xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 662fa3d6099374c4615bf64d06895e3573b935b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 
23 #include "stm32_sai.h"
24 
25 #define SAI_FREE_PROTOCOL	0x0
26 #define SAI_SPDIF_PROTOCOL	0x1
27 
28 #define SAI_SLOT_SIZE_AUTO	0x0
29 #define SAI_SLOT_SIZE_16	0x1
30 #define SAI_SLOT_SIZE_32	0x2
31 
32 #define SAI_DATASIZE_8		0x2
33 #define SAI_DATASIZE_10		0x3
34 #define SAI_DATASIZE_16		0x4
35 #define SAI_DATASIZE_20		0x5
36 #define SAI_DATASIZE_24		0x6
37 #define SAI_DATASIZE_32		0x7
38 
39 #define STM_SAI_DAI_NAME_SIZE	15
40 
41 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43 
44 #define STM_SAI_A_ID		0x0
45 #define STM_SAI_B_ID		0x1
46 
47 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48 #define STM_SAI_IS_SUB_B(x)	((x)->id == STM_SAI_B_ID)
49 #define STM_SAI_BLOCK_NAME(x)	(((x)->id == STM_SAI_A_ID) ? "A" : "B")
50 
51 #define SAI_SYNC_NONE		0x0
52 #define SAI_SYNC_INTERNAL	0x1
53 #define SAI_SYNC_EXTERNAL	0x2
54 
55 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
56 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
58 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
59 
60 #define SAI_IEC60958_BLOCK_FRAMES	192
61 #define SAI_IEC60958_STATUS_BYTES	24
62 
63 #define SAI_MCLK_NAME_LEN		32
64 #define SAI_RATE_11K			11025
65 
66 /**
67  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
68  * @pdev: device data pointer
69  * @regmap: SAI register map pointer
70  * @regmap_config: SAI sub block register map configuration pointer
71  * @dma_params: dma configuration data for rx or tx channel
72  * @cpu_dai_drv: DAI driver data pointer
73  * @cpu_dai: DAI runtime data pointer
74  * @substream: PCM substream data pointer
75  * @pdata: SAI block parent data pointer
76  * @np_sync_provider: synchronization provider node
77  * @sai_ck: kernel clock feeding the SAI clock generator
78  * @sai_mclk: master clock from SAI mclk provider
79  * @phys_addr: SAI registers physical base address
80  * @mclk_rate: SAI block master clock frequency (Hz). set at init
81  * @id: SAI sub block id corresponding to sub-block A or B
82  * @dir: SAI block direction (playback or capture). set at init
83  * @master: SAI block mode flag. (true=master, false=slave) set at init
84  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
85  * @fmt: SAI block format. relevant only for custom protocols. set at init
86  * @sync: SAI block synchronization mode. (none, internal or external)
87  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
88  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
89  * @fs_length: frame synchronization length. depends on protocol settings
90  * @slots: rx or tx slot number
91  * @slot_width: rx or tx slot width in bits
92  * @slot_mask: rx or tx active slots mask. set at init or at runtime
93  * @data_size: PCM data width. corresponds to PCM substream width.
94  * @spdif_frm_cnt: S/PDIF playback frame counter
95  * @iec958: iec958 data
96  * @ctrl_lock: control lock
97  * @irq_lock: prevent race condition with IRQ
98  */
99 struct stm32_sai_sub_data {
100 	struct platform_device *pdev;
101 	struct regmap *regmap;
102 	const struct regmap_config *regmap_config;
103 	struct snd_dmaengine_dai_dma_data dma_params;
104 	struct snd_soc_dai_driver cpu_dai_drv;
105 	struct snd_soc_dai *cpu_dai;
106 	struct snd_pcm_substream *substream;
107 	struct stm32_sai_data *pdata;
108 	struct device_node *np_sync_provider;
109 	struct clk *sai_ck;
110 	struct clk *sai_mclk;
111 	dma_addr_t phys_addr;
112 	unsigned int mclk_rate;
113 	unsigned int id;
114 	int dir;
115 	bool master;
116 	bool spdif;
117 	int fmt;
118 	int sync;
119 	int synco;
120 	int synci;
121 	int fs_length;
122 	int slots;
123 	int slot_width;
124 	int slot_mask;
125 	int data_size;
126 	unsigned int spdif_frm_cnt;
127 	struct snd_aes_iec958 iec958;
128 	struct mutex ctrl_lock; /* protect resources accessed by controls */
129 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
130 };
131 
132 enum stm32_sai_fifo_th {
133 	STM_SAI_FIFO_TH_EMPTY,
134 	STM_SAI_FIFO_TH_QUARTER,
135 	STM_SAI_FIFO_TH_HALF,
136 	STM_SAI_FIFO_TH_3_QUARTER,
137 	STM_SAI_FIFO_TH_FULL,
138 };
139 
140 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
141 {
142 	switch (reg) {
143 	case STM_SAI_CR1_REGX:
144 	case STM_SAI_CR2_REGX:
145 	case STM_SAI_FRCR_REGX:
146 	case STM_SAI_SLOTR_REGX:
147 	case STM_SAI_IMR_REGX:
148 	case STM_SAI_SR_REGX:
149 	case STM_SAI_CLRFR_REGX:
150 	case STM_SAI_DR_REGX:
151 	case STM_SAI_PDMCR_REGX:
152 	case STM_SAI_PDMLY_REGX:
153 		return true;
154 	default:
155 		return false;
156 	}
157 }
158 
159 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
160 {
161 	switch (reg) {
162 	case STM_SAI_DR_REGX:
163 	case STM_SAI_SR_REGX:
164 		return true;
165 	default:
166 		return false;
167 	}
168 }
169 
170 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
171 {
172 	switch (reg) {
173 	case STM_SAI_CR1_REGX:
174 	case STM_SAI_CR2_REGX:
175 	case STM_SAI_FRCR_REGX:
176 	case STM_SAI_SLOTR_REGX:
177 	case STM_SAI_IMR_REGX:
178 	case STM_SAI_CLRFR_REGX:
179 	case STM_SAI_DR_REGX:
