xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 
23 #include "stm32_sai.h"
24 
25 #define SAI_FREE_PROTOCOL	0x0
26 #define SAI_SPDIF_PROTOCOL	0x1
27 
28 #define SAI_SLOT_SIZE_AUTO	0x0
29 #define SAI_SLOT_SIZE_16	0x1
30 #define SAI_SLOT_SIZE_32	0x2
31 
32 #define SAI_DATASIZE_8		0x2
33 #define SAI_DATASIZE_10		0x3
34 #define SAI_DATASIZE_16		0x4
35 #define SAI_DATASIZE_20		0x5
36 #define SAI_DATASIZE_24		0x6
37 #define SAI_DATASIZE_32		0x7
38 
39 #define STM_SAI_DAI_NAME_SIZE	15
40 
41 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43 
44 #define STM_SAI_A_ID		0x0
45 #define STM_SAI_B_ID		0x1
46 
47 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48 
49 #define SAI_SYNC_NONE		0x0
50 #define SAI_SYNC_INTERNAL	0x1
51 #define SAI_SYNC_EXTERNAL	0x2
52 
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4((x)->pdata))
57 
58 #define SAI_IEC60958_BLOCK_FRAMES	192
59 #define SAI_IEC60958_STATUS_BYTES	24
60 
61 #define SAI_MCLK_NAME_LEN		32
62 #define SAI_RATE_11K			11025
63 #define SAI_MAX_SAMPLE_RATE_8K		192000
64 #define SAI_MAX_SAMPLE_RATE_11K		176400
65 #define SAI_CK_RATE_TOLERANCE		1000 /* ppm */
66 
67 /**
68  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
69  * @pdev: device data pointer
70  * @regmap: SAI register map pointer
71  * @regmap_config: SAI sub block register map configuration pointer
72  * @dma_params: dma configuration data for rx or tx channel
73  * @cpu_dai_drv: DAI driver data pointer
74  * @cpu_dai: DAI runtime data pointer
75  * @substream: PCM substream data pointer
76  * @pdata: SAI block parent data pointer
77  * @np_sync_provider: synchronization provider node
78  * @sai_ck: kernel clock feeding the SAI clock generator
79  * @sai_mclk: master clock from SAI mclk provider
80  * @phys_addr: SAI registers physical base address
81  * @mclk_rate: SAI block master clock frequency (Hz). set at init
82  * @id: SAI sub block id corresponding to sub-block A or B
83  * @dir: SAI block direction (playback or capture). set at init
84  * @master: SAI block mode flag. (true=master, false=slave) set at init
85  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
86  * @sai_ck_used: flag set while exclusivity on SAI kernel clock is active
87  * @fmt: SAI block format. relevant only for custom protocols. set at init
88  * @sync: SAI block synchronization mode. (none, internal or external)
89  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
90  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
91  * @fs_length: frame synchronization length. depends on protocol settings
92  * @slots: rx or tx slot number
93  * @slot_width: rx or tx slot width in bits
94  * @slot_mask: rx or tx active slots mask. set at init or at runtime
95  * @data_size: PCM data width. corresponds to PCM substream width.
96  * @spdif_frm_cnt: S/PDIF playback frame counter
97  * @iec958: iec958 data
98  * @ctrl_lock: control lock
99  * @irq_lock: prevent race condition with IRQ
100  * @set_sai_ck_rate: set SAI kernel clock rate
101  * @put_sai_ck_rate: put SAI kernel clock rate
102  */
103 struct stm32_sai_sub_data {
104 	struct platform_device *pdev;
105 	struct regmap *regmap;
106 	const struct regmap_config *regmap_config;
107 	struct snd_dmaengine_dai_dma_data dma_params;
108 	struct snd_soc_dai_driver cpu_dai_drv;
109 	struct snd_soc_dai *cpu_dai;
110 	struct snd_pcm_substream *substream;
111 	struct stm32_sai_data *pdata;
112 	struct device_node *np_sync_provider;
113 	struct clk *sai_ck;
114 	struct clk *sai_mclk;
115 	dma_addr_t phys_addr;
116 	unsigned int mclk_rate;
117 	unsigned int id;
118 	int dir;
119 	bool master;
120 	bool spdif;
121 	bool sai_ck_used;
122 	int fmt;
123 	int sync;
124 	int synco;
125 	int synci;
126 	int fs_length;
127 	int slots;
128 	int slot_width;
129 	int slot_mask;
130 	int data_size;
131 	unsigned int spdif_frm_cnt;
132 	struct snd_aes_iec958 iec958;
133 	struct mutex ctrl_lock; /* protect resources accessed by controls */
134 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
135 	int (*set_sai_ck_rate)(struct stm32_sai_sub_data *sai, unsigned int rate);
136 	void (*put_sai_ck_rate)(struct stm32_sai_sub_data *sai);
137 };
138 
139 enum stm32_sai_fifo_th {
140 	STM_SAI_FIFO_TH_EMPTY,
141 	STM_SAI_FIFO_TH_QUARTER,
142 	STM_SAI_FIFO_TH_HALF,
143 	STM_SAI_FIFO_TH_3_QUARTER,
144 	STM_SAI_FIFO_TH_FULL,
145 };
146 
147 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
148 {
149 	switch (reg) {
150 	case STM_SAI_CR1_REGX:
151 	case STM_SAI_CR2_REGX:
152 	case STM_SAI_FRCR_REGX:
153 	case STM_SAI_SLOTR_REGX:
154 	case STM_SAI_IMR_REGX:
155 	case STM_SAI_SR_REGX:
156 	case STM_SAI_CLRFR_REGX:
157 	case STM_SAI_DR_REGX:
158 	case STM_SAI_PDMCR_REGX:
159 	case STM_SAI_PDMLY_REGX:
160 		return true;
161 	default:
162 		return false;
163 	}
164 }
165 
166 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
167 {
168 	switch (reg) {
169 	case STM_SAI_DR_REGX:
170 	case STM_SAI_SR_REGX:
171 		return true;
172 	default:
173 		return false;
174 	}
175 }
176 
177 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
178 {
179 	switch (reg) {
180 	case STM_SAI_CR1_REGX:
181 	case STM_SAI_CR2_REGX:
182 	case STM_SAI_FRCR_REGX:
183 	case STM_SAI_SLOTR_REGX:
184 	case STM_SAI_IMR_REGX:
185 	case STM_SAI_CLRFR_REGX:
186 	case STM_SAI_DR_REGX:
187 	case STM_SAI_PDMCR_REGX:
188 	case STM_SAI_PDMLY_REGX:
189 		return true;
190 	default:
191 		return false;
192 	}
193 }
194 
195 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
