xref: /linux/sound/soc/sof/intel/cnl.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 //
3 // This file is provided under a dual BSD/GPLv2 license.  When using or
4 // redistributing this file, you may do so under either license.
5 //
6 // Copyright(c) 2018 Intel Corporation
7 //
8 // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
9 //	    Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
10 //	    Rander Wang <rander.wang@intel.com>
11 //          Keyon Jie <yang.jie@linux.intel.com>
12 //
13 
14 /*
15  * Hardware interface for audio DSP on Cannonlake.
16  */
17 
18 #include <sound/sof/ext_manifest4.h>
19 #include <sound/sof/ipc4/header.h>
20 #include <trace/events/sof_intel.h>
21 #include "../ipc4-priv.h"
22 #include "../ops.h"
23 #include "hda.h"
24 #include "hda-ipc.h"
25 #include "../sof-audio.h"
26 
27 static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = {
28 	{"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS},
29 	{"pp", HDA_DSP_PP_BAR,  0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS},
30 	{"dsp", HDA_DSP_BAR,  0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS},
31 };
32 
33 static void cnl_ipc_host_done(struct snd_sof_dev *sdev);
34 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev);
35 
36 irqreturn_t cnl_ipc4_irq_thread(int irq, void *context)
37 {
38 	struct sof_ipc4_msg notification_data = {{ 0 }};
39 	struct snd_sof_dev *sdev = context;
40 	bool ack_received = false;
41 	bool ipc_irq = false;
42 	u32 hipcida, hipctdr;
43 
44 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
45 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
46 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
47 		/* DSP received the message */
48 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
49 					CNL_DSP_REG_HIPCCTL,
50 					CNL_DSP_REG_HIPCCTL_DONE, 0);
51 		cnl_ipc_dsp_done(sdev);
52 
53 		ipc_irq = true;
54 		ack_received = true;
55 	}
56 
57 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
58 		/* Message from DSP (reply or notification) */
59 		u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
60 					       CNL_DSP_REG_HIPCTDD);
61 		u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
62 		u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
63 
64 		if (primary & SOF_IPC4_MSG_DIR_MASK) {
65 			/* Reply received */
66 			if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
67 				struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data;
68 
69 				data->primary = primary;
70 				data->extension = extension;
71 
72 				spin_lock_irq(&sdev->ipc_lock);
73 
74 				snd_sof_ipc_get_reply(sdev);
75 				cnl_ipc_host_done(sdev);
76 				snd_sof_ipc_reply(sdev, data->primary);
77 
78 				spin_unlock_irq(&sdev->ipc_lock);
79 			} else {
80 				dev_dbg_ratelimited(sdev->dev,
81 						    "IPC reply before FW_READY: %#x|%#x\n",
82 						    primary, extension);
83 			}
84 		} else {
85 			/* Notification received */
86 			notification_data.primary = primary;
87 			notification_data.extension = extension;
88 
89 			sdev->ipc->msg.rx_data = &notification_data;
90 			snd_sof_ipc_msgs_rx(sdev);
91 			sdev->ipc->msg.rx_data = NULL;
92 
93 			/* Let DSP know that we have finished processing the message */
94 			cnl_ipc_host_done(sdev);
95 		}
96 
97 		ipc_irq = true;
98 	}
99 
100 	if (!ipc_irq)
101 		/* This interrupt is not shared so no need to return IRQ_NONE. */
102 		dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n");
103 
104 	if (ack_received) {
105 		struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
106 
107 		if (hdev->delayed_ipc_tx_msg)
108 			cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg);
109 	}
110 
111 	return IRQ_HANDLED;
112 }
113 EXPORT_SYMBOL_NS(cnl_ipc4_irq_thread, SND_SOC_SOF_INTEL_CNL);
114 
115 irqreturn_t cnl_ipc_irq_thread(int irq, void *context)
116 {
117 	struct snd_sof_dev *sdev = context;
118 	u32 hipci;
119 	u32 hipcida;
120 	u32 hipctdr;
121 	u32 hipctdd;
122 	u32 msg;
123 	u32 msg_ext;
124 	bool ipc_irq = false;
125 
126 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
127 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
128 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
129 	hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
130 
131 	/* reply message from DSP */
132 	if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
133 		msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK;
134 		msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK;
135 
136 		trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext);
137 
138 		/* mask Done interrupt */
139 		snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
140 					CNL_DSP_REG_HIPCCTL,
141 					CNL_DSP_REG_HIPCCTL_DONE, 0);
142 
143 		if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
144 			spin_lock_irq(&sdev->ipc_lock);
145 
146 			/* handle immediate reply from DSP core */
147 			hda_dsp_ipc_get_reply(sdev);
148 			snd_sof_ipc_reply(sdev, msg);
149 
150 			cnl_ipc_dsp_done(sdev);
151 
152 			spin_unlock_irq(&sdev->ipc_lock);
153 		} else {
154 			dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n",
155 					    msg);
156 		}
157 
158 		ipc_irq = true;
159 	}
160 
161 	/* new message from DSP */
162 	if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
163 		msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
164 		msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
165 
166 		trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext);
167 
168 		/* handle messages from DSP */
169 		if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) {
170 			struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
171 			bool non_recoverable = true;
172 
173 			/*
174 			 * This is a PANIC message!
