xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 0ea8a56de21be24cb79abb03dee79aabcd60a316)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/regmap.h>
16 
17 #include <sound/asoundef.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 
22 #include "stm32_sai.h"
23 
24 #define SAI_FREE_PROTOCOL	0x0
25 #define SAI_SPDIF_PROTOCOL	0x1
26 
27 #define SAI_SLOT_SIZE_AUTO	0x0
28 #define SAI_SLOT_SIZE_16	0x1
29 #define SAI_SLOT_SIZE_32	0x2
30 
31 #define SAI_DATASIZE_8		0x2
32 #define SAI_DATASIZE_10		0x3
33 #define SAI_DATASIZE_16		0x4
34 #define SAI_DATASIZE_20		0x5
35 #define SAI_DATASIZE_24		0x6
36 #define SAI_DATASIZE_32		0x7
37 
38 #define STM_SAI_DAI_NAME_SIZE	15
39 
40 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
41 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
42 
43 #define STM_SAI_A_ID		0x0
44 #define STM_SAI_B_ID		0x1
45 
46 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
47 #define STM_SAI_IS_SUB_B(x)	((x)->id == STM_SAI_B_ID)
48 #define STM_SAI_BLOCK_NAME(x)	(((x)->id == STM_SAI_A_ID) ? "A" : "B")
49 
50 #define SAI_SYNC_NONE		0x0
51 #define SAI_SYNC_INTERNAL	0x1
52 #define SAI_SYNC_EXTERNAL	0x2
53 
54 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
55 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
58 
59 #define SAI_IEC60958_BLOCK_FRAMES	192
60 #define SAI_IEC60958_STATUS_BYTES	24
61 
62 #define SAI_MCLK_NAME_LEN		32
63 #define SAI_RATE_11K			11025
64 
65 /**
66  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
67  * @pdev: device data pointer
68  * @regmap: SAI register map pointer
69  * @regmap_config: SAI sub block register map configuration pointer
70  * @dma_params: dma configuration data for rx or tx channel
71  * @cpu_dai_drv: DAI driver data pointer
72  * @cpu_dai: DAI runtime data pointer
73  * @substream: PCM substream data pointer
74  * @pdata: SAI block parent data pointer
75  * @np_sync_provider: synchronization provider node
76  * @sai_ck: kernel clock feeding the SAI clock generator
77  * @sai_mclk: master clock from SAI mclk provider
78  * @phys_addr: SAI registers physical base address
79  * @mclk_rate: SAI block master clock frequency (Hz). set at init
80  * @id: SAI sub block id corresponding to sub-block A or B
81  * @dir: SAI block direction (playback or capture). set at init
82  * @master: SAI block mode flag. (true=master, false=slave) set at init
83  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
84  * @fmt: SAI block format. relevant only for custom protocols. set at init
85  * @sync: SAI block synchronization mode. (none, internal or external)
86  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
87  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
88  * @fs_length: frame synchronization length. depends on protocol settings
89  * @slots: rx or tx slot number
90  * @slot_width: rx or tx slot width in bits
91  * @slot_mask: rx or tx active slots mask. set at init or at runtime
92  * @data_size: PCM data width. corresponds to PCM substream width.
93  * @spdif_frm_cnt: S/PDIF playback frame counter
94  * @iec958: iec958 data
95  * @ctrl_lock: control lock
96  * @irq_lock: prevent race condition with IRQ
97  */
98 struct stm32_sai_sub_data {
99 	struct platform_device *pdev;
100 	struct regmap *regmap;
101 	const struct regmap_config *regmap_config;
102 	struct snd_dmaengine_dai_dma_data dma_params;
103 	struct snd_soc_dai_driver cpu_dai_drv;
104 	struct snd_soc_dai *cpu_dai;
105 	struct snd_pcm_substream *substream;
106 	struct stm32_sai_data *pdata;
107 	struct device_node *np_sync_provider;
108 	struct clk *sai_ck;
109 	struct clk *sai_mclk;
110 	dma_addr_t phys_addr;
111 	unsigned int mclk_rate;
112 	unsigned int id;
113 	int dir;
114 	bool master;
115 	bool spdif;
116 	int fmt;
117 	int sync;
118 	int synco;
119 	int synci;
120 	int fs_length;
121 	int slots;
122 	int slot_width;
123 	int slot_mask;
124 	int data_size;
125 	unsigned int spdif_frm_cnt;
126 	struct snd_aes_iec958 iec958;
127 	struct mutex ctrl_lock; /* protect resources accessed by controls */
128 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
129 };
130 
131 enum stm32_sai_fifo_th {
132 	STM_SAI_FIFO_TH_EMPTY,
133 	STM_SAI_FIFO_TH_QUARTER,
134 	STM_SAI_FIFO_TH_HALF,
135 	STM_SAI_FIFO_TH_3_QUARTER,
136 	STM_SAI_FIFO_TH_FULL,
137 };
138 
139 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
140 {
141 	switch (reg) {
142 	case STM_SAI_CR1_REGX:
143 	case STM_SAI_CR2_REGX:
144 	case STM_SAI_FRCR_REGX:
145 	case STM_SAI_SLOTR_REGX:
146 	case STM_SAI_IMR_REGX:
147 	case STM_SAI_SR_REGX:
148 	case STM_SAI_CLRFR_REGX:
149 	case STM_SAI_DR_REGX:
150 	case STM_SAI_PDMCR_REGX:
151 	case STM_SAI_PDMLY_REGX:
152 		return true;
153 	default:
154 		return false;
155 	}
156 }
157 
158 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
159 {
160 	switch (reg) {
161 	case STM_SAI_DR_REGX:
162 	case STM_SAI_SR_REGX:
163 		return true;
164 	default:
165 		return false;
166 	}
167 }
168 
169 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
170 {
171 	switch (reg) {
172 	case STM_SAI_CR1_REGX:
173 	case STM_SAI_CR2_REGX:
174 	case STM_SAI_FRCR_REGX:
175 	case STM_SAI_SLOTR_REGX:
176 	case STM_SAI_IMR_REGX:
177 	case STM_SAI_CLRFR_REGX:
