xref: /linux/sound/soc/soc-ops.c (revision 0b0e9cdb3d1f8fda823b592b0667b4b0595e2ba7)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/cleanup.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	const char *vol_string = NULL;
181 	int max;
182 
183 	max = uinfo->value.integer.max = mc->max - mc->min;
184 	if (mc->platform_max && mc->platform_max < max)
185 		max = mc->platform_max;
186 
187 	if (max == 1) {
188 		/* Even two value controls ending in Volume should always be integer */
189 		vol_string = strstr(kcontrol->id.name, " Volume");
190 		if (vol_string && !strcmp(vol_string, " Volume"))
191 			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
192 		else
193 			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 	} else {
195 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196 	}
197 
198 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
199 	uinfo->value.integer.min = 0;
200 	uinfo->value.integer.max = max;
201 
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
205 
206 /**
207  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
208  * @kcontrol: mixer control
209  * @uinfo: control element information
210  *
211  * Callback to provide information about a single mixer control, or a double
212  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
213  * have a range that represents both positive and negative values either side
214  * of zero but without a sign bit. min is the minimum register value, max is
215  * the number of steps.
216  *
217  * Returns 0 for success.
218  */
219 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
220 			  struct snd_ctl_elem_info *uinfo)
221 {
222 	struct soc_mixer_control *mc =
223 		(struct soc_mixer_control *)kcontrol->private_value;
224 	int max;
225 
226 	if (mc->platform_max)
227 		max = mc->platform_max;
228 	else
229 		max = mc->max;
230 
231 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
232 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
233 	else
234 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
235 
236 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
237 	uinfo->value.integer.min = 0;
238 	uinfo->value.integer.max = max;
239 
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
243 
244 /**
245  * snd_soc_get_volsw - single mixer get callback
246  * @kcontrol: mixer control
247  * @ucontrol: control element information
248  *
249  * Callback to get the value of a single mixer control, or a double mixer
250  * control that spans 2 registers.
251  *
252  * Returns 0 for success.
253  */
254 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
255 	struct snd_ctl_elem_value *ucontrol)
256 {
257 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
258 	struct soc_mixer_control *mc =
259 		(struct soc_mixer_control *)kcontrol->private_value;
260 	unsigned int reg = mc->reg;
261 	unsigned int reg2 = mc->rreg;
262 	unsigned int shift = mc->shift;
263 	unsigned int rshift = mc->rshift;
264 	int max = mc->max;
265 	int min = mc->min;
266 	int sign_bit = mc->sign_bit;
267 	unsigned int mask = (1ULL << fls(max)) - 1;
268 	unsigned int invert = mc->invert;
269 	int val;
270 	int ret;
271 
272 	if (sign_bit)
273 		mask = BIT(sign_bit + 1) - 1;
274 
275 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
276 	if (ret)
277 		return ret;
278 
279 	ucontrol->value.integer.value[0] = val - min;
280 	if (invert)
281 		ucontrol->value.integer.value[0] =
282 			max - ucontrol->value.integer.value[0];
283 
284 	if (snd_soc_volsw_is_stereo(mc)) {
285 		if (reg == reg2)
286 			ret = snd_soc_read_signed(component, reg, mask, rshift,
287 				sign_bit, &val);
288 		else
289 			ret = snd_soc_read_signed(component, reg2, mask, shift,
290 				sign_bit, &val);
291 		if (ret)
292 			return ret;
293 
294 		ucontrol->value.integer.value[1] = val - min;
295 		if (invert)
296 			ucontrol->value.integer.value[1] =
297 				max - ucontrol->value.integer.value[1];
298 	}
299 
300 	return 0;
301 }
302 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
303 
304 /**
305  * snd_soc_put_volsw - single mixer put callback
306  * @kcontrol: mixer control
307  * @ucontrol: control element information
308  *
309  * Callback to set the value of a single mixer control, or a double mixer
310  * control that spans 2 registers.
311  *
312  * Returns 0 for success.
