
697 		 * 16 locations.
698 		 * If the whole FIFO without safety buffer is used, than there
699 		 * is a possibility that the DMA will be not able to push the
700 		 * new data on time, causing channel shifts in runtime.
701 		 */
702 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
703 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
704 
705 		ret = sysfs_create_group(&mcbsp->dev->kobj,
706 					 &additional_attr_group);
707 		if (ret) {
708 			dev_err(mcbsp->dev,
709 				"Unable to create additional controls\n");
710 			return ret;
711 		}
712 	}
713 
714 	ret = omap_mcbsp_st_init(pdev);
715 	if (ret)
716 		goto err_st;
717 
718 	return 0;
719 
720 err_st:
721 	if (mcbsp->pdata->buffer_size)
722 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
723 	return ret;
724 }
725 
726 /*
727  * Stream DMA parameters. DMA request line and port address are set runtime
728  * since they are different between OMAP1 and later OMAPs
729  */
730 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
731 		unsigned int packet_size)
732 {
733 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
734 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
735 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
736 	int words;
737 
738 	/* No need to proceed further if McBSP does not have FIFO */
739 	if (mcbsp->pdata->buffer_size == 0)
740 		return;
741 
742 	/*
743 	 * Configure McBSP threshold based on either:
744 	 * packet_size, when the sDMA is in packet mode, or based on the
745 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
746 	 * for mono streams.
747 	 */
748 	if (packet_size)
749 		words = packet_size;
750 	else
751 		words = 1;
752 
753 	/* Configure McBSP internal buffer usage */
754 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
755 		omap_mcbsp_set_tx_threshold(mcbsp, words);
756 	else
757 		omap_mcbsp_set_rx_threshold(mcbsp, words);
758 }
759 
760 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
761 				    struct snd_pcm_hw_rule *rule)
762 {
763 	struct snd_interval *buffer_size = hw_param_interval(params,
764 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
765 	struct snd_interval *channels = hw_param_interval(params,
766 					SNDRV_PCM_HW_PARAM_CHANNELS);
767 	struct omap_mcbsp *mcbsp = rule->private;
768 	struct snd_interval frames;
769 	int size;
770 
771 	snd_interval_any(&frames);
772 	size = mcbsp->pdata->buffer_size;
773 
774 	frames.min = size / channels->min;
775 	frames.integer = 1;
776 	return snd_interval_refine(buffer_size, &frames);
777 }
778 
779 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
780 				  struct snd_soc_dai *cpu_dai)
781 {
782 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
783 	int err = 0;
784 
785 	if (!snd_soc_dai_active(cpu_dai))
786 		err = omap_mcbsp_request(mcbsp);
787 
788 	/*
789 	 * OMAP3 McBSP FIFO is word structured.
790 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
791 	 * McBSP1,3,4,5 has 128 word long buffer
792 	 * This means that the size of the FIFO depends on the sample format.
793 	 * For example on McBSP3:
794 	 * 16bit samples: size is 128 * 2 = 256 bytes
795 	 * 32bit samples: size is 128 * 4 = 512 bytes
796 	 * It is simpler to place constraint for buffer and period based on
797 	 * channels.
798 	 * McBSP3 as example again (16 or 32 bit samples):
799 	 * 1 channel (mono): size is 128 frames (128 words)
800 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
801 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
802 	 */
803 	if (mcbsp->pdata->buffer_size) {
804 		/*
805 		* Rule for the buffer size. We should not allow
806 		* smaller buffer than the FIFO size to avoid underruns.
807 		* This applies only for the playback stream.