196 				unsigned int reg, unsigned int mask,
197 				unsigned int val)
198 {
199 	int ret;
200 
201 	ret = clk_enable(sai->pdata->pclk);
202 	if (ret < 0)
203 		return ret;
204 
205 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
206 
207 	clk_disable(sai->pdata->pclk);
208 
209 	return ret;
210 }
211 
212 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
213 				unsigned int reg, unsigned int mask,
214 				unsigned int val)
215 {
216 	int ret;
217 
218 	ret = clk_enable(sai->pdata->pclk);
219 	if (ret < 0)
220 		return ret;
221 
222 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
223 
224 	clk_disable(sai->pdata->pclk);
225 
226 	return ret;
227 }
228 
229 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
230 				unsigned int reg, unsigned int *val)
231 {
232 	int ret;
233 
234 	ret = clk_enable(sai->pdata->pclk);
235 	if (ret < 0)
236 		return ret;
237 
238 	ret = regmap_read(sai->regmap, reg, val);
239 
240 	clk_disable(sai->pdata->pclk);
241 
242 	return ret;
243 }
244 
245 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
246 	.reg_bits = 32,
247 	.reg_stride = 4,
248 	.val_bits = 32,
249 	.max_register = STM_SAI_DR_REGX,
250 	.readable_reg = stm32_sai_sub_readable_reg,
251 	.volatile_reg = stm32_sai_sub_volatile_reg,
252 	.writeable_reg = stm32_sai_sub_writeable_reg,
253 	.fast_io = true,
254 	.cache_type = REGCACHE_FLAT,
255 };
256 
257 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
258 	.reg_bits = 32,
259 	.reg_stride = 4,
260 	.val_bits = 32,
261 	.max_register = STM_SAI_PDMLY_REGX,
262 	.readable_reg = stm32_sai_sub_readable_reg,
263 	.volatile_reg = stm32_sai_sub_volatile_reg,
264 	.writeable_reg = stm32_sai_sub_writeable_reg,
265 	.fast_io = true,
266 	.cache_type = REGCACHE_FLAT,
267 };
268 
269 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
270 			       struct snd_ctl_elem_info *uinfo)
271 {
272 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
273 	uinfo->count = 1;
274 
275 	return 0;
276 }
277 
278 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
279 			      struct snd_ctl_elem_value *uctl)
280 {
281 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
282 
283 	mutex_lock(&sai->ctrl_lock);
284 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
285 	mutex_unlock(&sai->ctrl_lock);
286 
287 	return 0;
288 }
289 
290 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
291 			      struct snd_ctl_elem_value *uctl)
292 {
293 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
294 
295 	mutex_lock(&sai->ctrl_lock);
296 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
297 	mutex_unlock(&sai->ctrl_lock);
298 
299 	return 0;
300 }
301 
302 static const struct snd_kcontrol_new iec958_ctls = {
303 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
304 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
305 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
306 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
307 	.info = snd_pcm_iec958_info,
308 	.get = snd_pcm_iec958_get,
309 	.put = snd_pcm_iec958_put,
310 };
311 
312 struct stm32_sai_mclk_data {
313 	struct clk_hw hw;
314 	unsigned long freq;
315 	struct stm32_sai_sub_data *sai_data;
316 };
317 
318 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
319 #define STM32_SAI_MAX_CLKS 1
320 
321 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
322 				 unsigned long input_rate,
323 				 unsigned long output_rate)
324 {
325 	int version = sai->pdata->conf.version;
326 	int div;
327 
328 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
329 	if (div > SAI_XCR1_MCKDIV_MAX(version) || div <= 0) {
330 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
331 		return -EINVAL;
332 	}
333 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
334 
335 	if (input_rate % div)
336 		dev_dbg(&sai->pdev->dev,
337 			"Rate not accurate. requested (%ld), actual (%ld)\n",
338 			output_rate, input_rate / div);
339 
340 	return div;
341 }
342 
343 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
344 				 unsigned int div)
345 {
346 	int version = sai->pdata->conf.version;
347 	int ret, cr1, mask;
348 
349 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
350 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
351 		return -EINVAL;
352 	}
353 
354 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
355 	cr1 = SAI_XCR1_MCKDIV_SET(div);
356 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
357 	if (ret < 0)
358 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
359 
360 	return ret;
361 }
362 
363 static bool stm32_sai_rate_accurate(unsigned int max_rate, unsigned int rate)
364 {
365 	u64 delta, dividend;
366 	int ratio;
367 
368 	ratio = DIV_ROUND_CLOSEST(max_rate, rate);
369 	if (!ratio)
370 		return false;
371 
372 	dividend = mul_u32_u32(1000000, abs(max_rate - (ratio * rate)));
373 	delta = div_u64(dividend, max_rate);
374 
375 	if (delta <= SAI_CK_RATE_TOLERANCE)
376 		return true;
377 
378 	return false;
379 }
380 
381 static int stm32_sai_set_parent_clk(struct stm32_sai_sub_data *sai,
382 				    unsigned int rate)
383 {
384 	struct platform_device *pdev = sai->pdev;
385 	struct clk *parent_clk = sai->pdata->clk_x8k;
386 	int ret;
387 
388 	if (!(rate % SAI_RATE_11K))
389 		parent_clk = sai->pdata->clk_x11k;
390 
391 	ret = clk_set_parent(sai->sai_ck, parent_clk);
392 	if (ret)
393 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
394 			ret, ret == -EBUSY ?
