xref: /linux/sound/soc/soc-core.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *         with code, comments and ideas from :-
9  *         Richard Purdie <richard@openedhand.com>
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  TODO:
17  *   o Add hw rules to enforce rates, etc.
18  *   o More testing with other codecs/machines.
19  *   o Add more codecs and platforms to ensure good API coverage.
20  *   o Support TDM on PCM and I2S
21  */
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38 
39 static DEFINE_MUTEX(pcm_mutex);
40 static DEFINE_MUTEX(io_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42 
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
46 
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
52 
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
55 
56 /*
57  * This is a timeout to do a DAPM powerdown after a stream is closed().
58  * It can be used to eliminate pops between different playback streams, e.g.
59  * between two audio tracks.
60  */
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
64 
65 /*
66  * This function forces any delayed work to be queued and run.
67  */
68 static int run_delayed_work(struct delayed_work *dwork)
69 {
70 	int ret;
71 
72 	/* cancel any work waiting to be queued. */
73 	ret = cancel_delayed_work(dwork);
74 
75 	/* if there was any work waiting then we run it now and
76 	 * wait for it's completion */
77 	if (ret) {
78 		schedule_delayed_work(dwork, 0);
79 		flush_scheduled_work();
80 	}
81 	return ret;
82 }
83 
84 #ifdef CONFIG_SND_SOC_AC97_BUS
85 /* unregister ac97 codec */
86 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 {
88 	if (codec->ac97->dev.bus)
89 		device_unregister(&codec->ac97->dev);
90 	return 0;
91 }
92 
93 /* stop no dev release warning */
94 static void soc_ac97_device_release(struct device *dev){}
95 
96 /* register ac97 codec to bus */
97 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 {
99 	int err;
100 
101 	codec->ac97->dev.bus = &ac97_bus_type;
102 	codec->ac97->dev.parent = codec->card->dev;
103 	codec->ac97->dev.release = soc_ac97_device_release;
104 
105 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
106 		     codec->card->number, 0, codec->name);
107 	err = device_register(&codec->ac97->dev);
108 	if (err < 0) {
109 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
110 		codec->ac97->dev.bus = NULL;
111 		return err;
112 	}
113 	return 0;
114 }
115 #endif
116 
117 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
118 {
119 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
120 	struct snd_soc_device *socdev = rtd->socdev;
121 	struct snd_soc_card *card = socdev->card;
122 	struct snd_soc_dai_link *machine = rtd->dai;
123 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
124 	struct snd_soc_dai *codec_dai = machine->codec_dai;
125 	int ret;
126 
127 	if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
128 	    machine->symmetric_rates) {
129 		dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
130 			machine->rate);
131 
132 		ret = snd_pcm_hw_constraint_minmax(substream->runtime,
133 						   SNDRV_PCM_HW_PARAM_RATE,
134 						   machine->rate,
135 						   machine->rate);
136 		if (ret < 0) {
137 			dev_err(card->dev,
138 				"Unable to apply rate symmetry constraint: %d\n", ret);
139 			return ret;
140 		}
141 	}
142 
143 	return 0;
144 }
145 
146 /*
147  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
148  * then initialized and any private data can be allocated. This also calls
149  * startup for the cpu DAI, platform, machine and codec DAI.
150  */
151 static int soc_pcm_open(struct snd_pcm_substream *substream)
152 {
153 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
154 	struct snd_soc_device *socdev = rtd->socdev;
155 	struct snd_soc_card *card = socdev->card;
156 	struct snd_pcm_runtime *runtime = substream->runtime;
157 	struct snd_soc_dai_link *machine = rtd->dai;
158 	struct snd_soc_platform *platform = card->platform;
159 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
160 	struct snd_soc_dai *codec_dai = machine->codec_dai;
161 	int ret = 0;
162 
163 	mutex_lock(&pcm_mutex);
164 
165 	/* startup the audio subsystem */
166 	if (cpu_dai->ops->startup) {
167 		ret = cpu_dai->ops->startup(substream, cpu_dai);
168 		if (ret < 0) {
169 			printk(KERN_ERR "asoc: can't open interface %s\n",
170 				cpu_dai->name);
171 			goto out;
172 		}
173 	}
174 
175 	if (platform->pcm_ops->open) {
176 		ret = platform->pcm_ops->open(substream);
177 		if (ret < 0) {
178 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
179 			goto platform_err;
180 		}
181 	}
182 
183 	if (codec_dai->ops->startup) {
184 		ret = codec_dai->ops->startup(substream, codec_dai);
185 		if (ret < 0) {
186 			printk(KERN_ERR "asoc: can't open codec %s\n",
187 				codec_dai->name);
188 			goto codec_dai_err;
189 		}
190 	}
191 
192 	if (machine->ops && machine->ops->startup) {
193 		ret = machine->ops->startup(substream);
194 		if (ret < 0) {
195 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
196 			goto machine_err;
197 		}
198 	}
199 
200 	/* Check that the codec and cpu DAI's are compatible */
201 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
202 		runtime->hw.rate_min =
203 			max(codec_dai->playback.rate_min,
204 			    cpu_dai->playback.rate_min);
205 		runtime->hw.rate_max =
206 			min(codec_dai->playback.rate_max,
207 			    cpu_dai->playback.rate_max);
208 		runtime->hw.channels_min =
209 			max(codec_dai->playback.channels_min,
210 				cpu_dai->playback.channels_min);
211 		runtime->hw.channels_max =
212 			min(codec_dai->playback.channels_max,
213 				cpu_dai->playback.channels_max);
214 		runtime->hw.formats =
215 			codec_dai->playback.formats & cpu_dai->playback.formats;
216 		runtime->hw.rates =
217 			codec_dai->playback.rates & cpu_dai->playback.rates;
218 	} else {
219 		runtime->hw.rate_min =
220 			max(codec_dai->capture.rate_min,
221 			    cpu_dai->capture.rate_min);
222 		runtime->hw.rate_max =
223 			min(codec_dai->capture.rate_max,
224 			    cpu_dai->capture.rate_max);
225 		runtime->hw.channels_min =
226 			max(codec_dai->capture.channels_min,
227 				cpu_dai->capture.channels_min);
228 		runtime->hw.channels_max =
229 			min(codec_dai->capture.channels_max,
230 				cpu_dai->capture.channels_max);
231 		runtime->hw.formats =
232 			codec_dai->capture.formats & cpu_dai->capture.formats;
233 		runtime->hw.rates =
234 			codec_dai->capture.rates & cpu_dai->capture.rates;
235 	}
236 
237 	snd_pcm_limit_hw_rates(runtime);
238 	if (!runtime->hw.rates) {
239 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
240 			codec_dai->name, cpu_dai->name);
241 		goto machine_err;
242 	}
243 	if (!runtime->hw.formats) {
244 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
245 			codec_dai->name, cpu_dai->name);
246 		goto machine_err;
247 	}
248 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
249 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
250 			codec_dai->name, cpu_dai->name);
251 		goto machine_err;
252 	}
253 
254 	/* Symmetry only applies if we've already got an active stream. */
255 	if (cpu_dai->active || codec_dai->active) {
256 		ret = soc_pcm_apply_symmetry(substream);
257 		if (ret != 0)
258 			goto machine_err;
259 	}
260 
261 	pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
262 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
263 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
264 		 runtime->hw.channels_max);
265 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
266 		 runtime->hw.rate_max);
267 
268 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
269 		cpu_dai->playback.active = codec_dai->playback.active = 1;
270 	else
271 		cpu_dai->capture.active = codec_dai->capture.active = 1;
272 	cpu_dai->active = codec_dai->active = 1;
273 	cpu_dai->runtime = runtime;
274 	card->codec->active++;
275 	mutex_unlock(&pcm_mutex);
276 	return 0;
277 
278 machine_err:
279 	if (machine->ops && machine->ops->shutdown)
280 		machine->ops->shutdown(substream);
281 
282 codec_dai_err:
283 	if (platform->pcm_ops->close)
284 		platform->pcm_ops->close(substream);
285 
286 platform_err:
287 	if (cpu_dai->ops->shutdown)
288 		cpu_dai->ops->shutdown(substream, cpu_dai);
289 out:
290 	mutex_unlock(&pcm_mutex);
291 	return ret;
292 }
293 
294 /*
295  * Power down the audio subsystem pmdown_time msecs after close is called.
296  * This is to ensure there are no pops or clicks in between any music tracks
297  * due to DAPM power cycling.
298  */
299 static void close_delayed_work(struct work_struct *work)
300 {
301 	struct snd_soc_card *card = container_of(work, struct snd_soc_card,
302 						 delayed_work.work);
303 	struct snd_soc_codec *codec = card->codec;
304 	struct snd_soc_dai *codec_dai;
305 	int i;
306 
307 	mutex_lock(&pcm_mutex);
308 	for (i = 0; i < codec->num_dai; i++) {
309 		codec_dai = &codec->dai[i];
310 
311 		pr_debug("pop wq checking: %s status: %s waiting: %s\n",
312 			 codec_dai->playback.stream_name,
313 			 codec_dai->playback.active ? "active" : "inactive",
314 			 codec_dai->pop_wait ? "yes" : "no");
315 
316 		/* are we waiting on this codec DAI stream */
317 		if (codec_dai->pop_wait == 1) {
318 			codec_dai->pop_wait = 0;
319 			snd_soc_dapm_stream_event(codec,
320 				codec_dai->playback.stream_name,
321 				SND_SOC_DAPM_STREAM_STOP);
322 		}
323 	}
324 	mutex_unlock(&pcm_mutex);
325 }
326 
327 /*
328  * Called by ALSA when a PCM substream is closed. Private data can be
329  * freed here. The cpu DAI, codec DAI, machine and platform are also
330  * shutdown.
