1 /* 2 * soc-core.c -- ALSA SoC Audio Layer 3 * 4 * Copyright 2005 Wolfson Microelectronics PLC. 5 * Copyright 2005 Openedhand Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * with code, comments and ideas from :- 9 * Richard Purdie <richard@openedhand.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * TODO: 17 * o Add hw rules to enforce rates, etc. 18 * o More testing with other codecs/machines. 19 * o Add more codecs and platforms to ensure good API coverage. 20 * o Support TDM on PCM and I2S 21 */ 22 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/pm.h> 28 #include <linux/bitops.h> 29 #include <linux/debugfs.h> 30 #include <linux/platform_device.h> 31 #include <sound/core.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/soc.h> 35 #include <sound/soc-dapm.h> 36 #include <sound/initval.h> 37 38 static DEFINE_MUTEX(pcm_mutex); 39 static DEFINE_MUTEX(io_mutex); 40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq); 41 42 #ifdef CONFIG_DEBUG_FS 43 static struct dentry *debugfs_root; 44 #endif 45 46 static DEFINE_MUTEX(client_mutex); 47 static LIST_HEAD(card_list); 48 static LIST_HEAD(dai_list); 49 static LIST_HEAD(platform_list); 50 static LIST_HEAD(codec_list); 51 52 static int snd_soc_register_card(struct snd_soc_card *card); 53 static int snd_soc_unregister_card(struct snd_soc_card *card); 54 55 /* 56 * This is a timeout to do a DAPM powerdown after a stream is closed(). 57 * It can be used to eliminate pops between different playback streams, e.g. 58 * between two audio tracks. 59 */ 60 static int pmdown_time = 5000; 61 module_param(pmdown_time, int, 0); 62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 63 64 /* 65 * This function forces any delayed work to be queued and run. 66 */ 67 static int run_delayed_work(struct delayed_work *dwork) 68 { 69 int ret; 70 71 /* cancel any work waiting to be queued. */ 72 ret = cancel_delayed_work(dwork); 73 74 /* if there was any work waiting then we run it now and 75 * wait for it's completion */ 76 if (ret) { 77 schedule_delayed_work(dwork, 0); 78 flush_scheduled_work(); 79 } 80 return ret; 81 } 82 83 #ifdef CONFIG_SND_SOC_AC97_BUS 84 /* unregister ac97 codec */ 85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 86 { 87 if (codec->ac97->dev.bus) 88 device_unregister(&codec->ac97->dev); 89 return 0; 90 } 91 92 /* stop no dev release warning */ 93 static void soc_ac97_device_release(struct device *dev){} 94 95 /* register ac97 codec to bus */ 96 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 97 { 98 int err; 99 100 codec->ac97->dev.bus = &ac97_bus_type; 101 codec->ac97->dev.parent = codec->card->dev; 102 codec->ac97->dev.release = soc_ac97_device_release; 103 104 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 105 codec->card->number, 0, codec->name); 106 err = device_register(&codec->ac97->dev); 107 if (err < 0) { 108 snd_printk(KERN_ERR "Can't register ac97 bus\n"); 109 codec->ac97->dev.bus = NULL; 110 return err; 111 } 112 return 0; 113 } 114 #endif 115 116 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream) 117 { 118 struct snd_soc_pcm_runtime *rtd = substream->private_data; 119 struct snd_soc_device *socdev = rtd->socdev; 120 struct snd_soc_card *card = socdev->card; 121 struct snd_soc_dai_link *machine = rtd->dai; 122 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 123 struct snd_soc_dai *codec_dai = machine->codec_dai; 124 int ret; 125 126 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates || 127 machine->symmetric_rates) { 128 dev_dbg(card->dev, "Symmetry forces %dHz rate\n", 129 machine->rate); 130 131 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 132 SNDRV_PCM_HW_PARAM_RATE, 133 machine->rate, 134 machine->rate); 135 if (ret < 0) { 136 dev_err(card->dev, 137 "Unable to apply rate symmetry constraint: %d\n", ret); 138 return ret; 139 } 140 } 141 142 return 0; 143 } 144 145 /* 146 * Called by ALSA when a PCM substream is opened, the runtime->hw record is 147 * then initialized and any private data can be allocated. This also calls 148 * startup for the cpu DAI, platform, machine and codec DAI. 149 */ 150 static int soc_pcm_open(struct snd_pcm_substream *substream) 151 { 152 struct snd_soc_pcm_runtime *rtd = substream->private_data; 153 struct snd_soc_device *socdev = rtd->socdev; 154 struct snd_soc_card *card = socdev->card; 155 struct snd_pcm_runtime *runtime = substream->runtime; 156 struct snd_soc_dai_link *machine = rtd->dai; 157 struct snd_soc_platform *platform = card->platform; 158 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 159 struct snd_soc_dai *codec_dai = machine->codec_dai; 160 int ret = 0; 161 162 mutex_lock(&pcm_mutex); 163 164 /* startup the audio subsystem */ 165 if (cpu_dai->ops->startup) { 166 ret = cpu_dai->ops->startup(substream, cpu_dai); 167 if (ret < 0) { 168 printk(KERN_ERR "asoc: can't open interface %s\n", 169 cpu_dai->name); 170 goto out; 171 } 172 } 173 174 if (platform->pcm_ops->open) { 175 ret = platform->pcm_ops->open(substream); 176 if (ret < 0) { 177 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name); 178 goto platform_err; 179 } 180 } 181 182 if (codec_dai->ops->startup) { 183 ret = codec_dai->ops->startup(substream, codec_dai); 184 if (ret < 0) { 185 printk(KERN_ERR "asoc: can't open codec %s\n", 186 codec_dai->name); 187 goto codec_dai_err; 188 } 189 } 190 191 if (machine->ops && machine->ops->startup) { 192 ret = machine->ops->startup(substream); 193 if (ret < 0) { 194 printk(KERN_ERR "asoc: %s startup failed\n", machine->name); 195 goto machine_err; 196 } 197 } 198 199 /* Check that the codec and cpu DAI's are compatible */ 200 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 201 runtime->hw.rate_min = 202 max(codec_dai->playback.rate_min, 203 cpu_dai->playback.rate_min); 204 runtime->hw.rate_max = 205 min(codec_dai->playback.rate_max, 206 cpu_dai->playback.rate_max); 207 runtime->hw.channels_min = 208 max(codec_dai->playback.channels_min, 209 cpu_dai->playback.channels_min); 210 runtime->hw.channels_max = 211 min(codec_dai->playback.channels_max, 212 cpu_dai->playback.channels_max); 213 runtime->hw.formats = 214 codec_dai->playback.formats & cpu_dai->playback.formats; 215 runtime->hw.rates = 216 codec_dai->playback.rates & cpu_dai->playback.rates; 217 } else { 218 runtime->hw.rate_min = 219 max(codec_dai->capture.rate_min, 220 cpu_dai->capture.rate_min); 221 runtime->hw.rate_max = 222 min(codec_dai->capture.rate_max, 223 cpu_dai->capture.rate_max); 224 runtime->hw.channels_min = 225 max(codec_dai->capture.channels_min, 226 cpu_dai->capture.channels_min); 227 runtime->hw.channels_max = 228 min(codec_dai->capture.channels_max, 229 cpu_dai->capture.channels_max); 230 runtime->hw.formats = 231 codec_dai->capture.formats & cpu_dai->capture.formats; 232 runtime->hw.rates = 233 codec_dai->capture.rates & cpu_dai->capture.rates; 234 } 235 236 snd_pcm_limit_hw_rates(runtime); 237 if (!runtime->hw.rates) { 238 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n", 239 codec_dai->name, cpu_dai->name); 240 goto machine_err; 241 } 242 if (!runtime->hw.formats) { 243 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n", 244 codec_dai->name, cpu_dai->name); 245 goto machine_err; 246 } 247 if (!runtime->hw.channels_min || !runtime->hw.channels_max) { 248 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n", 249 codec_dai->name, cpu_dai->name); 250 goto machine_err; 251 } 252 253 /* Symmetry only applies if we've already got an active stream. */ 254 if (cpu_dai->active || codec_dai->active) { 255 ret = soc_pcm_apply_symmetry(substream); 256 if (ret != 0) 257 goto machine_err; 258 } 259 260 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name); 261 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates); 262 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min, 263 runtime->hw.channels_max); 264 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min, 265 runtime->hw.rate_max); 266 267 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 268 cpu_dai->playback.active = codec_dai->playback.active = 1; 269 else 270 cpu_dai->capture.active = codec_dai->capture.active = 1; 271 cpu_dai->active = codec_dai->active = 1; 272 cpu_dai->runtime = runtime; 273 card->codec->active++; 274 mutex_unlock(&pcm_mutex); 275 return 0; 276 277 machine_err: 278 if (machine->ops && machine->ops->shutdown) 279 machine->ops->shutdown(substream); 280 281 codec_dai_err: 282 if (platform->pcm_ops->close) 283 platform->pcm_ops->close(substream); 284 285 platform_err: 286 if (cpu_dai->ops->shutdown) 287 cpu_dai->ops->shutdown(substream, cpu_dai); 288 out: 289 mutex_unlock(&pcm_mutex); 290 return ret; 291 } 292 293 /* 294 * Power down the audio subsystem pmdown_time msecs after close is called. 295 * This is to ensure there are no pops or clicks in between any music tracks 296 * due to DAPM power cycling. 297 */ 298 static void close_delayed_work(struct work_struct *work) 299 { 300 struct snd_soc_card *card = container_of(work, struct snd_soc_card, 301 delayed_work.work); 302 struct snd_soc_codec *codec = card->codec; 303 struct snd_soc_dai *codec_dai; 304 int i; 305 306 mutex_lock(&pcm_mutex); 307 for (i = 0; i < codec->num_dai; i++) { 308 codec_dai = &codec->dai[i]; 309 310 pr_debug("pop wq checking: %s status: %s waiting: %s\n", 311 codec_dai->playback.stream_name, 312 codec_dai->playback.active ? "active" : "inactive", 313 codec_dai->pop_wait ? "yes" : "no"); 314 315 /* are we waiting on this codec DAI stream */ 316 if (codec_dai->pop_wait == 1) { 317 codec_dai->pop_wait = 0; 318 snd_soc_dapm_stream_event(codec, 319 codec_dai->playback.stream_name, 320 SND_SOC_DAPM_STREAM_STOP); 321 } 322 } 323 mutex_unlock(&pcm_mutex); 324 } 325 326 /* 327 * Called by ALSA when a PCM substream is closed. Private data can be 328 * freed here. The cpu DAI, codec DAI, machine and platform are also 329 * shutdown. 