xref: /linux/sound/soc/soc-ops.c (revision 13a45b9484e58317c95046e5478c0b1d67df8816)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/pm.h>
18 #include <linux/bitops.h>
19 #include <linux/ctype.h>
20 #include <linux/slab.h>
21 #include <sound/core.h>
22 #include <sound/jack.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dpcm.h>
27 #include <sound/initval.h>
28 
29 /**
30  * snd_soc_info_enum_double - enumerated double mixer info callback
31  * @kcontrol: mixer control
32  * @uinfo: control element information
33  *
34  * Callback to provide information about a double enumerated
35  * mixer control.
36  *
37  * Returns 0 for success.
38  */
39 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
40 	struct snd_ctl_elem_info *uinfo)
41 {
42 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
43 
44 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
45 				 e->items, e->texts);
46 }
47 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
48 
49 /**
50  * snd_soc_get_enum_double - enumerated double mixer get callback
51  * @kcontrol: mixer control
52  * @ucontrol: control element information
53  *
54  * Callback to get the value of a double enumerated mixer.
55  *
56  * Returns 0 for success.
57  */
58 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
59 	struct snd_ctl_elem_value *ucontrol)
60 {
61 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
62 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
63 	unsigned int val, item;
64 	unsigned int reg_val;
65 
66 	reg_val = snd_soc_component_read(component, e->reg);
67 	val = (reg_val >> e->shift_l) & e->mask;
68 	item = snd_soc_enum_val_to_item(e, val);
69 	ucontrol->value.enumerated.item[0] = item;
70 	if (e->shift_l != e->shift_r) {
71 		val = (reg_val >> e->shift_r) & e->mask;
72 		item = snd_soc_enum_val_to_item(e, val);
73 		ucontrol->value.enumerated.item[1] = item;
74 	}
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
79 
80 /**
81  * snd_soc_put_enum_double - enumerated double mixer put callback
82  * @kcontrol: mixer control
83  * @ucontrol: control element information
84  *
85  * Callback to set the value of a double enumerated mixer.
86  *
87  * Returns 0 for success.
88  */
89 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
90 	struct snd_ctl_elem_value *ucontrol)
91 {
92 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
93 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
94 	unsigned int *item = ucontrol->value.enumerated.item;
95 	unsigned int val;
96 	unsigned int mask;
97 
98 	if (item[0] >= e->items)
99 		return -EINVAL;
100 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
101 	mask = e->mask << e->shift_l;
102 	if (e->shift_l != e->shift_r) {
103 		if (item[1] >= e->items)
104 			return -EINVAL;
105 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
106 		mask |= e->mask << e->shift_r;
107 	}
108 
109 	return snd_soc_component_update_bits(component, e->reg, mask, val);
110 }
111 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
112 
113 /**
114  * snd_soc_read_signed - Read a codec register and interpret as signed value
115  * @component: component
116  * @reg: Register to read
117  * @mask: Mask to use after shifting the register value
118  * @shift: Right shift of register value
119  * @sign_bit: Bit that describes if a number is negative or not.
120  * @signed_val: Pointer to where the read value should be stored
121  *
122  * This functions reads a codec register. The register value is shifted right
123  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
124  * the given registervalue into a signed integer if sign_bit is non-zero.
125  *
126  * Returns 0 on sucess, otherwise an error value
127  */
128 static int snd_soc_read_signed(struct snd_soc_component *component,
129 	unsigned int reg, unsigned int mask, unsigned int shift,
130 	unsigned int sign_bit, int *signed_val)
131 {
132 	int ret;
133 	unsigned int val;
134 
135 	val = snd_soc_component_read(component, reg);
136 	val = (val >> shift) & mask;
137 
138 	if (!sign_bit) {
139 		*signed_val = val;
140 		return 0;
141 	}
142 
143 	/* non-negative number */
144 	if (!(val & BIT(sign_bit))) {
145 		*signed_val = val;
146 		return 0;
147 	}
148 
149 	ret = val;
150 
151 	/*
152 	 * The register most probably does not contain a full-sized int.
153 	 * Instead we have an arbitrary number of bits in a signed
154 	 * representation which has to be translated into a full-sized int.
155 	 * This is done by filling up all bits above the sign-bit.