331  */
332 static int soc_codec_close(struct snd_pcm_substream *substream)
333 {
334 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
335 	struct snd_soc_device *socdev = rtd->socdev;
336 	struct snd_soc_card *card = socdev->card;
337 	struct snd_soc_dai_link *machine = rtd->dai;
338 	struct snd_soc_platform *platform = card->platform;
339 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
340 	struct snd_soc_dai *codec_dai = machine->codec_dai;
341 	struct snd_soc_codec *codec = card->codec;
342 
343 	mutex_lock(&pcm_mutex);
344 
345 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 		cpu_dai->playback.active = codec_dai->playback.active = 0;
347 	else
348 		cpu_dai->capture.active = codec_dai->capture.active = 0;
349 
350 	if (codec_dai->playback.active == 0 &&
351 		codec_dai->capture.active == 0) {
352 		cpu_dai->active = codec_dai->active = 0;
353 	}
354 	codec->active--;
355 
356 	/* Muting the DAC suppresses artifacts caused during digital
357 	 * shutdown, for example from stopping clocks.
358 	 */
359 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
360 		snd_soc_dai_digital_mute(codec_dai, 1);
361 
362 	if (cpu_dai->ops->shutdown)
363 		cpu_dai->ops->shutdown(substream, cpu_dai);
364 
365 	if (codec_dai->ops->shutdown)
366 		codec_dai->ops->shutdown(substream, codec_dai);
367 
368 	if (machine->ops && machine->ops->shutdown)
369 		machine->ops->shutdown(substream);
370 
371 	if (platform->pcm_ops->close)
372 		platform->pcm_ops->close(substream);
373 	cpu_dai->runtime = NULL;
374 
375 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
376 		/* start delayed pop wq here for playback streams */
377 		codec_dai->pop_wait = 1;
378 		schedule_delayed_work(&card->delayed_work,
379 			msecs_to_jiffies(pmdown_time));
380 	} else {
381 		/* capture streams can be powered down now */
382 		snd_soc_dapm_stream_event(codec,
383 			codec_dai->capture.stream_name,
384 			SND_SOC_DAPM_STREAM_STOP);
385 	}
386 
387 	mutex_unlock(&pcm_mutex);
388 	return 0;
389 }
390 
391 /*
392  * Called by ALSA when the PCM substream is prepared, can set format, sample
393  * rate, etc.  This function is non atomic and can be called multiple times,
394  * it can refer to the runtime info.
395  */
396 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
397 {
398 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
399 	struct snd_soc_device *socdev = rtd->socdev;
400 	struct snd_soc_card *card = socdev->card;
401 	struct snd_soc_dai_link *machine = rtd->dai;
402 	struct snd_soc_platform *platform = card->platform;
403 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
404 	struct snd_soc_dai *codec_dai = machine->codec_dai;
405 	struct snd_soc_codec *codec = card->codec;
406 	int ret = 0;
407 
408 	mutex_lock(&pcm_mutex);
409 
410 	if (machine->ops && machine->ops->prepare) {
411 		ret = machine->ops->prepare(substream);
412 		if (ret < 0) {
413 			printk(KERN_ERR "asoc: machine prepare error\n");
414 			goto out;
415 		}
416 	}
417 
418 	if (platform->pcm_ops->prepare) {
419 		ret = platform->pcm_ops->prepare(substream);
420 		if (ret < 0) {
421 			printk(KERN_ERR "asoc: platform prepare error\n");
422 			goto out;
423 		}
424 	}
425 
426 	if (codec_dai->ops->prepare) {
427 		ret = codec_dai->ops->prepare(substream, codec_dai);
428 		if (ret < 0) {
429 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
430 			goto out;
431 		}
432 	}
433 
434 	if (cpu_dai->ops->prepare) {
435 		ret = cpu_dai->ops->prepare(substream, cpu_dai);
436 		if (ret < 0) {
437 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
438 			goto out;
439 		}
440 	}
441 
442 	/* cancel any delayed stream shutdown that is pending */
443 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
444 	    codec_dai->pop_wait) {
445 		codec_dai->pop_wait = 0;
446 		cancel_delayed_work(&card->delayed_work);
447 	}
448 
449 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
450 		snd_soc_dapm_stream_event(codec,
451 					  codec_dai->playback.stream_name,
452 					  SND_SOC_DAPM_STREAM_START);
453 	else
454 		snd_soc_dapm_stream_event(codec,
455 					  codec_dai->capture.stream_name,
456 					  SND_SOC_DAPM_STREAM_START);
457 
458 	snd_soc_dai_digital_mute(codec_dai, 0);
459 
460 out:
461 	mutex_unlock(&pcm_mutex);
462 	return ret;
463 }
464 
465 /*
466  * Called by ALSA when the hardware params are set by application. This
467  * function can also be called multiple times and can allocate buffers
468  * (using snd_pcm_lib_* ). It's non-atomic.
469  */
470 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
471 				struct snd_pcm_hw_params *params)
472 {
473 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
474 	struct snd_soc_device *socdev = rtd->socdev;
475 	struct snd_soc_dai_link *machine = rtd->dai;
476 	struct snd_soc_card *card = socdev->card;
477 	struct snd_soc_platform *platform = card->platform;
478 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
479 	struct snd_soc_dai *codec_dai = machine->codec_dai;
480 	int ret = 0;
481 
482 	mutex_lock(&pcm_mutex);
483 
484 	if (machine->ops && machine->ops->hw_params) {
485 		ret = machine->ops->hw_params(substream, params);
486 		if (ret < 0) {
487 			printk(KERN_ERR "asoc: machine hw_params failed\n");
488 			goto out;
489 		}
490 	}
491 
492 	if (codec_dai->ops->hw_params) {
493 		ret = codec_dai->ops->hw_params(substream, params, codec_dai);
494 		if (ret < 0) {
495 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
496 				codec_dai->name);
497 			goto codec_err;
498 		}
499 	}
500 
501 	if (cpu_dai->ops->hw_params) {
502 		ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
503 		if (ret < 0) {
504 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
505 				cpu_dai->name);
506 			goto interface_err;
507 		}
508 	}
509 
510 	if (platform->pcm_ops->hw_params) {
511 		ret = platform->pcm_ops->hw_params(substream, params);
512 		if (ret < 0) {
513 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
514 				platform->name);
515 			goto platform_err;
516 		}
517 	}
518 
519 	machine->rate = params_rate(params);
520 
521 out:
522 	mutex_unlock(&pcm_mutex);
523 	return ret;
524 
525 platform_err:
526 	if (cpu_dai->ops->hw_free)
527 		cpu_dai->ops->hw_free(substream, cpu_dai);
528 
529 interface_err:
530 	if (codec_dai->ops->hw_free)
531 		codec_dai->ops->hw_free(substream, codec_dai);
532 
533 codec_err:
534 	if (machine->ops && machine->ops->hw_free)
535 		machine->ops->hw_free(substream);
536 
537 	mutex_unlock(&pcm_mutex);
538 	return ret;
539 }
540 
541 /*
542  * Free's resources allocated by hw_params, can be called multiple times
543  */
544 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
545 {
546 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
547 	struct snd_soc_device *socdev = rtd->socdev;
548 	struct snd_soc_dai_link *machine = rtd->dai;
549 	struct snd_soc_card *card = socdev->card;
550 	struct snd_soc_platform *platform = card->platform;
551 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
552 	struct snd_soc_dai *codec_dai = machine->codec_dai;
553 	struct snd_soc_codec *codec = card->codec;
554 
555 	mutex_lock(&pcm_mutex);
556 
557 	/* apply codec digital mute */
558 	if (!codec->active)
559 		snd_soc_dai_digital_mute(codec_dai, 1);
560 
561 	/* free any machine hw params */
562 	if (machine->ops && machine->ops->hw_free)
563 		machine->ops->hw_free(substream);
564 
565 	/* free any DMA resources */
566 	if (platform->pcm_ops->hw_free)
567 		platform->pcm_ops->hw_free(substream);
568 
569 	/* now free hw params for the DAI's  */
570 	if (codec_dai->ops->hw_free)
571 		codec_dai->ops->hw_free(substream, codec_dai);
572 
573 	if (cpu_dai->ops->hw_free)
574 		cpu_dai->ops->hw_free(substream, cpu_dai);
575 
576 	mutex_unlock(&pcm_mutex);
577 	return 0;
578 }
579 
580 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
583 	struct snd_soc_device *socdev = rtd->socdev;
584 	struct snd_soc_card *card= socdev->card;
585 	struct snd_soc_dai_link *machine = rtd->dai;
586 	struct snd_soc_platform *platform = card->platform;
587 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
588 	struct snd_soc_dai *codec_dai = machine->codec_dai;
589 	int ret;
590 
591 	if (codec_dai->ops->trigger) {
592 		ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
593 		if (ret < 0)
594 			return ret;
595 	}
596 
597 	if (platform->pcm_ops->trigger) {
598 		ret = platform->pcm_ops->trigger(substream, cmd);
599 		if (ret < 0)
600 			return ret;
601 	}
602 
603 	if (cpu_dai->ops->trigger) {
604 		ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
605 		if (ret < 0)
606 			return ret;
607 	}
608 	return 0;
609 }
610 
611 /* ASoC PCM operations */
612 static struct snd_pcm_ops soc_pcm_ops = {
613 	.open		= soc_pcm_open,
614 	.close		= soc_codec_close,
615 	.hw_params	= soc_pcm_hw_params,
616 	.hw_free	= soc_pcm_hw_free,
617 	.prepare	= soc_pcm_prepare,
618 	.trigger	= soc_pcm_trigger,
619 };
620 
621 #ifdef CONFIG_PM
622 /* powers down audio subsystem for suspend */
623 static int soc_suspend(struct device *dev)
624 {
625 	struct platform_device *pdev = to_platform_device(dev);
626 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
627 	struct snd_soc_card *card = socdev->card;
628 	struct snd_soc_platform *platform = card->platform;
629 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
630 	struct snd_soc_codec *codec = card->codec;
631 	int i;
632 
633 	/* If the initialization of this soc device failed, there is no codec
634 	 * associated with it. Just bail out in this case.