808 		*/
809 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
810 			snd_pcm_hw_rule_add(substream->runtime, 0,
811 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
812 					    omap_mcbsp_hwrule_min_buffersize,
813 					    mcbsp,
814 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
815 
816 		/* Make sure, that the period size is always even */
817 		snd_pcm_hw_constraint_step(substream->runtime, 0,
818 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
819 	}
820 
821 	return err;
822 }
823 
824 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
825 				    struct snd_soc_dai *cpu_dai)
826 {
827 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
828 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
829 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
830 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
831 
832 	if (mcbsp->latency[stream2])
833 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
834 					       mcbsp->latency[stream2]);
835 	else if (mcbsp->latency[stream1])
836 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
837 
838 	mcbsp->latency[stream1] = 0;
839 
840 	if (!snd_soc_dai_active(cpu_dai)) {
841 		omap_mcbsp_free(mcbsp);
842 		mcbsp->configured = 0;
843 	}
844 }
845 
846 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
847 				  struct snd_soc_dai *cpu_dai)
848 {
849 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
850 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
851 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
852 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
853 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
854 	int latency = mcbsp->latency[stream2];
855 
856 	/* Prevent omap hardware from hitting off between FIFO fills */
857 	if (!latency || mcbsp->latency[stream1] < latency)
858 		latency = mcbsp->latency[stream1];
859 
860 	if (cpu_latency_qos_request_active(pm_qos_req))
861 		cpu_latency_qos_update_request(pm_qos_req, latency);
862 	else if (latency)
863 		cpu_latency_qos_add_request(pm_qos_req, latency);
864 
865 	return 0;
866 }
867 
868 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
869 				  struct snd_soc_dai *cpu_dai)
870 {
871 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
872 
873 	switch (cmd) {
874 	case SNDRV_PCM_TRIGGER_START:
875 	case SNDRV_PCM_TRIGGER_RESUME:
876 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
877 		mcbsp->active++;
878 		omap_mcbsp_start(mcbsp, substream->stream);
879 		break;
880 
881 	case SNDRV_PCM_TRIGGER_STOP:
882 	case SNDRV_PCM_TRIGGER_SUSPEND:
883 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
884 		omap_mcbsp_stop(mcbsp, substream->stream);
885 		mcbsp->active--;
886 		break;
887 	default:
888 		return -EINVAL;
889 	}
890 
891 	return 0;
892 }
893 
894 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
895 			struct snd_pcm_substream *substream,
896 			struct snd_soc_dai *dai)
897 {
898 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
899 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
900 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
901 	u16 fifo_use;
902 	snd_pcm_sframes_t delay;
903 
904 	/* No need to proceed further if McBSP does not have FIFO */
905 	if (mcbsp->pdata->buffer_size == 0)
906 		return 0;
907 
908 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
909 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
910 	else
911 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
912 
913 	/*
914 	 * Divide the used locations with the channel count to get the
915 	 * FIFO usage in samples (don't care about partial samples in the
916 	 * buffer).
917 	 */
918 	delay = fifo_use / substream->runtime->channels;
919 
920 	return delay;
921 }
922 
923 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
924 				    struct snd_pcm_hw_params *params,
925 				    struct snd_soc_dai *cpu_dai)
926 {
927 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
928 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
929 	struct snd_dmaengine_dai_dma_data *dma_data;
930 	int wlen, channels, wpf;
931 	int pkt_size = 0;
932 	unsigned int format, div, framesize, master;
933 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
934 
935 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
936 	channels = params_channels(params);
937 
938 	switch (params_format(params)) {
939 	case SNDRV_PCM_FORMAT_S16_LE:
940 		wlen = 16;
941 		break;
942 	case SNDRV_PCM_FORMAT_S32_LE:
943 		wlen = 32;
944 		break;
945 	default:
946 		return -EINVAL;
947 	}
948 	if (buffer_size) {
949 		int latency;
950 
951 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
952 			int period_words, max_thrsh;
953 			int divider = 0;
954 
955 			period_words = params_period_bytes(params) / (wlen / 8);
956 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
957 				max_thrsh = mcbsp->max_tx_thres;
958 			else
959 				max_thrsh = mcbsp->max_rx_thres;
960 			/*
961 			 * Use sDMA packet mode if McBSP is in threshold mode:
962 			 * If period words less than the FIFO size the packet
963 			 * size is set to the number of period words, otherwise
964 			 * Look for the biggest threshold value which divides
965 			 * the period size evenly.