330 */ 331 static int soc_codec_close(struct snd_pcm_substream *substream) 332 { 333 struct snd_soc_pcm_runtime *rtd = substream->private_data; 334 struct snd_soc_device *socdev = rtd->socdev; 335 struct snd_soc_card *card = socdev->card; 336 struct snd_soc_dai_link *machine = rtd->dai; 337 struct snd_soc_platform *platform = card->platform; 338 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 339 struct snd_soc_dai *codec_dai = machine->codec_dai; 340 struct snd_soc_codec *codec = card->codec; 341 342 mutex_lock(&pcm_mutex); 343 344 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 345 cpu_dai->playback.active = codec_dai->playback.active = 0; 346 else 347 cpu_dai->capture.active = codec_dai->capture.active = 0; 348 349 if (codec_dai->playback.active == 0 && 350 codec_dai->capture.active == 0) { 351 cpu_dai->active = codec_dai->active = 0; 352 } 353 codec->active--; 354 355 /* Muting the DAC suppresses artifacts caused during digital 356 * shutdown, for example from stopping clocks. 357 */ 358 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 359 snd_soc_dai_digital_mute(codec_dai, 1); 360 361 if (cpu_dai->ops->shutdown) 362 cpu_dai->ops->shutdown(substream, cpu_dai); 363 364 if (codec_dai->ops->shutdown) 365 codec_dai->ops->shutdown(substream, codec_dai); 366 367 if (machine->ops && machine->ops->shutdown) 368 machine->ops->shutdown(substream); 369 370 if (platform->pcm_ops->close) 371 platform->pcm_ops->close(substream); 372 cpu_dai->runtime = NULL; 373 374 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 375 /* start delayed pop wq here for playback streams */ 376 codec_dai->pop_wait = 1; 377 schedule_delayed_work(&card->delayed_work, 378 msecs_to_jiffies(pmdown_time)); 379 } else { 380 /* capture streams can be powered down now */ 381 snd_soc_dapm_stream_event(codec, 382 codec_dai->capture.stream_name, 383 SND_SOC_DAPM_STREAM_STOP); 384 } 385 386 mutex_unlock(&pcm_mutex); 387 return 0; 388 } 389 390 /* 391 * Called by ALSA when the PCM substream is prepared, can set format, sample 392 * rate, etc. This function is non atomic and can be called multiple times, 393 * it can refer to the runtime info. 394 */ 395 static int soc_pcm_prepare(struct snd_pcm_substream *substream) 396 { 397 struct snd_soc_pcm_runtime *rtd = substream->private_data; 398 struct snd_soc_device *socdev = rtd->socdev; 399 struct snd_soc_card *card = socdev->card; 400 struct snd_soc_dai_link *machine = rtd->dai; 401 struct snd_soc_platform *platform = card->platform; 402 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 403 struct snd_soc_dai *codec_dai = machine->codec_dai; 404 struct snd_soc_codec *codec = card->codec; 405 int ret = 0; 406 407 mutex_lock(&pcm_mutex); 408 409 if (machine->ops && machine->ops->prepare) { 410 ret = machine->ops->prepare(substream); 411 if (ret < 0) { 412 printk(KERN_ERR "asoc: machine prepare error\n"); 413 goto out; 414 } 415 } 416 417 if (platform->pcm_ops->prepare) { 418 ret = platform->pcm_ops->prepare(substream); 419 if (ret < 0) { 420 printk(KERN_ERR "asoc: platform prepare error\n"); 421 goto out; 422 } 423 } 424 425 if (codec_dai->ops->prepare) { 426 ret = codec_dai->ops->prepare(substream, codec_dai); 427 if (ret < 0) { 428 printk(KERN_ERR "asoc: codec DAI prepare error\n"); 429 goto out; 430 } 431 } 432 433 if (cpu_dai->ops->prepare) { 434 ret = cpu_dai->ops->prepare(substream, cpu_dai); 435 if (ret < 0) { 436 printk(KERN_ERR "asoc: cpu DAI prepare error\n"); 437 goto out; 438 } 439 } 440 441 /* cancel any delayed stream shutdown that is pending */ 442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 443 codec_dai->pop_wait) { 444 codec_dai->pop_wait = 0; 445 cancel_delayed_work(&card->delayed_work); 446 } 447 448 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 449 snd_soc_dapm_stream_event(codec, 450 codec_dai->playback.stream_name, 451 SND_SOC_DAPM_STREAM_START); 452 else 453 snd_soc_dapm_stream_event(codec, 454 codec_dai->capture.stream_name, 455 SND_SOC_DAPM_STREAM_START); 456 457 snd_soc_dai_digital_mute(codec_dai, 0); 458 459 out: 460 mutex_unlock(&pcm_mutex); 461 return ret; 462 } 463 464 /* 465 * Called by ALSA when the hardware params are set by application. This 466 * function can also be called multiple times and can allocate buffers 467 * (using snd_pcm_lib_* ). It's non-atomic. 