1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // soc-ops.c -- Generic ASoC operations 4 // 5 // Copyright 2005 Wolfson Microelectronics PLC. 6 // Copyright 2005 Openedhand Ltd. 7 // Copyright (C) 2010 Slimlogic Ltd. 8 // Copyright (C) 2010 Texas Instruments Inc. 9 // 10 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 11 // with code, comments and ideas from :- 12 // Richard Purdie <richard@openedhand.com> 13 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/init.h> 17 #include <linux/delay.h> 18 #include <linux/pm.h> 19 #include <linux/bitops.h> 20 #include <linux/ctype.h> 21 #include <linux/slab.h> 22 #include <sound/core.h> 23 #include <sound/jack.h> 24 #include <sound/pcm.h> 25 #include <sound/pcm_params.h> 26 #include <sound/soc.h> 27 #include <sound/soc-dpcm.h> 28 #include <sound/initval.h> 29 30 /** 31 * snd_soc_info_enum_double - enumerated double mixer info callback 32 * @kcontrol: mixer control 33 * @uinfo: control element information 34 * 35 * Callback to provide information about a double enumerated 36 * mixer control. 37 * 38 * Returns 0 for success. 39 */ 40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 41 struct snd_ctl_elem_info *uinfo) 42 { 43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 44 45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2, 46 e->items, e->texts); 47 } 48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 49 50 /** 51 * snd_soc_get_enum_double - enumerated double mixer get callback 52 * @kcontrol: mixer control 53 * @ucontrol: control element information 54 * 55 * Callback to get the value of a double enumerated mixer. 56 * 57 * Returns 0 for success. 58 */ 59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 60 struct snd_ctl_elem_value *ucontrol) 61 { 62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 64 unsigned int val, item; 65 unsigned int reg_val; 66 67 reg_val = snd_soc_component_read(component, e->reg); 68 val = (reg_val >> e->shift_l) & e->mask; 69 item = snd_soc_enum_val_to_item(e, val); 70 ucontrol->value.enumerated.item[0] = item; 71 if (e->shift_l != e->shift_r) { 72 val = (reg_val >> e->shift_r) & e->mask; 73 item = snd_soc_enum_val_to_item(e, val); 74 ucontrol->value.enumerated.item[1] = item; 75 } 76 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 80 81 /** 82 * snd_soc_put_enum_double - enumerated double mixer put callback 83 * @kcontrol: mixer control 84 * @ucontrol: control element information 85 * 86 * Callback to set the value of a double enumerated mixer. 87 * 88 * Returns 0 for success. 89 */ 90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 91 struct snd_ctl_elem_value *ucontrol) 92 { 93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 95 unsigned int *item = ucontrol->value.enumerated.item; 96 unsigned int val; 97 unsigned int mask; 98 99 if (item[0] >= e->items) 100 return -EINVAL; 101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; 102 mask = e->mask << e->shift_l; 103 if (e->shift_l != e->shift_r) { 104 if (item[1] >= e->items) 105 return -EINVAL; 106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; 107 mask |= e->mask << e->shift_r; 108 } 109 110 return snd_soc_component_update_bits(component, e->reg, mask, val); 111 } 112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 113 114 /** 115 * snd_soc_read_signed - Read a codec register and interpret as signed value 116 * @component: component 117 * @reg: Register to read 118 * @mask: Mask to use after shifting the register value 119 * @shift: Right shift of register value 120 * @sign_bit: Bit that describes if a number is negative or not. 121 * @signed_val: Pointer to where the read value should be stored 122 * 123 * This functions reads a codec register. The register value is shifted right 124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates 125 * the given registervalue into a signed integer if sign_bit is non-zero. 126 * 127 * Returns 0 on sucess, otherwise an error value 128 */ 129 static int snd_soc_read_signed(struct snd_soc_component *component, 130 unsigned int reg, unsigned int mask, unsigned int shift, 131 unsigned int sign_bit, int *signed_val) 132 { 133 int ret; 134 unsigned int val; 135 136 val = snd_soc_component_read(component, reg); 137 val = (val >> shift) & mask; 138 139 if (!sign_bit) { 140 *signed_val = val; 141 return 0; 142 } 143 144 /* non-negative number */ 145 if (!