180 	case STM_SAI_PDMCR_REGX:
181 	case STM_SAI_PDMLY_REGX:
182 		return true;
183 	default:
184 		return false;
185 	}
186 }
187 
188 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
189 				unsigned int reg, unsigned int mask,
190 				unsigned int val)
191 {
192 	int ret;
193 
194 	ret = clk_enable(sai->pdata->pclk);
195 	if (ret < 0)
196 		return ret;
197 
198 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
199 
200 	clk_disable(sai->pdata->pclk);
201 
202 	return ret;
203 }
204 
205 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
206 				unsigned int reg, unsigned int mask,
207 				unsigned int val)
208 {
209 	int ret;
210 
211 	ret = clk_enable(sai->pdata->pclk);
212 	if (ret < 0)
213 		return ret;
214 
215 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
216 
217 	clk_disable(sai->pdata->pclk);
218 
219 	return ret;
220 }
221 
222 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
223 				unsigned int reg, unsigned int *val)
224 {
225 	int ret;
226 
227 	ret = clk_enable(sai->pdata->pclk);
228 	if (ret < 0)
229 		return ret;
230 
231 	ret = regmap_read(sai->regmap, reg, val);
232 
233 	clk_disable(sai->pdata->pclk);
234 
235 	return ret;
236 }
237 
238 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
239 	.reg_bits = 32,
240 	.reg_stride = 4,
241 	.val_bits = 32,
242 	.max_register = STM_SAI_DR_REGX,
243 	.readable_reg = stm32_sai_sub_readable_reg,
244 	.volatile_reg = stm32_sai_sub_volatile_reg,
245 	.writeable_reg = stm32_sai_sub_writeable_reg,
246 	.fast_io = true,
247 	.cache_type = REGCACHE_FLAT,
248 };
249 
250 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
251 	.reg_bits = 32,
252 	.reg_stride = 4,
253 	.val_bits = 32,
254 	.max_register = STM_SAI_PDMLY_REGX,
255 	.readable_reg = stm32_sai_sub_readable_reg,
256 	.volatile_reg = stm32_sai_sub_volatile_reg,
257 	.writeable_reg = stm32_sai_sub_writeable_reg,
258 	.fast_io = true,
259 	.cache_type = REGCACHE_FLAT,
260 };
261 
262 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
263 			       struct snd_ctl_elem_info *uinfo)
264 {
265 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
266 	uinfo->count = 1;
267 
268 	return 0;
269 }
270 
271 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
272 			      struct snd_ctl_elem_value *uctl)
273 {
274 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
275 
276 	mutex_lock(&sai->ctrl_lock);
277 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
278 	mutex_unlock(&sai->ctrl_lock);
279 
280 	return 0;
281 }
282 
283 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
284 			      struct snd_ctl_elem_value *uctl)
285 {
286 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
287 
288 	mutex_lock(&sai->ctrl_lock);
289 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
290 	mutex_unlock(&sai->ctrl_lock);
291 
292 	return 0;
293 }
294 
295 static const struct snd_kcontrol_new iec958_ctls = {
296 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
297 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
298 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
299 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
300 	.info = snd_pcm_iec958_info,
301 	.get = snd_pcm_iec958_get,
302 	.put = snd_pcm_iec958_put,
303 };
304 
305 struct stm32_sai_mclk_data {
306 	struct clk_hw hw;
307 	unsigned long freq;
308 	struct stm32_sai_sub_data *sai_data;
309 };
310 
311 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
312 #define STM32_SAI_MAX_CLKS 1
313 
314 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
315 				 unsigned long input_rate,
316 				 unsigned long output_rate)
317 {
318 	int version = sai->pdata->conf.version;
319 	int div;
320 
321 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
322 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
323 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
324 		return -EINVAL;
325 	}
326 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
327 
328 	if (input_rate % div)
329 		dev_dbg(&sai->pdev->dev,
330 			"Rate not accurate. requested (%ld), actual (%ld)\n",
331 			output_rate, input_rate / div);
332 
333 	return div;
334 }
335 
336 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
337 				 unsigned int div)
338 {
339 	int version = sai->pdata->conf.version;
340 	int ret, cr1, mask;
341 
342 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
343 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
344 		return -EINVAL;
345 	}
346 
347 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
348 	cr1 = SAI_XCR1_MCKDIV_SET(div);
349 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
350 	if (ret < 0)
351 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
352 
353 	return ret;
354 }
355 
356 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
357 				      unsigned int rate)
358 {
359 	struct platform_device *pdev = sai->pdev;
360 	struct clk *parent_clk = sai->pdata->clk_x8k;
361 	int ret;
362 
363 	if (!(rate % SAI_RATE_11K))
364 		parent_clk = sai->pdata->clk_x11k;
365 
366 	ret = clk_set_parent(sai->sai_ck, parent_clk);
367 	if (ret)
368 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
369 			ret, ret == -EBUSY ?
