xref: /linux/sound/soc/soc-ops.c (revision fba2689ee77e63b05e203b3f26079ef915e55660)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err, ret;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	if (ucontrol->value.integer.value[0] < 0)
320 		return -EINVAL;
321 	val = ucontrol->value.integer.value[0];
322 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
323 		return -EINVAL;
324 	if (val > max - min)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		if (ucontrol->value.integer.value[1] < 0)
333 			return -EINVAL;
334 		val2 = ucontrol->value.integer.value[1];
335 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
336 			return -EINVAL;
337 		if (val2 > max - min)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 	ret = err;
354 
355 	if (type_2r) {
356 		err = snd_soc_component_update_bits(component, reg2, val_mask,
357 						    val2);
358 		/* Don't discard any error code or drop change flag */
359 		if (ret == 0 || err < 0) {
360 			ret = err;
361 		}
362 	}
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367 
368 /**
369  * snd_soc_get_volsw_sx - single mixer get callback
370  * @kcontrol: mixer control
371  * @ucontrol: control element information
372  *
373  * Callback to get the value of a single mixer control, or a double mixer
374  * control that spans 2 registers.
375  *
376  * Returns 0 for success.
377  */
378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 		      struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 	struct soc_mixer_control *mc =
383 	    (struct soc_mixer_control *)kcontrol->private_value;
384 	unsigned int reg = mc->reg;
385 	unsigned int reg2 = mc->rreg;
386 	unsigned int shift = mc->shift;
387 	unsigned int rshift = mc->rshift;
388 	int max = mc->max;
389 	int min = mc->min;
390 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 	unsigned int val;
392 
393 	val = snd_soc_component_read(component, reg);
394 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395 
396 	if (snd_soc_volsw_is_stereo(mc)) {
397 		val = snd_soc_component_read(component, reg2);
398 		val = ((val >> rshift) - min) & mask;
399 		ucontrol->value.integer.value[1] = val;
400 	}
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405 
406 /**
407  * snd_soc_put_volsw_sx - double mixer set callback
408  * @kcontrol: mixer control
409  * @ucontrol: control element information
410  *
411  * Callback to set the value of a double mixer control that spans 2 registers.
412  *
413  * Returns 0 for success.
414  */
415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 			 struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 	struct soc_mixer_control *mc =
420 	    (struct soc_mixer_control *)kcontrol->private_value;
421 
422 	unsigned int reg = mc->reg;
423 	unsigned int reg2 = mc->rreg;
424 	unsigned int shift = mc->shift;
425 	unsigned int rshift = mc->rshift;
426 	int max = mc->max;
427 	int min = mc->min;
428 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 	int err = 0;
430 	int ret;
431 	unsigned int val, val_mask;
432 
433 	if (ucontrol->value.integer.value[0] < 0)
434 		return -EINVAL;
435 	val = ucontrol->value.integer.value[0];
436 	if (mc->platform_max && val > mc->platform_max)
437 		return -EINVAL;
438 	if (val > max - min)
439 		return -EINVAL;
440 	val_mask = mask << shift;
441 	val = (val + min) & mask;
442 	val = val << shift;
443 
444 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
445 	if (err < 0)
446 		return err;
447 	ret = err;
448 
449 	if (snd_soc_volsw_is_stereo(mc)) {
450 		unsigned int val2;
451 
452 		val_mask = mask << rshift;
453 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
454 		val2 = val2 << rshift;
455 
456 		err = snd_soc_component_update_bits(component, reg2, val_mask,
457 			val2);
458 
459 		/* Don't discard any error code or drop change flag */
460 		if (ret == 0 || err < 0) {
461 			ret = err;
462 		}
463 	}
464 	return err;
465 }
466 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
467 
468 /**
469  * snd_soc_info_volsw_range - single mixer info callback with range.
470  * @kcontrol: mixer control
471  * @uinfo: control element information
472  *
473  * Callback to provide information, within a range, about a single
474  * mixer control.
475  *
476  * returns 0 for success.
477  */
478 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
479 	struct snd_ctl_elem_info *uinfo)
480 {
481 	struct soc_mixer_control *mc =
482 		(struct soc_mixer_control *)kcontrol->private_value;
483 	int platform_max;
484 	int min = mc->min;
485 
486 	if (!mc->platform_max)
487 		mc->platform_max = mc->max;
488 	platform_max = mc->platform_max;
489 
490 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
491 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
492 	uinfo->value.integer.min = 0;
493 	uinfo->value.integer.max = platform_max - min;
494 
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
498 
499 /**
500  * snd_soc_put_volsw_range - single mixer put value callback with range.
501  * @kcontrol: mixer control
502  * @ucontrol: control element information
503  *
504  * Callback to set the value, within a range, for a single mixer control.