966 			 */
967 			divider = period_words / max_thrsh;
968 			if (period_words % max_thrsh)
969 				divider++;
970 			while (period_words % divider &&
971 				divider < period_words)
972 				divider++;
973 			if (divider == period_words)
974 				return -EINVAL;
975 
976 			pkt_size = period_words / divider;
977 		} else if (channels > 1) {
978 			/* Use packet mode for non mono streams */
979 			pkt_size = channels;
980 		}
981 
982 		latency = (buffer_size - pkt_size) / channels;
983 		latency = latency * USEC_PER_SEC /
984 			  (params->rate_num / params->rate_den);
985 		mcbsp->latency[substream->stream] = latency;
986 
987 		omap_mcbsp_set_threshold(substream, pkt_size);
988 	}
989 
990 	dma_data->maxburst = pkt_size;
991 
992 	if (mcbsp->configured) {
993 		/* McBSP already configured by another stream */
994 		return 0;
995 	}
996 
997 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
998 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
999 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1000 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1001 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1002 	wpf = channels;
1003 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1004 			      format == SND_SOC_DAIFMT_LEFT_J)) {
1005 		/* Use dual-phase frames */
1006 		regs->rcr2	|= RPHASE;
1007 		regs->xcr2	|= XPHASE;
1008 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1009 		wpf--;
1010 		regs->rcr2	|= RFRLEN2(wpf - 1);
1011 		regs->xcr2	|= XFRLEN2(wpf - 1);
1012 	}
1013 
1014 	regs->rcr1	|= RFRLEN1(wpf - 1);
1015 	regs->xcr1	|= XFRLEN1(wpf - 1);
1016 
1017 	switch (params_format(params)) {
1018 	case SNDRV_PCM_FORMAT_S16_LE:
1019 		/* Set word lengths */
1020 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1021 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1022 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1023 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1024 		break;
1025 	case SNDRV_PCM_FORMAT_S32_LE:
1026 		/* Set word lengths */
1027 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1028 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1029 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1030 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1031 		break;
1032 	default:
1033 		/* Unsupported PCM format */
1034 		return -EINVAL;
1035 	}
1036 
1037 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1038 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1039 	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1040 	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1041 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1042 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1043 
1044 		if (framesize < wlen * channels) {
1045 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1046 					"channels\n", __func__);
1047 			return -EINVAL;
1048 		}
1049 	} else
1050 		framesize = wlen * channels;
1051 
1052 	/* Set FS period and length in terms of bit clock periods */
1053 	regs->srgr2	&= ~FPER(0xfff);
1054 	regs->srgr1	&= ~FWID(0xff);
1055 	switch (format) {
1056 	case SND_SOC_DAIFMT_I2S:
1057 	case SND_SOC_DAIFMT_LEFT_J:
1058 		regs->srgr2	|= FPER(framesize - 1);