178 	case STM_SAI_DR_REGX:
179 	case STM_SAI_PDMCR_REGX:
180 	case STM_SAI_PDMLY_REGX:
181 		return true;
182 	default:
183 		return false;
184 	}
185 }
186 
187 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
188 				unsigned int reg, unsigned int mask,
189 				unsigned int val)
190 {
191 	int ret;
192 
193 	ret = clk_enable(sai->pdata->pclk);
194 	if (ret < 0)
195 		return ret;
196 
197 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
198 
199 	clk_disable(sai->pdata->pclk);
200 
201 	return ret;
202 }
203 
204 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
205 				unsigned int reg, unsigned int mask,
206 				unsigned int val)
207 {
208 	int ret;
209 
210 	ret = clk_enable(sai->pdata->pclk);
211 	if (ret < 0)
212 		return ret;
213 
214 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
215 
216 	clk_disable(sai->pdata->pclk);
217 
218 	return ret;
219 }
220 
221 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
222 				unsigned int reg, unsigned int *val)
223 {
224 	int ret;
225 
226 	ret = clk_enable(sai->pdata->pclk);
227 	if (ret < 0)
228 		return ret;
229 
230 	ret = regmap_read(sai->regmap, reg, val);
231 
232 	clk_disable(sai->pdata->pclk);
233 
234 	return ret;
235 }
236 
237 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
238 	.reg_bits = 32,
239 	.reg_stride = 4,
240 	.val_bits = 32,
241 	.max_register = STM_SAI_DR_REGX,
242 	.readable_reg = stm32_sai_sub_readable_reg,
243 	.volatile_reg = stm32_sai_sub_volatile_reg,
244 	.writeable_reg = stm32_sai_sub_writeable_reg,
245 	.fast_io = true,
246 	.cache_type = REGCACHE_FLAT,
247 };
248 
249 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
250 	.reg_bits = 32,
251 	.reg_stride = 4,
252 	.val_bits = 32,
253 	.max_register = STM_SAI_PDMLY_REGX,
254 	.readable_reg = stm32_sai_sub_readable_reg,
255 	.volatile_reg = stm32_sai_sub_volatile_reg,
256 	.writeable_reg = stm32_sai_sub_writeable_reg,
257 	.fast_io = true,
258 	.cache_type = REGCACHE_FLAT,
259 };
260 
261 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
262 			       struct snd_ctl_elem_info *uinfo)
263 {
264 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
265 	uinfo->count = 1;
266 
267 	return 0;
268 }
269 
270 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
271 			      struct snd_ctl_elem_value *uctl)
272 {
273 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
274 
275 	mutex_lock(&sai->ctrl_lock);
276 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
277 	mutex_unlock(&sai->ctrl_lock);
278 
279 	return 0;
280 }
281 
282 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
283 			      struct snd_ctl_elem_value *uctl)
284 {
285 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
286 
287 	mutex_lock(&sai->ctrl_lock);
288 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
289 	mutex_unlock(&sai->ctrl_lock);
290 
291 	return 0;
292 }
293 
294 static const struct snd_kcontrol_new iec958_ctls = {
295 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
296 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
297 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
298 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
299 	.info = snd_pcm_iec958_info,
300 	.get = snd_pcm_iec958_get,
301 	.put = snd_pcm_iec958_put,
302 };
303 
304 struct stm32_sai_mclk_data {
305 	struct clk_hw hw;
306 	unsigned long freq;
307 	struct stm32_sai_sub_data *sai_data;
308 };
309 
310 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
311 #define STM32_SAI_MAX_CLKS 1
312 
313 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
314 				 unsigned long input_rate,
315 				 unsigned long output_rate)
316 {
317 	int version = sai->pdata->conf.version;
318 	int div;
319 
320 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
321 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
322 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
323 		return -EINVAL;
324 	}
325 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
326 
327 	if (input_rate % div)
328 		dev_dbg(&sai->pdev->dev,
329 			"Rate not accurate. requested (%ld), actual (%ld)\n",
330 			output_rate, input_rate / div);
331 
332 	return div;
333 }
334 
335 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
336 				 unsigned int div)
337 {
338 	int version = sai->pdata->conf.version;
339 	int ret, cr1, mask;
340 
341 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
342 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
343 		return -EINVAL;
344 	}
345 
346 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
347 	cr1 = SAI_XCR1_MCKDIV_SET(div);
348 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
349 	if (ret < 0)
350 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
351 
352 	return ret;
353 }
354 
355 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
356 				      unsigned int rate)
357 {
358 	struct platform_device *pdev = sai->pdev;
359 	struct clk *parent_clk = sai->pdata->clk_x8k;
360 	int ret;
361 
362 	if (!(rate % SAI_RATE_11K))
363 		parent_clk = sai->pdata->clk_x11k;
364 
365 	ret = clk_set_parent(sai->sai_ck, parent_clk);
366 	if (ret)
367 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
368 			ret, ret == -EBUSY ?