635 	 */
636 	if (!codec)
637 		return 0;
638 
639 	/* Due to the resume being scheduled into a workqueue we could
640 	* suspend before that's finished - wait for it to complete.
641 	 */
642 	snd_power_lock(codec->card);
643 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
644 	snd_power_unlock(codec->card);
645 
646 	/* we're going to block userspace touching us until resume completes */
647 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
648 
649 	/* mute any active DAC's */
650 	for (i = 0; i < card->num_links; i++) {
651 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
652 		if (dai->ops->digital_mute && dai->playback.active)
653 			dai->ops->digital_mute(dai, 1);
654 	}
655 
656 	/* suspend all pcms */
657 	for (i = 0; i < card->num_links; i++)
658 		snd_pcm_suspend_all(card->dai_link[i].pcm);
659 
660 	if (card->suspend_pre)
661 		card->suspend_pre(pdev, PMSG_SUSPEND);
662 
663 	for (i = 0; i < card->num_links; i++) {
664 		struct snd_soc_dai  *cpu_dai = card->dai_link[i].cpu_dai;
665 		if (cpu_dai->suspend && !cpu_dai->ac97_control)
666 			cpu_dai->suspend(cpu_dai);
667 		if (platform->suspend)
668 			platform->suspend(cpu_dai);
669 	}
670 
671 	/* close any waiting streams and save state */
672 	run_delayed_work(&card->delayed_work);
673 	codec->suspend_bias_level = codec->bias_level;
674 
675 	for (i = 0; i < codec->num_dai; i++) {
676 		char *stream = codec->dai[i].playback.stream_name;
677 		if (stream != NULL)
678 			snd_soc_dapm_stream_event(codec, stream,
679 				SND_SOC_DAPM_STREAM_SUSPEND);
680 		stream = codec->dai[i].capture.stream_name;
681 		if (stream != NULL)
682 			snd_soc_dapm_stream_event(codec, stream,
683 				SND_SOC_DAPM_STREAM_SUSPEND);
684 	}
685 
686 	if (codec_dev->suspend)
687 		codec_dev->suspend(pdev, PMSG_SUSPEND);
688 
689 	for (i = 0; i < card->num_links; i++) {
690 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
691 		if (cpu_dai->suspend && cpu_dai->ac97_control)
692 			cpu_dai->suspend(cpu_dai);
693 	}
694 
695 	if (card->suspend_post)
696 		card->suspend_post(pdev, PMSG_SUSPEND);
697 
698 	return 0;
699 }
700 
701 /* deferred resume work, so resume can complete before we finished
702  * setting our codec back up, which can be very slow on I2C
703  */
704 static void soc_resume_deferred(struct work_struct *work)
705 {
706 	struct snd_soc_card *card = container_of(work,
707 						 struct snd_soc_card,
708 						 deferred_resume_work);
709 	struct snd_soc_device *socdev = card->socdev;
710 	struct snd_soc_platform *platform = card->platform;
711 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
712 	struct snd_soc_codec *codec = card->codec;
713 	struct platform_device *pdev = to_platform_device(socdev->dev);
714 	int i;
715 
716 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
717 	 * so userspace apps are blocked from touching us
718 	 */
719 
720 	dev_dbg(socdev->dev, "starting resume work\n");
721 
722 	if (card->resume_pre)
723 		card->resume_pre(pdev);
724 
725 	for (i = 0; i < card->num_links; i++) {
726 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
727 		if (cpu_dai->resume && cpu_dai->ac97_control)
728 			cpu_dai->resume(cpu_dai);
729 	}
730 
731 	if (codec_dev->resume)
732 		codec_dev->resume(pdev);
733 
734 	for (i = 0; i < codec->num_dai; i++) {
735 		char *stream = codec->dai[i].playback.stream_name;
736 		if (stream != NULL)
737 			snd_soc_dapm_stream_event(codec, stream,
738 				SND_SOC_DAPM_STREAM_RESUME);
739 		stream = codec->dai[i].capture.stream_name;
740 		if (stream != NULL)
741 			snd_soc_dapm_stream_event(codec, stream,
742 				SND_SOC_DAPM_STREAM_RESUME);
743 	}
744 
745 	/* unmute any active DACs */
746 	for (i = 0; i < card->num_links; i++) {
747 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
748 		if (dai->ops->digital_mute && dai->playback.active)
749 			dai->ops->digital_mute(dai, 0);
750 	}
751 
752 	for (i = 0; i < card->num_links; i++) {
753 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
754 		if (cpu_dai->resume && !cpu_dai->ac97_control)
755 			cpu_dai->resume(cpu_dai);
756 		if (platform->resume)
757 			platform->resume(cpu_dai);
758 	}
759 
760 	if (card->resume_post)
761 		card->resume_post(pdev);
762 
763 	dev_dbg(socdev->dev, "resume work completed\n");
764 
765 	/* userspace can access us now we are back as we were before */
766 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
767 }
768 
769 /* powers up audio subsystem after a suspend */
770 static int soc_resume(struct device *dev)
771 {
772 	struct platform_device *pdev = to_platform_device(dev);
773 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 	struct snd_soc_card *card = socdev->card;
775 	struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
776 
777 	/* AC97 devices might have other drivers hanging off them so
778 	 * need to resume immediately.  Other drivers don't have that
779 	 * problem and may take a substantial amount of time to resume
780 	 * due to I/O costs and anti-pop so handle them out of line.
781 	 */
782 	if (cpu_dai->ac97_control) {
783 		dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
784 		soc_resume_deferred(&card->deferred_resume_work);
785 	} else {
786 		dev_dbg(socdev->dev, "Scheduling resume work\n");
787 		if (!schedule_work(&card->deferred_resume_work))
788 			dev_err(socdev->dev, "resume work item may be lost\n");
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * snd_soc_suspend_device: Notify core of device suspend
796  *
797  * @dev: Device being suspended.
798  *
799  * In order to ensure that the entire audio subsystem is suspended in a
800  * coordinated fashion ASoC devices should suspend themselves when
801  * called by ASoC.  When the standard kernel suspend process asks the
802  * device to suspend it should call this function to initiate a suspend
803  * of the entire ASoC card.
804  *
805  * \note Currently this function is stubbed out.
806  */
807 int snd_soc_suspend_device(struct device *dev)
808 {
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_suspend_device);
812 
813 /**
814  * snd_soc_resume_device: Notify core of device resume
815  *
816  * @dev: Device being resumed.
817  *
818  * In order to ensure that the entire audio subsystem is resumed in a
819  * coordinated fashion ASoC devices should resume themselves when called
820  * by ASoC.  When the standard kernel resume process asks the device
821  * to resume it should call this function.  Once all the components of
822  * the card have notified that they are ready to be resumed the card
823  * will be resumed.
824  *
825  * \note Currently this function is stubbed out.
826  */
827 int snd_soc_resume_device(struct device *dev)
828 {
829 	return 0;
830 }
831 EXPORT_SYMBOL_GPL(snd_soc_resume_device);
832 #else
833 #define soc_suspend	NULL
834 #define soc_resume	NULL
835 #endif
836 
837 static struct snd_soc_dai_ops null_dai_ops = {
838 };
839 
840 static void snd_soc_instantiate_card(struct snd_soc_card *card)
841 {
842 	struct platform_device *pdev = container_of(card->dev,
843 						    struct platform_device,
844 						    dev);
845 	struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
846 	struct snd_soc_platform *platform;
847 	struct snd_soc_dai *dai;
848 	int i, found, ret, ac97;
849 
850 	if (card->instantiated)
851 		return;
852 
853 	found = 0;
854 	list_for_each_entry(platform, &platform_list, list)
855 		if (card->platform == platform) {
856 			found = 1;
857 			break;
858 		}
859 	if (!found) {
860 		dev_dbg(card->dev, "Platform %s not registered\n",
861 			card->platform->name);
862 		return;
863 	}
864 
865 	ac97 = 0;
866 	for (i = 0; i < card->num_links; i++) {
867 		found = 0;
868 		list_for_each_entry(dai, &dai_list, list)
869 			if (card->dai_link[i].cpu_dai == dai) {
870 				found = 1;
871 				break;
872 			}
873 		if (!found) {
874 			dev_dbg(card->dev, "DAI %s not registered\n",
875 				card->dai_link[i].cpu_dai->name);
876 			return;
877 		}
878 
879 		if (card->dai_link[i].cpu_dai->ac97_control)
880 			ac97 = 1;
881 	}
882 
883 	for (i = 0; i < card->num_links; i++) {
884 		if (!card->dai_link[i].codec_dai->ops)
885 			card->dai_link[i].codec_dai->ops = &null_dai_ops;
886 	}
887 
888 	/* If we have AC97 in the system then don't wait for the
889 	 * codec.  This will need revisiting if we have to handle
890 	 * systems with mixed AC97 and non-AC97 parts.  Only check for
891 	 * DAIs currently; we can't do this per link since some AC97
892 	 * codecs have non-AC97 DAIs.