(val & BIT(sign_bit))) { 146 *signed_val = val; 147 return 0; 148 } 149 150 ret = val; 151 152 /* 153 * The register most probably does not contain a full-sized int. 154 * Instead we have an arbitrary number of bits in a signed 155 * representation which has to be translated into a full-sized int. 156 * This is done by filling up all bits above the sign-bit. 157 */ 158 ret |= ~((int)(BIT(sign_bit) - 1)); 159 160 *signed_val = ret; 161 162 return 0; 163 } 164 165 /** 166 * snd_soc_info_volsw - single mixer info callback 167 * @kcontrol: mixer control 168 * @uinfo: control element information 169 * 170 * Callback to provide information about a single mixer control, or a double 171 * mixer control that spans 2 registers. 172 * 173 * Returns 0 for success. 174 */ 175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 176 struct snd_ctl_elem_info *uinfo) 177 { 178 struct soc_mixer_control *mc = 179 (struct soc_mixer_control *)kcontrol->private_value; 180 int platform_max; 181 182 if (!mc->platform_max) 183 mc->platform_max = mc->max; 184 platform_max = mc->platform_max; 185 186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 188 else 189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 190 191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 192 uinfo->value.integer.min = 0; 193 uinfo->value.integer.max = platform_max - mc->min; 194 return 0; 195 } 196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 197 198 /** 199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls 200 * @kcontrol: mixer control 201 * @uinfo: control element information 202 * 203 * Callback to provide information about a single mixer control, or a double 204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls 205 * have a range that represents both positive and negative values either side 206 * of zero but without a sign bit. 207 * 208 * Returns 0 for success. 209 */ 210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, 211 struct snd_ctl_elem_info *uinfo) 212 { 213 struct soc_mixer_control *mc = 214 (struct soc_mixer_control *)kcontrol->private_value; 215 216 snd_soc_info_volsw(kcontrol, uinfo); 217 /* Max represents the number of levels in an SX control not the 218 * maximum value, so add the minimum value back on 219 */ 220 uinfo->value.integer.max += mc->min; 221 222 return 0; 223 } 224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx); 225 226 /** 227 * snd_soc_get_volsw - single mixer get callback 228 * @kcontrol: mixer control 229 * @ucontrol: control element information 230 * 231 * Callback to get the value of a single mixer control, or a double mixer 232 * control that spans 2 registers. 233 * 234 * Returns 0 for success. 235 */ 236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 237 struct snd_ctl_elem_value *ucontrol) 238 { 239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 240 struct soc_mixer_control *mc = 241 (struct soc_mixer_control *)kcontrol->private_value; 242 unsigned int reg = mc->reg; 243 unsigned int reg2 = mc->rreg; 244 unsigned int shift = mc->shift; 245 unsigned int rshift = mc->rshift; 246 int max = mc->max; 247 int min = mc->min; 248 int sign_bit = mc->sign_bit; 249 unsigned int mask = (1 << fls(max)) - 1; 250 unsigned int invert = mc->invert; 251 int val; 252 int ret; 253 254 if (sign_bit) 255 mask = BIT(sign_bit + 1) - 1; 256 257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val); 258 if (ret) 259 return ret; 260 261 ucontrol->value.integer.value[0] = val - min; 262 if (invert) 263 ucontrol->value.integer.value[0] = 264 max - ucontrol->value.integer.value[0]; 265 266 if (snd_soc_volsw_is_stereo(mc)) { 267 if (reg == reg2) 268 ret = snd_soc_read_signed(component, reg, mask, rshift, 269 sign_bit, &val); 270 else 271 ret = snd_soc_read_signed(component, reg2, mask, shift, 272 sign_bit, &val); 273 if (ret) 274 return ret; 275 276 ucontrol->value.integer.value[1] = val - min; 277 if (invert) 278 ucontrol->value.integer.value[1] = 279 max - ucontrol->value.integer.value[1]; 280 } 281 282 return 0; 283 } 284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 285 286 /** 287 * snd_soc_put_volsw - single mixer put callback 288 * @kcontrol: mixer control 289 * @ucontrol: control element information 290 * 291 * Callback to set the value of a single mixer control, or a double mixer 292 * control that spans 2 registers. 