313  */
314 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
315 	struct snd_ctl_elem_value *ucontrol)
316 {
317 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
318 	struct soc_mixer_control *mc =
319 		(struct soc_mixer_control *)kcontrol->private_value;
320 	unsigned int reg = mc->reg;
321 	unsigned int reg2 = mc->rreg;
322 	unsigned int shift = mc->shift;
323 	unsigned int rshift = mc->rshift;
324 	int max = mc->max;
325 	int min = mc->min;
326 	unsigned int sign_bit = mc->sign_bit;
327 	unsigned int mask = (1 << fls(max)) - 1;
328 	unsigned int invert = mc->invert;
329 	int err, ret;
330 	bool type_2r = false;
331 	unsigned int val2 = 0;
332 	unsigned int val, val_mask;
333 
334 	if (sign_bit)
335 		mask = BIT(sign_bit + 1) - 1;
336 
337 	if (ucontrol->value.integer.value[0] < 0)
338 		return -EINVAL;
339 	val = ucontrol->value.integer.value[0];
340 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
341 		return -EINVAL;
342 	if (val > max - min)
343 		return -EINVAL;
344 	val = (val + min) & mask;
345 	if (invert)
346 		val = max - val;
347 	val_mask = mask << shift;
348 	val = val << shift;
349 	if (snd_soc_volsw_is_stereo(mc)) {
350 		if (ucontrol->value.integer.value[1] < 0)
351 			return -EINVAL;
352 		val2 = ucontrol->value.integer.value[1];
353 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
354 			return -EINVAL;
355 		if (val2 > max - min)
356 			return -EINVAL;
357 		val2 = (val2 + min) & mask;
358 		if (invert)
359 			val2 = max - val2;
360 		if (reg == reg2) {
361 			val_mask |= mask << rshift;
362 			val |= val2 << rshift;
363 		} else {
364 			val2 = val2 << shift;
365 			type_2r = true;
366 		}
367 	}
368 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
369 	if (err < 0)
370 		return err;
371 	ret = err;
372 
373 	if (type_2r) {
374 		err = snd_soc_component_update_bits(component, reg2, val_mask,
375 						    val2);
376 		/* Don't discard any error code or drop change flag */
377 		if (ret == 0 || err < 0) {
378 			ret = err;
379 		}
380 	}
381 
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
385 
386 /**
387  * snd_soc_get_volsw_sx - single mixer get callback
388  * @kcontrol: mixer control
389  * @ucontrol: control element information
390  *
391  * Callback to get the value of a single mixer control, or a double mixer
392  * control that spans 2 registers.
393  *
394  * Returns 0 for success.
395  */
396 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
397 		      struct snd_ctl_elem_value *ucontrol)
398 {
399 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
400 	struct soc_mixer_control *mc =
401 	    (struct soc_mixer_control *)kcontrol->private_value;
402 	unsigned int reg = mc->reg;
403 	unsigned int reg2 = mc->rreg;
404 	unsigned int shift = mc->shift;
405 	unsigned int rshift = mc->rshift;
406 	int max = mc->max;
407 	int min = mc->min;
408 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 	unsigned int val;
410 
411 	val = snd_soc_component_read(component, reg);
412 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
413 
414 	if (snd_soc_volsw_is_stereo(mc)) {
415 		val = snd_soc_component_read(component, reg2);
416 		val = ((val >> rshift) - min) & mask;
417 		ucontrol->value.integer.value[1] = val;
418 	}
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
423 
424 /**
425  * snd_soc_put_volsw_sx - double mixer set callback
426  * @kcontrol: mixer control
427  * @ucontrol: control element information
428  *
429  * Callback to set the value of a double mixer control that spans 2 registers.
430  *
431  * Returns 0 for success.