370 			"Active stream rates conflict\n" : "\n");
371 
372 	return ret;
373 }
374 
375 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
376 				      unsigned long *prate)
377 {
378 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
379 	struct stm32_sai_sub_data *sai = mclk->sai_data;
380 	int div;
381 
382 	div = stm32_sai_get_clk_div(sai, *prate, rate);
383 	if (div < 0)
384 		return div;
385 
386 	mclk->freq = *prate / div;
387 
388 	return mclk->freq;
389 }
390 
391 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
392 						unsigned long parent_rate)
393 {
394 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
395 
396 	return mclk->freq;
397 }
398 
399 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
400 				   unsigned long parent_rate)
401 {
402 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
403 	struct stm32_sai_sub_data *sai = mclk->sai_data;
404 	int div, ret;
405 
406 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
407 	if (div < 0)
408 		return div;
409 
410 	ret = stm32_sai_set_clk_div(sai, div);
411 	if (ret)
412 		return ret;
413 
414 	mclk->freq = rate;
415 
416 	return 0;
417 }
418 
419 static int stm32_sai_mclk_enable(struct clk_hw *hw)
420 {
421 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
422 	struct stm32_sai_sub_data *sai = mclk->sai_data;
423 
424 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
425 
426 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
427 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
428 }
429 
430 static void stm32_sai_mclk_disable(struct clk_hw *hw)
431 {
432 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
433 	struct stm32_sai_sub_data *sai = mclk->sai_data;
434 
435 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
436 
437 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
438 }
439 
440 static const struct clk_ops mclk_ops = {
441 	.enable = stm32_sai_mclk_enable,
442 	.disable = stm32_sai_mclk_disable,
443 	.recalc_rate = stm32_sai_mclk_recalc_rate,
444 	.round_rate = stm32_sai_mclk_round_rate,
445 	.set_rate = stm32_sai_mclk_set_rate,
446 };
447 
448 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
449 {
450 	struct clk_hw *hw;
451 	struct stm32_sai_mclk_data *mclk;
452 	struct device *dev = &sai->pdev->dev;
453 	const char *pname = __clk_get_name(sai->sai_ck);
454 	char *mclk_name, *p, *s = (char *)pname;
455 	int ret, i = 0;
456 
457 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
458 	if (!mclk)
459 		return -ENOMEM;
460 
461 	mclk_name = devm_kcalloc(dev, sizeof(char),
462 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
463 	if (!mclk_name)
464 		return -ENOMEM;
465 
466 	/*
467 	 * Forge mclk clock name from parent clock name and suffix.
468 	 * String after "_" char is stripped in parent name.
469 	 */
470 	p = mclk_name;
471 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
472 		*p++ = *s++;
473 		i++;
474 	}
475 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
476 
477 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
478 	mclk->sai_data = sai;
479 	hw = &mclk->hw;
480 
481 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
482 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
483 	if (ret) {
484 		dev_err(dev, "mclk register returned %d\n", ret);
485 		return ret;
486 	}
487 	sai->sai_mclk = hw->clk;
488 
489 	/* register mclk provider */
490 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
491 }
492 
493 static irqreturn_t stm32_sai_isr(int irq, void *devid)
494 {
495 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
496 	struct platform_device *pdev = sai->pdev;
497 	unsigned int sr, imr, flags;
498 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
499 
500 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
501 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
502 
503 	flags = sr & imr;
504 	if (!flags)
505 		return IRQ_NONE;
506 
507 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
508 			     SAI_XCLRFR_MASK);
509 
510 	if (!sai->substream) {
511 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
512 		return IRQ_NONE;
513 	}
514 
515 	if (flags & SAI_XIMR_OVRUDRIE) {
516 		dev_err(&pdev->dev, "IRQ %s\n",
517 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
518 		status = SNDRV_PCM_STATE_XRUN;
519 	}
520 
521 	if (flags & SAI_XIMR_MUTEDETIE)
522 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
523 
524 	if (flags & SAI_XIMR_WCKCFGIE) {
525 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
526 		status = SNDRV_PCM_STATE_DISCONNECTED;
527 	}
528 
529 	if (flags & SAI_XIMR_CNRDYIE)
530 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
531 
532 	if (flags & SAI_XIMR_AFSDETIE) {
533 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
534 		status = SNDRV_PCM_STATE_XRUN;
535 	}
536 
537 	if (flags & SAI_XIMR_LFSDETIE) {
538 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
539 		status = SNDRV_PCM_STATE_XRUN;
540 	}
541 
542 	spin_lock(&sai->irq_lock);
543 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
544 		snd_pcm_stop_xrun(sai->substream);
545 	spin_unlock(&sai->irq_lock);
546 
547 	return IRQ_HANDLED;
548 }
549 
550 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
551 				int clk_id, unsigned int freq, int dir)
552 {
553 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
554 	int ret;
555 
556 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
557 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
558 					   SAI_XCR1_NODIV,
559 					 freq ? 0 : SAI_XCR1_NODIV);
560 		if (ret < 0)
561 			return ret;
562 
563 		/* Assume shutdown if requested frequency is 0Hz */
564 		if (!freq) {
565 			/* Release mclk rate only if rate was actually set */
566 			if (sai->mclk_rate) {
567 				clk_rate_exclusive_put(sai->sai_mclk);
568 				sai->mclk_rate = 0;
569 			}
570 			return 0;
571 		}
572 
573 		/* If master clock is used, set parent clock now */
574 		ret = stm32_sai_set_parent_clock(sai, freq);
575 		if (ret)
576 			return ret;
577 
578 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
579 		if (ret) {
580 			dev_err(cpu_dai->dev,
581 				ret == -EBUSY ?