893 	 */
894 	if (!ac97)
895 		for (i = 0; i < card->num_links; i++) {
896 			found = 0;
897 			list_for_each_entry(dai, &dai_list, list)
898 				if (card->dai_link[i].codec_dai == dai) {
899 					found = 1;
900 					break;
901 				}
902 			if (!found) {
903 				dev_dbg(card->dev, "DAI %s not registered\n",
904 					card->dai_link[i].codec_dai->name);
905 				return;
906 			}
907 		}
908 
909 	/* Note that we do not current check for codec components */
910 
911 	dev_dbg(card->dev, "All components present, instantiating\n");
912 
913 	/* Found everything, bring it up */
914 	if (card->probe) {
915 		ret = card->probe(pdev);
916 		if (ret < 0)
917 			return;
918 	}
919 
920 	for (i = 0; i < card->num_links; i++) {
921 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
922 		if (cpu_dai->probe) {
923 			ret = cpu_dai->probe(pdev, cpu_dai);
924 			if (ret < 0)
925 				goto cpu_dai_err;
926 		}
927 	}
928 
929 	if (codec_dev->probe) {
930 		ret = codec_dev->probe(pdev);
931 		if (ret < 0)
932 			goto cpu_dai_err;
933 	}
934 
935 	if (platform->probe) {
936 		ret = platform->probe(pdev);
937 		if (ret < 0)
938 			goto platform_err;
939 	}
940 
941 	/* DAPM stream work */
942 	INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
943 #ifdef CONFIG_PM
944 	/* deferred resume work */
945 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
946 #endif
947 
948 	card->instantiated = 1;
949 
950 	return;
951 
952 platform_err:
953 	if (codec_dev->remove)
954 		codec_dev->remove(pdev);
955 
956 cpu_dai_err:
957 	for (i--; i >= 0; i--) {
958 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
959 		if (cpu_dai->remove)
960 			cpu_dai->remove(pdev, cpu_dai);
961 	}
962 
963 	if (card->remove)
964 		card->remove(pdev);
965 }
966 
967 /*
968  * Attempt to initialise any uninitalised cards.  Must be called with
969  * client_mutex.
970  */
971 static void snd_soc_instantiate_cards(void)
972 {
973 	struct snd_soc_card *card;
974 	list_for_each_entry(card, &card_list, list)
975 		snd_soc_instantiate_card(card);
976 }
977 
978 /* probes a new socdev */
979 static int soc_probe(struct platform_device *pdev)
980 {
981 	int ret = 0;
982 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
983 	struct snd_soc_card *card = socdev->card;
984 
985 	/* Bodge while we push things out of socdev */
986 	card->socdev = socdev;
987 
988 	/* Bodge while we unpick instantiation */
989 	card->dev = &pdev->dev;
990 	ret = snd_soc_register_card(card);
991 	if (ret != 0) {
992 		dev_err(&pdev->dev, "Failed to register card\n");
993 		return ret;
994 	}
995 
996 	return 0;
997 }
998 
999 /* removes a socdev */
1000 static int soc_remove(struct platform_device *pdev)
1001 {
1002 	int i;
1003 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1004 	struct snd_soc_card *card = socdev->card;
1005 	struct snd_soc_platform *platform = card->platform;
1006 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1007 
1008 	if (!card->instantiated)
1009 		return 0;
1010 
1011 	run_delayed_work(&card->delayed_work);
1012 
1013 	if (platform->remove)
1014 		platform->remove(pdev);
1015 
1016 	if (codec_dev->remove)
1017 		codec_dev->remove(pdev);
1018 
1019 	for (i = 0; i < card->num_links; i++) {
1020 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1021 		if (cpu_dai->remove)
1022 			cpu_dai->remove(pdev, cpu_dai);
1023 	}
1024 
1025 	if (card->remove)
1026 		card->remove(pdev);
1027 
1028 	snd_soc_unregister_card(card);
1029 
1030 	return 0;
1031 }
1032 
1033 static int soc_poweroff(struct device *dev)
1034 {
1035 	struct platform_device *pdev = to_platform_device(dev);
1036 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1037 	struct snd_soc_card *card = socdev->card;
1038 
1039 	if (!card->instantiated)
1040 		return 0;
1041 
1042 	/* Flush out pmdown_time work - we actually do want to run it
1043 	 * now, we're shutting down so no imminent restart. */
1044 	run_delayed_work(&card->delayed_work);
1045 
1046 	snd_soc_dapm_shutdown(socdev);
1047 
1048 	return 0;
1049 }
1050 
1051 static struct dev_pm_ops soc_pm_ops = {
1052 	.suspend = soc_suspend,
1053 	.resume = soc_resume,
1054 	.poweroff = soc_poweroff,
1055 };
1056 
1057 /* ASoC platform driver */
1058 static struct platform_driver soc_driver = {
1059 	.driver		= {
1060 		.name		= "soc-audio",
1061 		.owner		= THIS_MODULE,
1062 		.pm		= &soc_pm_ops,
1063 	},
1064 	.probe		= soc_probe,
1065 	.remove		= soc_remove,
1066 };
1067 
1068 /* create a new pcm */
1069 static int soc_new_pcm(struct snd_soc_device *socdev,
1070 	struct snd_soc_dai_link *dai_link, int num)
1071 {
1072 	struct snd_soc_card *card = socdev->card;
1073 	struct snd_soc_codec *codec = card->codec;
1074 	struct snd_soc_platform *platform = card->platform;
1075 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1076 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1077 	struct snd_soc_pcm_runtime *rtd;
1078 	struct snd_pcm *pcm;
1079 	char new_name[64];
1080 	int ret = 0, playback = 0, capture = 0;
1081 
1082 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1083 	if (rtd == NULL)
1084 		return -ENOMEM;
1085 
1086 	rtd->dai = dai_link;
1087 	rtd->socdev = socdev;
1088 	codec_dai->codec = card->codec;
1089 
1090 	/* check client and interface hw capabilities */
1091 	sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1092 		num);
1093 
1094 	if (codec_dai->playback.channels_min)
1095 		playback = 1;
1096 	if (codec_dai->capture.channels_min)
1097 		capture = 1;
1098 
1099 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1100 		capture, &pcm);
1101 	if (ret < 0) {
1102 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1103 			codec->name);
1104 		kfree(rtd);
1105 		return ret;
1106 	}
1107 
1108 	dai_link->pcm = pcm;
1109 	pcm->private_data = rtd;
1110 	soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1111 	soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1112 	soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1113 	soc_pcm_ops.copy = platform->pcm_ops->copy;
1114 	soc_pcm_ops.silence = platform->pcm_ops->silence;
1115 	soc_pcm_ops.ack = platform->pcm_ops->ack;
1116 	soc_pcm_ops.page = platform->pcm_ops->page;
1117 
1118 	if (playback)
1119 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1120 
1121 	if (capture)
1122 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1123 
1124 	ret = platform->pcm_new(codec->card, codec_dai, pcm);
1125 	if (ret < 0) {
1126 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1127 		kfree(rtd);
1128 		return ret;
1129 	}
1130 
1131 	pcm->private_free = platform->pcm_free;
1132 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1133 		cpu_dai->name);
1134 	return ret;
1135 }
1136 
1137 /**
1138  * snd_soc_codec_volatile_register: Report if a register is volatile.
1139  *
1140  * @codec: CODEC to query.
1141  * @reg: Register to query.
1142  *
1143  * Boolean function indiciating if a CODEC register is volatile.
1144  */
1145 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1146 {
1147 	if (codec->volatile_register)
1148 		return codec->volatile_register(reg);
1149 	else
1150 		return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1153 
1154 /* codec register dump */
1155 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1156 {
1157 	int i, step = 1, count = 0;
1158 
1159 	if (!codec->reg_cache_size)
1160 		return 0;
1161 
1162 	if (codec->reg_cache_step)
1163 		step = codec->reg_cache_step;
1164 
1165 	count += sprintf(buf, "%s registers\n", codec->name);
1166 	for (i = 0; i < codec->reg_cache_size; i += step) {
1167 		if (codec->readable_register && !codec->readable_register(i))
1168 			continue;
1169 
1170 		count += sprintf(buf + count, "%2x: ", i);
1171 		if (count >= PAGE_SIZE - 1)
1172 			break;
1173 
1174 		if (codec->display_register)
1175 			count += codec->display_register(codec, buf + count,
1176 							 PAGE_SIZE - count, i);
1177 		else
1178 			count += snprintf(buf + count, PAGE_SIZE - count,
1179 					  "%4x", codec->read(codec, i));
1180 
1181 		if (count >= PAGE_SIZE - 1)
1182 			break;
1183 
1184 		count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1185 		if (count >= PAGE_SIZE - 1)
1186 			break;
1187 	}
1188 
1189 	/* Truncate count; min() would cause a warning */
1190 	if (count >= PAGE_SIZE)
1191 		count = PAGE_SIZE - 1;
1192 
1193 	return count;
1194 }
1195 static ssize_t codec_reg_show(struct device *dev,
1196 	struct device_attribute *attr, char *buf)
1197 {
1198 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
1199 	return soc_codec_reg_show(devdata->card->codec, buf);
1200 }
1201 
1202 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1203 
1204 #ifdef CONFIG_DEBUG_FS
1205 static int codec_reg_open_file(struct inode *inode, struct file *file)
1206 {
1207 	file->private_data = inode->i_private;
1208 	return 0;
1209 }
1210 
1211 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1212 			       size_t count, loff_t *ppos)
1213 {
1214 	ssize_t ret;
1215 	struct snd_soc_codec *codec = file->private_data;
1216 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1217 	if (!buf)
1218 		return -ENOMEM;
1219 	ret = soc_codec_reg_show(codec, buf);
1220 	if (ret >= 0)
1221 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1222 	kfree(buf);
1223 	return ret;
1224 }
1225 
1226 static ssize_t codec_reg_write_file(struct file *file,
1227 		const char __user *user_buf, size_t count, loff_t *ppos)
1228 {
1229 	char buf[32];
1230 	int buf_size;
1231 	char *start = buf;
1232 	unsigned long reg, value;
1233 	int step = 1;
1234 	struct snd_soc_codec *codec = file->private_data;
1235 
1236 	buf_size = min(count, (sizeof(buf)-1));
1237 	if (copy_from_user(buf, user_buf, buf_size))
1238 		return -EFAULT;
1239 	buf[buf_size] = 0;
1240 
1241 	if (codec->reg_cache_step)
1242 		step = codec->reg_cache_step;
1243 
1244 	while (*start == ' ')
1245 		start++;
1246 	reg = simple_strtoul(start, &start, 16);
1247 	if ((reg >= codec->reg_cache_size) || (reg % step))
1248 		return -EINVAL;
1249 	while (*start == ' ')
1250 		start++;
1251 	if (strict_strtoul(start, 16, &value))
1252 		return -EINVAL;
1253 	codec->write(codec, reg, value);
1254 	return buf_size;
1255 }
1256 
1257 static const struct file_operations codec_reg_fops = {
1258 	.open = codec_reg_open_file,
1259 	.read = codec_reg_read_file,
1260 	.write = codec_reg_write_file,
1261 };
1262 
1263 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1264 {
1265 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1266 						 debugfs_root, codec,
1267 						 &codec_reg_fops);
1268 	if (!codec->debugfs_reg)
1269 		printk(KERN_WARNING
1270 		       "ASoC: Failed to create codec register debugfs file\n");
1271 
1272 	codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1273 						     debugfs_root,
1274 						     &codec->pop_time);
1275 	if (!codec->debugfs_pop_time)
1276 		printk(KERN_WARNING
1277 		       "Failed to create pop time debugfs file\n");
1278 
1279 	codec->debugfs_dapm = debugfs_create_dir("dapm", debugfs_root);
1280 	if (!codec->debugfs_dapm)
1281 		printk(KERN_WARNING
1282 		       "Failed to create DAPM debugfs directory\n");
1283 
1284 	snd_soc_dapm_debugfs_init(codec);
1285 }
1286 
1287 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1288 {
1289 	debugfs_remove_recursive(codec->debugfs_dapm);
1290 	debugfs_remove(codec->debugfs_pop_time);
1291 	debugfs_remove(codec->debugfs_reg);
1292 }
1293 
1294 #else
1295 
1296 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1297 {
1298 }
1299 
1300 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1301 {
1302 }
1303 #endif
1304 
1305 /**
1306  * snd_soc_new_ac97_codec - initailise AC97 device
1307  * @codec: audio codec
1308  * @ops: AC97 bus operations
1309  * @num: AC97 codec number
1310  *
1311  * Initialises AC97 codec resources for use by ad-hoc devices only.