369 			"Active stream rates conflict\n" : "\n");
370 
371 	return ret;
372 }
373 
374 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
375 				      unsigned long *prate)
376 {
377 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
378 	struct stm32_sai_sub_data *sai = mclk->sai_data;
379 	int div;
380 
381 	div = stm32_sai_get_clk_div(sai, *prate, rate);
382 	if (div < 0)
383 		return div;
384 
385 	mclk->freq = *prate / div;
386 
387 	return mclk->freq;
388 }
389 
390 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
391 						unsigned long parent_rate)
392 {
393 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
394 
395 	return mclk->freq;
396 }
397 
398 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
399 				   unsigned long parent_rate)
400 {
401 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
402 	struct stm32_sai_sub_data *sai = mclk->sai_data;
403 	int div, ret;
404 
405 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
406 	if (div < 0)
407 		return div;
408 
409 	ret = stm32_sai_set_clk_div(sai, div);
410 	if (ret)
411 		return ret;
412 
413 	mclk->freq = rate;
414 
415 	return 0;
416 }
417 
418 static int stm32_sai_mclk_enable(struct clk_hw *hw)
419 {
420 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
421 	struct stm32_sai_sub_data *sai = mclk->sai_data;
422 
423 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
424 
425 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
426 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
427 }
428 
429 static void stm32_sai_mclk_disable(struct clk_hw *hw)
430 {
431 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
432 	struct stm32_sai_sub_data *sai = mclk->sai_data;
433 
434 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
435 
436 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
437 }
438 
439 static const struct clk_ops mclk_ops = {
440 	.enable = stm32_sai_mclk_enable,
441 	.disable = stm32_sai_mclk_disable,
442 	.recalc_rate = stm32_sai_mclk_recalc_rate,
443 	.round_rate = stm32_sai_mclk_round_rate,
444 	.set_rate = stm32_sai_mclk_set_rate,
445 };
446 
447 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
448 {
449 	struct clk_hw *hw;
450 	struct stm32_sai_mclk_data *mclk;
451 	struct device *dev = &sai->pdev->dev;
452 	const char *pname = __clk_get_name(sai->sai_ck);
453 	char *mclk_name, *p, *s = (char *)pname;
454 	int ret, i = 0;
455 
456 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
457 	if (!mclk)
458 		return -ENOMEM;
459 
460 	mclk_name = devm_kcalloc(dev, sizeof(char),
461 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
462 	if (!mclk_name)
463 		return -ENOMEM;
464 
465 	/*
466 	 * Forge mclk clock name from parent clock name and suffix.
467 	 * String after "_" char is stripped in parent name.
468 	 */
469 	p = mclk_name;
470 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
471 		*p++ = *s++;
472 		i++;
473 	}
474 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
475 
476 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
477 	mclk->sai_data = sai;
478 	hw = &mclk->hw;
479 
480 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
481 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
482 	if (ret) {
483 		dev_err(dev, "mclk register returned %d\n", ret);
484 		return ret;
485 	}
486 	sai->sai_mclk = hw->clk;
487 
488 	/* register mclk provider */
489 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
490 }
491 
492 static irqreturn_t stm32_sai_isr(int irq, void *devid)
493 {
494 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
495 	struct platform_device *pdev = sai->pdev;
496 	unsigned int sr, imr, flags;
497 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
498 
499 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
500 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
501 
502 	flags = sr & imr;
503 	if (!flags)
504 		return IRQ_NONE;
505 
506 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
507 			     SAI_XCLRFR_MASK);
508 
509 	if (!sai->substream) {
510 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
511 		return IRQ_NONE;
512 	}
513 
514 	if (flags & SAI_XIMR_OVRUDRIE) {
515 		dev_err(&pdev->dev, "IRQ %s\n",
516 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
517 		status = SNDRV_PCM_STATE_XRUN;
518 	}
519 
520 	if (flags & SAI_XIMR_MUTEDETIE)
521 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
522 
523 	if (flags & SAI_XIMR_WCKCFGIE) {
524 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
525 		status = SNDRV_PCM_STATE_DISCONNECTED;
526 	}
527 
528 	if (flags & SAI_XIMR_CNRDYIE)
529 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
530 
531 	if (flags & SAI_XIMR_AFSDETIE) {
532 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
533 		status = SNDRV_PCM_STATE_XRUN;
534 	}
535 
536 	if (flags & SAI_XIMR_LFSDETIE) {
537 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
538 		status = SNDRV_PCM_STATE_XRUN;
539 	}
540 
541 	spin_lock(&sai->irq_lock);
542 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
543 		snd_pcm_stop_xrun(sai->substream);
544 	spin_unlock(&sai->irq_lock);
545 
546 	return IRQ_HANDLED;
547 }
548 
549 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
550 				int clk_id, unsigned int freq, int dir)
551 {
552 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
553 	int ret;
554 
555 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
556 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
557 					   SAI_XCR1_NODIV,
558 					 freq ? 0 : SAI_XCR1_NODIV);
559 		if (ret < 0)
560 			return ret;
561 
562 		/* Assume shutdown if requested frequency is 0Hz */
563 		if (!freq) {
564 			/* Release mclk rate only if rate was actually set */
565 			if (sai->mclk_rate) {
566 				clk_rate_exclusive_put(sai->sai_mclk);
567 				sai->mclk_rate = 0;
568 			}
569 			return 0;
570 		}
571 
572 		/* If master clock is used, set parent clock now */
573 		ret = stm32_sai_set_parent_clock(sai, freq);
574 		if (ret)
575 			return ret;
576 
577 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
578 		if (ret) {
579 			dev_err(cpu_dai->dev,
580 				ret == -EBUSY ?