395 			"Active stream rates conflict\n" : "\n");
396 
397 	return ret;
398 }
399 
400 static void stm32_sai_put_parent_rate(struct stm32_sai_sub_data *sai)
401 {
402 	if (sai->sai_ck_used) {
403 		sai->sai_ck_used = false;
404 		clk_rate_exclusive_put(sai->sai_ck);
405 	}
406 }
407 
408 static int stm32_sai_set_parent_rate(struct stm32_sai_sub_data *sai,
409 				     unsigned int rate)
410 {
411 	struct platform_device *pdev = sai->pdev;
412 	unsigned int sai_ck_rate, sai_ck_max_rate, sai_curr_rate, sai_new_rate;
413 	int div, ret;
414 
415 	/*
416 	 * Set maximum expected kernel clock frequency
417 	 * - mclk on or spdif:
418 	 *   f_sai_ck = MCKDIV * mclk-fs * fs
419 	 *   Here typical 256 ratio is assumed for mclk-fs
420 	 * - mclk off:
421 	 *   f_sai_ck = MCKDIV * FRL * fs
422 	 *   Where FRL=[8..256], MCKDIV=[1..n] (n depends on SAI version)
423 	 *   Set constraint MCKDIV * FRL <= 256, to ensure MCKDIV is in available range
424 	 *   f_sai_ck = sai_ck_max_rate * pow_of_two(FRL) / 256
425 	 */
426 	if (!(rate % SAI_RATE_11K))
427 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_11K * 256;
428 	else
429 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_8K * 256;
430 
431 	if (!sai->sai_mclk && !STM_SAI_PROTOCOL_IS_SPDIF(sai))
432 		sai_ck_max_rate /= DIV_ROUND_CLOSEST(256, roundup_pow_of_two(sai->fs_length));
433 
434 	/*
435 	 * Request exclusivity, as the clock is shared by SAI sub-blocks and by
436 	 * some SAI instances. This allows to ensure that the rate cannot be
437 	 * changed while one or more SAIs are using the clock.
438 	 */
439 	clk_rate_exclusive_get(sai->sai_ck);
440 	sai->sai_ck_used = true;
441 
442 	/*
443 	 * Check current kernel clock rate. If it gives the expected accuracy
444 	 * return immediately.
445 	 */
446 	sai_curr_rate = clk_get_rate(sai->sai_ck);
447 	if (stm32_sai_rate_accurate(sai_ck_max_rate, sai_curr_rate))
448 		return 0;
449 
450 	/*
451 	 * Otherwise try to set the maximum rate and check the new actual rate.
452 	 * If the new rate does not give the expected accuracy, try to set
453 	 * lower rates for the kernel clock.
454 	 */
455 	sai_ck_rate = sai_ck_max_rate;
456 	div = 1;
457 	do {
458 		/* Check new rate accuracy. Return if ok */
459 		sai_new_rate = clk_round_rate(sai->sai_ck, sai_ck_rate);
460 		if (stm32_sai_rate_accurate(sai_ck_rate, sai_new_rate)) {
461 			ret = clk_set_rate(sai->sai_ck, sai_ck_rate);
462 			if (ret) {
463 				dev_err(&pdev->dev, "Error %d setting sai_ck rate. %s",
464 					ret, ret == -EBUSY ?
465 					"Active stream rates may be in conflict\n" : "\n");
466 				goto err;
467 			}
468 
469 			return 0;
470 		}
471 
472 		/* Try a lower frequency */
473 		div++;
474 		sai_ck_rate = sai_ck_max_rate / div;
475 	} while (sai_ck_rate > rate);
476 
477 	/* No accurate rate found */
478 	dev_err(&pdev->dev, "Failed to find an accurate rate");
479 
480 err:
481 	stm32_sai_put_parent_rate(sai);
482 
483 	return -EINVAL;
484 }
485 
486 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
487 				      unsigned long *prate)
488 {
489 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
490 	struct stm32_sai_sub_data *sai = mclk->sai_data;
491 	int div;
492 
493 	div = stm32_sai_get_clk_div(sai, *prate, rate);
494 	if (div <= 0)
495 		return -EINVAL;
496 
497 	mclk->freq = *prate / div;
498 
499 	return mclk->freq;
500 }
501 
502 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
503 						unsigned long parent_rate)
504 {
505 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
506 
507 	return mclk->freq;
508 }
509 
510 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
511 				   unsigned long parent_rate)
512 {
513 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
514 	struct stm32_sai_sub_data *sai = mclk->sai_data;
515 	int div, ret;
516 
517 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
518 	if (div < 0)
519 		return div;
520 
521 	ret = stm32_sai_set_clk_div(sai, div);
522 	if (ret)
523 		return ret;
524 
525 	mclk->freq = rate;
526 
527 	return 0;
528 }
529 
530 static int stm32_sai_mclk_enable(struct clk_hw *hw)
531 {
532 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
533 	struct stm32_sai_sub_data *sai = mclk->sai_data;
534 
535 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
536 
537 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
538 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
539 }
540 
541 static void stm32_sai_mclk_disable(struct clk_hw *hw)
542 {
543 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
544 	struct stm32_sai_sub_data *sai = mclk->sai_data;
545 
546 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
547 
548 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
549 }
550 
551 static const struct clk_ops mclk_ops = {
552 	.enable = stm32_sai_mclk_enable,
553 	.disable = stm32_sai_mclk_disable,
554 	.recalc_rate = stm32_sai_mclk_recalc_rate,
555 	.round_rate = stm32_sai_mclk_round_rate,
556 	.set_rate = stm32_sai_mclk_set_rate,
557 };
558 
559 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
560 {
561 	struct clk_hw *hw;
562 	struct stm32_sai_mclk_data *mclk;
563 	struct device *dev = &sai->pdev->dev;
564 	const char *pname = __clk_get_name(sai->sai_ck);
565 	char *mclk_name, *p, *s = (char *)pname;
566 	int ret, i = 0;
567 
568 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
569 	if (!mclk)
570 		return -ENOMEM;
571 
572 	mclk_name = devm_kcalloc(dev, sizeof(char),
573 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
574 	if (!mclk_name)
575 		return -ENOMEM;
576 
577 	/*
578 	 * Forge mclk clock name from parent clock name and suffix.
579 	 * String after "_" char is stripped in parent name.