1312  */
1313 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1314 	struct snd_ac97_bus_ops *ops, int num)
1315 {
1316 	mutex_lock(&codec->mutex);
1317 
1318 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1319 	if (codec->ac97 == NULL) {
1320 		mutex_unlock(&codec->mutex);
1321 		return -ENOMEM;
1322 	}
1323 
1324 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1325 	if (codec->ac97->bus == NULL) {
1326 		kfree(codec->ac97);
1327 		codec->ac97 = NULL;
1328 		mutex_unlock(&codec->mutex);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	codec->ac97->bus->ops = ops;
1333 	codec->ac97->num = num;
1334 	mutex_unlock(&codec->mutex);
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1338 
1339 /**
1340  * snd_soc_free_ac97_codec - free AC97 codec device
1341  * @codec: audio codec
1342  *
1343  * Frees AC97 codec device resources.
1344  */
1345 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1346 {
1347 	mutex_lock(&codec->mutex);
1348 	kfree(codec->ac97->bus);
1349 	kfree(codec->ac97);
1350 	codec->ac97 = NULL;
1351 	mutex_unlock(&codec->mutex);
1352 }
1353 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1354 
1355 /**
1356  * snd_soc_update_bits - update codec register bits
1357  * @codec: audio codec
1358  * @reg: codec register
1359  * @mask: register mask
1360  * @value: new value
1361  *
1362  * Writes new register value.
1363  *
1364  * Returns 1 for change else 0.
1365  */
1366 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1367 				unsigned int mask, unsigned int value)
1368 {
1369 	int change;
1370 	unsigned int old, new;
1371 
1372 	mutex_lock(&io_mutex);
1373 	old = snd_soc_read(codec, reg);
1374 	new = (old & ~mask) | value;
1375 	change = old != new;
1376 	if (change)
1377 		snd_soc_write(codec, reg, new);
1378 
1379 	mutex_unlock(&io_mutex);
1380 	return change;
1381 }
1382 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1383 
1384 /**
1385  * snd_soc_test_bits - test register for change
1386  * @codec: audio codec
1387  * @reg: codec register
1388  * @mask: register mask
1389  * @value: new value
1390  *
1391  * Tests a register with a new value and checks if the new value is
1392  * different from the old value.
1393  *
1394  * Returns 1 for change else 0.
1395  */
1396 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1397 				unsigned int mask, unsigned int value)
1398 {
1399 	int change;
1400 	unsigned int old, new;
1401 
1402 	mutex_lock(&io_mutex);
1403 	old = snd_soc_read(codec, reg);
1404 	new = (old & ~mask) | value;
1405 	change = old != new;
1406 	mutex_unlock(&io_mutex);
1407 
1408 	return change;
1409 }
1410 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1411 
1412 /**
1413  * snd_soc_new_pcms - create new sound card and pcms
1414  * @socdev: the SoC audio device
1415  * @idx: ALSA card index
1416  * @xid: card identification
1417  *
1418  * Create a new sound card based upon the codec and interface pcms.
1419  *
1420  * Returns 0 for success, else error.
1421  */
1422 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1423 {
1424 	struct snd_soc_card *card = socdev->card;
1425 	struct snd_soc_codec *codec = card->codec;
1426 	int ret, i;
1427 
1428 	mutex_lock(&codec->mutex);
1429 
1430 	/* register a sound card */
1431 	ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1432 	if (ret < 0) {
1433 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1434 			codec->name);
1435 		mutex_unlock(&codec->mutex);
1436 		return ret;
1437 	}
1438 
1439 	codec->socdev = socdev;
1440 	codec->card->dev = socdev->dev;
1441 	codec->card->private_data = codec;
1442 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1443 
1444 	/* create the pcms */
1445 	for (i = 0; i < card->num_links; i++) {
1446 		ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1447 		if (ret < 0) {
1448 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1449 				card->dai_link[i].stream_name);
1450 			mutex_unlock(&codec->mutex);
1451 			return ret;
1452 		}
1453 	}
1454 
1455 	mutex_unlock(&codec->mutex);
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1459 
1460 /**
1461  * snd_soc_init_card - register sound card
1462  * @socdev: the SoC audio device
1463  *
1464  * Register a SoC sound card. Also registers an AC97 device if the
1465  * codec is AC97 for ad hoc devices.
1466  *
1467  * Returns 0 for success, else error.
1468  */
1469 int snd_soc_init_card(struct snd_soc_device *socdev)
1470 {
1471 	struct snd_soc_card *card = socdev->card;
1472 	struct snd_soc_codec *codec = card->codec;
1473 	int ret = 0, i, ac97 = 0, err = 0;
1474 
1475 	for (i = 0; i < card->num_links; i++) {
1476 		if (card->dai_link[i].init) {
1477 			err = card->dai_link[i].init(codec);
1478 			if (err < 0) {
1479 				printk(KERN_ERR "asoc: failed to init %s\n",
1480 					card->dai_link[i].stream_name);
1481 				continue;
1482 			}
1483 		}
1484 		if (card->dai_link[i].codec_dai->ac97_control) {
1485 			ac97 = 1;
1486 			snd_ac97_dev_add_pdata(codec->ac97,
1487 				card->dai_link[i].cpu_dai->ac97_pdata);
1488 		}
1489 	}
1490 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1491 		 "%s",  card->name);
1492 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1493 		 "%s (%s)", card->name, codec->name);
1494 
1495 	/* Make sure all DAPM widgets are instantiated */
1496 	snd_soc_dapm_new_widgets(codec);
1497 
1498 	ret = snd_card_register(codec->card);
1499 	if (ret < 0) {
1500 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1501 				codec->name);
1502 		goto out;
1503 	}
1504 
1505 	mutex_lock(&codec->mutex);
1506 #ifdef CONFIG_SND_SOC_AC97_BUS
1507 	/* Only instantiate AC97 if not already done by the adaptor
1508 	 * for the generic AC97 subsystem.
1509 	 */
1510 	if (ac97 && strcmp(codec->name, "AC97") != 0) {
1511 		ret = soc_ac97_dev_register(codec);
1512 		if (ret < 0) {
1513 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1514 			snd_card_free(codec->card);
1515 			mutex_unlock(&codec->mutex);
1516 			goto out;
1517 		}
1518 	}
1519 #endif
1520 
1521 	err = snd_soc_dapm_sys_add(socdev->dev);
1522 	if (err < 0)
1523 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1524 
1525 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1526 	if (err < 0)
1527 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1528 
1529 	soc_init_codec_debugfs(codec);
1530 	mutex_unlock(&codec->mutex);
1531 
1532 out:
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1536 
1537 /**
1538  * snd_soc_free_pcms - free sound card and pcms
1539  * @socdev: the SoC audio device
1540  *
1541  * Frees sound card and pcms associated with the socdev.
1542  * Also unregister the codec if it is an AC97 device.
1543  */
1544 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1545 {
1546 	struct snd_soc_codec *codec = socdev->card->codec;
1547 #ifdef CONFIG_SND_SOC_AC97_BUS
1548 	struct snd_soc_dai *codec_dai;
1549 	int i;
1550 #endif
1551 
1552 	mutex_lock(&codec->mutex);
1553 	soc_cleanup_codec_debugfs(codec);
1554 #ifdef CONFIG_SND_SOC_AC97_BUS
1555 	for (i = 0; i < codec->num_dai; i++) {
1556 		codec_dai = &codec->dai[i];
1557 		if (codec_dai->ac97_control && codec->ac97 &&
1558 		    strcmp(codec->name, "AC97") != 0) {
1559 			soc_ac97_dev_unregister(codec);
1560 			goto free_card;
1561 		}
1562 	}
1563 free_card:
1564 #endif
1565 
1566 	if (codec->card)
1567 		snd_card_free(codec->card);
1568 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1569 	mutex_unlock(&codec->mutex);
1570 }
1571 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1572 
1573 /**
1574  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1575  * @substream: the pcm substream
1576  * @hw: the hardware parameters
1577  *
1578  * Sets the substream runtime hardware parameters.