156 	 */
157 	ret |= ~((int)(BIT(sign_bit) - 1));
158 
159 	*signed_val = ret;
160 
161 	return 0;
162 }
163 
164 /**
165  * snd_soc_info_volsw - single mixer info callback
166  * @kcontrol: mixer control
167  * @uinfo: control element information
168  *
169  * Callback to provide information about a single mixer control, or a double
170  * mixer control that spans 2 registers.
171  *
172  * Returns 0 for success.
173  */
174 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
175 	struct snd_ctl_elem_info *uinfo)
176 {
177 	struct soc_mixer_control *mc =
178 		(struct soc_mixer_control *)kcontrol->private_value;
179 	const char *vol_string = NULL;
180 	int max;
181 
182 	max = uinfo->value.integer.max = mc->max - mc->min;
183 	if (mc->platform_max && mc->platform_max < max)
184 		max = mc->platform_max;
185 
186 	if (max == 1) {
187 		/* Even two value controls ending in Volume should always be integer */
188 		vol_string = strstr(kcontrol->id.name, " Volume");
189 		if (vol_string && !strcmp(vol_string, " Volume"))
190 			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191 		else
192 			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
193 	} else {
194 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
195 	}
196 
197 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 	uinfo->value.integer.min = 0;
199 	uinfo->value.integer.max = max;
200 
201 	return 0;
202 }
203 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
204 
205 /**
206  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
207  * @kcontrol: mixer control
208  * @uinfo: control element information
209  *
210  * Callback to provide information about a single mixer control, or a double
211  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
212  * have a range that represents both positive and negative values either side
213  * of zero but without a sign bit. min is the minimum register value, max is
214  * the number of steps.
215  *
216  * Returns 0 for success.
217  */
218 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
219 			  struct snd_ctl_elem_info *uinfo)
220 {
221 	struct soc_mixer_control *mc =
222 		(struct soc_mixer_control *)kcontrol->private_value;
223 	int max;
224 
225 	if (mc->platform_max)
226 		max = mc->platform_max;
227 	else
228 		max = mc->max;
229 
230 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
231 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
232 	else
233 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
234 
235 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
236 	uinfo->value.integer.min = 0;
237 	uinfo->value.integer.max = max;
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
242 
243 /**
244  * snd_soc_get_volsw - single mixer get callback
245  * @kcontrol: mixer control
246  * @ucontrol: control element information
247  *
248  * Callback to get the value of a single mixer control, or a double mixer
249  * control that spans 2 registers.
250  *
251  * Returns 0 for success.
252  */
253 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
254 	struct snd_ctl_elem_value *ucontrol)
255 {
256 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
257 	struct soc_mixer_control *mc =
258 		(struct soc_mixer_control *)kcontrol->private_value;
259 	unsigned int reg = mc->reg;
260 	unsigned int reg2 = mc->rreg;
261 	unsigned int shift = mc->shift;
262 	unsigned int rshift = mc->rshift;
263 	int max = mc->max;
264 	int min = mc->min;
265 	int sign_bit = mc->sign_bit;
266 	unsigned int mask = (1 << fls(max)) - 1;
267 	unsigned int invert = mc->invert;
268 	int val;
269 	int ret;
270 
271 	if (sign_bit)
272 		mask = BIT(sign_bit + 1) - 1;
273 
274 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
275 	if (ret)
276 		return ret;
277 
278 	ucontrol->value.integer.value[0] = val - min;
279 	if (invert)
280 		ucontrol->value.integer.value[0] =
281 			max - ucontrol->value.integer.value[0];
282 
283 	if (snd_soc_volsw_is_stereo(mc)) {
284 		if (reg == reg2)
285 			ret = snd_soc_read_signed(component, reg, mask, rshift,
286 				sign_bit, &val);
287 		else
288 			ret = snd_soc_read_signed(component, reg2, mask, shift,
289 				sign_bit, &val);
290 		if (ret)
291 			return ret;
292 
293 		ucontrol->value.integer.value[1] = val - min;
294 		if (invert)
295 			ucontrol->value.integer.value[1] =
296 				max - ucontrol->value.integer.value[1];
297 	}
298 
299 	return 0;
300 }
301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
302 
303 /**
304  * snd_soc_put_volsw - single mixer put callback
305  * @kcontrol: mixer control
306  * @ucontrol: control element information
307  *
308  * Callback to set the value of a single mixer control, or a double mixer
309  * control that spans 2 registers.