580 	 */
581 	p = mclk_name;
582 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
583 		*p++ = *s++;
584 		i++;
585 	}
586 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
587 
588 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
589 	mclk->sai_data = sai;
590 	hw = &mclk->hw;
591 
592 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
593 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
594 	if (ret) {
595 		dev_err(dev, "mclk register returned %d\n", ret);
596 		return ret;
597 	}
598 	sai->sai_mclk = hw->clk;
599 
600 	/* register mclk provider */
601 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
602 }
603 
604 static irqreturn_t stm32_sai_isr(int irq, void *devid)
605 {
606 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
607 	struct platform_device *pdev = sai->pdev;
608 	unsigned int sr, imr, flags;
609 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
610 
611 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
612 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
613 
614 	flags = sr & imr;
615 	if (!flags)
616 		return IRQ_NONE;
617 
618 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
619 			     SAI_XCLRFR_MASK);
620 
621 	if (!sai->substream) {
622 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
623 		return IRQ_NONE;
624 	}
625 
626 	if (flags & SAI_XIMR_OVRUDRIE) {
627 		dev_err(&pdev->dev, "IRQ %s\n",
628 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
629 		status = SNDRV_PCM_STATE_XRUN;
630 	}
631 
632 	if (flags & SAI_XIMR_MUTEDETIE)
633 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
634 
635 	if (flags & SAI_XIMR_WCKCFGIE) {
636 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
637 		status = SNDRV_PCM_STATE_DISCONNECTED;
638 	}
639 
640 	if (flags & SAI_XIMR_CNRDYIE)
641 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
642 
643 	if (flags & SAI_XIMR_AFSDETIE) {
644 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
645 		status = SNDRV_PCM_STATE_XRUN;
646 	}
647 
648 	if (flags & SAI_XIMR_LFSDETIE) {
649 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
650 		status = SNDRV_PCM_STATE_XRUN;
651 	}
652 
653 	spin_lock(&sai->irq_lock);
654 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
655 		snd_pcm_stop_xrun(sai->substream);
656 	spin_unlock(&sai->irq_lock);
657 
658 	return IRQ_HANDLED;
659 }
660 
661 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
662 				int clk_id, unsigned int freq, int dir)
663 {
664 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
665 	int ret;
666 
667 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
668 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
669 					   SAI_XCR1_NODIV,
670 					 freq ? 0 : SAI_XCR1_NODIV);
671 		if (ret < 0)
672 			return ret;
673 
674 		/* Assume shutdown if requested frequency is 0Hz */
675 		if (!freq) {
676 			/* Release mclk rate only if rate was actually set */
677 			if (sai->mclk_rate) {
678 				clk_rate_exclusive_put(sai->sai_mclk);
679 				sai->mclk_rate = 0;
680 			}
681 
682 			if (sai->put_sai_ck_rate)
683 				sai->put_sai_ck_rate(sai);
684 
685 			return 0;
686 		}
687 
688 		/* If master clock is used, configure SAI kernel clock now */
689 		ret = sai->set_sai_ck_rate(sai, freq);
690 		if (ret)
691 			return ret;
692 
693 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
694 		if (ret) {
695 			dev_err(cpu_dai->dev,
696 				ret == -EBUSY ?
697 				"Active streams have incompatible rates" :
698 				"Could not set mclk rate\n");
699 			return ret;
700 		}
701 
702 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
703 		sai->mclk_rate = freq;
704 	}
705 
706 	return 0;
707 }
708 
709 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
710 				      u32 rx_mask, int slots, int slot_width)
711 {
712 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
713 	int slotr, slotr_mask, slot_size;
714 
715 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
716 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
717 		return 0;
718 	}
719 
720 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
721 		tx_mask, rx_mask, slots, slot_width);
722 
723 	switch (slot_width) {
724 	case 16:
725 		slot_size = SAI_SLOT_SIZE_16;
726 		break;
727 	case 32:
728 		slot_size = SAI_SLOT_SIZE_32;
729 		break;
730 	default:
731 		slot_size = SAI_SLOT_SIZE_AUTO;
732 		break;
733 	}
734 
735 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
736 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
737 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
738 
739 	/* tx/rx mask set in machine init, if slot number defined in DT */
740 	if (STM_SAI_IS_PLAYBACK(sai)) {
741 		sai->slot_mask = tx_mask;
742 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
743 	}
744 
745 	if (STM_SAI_IS_CAPTURE(sai)) {
746 		sai->slot_mask = rx_mask;
747 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
748 	}
749 
750 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
751 
752 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
753 
754 	sai->slot_width = slot_width;
755 	sai->slots = slots;
756 
757 	return 0;
758 }
759 
760 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
761 {
762 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
763 	int cr1, frcr = 0;
764 	int cr1_mask, frcr_mask = 0;
765 	int ret;
766 
767 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
768 
769 	/* Do not generate master by default */
770 	cr1 = SAI_XCR1_NODIV;
771 	cr1_mask = SAI_XCR1_NODIV;
772 
773 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
774 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
775 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
776 		goto conf_update;
777 	}
778 
779 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
780 
781 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
782 	/* SCK active high for all protocols */
783 	case SND_SOC_DAIFMT_I2S:
784 		cr1 |= SAI_XCR1_CKSTR;
785 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
786 		break;
787 	/* Left justified */
788 	case SND_SOC_DAIFMT_MSB:
789 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
790 		break;
791 	/* Right justified */
792 	case SND_SOC_DAIFMT_LSB:
793 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
794 		break;
795 	case SND_SOC_DAIFMT_DSP_A:
796 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
797 		break;
798 	case SND_SOC_DAIFMT_DSP_B:
799 		frcr |= SAI_XFRCR_FSPOL;
800 		break;
801 	default:
802 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
803 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
804 		return -EINVAL;
805 	}
806 
807 	cr1_mask |= SAI_XCR1_CKSTR;
808 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
809 		     SAI_XFRCR_FSDEF;
810 
811 	/* DAI clock strobing. Invert setting previously set */
812 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
813 	case SND_SOC_DAIFMT_NB_NF:
814 		break;
815 	case SND_SOC_DAIFMT_IB_NF:
816 		cr1 ^= SAI_XCR1_CKSTR;
817 		break;
818 	case SND_SOC_DAIFMT_NB_IF:
819 		frcr ^= SAI_XFRCR_FSPOL;
820 		break;
821 	case SND_SOC_DAIFMT_IB_IF:
822 		/* Invert fs & sck */
823 		cr1 ^= SAI_XCR1_CKSTR;
824 		frcr ^= SAI_XFRCR_FSPOL;
825 		break;
826 	default:
827 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
828 			fmt & SND_SOC_DAIFMT_INV_MASK);
829 		return -EINVAL;
830 	}
831 	cr1_mask |= SAI_XCR1_CKSTR;
832 	frcr_mask |= SAI_XFRCR_FSPOL;
833 
834 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
835 
836 	/* DAI clock master masks */
837 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
838 	case SND_SOC_DAIFMT_BC_FC:
839 		/* codec is master */
840 		cr1 |= SAI_XCR1_SLAVE;
841 		sai->master = false;
842 		break;
843 	case SND_SOC_DAIFMT_BP_FP:
844 		sai->master = true;
845 		break;
846 	default:
847 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
848 			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
849 		return -EINVAL;
850 	}
851 
852 	/* Set slave mode if sub-block is synchronized with another SAI */
853 	if (sai->sync) {
854 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
855 		cr1 |= SAI_XCR1_SLAVE;
856 		sai->master = false;
857 	}
858 
859 	cr1_mask |= SAI_XCR1_SLAVE;
860 
861 conf_update:
862 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
863 	if (ret < 0) {
864 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
865 		return ret;
866 	}
867 
868 	sai->fmt = fmt;
869 
870 	return 0;
871 }
872 
873 static int stm32_sai_startup(struct snd_pcm_substream *substream,
874 			     struct snd_soc_dai *cpu_dai)
875 {
876 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
877 	int imr, cr2, ret;
878 	unsigned long flags;
879 
880 	spin_lock_irqsave(&sai->irq_lock, flags);
881 	sai->substream = substream;
882 	spin_unlock_irqrestore(&sai->irq_lock, flags);
883 
884 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
885 		snd_pcm_hw_constraint_mask64(substream->runtime,
886 					     SNDRV_PCM_HW_PARAM_FORMAT,
887 					     SNDRV_PCM_FMTBIT_S32_LE);
888 		snd_pcm_hw_constraint_single(substream->runtime,
889 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
890 	}
891 
892 	ret = clk_prepare_enable(sai->sai_ck);
893 	if (ret < 0) {
894 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
895 		return ret;
896 	}
897 
898 	/* Enable ITs */
899 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
900 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
901 
902 	imr = SAI_XIMR_OVRUDRIE;
903 	if (STM_SAI_IS_CAPTURE(sai)) {
904 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
905 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
906 			imr |= SAI_XIMR_MUTEDETIE;
907 	}
908 
909 	if (sai->master)
910 		imr |= SAI_XIMR_WCKCFGIE;
911 	else
912 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
913 
914 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
915 			     SAI_XIMR_MASK, imr);
916 
917 	return 0;
918 }
919 
920 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
921 				struct snd_pcm_substream *substream,
922 				struct snd_pcm_hw_params *params)
923 {
924 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
925 	int cr1, cr1_mask, ret;
926 
927 	/*
928 	 * DMA bursts increment is set to 4 words.