293 * 294 * Returns 0 for success. 295 */ 296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 297 struct snd_ctl_elem_value *ucontrol) 298 { 299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 300 struct soc_mixer_control *mc = 301 (struct soc_mixer_control *)kcontrol->private_value; 302 unsigned int reg = mc->reg; 303 unsigned int reg2 = mc->rreg; 304 unsigned int shift = mc->shift; 305 unsigned int rshift = mc->rshift; 306 int max = mc->max; 307 int min = mc->min; 308 unsigned int sign_bit = mc->sign_bit; 309 unsigned int mask = (1 << fls(max)) - 1; 310 unsigned int invert = mc->invert; 311 int err, ret; 312 bool type_2r = false; 313 unsigned int val2 = 0; 314 unsigned int val, val_mask; 315 316 if (sign_bit) 317 mask = BIT(sign_bit + 1) - 1; 318 319 if (ucontrol->value.integer.value[0] < 0) 320 return -EINVAL; 321 val = ucontrol->value.integer.value[0]; 322 if (mc->platform_max && ((int)val + min) > mc->platform_max) 323 return -EINVAL; 324 if (val > max - min) 325 return -EINVAL; 326 val = (val + min) & mask; 327 if (invert) 328 val = max - val; 329 val_mask = mask << shift; 330 val = val << shift; 331 if (snd_soc_volsw_is_stereo(mc)) { 332 if (ucontrol->value.integer.value[1] < 0) 333 return -EINVAL; 334 val2 = ucontrol->value.integer.value[1]; 335 if (mc->platform_max && ((int)val2 + min) > mc->platform_max) 336 return -EINVAL; 337 if (val2 > max - min) 338 return -EINVAL; 339 val2 = (val2 + min) & mask; 340 if (invert) 341 val2 = max - val2; 342 if (reg == reg2) { 343 val_mask |= mask << rshift; 344 val |= val2 << rshift; 345 } else { 346 val2 = val2 << shift; 347 type_2r = true; 348 } 349 } 350 err = snd_soc_component_update_bits(component, reg, val_mask, val); 351 if (err < 0) 352 return err; 353 ret = err; 354 355 if (type_2r) { 356 err = snd_soc_component_update_bits(component, reg2, val_mask, 357 val2); 358 /* Don't discard any error code or drop change flag */ 359 if (ret == 0 || err < 0) { 360 ret = err; 361 } 362 } 363 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 367 368 /** 369 * snd_soc_get_volsw_sx - single mixer get callback 370 * @kcontrol: mixer control 371 * @ucontrol: control element information 372 * 373 * Callback to get the value of a single mixer control, or a double mixer 374 * control that spans 2 registers. 375 * 376 * Returns 0 for success. 377 */ 378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, 379 struct snd_ctl_elem_value *ucontrol) 380 { 381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 382 struct soc_mixer_control *mc = 383 (struct soc_mixer_control *)kcontrol->private_value; 384 unsigned int reg = mc->reg; 385 unsigned int reg2 = mc->rreg; 386 unsigned int shift = mc->shift; 387 unsigned int rshift = mc->rshift; 388 int max = mc->max; 389 int min = mc->min; 390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1; 391 unsigned int val; 392 393 val = snd_soc_component_read(component, reg); 394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask; 395 396 if (snd_soc_volsw_is_stereo(mc)) { 397 val = snd_soc_component_read(component, reg2); 398 val = ((val >> rshift) - min) & mask; 399 ucontrol->value.integer.value[1] = val; 400 } 401 402 return 0; 403 } 404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); 405 406 /** 407 * snd_soc_put_volsw_sx - double mixer set callback 408 * @kcontrol: mixer control 409 * @ucontrol: control element information 410 * 411 * Callback to set the value of a double mixer control that spans 2 registers. 412 * 413 * Returns 0 for success. 