310  *
311  * Returns 0 for success.
312  */
313 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
314 	struct snd_ctl_elem_value *ucontrol)
315 {
316 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
317 	struct soc_mixer_control *mc =
318 		(struct soc_mixer_control *)kcontrol->private_value;
319 	unsigned int reg = mc->reg;
320 	unsigned int reg2 = mc->rreg;
321 	unsigned int shift = mc->shift;
322 	unsigned int rshift = mc->rshift;
323 	int max = mc->max;
324 	int min = mc->min;
325 	unsigned int sign_bit = mc->sign_bit;
326 	unsigned int mask = (1 << fls(max)) - 1;
327 	unsigned int invert = mc->invert;
328 	int err, ret;
329 	bool type_2r = false;
330 	unsigned int val2 = 0;
331 	unsigned int val, val_mask;
332 
333 	if (sign_bit)
334 		mask = BIT(sign_bit + 1) - 1;
335 
336 	if (ucontrol->value.integer.value[0] < 0)
337 		return -EINVAL;
338 	val = ucontrol->value.integer.value[0];
339 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
340 		return -EINVAL;
341 	if (val > max - min)
342 		return -EINVAL;
343 	val = (val + min) & mask;
344 	if (invert)
345 		val = max - val;
346 	val_mask = mask << shift;
347 	val = val << shift;
348 	if (snd_soc_volsw_is_stereo(mc)) {
349 		if (ucontrol->value.integer.value[1] < 0)
350 			return -EINVAL;
351 		val2 = ucontrol->value.integer.value[1];
352 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
353 			return -EINVAL;
354 		if (val2 > max - min)
355 			return -EINVAL;
356 		val2 = (val2 + min) & mask;
357 		if (invert)
358 			val2 = max - val2;
359 		if (reg == reg2) {
360 			val_mask |= mask << rshift;
361 			val |= val2 << rshift;
362 		} else {
363 			val2 = val2 << shift;
364 			type_2r = true;
365 		}
366 	}
367 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
368 	if (err < 0)
369 		return err;
370 	ret = err;
371 
372 	if (type_2r) {
373 		err = snd_soc_component_update_bits(component, reg2, val_mask,
374 						    val2);
375 		/* Don't discard any error code or drop change flag */
376 		if (ret == 0 || err < 0) {
377 			ret = err;
378 		}
379 	}
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
384 
385 /**
386  * snd_soc_get_volsw_sx - single mixer get callback
387  * @kcontrol: mixer control
388  * @ucontrol: control element information
389  *
390  * Callback to get the value of a single mixer control, or a double mixer
391  * control that spans 2 registers.
392  *
393  * Returns 0 for success.
394  */
395 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
396 		      struct snd_ctl_elem_value *ucontrol)
397 {
398 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 	struct soc_mixer_control *mc =
400 	    (struct soc_mixer_control *)kcontrol->private_value;
401 	unsigned int reg = mc->reg;
402 	unsigned int reg2 = mc->rreg;
403 	unsigned int shift = mc->shift;
404 	unsigned int rshift = mc->rshift;
405 	int max = mc->max;
406 	int min = mc->min;
407 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
408 	unsigned int val;
409 
410 	val = snd_soc_component_read(component, reg);
411 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
412 
413 	if (snd_soc_volsw_is_stereo(mc)) {
414 		val = snd_soc_component_read(component, reg2);
415 		val = ((val >> rshift) - min) & mask;
416 		ucontrol->value.integer.value[1] = val;
417 	}
418 
419 	return 0;
420 }
421 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
422 
423 /**
424  * snd_soc_put_volsw_sx - double mixer set callback
425  * @kcontrol: mixer control
426  * @ucontrol: control element information
427  *
428  * Callback to set the value of a double mixer control that spans 2 registers.
429  *
430  * Returns 0 for success.