929 	 * SAI fifo threshold is set to half fifo, to keep enough space
930 	 * for DMA incoming bursts.
931 	 */
932 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
933 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
934 			     SAI_XCR2_FFLUSH |
935 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
936 
937 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
938 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
939 		sai->spdif_frm_cnt = 0;
940 		return 0;
941 	}
942 
943 	/* Mode, data format and channel config */
944 	cr1_mask = SAI_XCR1_DS_MASK;
945 	switch (params_format(params)) {
946 	case SNDRV_PCM_FORMAT_S8:
947 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
948 		break;
949 	case SNDRV_PCM_FORMAT_S16_LE:
950 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
951 		break;
952 	case SNDRV_PCM_FORMAT_S32_LE:
953 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
954 		break;
955 	default:
956 		dev_err(cpu_dai->dev, "Data format not supported\n");
957 		return -EINVAL;
958 	}
959 
960 	cr1_mask |= SAI_XCR1_MONO;
961 	if ((sai->slots == 2) && (params_channels(params) == 1))
962 		cr1 |= SAI_XCR1_MONO;
963 
964 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
965 	if (ret < 0) {
966 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
967 		return ret;
968 	}
969 
970 	return 0;
971 }
972 
973 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
974 {
975 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
976 	int slotr, slot_sz;
977 
978 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
979 
980 	/*
981 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
982 	 * By default slot width = data size, if not forced from DT
983 	 */
984 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
985 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
986 		sai->slot_width = sai->data_size;
987 
988 	if (sai->slot_width < sai->data_size) {
989 		dev_err(cpu_dai->dev,
990 			"Data size %d larger than slot width\n",
991 			sai->data_size);
992 		return -EINVAL;
993 	}
994 
995 	/* Slot number is set to 2, if not specified in DT */
996 	if (!sai->slots)
997 		sai->slots = 2;
998 
999 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
1000 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1001 			     SAI_XSLOTR_NBSLOT_MASK,
1002 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
1003 
1004 	/* Set default slots mask if not already set from DT */
1005 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
1006 		sai->slot_mask = (1 << sai->slots) - 1;
1007 		stm32_sai_sub_reg_up(sai,
1008 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
1009 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
1010 	}
1011 
1012 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
1013 		sai->slots, sai->slot_width);
1014 
1015 	return 0;
1016 }
1017 
1018 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
1019 {
1020 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1021 	int fs_active, offset, format;
1022 	int frcr, frcr_mask;
1023 
1024 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1025 	sai->fs_length = sai->slot_width * sai->slots;
1026 
1027 	fs_active = sai->fs_length / 2;
1028 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
1029 	    (format == SND_SOC_DAIFMT_DSP_B))
1030 		fs_active = 1;
1031 
1032 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
1033 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
1034 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
1035 
1036 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
1037 		sai->fs_length, fs_active);
1038 
1039 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
1040 
1041 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
1042 		offset = sai->slot_width - sai->data_size;
1043 
1044 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1045 				     SAI_XSLOTR_FBOFF_MASK,
1046 				     SAI_XSLOTR_FBOFF_SET(offset));
1047 	}
1048 }
1049 
1050 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
1051 {
1052 	unsigned char *cs = sai->iec958.status;
1053 
1054 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
1055 	cs[1] = IEC958_AES1_CON_GENERAL;
1056 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
1057 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
1058 }
1059 
1060 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
1061 					struct snd_pcm_runtime *runtime)
1062 {
1063 	if (!runtime)
1064 		return;
1065 
1066 	/* Force the sample rate according to runtime rate */
1067 	mutex_lock(&sai->ctrl_lock);
1068 	switch (runtime->rate) {
1069 	case 22050:
1070 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
1071 		break;
1072 	case 44100:
1073 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
1074 		break;
1075 	case 88200:
1076 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
1077 		break;
1078 	case 176400:
1079 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
1080 		break;
1081 	case 24000:
1082 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
1083 		break;
1084 	case 48000:
1085 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
1086 		break;
1087 	case 96000:
1088 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
1089 		break;
1090 	case 192000:
1091 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
1092 		break;
1093 	case 32000:
1094 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
1095 		break;
1096 	default:
1097 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
1098 		break;
1099 	}
1100 	mutex_unlock(&sai->ctrl_lock);
1101 }
1102 
1103 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
1104 				     struct snd_pcm_hw_params *params)
1105 {
1106 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1107 	int div = 0, cr1 = 0;
1108 	int sai_clk_rate, mclk_ratio, den;
1109 	unsigned int rate = params_rate(params);
1110 	int ret;
1111 
1112 	if (!sai->sai_mclk) {
1113 		ret = sai->set_sai_ck_rate(sai, rate);
1114 		if (ret)
1115 			return ret;
1116 	}
1117 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1118 
1119 	if (STM_SAI_IS_F4(sai->pdata)) {
1120 		/* mclk on (NODIV=0)
1121 		 *   mclk_rate = 256 * fs
1122 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1123 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1124 		 * mclk off (NODIV=1)
1125 		 *   MCKDIV ignored. sck = sai_ck
1126 		 */
1127 		if (!sai->mclk_rate)
1128 			return 0;
1129 
1130 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1131 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1132 						    2 * sai->mclk_rate);
1133 			if (div < 0)
1134 				return div;
1135 		}
1136 	} else {
1137 		/*
1138 		 * TDM mode :
1139 		 *   mclk on
1140 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1141 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1142 		 *   mclk off
1143 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1144 		 * Note: NOMCK/NODIV correspond to same bit.