1579  */
1580 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1581 	const struct snd_pcm_hardware *hw)
1582 {
1583 	struct snd_pcm_runtime *runtime = substream->runtime;
1584 	runtime->hw.info = hw->info;
1585 	runtime->hw.formats = hw->formats;
1586 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1587 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1588 	runtime->hw.periods_min = hw->periods_min;
1589 	runtime->hw.periods_max = hw->periods_max;
1590 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1591 	runtime->hw.fifo_size = hw->fifo_size;
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1595 
1596 /**
1597  * snd_soc_cnew - create new control
1598  * @_template: control template
1599  * @data: control private data
1600  * @long_name: control long name
1601  *
1602  * Create a new mixer control from a template control.
1603  *
1604  * Returns 0 for success, else error.
1605  */
1606 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1607 	void *data, char *long_name)
1608 {
1609 	struct snd_kcontrol_new template;
1610 
1611 	memcpy(&template, _template, sizeof(template));
1612 	if (long_name)
1613 		template.name = long_name;
1614 	template.index = 0;
1615 
1616 	return snd_ctl_new1(&template, data);
1617 }
1618 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1619 
1620 /**
1621  * snd_soc_add_controls - add an array of controls to a codec.
1622  * Convienience function to add a list of controls. Many codecs were
1623  * duplicating this code.
1624  *
1625  * @codec: codec to add controls to
1626  * @controls: array of controls to add
1627  * @num_controls: number of elements in the array
1628  *
1629  * Return 0 for success, else error.
1630  */
1631 int snd_soc_add_controls(struct snd_soc_codec *codec,
1632 	const struct snd_kcontrol_new *controls, int num_controls)
1633 {
1634 	struct snd_card *card = codec->card;
1635 	int err, i;
1636 
1637 	for (i = 0; i < num_controls; i++) {
1638 		const struct snd_kcontrol_new *control = &controls[i];
1639 		err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1640 		if (err < 0) {
1641 			dev_err(codec->dev, "%s: Failed to add %s\n",
1642 				codec->name, control->name);
1643 			return err;
1644 		}
1645 	}
1646 
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1650 
1651 /**
1652  * snd_soc_info_enum_double - enumerated double mixer info callback
1653  * @kcontrol: mixer control
1654  * @uinfo: control element information
1655  *
1656  * Callback to provide information about a double enumerated
1657  * mixer control.
1658  *
1659  * Returns 0 for success.
1660  */
1661 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1662 	struct snd_ctl_elem_info *uinfo)
1663 {
1664 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1665 
1666 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1667 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1668 	uinfo->value.enumerated.items = e->max;
1669 
1670 	if (uinfo->value.enumerated.item > e->max - 1)
1671 		uinfo->value.enumerated.item = e->max - 1;
1672 	strcpy(uinfo->value.enumerated.name,
1673 		e->texts[uinfo->value.enumerated.item]);
1674 	return 0;
1675 }
1676 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1677 
1678 /**
1679  * snd_soc_get_enum_double - enumerated double mixer get callback
1680  * @kcontrol: mixer control
1681  * @ucontrol: control element information
1682  *
1683  * Callback to get the value of a double enumerated mixer.
1684  *
1685  * Returns 0 for success.
1686  */
1687 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1688 	struct snd_ctl_elem_value *ucontrol)
1689 {
1690 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1691 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1692 	unsigned int val, bitmask;
1693 
1694 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1695 		;
1696 	val = snd_soc_read(codec, e->reg);
1697 	ucontrol->value.enumerated.item[0]
1698 		= (val >> e->shift_l) & (bitmask - 1);
1699 	if (e->shift_l != e->shift_r)
1700 		ucontrol->value.enumerated.item[1] =
1701 			(val >> e->shift_r) & (bitmask - 1);
1702 
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1706 
1707 /**
1708  * snd_soc_put_enum_double - enumerated double mixer put callback
1709  * @kcontrol: mixer control
1710  * @ucontrol: control element information
1711  *
1712  * Callback to set the value of a double enumerated mixer.
1713  *
1714  * Returns 0 for success.
1715  */
1716 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1717 	struct snd_ctl_elem_value *ucontrol)
1718 {
1719 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1720 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1721 	unsigned int val;
1722 	unsigned int mask, bitmask;
1723 
1724 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1725 		;
1726 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1727 		return -EINVAL;
1728 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1729 	mask = (bitmask - 1) << e->shift_l;
1730 	if (e->shift_l != e->shift_r) {
1731 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1732 			return -EINVAL;
1733 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1734 		mask |= (bitmask - 1) << e->shift_r;
1735 	}
1736 
1737 	return snd_soc_update_bits(codec, e->reg, mask, val);
1738 }
1739 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1740 
1741 /**
1742  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1743  * @kcontrol: mixer control
1744  * @ucontrol: control element information
1745  *
1746  * Callback to get the value of a double semi enumerated mixer.
1747  *
1748  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1749  * used for handling bitfield coded enumeration for example.
1750  *
1751  * Returns 0 for success.
1752  */
1753 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1754 	struct snd_ctl_elem_value *ucontrol)
1755 {
1756 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1757 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1758 	unsigned int reg_val, val, mux;
1759 
1760 	reg_val = snd_soc_read(codec, e->reg);
1761 	val = (reg_val >> e->shift_l) & e->mask;
1762 	for (mux = 0; mux < e->max; mux++) {
1763 		if (val == e->values[mux])
1764 			break;
1765 	}
1766 	ucontrol->value.enumerated.item[0] = mux;
1767 	if (e->shift_l != e->shift_r) {
1768 		val = (reg_val >> e->shift_r) & e->mask;
1769 		for (mux = 0; mux < e->max; mux++) {
1770 			if (val == e->values[mux])
1771 				break;
1772 		}
1773 		ucontrol->value.enumerated.item[1] = mux;
1774 	}
1775 
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1779 
1780 /**
1781  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1782  * @kcontrol: mixer control
1783  * @ucontrol: control element information
1784  *
1785  * Callback to set the value of a double semi enumerated mixer.
1786  *
1787  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1788  * used for handling bitfield coded enumeration for example.
1789  *
1790  * Returns 0 for success.
1791  */
1792 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1793 	struct snd_ctl_elem_value *ucontrol)
1794 {
1795 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1796 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1797 	unsigned int val;
1798 	unsigned int mask;
1799 
1800 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1801 		return -EINVAL;
1802 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1803 	mask = e->mask << e->shift_l;
1804 	if (e->shift_l != e->shift_r) {
1805 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1806 			return -EINVAL;
1807 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1808 		mask |= e->mask << e->shift_r;
1809 	}
1810 
1811 	return snd_soc_update_bits(codec, e->reg, mask, val);
1812 }
1813 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1814 
1815 /**
1816  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1817  * @kcontrol: mixer control
1818  * @uinfo: control element information
1819  *
1820  * Callback to provide information about an external enumerated
1821  * single mixer.
1822  *
1823  * Returns 0 for success.
1824  */
1825 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1826 	struct snd_ctl_elem_info *uinfo)
1827 {
1828 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1829 
1830 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1831 	uinfo->count = 1;
1832 	uinfo->value.enumerated.items = e->max;
1833 
1834 	if (uinfo->value.enumerated.item > e->max - 1)
1835 		uinfo->value.enumerated.item = e->max - 1;
1836 	strcpy(uinfo->value.enumerated.name,
1837 		e->texts[uinfo->value.enumerated.item]);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1841 
1842 /**
1843  * snd_soc_info_volsw_ext - external single mixer info callback
1844  * @kcontrol: mixer control
1845  * @uinfo: control element information
1846  *
1847  * Callback to provide information about a single external mixer control.
1848  *
1849  * Returns 0 for success.
1850  */
1851 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1852 	struct snd_ctl_elem_info *uinfo)
1853 {
1854 	int max = kcontrol->private_value;
1855 
1856 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1857 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1858 	else
1859 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1860 
1861 	uinfo->count = 1;
1862 	uinfo->value.integer.min = 0;
1863 	uinfo->value.integer.max = max;
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1867 
1868 /**
1869  * snd_soc_info_volsw - single mixer info callback
1870  * @kcontrol: mixer control
1871  * @uinfo: control element information
1872  *
1873  * Callback to provide information about a single mixer control.
1874  *
1875  * Returns 0 for success.
1876  */
1877 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1878 	struct snd_ctl_elem_info *uinfo)
1879 {
1880 	struct soc_mixer_control *mc =
1881 		(struct soc_mixer_control *)kcontrol->private_value;
1882 	int max = mc->max;
1883 	unsigned int shift = mc->shift;
1884 	unsigned int rshift = mc->rshift;
1885 
1886 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1887 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1888 	else
1889 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1890 
1891 	uinfo->count = shift == rshift ? 1 : 2;
1892 	uinfo->value.integer.min = 0;
1893 	uinfo->value.integer.max = max;
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1897 
1898 /**
1899  * snd_soc_get_volsw - single mixer get callback
1900  * @kcontrol: mixer control
1901  * @ucontrol: control element information
1902  *
1903  * Callback to get the value of a single mixer control.
1904  *
1905  * Returns 0 for success.