582 				"Active streams have incompatible rates" :
583 				"Could not set mclk rate\n");
584 			return ret;
585 		}
586 
587 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
588 		sai->mclk_rate = freq;
589 	}
590 
591 	return 0;
592 }
593 
594 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
595 				      u32 rx_mask, int slots, int slot_width)
596 {
597 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
598 	int slotr, slotr_mask, slot_size;
599 
600 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
601 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
602 		return 0;
603 	}
604 
605 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
606 		tx_mask, rx_mask, slots, slot_width);
607 
608 	switch (slot_width) {
609 	case 16:
610 		slot_size = SAI_SLOT_SIZE_16;
611 		break;
612 	case 32:
613 		slot_size = SAI_SLOT_SIZE_32;
614 		break;
615 	default:
616 		slot_size = SAI_SLOT_SIZE_AUTO;
617 		break;
618 	}
619 
620 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
621 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
622 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
623 
624 	/* tx/rx mask set in machine init, if slot number defined in DT */
625 	if (STM_SAI_IS_PLAYBACK(sai)) {
626 		sai->slot_mask = tx_mask;
627 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
628 	}
629 
630 	if (STM_SAI_IS_CAPTURE(sai)) {
631 		sai->slot_mask = rx_mask;
632 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
633 	}
634 
635 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
636 
637 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
638 
639 	sai->slot_width = slot_width;
640 	sai->slots = slots;
641 
642 	return 0;
643 }
644 
645 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
646 {
647 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
648 	int cr1, frcr = 0;
649 	int cr1_mask, frcr_mask = 0;
650 	int ret;
651 
652 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
653 
654 	/* Do not generate master by default */
655 	cr1 = SAI_XCR1_NODIV;
656 	cr1_mask = SAI_XCR1_NODIV;
657 
658 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
659 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
660 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
661 		goto conf_update;
662 	}
663 
664 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
665 
666 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
667 	/* SCK active high for all protocols */
668 	case SND_SOC_DAIFMT_I2S:
669 		cr1 |= SAI_XCR1_CKSTR;
670 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
671 		break;
672 	/* Left justified */
673 	case SND_SOC_DAIFMT_MSB:
674 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
675 		break;
676 	/* Right justified */
677 	case SND_SOC_DAIFMT_LSB:
678 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
679 		break;
680 	case SND_SOC_DAIFMT_DSP_A:
681 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
682 		break;
683 	case SND_SOC_DAIFMT_DSP_B:
684 		frcr |= SAI_XFRCR_FSPOL;
685 		break;
686 	default:
687 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
688 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
689 		return -EINVAL;
690 	}
691 
692 	cr1_mask |= SAI_XCR1_CKSTR;
693 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
694 		     SAI_XFRCR_FSDEF;
695 
696 	/* DAI clock strobing. Invert setting previously set */
697 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
698 	case SND_SOC_DAIFMT_NB_NF:
699 		break;
700 	case SND_SOC_DAIFMT_IB_NF:
701 		cr1 ^= SAI_XCR1_CKSTR;
702 		break;
703 	case SND_SOC_DAIFMT_NB_IF:
704 		frcr ^= SAI_XFRCR_FSPOL;
705 		break;
706 	case SND_SOC_DAIFMT_IB_IF:
707 		/* Invert fs & sck */
708 		cr1 ^= SAI_XCR1_CKSTR;
709 		frcr ^= SAI_XFRCR_FSPOL;
710 		break;
711 	default:
712 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
713 			fmt & SND_SOC_DAIFMT_INV_MASK);
714 		return -EINVAL;
715 	}
716 	cr1_mask |= SAI_XCR1_CKSTR;
717 	frcr_mask |= SAI_XFRCR_FSPOL;
718 
719 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
720 
721 	/* DAI clock master masks */
722 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
723 	case SND_SOC_DAIFMT_CBM_CFM:
724 		/* codec is master */
725 		cr1 |= SAI_XCR1_SLAVE;
726 		sai->master = false;
727 		break;
728 	case SND_SOC_DAIFMT_CBS_CFS:
729 		sai->master = true;
730 		break;
731 	default:
732 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
733 			fmt & SND_SOC_DAIFMT_MASTER_MASK);
734 		return -EINVAL;
735 	}
736 
737 	/* Set slave mode if sub-block is synchronized with another SAI */
738 	if (sai->sync) {
739 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
740 		cr1 |= SAI_XCR1_SLAVE;
741 		sai->master = false;
742 	}
743 
744 	cr1_mask |= SAI_XCR1_SLAVE;
745 
746 conf_update:
747 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
748 	if (ret < 0) {
749 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
750 		return ret;
751 	}
752 
753 	sai->fmt = fmt;
754 
755 	return 0;
756 }
757 
758 static int stm32_sai_startup(struct snd_pcm_substream *substream,
759 			     struct snd_soc_dai *cpu_dai)
760 {
761 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
762 	int imr, cr2, ret;
763 	unsigned long flags;
764 
765 	spin_lock_irqsave(&sai->irq_lock, flags);
766 	sai->substream = substream;
767 	spin_unlock_irqrestore(&sai->irq_lock, flags);
768 
769 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
770 		snd_pcm_hw_constraint_mask64(substream->runtime,
771 					     SNDRV_PCM_HW_PARAM_FORMAT,
772 					     SNDRV_PCM_FMTBIT_S32_LE);
773 		snd_pcm_hw_constraint_single(substream->runtime,
774 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
775 	}
776 
777 	ret = clk_prepare_enable(sai->sai_ck);
778 	if (ret < 0) {
779 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
780 		return ret;
781 	}
782 
783 	/* Enable ITs */
784 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
785 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
786 
787 	imr = SAI_XIMR_OVRUDRIE;
788 	if (STM_SAI_IS_CAPTURE(sai)) {
789 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
790 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
791 			imr |= SAI_XIMR_MUTEDETIE;
792 	}
793 
794 	if (sai->master)
795 		imr |= SAI_XIMR_WCKCFGIE;
796 	else
797 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
798 
799 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
800 			     SAI_XIMR_MASK, imr);
801 
802 	return 0;
803 }
804 
805 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
806 				struct snd_pcm_substream *substream,
807 				struct snd_pcm_hw_params *params)
808 {
809 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
810 	int cr1, cr1_mask, ret;
811 
812 	/*
813 	 * DMA bursts increment is set to 4 words.
814 	 * SAI fifo threshold is set to half fifo, to keep enough space
815 	 * for DMA incoming bursts.