1145 		 */
1146 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1147 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1148 						    rate * 128);
1149 			if (div < 0)
1150 				return div;
1151 		} else {
1152 			if (sai->mclk_rate) {
1153 				mclk_ratio = sai->mclk_rate / rate;
1154 				if (mclk_ratio == 512) {
1155 					cr1 = SAI_XCR1_OSR;
1156 				} else if (mclk_ratio != 256) {
1157 					dev_err(cpu_dai->dev,
1158 						"Wrong mclk ratio %d\n",
1159 						mclk_ratio);
1160 					return -EINVAL;
1161 				}
1162 
1163 				stm32_sai_sub_reg_up(sai,
1164 						     STM_SAI_CR1_REGX,
1165 						     SAI_XCR1_OSR, cr1);
1166 
1167 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1168 							    sai->mclk_rate);
1169 				if (div < 0)
1170 					return div;
1171 			} else {
1172 				/* mclk-fs not set, master clock not active */
1173 				den = sai->fs_length * params_rate(params);
1174 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1175 							    den);
1176 				if (div < 0)
1177 					return div;
1178 			}
1179 		}
1180 	}
1181 
1182 	return stm32_sai_set_clk_div(sai, div);
1183 }
1184 
1185 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1186 			       struct snd_pcm_hw_params *params,
1187 			       struct snd_soc_dai *cpu_dai)
1188 {
1189 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1190 	int ret;
1191 
1192 	sai->data_size = params_width(params);
1193 
1194 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1195 		/* Rate not already set in runtime structure */
1196 		substream->runtime->rate = params_rate(params);
1197 		stm32_sai_set_iec958_status(sai, substream->runtime);
1198 	} else {
1199 		ret = stm32_sai_set_slots(cpu_dai);
1200 		if (ret < 0)
1201 			return ret;
1202 		stm32_sai_set_frame(cpu_dai);
1203 	}
1204 
1205 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1206 	if (ret)
1207 		return ret;
1208 
1209 	if (sai->master)
1210 		ret = stm32_sai_configure_clock(cpu_dai, params);
1211 
1212 	return ret;
1213 }
1214 
1215 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1216 			     struct snd_soc_dai *cpu_dai)
1217 {
1218 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1219 	int ret;
1220 
1221 	switch (cmd) {
1222 	case SNDRV_PCM_TRIGGER_START:
1223 	case SNDRV_PCM_TRIGGER_RESUME:
1224 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1225 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1226 
1227 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1228 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1229 
1230 		/* Enable SAI */
1231 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1232 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1233 		if (ret < 0)
1234 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1235 		break;
1236 	case SNDRV_PCM_TRIGGER_SUSPEND:
1237 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1238 	case SNDRV_PCM_TRIGGER_STOP:
1239 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1240 
1241 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1242 				     SAI_XIMR_MASK, 0);
1243 
1244 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1245 				     SAI_XCR1_SAIEN,
1246 				     (unsigned int)~SAI_XCR1_SAIEN);
1247 
1248 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1249 					   SAI_XCR1_DMAEN,
1250 					   (unsigned int)~SAI_XCR1_DMAEN);
1251 		if (ret < 0)
1252 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1253 
1254 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1255 			sai->spdif_frm_cnt = 0;
1256 		break;
1257 	default:
1258 		return -EINVAL;
1259 	}
1260 
1261 	return ret;
1262 }
1263 
1264 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1265 			       struct snd_soc_dai *cpu_dai)
1266 {
1267 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1268 	unsigned long flags;
1269 
1270 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1271 
1272 	clk_disable_unprepare(sai->sai_ck);
1273 
1274 	/*
1275 	 * Release kernel clock if following conditions are fulfilled
1276 	 * - Master clock is not used. Kernel clock won't be released trough sysclk
1277 	 * - Put handler is defined. Involve that clock is managed exclusively
1278 	 */
1279 	if (!sai->sai_mclk && sai->put_sai_ck_rate)
1280 		sai->put_sai_ck_rate(sai);
1281 
1282 	spin_lock_irqsave(&sai->irq_lock, flags);
1283 	sai->substream = NULL;
1284 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1285 }
1286 
1287 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1288 			     struct snd_soc_dai *cpu_dai)
1289 {
1290 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1291 	struct snd_kcontrol_new knew = iec958_ctls;
1292 
1293 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1294 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1295 		knew.device = rtd->pcm->device;
1296 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1303 {
1304 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1305 	int cr1 = 0, cr1_mask, ret;
1306 
1307 	sai->cpu_dai = cpu_dai;
1308 
1309 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1310 	/*
1311 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1312 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1313 	 * constraints).