468 */ 469 static int soc_pcm_hw_params(struct snd_pcm_substream *substream, 470 struct snd_pcm_hw_params *params) 471 { 472 struct snd_soc_pcm_runtime *rtd = substream->private_data; 473 struct snd_soc_device *socdev = rtd->socdev; 474 struct snd_soc_dai_link *machine = rtd->dai; 475 struct snd_soc_card *card = socdev->card; 476 struct snd_soc_platform *platform = card->platform; 477 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 478 struct snd_soc_dai *codec_dai = machine->codec_dai; 479 int ret = 0; 480 481 mutex_lock(&pcm_mutex); 482 483 if (machine->ops && machine->ops->hw_params) { 484 ret = machine->ops->hw_params(substream, params); 485 if (ret < 0) { 486 printk(KERN_ERR "asoc: machine hw_params failed\n"); 487 goto out; 488 } 489 } 490 491 if (codec_dai->ops->hw_params) { 492 ret = codec_dai->ops->hw_params(substream, params, codec_dai); 493 if (ret < 0) { 494 printk(KERN_ERR "asoc: can't set codec %s hw params\n", 495 codec_dai->name); 496 goto codec_err; 497 } 498 } 499 500 if (cpu_dai->ops->hw_params) { 501 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai); 502 if (ret < 0) { 503 printk(KERN_ERR "asoc: interface %s hw params failed\n", 504 cpu_dai->name); 505 goto interface_err; 506 } 507 } 508 509 if (platform->pcm_ops->hw_params) { 510 ret = platform->pcm_ops->hw_params(substream, params); 511 if (ret < 0) { 512 printk(KERN_ERR "asoc: platform %s hw params failed\n", 513 platform->name); 514 goto platform_err; 515 } 516 } 517 518 machine->rate = params_rate(params); 519 520 out: 521 mutex_unlock(&pcm_mutex); 522 return ret; 523 524 platform_err: 525 if (cpu_dai->ops->hw_free) 526 cpu_dai->ops->hw_free(substream, cpu_dai); 527 528 interface_err: 529 if (codec_dai->ops->hw_free) 530 codec_dai->ops->hw_free(substream, codec_dai); 531 532 codec_err: 533 if (machine->ops && machine->ops->hw_free) 534 machine->ops->hw_free(substream); 535 536 mutex_unlock(&pcm_mutex); 537 return ret; 538 } 539 540 /* 541 * Free's resources allocated by hw_params, can be called multiple times 542 */ 543 static int soc_pcm_hw_free(struct snd_pcm_substream *substream) 544 { 545 struct snd_soc_pcm_runtime *rtd = substream->private_data; 546 struct snd_soc_device *socdev = rtd->socdev; 547 struct snd_soc_dai_link *machine = rtd->dai; 548 struct snd_soc_card *card = socdev->card; 549 struct snd_soc_platform *platform = card->platform; 550 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 551 struct snd_soc_dai *codec_dai = machine->codec_dai; 552 struct snd_soc_codec *codec = card->codec; 553 554 mutex_lock(&pcm_mutex); 555 556 /* apply codec digital mute */ 557 if (!codec->active) 558 snd_soc_dai_digital_mute(codec_dai, 1); 559 560 /* free any machine hw params */ 561 if (machine->ops && machine->ops->hw_free) 562 machine->ops->hw_free(substream); 563 564 /* free any DMA resources */ 565 if (platform->pcm_ops->hw_free) 566 platform->pcm_ops->hw_free(substream); 567 568 /* now free hw params for the DAI's */ 569 if (codec_dai->ops->hw_free) 570 codec_dai->ops->hw_free(substream, codec_dai); 571 572 if (cpu_dai->ops->hw_free) 573 cpu_dai->ops->hw_free(substream, cpu_dai); 574 575 mutex_unlock(&pcm_mutex); 576 return 0; 577 } 578 579 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 580 { 581 struct snd_soc_pcm_runtime *rtd = substream->private_data; 582 struct snd_soc_device *socdev = rtd->socdev; 583 struct snd_soc_card *card= socdev->card; 584 struct snd_soc_dai_link *machine = rtd->dai; 585 struct snd_soc_platform *platform = card->platform; 586 struct snd_soc_dai *cpu_dai = machine->cpu_dai; 587 struct snd_soc_dai *codec_dai = machine->codec_dai; 588 int ret; 589 590 if (codec_dai->ops->trigger) { 591 ret = codec_dai->ops->trigger(substream, cmd, codec_dai); 592 if (ret < 0) 593 return ret; 594 } 595 596 if (platform->pcm_ops->trigger) { 597 ret = platform->pcm_ops->trigger(substream, cmd); 598 if (ret < 0) 599 return ret; 600 } 601 602 if (cpu_dai->ops->trigger) { 603 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai); 604 if (ret < 0) 605 return ret; 606 } 607 return 0; 608 } 609 610 /* ASoC PCM operations */ 611 static struct snd_pcm_ops soc_pcm_ops = { 612 .open = soc_pcm_open, 613 .close = soc_codec_close, 614 .hw_params = soc_pcm_hw_params, 615 .hw_free = soc_pcm_hw_free, 616 .prepare = soc_pcm_prepare, 617 .trigger = soc_pcm_trigger, 618 }; 619 620 #ifdef CONFIG_PM 621 /* powers down audio subsystem for suspend */ 622 static int soc_suspend(struct platform_device *pdev, pm_message_t state) 623 { 624 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 625 struct snd_soc_card *card = socdev->card; 626 struct snd_soc_platform *platform = card->platform; 627 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 628 struct snd_soc_codec *codec = card->codec; 629 int i; 630 631 /* If the initialization of this soc device failed, there is no codec 632 * associated with it. Just bail out in this case. 633 */ 634 if (!codec) 635 return 0; 636 637 /* Due to the resume being scheduled into a workqueue we could 638 * suspend before that's finished - wait for it to complete. 