816 	 */
817 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
818 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
819 			     SAI_XCR2_FFLUSH |
820 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
821 
822 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
823 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
824 		sai->spdif_frm_cnt = 0;
825 		return 0;
826 	}
827 
828 	/* Mode, data format and channel config */
829 	cr1_mask = SAI_XCR1_DS_MASK;
830 	switch (params_format(params)) {
831 	case SNDRV_PCM_FORMAT_S8:
832 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
833 		break;
834 	case SNDRV_PCM_FORMAT_S16_LE:
835 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
836 		break;
837 	case SNDRV_PCM_FORMAT_S32_LE:
838 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
839 		break;
840 	default:
841 		dev_err(cpu_dai->dev, "Data format not supported\n");
842 		return -EINVAL;
843 	}
844 
845 	cr1_mask |= SAI_XCR1_MONO;
846 	if ((sai->slots == 2) && (params_channels(params) == 1))
847 		cr1 |= SAI_XCR1_MONO;
848 
849 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
850 	if (ret < 0) {
851 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
852 		return ret;
853 	}
854 
855 	return 0;
856 }
857 
858 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
859 {
860 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
861 	int slotr, slot_sz;
862 
863 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
864 
865 	/*
866 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
867 	 * By default slot width = data size, if not forced from DT
868 	 */
869 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
870 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
871 		sai->slot_width = sai->data_size;
872 
873 	if (sai->slot_width < sai->data_size) {
874 		dev_err(cpu_dai->dev,
875 			"Data size %d larger than slot width\n",
876 			sai->data_size);
877 		return -EINVAL;
878 	}
879 
880 	/* Slot number is set to 2, if not specified in DT */
881 	if (!sai->slots)
882 		sai->slots = 2;
883 
884 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
885 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
886 			     SAI_XSLOTR_NBSLOT_MASK,
887 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
888 
889 	/* Set default slots mask if not already set from DT */
890 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
891 		sai->slot_mask = (1 << sai->slots) - 1;
892 		stm32_sai_sub_reg_up(sai,
893 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
894 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
895 	}
896 
897 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
898 		sai->slots, sai->slot_width);
899 
900 	return 0;
901 }
902 
903 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
904 {
905 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
906 	int fs_active, offset, format;
907 	int frcr, frcr_mask;
908 
909 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
910 	sai->fs_length = sai->slot_width * sai->slots;
911 
912 	fs_active = sai->fs_length / 2;
913 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
914 	    (format == SND_SOC_DAIFMT_DSP_B))
915 		fs_active = 1;
916 
917 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
918 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
919 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
920 
921 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
922 		sai->fs_length, fs_active);
923 
924 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
925 
926 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
927 		offset = sai->slot_width - sai->data_size;
928 
929 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
930 				     SAI_XSLOTR_FBOFF_MASK,
931 				     SAI_XSLOTR_FBOFF_SET(offset));
932 	}
933 }
934 
935 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
936 {
937 	unsigned char *cs = sai->iec958.status;
938 
939 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
940 	cs[1] = IEC958_AES1_CON_GENERAL;
941 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
942 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
943 }
944 
945 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
946 					struct snd_pcm_runtime *runtime)
947 {
948 	if (!runtime)
949 		return;
950 
951 	/* Force the sample rate according to runtime rate */
952 	mutex_lock(&sai->ctrl_lock);
953 	switch (runtime->rate) {
954 	case 22050:
955 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
956 		break;
957 	case 44100:
958 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
959 		break;
960 	case 88200:
961 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
962 		break;
963 	case 176400:
964 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
965 		break;
966 	case 24000:
967 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
968 		break;
969 	case 48000:
970 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
971 		break;
972 	case 96000:
973 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
974 		break;
975 	case 192000:
976 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
977 		break;
978 	case 32000:
979 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
980 		break;
981 	default:
982 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
983 		break;
984 	}
985 	mutex_unlock(&sai->ctrl_lock);
986 }
987 
988 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
989 				     struct snd_pcm_hw_params *params)
990 {
991 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
992 	int div = 0, cr1 = 0;
993 	int sai_clk_rate, mclk_ratio, den;
994 	unsigned int rate = params_rate(params);
995 	int ret;
996 
997 	if (!sai->sai_mclk) {
998 		ret = stm32_sai_set_parent_clock(sai, rate);
999 		if (ret)
1000 			return ret;
1001 	}
1002 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1003 
1004 	if (STM_SAI_IS_F4(sai->pdata)) {
1005 		/* mclk on (NODIV=0)
1006 		 *   mclk_rate = 256 * fs
1007 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1008 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1009 		 * mclk off (NODIV=1)
1010 		 *   MCKDIV ignored. sck = sai_ck
1011 		 */
1012 		if (!sai->mclk_rate)
1013 			return 0;
1014 
1015 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1016 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1017 						    2 * sai->mclk_rate);
1018 			if (div < 0)
1019 				return div;
1020 		}
1021 	} else {
1022 		/*
1023 		 * TDM mode :
1024 		 *   mclk on
1025 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1026 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1027 		 *   mclk off
1028 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1029 		 * Note: NOMCK/NODIV correspond to same bit.