432  */
433 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
434 			 struct snd_ctl_elem_value *ucontrol)
435 {
436 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
437 	struct soc_mixer_control *mc =
438 	    (struct soc_mixer_control *)kcontrol->private_value;
439 
440 	unsigned int reg = mc->reg;
441 	unsigned int reg2 = mc->rreg;
442 	unsigned int shift = mc->shift;
443 	unsigned int rshift = mc->rshift;
444 	int max = mc->max;
445 	int min = mc->min;
446 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
447 	int err = 0;
448 	int ret;
449 	unsigned int val, val_mask;
450 
451 	if (ucontrol->value.integer.value[0] < 0)
452 		return -EINVAL;
453 	val = ucontrol->value.integer.value[0];
454 	if (mc->platform_max && val > mc->platform_max)
455 		return -EINVAL;
456 	if (val > max)
457 		return -EINVAL;
458 	val_mask = mask << shift;
459 	val = (val + min) & mask;
460 	val = val << shift;
461 
462 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
463 	if (err < 0)
464 		return err;
465 	ret = err;
466 
467 	if (snd_soc_volsw_is_stereo(mc)) {
468 		unsigned int val2 = ucontrol->value.integer.value[1];
469 
470 		if (mc->platform_max && val2 > mc->platform_max)
471 			return -EINVAL;
472 		if (val2 > max)
473 			return -EINVAL;
474 
475 		val_mask = mask << rshift;
476 		val2 = (val2 + min) & mask;
477 		val2 = val2 << rshift;
478 
479 		err = snd_soc_component_update_bits(component, reg2, val_mask,
480 			val2);
481 
482 		/* Don't discard any error code or drop change flag */
483 		if (ret == 0 || err < 0) {
484 			ret = err;
485 		}
486 	}
487 	return ret;
488 }
489 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
490 
491 /**
492  * snd_soc_info_volsw_range - single mixer info callback with range.
493  * @kcontrol: mixer control
494  * @uinfo: control element information
495  *
496  * Callback to provide information, within a range, about a single
497  * mixer control.
498  *
499  * returns 0 for success.
500  */
501 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
502 	struct snd_ctl_elem_info *uinfo)
503 {
504 	struct soc_mixer_control *mc =
505 		(struct soc_mixer_control *)kcontrol->private_value;
506 	int platform_max;
507 	int min = mc->min;
508 
509 	if (!mc->platform_max)
510 		mc->platform_max = mc->max;
511 	platform_max = mc->platform_max;
512 
513 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
514 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
515 	uinfo->value.integer.min = 0;
516 	uinfo->value.integer.max = platform_max - min;
517 
518 	return 0;
519 }
520 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
521 
522 /**
523  * snd_soc_put_volsw_range - single mixer put value callback with range.
524  * @kcontrol: mixer control
525  * @ucontrol: control element information
526  *
527  * Callback to set the value, within a range, for a single mixer control.
528  *
529  * Returns 0 for success.
530  */
531 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
532 	struct snd_ctl_elem_value *ucontrol)
533 {
534 	struct soc_mixer_control *mc =
535 		(struct soc_mixer_control *)kcontrol->private_value;
536 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
537 	unsigned int reg = mc->reg;
538 	unsigned int rreg = mc->rreg;
539 	unsigned int shift = mc->shift;
540 	int min = mc->min;
541 	int max = mc->max;
542 	unsigned int mask = (1 << fls(max)) - 1;
543 	unsigned int invert = mc->invert;
544 	unsigned int val, val_mask;
545 	int err, ret, tmp;
546 
547 	tmp = ucontrol->value.integer.value[0];
548 	if (tmp < 0)
549 		return -EINVAL;
550 	if (mc->platform_max && tmp > mc->platform_max)
551 		return -EINVAL;
552 	if (tmp > mc->max - mc->min)
553 		return -EINVAL;
554 
555 	if (invert)
556 		val = (max - ucontrol->value.integer.value[0]) & mask;
557 	else
558 		val = ((ucontrol->value.integer.value[0] + min) & mask);
559 	val_mask = mask << shift;
560 	val = val << shift;
561 
562 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
563 	if (err < 0)
564 		return err;
565 	ret = err;
566 
567 	if (snd_soc_volsw_is_stereo(mc)) {
568 		tmp = ucontrol->value.integer.value[1];
569 		if (tmp < 0)
570 			return -EINVAL;
571 		if (mc->platform_max && tmp > mc->platform_max)
572 			return -EINVAL;
573 		if (tmp > mc->max - mc->min)
574 			return -EINVAL;
575 
576 		if (invert)
577 			val = (max - ucontrol->value.integer.value[1]) & mask;
578 		else
579 			val = ((ucontrol->value.integer.value[1] + min) & mask);
580 		val_mask = mask << shift;
581 		val = val << shift;
582 
583 		err = snd_soc_component_update_bits(component, rreg, val_mask,
584 			val);
585 		/* Don't discard any error code or drop change flag */
586 		if (ret == 0 || err < 0) {
587 			ret = err;
588 		}
589 	}
590 
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
594 
595 /**
596  * snd_soc_get_volsw_range - single mixer get callback with range
597  * @kcontrol: mixer control
598  * @ucontrol: control element information
599  *
600  * Callback to get the value, within a range, of a single mixer control.