175 			 *
176 			 * If it is arriving during firmware boot and it is not
177 			 * the last boot attempt then change the non_recoverable
178 			 * to false as the DSP might be able to boot in the next
179 			 * iteration(s)
180 			 */
181 			if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS &&
182 			    hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS)
183 				non_recoverable = false;
184 
185 			snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext),
186 					  non_recoverable);
187 		} else {
188 			snd_sof_ipc_msgs_rx(sdev);
189 		}
190 
191 		cnl_ipc_host_done(sdev);
192 
193 		ipc_irq = true;
194 	}
195 
196 	if (!ipc_irq) {
197 		/*
198 		 * This interrupt is not shared so no need to return IRQ_NONE.
199 		 */
200 		dev_dbg_ratelimited(sdev->dev,
201 				    "nothing to do in IPC IRQ thread\n");
202 	}
203 
204 	return IRQ_HANDLED;
205 }
206 EXPORT_SYMBOL_NS(cnl_ipc_irq_thread, SND_SOC_SOF_INTEL_CNL);
207 
208 static void cnl_ipc_host_done(struct snd_sof_dev *sdev)
209 {
210 	/*
211 	 * clear busy interrupt to tell dsp controller this
212 	 * interrupt has been accepted, not trigger it again
213 	 */
214 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
215 				       CNL_DSP_REG_HIPCTDR,
216 				       CNL_DSP_REG_HIPCTDR_BUSY,
217 				       CNL_DSP_REG_HIPCTDR_BUSY);
218 	/*
219 	 * set done bit to ack dsp the msg has been
220 	 * processed and send reply msg to dsp
221 	 */
222 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
223 				       CNL_DSP_REG_HIPCTDA,
224 				       CNL_DSP_REG_HIPCTDA_DONE,
225 				       CNL_DSP_REG_HIPCTDA_DONE);
226 }
227 
228 static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev)
229 {
230 	/*
231 	 * set DONE bit - tell DSP we have received the reply msg
232 	 * from DSP, and processed it, don't send more reply to host
233 	 */
234 	snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
235 				       CNL_DSP_REG_HIPCIDA,
236 				       CNL_DSP_REG_HIPCIDA_DONE,
237 				       CNL_DSP_REG_HIPCIDA_DONE);
238 
239 	/* unmask Done interrupt */
240 	snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
241 				CNL_DSP_REG_HIPCCTL,
242 				CNL_DSP_REG_HIPCCTL_DONE,
243 				CNL_DSP_REG_HIPCCTL_DONE);
244 }
245 
246 static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg,
247 				     u32 *dr, u32 *dd)
248 {
249 	struct sof_ipc_pm_gate *pm_gate = msg->msg_data;
250 
251 	if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) {
252 		/* send the compact message via the primary register */
253 		*dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE;
254 
255 		/* send payload via the extended data register */
256 		*dd = pm_gate->flags;
257 
258 		return true;
259 	}
260 
261 	return false;
262 }
263 
264 int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
265 {
266 	struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
267 	struct sof_ipc4_msg *msg_data = msg->msg_data;
268 
269 	if (hda_ipc4_tx_is_busy(sdev)) {
270 		hdev->delayed_ipc_tx_msg = msg;
271 		return 0;
272 	}
273 
274 	hdev->delayed_ipc_tx_msg = NULL;
275 
276 	/* send the message via mailbox */
277 	if (msg_data->data_size)
278 		sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr,
279 				  msg_data->data_size);
280 
281 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension);
282 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
283 			  msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY);
284 
285 	hda_dsp_ipc4_schedule_d0i3_work(hdev, msg);
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL_NS(cnl_ipc4_send_msg, SND_SOC_SOF_INTEL_CNL);
290 
291 int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
292 {
293 	struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
294 	struct sof_ipc_cmd_hdr *hdr;
295 	u32 dr = 0;
296 	u32 dd = 0;
297 
298 	/*
299 	 * Currently the only compact IPC supported is the PM_GATE
300 	 * IPC which is used for transitioning the DSP between the
301 	 * D0I0 and D0I3 states. And these are sent only during the
302 	 * set_power_state() op. Therefore, there will never be a case
303 	 * that a compact IPC results in the DSP exiting D0I3 without
304 	 * the host and FW being in sync.