639 */ 640 snd_power_lock(codec->card); 641 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0); 642 snd_power_unlock(codec->card); 643 644 /* we're going to block userspace touching us until resume completes */ 645 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot); 646 647 /* mute any active DAC's */ 648 for (i = 0; i < card->num_links; i++) { 649 struct snd_soc_dai *dai = card->dai_link[i].codec_dai; 650 if (dai->ops->digital_mute && dai->playback.active) 651 dai->ops->digital_mute(dai, 1); 652 } 653 654 /* suspend all pcms */ 655 for (i = 0; i < card->num_links; i++) 656 snd_pcm_suspend_all(card->dai_link[i].pcm); 657 658 if (card->suspend_pre) 659 card->suspend_pre(pdev, state); 660 661 for (i = 0; i < card->num_links; i++) { 662 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 663 if (cpu_dai->suspend && !cpu_dai->ac97_control) 664 cpu_dai->suspend(cpu_dai); 665 if (platform->suspend) 666 platform->suspend(cpu_dai); 667 } 668 669 /* close any waiting streams and save state */ 670 run_delayed_work(&card->delayed_work); 671 codec->suspend_bias_level = codec->bias_level; 672 673 for (i = 0; i < codec->num_dai; i++) { 674 char *stream = codec->dai[i].playback.stream_name; 675 if (stream != NULL) 676 snd_soc_dapm_stream_event(codec, stream, 677 SND_SOC_DAPM_STREAM_SUSPEND); 678 stream = codec->dai[i].capture.stream_name; 679 if (stream != NULL) 680 snd_soc_dapm_stream_event(codec, stream, 681 SND_SOC_DAPM_STREAM_SUSPEND); 682 } 683 684 if (codec_dev->suspend) 685 codec_dev->suspend(pdev, state); 686 687 for (i = 0; i < card->num_links; i++) { 688 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 689 if (cpu_dai->suspend && cpu_dai->ac97_control) 690 cpu_dai->suspend(cpu_dai); 691 } 692 693 if (card->suspend_post) 694 card->suspend_post(pdev, state); 695 696 return 0; 697 } 698 699 /* deferred resume work, so resume can complete before we finished 700 * setting our codec back up, which can be very slow on I2C 701 */ 702 static void soc_resume_deferred(struct work_struct *work) 703 { 704 struct snd_soc_card *card = container_of(work, 705 struct snd_soc_card, 706 deferred_resume_work); 707 struct snd_soc_device *socdev = card->socdev; 708 struct snd_soc_platform *platform = card->platform; 709 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 710 struct snd_soc_codec *codec = card->codec; 711 struct platform_device *pdev = to_platform_device(socdev->dev); 712 int i; 713 714 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 715 * so userspace apps are blocked from touching us 716 */ 717 718 dev_dbg(socdev->dev, "starting resume work\n"); 719 720 if (card->resume_pre) 721 card->resume_pre(pdev); 722 723 for (i = 0; i < card->num_links; i++) { 724 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 725 if (cpu_dai->resume && cpu_dai->ac97_control) 726 cpu_dai->resume(cpu_dai); 727 } 728 729 if (codec_dev->resume) 730 codec_dev->resume(pdev); 731 732 for (i = 0; i < codec->num_dai; i++) { 733 char *stream = codec->dai[i].playback.stream_name; 734 if (stream != NULL) 735 snd_soc_dapm_stream_event(codec, stream, 736 SND_SOC_DAPM_STREAM_RESUME); 737 stream = codec->dai[i].capture.stream_name; 738 if (stream != NULL) 739 snd_soc_dapm_stream_event(codec, stream, 740 SND_SOC_DAPM_STREAM_RESUME); 741 } 742 743 /* unmute any active DACs */ 744 for (i = 0; i < card->num_links; i++) { 745 struct snd_soc_dai *dai = card->dai_link[i].codec_dai; 746 if (dai->ops->digital_mute && dai->playback.active) 747 dai->ops->digital_mute(dai, 0); 748 } 749 750 for (i = 0; i < card->num_links; i++) { 751 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 752 if (cpu_dai->resume && !cpu_dai->ac97_control) 753 cpu_dai->resume(cpu_dai); 754 if (platform->resume) 755 platform->resume(cpu_dai); 756 } 757 758 if (card->resume_post) 759 card->resume_post(pdev); 760 761 dev_dbg(socdev->dev, "resume work completed\n"); 762 763 /* userspace can access us now we are back as we were before */ 764 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0); 765 } 766 767 /* powers up audio subsystem after a suspend */ 768 static int soc_resume(struct platform_device *pdev) 769 { 770 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 771 struct snd_soc_card *card = socdev->card; 772 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai; 773 774 /* AC97 devices might have other drivers hanging off them so 775 * need to resume immediately. Other drivers don't have that 776 * problem and may take a substantial amount of time to resume 777 * due to I/O costs and anti-pop so handle them out of line. 778 */ 779 if (cpu_dai->ac97_control) { 780 dev_dbg(socdev->dev, "Resuming AC97 immediately\n"); 781 soc_resume_deferred(&card->deferred_resume_work); 782 } else { 783 dev_dbg(socdev->dev, "Scheduling resume work\n"); 784 if (!schedule_work(&card->deferred_resume_work)) 785 dev_err(socdev->dev, "resume work