1906  */
1907 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1908 	struct snd_ctl_elem_value *ucontrol)
1909 {
1910 	struct soc_mixer_control *mc =
1911 		(struct soc_mixer_control *)kcontrol->private_value;
1912 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1913 	unsigned int reg = mc->reg;
1914 	unsigned int shift = mc->shift;
1915 	unsigned int rshift = mc->rshift;
1916 	int max = mc->max;
1917 	unsigned int mask = (1 << fls(max)) - 1;
1918 	unsigned int invert = mc->invert;
1919 
1920 	ucontrol->value.integer.value[0] =
1921 		(snd_soc_read(codec, reg) >> shift) & mask;
1922 	if (shift != rshift)
1923 		ucontrol->value.integer.value[1] =
1924 			(snd_soc_read(codec, reg) >> rshift) & mask;
1925 	if (invert) {
1926 		ucontrol->value.integer.value[0] =
1927 			max - ucontrol->value.integer.value[0];
1928 		if (shift != rshift)
1929 			ucontrol->value.integer.value[1] =
1930 				max - ucontrol->value.integer.value[1];
1931 	}
1932 
1933 	return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1936 
1937 /**
1938  * snd_soc_put_volsw - single mixer put callback
1939  * @kcontrol: mixer control
1940  * @ucontrol: control element information
1941  *
1942  * Callback to set the value of a single mixer control.
1943  *
1944  * Returns 0 for success.
1945  */
1946 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1947 	struct snd_ctl_elem_value *ucontrol)
1948 {
1949 	struct soc_mixer_control *mc =
1950 		(struct soc_mixer_control *)kcontrol->private_value;
1951 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1952 	unsigned int reg = mc->reg;
1953 	unsigned int shift = mc->shift;
1954 	unsigned int rshift = mc->rshift;
1955 	int max = mc->max;
1956 	unsigned int mask = (1 << fls(max)) - 1;
1957 	unsigned int invert = mc->invert;
1958 	unsigned int val, val2, val_mask;
1959 
1960 	val = (ucontrol->value.integer.value[0] & mask);
1961 	if (invert)
1962 		val = max - val;
1963 	val_mask = mask << shift;
1964 	val = val << shift;
1965 	if (shift != rshift) {
1966 		val2 = (ucontrol->value.integer.value[1] & mask);
1967 		if (invert)
1968 			val2 = max - val2;
1969 		val_mask |= mask << rshift;
1970 		val |= val2 << rshift;
1971 	}
1972 	return snd_soc_update_bits(codec, reg, val_mask, val);
1973 }
1974 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1975 
1976 /**
1977  * snd_soc_info_volsw_2r - double mixer info callback
1978  * @kcontrol: mixer control
1979  * @uinfo: control element information
1980  *
1981  * Callback to provide information about a double mixer control that
1982  * spans 2 codec registers.
1983  *
1984  * Returns 0 for success.
1985  */
1986 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1987 	struct snd_ctl_elem_info *uinfo)
1988 {
1989 	struct soc_mixer_control *mc =
1990 		(struct soc_mixer_control *)kcontrol->private_value;
1991 	int max = mc->max;
1992 
1993 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1994 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1995 	else
1996 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1997 
1998 	uinfo->count = 2;
1999 	uinfo->value.integer.min = 0;
2000 	uinfo->value.integer.max = max;
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2004 
2005 /**
2006  * snd_soc_get_volsw_2r - double mixer get callback
2007  * @kcontrol: mixer control
2008  * @ucontrol: control element information
2009  *
2010  * Callback to get the value of a double mixer control that spans 2 registers.
2011  *
2012  * Returns 0 for success.
2013  */
2014 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2015 	struct snd_ctl_elem_value *ucontrol)
2016 {
2017 	struct soc_mixer_control *mc =
2018 		(struct soc_mixer_control *)kcontrol->private_value;
2019 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2020 	unsigned int reg = mc->reg;
2021 	unsigned int reg2 = mc->rreg;
2022 	unsigned int shift = mc->shift;
2023 	int max = mc->max;
2024 	unsigned int mask = (1 << fls(max)) - 1;
2025 	unsigned int invert = mc->invert;
2026 
2027 	ucontrol->value.integer.value[0] =
2028 		(snd_soc_read(codec, reg) >> shift) & mask;
2029 	ucontrol->value.integer.value[1] =
2030 		(snd_soc_read(codec, reg2) >> shift) & mask;
2031 	if (invert) {
2032 		ucontrol->value.integer.value[0] =
2033 			max - ucontrol->value.integer.value[0];
2034 		ucontrol->value.integer.value[1] =
2035 			max - ucontrol->value.integer.value[1];
2036 	}
2037 
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2041 
2042 /**
2043  * snd_soc_put_volsw_2r - double mixer set callback
2044  * @kcontrol: mixer control
2045  * @ucontrol: control element information
2046  *
2047  * Callback to set the value of a double mixer control that spans 2 registers.
2048  *
2049  * Returns 0 for success.
2050  */
2051 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2052 	struct snd_ctl_elem_value *ucontrol)
2053 {
2054 	struct soc_mixer_control *mc =
2055 		(struct soc_mixer_control *)kcontrol->private_value;
2056 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2057 	unsigned int reg = mc->reg;
2058 	unsigned int reg2 = mc->rreg;
2059 	unsigned int shift = mc->shift;
2060 	int max = mc->max;
2061 	unsigned int mask = (1 << fls(max)) - 1;
2062 	unsigned int invert = mc->invert;
2063 	int err;
2064 	unsigned int val, val2, val_mask;
2065 
2066 	val_mask = mask << shift;
2067 	val = (ucontrol->value.integer.value[0] & mask);
2068 	val2 = (ucontrol->value.integer.value[1] & mask);
2069 
2070 	if (invert) {
2071 		val = max - val;
2072 		val2 = max - val2;
2073 	}
2074 
2075 	val = val << shift;
2076 	val2 = val2 << shift;
2077 
2078 	err = snd_soc_update_bits(codec, reg, val_mask, val);
2079 	if (err < 0)
2080 		return err;
2081 
2082 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2083 	return err;
2084 }
2085 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2086 
2087 /**
2088  * snd_soc_info_volsw_s8 - signed mixer info callback
2089  * @kcontrol: mixer control
2090  * @uinfo: control element information
2091  *
2092  * Callback to provide information about a signed mixer control.
2093  *
2094  * Returns 0 for success.
2095  */
2096 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2097 	struct snd_ctl_elem_info *uinfo)
2098 {
2099 	struct soc_mixer_control *mc =
2100 		(struct soc_mixer_control *)kcontrol->private_value;
2101 	int max = mc->max;
2102 	int min = mc->min;
2103 
2104 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2105 	uinfo->count = 2;
2106 	uinfo->value.integer.min = 0;
2107 	uinfo->value.integer.max = max-min;
2108 	return 0;
2109 }
2110 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2111 
2112 /**
2113  * snd_soc_get_volsw_s8 - signed mixer get callback
2114  * @kcontrol: mixer control
2115  * @ucontrol: control element information
2116  *
2117  * Callback to get the value of a signed mixer control.
2118  *
2119  * Returns 0 for success.
2120  */
2121 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2122 	struct snd_ctl_elem_value *ucontrol)
2123 {
2124 	struct soc_mixer_control *mc =
2125 		(struct soc_mixer_control *)kcontrol->private_value;
2126 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2127 	unsigned int reg = mc->reg;
2128 	int min = mc->min;
2129 	int val = snd_soc_read(codec, reg);
2130 
2131 	ucontrol->value.integer.value[0] =
2132 		((signed char)(val & 0xff))-min;
2133 	ucontrol->value.integer.value[1] =
2134 		((signed char)((val >> 8) & 0xff))-min;
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2138 
2139 /**
2140  * snd_soc_put_volsw_sgn - signed mixer put callback
2141  * @kcontrol: mixer control
2142  * @ucontrol: control element information
2143  *
2144  * Callback to set the value of a signed mixer control.
2145  *
2146  * Returns 0 for success.
2147  */
2148 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2149 	struct snd_ctl_elem_value *ucontrol)
2150 {
2151 	struct soc_mixer_control *mc =
2152 		(struct soc_mixer_control *)kcontrol->private_value;
2153 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2154 	unsigned int reg = mc->reg;
2155 	int min = mc->min;
2156 	unsigned int val;
2157 
2158 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2159 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2160 
2161 	return snd_soc_update_bits(codec, reg, 0xffff, val);
2162 }
2163 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2164 
2165 /**
2166  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2167  * @dai: DAI
2168  * @clk_id: DAI specific clock ID
2169  * @freq: new clock frequency in Hz
2170  * @dir: new clock direction - input/output.
2171  *
2172  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2173  */
2174 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2175 	unsigned int freq, int dir)
2176 {
2177 	if (dai->ops && dai->ops->set_sysclk)
2178 		return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2179 	else
2180 		return -EINVAL;
2181 }
2182 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2183 
2184 /**
2185  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2186  * @dai: DAI
2187  * @div_id: DAI specific clock divider ID
2188  * @div: new clock divisor.
2189  *
2190  * Configures the clock dividers. This is used to derive the best DAI bit and
2191  * frame clocks from the system or master clock. It's best to set the DAI bit
2192  * and frame clocks as low as possible to save system power.
2193  */
2194 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2195 	int div_id, int div)
2196 {
2197 	if (dai->ops && dai->ops->set_clkdiv)
2198 		return dai->ops->set_clkdiv(dai, div_id, div);
2199 	else
2200 		return -EINVAL;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2203 
2204 /**
2205  * snd_soc_dai_set_pll - configure DAI PLL.
2206  * @dai: DAI
2207  * @pll_id: DAI specific PLL ID
2208  * @freq_in: PLL input clock frequency in Hz
2209  * @freq_out: requested PLL output clock frequency in Hz
2210  *
2211  * Configures and enables PLL to generate output clock based on input clock.