581 				"Active streams have incompatible rates" :
582 				"Could not set mclk rate\n");
583 			return ret;
584 		}
585 
586 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
587 		sai->mclk_rate = freq;
588 	}
589 
590 	return 0;
591 }
592 
593 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
594 				      u32 rx_mask, int slots, int slot_width)
595 {
596 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
597 	int slotr, slotr_mask, slot_size;
598 
599 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
600 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
601 		return 0;
602 	}
603 
604 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
605 		tx_mask, rx_mask, slots, slot_width);
606 
607 	switch (slot_width) {
608 	case 16:
609 		slot_size = SAI_SLOT_SIZE_16;
610 		break;
611 	case 32:
612 		slot_size = SAI_SLOT_SIZE_32;
613 		break;
614 	default:
615 		slot_size = SAI_SLOT_SIZE_AUTO;
616 		break;
617 	}
618 
619 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
620 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
621 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
622 
623 	/* tx/rx mask set in machine init, if slot number defined in DT */
624 	if (STM_SAI_IS_PLAYBACK(sai)) {
625 		sai->slot_mask = tx_mask;
626 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
627 	}
628 
629 	if (STM_SAI_IS_CAPTURE(sai)) {
630 		sai->slot_mask = rx_mask;
631 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
632 	}
633 
634 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
635 
636 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
637 
638 	sai->slot_width = slot_width;
639 	sai->slots = slots;
640 
641 	return 0;
642 }
643 
644 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
645 {
646 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
647 	int cr1, frcr = 0;
648 	int cr1_mask, frcr_mask = 0;
649 	int ret;
650 
651 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
652 
653 	/* Do not generate master by default */
654 	cr1 = SAI_XCR1_NODIV;
655 	cr1_mask = SAI_XCR1_NODIV;
656 
657 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
658 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
659 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
660 		goto conf_update;
661 	}
662 
663 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
664 
665 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
666 	/* SCK active high for all protocols */
667 	case SND_SOC_DAIFMT_I2S:
668 		cr1 |= SAI_XCR1_CKSTR;
669 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
670 		break;
671 	/* Left justified */
672 	case SND_SOC_DAIFMT_MSB:
673 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
674 		break;
675 	/* Right justified */
676 	case SND_SOC_DAIFMT_LSB:
677 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
678 		break;
679 	case SND_SOC_DAIFMT_DSP_A:
680 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
681 		break;
682 	case SND_SOC_DAIFMT_DSP_B:
683 		frcr |= SAI_XFRCR_FSPOL;
684 		break;
685 	default:
686 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
687 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
688 		return -EINVAL;
689 	}
690 
691 	cr1_mask |= SAI_XCR1_CKSTR;
692 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
693 		     SAI_XFRCR_FSDEF;
694 
695 	/* DAI clock strobing. Invert setting previously set */
696 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
697 	case SND_SOC_DAIFMT_NB_NF:
698 		break;
699 	case SND_SOC_DAIFMT_IB_NF:
700 		cr1 ^= SAI_XCR1_CKSTR;
701 		break;
702 	case SND_SOC_DAIFMT_NB_IF:
703 		frcr ^= SAI_XFRCR_FSPOL;
704 		break;
705 	case SND_SOC_DAIFMT_IB_IF:
706 		/* Invert fs & sck */
707 		cr1 ^= SAI_XCR1_CKSTR;
708 		frcr ^= SAI_XFRCR_FSPOL;
709 		break;
710 	default:
711 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
712 			fmt & SND_SOC_DAIFMT_INV_MASK);
713 		return -EINVAL;
714 	}
715 	cr1_mask |= SAI_XCR1_CKSTR;
716 	frcr_mask |= SAI_XFRCR_FSPOL;
717 
718 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
719 
720 	/* DAI clock master masks */
721 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
722 	case SND_SOC_DAIFMT_CBM_CFM:
723 		/* codec is master */
724 		cr1 |= SAI_XCR1_SLAVE;
725 		sai->master = false;
726 		break;
727 	case SND_SOC_DAIFMT_CBS_CFS:
728 		sai->master = true;
729 		break;
730 	default:
731 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
732 			fmt & SND_SOC_DAIFMT_MASTER_MASK);
733 		return -EINVAL;
734 	}
735 
736 	/* Set slave mode if sub-block is synchronized with another SAI */
737 	if (sai->sync) {
738 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
739 		cr1 |= SAI_XCR1_SLAVE;
740 		sai->master = false;
741 	}
742 
743 	cr1_mask |= SAI_XCR1_SLAVE;
744 
745 conf_update:
746 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
747 	if (ret < 0) {
748 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
749 		return ret;
750 	}
751 
752 	sai->fmt = fmt;
753 
754 	return 0;
755 }
756 
757 static int stm32_sai_startup(struct snd_pcm_substream *substream,
758 			     struct snd_soc_dai *cpu_dai)
759 {
760 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
761 	int imr, cr2, ret;
762 	unsigned long flags;
763 
764 	spin_lock_irqsave(&sai->irq_lock, flags);
765 	sai->substream = substream;
766 	spin_unlock_irqrestore(&sai->irq_lock, flags);
767 
768 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
769 		snd_pcm_hw_constraint_mask64(substream->runtime,
770 					     SNDRV_PCM_HW_PARAM_FORMAT,
771 					     SNDRV_PCM_FMTBIT_S32_LE);
772 		snd_pcm_hw_constraint_single(substream->runtime,
773 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
774 	}
775 
776 	ret = clk_prepare_enable(sai->sai_ck);
777 	if (ret < 0) {
778 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
779 		return ret;
780 	}
781 
782 	/* Enable ITs */
783 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
784 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
785 
786 	imr = SAI_XIMR_OVRUDRIE;
787 	if (STM_SAI_IS_CAPTURE(sai)) {
788 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
789 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
790 			imr |= SAI_XIMR_MUTEDETIE;
791 	}
792 
793 	if (sai->master)
794 		imr |= SAI_XIMR_WCKCFGIE;
795 	else
796 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
797 
798 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
799 			     SAI_XIMR_MASK, imr);
800 
801 	return 0;
802 }
803 
804 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
805 				struct snd_pcm_substream *substream,
806 				struct snd_pcm_hw_params *params)
807 {
808 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
809 	int cr1, cr1_mask, ret;
810 
811 	/*
812 	 * DMA bursts increment is set to 4 words.
813 	 * SAI fifo threshold is set to half fifo, to keep enough space
814 	 * for DMA incoming bursts.