414 */ 415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, 416 struct snd_ctl_elem_value *ucontrol) 417 { 418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 419 struct soc_mixer_control *mc = 420 (struct soc_mixer_control *)kcontrol->private_value; 421 422 unsigned int reg = mc->reg; 423 unsigned int reg2 = mc->rreg; 424 unsigned int shift = mc->shift; 425 unsigned int rshift = mc->rshift; 426 int max = mc->max; 427 int min = mc->min; 428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1; 429 int err = 0; 430 int ret; 431 unsigned int val, val_mask; 432 433 if (ucontrol->value.integer.value[0] < 0) 434 return -EINVAL; 435 val = ucontrol->value.integer.value[0]; 436 if (mc->platform_max && val > mc->platform_max) 437 return -EINVAL; 438 if (val > max - min) 439 return -EINVAL; 440 val_mask = mask << shift; 441 val = (val + min) & mask; 442 val = val << shift; 443 444 err = snd_soc_component_update_bits(component, reg, val_mask, val); 445 if (err < 0) 446 return err; 447 ret = err; 448 449 if (snd_soc_volsw_is_stereo(mc)) { 450 unsigned int val2; 451 452 val_mask = mask << rshift; 453 val2 = (ucontrol->value.integer.value[1] + min) & mask; 454 val2 = val2 << rshift; 455 456 err = snd_soc_component_update_bits(component, reg2, val_mask, 457 val2); 458 459 /* Don't discard any error code or drop change flag */ 460 if (ret == 0 || err < 0) { 461 ret = err; 462 } 463 } 464 return err; 465 } 466 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); 467 468 /** 469 * snd_soc_info_volsw_range - single mixer info callback with range. 470 * @kcontrol: mixer control 471 * @uinfo: control element information 472 * 473 * Callback to provide information, within a range, about a single 474 * mixer control. 475 * 476 * returns 0 for success. 477 */ 478 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, 479 struct snd_ctl_elem_info *uinfo) 480 { 481 struct soc_mixer_control *mc = 482 (struct soc_mixer_control *)kcontrol->private_value; 483 int platform_max; 484 int min = mc->min; 485 486 if (!mc->platform_max) 487 mc->platform_max = mc->max; 488 platform_max = mc->platform_max; 489 490 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 491 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 492 uinfo->value.integer.min = 0; 493 uinfo->value.integer.max = platform_max - min; 494 495 return 0; 496 } 497 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range); 498 499 /** 500 * snd_soc_put_volsw_range - single mixer put value callback with range. 501 * @kcontrol: mixer control 502 * @ucontrol: control element information 503 * 504 * Callback to set the value, within a range, for a single mixer control. 505 * 506 * Returns 0 for success. 507 */ 508 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, 509 struct snd_ctl_elem_value *ucontrol) 510 { 511 struct soc_mixer_control *mc = 512 (struct soc_mixer_control *)kcontrol->private_value; 513 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 514 unsigned int reg = mc->reg; 515 unsigned int rreg = mc->rreg; 516 unsigned int shift = mc->shift; 517 int min = mc->min; 518 int max = mc->max; 519 unsigned int mask = (1 << fls(max)) - 1; 520 unsigned int invert = mc->invert; 521 unsigned int val, val_mask; 522 int err, ret; 523 524 if (invert) 525 val = (max - ucontrol->value.integer.value[0]) & mask; 526 else 527 val = ((ucontrol->value.integer.value[0] + min) & mask); 528 val_mask = mask << shift; 529 val = val << shift; 530 531 err = snd_soc_component_update_bits(component, reg, val_mask, val); 532 if (err < 0) 533 return err; 534 ret = err; 535 536 if (snd_soc_volsw_is_stereo(mc)) { 537 if (invert) 538 val = (max - ucontrol->value.integer.value[1]) & mask; 539 else 540 val = ((ucontrol->value.integer.value[1] + min) & mask); 541 val_mask = mask << shift; 542 val = val << shift; 543 544 err = snd_soc_component_update_bits(component, rreg, val_mask, 545 val); 546 /* Don't discard any error code or drop change flag */ 547 if (ret == 0 || err < 0) { 548 ret = err; 549 } 550 } 551 552 return ret; 553 } 554 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range); 555 556 /** 557 * snd_soc_get_volsw_range - single mixer get callback with range 558 * @kcontrol: mixer control 559 * @ucontrol: control element information 560 * 561 * Callback to get the value, within a range, of a single mixer control. 