305 	 */
306 	if (cnl_compact_ipc_compress(msg, &dr, &dd)) {
307 		/* send the message via IPC registers */
308 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD,
309 				  dd);
310 		snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
311 				  CNL_DSP_REG_HIPCIDR_BUSY | dr);
312 		return 0;
313 	}
314 
315 	/* send the message via mailbox */
316 	sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data,
317 			  msg->msg_size);
318 	snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
319 			  CNL_DSP_REG_HIPCIDR_BUSY);
320 
321 	hdr = msg->msg_data;
322 
323 	/*
324 	 * Use mod_delayed_work() to schedule the delayed work
325 	 * to avoid scheduling multiple workqueue items when
326 	 * IPCs are sent at a high-rate. mod_delayed_work()
327 	 * modifies the timer if the work is pending.
328 	 * Also, a new delayed work should not be queued after the
329 	 * CTX_SAVE IPC, which is sent before the DSP enters D3.
330 	 */
331 	if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE))
332 		mod_delayed_work(system_wq, &hdev->d0i3_work,
333 				 msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS));
334 
335 	return 0;
336 }
337 EXPORT_SYMBOL_NS(cnl_ipc_send_msg, SND_SOC_SOF_INTEL_CNL);
338 
339 void cnl_ipc_dump(struct snd_sof_dev *sdev)
340 {
341 	u32 hipcctl;
342 	u32 hipcida;
343 	u32 hipctdr;
344 
345 	hda_ipc_irq_dump(sdev);
346 
347 	/* read IPC status */
348 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
349 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
350 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
351 
352 	/* dump the IPC regs */
353 	/* TODO: parse the raw msg */
354 	dev_err(sdev->dev,
355 		"error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n",
356 		hipcida, hipctdr, hipcctl);
357 }
358 EXPORT_SYMBOL_NS(cnl_ipc_dump, SND_SOC_SOF_INTEL_CNL);
359 
360 void cnl_ipc4_dump(struct snd_sof_dev *sdev)
361 {
362 	u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl;
363 
364 	hda_ipc_irq_dump(sdev);
365 
366 	hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
367 	hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD);
368 	hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
369 	hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
370 	hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
371 	hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA);
372 	hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
373 
374 	/* dump the IPC regs */
375 	/* TODO: parse the raw msg */
376 	dev_err(sdev->dev,
377 		"Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n",
378 		hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl);
379 }
380 EXPORT_SYMBOL_NS(cnl_ipc4_dump, SND_SOC_SOF_INTEL_CNL);
381 
382 /* cannonlake ops */
383 struct snd_sof_dsp_ops sof_cnl_ops;
384 EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_CNL);
385 
386 int sof_cnl_ops_init(struct snd_sof_dev *sdev)
387 {
388 	/* common defaults */
389 	memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops));
390 
391 	/* probe/remove/shutdown */
392 	sof_cnl_ops.shutdown	= hda_dsp_shutdown;
393 
394 	/* ipc */
395 	if (sdev->pdata->ipc_type == SOF_IPC_TYPE_3) {
396 		/* doorbell */
397 		sof_cnl_ops.irq_thread	= cnl_ipc_irq_thread;
398 
399 		/* ipc */
400 		sof_cnl_ops.send_msg	= cnl_ipc_send_msg;
401 
402 		/* debug */
403 		sof_cnl_ops.ipc_dump	= cnl_ipc_dump;
404 
405 		sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3;
406 	}
407 
408 	if (sdev->pdata->ipc_type == SOF_IPC_TYPE_4) {
409 		struct sof_ipc4_fw_data *ipc4_data;
410 
411 		sdev->private = kzalloc(sizeof(*ipc4_data), GFP_KERNEL);
412 		if (!sdev->private)
413 			return -ENOMEM;
414 
415 		ipc4_data = sdev->private;
416 		ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET;
417 
418 		ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8;