1059 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1060 		break;
1061 	case SND_SOC_DAIFMT_DSP_A:
1062 	case SND_SOC_DAIFMT_DSP_B:
1063 		regs->srgr2	|= FPER(framesize - 1);
1064 		regs->srgr1	|= FWID(0);
1065 		break;
1066 	}
1067 
1068 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1069 	mcbsp->wlen = wlen;
1070 	mcbsp->configured = 1;
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1077  * cache is initialized here
1078  */
1079 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1080 				      unsigned int fmt)
1081 {
1082 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1083 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1084 	bool inv_fs = false;
1085 
1086 	if (mcbsp->configured)
1087 		return 0;
1088 
1089 	mcbsp->fmt = fmt;
1090 	memset(regs, 0, sizeof(*regs));
1091 	/* Generic McBSP register settings */
1092 	regs->spcr2	|= XINTM(3) | FREE;
1093 	regs->spcr1	|= RINTM(3);
1094 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1095 	if (!mcbsp->pdata->has_ccr) {
1096 		regs->rcr2	|= RFIG;
1097 		regs->xcr2	|= XFIG;
1098 	}
1099 
1100 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1101 	if (mcbsp->pdata->has_ccr) {
1102 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1103 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1104 	}
1105 
1106 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1107 	case SND_SOC_DAIFMT_I2S:
1108 		/* 1-bit data delay */
1109 		regs->rcr2	|= RDATDLY(1);
1110 		regs->xcr2	|= XDATDLY(1);
1111 		break;
1112 	case SND_SOC_DAIFMT_LEFT_J:
1113 		/* 0-bit data delay */
1114 		regs->rcr2	|= RDATDLY(0);
1115 		regs->xcr2	|= XDATDLY(0);
1116 		regs->spcr1	|= RJUST(2);
1117 		/* Invert FS polarity configuration */
1118 		inv_fs = true;
1119 		break;
1120 	case SND_SOC_DAIFMT_DSP_A:
1121 		/* 1-bit data delay */
1122 		regs->rcr2      |= RDATDLY(1);
1123 		regs->xcr2      |= XDATDLY(1);
1124 		/* Invert FS polarity configuration */
1125 		inv_fs = true;
1126 		break;
1127 	case SND_SOC_DAIFMT_DSP_B:
1128 		/* 0-bit data delay */
1129 		regs->rcr2      |= RDATDLY(0);
1130 		regs->xcr2      |= XDATDLY(0);
1131 		/* Invert FS polarity configuration */
1132 		inv_fs = true;
1133 		break;
1134 	default:
1135 		/* Unsupported data format */
1136 		return -EINVAL;
1137 	}
1138 
1139 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1140 	case SND_SOC_DAIFMT_CBS_CFS:
1141 		/* McBSP master. Set FS and bit clocks as outputs */
1142 		regs->pcr0	|= FSXM | FSRM |
1143 				   CLKXM | CLKRM;
1144 		/* Sample rate generator drives the FS */
1145 		regs->srgr2	|= FSGM;
1146 		break;
1147 	case SND_SOC_DAIFMT_CBM_CFS:
1148 		/* McBSP slave. FS clock as output */
1149 		regs->srgr2	|= FSGM;
1150 		regs->pcr0	|= FSXM | FSRM;
1151 		break;
1152 	case SND_SOC_DAIFMT_CBM_CFM:
1153 		/* McBSP slave */
1154 		break;
1155 	default:
1156 		/* Unsupported master/slave configuration */
1157 		return -EINVAL;
1158 	}
1159 
1160 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1161 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1162 	case SND_SOC_DAIFMT_NB_NF:
1163 		/*
1164 		 * Normal BCLK + FS.
1165 		 * FS active low. TX data driven on falling edge of bit clock
1166 		 * and RX data sampled on rising edge of bit clock.