item may be lost\n"); 786 } 787 788 return 0; 789 } 790 791 #else 792 #define soc_suspend NULL 793 #define soc_resume NULL 794 #endif 795 796 static void snd_soc_instantiate_card(struct snd_soc_card *card) 797 { 798 struct platform_device *pdev = container_of(card->dev, 799 struct platform_device, 800 dev); 801 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev; 802 struct snd_soc_platform *platform; 803 struct snd_soc_dai *dai; 804 int i, found, ret, ac97; 805 806 if (card->instantiated) 807 return; 808 809 found = 0; 810 list_for_each_entry(platform, &platform_list, list) 811 if (card->platform == platform) { 812 found = 1; 813 break; 814 } 815 if (!found) { 816 dev_dbg(card->dev, "Platform %s not registered\n", 817 card->platform->name); 818 return; 819 } 820 821 ac97 = 0; 822 for (i = 0; i < card->num_links; i++) { 823 found = 0; 824 list_for_each_entry(dai, &dai_list, list) 825 if (card->dai_link[i].cpu_dai == dai) { 826 found = 1; 827 break; 828 } 829 if (!found) { 830 dev_dbg(card->dev, "DAI %s not registered\n", 831 card->dai_link[i].cpu_dai->name); 832 return; 833 } 834 835 if (card->dai_link[i].cpu_dai->ac97_control) 836 ac97 = 1; 837 } 838 839 /* If we have AC97 in the system then don't wait for the 840 * codec. This will need revisiting if we have to handle 841 * systems with mixed AC97 and non-AC97 parts. Only check for 842 * DAIs currently; we can't do this per link since some AC97 843 * codecs have non-AC97 DAIs. 844 */ 845 if (!ac97) 846 for (i = 0; i < card->num_links; i++) { 847 found = 0; 848 list_for_each_entry(dai, &dai_list, list) 849 if (card->dai_link[i].codec_dai == dai) { 850 found = 1; 851 break; 852 } 853 if (!found) { 854 dev_dbg(card->dev, "DAI %s not registered\n", 855 card->dai_link[i].codec_dai->name); 856 return; 857 } 858 } 859 860 /* Note that we do not current check for codec components */ 861 862 dev_dbg(card->dev, "All components present, instantiating\n"); 863 864 /* Found everything, bring it up */ 865 if (card->probe) { 866 ret = card->probe(pdev); 867 if (ret < 0) 868 return; 869 } 870 871 for (i = 0; i < card->num_links; i++) { 872 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 873 if (cpu_dai->probe) { 874 ret = cpu_dai->probe(pdev, cpu_dai); 875 if (ret < 0) 876 goto cpu_dai_err; 877 } 878 } 879 880 if (codec_dev->probe) { 881 ret = codec_dev->probe(pdev); 882 if (ret < 0) 883 goto cpu_dai_err; 884 } 885 886 if (platform->probe) { 887 ret = platform->probe(pdev); 888 if (ret < 0) 889 goto platform_err; 890 } 891 892 /* DAPM stream work */ 893 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work); 894 #ifdef CONFIG_PM 895 /* deferred resume work */ 896 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 897 #endif 898 899 card->instantiated = 1; 900 901 return; 902 903 platform_err: 904 if (codec_dev->remove) 905 codec_dev->remove(pdev); 906 907 cpu_dai_err: 908 for (i--; i >= 0; i--) { 909 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 910 if (cpu_dai->remove) 911 cpu_dai->remove(pdev, cpu_dai); 912 } 913 914 if (card->remove) 915 card->remove(pdev); 916 } 917 918 /* 919 * Attempt to initialise any uninitalised cards. Must be called with 920 * client_mutex. 921 */ 922 static void snd_soc_instantiate_cards(void) 923 { 924 struct snd_soc_card *card; 925 list_for_each_entry(card, &card_list, list) 926 snd_soc_instantiate_card(card); 927 } 928 929 /* probes a new socdev */ 930 static int soc_probe(struct platform_device *pdev) 931 { 932 int ret = 0; 933 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 934 struct snd_soc_card *card = socdev->card; 935 936 /* Bodge while we push things out of socdev */ 937 card->socdev = socdev; 938 939 /* Bodge while we unpick instantiation */ 940 card->dev = &pdev->dev; 941 ret = snd_soc_register_card(card); 942 if (ret != 0) { 943 dev_err(&pdev->dev, "Failed to register card\n"); 944 return ret; 945 } 946 947 return 0; 948 } 949 950 /* removes a socdev */ 951 static int soc_remove(struct platform_device *pdev) 952 { 953 int i; 954 struct snd_soc_device *socdev = platform_get_drvdata(pdev); 955 struct snd_soc_card *card = socdev->card; 956 struct snd_soc_platform *platform = card->platform; 957 struct snd_soc_codec_device *codec_dev = socdev->codec_dev; 958 959 if (!card->instantiated) 960 return 0; 961 962 run_delayed_work(&card->delayed_work); 963 964 if (platform->remove) 965 platform->remove(pdev); 966 967 if (codec_dev->remove) 968 codec_dev->remove(pdev); 969 970 for (i = 0; i < card->num_links; i++) { 971 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai; 972 if (cpu_dai->remove) 973 cpu_dai->remove(pdev, cpu_dai); 974 } 975 976 if (card->remove) 977 card->remove(pdev); 978 979 snd_soc_unregister_card(card); 980 981 return 0; 982 } 983 984 /* ASoC platform driver */ 985 static struct platform_driver soc_driver = { 986 .driver = { 987 .name = "soc-audio", 988 .owner = THIS_MODULE, 989 }, 990 .probe = soc_probe, 991 .remove = soc_remove, 992 .suspend = soc_suspend, 993 .resume = soc_resume, 994 }; 995 996 /* create a new pcm */ 997 static int soc_new_pcm(struct snd_soc_device *socdev, 998 struct snd_soc_dai_link *dai_link, int num) 999 { 1000 struct snd_soc_card *card = socdev->card; 1001 struct snd_soc_codec *codec = card->codec; 1002 struct snd_soc_platform *platform = card->platform; 1003 struct snd_soc_dai *codec_dai = dai_link->codec_dai; 1004 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai; 1005 struct snd_soc_pcm_runtime *rtd; 1006 struct snd_pcm *pcm; 1007 char new_name[64]; 1008 int ret = 0, playback = 0, capture = 0; 1009 1010 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL); 1011 if (rtd == NULL) 1012 return -ENOMEM; 1013 1014 rtd->dai = dai_link; 1015 rtd->socdev = socdev; 1016 codec_dai->codec = card->codec; 1017 1018 /* check client and interface hw capabilities */ 1019 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name, 1020 num); 1021 1022 if (codec_dai->playback.channels_min) 1023 playback = 1; 1024 if (codec_dai->capture.channels_min) 1025 capture = 1; 1026 1027 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback, 1028 capture, &pcm); 1029 if (ret < 0) { 1030 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", 1031 codec->name); 1032 kfree(rtd); 1033 return ret; 1034 } 1035 1036 dai_link->pcm = pcm; 1037 pcm->private_data = rtd; 1038 soc_pcm_ops.mmap = platform->pcm_ops->mmap; 1039 soc_pcm_ops.pointer = platform->pcm_ops->pointer; 1040 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl; 1041 soc_pcm_ops.copy = platform->pcm_ops->copy; 1042 soc_pcm_ops.silence = platform->pcm_ops->silence; 1043 soc_pcm_ops.ack = platform->pcm_ops->ack; 1044 soc_pcm_ops.page = platform->pcm_ops->page; 1045 1046 if (playback) 1047 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops); 1048 1049 if (capture) 1050 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops); 1051 1052 ret = platform->pcm_new(codec->card, codec_dai, pcm); 1053 if (ret < 0) { 1054 printk(KERN_ERR "asoc: platform pcm constructor failed\n"); 1055 kfree(rtd); 1056 return ret; 1057 } 1058 1059 pcm->private_free = platform->pcm_free; 1060 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name, 1061 cpu_dai->name); 1062 return ret; 1063 } 1064 1065 /* codec register dump */ 1066 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf) 1067 { 1068 int i, step = 1, count = 0; 1069 1070 if (!codec->reg_cache_size) 1071 return 0; 1072 1073 if (codec->reg_cache_step) 1074 step = codec->reg_cache_step; 1075 1076 count += sprintf(buf, "%s registers\n", codec->name); 1077 for (i = 0; i < codec->reg_cache_size; i += step) { 1078 count += sprintf(buf + count, "%2x: ", i); 1079 if (count >= PAGE_SIZE - 1) 1080 break; 1081 1082 if (codec->display_register) 1083 count += codec->display_register(codec, buf + count, 1084 PAGE_SIZE - count, i); 1085 else 1086 count += snprintf(buf + count, PAGE_SIZE - count, 1087 "%4x", codec->read(codec, i)); 1088 1089 if (count >= PAGE_SIZE - 1) 1090 break; 1091 1092 count += snprintf(buf + count, PAGE_SIZE - count, "\n"); 1093 if (count >= PAGE_SIZE - 1) 1094 break; 1095 } 1096 1097 /* Truncate count; min() would cause a warning */ 1098 if (count >= PAGE_SIZE) 1099 count = PAGE_SIZE - 1; 1100 1101 return count; 1102 } 1103 static ssize_t codec_reg_show(struct device *dev, 1104 struct device_attribute *attr, char *buf) 1105 { 1106 struct snd_soc_device *devdata = dev_get_drvdata(dev); 1107 return soc_codec_reg_show(devdata->card->codec, buf); 1108 } 1109 1110 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 1111 1112 #ifdef CONFIG_DEBUG_FS 1113 static int codec_reg_open_file(struct inode *inode, struct file *file) 1114 { 1115 file->private_data = inode->i_private; 1116 return 0; 1117 } 1118 1119 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 1120 size_t count, loff_t *ppos) 1121 { 1122 ssize_t ret; 1123 struct snd_soc_codec *codec = file->private_data; 1124 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1125 if (!buf) 1126 return -ENOMEM; 1127 ret = soc_codec_reg_show(codec, buf); 1128 if (ret >= 0) 1129 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1130 kfree(buf); 1131 return ret; 1132 } 1133 1134 static ssize_t codec_reg_write_file(struct file *file, 1135 const char __user *user_buf, size_t count, loff_t *ppos) 1136 { 1137 char buf[32]; 1138 int buf_size; 1139 char *start = buf; 1140 unsigned long reg, value; 1141 int step = 1; 1142 struct snd_soc_codec *codec = file->private_data; 1143 1144 buf_size = min(count, (sizeof(buf)-1)); 1145 if (copy_from_user(buf, user_buf, buf_size)) 1146 return -EFAULT; 1147 buf[buf_size] = 0; 1148 1149 if (codec->reg_cache_step) 1150 step = codec->reg_cache_step; 