1030 		 */
1031 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1032 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1033 						    rate * 128);
1034 			if (div < 0)
1035 				return div;
1036 		} else {
1037 			if (sai->mclk_rate) {
1038 				mclk_ratio = sai->mclk_rate / rate;
1039 				if (mclk_ratio == 512) {
1040 					cr1 = SAI_XCR1_OSR;
1041 				} else if (mclk_ratio != 256) {
1042 					dev_err(cpu_dai->dev,
1043 						"Wrong mclk ratio %d\n",
1044 						mclk_ratio);
1045 					return -EINVAL;
1046 				}
1047 
1048 				stm32_sai_sub_reg_up(sai,
1049 						     STM_SAI_CR1_REGX,
1050 						     SAI_XCR1_OSR, cr1);
1051 
1052 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1053 							    sai->mclk_rate);
1054 				if (div < 0)
1055 					return div;
1056 			} else {
1057 				/* mclk-fs not set, master clock not active */
1058 				den = sai->fs_length * params_rate(params);
1059 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1060 							    den);
1061 				if (div < 0)
1062 					return div;
1063 			}
1064 		}
1065 	}
1066 
1067 	return stm32_sai_set_clk_div(sai, div);
1068 }
1069 
1070 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1071 			       struct snd_pcm_hw_params *params,
1072 			       struct snd_soc_dai *cpu_dai)
1073 {
1074 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1075 	int ret;
1076 
1077 	sai->data_size = params_width(params);
1078 
1079 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1080 		/* Rate not already set in runtime structure */
1081 		substream->runtime->rate = params_rate(params);
1082 		stm32_sai_set_iec958_status(sai, substream->runtime);
1083 	} else {
1084 		ret = stm32_sai_set_slots(cpu_dai);
1085 		if (ret < 0)
1086 			return ret;
1087 		stm32_sai_set_frame(cpu_dai);
1088 	}
1089 
1090 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1091 	if (ret)
1092 		return ret;
1093 
1094 	if (sai->master)
1095 		ret = stm32_sai_configure_clock(cpu_dai, params);
1096 
1097 	return ret;
1098 }
1099 
1100 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1101 			     struct snd_soc_dai *cpu_dai)
1102 {
1103 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1104 	int ret;
1105 
1106 	switch (cmd) {
1107 	case SNDRV_PCM_TRIGGER_START:
1108 	case SNDRV_PCM_TRIGGER_RESUME:
1109 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1110 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1111 
1112 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1113 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1114 
1115 		/* Enable SAI */
1116 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1117 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1118 		if (ret < 0)
1119 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1120 		break;
1121 	case SNDRV_PCM_TRIGGER_SUSPEND:
1122 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1123 	case SNDRV_PCM_TRIGGER_STOP:
1124 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1125 
1126 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1127 				     SAI_XIMR_MASK, 0);
1128 
1129 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1130 				     SAI_XCR1_SAIEN,
1131 				     (unsigned int)~SAI_XCR1_SAIEN);
1132 
1133 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1134 					   SAI_XCR1_DMAEN,
1135 					   (unsigned int)~SAI_XCR1_DMAEN);
1136 		if (ret < 0)
1137 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1138 
1139 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1140 			sai->spdif_frm_cnt = 0;
1141 		break;
1142 	default:
1143 		return -EINVAL;
1144 	}
1145 
1146 	return ret;
1147 }
1148 
1149 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1150 			       struct snd_soc_dai *cpu_dai)
1151 {
1152 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1153 	unsigned long flags;
1154 
1155 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1156 
1157 	clk_disable_unprepare(sai->sai_ck);
1158 
1159 	spin_lock_irqsave(&sai->irq_lock, flags);
1160 	sai->substream = NULL;
1161 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1162 }
1163 
1164 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1165 			     struct snd_soc_dai *cpu_dai)
1166 {
1167 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1168 	struct snd_kcontrol_new knew = iec958_ctls;
1169 
1170 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1171 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1172 		knew.device = rtd->pcm->device;
1173 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1180 {
1181 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1182 	int cr1 = 0, cr1_mask, ret;
1183 
1184 	sai->cpu_dai = cpu_dai;
1185 
1186 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1187 	/*
1188 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1189 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1190 	 * constraints).
1191 	 */
1192 	sai->dma_params.maxburst = 4;
1193 	if (sai->pdata->conf.fifo_size < 8)
1194 		sai->dma_params.maxburst = 1;
1195 	/* Buswidth will be set by framework at runtime */
1196 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1197 
1198 	if (STM_SAI_IS_PLAYBACK(sai))
1199 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1200 	else
1201 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1202 
1203 	/* Next settings are not relevant for spdif mode */
1204 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1205 		return 0;
1206 
1207 	cr1_mask = SAI_XCR1_RX_TX;
1208 	if (STM_SAI_IS_CAPTURE(sai))
1209 		cr1 |= SAI_XCR1_RX_TX;
1210 
1211 	/* Configure synchronization */
1212 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1213 		/* Configure synchro client and provider */
1214 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1215 					   sai->synco, sai->synci);
1216 		if (ret)
1217 			return ret;
1218 	}
1219 
1220 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1221 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1222 
1223 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1224 }
1225 
1226 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1227 	.set_sysclk	= stm32_sai_set_sysclk,
1228 	.set_fmt	= stm32_sai_set_dai_fmt,
1229 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1230 	.startup	= stm32_sai_startup,
1231 	.hw_params	= stm32_sai_hw_params,
1232 	.trigger	= stm32_sai_trigger,