1167 		 */
1168 		regs->pcr0	|= FSXP | FSRP |
1169 				   CLKXP | CLKRP;
1170 		break;
1171 	case SND_SOC_DAIFMT_NB_IF:
1172 		regs->pcr0	|= CLKXP | CLKRP;
1173 		break;
1174 	case SND_SOC_DAIFMT_IB_NF:
1175 		regs->pcr0	|= FSXP | FSRP;
1176 		break;
1177 	case SND_SOC_DAIFMT_IB_IF:
1178 		break;
1179 	default:
1180 		return -EINVAL;
1181 	}
1182 	if (inv_fs)
1183 		regs->pcr0 ^= FSXP | FSRP;
1184 
1185 	return 0;
1186 }
1187 
1188 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1189 				     int div_id, int div)
1190 {
1191 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1192 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1193 
1194 	if (div_id != OMAP_MCBSP_CLKGDV)
1195 		return -ENODEV;
1196 
1197 	mcbsp->clk_div = div;
1198 	regs->srgr1	&= ~CLKGDV(0xff);
1199 	regs->srgr1	|= CLKGDV(div - 1);
1200 
1201 	return 0;
1202 }
1203 
1204 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1205 					 int clk_id, unsigned int freq,
1206 					 int dir)
1207 {
1208 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1209 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1210 	int err = 0;
1211 
1212 	if (mcbsp->active) {
1213 		if (freq == mcbsp->in_freq)
1214 			return 0;
1215 		else
1216 			return -EBUSY;
1217 	}
1218 
1219 	mcbsp->in_freq = freq;
1220 	regs->srgr2 &= ~CLKSM;
1221 	regs->pcr0 &= ~SCLKME;
1222 
1223 	switch (clk_id) {
1224 	case OMAP_MCBSP_SYSCLK_CLK:
1225 		regs->srgr2	|= CLKSM;
1226 		break;
1227 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1228 		if (mcbsp_omap1()) {
1229 			err = -EINVAL;
1230 			break;
1231 		}
1232 		err = omap2_mcbsp_set_clks_src(mcbsp,
1233 					       MCBSP_CLKS_PRCM_SRC);
1234 		break;
1235 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1236 		if (mcbsp_omap1()) {
1237 			err = 0;
1238 			break;
1239 		}
1240 		err = omap2_mcbsp_set_clks_src(mcbsp,
1241 					       MCBSP_CLKS_PAD_SRC);
1242 		break;
1243 
1244 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1245 		regs->srgr2	|= CLKSM;
1246 		regs->pcr0	|= SCLKME;
1247 		/*
1248 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1249 		 * disable output on those pins. This enables to inject the
1250 		 * reference clock through CLKX/CLKR. For this to work
1251 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1252 		 */
1253 		regs->pcr0	&= ~CLKXM;
1254 		break;
1255 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1256 		regs->pcr0	|= SCLKME;
1257 		/* Disable ouput on CLKR pin in master mode */
1258 		regs->pcr0	&= ~CLKRM;
1259 		break;
1260 	default:
1261 		err = -ENODEV;
1262 	}
1263 
1264 	return err;
1265 }
1266 
1267 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1268 	.startup	= omap_mcbsp_dai_startup,
1269 	.shutdown	= omap_mcbsp_dai_shutdown,
1270 	.prepare	= omap_mcbsp_dai_prepare,
1271 	.trigger	= omap_mcbsp_dai_trigger,
1272 	.delay		= omap_mcbsp_dai_delay,
1273 	.hw_params	= omap_mcbsp_dai_hw_params,
1274 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1275 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1276 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1277 };
1278 
1279 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1280 {
1281 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1282 
1283 	pm_runtime_enable(mcbsp->dev);
1284 
1285 	snd_soc_dai_init_dma_data(dai,
1286 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1287 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1288 
1289 	return 0;
1290 }
1291 
1292 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1293 {
1294 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1295 
1296 	pm_runtime_disable(mcbsp->dev);
1297 
1298 	return 0;
1299 }
1300 
1301 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1302 	.probe = omap_mcbsp_probe,
1303 	.remove = omap_mcbsp_remove,
1304 	.playback = {
1305 		.channels_min = 1,
1306 		.channels_max = 16,
1307 		.rates = OMAP_MCBSP_RATES,
1308 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1309 	},
1310 	.capture = {
1311 		.channels_min = 1,
1312 		.channels_max = 16,
1313 		.rates = OMAP_MCBSP_RATES,