1314 	 */
1315 	sai->dma_params.maxburst = 4;
1316 	if (sai->pdata->conf.fifo_size < 8 || sai->pdata->conf.no_dma_burst)
1317 		sai->dma_params.maxburst = 1;
1318 	/* Buswidth will be set by framework at runtime */
1319 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1320 
1321 	if (STM_SAI_IS_PLAYBACK(sai))
1322 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1323 	else
1324 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1325 
1326 	/* Next settings are not relevant for spdif mode */
1327 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1328 		return 0;
1329 
1330 	cr1_mask = SAI_XCR1_RX_TX;
1331 	if (STM_SAI_IS_CAPTURE(sai))
1332 		cr1 |= SAI_XCR1_RX_TX;
1333 
1334 	/* Configure synchronization */
1335 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1336 		/* Configure synchro client and provider */
1337 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1338 					   sai->synco, sai->synci);
1339 		if (ret)
1340 			return ret;
1341 	}
1342 
1343 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1344 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1345 
1346 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1347 }
1348 
1349 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1350 	.probe		= stm32_sai_dai_probe,
1351 	.set_sysclk	= stm32_sai_set_sysclk,
1352 	.set_fmt	= stm32_sai_set_dai_fmt,
1353 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1354 	.startup	= stm32_sai_startup,
1355 	.hw_params	= stm32_sai_hw_params,
1356 	.trigger	= stm32_sai_trigger,
1357 	.shutdown	= stm32_sai_shutdown,
1358 	.pcm_new	= stm32_sai_pcm_new,
1359 };
1360 
1361 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1362 	.probe		= stm32_sai_dai_probe,
1363 	.set_sysclk	= stm32_sai_set_sysclk,
1364 	.set_fmt	= stm32_sai_set_dai_fmt,
1365 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1366 	.startup	= stm32_sai_startup,
1367 	.hw_params	= stm32_sai_hw_params,
1368 	.trigger	= stm32_sai_trigger,
1369 	.shutdown	= stm32_sai_shutdown,
1370 };
1371 
1372 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1373 				       int channel, unsigned long hwoff,
1374 				       unsigned long bytes)
1375 {
1376 	struct snd_pcm_runtime *runtime = substream->runtime;
1377 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1378 	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1379 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1380 	int *ptr = (int *)(runtime->dma_area + hwoff +
1381 			   channel * (runtime->dma_bytes / runtime->channels));
1382 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1383 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1384 	unsigned int byte;
1385 	unsigned int mask;
1386 
1387 	do {
1388 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1389 
1390 		/* Set channel status bit */
1391 		byte = frm_cnt >> 3;
1392 		mask = 1 << (frm_cnt - (byte << 3));
1393 		if (sai->iec958.status[byte] & mask)
1394 			*ptr |= 0x04000000;
1395 		ptr++;
1396 
1397 		if (!(cnt % 2))
1398 			frm_cnt++;
1399 
1400 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1401 			frm_cnt = 0;
1402 	} while (--cnt);
1403 	sai->spdif_frm_cnt = frm_cnt;
1404 
1405 	return 0;
1406 }
1407 
1408 /* No support of mmap in S/PDIF mode */
1409 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1410 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1411 	.buffer_bytes_max = 8 * PAGE_SIZE,
1412 	.period_bytes_min = 1024,
1413 	.period_bytes_max = PAGE_SIZE,
1414 	.periods_min = 2,
1415 	.periods_max = 8,
1416 };
1417 
1418 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1419 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1420 	.buffer_bytes_max = 8 * PAGE_SIZE,
1421 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1422 	.period_bytes_max = PAGE_SIZE,
1423 	.periods_min = 2,
1424 	.periods_max = 8,
1425 };
1426 
1427 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1428 		.id = 1, /* avoid call to fmt_single_name() */
1429 		.playback = {
1430 			.channels_min = 1,
1431 			.channels_max = 16,
1432 			.rate_min = 8000,
1433 			.rate_max = 192000,
1434 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1435 			/* DMA does not support 24 bits transfers */
1436 			.formats =
1437 				SNDRV_PCM_FMTBIT_S8 |
1438 				SNDRV_PCM_FMTBIT_S16_LE |
1439 				SNDRV_PCM_FMTBIT_S32_LE,
1440 		},
1441 		.ops = &stm32_sai_pcm_dai_ops,
1442 };
1443 
1444 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1445 		.id = 1, /* avoid call to fmt_single_name() */
1446 		.capture = {
1447 			.channels_min = 1,
1448 			.channels_max = 16,
1449 			.rate_min = 8000,
1450 			.rate_max = 192000,
1451 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1452 			/* DMA does not support 24 bits transfers */
1453 			.formats =
1454 				SNDRV_PCM_FMTBIT_S8 |
1455 				SNDRV_PCM_FMTBIT_S16_LE |
1456 				SNDRV_PCM_FMTBIT_S32_LE,
1457 		},
1458 		.ops = &stm32_sai_pcm_dai_ops2,
1459 };
1460 
1461 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1462 	.pcm_hardware = &stm32_sai_pcm_hw,
1463 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1464 };
1465 
1466 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1467 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1468 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1469 	.process = stm32_sai_pcm_process_spdif,
1470 };
1471 
1472 static const struct snd_soc_component_driver stm32_component = {
1473 	.name = "stm32-sai",
1474 	.legacy_dai_naming = 1,
1475 };
1476 
1477 static const struct of_device_id stm32_sai_sub_ids[] = {
1478 	{ .compatible = "st,stm32-sai-sub-a",
1479 	  .data = (void *)STM_SAI_A_ID},
1480 	{ .compatible = "st,stm32-sai-sub-b",
1481 	  .data = (void *)STM_SAI_B_ID},
1482 	{}
1483 };
1484 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1485 
1486 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1487 				  struct stm32_sai_sub_data *sai)
1488 {
1489 	struct device_node *np = pdev->dev.of_node;
1490 	struct resource *res;
1491 	void __iomem *base;
1492 	struct of_phandle_args args;
1493 	int ret;
1494 
1495 	if (!np)
1496 		return -ENODEV;
1497 
1498 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1499 	if (IS_ERR(base))
1500 		return PTR_ERR(base);
1501 
1502 	sai->phys_addr = res->start;
1503 
1504 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1505 	/* Note: PDM registers not available for sub-block B */
1506 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1507 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1508 
1509 	/*
1510 	 * Do not manage peripheral clock through regmap framework as this
1511 	 * can lead to circular locking issue with sai master clock provider.
1512 	 * Manage peripheral clock directly in driver instead.