1233 	.shutdown	= stm32_sai_shutdown,
1234 };
1235 
1236 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1237 				       int channel, unsigned long hwoff,
1238 				       void *buf, unsigned long bytes)
1239 {
1240 	struct snd_pcm_runtime *runtime = substream->runtime;
1241 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1242 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
1243 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1244 	int *ptr = (int *)(runtime->dma_area + hwoff +
1245 			   channel * (runtime->dma_bytes / runtime->channels));
1246 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1247 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1248 	unsigned int byte;
1249 	unsigned int mask;
1250 
1251 	do {
1252 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1253 
1254 		/* Set channel status bit */
1255 		byte = frm_cnt >> 3;
1256 		mask = 1 << (frm_cnt - (byte << 3));
1257 		if (sai->iec958.status[byte] & mask)
1258 			*ptr |= 0x04000000;
1259 		ptr++;
1260 
1261 		if (!(cnt % 2))
1262 			frm_cnt++;
1263 
1264 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1265 			frm_cnt = 0;
1266 	} while (--cnt);
1267 	sai->spdif_frm_cnt = frm_cnt;
1268 
1269 	return 0;
1270 }
1271 
1272 /* No support of mmap in S/PDIF mode */
1273 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1274 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1275 	.buffer_bytes_max = 8 * PAGE_SIZE,
1276 	.period_bytes_min = 1024,
1277 	.period_bytes_max = PAGE_SIZE,
1278 	.periods_min = 2,
1279 	.periods_max = 8,
1280 };
1281 
1282 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1283 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1284 	.buffer_bytes_max = 8 * PAGE_SIZE,
1285 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1286 	.period_bytes_max = PAGE_SIZE,
1287 	.periods_min = 2,
1288 	.periods_max = 8,
1289 };
1290 
1291 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1292 		.probe = stm32_sai_dai_probe,
1293 		.pcm_new = stm32_sai_pcm_new,
1294 		.id = 1, /* avoid call to fmt_single_name() */
1295 		.playback = {
1296 			.channels_min = 1,
1297 			.channels_max = 2,
1298 			.rate_min = 8000,
1299 			.rate_max = 192000,
1300 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1301 			/* DMA does not support 24 bits transfers */
1302 			.formats =
1303 				SNDRV_PCM_FMTBIT_S8 |
1304 				SNDRV_PCM_FMTBIT_S16_LE |
1305 				SNDRV_PCM_FMTBIT_S32_LE,
1306 		},
1307 		.ops = &stm32_sai_pcm_dai_ops,
1308 };
1309 
1310 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1311 		.probe = stm32_sai_dai_probe,
1312 		.id = 1, /* avoid call to fmt_single_name() */
1313 		.capture = {
1314 			.channels_min = 1,
1315 			.channels_max = 2,
1316 			.rate_min = 8000,
1317 			.rate_max = 192000,
1318 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1319 			/* DMA does not support 24 bits transfers */
1320 			.formats =
1321 				SNDRV_PCM_FMTBIT_S8 |
1322 				SNDRV_PCM_FMTBIT_S16_LE |
1323 				SNDRV_PCM_FMTBIT_S32_LE,
1324 		},
1325 		.ops = &stm32_sai_pcm_dai_ops,
1326 };
1327 
1328 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1329 	.pcm_hardware = &stm32_sai_pcm_hw,
1330 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1331 };
1332 
1333 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1334 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1335 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1336 	.process = stm32_sai_pcm_process_spdif,
1337 };
1338 
1339 static const struct snd_soc_component_driver stm32_component = {
1340 	.name = "stm32-sai",
1341 };
1342 
1343 static const struct of_device_id stm32_sai_sub_ids[] = {
1344 	{ .compatible = "st,stm32-sai-sub-a",
1345 	  .data = (void *)STM_SAI_A_ID},
1346 	{ .compatible = "st,stm32-sai-sub-b",
1347 	  .data = (void *)STM_SAI_B_ID},
1348 	{}
1349 };
1350 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1351 
1352 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1353 				  struct stm32_sai_sub_data *sai)
1354 {
1355 	struct device_node *np = pdev->dev.of_node;
1356 	struct resource *res;
1357 	void __iomem *base;
1358 	struct of_phandle_args args;
1359 	int ret;
1360 
1361 	if (!np)
1362 		return -ENODEV;
1363 
1364 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1365 	if (IS_ERR(base))
1366 		return PTR_ERR(base);
1367 
1368 	sai->phys_addr = res->start;
1369 
1370 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1371 	/* Note: PDM registers not available for sub-block B */
1372 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1373 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1374 
1375 	/*
1376 	 * Do not manage peripheral clock through regmap framework as this
1377 	 * can lead to circular locking issue with sai master clock provider.
1378 	 * Manage peripheral clock directly in driver instead.
1379 	 */
1380 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1381 					    sai->regmap_config);
1382 	if (IS_ERR(sai->regmap)) {
1383 		if (PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1384 			dev_err(&pdev->dev, "Regmap init error %ld\n",
1385 				PTR_ERR(sai->regmap));
1386 		return PTR_ERR(sai->regmap);
1387 	}
1388 
1389 	/* Get direction property */
1390 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1391 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1392 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1393 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1394 	} else {
1395 		dev_err(&pdev->dev, "Unsupported direction\n");
1396 		return -EINVAL;
1397 	}
1398 
1399 	/* Get spdif iec60958 property */
1400 	sai->spdif = false;
1401 	if (of_get_property(np, "st,iec60958", NULL)) {
1402 		if (!STM_SAI_HAS_SPDIF(sai) ||
1403 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1404 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1405 			return -EINVAL;
1406 		}
1407 		stm32_sai_init_iec958_status(sai);
1408 		sai->spdif = true;
1409 		sai->master = true;
1410 	}
1411 
1412 	/* Get synchronization property */
1413 	args.np = NULL;
1414 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1415 	if (ret < 0  && ret != -ENOENT) {
1416 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1417 		return ret;
1418 	}
1419 
1420 	sai->sync = SAI_SYNC_NONE;
1421 	if (args.np) {
1422 		if (args.np == np) {