505  *
506  * Returns 0 for success.
507  */
508 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
509 	struct snd_ctl_elem_value *ucontrol)
510 {
511 	struct soc_mixer_control *mc =
512 		(struct soc_mixer_control *)kcontrol->private_value;
513 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
514 	unsigned int reg = mc->reg;
515 	unsigned int rreg = mc->rreg;
516 	unsigned int shift = mc->shift;
517 	int min = mc->min;
518 	int max = mc->max;
519 	unsigned int mask = (1 << fls(max)) - 1;
520 	unsigned int invert = mc->invert;
521 	unsigned int val, val_mask;
522 	int err, ret;
523 
524 	if (invert)
525 		val = (max - ucontrol->value.integer.value[0]) & mask;
526 	else
527 		val = ((ucontrol->value.integer.value[0] + min) & mask);
528 	val_mask = mask << shift;
529 	val = val << shift;
530 
531 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
532 	if (err < 0)
533 		return err;
534 	ret = err;
535 
536 	if (snd_soc_volsw_is_stereo(mc)) {
537 		if (invert)
538 			val = (max - ucontrol->value.integer.value[1]) & mask;
539 		else
540 			val = ((ucontrol->value.integer.value[1] + min) & mask);
541 		val_mask = mask << shift;
542 		val = val << shift;
543 
544 		err = snd_soc_component_update_bits(component, rreg, val_mask,
545 			val);
546 		/* Don't discard any error code or drop change flag */
547 		if (ret == 0 || err < 0) {
548 			ret = err;
549 		}
550 	}
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
555 
556 /**
557  * snd_soc_get_volsw_range - single mixer get callback with range
558  * @kcontrol: mixer control
559  * @ucontrol: control element information
560  *
561  * Callback to get the value, within a range, of a single mixer control.
562  *
563  * Returns 0 for success.
564  */
565 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
566 	struct snd_ctl_elem_value *ucontrol)
567 {
568 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
569 	struct soc_mixer_control *mc =
570 		(struct soc_mixer_control *)kcontrol->private_value;
571 	unsigned int reg = mc->reg;
572 	unsigned int rreg = mc->rreg;
573 	unsigned int shift = mc->shift;
574 	int min = mc->min;
575 	int max = mc->max;
576 	unsigned int mask = (1 << fls(max)) - 1;
577 	unsigned int invert = mc->invert;
578 	unsigned int val;
579 
580 	val = snd_soc_component_read(component, reg);
581 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
582 	if (invert)
583 		ucontrol->value.integer.value[0] =
584 			max - ucontrol->value.integer.value[0];
585 	else
586 		ucontrol->value.integer.value[0] =
587 			ucontrol->value.integer.value[0] - min;
588 
589 	if (snd_soc_volsw_is_stereo(mc)) {
590 		val = snd_soc_component_read(component, rreg);
591 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
592 		if (invert)
593 			ucontrol->value.integer.value[1] =
594 				max - ucontrol->value.integer.value[1];
595 		else
596 			ucontrol->value.integer.value[1] =
597 				ucontrol->value.integer.value[1] - min;
598 	}
599 
600 	return 0;
601 }
602 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
603 
604 /**
605  * snd_soc_limit_volume - Set new limit to an existing volume control.
606  *
607  * @card: where to look for the control
608  * @name: Name of the control
609  * @max: new maximum limit
610  *
611  * Return 0 for success, else error.