1513 	 */
1514 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1515 					    sai->regmap_config);
1516 	if (IS_ERR(sai->regmap))
1517 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1518 				     "Regmap init error\n");
1519 
1520 	/* Get direction property */
1521 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1522 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1523 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1524 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1525 	} else {
1526 		dev_err(&pdev->dev, "Unsupported direction\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	/* Get spdif iec60958 property */
1531 	sai->spdif = false;
1532 	if (of_property_present(np, "st,iec60958")) {
1533 		if (!STM_SAI_HAS_SPDIF(sai) ||
1534 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1535 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1536 			return -EINVAL;
1537 		}
1538 		stm32_sai_init_iec958_status(sai);
1539 		sai->spdif = true;
1540 		sai->master = true;
1541 	}
1542 
1543 	/* Get synchronization property */
1544 	args.np = NULL;
1545 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1546 	if (ret < 0  && ret != -ENOENT) {
1547 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1548 		return ret;
1549 	}
1550 
1551 	sai->sync = SAI_SYNC_NONE;
1552 	if (args.np) {
1553 		if (args.np == np) {
1554 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1555 			of_node_put(args.np);
1556 			return -EINVAL;
1557 		}
1558 
1559 		sai->np_sync_provider  = of_get_parent(args.np);
1560 		if (!sai->np_sync_provider) {
1561 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1562 				np);
1563 			of_node_put(args.np);
1564 			return -ENODEV;
1565 		}
1566 
1567 		sai->sync = SAI_SYNC_INTERNAL;
1568 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1569 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1570 				dev_err(&pdev->dev,
1571 					"External synchro not supported\n");
1572 				of_node_put(args.np);
1573 				return -EINVAL;
1574 			}
1575 			sai->sync = SAI_SYNC_EXTERNAL;
1576 
1577 			sai->synci = args.args[0];
1578 			if (sai->synci < 1 ||
1579 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1580 				dev_err(&pdev->dev, "Wrong SAI index\n");
1581 				of_node_put(args.np);
1582 				return -EINVAL;
1583 			}
1584 
1585 			if (of_property_match_string(args.np, "compatible",
1586 						     "st,stm32-sai-sub-a") >= 0)
1587 				sai->synco = STM_SAI_SYNC_OUT_A;
1588 
1589 			if (of_property_match_string(args.np, "compatible",
1590 						     "st,stm32-sai-sub-b") >= 0)
1591 				sai->synco = STM_SAI_SYNC_OUT_B;
1592 
1593 			if (!sai->synco) {
1594 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1595 				of_node_put(args.np);
1596 				return -EINVAL;
1597 			}
1598 		}
1599 
1600 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1601 			pdev->name, args.np->full_name);
1602 	}
1603 
1604 	of_node_put(args.np);
1605 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1606 	if (IS_ERR(sai->sai_ck))
1607 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1608 				     "Missing kernel clock sai_ck\n");
1609 
1610 	ret = clk_prepare(sai->pdata->pclk);
1611 	if (ret < 0)
1612 		return ret;
1613 
1614 	if (STM_SAI_IS_F4(sai->pdata))
1615 		return 0;
1616 
1617 	/* Register mclk provider if requested */
1618 	if (of_property_present(np, "#clock-cells")) {
1619 		ret = stm32_sai_add_mclk_provider(sai);
1620 		if (ret < 0)
1621 			return ret;
1622 	} else {
1623 		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1624 		if (IS_ERR(sai->sai_mclk))
1625 			return PTR_ERR(sai->sai_mclk);
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static int stm32_sai_sub_probe(struct platform_device *pdev)
1632 {
1633 	struct stm32_sai_sub_data *sai;
1634 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1635 	int ret;
1636 
1637 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1638 	if (!sai)
1639 		return -ENOMEM;
1640 
1641 	sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1642 
1643 	sai->pdev = pdev;
1644 	mutex_init(&sai->ctrl_lock);
1645 	spin_lock_init(&sai->irq_lock);
1646 	platform_set_drvdata(pdev, sai);
1647 
1648 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1649 	if (!sai->pdata) {
1650 		dev_err(&pdev->dev, "Parent device data not available\n");
1651 		return -EINVAL;
1652 	}
1653 
1654 	if (sai->pdata->conf.get_sai_ck_parent) {
1655 		sai->set_sai_ck_rate = stm32_sai_set_parent_clk;
1656 	} else {
1657 		sai->set_sai_ck_rate = stm32_sai_set_parent_rate;
1658 		sai->put_sai_ck_rate = stm32_sai_put_parent_rate;
1659 	}
1660 
1661 	ret = stm32_sai_sub_parse_of(pdev, sai);
1662 	if (ret)
1663 		return ret;
1664 
1665 	if (STM_SAI_IS_PLAYBACK(sai))
1666 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1667 	else
1668 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1669 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1670 
1671 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1672 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1673 	if (ret) {
1674 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1675 		return ret;
1676 	}
1677 
1678 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1679 		conf = &stm32_sai_pcm_config_spdif;
1680 
1681 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1682 	if (ret)
1683 		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1684 
1685 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1686 					 &sai->cpu_dai_drv, 1);
1687 	if (ret) {
1688 		snd_dmaengine_pcm_unregister(&pdev->dev);
1689 		return ret;
1690 	}
1691 
1692 	pm_runtime_enable(&pdev->dev);
1693 
1694 	return 0;
1695 }
1696 
1697 static void stm32_sai_sub_remove(struct platform_device *pdev)
1698 {
1699 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1700 
1701 	clk_unprepare(sai->pdata->pclk);
1702 	snd_dmaengine_pcm_unregister(&pdev->dev);
1703 	snd_soc_unregister_component(&pdev->dev);
1704 	pm_runtime_disable(&pdev->dev);
1705 }
1706 
1707 #ifdef CONFIG_PM_SLEEP
1708 static int stm32_sai_sub_suspend(struct device *dev)
1709 {
1710 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1711 	int ret;
1712 
1713 	ret = clk_enable(sai->pdata->pclk);
1714 	if (ret < 0)
1715 		return ret;
1716 
1717 	regcache_cache_only(sai->regmap, true);
1718 	regcache_mark_dirty(sai->regmap);
1719 
1720 	clk_disable(sai->pdata->pclk);
1721 
1722 	return 0;
1723 }
1724 
1725 static int stm32_sai_sub_resume(struct device *dev)
1726 {
1727 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1728 	int ret;
1729 
1730 	ret = clk_enable(sai->pdata->pclk);
1731 	if (ret < 0)
1732 		return ret;
1733 
1734 	regcache_cache_only(sai->regmap, false);
1735 	ret = regcache_sync(sai->regmap);
1736 
1737 	clk_disable(sai->pdata->pclk);
1738 
1739 	return ret;
1740 }
1741 #endif /* CONFIG_PM_SLEEP */
1742 
1743 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1744 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1745 };
1746 
1747 static struct platform_driver stm32_sai_sub_driver = {
1748 	.driver = {
1749 		.name = "st,stm32-sai-sub",
1750 		.of_match_table = stm32_sai_sub_ids,
1751 		.pm = &stm32_sai_sub_pm_ops,
1752 	},
1753 	.probe = stm32_sai_sub_probe,
1754 	.remove = stm32_sai_sub_remove,
1755 };
1756 
1757 module_platform_driver(stm32_sai_sub_driver);
1758 
1759 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1760 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1761 MODULE_ALIAS("platform:st,stm32-sai-sub");
1762 MODULE_LICENSE("GPL v2");
1763