562 * 563 * Returns 0 for success. 564 */ 565 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, 566 struct snd_ctl_elem_value *ucontrol) 567 { 568 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 569 struct soc_mixer_control *mc = 570 (struct soc_mixer_control *)kcontrol->private_value; 571 unsigned int reg = mc->reg; 572 unsigned int rreg = mc->rreg; 573 unsigned int shift = mc->shift; 574 int min = mc->min; 575 int max = mc->max; 576 unsigned int mask = (1 << fls(max)) - 1; 577 unsigned int invert = mc->invert; 578 unsigned int val; 579 580 val = snd_soc_component_read(component, reg); 581 ucontrol->value.integer.value[0] = (val >> shift) & mask; 582 if (invert) 583 ucontrol->value.integer.value[0] = 584 max - ucontrol->value.integer.value[0]; 585 else 586 ucontrol->value.integer.value[0] = 587 ucontrol->value.integer.value[0] - min; 588 589 if (snd_soc_volsw_is_stereo(mc)) { 590 val = snd_soc_component_read(component, rreg); 591 ucontrol->value.integer.value[1] = (val >> shift) & mask; 592 if (invert) 593 ucontrol->value.integer.value[1] = 594 max - ucontrol->value.integer.value[1]; 595 else 596 ucontrol->value.integer.value[1] = 597 ucontrol->value.integer.value[1] - min; 598 } 599 600 return 0; 601 } 602 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range); 603 604 /** 605 * snd_soc_limit_volume - Set new limit to an existing volume control. 606 * 607 * @card: where to look for the control 608 * @name: Name of the control 609 * @max: new maximum limit 610 * 611 * Return 0 for success, else error. 612 */ 613 int snd_soc_limit_volume(struct snd_soc_card *card, 614 const char *name, int max) 615 { 616 struct snd_kcontrol *kctl; 617 int ret = -EINVAL; 618 619 /* Sanity check for name and max */ 620 if (unlikely(!name || max <= 0)) 621 return -EINVAL; 622 623 kctl = snd_soc_card_get_kcontrol(card, name); 624 if (kctl) { 625 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value; 626 if (max <= mc->max) { 627 mc->platform_max = max; 628 ret = 0; 629 } 630 } 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 634 635 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, 636 struct snd_ctl_elem_info *uinfo) 637 { 638 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 639 struct soc_bytes *params = (void *)kcontrol->private_value; 640 641 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 642 uinfo->count = params->num_regs * component->val_bytes; 643 644 return 0; 645 } 646 EXPORT_SYMBOL_GPL(snd_soc_bytes_info); 647 648 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, 649 struct snd_ctl_elem_value *ucontrol) 650 { 651 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 652 struct soc_bytes *params = (void *)kcontrol->private_value; 653 int ret; 654 655 if (component->regmap) 656 ret = regmap_raw_read(component->regmap, params->base, 657 ucontrol->value.bytes.data, 658 params->num_regs * component->val_bytes); 659 else 660 ret = -EINVAL; 661 662 /* Hide any masked bytes to ensure consistent data reporting */ 663 if (ret == 0 && params->mask) { 664 switch (component->val_bytes) { 665 case 1: 666 ucontrol->value.bytes.data[0] &= ~params->mask; 667 break; 668 case 2: 669 ((u16 *)(&ucontrol->value.bytes.data))[0] 670 &= cpu_to_be16(~params->mask); 671 break; 672 case 4: 673 ((u32 *)(&ucontrol->value.bytes.data))[0] 674 &= cpu_to_be32(~params->mask); 675 break; 676 default: 677 return -EINVAL; 678 } 679 } 680 681 return ret; 682 } 683 EXPORT_SYMBOL_GPL(snd_soc_bytes_get); 684 685 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, 686 struct snd_ctl_elem_value *ucontrol) 687 { 688 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 689 struct soc_bytes *params = (void *)kcontrol->private_value; 690 int ret, len; 691 unsigned int val, mask; 692 void *data; 693 694 if (!component->regmap || !params->num_regs) 695 return -EINVAL; 696 697 len = params->num_regs * component->val_bytes; 698 699 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); 700 if (!data) 701 return -ENOMEM; 702 703 /* 704 * If we've got a mask then we need to preserve the register 705 * bits. We shouldn't modify the incoming data so take a 706 * copy. 707 */ 708 if (params->mask) { 709 ret = regmap_read(component->regmap, params->base, &val); 710 if (ret != 0) 711 goto out; 712 713 val &= params->mask; 714 715 switch (component->val_bytes) { 716 case 1: 717 ((u8 *)data)[0] &= ~params->mask; 718 ((u8 *)data)[0] |= val; 719 break; 720 case 2: 721 mask = ~params->mask; 722 ret = regmap_parse_val(component->regmap, 723 &mask, &mask); 724 if (ret != 0) 725 goto out; 726 727 ((u16 *)data)[0] &= mask; 728 729 ret = regmap_parse_val(component->regmap, 730 &val, &val); 731 if (ret != 0) 732 goto out; 733 734 ((u16 *)data)[0] |= val; 735 break; 736 case 4: 737 mask = ~params->mask; 738 ret = regmap_parse_val(component->regmap, 739 &mask, &mask); 740 if (ret != 0) 741 goto out; 742 743 ((u32 *)data)[0] &= mask; 744 745 ret = regmap_parse_val(component->regmap, 746 &val, &val); 747 if (ret != 0) 748 goto out; 749 750 ((u32 *)data)[0] |= val; 751 break; 752 default: 753 ret = -EINVAL; 754 goto out; 755 } 756 } 757 758 ret = regmap_raw_write(component->regmap, params->base, 759 data, len); 760 761 out: 762 kfree(data); 763 764 return ret; 765 } 766 EXPORT_SYMBOL_GPL(snd_soc_bytes_put); 767 768 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, 769 struct snd_ctl_elem_info *ucontrol) 770 { 771 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 772 773 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; 774 ucontrol->count = params->max; 775 776 return 0; 777 } 778 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext); 779 780 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, 781 unsigned int size, unsigned int __user *tlv) 782 { 783 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 784 unsigned int count = size < params->max ? size : params->max; 785 int ret = -ENXIO; 786 787 switch (op_flag) { 788 case SNDRV_CTL_TLV_OP_READ: 789 if (params->get) 790 ret = params->get(kcontrol, tlv, count); 791 break; 792 case SNDRV_CTL_TLV_OP_WRITE: 793 if (params->put) 794 ret = params->put(kcontrol, tlv, count); 795 break; 796 } 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback); 800 801 /** 802 * snd_soc_info_xr_sx - signed multi register info callback 803 * @kcontrol: mreg control 804 * @uinfo: control element information 805 * 806 * Callback to provide information of a control that can 807 * span multiple codec registers which together 808 * forms a single signed value in a MSB/LSB manner. 809 * 810 * Returns 0 for success. 811 */ 812 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, 813 struct snd_ctl_elem_info *uinfo) 814 { 815 struct soc_mreg_control *mc = 816 (struct soc_mreg_control *)kcontrol->private_value; 817 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 818 uinfo->count = 1; 819 uinfo->value.integer.min = mc->min; 820 uinfo->value.integer.max = mc->max; 821 822 return 0; 823 } 824 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); 825 826 /** 827 * snd_soc_get_xr_sx - signed multi register get callback 828 * @kcontrol: mreg control 829 * @ucontrol: control element information 830 * 831 * Callback to get the value of a control that can span 832 * multiple codec registers which together forms a single 833 * signed value in a MSB/LSB manner. The control supports 834 * specifying total no of bits used to allow for bitfields 835 * across the multiple codec registers. 836 * 837 * Returns 0 for success. 