431  */
432 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
433 			 struct snd_ctl_elem_value *ucontrol)
434 {
435 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
436 	struct soc_mixer_control *mc =
437 	    (struct soc_mixer_control *)kcontrol->private_value;
438 
439 	unsigned int reg = mc->reg;
440 	unsigned int reg2 = mc->rreg;
441 	unsigned int shift = mc->shift;
442 	unsigned int rshift = mc->rshift;
443 	int max = mc->max;
444 	int min = mc->min;
445 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
446 	int err = 0;
447 	int ret;
448 	unsigned int val, val_mask;
449 
450 	if (ucontrol->value.integer.value[0] < 0)
451 		return -EINVAL;
452 	val = ucontrol->value.integer.value[0];
453 	if (mc->platform_max && val > mc->platform_max)
454 		return -EINVAL;
455 	if (val > max - min)
456 		return -EINVAL;
457 	val_mask = mask << shift;
458 	val = (val + min) & mask;
459 	val = val << shift;
460 
461 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
462 	if (err < 0)
463 		return err;
464 	ret = err;
465 
466 	if (snd_soc_volsw_is_stereo(mc)) {
467 		unsigned int val2;
468 
469 		val_mask = mask << rshift;
470 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
471 		val2 = val2 << rshift;
472 
473 		err = snd_soc_component_update_bits(component, reg2, val_mask,
474 			val2);
475 
476 		/* Don't discard any error code or drop change flag */
477 		if (ret == 0 || err < 0) {
478 			ret = err;
479 		}
480 	}
481 	return ret;
482 }
483 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
484 
485 /**
486  * snd_soc_info_volsw_range - single mixer info callback with range.
487  * @kcontrol: mixer control
488  * @uinfo: control element information
489  *
490  * Callback to provide information, within a range, about a single
491  * mixer control.
492  *
493  * returns 0 for success.
494  */
495 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
496 	struct snd_ctl_elem_info *uinfo)
497 {
498 	struct soc_mixer_control *mc =
499 		(struct soc_mixer_control *)kcontrol->private_value;
500 	int platform_max;
501 	int min = mc->min;
502 
503 	if (!mc->platform_max)
504 		mc->platform_max = mc->max;
505 	platform_max = mc->platform_max;
506 
507 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
508 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
509 	uinfo->value.integer.min = 0;
510 	uinfo->value.integer.max = platform_max - min;
511 
512 	return 0;
513 }
514 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
515 
516 /**
517  * snd_soc_put_volsw_range - single mixer put value callback with range.
518  * @kcontrol: mixer control
519  * @ucontrol: control element information
520  *
521  * Callback to set the value, within a range, for a single mixer control.
522  *
523  * Returns 0 for success.
524  */
525 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
526 	struct snd_ctl_elem_value *ucontrol)
527 {
528 	struct soc_mixer_control *mc =
529 		(struct soc_mixer_control *)kcontrol->private_value;
530 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
531 	unsigned int reg = mc->reg;
532 	unsigned int rreg = mc->rreg;
533 	unsigned int shift = mc->shift;
534 	int min = mc->min;
535 	int max = mc->max;
536 	unsigned int mask = (1 << fls(max)) - 1;
537 	unsigned int invert = mc->invert;
538 	unsigned int val, val_mask;
539 	int err, ret, tmp;
540 
541 	tmp = ucontrol->value.integer.value[0];
542 	if (tmp < 0)
543 		return -EINVAL;
544 	if (mc->platform_max && tmp > mc->platform_max)
545 		return -EINVAL;
546 	if (tmp > mc->max - mc->min)
547 		return -EINVAL;
548 
549 	if (invert)
550 		val = (max - ucontrol->value.integer.value[0]) & mask;
551 	else
552 		val = ((ucontrol->value.integer.value[0] + min) & mask);
553 	val_mask = mask << shift;
554 	val = val << shift;
555 
556 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
557 	if (err < 0)
558 		return err;
559 	ret = err;
560 
561 	if (snd_soc_volsw_is_stereo(mc)) {
562 		tmp = ucontrol->value.integer.value[1];
563 		if (tmp < 0)
564 			return -EINVAL;
565 		if (mc->platform_max && tmp > mc->platform_max)
566 			return -EINVAL;
567 		if (tmp > mc->max - mc->min)
568 			return -EINVAL;
569 
570 		if (invert)
571 			val = (max - ucontrol->value.integer.value[1]) & mask;
572 		else
573 			val = ((ucontrol->value.integer.value[1] + min) & mask);
574 		val_mask = mask << shift;
575 		val = val << shift;
576 
577 		err = snd_soc_component_update_bits(component, rreg, val_mask,
578 			val);
579 		/* Don't discard any error code or drop change flag */
580 		if (ret == 0 || err < 0) {
581 			ret = err;
582 		}
583 	}
584 
585 	return ret;
586 }
587 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
588 
589 /**
590  * snd_soc_get_volsw_range - single mixer get callback with range
591  * @kcontrol: mixer control
592  * @ucontrol: control element information
593  *
594  * Callback to get the value, within a range, of a single mixer control.