601  *
602  * Returns 0 for success.
603  */
604 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
605 	struct snd_ctl_elem_value *ucontrol)
606 {
607 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
608 	struct soc_mixer_control *mc =
609 		(struct soc_mixer_control *)kcontrol->private_value;
610 	unsigned int reg = mc->reg;
611 	unsigned int rreg = mc->rreg;
612 	unsigned int shift = mc->shift;
613 	int min = mc->min;
614 	int max = mc->max;
615 	unsigned int mask = (1 << fls(max)) - 1;
616 	unsigned int invert = mc->invert;
617 	unsigned int val;
618 
619 	val = snd_soc_component_read(component, reg);
620 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
621 	if (invert)
622 		ucontrol->value.integer.value[0] =
623 			max - ucontrol->value.integer.value[0];
624 	else
625 		ucontrol->value.integer.value[0] =
626 			ucontrol->value.integer.value[0] - min;
627 
628 	if (snd_soc_volsw_is_stereo(mc)) {
629 		val = snd_soc_component_read(component, rreg);
630 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
631 		if (invert)
632 			ucontrol->value.integer.value[1] =
633 				max - ucontrol->value.integer.value[1];
634 		else
635 			ucontrol->value.integer.value[1] =
636 				ucontrol->value.integer.value[1] - min;
637 	}
638 
639 	return 0;
640 }
641 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
642 
643 /**
644  * snd_soc_limit_volume - Set new limit to an existing volume control.
645  *
646  * @card: where to look for the control
647  * @name: Name of the control
648  * @max: new maximum limit
649  *
650  * Return 0 for success, else error.
651  */
652 int snd_soc_limit_volume(struct snd_soc_card *card,
653 	const char *name, int max)
654 {
655 	struct snd_kcontrol *kctl;
656 	int ret = -EINVAL;
657 
658 	/* Sanity check for name and max */
659 	if (unlikely(!name || max <= 0))
660 		return -EINVAL;
661 
662 	kctl = snd_soc_card_get_kcontrol(card, name);
663 	if (kctl) {
664 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
665 		if (max <= mc->max - mc->min) {
666 			mc->platform_max = max;
667 			ret = 0;
668 		}
669 	}
670 	return ret;
671 }
672 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
673 
674 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
675 		       struct snd_ctl_elem_info *uinfo)
676 {
677 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
678 	struct soc_bytes *params = (void *)kcontrol->private_value;
679 
680 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
681 	uinfo->count = params->num_regs * component->val_bytes;
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
686 
687 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
688 		      struct snd_ctl_elem_value *ucontrol)
689 {
690 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
691 	struct soc_bytes *params = (void *)kcontrol->private_value;
692 	int ret;
693 
694 	if (component->regmap)
695 		ret = regmap_raw_read(component->regmap, params->base,
696 				      ucontrol->value.bytes.data,
697 				      params->num_regs * component->val_bytes);
698 	else
699 		ret = -EINVAL;
700 
701 	/* Hide any masked bytes to ensure consistent data reporting */
702 	if (ret == 0 && params->mask) {
703 		switch (component->val_bytes) {
704 		case 1:
705 			ucontrol->value.bytes.data[0] &= ~params->mask;
706 			break;
707 		case 2:
708 			((u16 *)(&ucontrol->value.bytes.data))[0]
709 				&= cpu_to_be16(~params->mask);
710 			break;
711 		case 4:
712 			((u32 *)(&ucontrol->value.bytes.data))[0]
713 				&= cpu_to_be32(~params->mask);
714 			break;
715 		default:
716 			return -EINVAL;
717 		}
718 	}
719 
720 	return ret;
721 }
722 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
723 
724 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
725 		      struct snd_ctl_elem_value *ucontrol)
726 {
727 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
728 	struct soc_bytes *params = (void *)kcontrol->private_value;
729 	int ret, len;
730 	unsigned int val, mask;
731 
732 	if (!component->regmap || !params->num_regs)
733 		return -EINVAL;
734 
735 	len = params->num_regs * component->val_bytes;
736 
737 	void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
738 					   GFP_KERNEL | GFP_DMA);
739 	if (!data)
740 		return -ENOMEM;
741 
742 	/*
743 	 * If we've got a mask then we need to preserve the register
744 	 * bits.  We shouldn't modify the incoming data so take a
745 	 * copy.