2212  */
2213 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2214 	int pll_id, unsigned int freq_in, unsigned int freq_out)
2215 {
2216 	if (dai->ops && dai->ops->set_pll)
2217 		return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2218 	else
2219 		return -EINVAL;
2220 }
2221 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2222 
2223 /**
2224  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2225  * @dai: DAI
2226  * @fmt: SND_SOC_DAIFMT_ format value.
2227  *
2228  * Configures the DAI hardware format and clocking.
2229  */
2230 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2231 {
2232 	if (dai->ops && dai->ops->set_fmt)
2233 		return dai->ops->set_fmt(dai, fmt);
2234 	else
2235 		return -EINVAL;
2236 }
2237 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2238 
2239 /**
2240  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2241  * @dai: DAI
2242  * @tx_mask: bitmask representing active TX slots.
2243  * @rx_mask: bitmask representing active RX slots.
2244  * @slots: Number of slots in use.
2245  * @slot_width: Width in bits for each slot.
2246  *
2247  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2248  * specific.
2249  */
2250 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2251 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2252 {
2253 	if (dai->ops && dai->ops->set_tdm_slot)
2254 		return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2255 				slots, slot_width);
2256 	else
2257 		return -EINVAL;
2258 }
2259 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2260 
2261 /**
2262  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2263  * @dai: DAI
2264  * @tristate: tristate enable
2265  *
2266  * Tristates the DAI so that others can use it.
2267  */
2268 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2269 {
2270 	if (dai->ops && dai->ops->set_tristate)
2271 		return dai->ops->set_tristate(dai, tristate);
2272 	else
2273 		return -EINVAL;
2274 }
2275 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2276 
2277 /**
2278  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2279  * @dai: DAI
2280  * @mute: mute enable
2281  *
2282  * Mutes the DAI DAC.
2283  */
2284 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2285 {
2286 	if (dai->ops && dai->ops->digital_mute)
2287 		return dai->ops->digital_mute(dai, mute);
2288 	else
2289 		return -EINVAL;
2290 }
2291 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2292 
2293 /**
2294  * snd_soc_register_card - Register a card with the ASoC core
2295  *
2296  * @card: Card to register
2297  *
2298  * Note that currently this is an internal only function: it will be
2299  * exposed to machine drivers after further backporting of ASoC v2
2300  * registration APIs.
2301  */
2302 static int snd_soc_register_card(struct snd_soc_card *card)
2303 {
2304 	if (!card->name || !card->dev)
2305 		return -EINVAL;
2306 
2307 	INIT_LIST_HEAD(&card->list);
2308 	card->instantiated = 0;
2309 
2310 	mutex_lock(&client_mutex);
2311 	list_add(&card->list, &card_list);
2312 	snd_soc_instantiate_cards();
2313 	mutex_unlock(&client_mutex);
2314 
2315 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2316 
2317 	return 0;
2318 }
2319 
2320 /**
2321  * snd_soc_unregister_card - Unregister a card with the ASoC core
2322  *
2323  * @card: Card to unregister
2324  *
2325  * Note that currently this is an internal only function: it will be
2326  * exposed to machine drivers after further backporting of ASoC v2
2327  * registration APIs.
2328  */
2329 static int snd_soc_unregister_card(struct snd_soc_card *card)
2330 {
2331 	mutex_lock(&client_mutex);
2332 	list_del(&card->list);
2333 	mutex_unlock(&client_mutex);
2334 
2335 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2336 
2337 	return 0;
2338 }
2339 
2340 /**
2341  * snd_soc_register_dai - Register a DAI with the ASoC core
2342  *
2343  * @dai: DAI to register
2344  */
2345 int snd_soc_register_dai(struct snd_soc_dai *dai)
2346 {
2347 	if (!dai->name)
2348 		return -EINVAL;
2349 
2350 	/* The device should become mandatory over time */
2351 	if (!dai->dev)
2352 		printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2353 
2354 	if (!dai->ops)
2355 		dai->ops = &null_dai_ops;
2356 
2357 	INIT_LIST_HEAD(&dai->list);
2358 
2359 	mutex_lock(&client_mutex);
2360 	list_add(&dai->list, &dai_list);
2361 	snd_soc_instantiate_cards();
2362 	mutex_unlock(&client_mutex);
2363 
2364 	pr_debug("Registered DAI '%s'\n", dai->name);
2365 
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2369 
2370 /**
2371  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2372  *
2373  * @dai: DAI to unregister
2374  */
2375 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2376 {
2377 	mutex_lock(&client_mutex);
2378 	list_del(&dai->list);
2379 	mutex_unlock(&client_mutex);
2380 
2381 	pr_debug("Unregistered DAI '%s'\n", dai->name);
2382 }
2383 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2384 
2385 /**
2386  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2387  *
2388  * @dai: Array of DAIs to register
2389  * @count: Number of DAIs
2390  */
2391 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2392 {
2393 	int i, ret;
2394 
2395 	for (i = 0; i < count; i++) {
2396 		ret = snd_soc_register_dai(&dai[i]);
2397 		if (ret != 0)
2398 			goto err;
2399 	}
2400 
2401 	return 0;
2402 
2403 err:
2404 	for (i--; i >= 0; i--)
2405 		snd_soc_unregister_dai(&dai[i]);
2406 
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2410 
2411 /**
2412  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2413  *
2414  * @dai: Array of DAIs to unregister
2415  * @count: Number of DAIs
2416  */
2417 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2418 {
2419 	int i;
2420 
2421 	for (i = 0; i < count; i++)
2422 		snd_soc_unregister_dai(&dai[i]);
2423 }
2424 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2425 
2426 /**
2427  * snd_soc_register_platform - Register a platform with the ASoC core
2428  *
2429  * @platform: platform to register
2430  */
2431 int snd_soc_register_platform(struct snd_soc_platform *platform)
2432 {
2433 	if (!platform->name)
2434 		return -EINVAL;
2435 
2436 	INIT_LIST_HEAD(&platform->list);
2437 
2438 	mutex_lock(&client_mutex);
2439 	list_add(&platform->list, &platform_list);
2440 	snd_soc_instantiate_cards();
2441 	mutex_unlock(&client_mutex);
2442 
2443 	pr_debug("Registered platform '%s'\n", platform->name);
2444 
2445 	return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2448 
2449 /**
2450  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2451  *
2452  * @platform: platform to unregister
2453  */
2454 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2455 {
2456 	mutex_lock(&client_mutex);
2457 	list_del(&platform->list);
2458 	mutex_unlock(&client_mutex);
2459 
2460 	pr_debug("Unregistered platform '%s'\n", platform->name);
2461 }
2462 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2463 
2464 static u64 codec_format_map[] = {
2465 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2466 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2467 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2468 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2469 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2470 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2471 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2472 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2473 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2474 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2475 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2476 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2477 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2478 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2479 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2480 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2481 };
2482 
2483 /* Fix up the DAI formats for endianness: codecs don't actually see
2484  * the endianness of the data but we're using the CPU format
2485  * definitions which do need to include endianness so we ensure that
2486  * codec DAIs always have both big and little endian variants set.
2487  */
2488 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2489 {
2490 	int i;
2491 
2492 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2493 		if (stream->formats & codec_format_map[i])
2494 			stream->formats |= codec_format_map[i];
2495 }
2496 
2497 /**
2498  * snd_soc_register_codec - Register a codec with the ASoC core
2499  *
2500  * @codec: codec to register
2501  */
2502 int snd_soc_register_codec(struct snd_soc_codec *codec)
2503 {
2504 	int i;
2505 
2506 	if (!codec->name)
2507 		return -EINVAL;
2508 
2509 	/* The device should become mandatory over time */
2510 	if (!codec->dev)
2511 		printk(KERN_WARNING "No device for codec %s\n", codec->name);
2512 
2513 	INIT_LIST_HEAD(&codec->list);
2514 
2515 	for (i = 0; i < codec->num_dai; i++) {
2516 		fixup_codec_formats(&codec->dai[i].playback);
2517 		fixup_codec_formats(&codec->dai[i].capture);
2518 	}
2519 
2520 	mutex_lock(&client_mutex);
2521 	list_add(&codec->list, &codec_list);
2522 	snd_soc_instantiate_cards();
2523 	mutex_unlock(&client_mutex);
2524 
2525 	pr_debug("Registered codec '%s'\n", codec->name);
2526 
2527 	return 0;
2528 }
2529 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2530 
2531 /**
2532  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2533  *
2534  * @codec: codec to unregister
2535  */
2536 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2537 {
2538 	mutex_lock(&client_mutex);
2539 	list_del(&codec->list);
2540 	mutex_unlock(&client_mutex);
2541 
2542 	pr_debug("Unregistered codec '%s'\n", codec->name);
2543 }
2544 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2545 
2546 static int __init snd_soc_init(void)
2547 {
2548 #ifdef CONFIG_DEBUG_FS
2549 	debugfs_root = debugfs_create_dir("asoc", NULL);
2550 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2551 		printk(KERN_WARNING
2552 		       "ASoC: Failed to create debugfs directory\n");
2553 		debugfs_root = NULL;
2554 	}
2555 #endif
2556 
2557 	return platform_driver_register(&soc_driver);
2558 }
2559 
2560 static void __exit snd_soc_exit(void)
2561 {
2562 #ifdef CONFIG_DEBUG_FS
2563 	debugfs_remove_recursive(debugfs_root);
2564 #endif
2565 	platform_driver_unregister(&soc_driver);
2566 }
2567 
2568 module_init(snd_soc_init);
2569 module_exit(snd_soc_exit);
2570 
2571 /* Module information */
2572 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2573 MODULE_DESCRIPTION("ALSA SoC Core");
2574 MODULE_LICENSE("GPL");
2575 MODULE_ALIAS("platform:soc-audio");
2576