595  *
596  * Returns 0 for success.
597  */
598 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
599 	struct snd_ctl_elem_value *ucontrol)
600 {
601 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
602 	struct soc_mixer_control *mc =
603 		(struct soc_mixer_control *)kcontrol->private_value;
604 	unsigned int reg = mc->reg;
605 	unsigned int rreg = mc->rreg;
606 	unsigned int shift = mc->shift;
607 	int min = mc->min;
608 	int max = mc->max;
609 	unsigned int mask = (1 << fls(max)) - 1;
610 	unsigned int invert = mc->invert;
611 	unsigned int val;
612 
613 	val = snd_soc_component_read(component, reg);
614 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
615 	if (invert)
616 		ucontrol->value.integer.value[0] =
617 			max - ucontrol->value.integer.value[0];
618 	else
619 		ucontrol->value.integer.value[0] =
620 			ucontrol->value.integer.value[0] - min;
621 
622 	if (snd_soc_volsw_is_stereo(mc)) {
623 		val = snd_soc_component_read(component, rreg);
624 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
625 		if (invert)
626 			ucontrol->value.integer.value[1] =
627 				max - ucontrol->value.integer.value[1];
628 		else
629 			ucontrol->value.integer.value[1] =
630 				ucontrol->value.integer.value[1] - min;
631 	}
632 
633 	return 0;
634 }
635 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
636 
637 /**
638  * snd_soc_limit_volume - Set new limit to an existing volume control.
639  *
640  * @card: where to look for the control
641  * @name: Name of the control
642  * @max: new maximum limit
643  *
644  * Return 0 for success, else error.
645  */
646 int snd_soc_limit_volume(struct snd_soc_card *card,
647 	const char *name, int max)
648 {
649 	struct snd_kcontrol *kctl;
650 	int ret = -EINVAL;
651 
652 	/* Sanity check for name and max */
653 	if (unlikely(!name || max <= 0))
654 		return -EINVAL;
655 
656 	kctl = snd_soc_card_get_kcontrol(card, name);
657 	if (kctl) {
658 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
659 		if (max <= mc->max) {
660 			mc->platform_max = max;
661 			ret = 0;
662 		}
663 	}
664 	return ret;
665 }
666 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
667 
668 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
669 		       struct snd_ctl_elem_info *uinfo)
670 {
671 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
672 	struct soc_bytes *params = (void *)kcontrol->private_value;
673 
674 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
675 	uinfo->count = params->num_regs * component->val_bytes;
676 
677 	return 0;
678 }
679 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
680 
681 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
682 		      struct snd_ctl_elem_value *ucontrol)
683 {
684 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
685 	struct soc_bytes *params = (void *)kcontrol->private_value;
686 	int ret;
687 
688 	if (component->regmap)
689 		ret = regmap_raw_read(component->regmap, params->base,
690 				      ucontrol->value.bytes.data,
691 				      params->num_regs * component->val_bytes);
692 	else
693 		ret = -EINVAL;
694 
695 	/* Hide any masked bytes to ensure consistent data reporting */
696 	if (ret == 0 && params->mask) {
697 		switch (component->val_bytes) {
698 		case 1:
699 			ucontrol->value.bytes.data[0] &= ~params->mask;
700 			break;
701 		case 2:
702 			((u16 *)(&ucontrol->value.bytes.data))[0]
703 				&= cpu_to_be16(~params->mask);
704 			break;
705 		case 4:
706 			((u32 *)(&ucontrol->value.bytes.data))[0]
707 				&= cpu_to_be32(~params->mask);
708 			break;
709 		default:
710 			return -EINVAL;
711 		}
712 	}
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
717 
718 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
719 		      struct snd_ctl_elem_value *ucontrol)
720 {
721 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
722 	struct soc_bytes *params = (void *)kcontrol->private_value;
723 	int ret, len;
724 	unsigned int val, mask;
725 	void *data;
726 
727 	if (!component->regmap || !params->num_regs)
728 		return -EINVAL;
729 
730 	len = params->num_regs * component->val_bytes;
731 
732 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
733 	if (!data)
734 		return -ENOMEM;
735 
736 	/*
737 	 * If we've got a mask then we need to preserve the register
738 	 * bits.  We shouldn't modify the incoming data so take a
739 	 * copy.