815 	 */
816 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
817 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
818 			     SAI_XCR2_FFLUSH |
819 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
820 
821 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
822 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
823 		sai->spdif_frm_cnt = 0;
824 		return 0;
825 	}
826 
827 	/* Mode, data format and channel config */
828 	cr1_mask = SAI_XCR1_DS_MASK;
829 	switch (params_format(params)) {
830 	case SNDRV_PCM_FORMAT_S8:
831 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
832 		break;
833 	case SNDRV_PCM_FORMAT_S16_LE:
834 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
835 		break;
836 	case SNDRV_PCM_FORMAT_S32_LE:
837 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
838 		break;
839 	default:
840 		dev_err(cpu_dai->dev, "Data format not supported\n");
841 		return -EINVAL;
842 	}
843 
844 	cr1_mask |= SAI_XCR1_MONO;
845 	if ((sai->slots == 2) && (params_channels(params) == 1))
846 		cr1 |= SAI_XCR1_MONO;
847 
848 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
849 	if (ret < 0) {
850 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
851 		return ret;
852 	}
853 
854 	return 0;
855 }
856 
857 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
858 {
859 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
860 	int slotr, slot_sz;
861 
862 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
863 
864 	/*
865 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
866 	 * By default slot width = data size, if not forced from DT
867 	 */
868 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
869 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
870 		sai->slot_width = sai->data_size;
871 
872 	if (sai->slot_width < sai->data_size) {
873 		dev_err(cpu_dai->dev,
874 			"Data size %d larger than slot width\n",
875 			sai->data_size);
876 		return -EINVAL;
877 	}
878 
879 	/* Slot number is set to 2, if not specified in DT */
880 	if (!sai->slots)
881 		sai->slots = 2;
882 
883 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
884 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
885 			     SAI_XSLOTR_NBSLOT_MASK,
886 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
887 
888 	/* Set default slots mask if not already set from DT */
889 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
890 		sai->slot_mask = (1 << sai->slots) - 1;
891 		stm32_sai_sub_reg_up(sai,
892 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
893 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
894 	}
895 
896 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
897 		sai->slots, sai->slot_width);
898 
899 	return 0;
900 }
901 
902 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
903 {
904 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
905 	int fs_active, offset, format;
906 	int frcr, frcr_mask;
907 
908 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
909 	sai->fs_length = sai->slot_width * sai->slots;
910 
911 	fs_active = sai->fs_length / 2;
912 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
913 	    (format == SND_SOC_DAIFMT_DSP_B))
914 		fs_active = 1;
915 
916 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
917 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
918 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
919 
920 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
921 		sai->fs_length, fs_active);
922 
923 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
924 
925 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
926 		offset = sai->slot_width - sai->data_size;
927 
928 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
929 				     SAI_XSLOTR_FBOFF_MASK,
930 				     SAI_XSLOTR_FBOFF_SET(offset));
931 	}
932 }
933 
934 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
935 {
936 	unsigned char *cs = sai->iec958.status;
937 
938 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
939 	cs[1] = IEC958_AES1_CON_GENERAL;
940 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
941 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
942 }
943 
944 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
945 					struct snd_pcm_runtime *runtime)
946 {
947 	if (!runtime)
948 		return;
949 
950 	/* Force the sample rate according to runtime rate */
951 	mutex_lock(&sai->ctrl_lock);
952 	switch (runtime->rate) {
953 	case 22050:
954 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
955 		break;
956 	case 44100:
957 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
958 		break;
959 	case 88200:
960 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
961 		break;
962 	case 176400:
963 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
964 		break;
965 	case 24000:
966 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
967 		break;
968 	case 48000:
969 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
970 		break;
971 	case 96000:
972 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
973 		break;
974 	case 192000:
975 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
976 		break;
977 	case 32000:
978 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
979 		break;
980 	default:
981 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
982 		break;
983 	}
984 	mutex_unlock(&sai->ctrl_lock);
985 }
986 
987 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
988 				     struct snd_pcm_hw_params *params)
989 {
990 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
991 	int div = 0, cr1 = 0;
992 	int sai_clk_rate, mclk_ratio, den;
993 	unsigned int rate = params_rate(params);
994 	int ret;
995 
996 	if (!sai->sai_mclk) {
997 		ret = stm32_sai_set_parent_clock(sai, rate);
998 		if (ret)
999 			return ret;
1000 	}
1001 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1002 
1003 	if (STM_SAI_IS_F4(sai->pdata)) {
1004 		/* mclk on (NODIV=0)
1005 		 *   mclk_rate = 256 * fs
1006 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1007 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1008 		 * mclk off (NODIV=1)
1009 		 *   MCKDIV ignored. sck = sai_ck
1010 		 */
1011 		if (!sai->mclk_rate)
1012 			return 0;
1013 
1014 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1015 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1016 						    2 * sai->mclk_rate);
1017 			if (div < 0)
1018 				return div;
1019 		}
1020 	} else {
1021 		/*
1022 		 * TDM mode :
1023 		 *   mclk on
1024 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1025 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1026 		 *   mclk off
1027 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1028 		 * Note: NOMCK/NODIV correspond to same bit.