612  */
613 int snd_soc_limit_volume(struct snd_soc_card *card,
614 	const char *name, int max)
615 {
616 	struct snd_kcontrol *kctl;
617 	int ret = -EINVAL;
618 
619 	/* Sanity check for name and max */
620 	if (unlikely(!name || max <= 0))
621 		return -EINVAL;
622 
623 	kctl = snd_soc_card_get_kcontrol(card, name);
624 	if (kctl) {
625 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
626 		if (max <= mc->max) {
627 			mc->platform_max = max;
628 			ret = 0;
629 		}
630 	}
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
634 
635 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
636 		       struct snd_ctl_elem_info *uinfo)
637 {
638 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
639 	struct soc_bytes *params = (void *)kcontrol->private_value;
640 
641 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
642 	uinfo->count = params->num_regs * component->val_bytes;
643 
644 	return 0;
645 }
646 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
647 
648 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
649 		      struct snd_ctl_elem_value *ucontrol)
650 {
651 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
652 	struct soc_bytes *params = (void *)kcontrol->private_value;
653 	int ret;
654 
655 	if (component->regmap)
656 		ret = regmap_raw_read(component->regmap, params->base,
657 				      ucontrol->value.bytes.data,
658 				      params->num_regs * component->val_bytes);
659 	else
660 		ret = -EINVAL;
661 
662 	/* Hide any masked bytes to ensure consistent data reporting */
663 	if (ret == 0 && params->mask) {
664 		switch (component->val_bytes) {
665 		case 1:
666 			ucontrol->value.bytes.data[0] &= ~params->mask;
667 			break;
668 		case 2:
669 			((u16 *)(&ucontrol->value.bytes.data))[0]
670 				&= cpu_to_be16(~params->mask);
671 			break;
672 		case 4:
673 			((u32 *)(&ucontrol->value.bytes.data))[0]
674 				&= cpu_to_be32(~params->mask);
675 			break;
676 		default:
677 			return -EINVAL;
678 		}
679 	}
680 
681 	return ret;
682 }
683 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
684 
685 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
686 		      struct snd_ctl_elem_value *ucontrol)
687 {
688 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
689 	struct soc_bytes *params = (void *)kcontrol->private_value;
690 	int ret, len;
691 	unsigned int val, mask;
692 	void *data;
693 
694 	if (!component->regmap || !params->num_regs)
695 		return -EINVAL;
696 
697 	len = params->num_regs * component->val_bytes;
698 
699 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
700 	if (!data)
701 		return -ENOMEM;
702 
703 	/*
704 	 * If we've got a mask then we need to preserve the register
705 	 * bits.  We shouldn't modify the incoming data so take a
706 	 * copy.
707 	 */
708 	if (params->mask) {
709 		ret = regmap_read(component->regmap, params->base, &val);
710 		if (ret != 0)
711 			goto out;
712 
713 		val &= params->mask;
714 
715 		switch (component->val_bytes) {
716 		case 1:
717 			((u8 *)data)[0] &= ~params->mask;
718 			((u8 *)data)[0] |= val;
719 			break;
720 		case 2:
721 			mask = ~params->mask;
722 			ret = regmap_parse_val(component->regmap,
723 							&mask, &mask);
724 			if (ret != 0)
725 				goto out;
726 
727 			((u16 *)data)[0] &= mask;
728 
729 			ret = regmap_parse_val(component->regmap,
730 							&val, &val);
731 			if (ret != 0)
732 				goto out;
733 
734 			((u16 *)data)[0] |= val;
735 			break;
736 		case 4:
737 			mask = ~params->mask;
738 			ret = regmap_parse_val(component->regmap,
739 							&mask, &mask);
740 			if (ret != 0)
741 				goto out;
742 
743 			((u32 *)data)[0] &= mask;
744 
745 			ret = regmap_parse_val(component->regmap,
746 							&val, &val);
747 			if (ret != 0)
748 				goto out;
749 
750 			((u32 *)data)[0] |= val;
751 			break;
752 		default:
753 			ret = -EINVAL;
754 			goto out;
755 		}
756 	}
757 
758 	ret = regmap_raw_write(component->regmap, params->base,
759 			       data, len);
760 
761 out:
762 	kfree(data);
763 
764 	return ret;
765 }
766 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
767 
768 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
769 			struct snd_ctl_elem_info *ucontrol)
770 {
771 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
772 
773 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
774 	ucontrol->count = params->max;
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
779 
780 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
781 				unsigned int size, unsigned int __user *tlv)
782 {
783 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
784 	unsigned int count = size < params->max ? size : params->max;
785 	int ret = -ENXIO;
786 
787 	switch (op_flag) {
788 	case SNDRV_CTL_TLV_OP_READ:
789 		if (params->get)
790 			ret = params->get(kcontrol, tlv, count);
791 		break;
792 	case SNDRV_CTL_TLV_OP_WRITE:
793 		if (params->put)
794 			ret = params->put(kcontrol, tlv, count);
795 		break;
796 	}
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
800 
801 /**
802  * snd_soc_info_xr_sx - signed multi register info callback
803  * @kcontrol: mreg control
804  * @uinfo: control element information
805  *
806  * Callback to provide information of a control that can
807  * span multiple codec registers which together
808  * forms a single signed value in a MSB/LSB manner.
809  *
810  * Returns 0 for success.
811  */
812 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
813 	struct snd_ctl_elem_info *uinfo)
814 {
815 	struct soc_mreg_control *mc =
816 		(struct soc_mreg_control *)kcontrol->private_value;
817 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
818 	uinfo->count = 1;
819 	uinfo->value.integer.min = mc->min;
820 	uinfo->value.integer.max = mc->max;
821 
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
825 
826 /**
827  * snd_soc_get_xr_sx - signed multi register get callback
828  * @kcontrol: mreg control
829  * @ucontrol: control element information
830  *
831  * Callback to get the value of a control that can span
832  * multiple codec registers which together forms a single
833  * signed value in a MSB/LSB manner. The control supports
834  * specifying total no of bits used to allow for bitfields
835  * across the multiple codec registers.