740 	 */
741 	if (params->mask) {
742 		ret = regmap_read(component->regmap, params->base, &val);
743 		if (ret != 0)
744 			goto out;
745 
746 		val &= params->mask;
747 
748 		switch (component->val_bytes) {
749 		case 1:
750 			((u8 *)data)[0] &= ~params->mask;
751 			((u8 *)data)[0] |= val;
752 			break;
753 		case 2:
754 			mask = ~params->mask;
755 			ret = regmap_parse_val(component->regmap,
756 							&mask, &mask);
757 			if (ret != 0)
758 				goto out;
759 
760 			((u16 *)data)[0] &= mask;
761 
762 			ret = regmap_parse_val(component->regmap,
763 							&val, &val);
764 			if (ret != 0)
765 				goto out;
766 
767 			((u16 *)data)[0] |= val;
768 			break;
769 		case 4:
770 			mask = ~params->mask;
771 			ret = regmap_parse_val(component->regmap,
772 							&mask, &mask);
773 			if (ret != 0)
774 				goto out;
775 
776 			((u32 *)data)[0] &= mask;
777 
778 			ret = regmap_parse_val(component->regmap,
779 							&val, &val);
780 			if (ret != 0)
781 				goto out;
782 
783 			((u32 *)data)[0] |= val;
784 			break;
785 		default:
786 			ret = -EINVAL;
787 			goto out;
788 		}
789 	}
790 
791 	ret = regmap_raw_write(component->regmap, params->base,
792 			       data, len);
793 
794 out:
795 	kfree(data);
796 
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
800 
801 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
802 			struct snd_ctl_elem_info *ucontrol)
803 {
804 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
805 
806 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
807 	ucontrol->count = params->max;
808 
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
812 
813 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
814 				unsigned int size, unsigned int __user *tlv)
815 {
816 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
817 	unsigned int count = size < params->max ? size : params->max;
818 	int ret = -ENXIO;
819 
820 	switch (op_flag) {
821 	case SNDRV_CTL_TLV_OP_READ:
822 		if (params->get)
823 			ret = params->get(kcontrol, tlv, count);
824 		break;
825 	case SNDRV_CTL_TLV_OP_WRITE:
826 		if (params->put)
827 			ret = params->put(kcontrol, tlv, count);
828 		break;
829 	}
830 	return ret;
831 }
832 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
833 
834 /**
835  * snd_soc_info_xr_sx - signed multi register info callback
836  * @kcontrol: mreg control
837  * @uinfo: control element information
838  *
839  * Callback to provide information of a control that can
840  * span multiple codec registers which together
841  * forms a single signed value in a MSB/LSB manner.
842  *
843  * Returns 0 for success.
844  */
845 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
846 	struct snd_ctl_elem_info *uinfo)
847 {
848 	struct soc_mreg_control *mc =
849 		(struct soc_mreg_control *)kcontrol->private_value;
850 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
851 	uinfo->count = 1;
852 	uinfo->value.integer.min = mc->min;
853 	uinfo->value.integer.max = mc->max;
854 
855 	return 0;
856 }
857 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
858 
859 /**
860  * snd_soc_get_xr_sx - signed multi register get callback
861  * @kcontrol: mreg control
862  * @ucontrol: control element information
863  *
864  * Callback to get the value of a control that can span
865  * multiple codec registers which together forms a single
866  * signed value in a MSB/LSB manner. The control supports
867  * specifying total no of bits used to allow for bitfields
868  * across the multiple codec registers.
869  *
870  * Returns 0 for success.