1029 		 */
1030 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1031 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1032 						    rate * 128);
1033 			if (div < 0)
1034 				return div;
1035 		} else {
1036 			if (sai->mclk_rate) {
1037 				mclk_ratio = sai->mclk_rate / rate;
1038 				if (mclk_ratio == 512) {
1039 					cr1 = SAI_XCR1_OSR;
1040 				} else if (mclk_ratio != 256) {
1041 					dev_err(cpu_dai->dev,
1042 						"Wrong mclk ratio %d\n",
1043 						mclk_ratio);
1044 					return -EINVAL;
1045 				}
1046 
1047 				stm32_sai_sub_reg_up(sai,
1048 						     STM_SAI_CR1_REGX,
1049 						     SAI_XCR1_OSR, cr1);
1050 
1051 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1052 							    sai->mclk_rate);
1053 				if (div < 0)
1054 					return div;
1055 			} else {
1056 				/* mclk-fs not set, master clock not active */
1057 				den = sai->fs_length * params_rate(params);
1058 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1059 							    den);
1060 				if (div < 0)
1061 					return div;
1062 			}
1063 		}
1064 	}
1065 
1066 	return stm32_sai_set_clk_div(sai, div);
1067 }
1068 
1069 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1070 			       struct snd_pcm_hw_params *params,
1071 			       struct snd_soc_dai *cpu_dai)
1072 {
1073 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1074 	int ret;
1075 
1076 	sai->data_size = params_width(params);
1077 
1078 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1079 		/* Rate not already set in runtime structure */
1080 		substream->runtime->rate = params_rate(params);
1081 		stm32_sai_set_iec958_status(sai, substream->runtime);
1082 	} else {
1083 		ret = stm32_sai_set_slots(cpu_dai);
1084 		if (ret < 0)
1085 			return ret;
1086 		stm32_sai_set_frame(cpu_dai);
1087 	}
1088 
1089 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1090 	if (ret)
1091 		return ret;
1092 
1093 	if (sai->master)
1094 		ret = stm32_sai_configure_clock(cpu_dai, params);
1095 
1096 	return ret;
1097 }
1098 
1099 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1100 			     struct snd_soc_dai *cpu_dai)
1101 {
1102 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1103 	int ret;
1104 
1105 	switch (cmd) {
1106 	case SNDRV_PCM_TRIGGER_START:
1107 	case SNDRV_PCM_TRIGGER_RESUME:
1108 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1109 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1110 
1111 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1112 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1113 
1114 		/* Enable SAI */
1115 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1116 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1117 		if (ret < 0)
1118 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1119 		break;
1120 	case SNDRV_PCM_TRIGGER_SUSPEND:
1121 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1122 	case SNDRV_PCM_TRIGGER_STOP:
1123 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1124 
1125 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1126 				     SAI_XIMR_MASK, 0);
1127 
1128 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1129 				     SAI_XCR1_SAIEN,
1130 				     (unsigned int)~SAI_XCR1_SAIEN);
1131 
1132 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1133 					   SAI_XCR1_DMAEN,
1134 					   (unsigned int)~SAI_XCR1_DMAEN);
1135 		if (ret < 0)
1136 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1137 
1138 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1139 			sai->spdif_frm_cnt = 0;
1140 		break;
1141 	default:
1142 		return -EINVAL;
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1149 			       struct snd_soc_dai *cpu_dai)
1150 {
1151 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1152 	unsigned long flags;
1153 
1154 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1155 
1156 	clk_disable_unprepare(sai->sai_ck);
1157 
1158 	spin_lock_irqsave(&sai->irq_lock, flags);
1159 	sai->substream = NULL;
1160 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1161 }
1162 
1163 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1164 			     struct snd_soc_dai *cpu_dai)
1165 {
1166 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1167 	struct snd_kcontrol_new knew = iec958_ctls;
1168 
1169 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1170 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1171 		knew.device = rtd->pcm->device;
1172 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1179 {
1180 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1181 	int cr1 = 0, cr1_mask, ret;
1182 
1183 	sai->cpu_dai = cpu_dai;
1184 
1185 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1186 	/*
1187 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1188 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1189 	 * constraints).
1190 	 */
1191 	sai->dma_params.maxburst = 4;
1192 	if (sai->pdata->conf.fifo_size < 8)
1193 		sai->dma_params.maxburst = 1;
1194 	/* Buswidth will be set by framework at runtime */
1195 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1196 
1197 	if (STM_SAI_IS_PLAYBACK(sai))
1198 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1199 	else
1200 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1201 
1202 	/* Next settings are not relevant for spdif mode */
1203 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1204 		return 0;
1205 
1206 	cr1_mask = SAI_XCR1_RX_TX;
1207 	if (STM_SAI_IS_CAPTURE(sai))
1208 		cr1 |= SAI_XCR1_RX_TX;
1209 
1210 	/* Configure synchronization */
1211 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1212 		/* Configure synchro client and provider */
1213 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1214 					   sai->synco, sai->synci);
1215 		if (ret)
1216 			return ret;
1217 	}
1218 
1219 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1220 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1221 
1222 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1223 }
1224 
1225 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1226 	.set_sysclk	= stm32_sai_set_sysclk,
1227 	.set_fmt	= stm32_sai_set_dai_fmt,
1228 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1229 	.startup	= stm32_sai_startup,
1230 	.hw_params	= stm32_sai_hw_params,
1231 	.trigger	= stm32_sai_trigger,