836  *
837  * Returns 0 for success.
838  */
839 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
840 	struct snd_ctl_elem_value *ucontrol)
841 {
842 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
843 	struct soc_mreg_control *mc =
844 		(struct soc_mreg_control *)kcontrol->private_value;
845 	unsigned int regbase = mc->regbase;
846 	unsigned int regcount = mc->regcount;
847 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
848 	unsigned int regwmask = (1UL<<regwshift)-1;
849 	unsigned int invert = mc->invert;
850 	unsigned long mask = (1UL<<mc->nbits)-1;
851 	long min = mc->min;
852 	long max = mc->max;
853 	long val = 0;
854 	unsigned int i;
855 
856 	for (i = 0; i < regcount; i++) {
857 		unsigned int regval = snd_soc_component_read(component, regbase+i);
858 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
859 	}
860 	val &= mask;
861 	if (min < 0 && val > max)
862 		val |= ~mask;
863 	if (invert)
864 		val = max - val;
865 	ucontrol->value.integer.value[0] = val;
866 
867 	return 0;
868 }
869 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
870 
871 /**
872  * snd_soc_put_xr_sx - signed multi register get callback
873  * @kcontrol: mreg control
874  * @ucontrol: control element information
875  *
876  * Callback to set the value of a control that can span
877  * multiple codec registers which together forms a single
878  * signed value in a MSB/LSB manner. The control supports
879  * specifying total no of bits used to allow for bitfields
880  * across the multiple codec registers.
881  *
882  * Returns 0 for success.
883  */
884 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
885 	struct snd_ctl_elem_value *ucontrol)
886 {
887 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
888 	struct soc_mreg_control *mc =
889 		(struct soc_mreg_control *)kcontrol->private_value;
890 	unsigned int regbase = mc->regbase;
891 	unsigned int regcount = mc->regcount;
892 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
893 	unsigned int regwmask = (1UL<<regwshift)-1;
894 	unsigned int invert = mc->invert;
895 	unsigned long mask = (1UL<<mc->nbits)-1;
896 	long max = mc->max;
897 	long val = ucontrol->value.integer.value[0];
898 	int ret = 0;
899 	unsigned int i;
900 
901 	if (val < mc->min || val > mc->max)
902 		return -EINVAL;
903 	if (invert)
904 		val = max - val;
905 	val &= mask;
906 	for (i = 0; i < regcount; i++) {
907 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
908 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
909 		int err = snd_soc_component_update_bits(component, regbase+i,
910 							regmask, regval);
911 		if (err < 0)
912 			return err;
913 		if (err > 0)
914 			ret = err;
915 	}
916 
917 	return ret;
918 }
919 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
920 
921 /**
922  * snd_soc_get_strobe - strobe get callback
923  * @kcontrol: mixer control
924  * @ucontrol: control element information
925  *
926  * Callback get the value of a strobe mixer control.
927  *
928  * Returns 0 for success.
929  */
930 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
931 	struct snd_ctl_elem_value *ucontrol)
932 {
933 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
934 	struct soc_mixer_control *mc =
935 		(struct soc_mixer_control *)kcontrol->private_value;
936 	unsigned int reg = mc->reg;
937 	unsigned int shift = mc->shift;
938 	unsigned int mask = 1 << shift;
939 	unsigned int invert = mc->invert != 0;
940 	unsigned int val;
941 
942 	val = snd_soc_component_read(component, reg);
943 	val &= mask;
944 
945 	if (shift != 0 && val != 0)
946 		val = val >> shift;
947 	ucontrol->value.enumerated.item[0] = val ^ invert;
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
952 
953 /**
954  * snd_soc_put_strobe - strobe put callback
955  * @kcontrol: mixer control
956  * @ucontrol: control element information
957  *
958  * Callback strobe a register bit to high then low (or the inverse)
959  * in one pass of a single mixer enum control.
960  *
961  * Returns 1 for success.
962  */
963 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
964 	struct snd_ctl_elem_value *ucontrol)
965 {
966 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
967 	struct soc_mixer_control *mc =
968 		(struct soc_mixer_control *)kcontrol->private_value;
969 	unsigned int reg = mc->reg;
970 	unsigned int shift = mc->shift;
971 	unsigned int mask = 1 << shift;
972 	unsigned int invert = mc->invert != 0;
973 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
974 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
975 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
976 	int err;
977 
978 	err = snd_soc_component_update_bits(component, reg, mask, val1);
979 	if (err < 0)
980 		return err;
981 
982 	return snd_soc_component_update_bits(component, reg, mask, val2);
983 }
984 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
985