419 
420 		/* External library loading support */
421 		ipc4_data->load_library = hda_dsp_ipc4_load_library;
422 
423 		/* doorbell */
424 		sof_cnl_ops.irq_thread	= cnl_ipc4_irq_thread;
425 
426 		/* ipc */
427 		sof_cnl_ops.send_msg	= cnl_ipc4_send_msg;
428 
429 		/* debug */
430 		sof_cnl_ops.ipc_dump	= cnl_ipc4_dump;
431 
432 		sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4;
433 	}
434 
435 	/* set DAI driver ops */
436 	hda_set_dai_drv_ops(sdev, &sof_cnl_ops);
437 
438 	/* debug */
439 	sof_cnl_ops.debug_map	= cnl_dsp_debugfs;
440 	sof_cnl_ops.debug_map_count	= ARRAY_SIZE(cnl_dsp_debugfs);
441 
442 	/* pre/post fw run */
443 	sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run;
444 
445 	/* firmware run */
446 	sof_cnl_ops.run = hda_dsp_cl_boot_firmware;
447 
448 	/* dsp core get/put */
449 	sof_cnl_ops.core_get = hda_dsp_core_get;
450 
451 	return 0;
452 };
453 EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_CNL);
454 
455 const struct sof_intel_dsp_desc cnl_chip_info = {
456 	/* Cannonlake */
457 	.cores_num = 4,
458 	.init_core_mask = 1,
459 	.host_managed_cores_mask = GENMASK(3, 0),
460 	.ipc_req = CNL_DSP_REG_HIPCIDR,
461 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
462 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
463 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
464 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
465 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
466 	.rom_init_timeout	= 300,
467 	.ssp_count = CNL_SSP_COUNT,
468 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
469 	.sdw_shim_base = SDW_SHIM_BASE,
470 	.sdw_alh_base = SDW_ALH_BASE,
471 	.d0i3_offset = SOF_HDA_VS_D0I3C,
472 	.read_sdw_lcount =  hda_sdw_check_lcount_common,
473 	.enable_sdw_irq	= hda_common_enable_sdw_irq,
474 	.check_sdw_irq	= hda_common_check_sdw_irq,
475 	.check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
476 	.sdw_process_wakeen = hda_sdw_process_wakeen_common,
477 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
478 	.cl_init = cl_dsp_init,
479 	.power_down_dsp = hda_power_down_dsp,
480 	.disable_interrupts = hda_dsp_disable_interrupts,
481 	.hw_ip_version = SOF_INTEL_CAVS_1_8,
482 };
483 
484 /*
485  * JasperLake is technically derived from IceLake, and should be in
486  * described in icl.c. However since JasperLake was designed with
487  * two cores, it cannot support the IceLake-specific power-up sequences
488  * which rely on core3. To simplify, JasperLake uses the CannonLake ops and
489  * is described in cnl.c
490  */
491 const struct sof_intel_dsp_desc jsl_chip_info = {
492 	/* Jasperlake */
493 	.cores_num = 2,
494 	.init_core_mask = 1,
495 	.host_managed_cores_mask = GENMASK(1, 0),
496 	.ipc_req = CNL_DSP_REG_HIPCIDR,
497 	.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
498 	.ipc_ack = CNL_DSP_REG_HIPCIDA,
499 	.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
500 	.ipc_ctl = CNL_DSP_REG_HIPCCTL,
501 	.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
502 	.rom_init_timeout	= 300,
503 	.ssp_count = ICL_SSP_COUNT,
504 	.ssp_base_offset = CNL_SSP_BASE_OFFSET,
505 	.sdw_shim_base = SDW_SHIM_BASE,
506 	.sdw_alh_base = SDW_ALH_BASE,
507 	.d0i3_offset = SOF_HDA_VS_D0I3C,
508 	.read_sdw_lcount =  hda_sdw_check_lcount_common,
509 	.enable_sdw_irq	= hda_common_enable_sdw_irq,
510 	.check_sdw_irq	= hda_common_check_sdw_irq,
511 	.check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
512 	.sdw_process_wakeen = hda_sdw_process_wakeen_common,
513 	.check_ipc_irq	= hda_dsp_check_ipc_irq,
514 	.cl_init = cl_dsp_init,
515 	.power_down_dsp = hda_power_down_dsp,
516 	.disable_interrupts = hda_dsp_disable_interrupts,
517 	.hw_ip_version = SOF_INTEL_CAVS_2_0,
518 };
519 EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_CNL);
520