1232 	.shutdown	= stm32_sai_shutdown,
1233 };
1234 
1235 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1236 				       int channel, unsigned long hwoff,
1237 				       void *buf, unsigned long bytes)
1238 {
1239 	struct snd_pcm_runtime *runtime = substream->runtime;
1240 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1241 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
1242 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1243 	int *ptr = (int *)(runtime->dma_area + hwoff +
1244 			   channel * (runtime->dma_bytes / runtime->channels));
1245 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1246 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1247 	unsigned int byte;
1248 	unsigned int mask;
1249 
1250 	do {
1251 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1252 
1253 		/* Set channel status bit */
1254 		byte = frm_cnt >> 3;
1255 		mask = 1 << (frm_cnt - (byte << 3));
1256 		if (sai->iec958.status[byte] & mask)
1257 			*ptr |= 0x04000000;
1258 		ptr++;
1259 
1260 		if (!(cnt % 2))
1261 			frm_cnt++;
1262 
1263 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1264 			frm_cnt = 0;
1265 	} while (--cnt);
1266 	sai->spdif_frm_cnt = frm_cnt;
1267 
1268 	return 0;
1269 }
1270 
1271 /* No support of mmap in S/PDIF mode */
1272 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1273 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1274 	.buffer_bytes_max = 8 * PAGE_SIZE,
1275 	.period_bytes_min = 1024,
1276 	.period_bytes_max = PAGE_SIZE,
1277 	.periods_min = 2,
1278 	.periods_max = 8,
1279 };
1280 
1281 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1282 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1283 	.buffer_bytes_max = 8 * PAGE_SIZE,
1284 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1285 	.period_bytes_max = PAGE_SIZE,
1286 	.periods_min = 2,
1287 	.periods_max = 8,
1288 };
1289 
1290 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1291 		.probe = stm32_sai_dai_probe,
1292 		.pcm_new = stm32_sai_pcm_new,
1293 		.id = 1, /* avoid call to fmt_single_name() */
1294 		.playback = {
1295 			.channels_min = 1,
1296 			.channels_max = 2,
1297 			.rate_min = 8000,
1298 			.rate_max = 192000,
1299 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1300 			/* DMA does not support 24 bits transfers */
1301 			.formats =
1302 				SNDRV_PCM_FMTBIT_S8 |
1303 				SNDRV_PCM_FMTBIT_S16_LE |
1304 				SNDRV_PCM_FMTBIT_S32_LE,
1305 		},
1306 		.ops = &stm32_sai_pcm_dai_ops,
1307 };
1308 
1309 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1310 		.probe = stm32_sai_dai_probe,
1311 		.id = 1, /* avoid call to fmt_single_name() */
1312 		.capture = {
1313 			.channels_min = 1,
1314 			.channels_max = 2,
1315 			.rate_min = 8000,
1316 			.rate_max = 192000,
1317 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1318 			/* DMA does not support 24 bits transfers */
1319 			.formats =
1320 				SNDRV_PCM_FMTBIT_S8 |
1321 				SNDRV_PCM_FMTBIT_S16_LE |
1322 				SNDRV_PCM_FMTBIT_S32_LE,
1323 		},
1324 		.ops = &stm32_sai_pcm_dai_ops,
1325 };
1326 
1327 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1328 	.pcm_hardware = &stm32_sai_pcm_hw,
1329 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1330 };
1331 
1332 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1333 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1334 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1335 	.process = stm32_sai_pcm_process_spdif,
1336 };
1337 
1338 static const struct snd_soc_component_driver stm32_component = {
1339 	.name = "stm32-sai",
1340 };
1341 
1342 static const struct of_device_id stm32_sai_sub_ids[] = {
1343 	{ .compatible = "st,stm32-sai-sub-a",
1344 	  .data = (void *)STM_SAI_A_ID},
1345 	{ .compatible = "st,stm32-sai-sub-b",
1346 	  .data = (void *)STM_SAI_B_ID},
1347 	{}
1348 };
1349 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1350 
1351 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1352 				  struct stm32_sai_sub_data *sai)
1353 {
1354 	struct device_node *np = pdev->dev.of_node;
1355 	struct resource *res;
1356 	void __iomem *base;
1357 	struct of_phandle_args args;
1358 	int ret;
1359 
1360 	if (!np)
1361 		return -ENODEV;
1362 
1363 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1364 	base = devm_ioremap_resource(&pdev->dev, res);
1365 	if (IS_ERR(base))
1366 		return PTR_ERR(base);
1367 
1368 	sai->phys_addr = res->start;
1369 
1370 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1371 	/* Note: PDM registers not available for sub-block B */
1372 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1373 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1374 
1375 	/*
1376 	 * Do not manage peripheral clock through regmap framework as this
1377 	 * can lead to circular locking issue with sai master clock provider.
1378 	 * Manage peripheral clock directly in driver instead.
1379 	 */
1380 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1381 					    sai->regmap_config);
1382 	if (IS_ERR(sai->regmap)) {
1383 		if (PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1384 			dev_err(&pdev->dev, "Regmap init error %ld\n",
1385 				PTR_ERR(sai->regmap));
1386 		return PTR_ERR(sai->regmap);
1387 	}
1388 
1389 	/* Get direction property */
1390 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1391 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1392 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1393 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1394 	} else {
1395 		dev_err(&pdev->dev, "Unsupported direction\n");
1396 		return -EINVAL;
1397 	}
1398 
1399 	/* Get spdif iec60958 property */
1400 	sai->spdif = false;
1401 	if (of_get_property(np, "st,iec60958", NULL)) {
1402 		if (!STM_SAI_HAS_SPDIF(sai) ||
1403 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1404 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1405 			return -EINVAL;
1406 		}
1407 		stm32_sai_init_iec958_status(sai);
1408 		sai->spdif = true;
1409 		sai->master = true;
1410 	}
1411 
1412 	/* Get synchronization property */
1413 	args.np = NULL;
1414 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1415 	if (ret < 0  && ret != -ENOENT) {
1416 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1417 		return ret;
1418 	}
1419 