1314 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1315 	},
1316 	.ops = &mcbsp_dai_ops,
1317 };
1318 
1319 static const struct snd_soc_component_driver omap_mcbsp_component = {
1320 	.name		= "omap-mcbsp",
1321 };
1322 
1323 static struct omap_mcbsp_platform_data omap2420_pdata = {
1324 	.reg_step = 4,
1325 	.reg_size = 2,
1326 };
1327 
1328 static struct omap_mcbsp_platform_data omap2430_pdata = {
1329 	.reg_step = 4,
1330 	.reg_size = 4,
1331 	.has_ccr = true,
1332 };
1333 
1334 static struct omap_mcbsp_platform_data omap3_pdata = {
1335 	.reg_step = 4,
1336 	.reg_size = 4,
1337 	.has_ccr = true,
1338 	.has_wakeup = true,
1339 };
1340 
1341 static struct omap_mcbsp_platform_data omap4_pdata = {
1342 	.reg_step = 4,
1343 	.reg_size = 4,
1344 	.has_ccr = true,
1345 	.has_wakeup = true,
1346 };
1347 
1348 static const struct of_device_id omap_mcbsp_of_match[] = {
1349 	{
1350 		.compatible = "ti,omap2420-mcbsp",
1351 		.data = &omap2420_pdata,
1352 	},
1353 	{
1354 		.compatible = "ti,omap2430-mcbsp",
1355 		.data = &omap2430_pdata,
1356 	},
1357 	{
1358 		.compatible = "ti,omap3-mcbsp",
1359 		.data = &omap3_pdata,
1360 	},
1361 	{
1362 		.compatible = "ti,omap4-mcbsp",
1363 		.data = &omap4_pdata,
1364 	},
1365 	{ },
1366 };
1367 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1368 
1369 static int asoc_mcbsp_probe(struct platform_device *pdev)
1370 {
1371 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1372 	struct omap_mcbsp *mcbsp;
1373 	const struct of_device_id *match;
1374 	int ret;
1375 
1376 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1377 	if (match) {
1378 		struct device_node *node = pdev->dev.of_node;
1379 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1380 		int buffer_size;
1381 
1382 		pdata = devm_kzalloc(&pdev->dev,
1383 				     sizeof(struct omap_mcbsp_platform_data),
1384 				     GFP_KERNEL);
1385 		if (!pdata)
1386 			return -ENOMEM;
1387 
1388 		memcpy(pdata, match->data, sizeof(*pdata));
1389 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1390 			pdata->buffer_size = buffer_size;
1391 		if (pdata_quirk)
1392 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1393 	} else if (!pdata) {
1394 		dev_err(&pdev->dev, "missing platform data.\n");
1395 		return -EINVAL;
1396 	}
1397 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1398 	if (!mcbsp)
1399 		return -ENOMEM;
1400 
1401 	mcbsp->id = pdev->id;
1402 	mcbsp->pdata = pdata;
1403 	mcbsp->dev = &pdev->dev;
1404 	platform_set_drvdata(pdev, mcbsp);
1405 
1406 	ret = omap_mcbsp_init(pdev);
1407 	if (ret)
1408 		return ret;
1409 
1410 	if (mcbsp->pdata->reg_size == 2) {
1411 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1412 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1413 	}
1414 
1415 	ret = devm_snd_soc_register_component(&pdev->dev,
1416 					      &omap_mcbsp_component,
1417 					      &omap_mcbsp_dai, 1);
1418 	if (ret)
1419 		return ret;
1420 
1421 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1422 }
1423 
1424 static int asoc_mcbsp_remove(struct platform_device *pdev)
1425 {
1426 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1427 
1428 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1429 		mcbsp->pdata->ops->free(mcbsp->id);
1430 
1431 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1432 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1433 
1434 	if (mcbsp->pdata->buffer_size)
1435 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1436 
1437 	omap_mcbsp_st_cleanup(pdev);
1438 
1439 	return 0;
1440 }
1441 
1442 static struct platform_driver asoc_mcbsp_driver = {
1443 	.driver = {
1444 			.name = "omap-mcbsp",
1445 			.of_match_table = omap_mcbsp_of_match,
1446 	},
1447 
1448 	.probe = asoc_mcbsp_probe,
1449 	.remove = asoc_mcbsp_remove,
1450 };
1451 
1452 module_platform_driver(asoc_mcbsp_driver);
1453 
1454 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1455 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1456 MODULE_LICENSE("GPL");
1457 MODULE_ALIAS("platform:omap-mcbsp");
1458