746 	 */
747 	if (params->mask) {
748 		ret = regmap_read(component->regmap, params->base, &val);
749 		if (ret != 0)
750 			return ret;
751 
752 		val &= params->mask;
753 
754 		switch (component->val_bytes) {
755 		case 1:
756 			((u8 *)data)[0] &= ~params->mask;
757 			((u8 *)data)[0] |= val;
758 			break;
759 		case 2:
760 			mask = ~params->mask;
761 			ret = regmap_parse_val(component->regmap,
762 							&mask, &mask);
763 			if (ret != 0)
764 				return ret;
765 
766 			((u16 *)data)[0] &= mask;
767 
768 			ret = regmap_parse_val(component->regmap,
769 							&val, &val);
770 			if (ret != 0)
771 				return ret;
772 
773 			((u16 *)data)[0] |= val;
774 			break;
775 		case 4:
776 			mask = ~params->mask;
777 			ret = regmap_parse_val(component->regmap,
778 							&mask, &mask);
779 			if (ret != 0)
780 				return ret;
781 
782 			((u32 *)data)[0] &= mask;
783 
784 			ret = regmap_parse_val(component->regmap,
785 							&val, &val);
786 			if (ret != 0)
787 				return ret;
788 
789 			((u32 *)data)[0] |= val;
790 			break;
791 		default:
792 			return -EINVAL;
793 		}
794 	}
795 
796 	return regmap_raw_write(component->regmap, params->base, data, len);
797 }
798 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
799 
800 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
801 			struct snd_ctl_elem_info *ucontrol)
802 {
803 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
804 
805 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
806 	ucontrol->count = params->max;
807 
808 	return 0;
809 }
810 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
811 
812 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
813 				unsigned int size, unsigned int __user *tlv)
814 {
815 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
816 	unsigned int count = size < params->max ? size : params->max;
817 	int ret = -ENXIO;
818 
819 	switch (op_flag) {
820 	case SNDRV_CTL_TLV_OP_READ:
821 		if (params->get)
822 			ret = params->get(kcontrol, tlv, count);
823 		break;
824 	case SNDRV_CTL_TLV_OP_WRITE:
825 		if (params->put)
826 			ret = params->put(kcontrol, tlv, count);
827 		break;
828 	}
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
832 
833 /**
834  * snd_soc_info_xr_sx - signed multi register info callback
835  * @kcontrol: mreg control
836  * @uinfo: control element information
837  *
838  * Callback to provide information of a control that can
839  * span multiple codec registers which together
840  * forms a single signed value in a MSB/LSB manner.
841  *
842  * Returns 0 for success.
843  */
844 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
845 	struct snd_ctl_elem_info *uinfo)
846 {
847 	struct soc_mreg_control *mc =
848 		(struct soc_mreg_control *)kcontrol->private_value;
849 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
850 	uinfo->count = 1;
851 	uinfo->value.integer.min = mc->min;
852 	uinfo->value.integer.max = mc->max;
853 
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
857 
858 /**
859  * snd_soc_get_xr_sx - signed multi register get callback
860  * @kcontrol: mreg control
861  * @ucontrol: control element information
862  *
863  * Callback to get the value of a control that can span
864  * multiple codec registers which together forms a single
865  * signed value in a MSB/LSB manner. The control supports
866  * specifying total no of bits used to allow for bitfields
867  * across the multiple codec registers.
868  *
869  * Returns 0 for success.