1423 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1424 			of_node_put(args.np);
1425 			return -EINVAL;
1426 		}
1427 
1428 		sai->np_sync_provider  = of_get_parent(args.np);
1429 		if (!sai->np_sync_provider) {
1430 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1431 				np);
1432 			of_node_put(args.np);
1433 			return -ENODEV;
1434 		}
1435 
1436 		sai->sync = SAI_SYNC_INTERNAL;
1437 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1438 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1439 				dev_err(&pdev->dev,
1440 					"External synchro not supported\n");
1441 				of_node_put(args.np);
1442 				return -EINVAL;
1443 			}
1444 			sai->sync = SAI_SYNC_EXTERNAL;
1445 
1446 			sai->synci = args.args[0];
1447 			if (sai->synci < 1 ||
1448 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1449 				dev_err(&pdev->dev, "Wrong SAI index\n");
1450 				of_node_put(args.np);
1451 				return -EINVAL;
1452 			}
1453 
1454 			if (of_property_match_string(args.np, "compatible",
1455 						     "st,stm32-sai-sub-a") >= 0)
1456 				sai->synco = STM_SAI_SYNC_OUT_A;
1457 
1458 			if (of_property_match_string(args.np, "compatible",
1459 						     "st,stm32-sai-sub-b") >= 0)
1460 				sai->synco = STM_SAI_SYNC_OUT_B;
1461 
1462 			if (!sai->synco) {
1463 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1464 				of_node_put(args.np);
1465 				return -EINVAL;
1466 			}
1467 		}
1468 
1469 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1470 			pdev->name, args.np->full_name);
1471 	}
1472 
1473 	of_node_put(args.np);
1474 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1475 	if (IS_ERR(sai->sai_ck)) {
1476 		if (PTR_ERR(sai->sai_ck) != -EPROBE_DEFER)
1477 			dev_err(&pdev->dev, "Missing kernel clock sai_ck: %ld\n",
1478 				PTR_ERR(sai->sai_ck));
1479 		return PTR_ERR(sai->sai_ck);
1480 	}
1481 
1482 	ret = clk_prepare(sai->pdata->pclk);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	if (STM_SAI_IS_F4(sai->pdata))
1487 		return 0;
1488 
1489 	/* Register mclk provider if requested */
1490 	if (of_find_property(np, "#clock-cells", NULL)) {
1491 		ret = stm32_sai_add_mclk_provider(sai);
1492 		if (ret < 0)
1493 			return ret;
1494 	} else {
1495 		sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1496 		if (IS_ERR(sai->sai_mclk)) {
1497 			if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1498 				return PTR_ERR(sai->sai_mclk);
1499 			sai->sai_mclk = NULL;
1500 		}
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int stm32_sai_sub_probe(struct platform_device *pdev)
1507 {
1508 	struct stm32_sai_sub_data *sai;
1509 	const struct of_device_id *of_id;
1510 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1511 	int ret;
1512 
1513 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1514 	if (!sai)
1515 		return -ENOMEM;
1516 
1517 	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1518 	if (!of_id)
1519 		return -EINVAL;
1520 	sai->id = (uintptr_t)of_id->data;
1521 
1522 	sai->pdev = pdev;
1523 	mutex_init(&sai->ctrl_lock);
1524 	spin_lock_init(&sai->irq_lock);
1525 	platform_set_drvdata(pdev, sai);
1526 
1527 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1528 	if (!sai->pdata) {
1529 		dev_err(&pdev->dev, "Parent device data not available\n");
1530 		return -EINVAL;
1531 	}
1532 
1533 	ret = stm32_sai_sub_parse_of(pdev, sai);
1534 	if (ret)
1535 		return ret;
1536 
1537 	if (STM_SAI_IS_PLAYBACK(sai))
1538 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1539 	else
1540 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1541 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1542 
1543 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1544 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1545 	if (ret) {
1546 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1547 		return ret;
1548 	}
1549 
1550 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1551 		conf = &stm32_sai_pcm_config_spdif;
1552 
1553 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1554 	if (ret) {
1555 		if (ret != -EPROBE_DEFER)
1556 			dev_err(&pdev->dev, "Could not register pcm dma\n");
1557 		return ret;
1558 	}
1559 
1560 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1561 					 &sai->cpu_dai_drv, 1);
1562 	if (ret) {
1563 		snd_dmaengine_pcm_unregister(&pdev->dev);
1564 		return ret;
1565 	}
1566 
1567 	pm_runtime_enable(&pdev->dev);
1568 
1569 	return 0;
1570 }
1571 
1572 static int stm32_sai_sub_remove(struct platform_device *pdev)
1573 {
1574 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1575 
1576 	clk_unprepare(sai->pdata->pclk);
1577 	snd_dmaengine_pcm_unregister(&pdev->dev);
1578 	snd_soc_unregister_component(&pdev->dev);
1579 	pm_runtime_disable(&pdev->dev);
1580 
1581 	return 0;
1582 }
1583 
1584 #ifdef CONFIG_PM_SLEEP
1585 static int stm32_sai_sub_suspend(struct device *dev)
1586 {
1587 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1588 	int ret;
1589 
1590 	ret = clk_enable(sai->pdata->pclk);
1591 	if (ret < 0)
1592 		return ret;
1593 
1594 	regcache_cache_only(sai->regmap, true);
1595 	regcache_mark_dirty(sai->regmap);
1596 
1597 	clk_disable(sai->pdata->pclk);
1598 
1599 	return 0;
1600 }
1601 
1602 static int stm32_sai_sub_resume(struct device *dev)
1603 {
1604 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1605 	int ret;
1606 
1607 	ret = clk_enable(sai->pdata->pclk);
1608 	if (ret < 0)
1609 		return ret;
1610 
1611 	regcache_cache_only(sai->regmap, false);
1612 	ret = regcache_sync(sai->regmap);
1613 
1614 	clk_disable(sai->pdata->pclk);
1615 
1616 	return ret;
1617 }
1618 #endif /* CONFIG_PM_SLEEP */
1619 
1620 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1621 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1622 };
1623 
1624 static struct platform_driver stm32_sai_sub_driver = {
1625 	.driver = {
1626 		.name = "st,stm32-sai-sub",
1627 		.of_match_table = stm32_sai_sub_ids,
1628 		.pm = &stm32_sai_sub_pm_ops,
1629 	},
1630 	.probe = stm32_sai_sub_probe,
1631 	.remove = stm32_sai_sub_remove,
1632 };
1633 
1634 module_platform_driver(stm32_sai_sub_driver);
1635 
1636 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1637 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1638 MODULE_ALIAS("platform:st,stm32-sai-sub");
1639 MODULE_LICENSE("GPL v2");
1640