838 */ 839 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, 840 struct snd_ctl_elem_value *ucontrol) 841 { 842 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 843 struct soc_mreg_control *mc = 844 (struct soc_mreg_control *)kcontrol->private_value; 845 unsigned int regbase = mc->regbase; 846 unsigned int regcount = mc->regcount; 847 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; 848 unsigned int regwmask = (1UL<<regwshift)-1; 849 unsigned int invert = mc->invert; 850 unsigned long mask = (1UL<<mc->nbits)-1; 851 long min = mc->min; 852 long max = mc->max; 853 long val = 0; 854 unsigned int i; 855 856 for (i = 0; i < regcount; i++) { 857 unsigned int regval = snd_soc_component_read(component, regbase+i); 858 val |= (regval & regwmask) << (regwshift*(regcount-i-1)); 859 } 860 val &= mask; 861 if (min < 0 && val > max) 862 val |= ~mask; 863 if (invert) 864 val = max - val; 865 ucontrol->value.integer.value[0] = val; 866 867 return 0; 868 } 869 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); 870 871 /** 872 * snd_soc_put_xr_sx - signed multi register get callback 873 * @kcontrol: mreg control 874 * @ucontrol: control element information 875 * 876 * Callback to set the value of a control that can span 877 * multiple codec registers which together forms a single 878 * signed value in a MSB/LSB manner. The control supports 879 * specifying total no of bits used to allow for bitfields 880 * across the multiple codec registers. 881 * 882 * Returns 0 for success. 883 */ 884 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, 885 struct snd_ctl_elem_value *ucontrol) 886 { 887 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 888 struct soc_mreg_control *mc = 889 (struct soc_mreg_control *)kcontrol->private_value; 890 unsigned int regbase = mc->regbase; 891 unsigned int regcount = mc->regcount; 892 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; 893 unsigned int regwmask = (1UL<<regwshift)-1; 894 unsigned int invert = mc->invert; 895 unsigned long mask = (1UL<<mc->nbits)-1; 896 long max = mc->max; 897 long val = ucontrol->value.integer.value[0]; 898 int ret = 0; 899 unsigned int i; 900 901 if (val < mc->min || val > mc->max) 902 return -EINVAL; 903 if (invert) 904 val = max - val; 905 val &= mask; 906 for (i = 0; i < regcount; i++) { 907 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask; 908 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask; 909 int err = snd_soc_component_update_bits(component, regbase+i, 910 regmask, regval); 911 if (err < 0) 912 return err; 913 if (err > 0) 914 ret = err; 915 } 916 917 return ret; 918 } 919 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); 920 921 /** 922 * snd_soc_get_strobe - strobe get callback 923 * @kcontrol: mixer control 924 * @ucontrol: control element information 925 * 926 * Callback get the value of a strobe mixer control. 927 * 928 * Returns 0 for success. 929 */ 930 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, 931 struct snd_ctl_elem_value *ucontrol) 932 { 933 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 934 struct soc_mixer_control *mc = 935 (struct soc_mixer_control *)kcontrol->private_value; 936 unsigned int reg = mc->reg; 937 unsigned int shift = mc->shift; 938 unsigned int mask = 1 << shift; 939 unsigned int invert = mc->invert != 0; 940 unsigned int val; 941 942 val = snd_soc_component_read(component, reg); 943 val &= mask; 944 945 if (shift != 0 && val != 0) 946 val = val >> shift; 947 ucontrol->value.enumerated.item[0] = val ^ invert; 948 949 return 0; 950 } 951 EXPORT_SYMBOL_GPL(snd_soc_get_strobe); 952 953 /** 954 * snd_soc_put_strobe - strobe put callback 955 * @kcontrol: mixer control 956 * @ucontrol: control element information 957 * 958 * Callback strobe a register bit to high then low (or the inverse) 959 * in one pass of a single mixer enum control. 960 * 961 * Returns 1 for success. 962 */ 963 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, 964 struct snd_ctl_elem_value *ucontrol) 965 { 966 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 967 struct soc_mixer_control *mc = 968 (struct soc_mixer_control *)kcontrol->private_value; 969 unsigned int reg = mc->reg; 970 unsigned int shift = mc->shift; 971 unsigned int mask = 1 << shift; 972 unsigned int invert = mc->invert != 0; 973 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; 974 unsigned int val1 = (strobe ^ invert) ? mask : 0; 975 unsigned int val2 = (strobe ^ invert) ? 0 : mask; 976 int err; 977 978 err = snd_soc_component_update_bits(component, reg, mask, val1); 979 if (err < 0) 980 return err; 981 982 return snd_soc_component_update_bits(component, reg, mask, val2); 983 } 984 EXPORT_SYMBOL_GPL(snd_soc_put_strobe); 985