1420 	sai->sync = SAI_SYNC_NONE;
1421 	if (args.np) {
1422 		if (args.np == np) {
1423 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1424 			of_node_put(args.np);
1425 			return -EINVAL;
1426 		}
1427 
1428 		sai->np_sync_provider  = of_get_parent(args.np);
1429 		if (!sai->np_sync_provider) {
1430 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1431 				np);
1432 			of_node_put(args.np);
1433 			return -ENODEV;
1434 		}
1435 
1436 		sai->sync = SAI_SYNC_INTERNAL;
1437 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1438 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1439 				dev_err(&pdev->dev,
1440 					"External synchro not supported\n");
1441 				of_node_put(args.np);
1442 				return -EINVAL;
1443 			}
1444 			sai->sync = SAI_SYNC_EXTERNAL;
1445 
1446 			sai->synci = args.args[0];
1447 			if (sai->synci < 1 ||
1448 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1449 				dev_err(&pdev->dev, "Wrong SAI index\n");
1450 				of_node_put(args.np);
1451 				return -EINVAL;
1452 			}
1453 
1454 			if (of_property_match_string(args.np, "compatible",
1455 						     "st,stm32-sai-sub-a") >= 0)
1456 				sai->synco = STM_SAI_SYNC_OUT_A;
1457 
1458 			if (of_property_match_string(args.np, "compatible",
1459 						     "st,stm32-sai-sub-b") >= 0)
1460 				sai->synco = STM_SAI_SYNC_OUT_B;
1461 
1462 			if (!sai->synco) {
1463 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1464 				of_node_put(args.np);
1465 				return -EINVAL;
1466 			}
1467 		}
1468 
1469 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1470 			pdev->name, args.np->full_name);
1471 	}
1472 
1473 	of_node_put(args.np);
1474 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1475 	if (IS_ERR(sai->sai_ck)) {
1476 		if (PTR_ERR(sai->sai_ck) != -EPROBE_DEFER)
1477 			dev_err(&pdev->dev, "Missing kernel clock sai_ck: %ld\n",
1478 				PTR_ERR(sai->sai_ck));
1479 		return PTR_ERR(sai->sai_ck);
1480 	}
1481 
1482 	ret = clk_prepare(sai->pdata->pclk);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	if (STM_SAI_IS_F4(sai->pdata))
1487 		return 0;
1488 
1489 	/* Register mclk provider if requested */
1490 	if (of_find_property(np, "#clock-cells", NULL)) {
1491 		ret = stm32_sai_add_mclk_provider(sai);
1492 		if (ret < 0)
1493 			return ret;
1494 	} else {
1495 		sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1496 		if (IS_ERR(sai->sai_mclk)) {
1497 			if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1498 				return PTR_ERR(sai->sai_mclk);
1499 			sai->sai_mclk = NULL;
1500 		}
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int stm32_sai_sub_probe(struct platform_device *pdev)
1507 {
1508 	struct stm32_sai_sub_data *sai;
1509 	const struct of_device_id *of_id;
1510 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1511 	int ret;
1512 
1513 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1514 	if (!sai)
1515 		return -ENOMEM;
1516 
1517 	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1518 	if (!of_id)
1519 		return -EINVAL;
1520 	sai->id = (uintptr_t)of_id->data;
1521 
1522 	sai->pdev = pdev;
1523 	mutex_init(&sai->ctrl_lock);
1524 	spin_lock_init(&sai->irq_lock);
1525 	platform_set_drvdata(pdev, sai);
1526 
1527 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1528 	if (!sai->pdata) {
1529 		dev_err(&pdev->dev, "Parent device data not available\n");
1530 		return -EINVAL;
1531 	}
1532 
1533 	ret = stm32_sai_sub_parse_of(pdev, sai);
1534 	if (ret)
1535 		return ret;
1536 
1537 	if (STM_SAI_IS_PLAYBACK(sai))
1538 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1539 	else
1540 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1541 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1542 
1543 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1544 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1545 	if (ret) {
1546 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1547 		return ret;
1548 	}
1549 
1550 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1551 		conf = &stm32_sai_pcm_config_spdif;
1552 
1553 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1554 	if (ret) {
1555 		if (ret != -EPROBE_DEFER)
1556 			dev_err(&pdev->dev, "Could not register pcm dma\n");
1557 		return ret;
1558 	}
1559 
1560 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1561 					 &sai->cpu_dai_drv, 1);
1562 	if (ret)
1563 		snd_dmaengine_pcm_unregister(&pdev->dev);
1564 
1565 	return ret;
1566 }
1567 
1568 static int stm32_sai_sub_remove(struct platform_device *pdev)
1569 {
1570 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1571 
1572 	clk_unprepare(sai->pdata->pclk);
1573 	snd_dmaengine_pcm_unregister(&pdev->dev);
1574 	snd_soc_unregister_component(&pdev->dev);
1575 
1576 	return 0;
1577 }
1578 
1579 #ifdef CONFIG_PM_SLEEP
1580 static int stm32_sai_sub_suspend(struct device *dev)
1581 {
1582 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1583 	int ret;
1584 
1585 	ret = clk_enable(sai->pdata->pclk);
1586 	if (ret < 0)
1587 		return ret;
1588 
1589 	regcache_cache_only(sai->regmap, true);
1590 	regcache_mark_dirty(sai->regmap);
1591 
1592 	clk_disable(sai->pdata->pclk);
1593 
1594 	return 0;
1595 }
1596 
1597 static int stm32_sai_sub_resume(struct device *dev)
1598 {
1599 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1600 	int ret;
1601 
1602 	ret = clk_enable(sai->pdata->pclk);
1603 	if (ret < 0)
1604 		return ret;
1605 
1606 	regcache_cache_only(sai->regmap, false);
1607 	ret = regcache_sync(sai->regmap);
1608 
1609 	clk_disable(sai->pdata->pclk);
1610 
1611 	return ret;
1612 }
1613 #endif /* CONFIG_PM_SLEEP */
1614 
1615 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1616 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1617 };
1618 
1619 static struct platform_driver stm32_sai_sub_driver = {
1620 	.driver = {
1621 		.name = "st,stm32-sai-sub",
1622 		.of_match_table = stm32_sai_sub_ids,
1623 		.pm = &stm32_sai_sub_pm_ops,
1624 	},
1625 	.probe = stm32_sai_sub_probe,
1626 	.remove = stm32_sai_sub_remove,
1627 };
1628 
1629 module_platform_driver(stm32_sai_sub_driver);
1630 
1631 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1632 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1633 MODULE_ALIAS("platform:st,stm32-sai-sub");
1634 MODULE_LICENSE("GPL v2");
1635