871  */
872 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
873 	struct snd_ctl_elem_value *ucontrol)
874 {
875 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
876 	struct soc_mreg_control *mc =
877 		(struct soc_mreg_control *)kcontrol->private_value;
878 	unsigned int regbase = mc->regbase;
879 	unsigned int regcount = mc->regcount;
880 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
881 	unsigned int regwmask = (1UL<<regwshift)-1;
882 	unsigned int invert = mc->invert;
883 	unsigned long mask = (1UL<<mc->nbits)-1;
884 	long min = mc->min;
885 	long max = mc->max;
886 	long val = 0;
887 	unsigned int i;
888 
889 	for (i = 0; i < regcount; i++) {
890 		unsigned int regval = snd_soc_component_read(component, regbase+i);
891 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
892 	}
893 	val &= mask;
894 	if (min < 0 && val > max)
895 		val |= ~mask;
896 	if (invert)
897 		val = max - val;
898 	ucontrol->value.integer.value[0] = val;
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
903 
904 /**
905  * snd_soc_put_xr_sx - signed multi register get callback
906  * @kcontrol: mreg control
907  * @ucontrol: control element information
908  *
909  * Callback to set the value of a control that can span
910  * multiple codec registers which together forms a single
911  * signed value in a MSB/LSB manner. The control supports
912  * specifying total no of bits used to allow for bitfields
913  * across the multiple codec registers.
914  *
915  * Returns 0 for success.
916  */
917 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
918 	struct snd_ctl_elem_value *ucontrol)
919 {
920 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
921 	struct soc_mreg_control *mc =
922 		(struct soc_mreg_control *)kcontrol->private_value;
923 	unsigned int regbase = mc->regbase;
924 	unsigned int regcount = mc->regcount;
925 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
926 	unsigned int regwmask = (1UL<<regwshift)-1;
927 	unsigned int invert = mc->invert;
928 	unsigned long mask = (1UL<<mc->nbits)-1;
929 	long max = mc->max;
930 	long val = ucontrol->value.integer.value[0];
931 	int ret = 0;
932 	unsigned int i;
933 
934 	if (val < mc->min || val > mc->max)
935 		return -EINVAL;
936 	if (invert)
937 		val = max - val;
938 	val &= mask;
939 	for (i = 0; i < regcount; i++) {
940 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
941 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
942 		int err = snd_soc_component_update_bits(component, regbase+i,
943 							regmask, regval);
944 		if (err < 0)
945 			return err;
946 		if (err > 0)
947 			ret = err;
948 	}
949 
950 	return ret;
951 }
952 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
953 
954 /**
955  * snd_soc_get_strobe - strobe get callback
956  * @kcontrol: mixer control
957  * @ucontrol: control element information
958  *
959  * Callback get the value of a strobe mixer control.
960  *
961  * Returns 0 for success.
962  */
963 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
964 	struct snd_ctl_elem_value *ucontrol)
965 {
966 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
967 	struct soc_mixer_control *mc =
968 		(struct soc_mixer_control *)kcontrol->private_value;
969 	unsigned int reg = mc->reg;
970 	unsigned int shift = mc->shift;
971 	unsigned int mask = 1 << shift;
972 	unsigned int invert = mc->invert != 0;
973 	unsigned int val;
974 
975 	val = snd_soc_component_read(component, reg);
976 	val &= mask;
977 
978 	if (shift != 0 && val != 0)
979 		val = val >> shift;
980 	ucontrol->value.enumerated.item[0] = val ^ invert;
981 
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
985 
986 /**
987  * snd_soc_put_strobe - strobe put callback
988  * @kcontrol: mixer control
989  * @ucontrol: control element information
990  *
991  * Callback strobe a register bit to high then low (or the inverse)
992  * in one pass of a single mixer enum control.
993  *
994  * Returns 1 for success.
995  */
996 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
997 	struct snd_ctl_elem_value *ucontrol)
998 {
999 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1000 	struct soc_mixer_control *mc =
1001 		(struct soc_mixer_control *)kcontrol->private_value;
1002 	unsigned int reg = mc->reg;
1003 	unsigned int shift = mc->shift;
1004 	unsigned int mask = 1 << shift;
1005 	unsigned int invert = mc->invert != 0;
1006 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1007 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1008 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1009 	int err;
1010 
1011 	err = snd_soc_component_update_bits(component, reg, mask, val1);
1012 	if (err < 0)
1013 		return err;
1014 
1015 	return snd_soc_component_update_bits(component, reg, mask, val2);
1016 }
1017 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1018