870  */
871 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
872 	struct snd_ctl_elem_value *ucontrol)
873 {
874 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
875 	struct soc_mreg_control *mc =
876 		(struct soc_mreg_control *)kcontrol->private_value;
877 	unsigned int regbase = mc->regbase;
878 	unsigned int regcount = mc->regcount;
879 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
880 	unsigned int regwmask = (1UL<<regwshift)-1;
881 	unsigned int invert = mc->invert;
882 	unsigned long mask = (1UL<<mc->nbits)-1;
883 	long min = mc->min;
884 	long max = mc->max;
885 	long val = 0;
886 	unsigned int i;
887 
888 	for (i = 0; i < regcount; i++) {
889 		unsigned int regval = snd_soc_component_read(component, regbase+i);
890 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
891 	}
892 	val &= mask;
893 	if (min < 0 && val > max)
894 		val |= ~mask;
895 	if (invert)
896 		val = max - val;
897 	ucontrol->value.integer.value[0] = val;
898 
899 	return 0;
900 }
901 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
902 
903 /**
904  * snd_soc_put_xr_sx - signed multi register get callback
905  * @kcontrol: mreg control
906  * @ucontrol: control element information
907  *
908  * Callback to set the value of a control that can span
909  * multiple codec registers which together forms a single
910  * signed value in a MSB/LSB manner. The control supports
911  * specifying total no of bits used to allow for bitfields
912  * across the multiple codec registers.
913  *
914  * Returns 0 for success.
915  */
916 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
917 	struct snd_ctl_elem_value *ucontrol)
918 {
919 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
920 	struct soc_mreg_control *mc =
921 		(struct soc_mreg_control *)kcontrol->private_value;
922 	unsigned int regbase = mc->regbase;
923 	unsigned int regcount = mc->regcount;
924 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
925 	unsigned int regwmask = (1UL<<regwshift)-1;
926 	unsigned int invert = mc->invert;
927 	unsigned long mask = (1UL<<mc->nbits)-1;
928 	long max = mc->max;
929 	long val = ucontrol->value.integer.value[0];
930 	int ret = 0;
931 	unsigned int i;
932 
933 	if (val < mc->min || val > mc->max)
934 		return -EINVAL;
935 	if (invert)
936 		val = max - val;
937 	val &= mask;
938 	for (i = 0; i < regcount; i++) {
939 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
940 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
941 		int err = snd_soc_component_update_bits(component, regbase+i,
942 							regmask, regval);
943 		if (err < 0)
944 			return err;
945 		if (err > 0)
946 			ret = err;
947 	}
948 
949 	return ret;
950 }
951 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
952 
953 /**
954  * snd_soc_get_strobe - strobe get callback
955  * @kcontrol: mixer control
956  * @ucontrol: control element information
957  *
958  * Callback get the value of a strobe mixer control.
959  *
960  * Returns 0 for success.
961  */
962 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
963 	struct snd_ctl_elem_value *ucontrol)
964 {
965 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
966 	struct soc_mixer_control *mc =
967 		(struct soc_mixer_control *)kcontrol->private_value;
968 	unsigned int reg = mc->reg;
969 	unsigned int shift = mc->shift;
970 	unsigned int mask = 1 << shift;
971 	unsigned int invert = mc->invert != 0;
972 	unsigned int val;
973 
974 	val = snd_soc_component_read(component, reg);
975 	val &= mask;
976 
977 	if (shift != 0 && val != 0)
978 		val = val >> shift;
979 	ucontrol->value.enumerated.item[0] = val ^ invert;
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
984 
985 /**
986  * snd_soc_put_strobe - strobe put callback
987  * @kcontrol: mixer control
988  * @ucontrol: control element information
989  *
990  * Callback strobe a register bit to high then low (or the inverse)
991  * in one pass of a single mixer enum control.
992  *
993  * Returns 1 for success.
994  */
995 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
996 	struct snd_ctl_elem_value *ucontrol)
997 {
998 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
999 	struct soc_mixer_control *mc =
1000 		(struct soc_mixer_control *)kcontrol->private_value;
1001 	unsigned int reg = mc->reg;
1002 	unsigned int shift = mc->shift;
1003 	unsigned int mask = 1 << shift;
1004 	unsigned int invert = mc->invert != 0;
1005 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1006 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1007 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1008 	int err;
1009 
1010 	err = snd_soc_component_update_bits(component, reg, mask, val1);
1011 	if (err < 0)
1012 		return err;
1013 
1014 	return snd_soc_component_update_bits(component, reg, mask, val2);
1015 }
1016 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1017