1151 1152 while (*start == ' ') 1153 start++; 1154 reg = simple_strtoul(start, &start, 16); 1155 if ((reg >= codec->reg_cache_size) || (reg % step)) 1156 return -EINVAL; 1157 while (*start == ' ') 1158 start++; 1159 if (strict_strtoul(start, 16, &value)) 1160 return -EINVAL; 1161 codec->write(codec, reg, value); 1162 return buf_size; 1163 } 1164 1165 static const struct file_operations codec_reg_fops = { 1166 .open = codec_reg_open_file, 1167 .read = codec_reg_read_file, 1168 .write = codec_reg_write_file, 1169 }; 1170 1171 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 1172 { 1173 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 1174 debugfs_root, codec, 1175 &codec_reg_fops); 1176 if (!codec->debugfs_reg) 1177 printk(KERN_WARNING 1178 "ASoC: Failed to create codec register debugfs file\n"); 1179 1180 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744, 1181 debugfs_root, 1182 &codec->pop_time); 1183 if (!codec->debugfs_pop_time) 1184 printk(KERN_WARNING 1185 "Failed to create pop time debugfs file\n"); 1186 } 1187 1188 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 1189 { 1190 debugfs_remove(codec->debugfs_pop_time); 1191 debugfs_remove(codec->debugfs_reg); 1192 } 1193 1194 #else 1195 1196 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 1197 { 1198 } 1199 1200 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 1201 { 1202 } 1203 #endif 1204 1205 /** 1206 * snd_soc_new_ac97_codec - initailise AC97 device 1207 * @codec: audio codec 1208 * @ops: AC97 bus operations 1209 * @num: AC97 codec number 1210 * 1211 * Initialises AC97 codec resources for use by ad-hoc devices only. 1212 */ 1213 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 1214 struct snd_ac97_bus_ops *ops, int num) 1215 { 1216 mutex_lock(&codec->mutex); 1217 1218 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 1219 if (codec->ac97 == NULL) { 1220 mutex_unlock(&codec->mutex); 1221 return -ENOMEM; 1222 } 1223 1224 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 1225 if (codec->ac97->bus == NULL) { 1226 kfree(codec->ac97); 1227 codec->ac97 = NULL; 1228 mutex_unlock(&codec->mutex); 1229 return -ENOMEM; 1230 } 1231 1232 codec->ac97->bus->ops = ops; 1233 codec->ac97->num = num; 1234 mutex_unlock(&codec->mutex); 1235 return 0; 1236 } 1237 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 1238 1239 /** 1240 * snd_soc_free_ac97_codec - free AC97 codec device 1241 * @codec: audio codec 1242 * 1243 * Frees AC97 codec device resources. 1244 */ 1245 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 1246 { 1247 mutex_lock(&codec->mutex); 1248 kfree(codec->ac97->bus); 1249 kfree(codec->ac97); 1250 codec->ac97 = NULL; 1251 mutex_unlock(&codec->mutex); 1252 } 1253 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 1254 1255 /** 1256 * snd_soc_update_bits - update codec register bits 1257 * @codec: audio codec 1258 * @reg: codec register 1259 * @mask: register mask 1260 * @value: new value 1261 * 1262 * Writes new register value. 1263 * 1264 * Returns 1 for change else 0. 1265 */ 1266 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 1267 unsigned short mask, unsigned short value) 1268 { 1269 int change; 1270 unsigned short old, new; 1271 1272 mutex_lock(&io_mutex); 1273 old = snd_soc_read(codec, reg); 1274 new = (old & ~mask) | value; 1275 change = old != new; 1276 if (change) 1277 snd_soc_write(codec, reg, new); 1278 1279 mutex_unlock(&io_mutex); 1280 return change; 1281 } 1282 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 1283 1284 /** 1285 * snd_soc_test_bits - test register for change 1286 * @codec: audio codec 1287 * @reg: codec register 1288 * @mask: register mask 1289 * @value: new value 1290 * 1291 * Tests a register with a new value and checks if the new value is 1292 * different from the old value. 1293 * 1294 * Returns 1 for change else 0. 1295 */ 1296 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 1297 unsigned short mask, unsigned short value) 1298 { 1299 int change; 1300 unsigned short old, new; 1301 1302 mutex_lock(&io_mutex); 1303 old = snd_soc_read(codec, reg); 1304 new = (old & ~mask) | value; 1305 change = old != new; 1306 mutex_unlock(&io_mutex); 1307 1308 return change; 1309 } 1310 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 1311 1312 /** 1313 * snd_soc_new_pcms - create new sound card and pcms 1314 * @socdev: the SoC audio device 1315 * @idx: ALSA card index 1316 * @xid: card identification 1317 * 1318 * Create a new sound card based upon the codec and interface pcms. 1319 * 1320 * Returns 0 for success, else error. 1321 */ 1322 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid) 1323 { 1324 struct snd_soc_card *card = socdev->card; 1325 struct snd_soc_codec *codec = card->codec; 1326 int ret, i; 1327 1328 mutex_lock(&codec->mutex); 1329 1330 /* register a sound card */ 1331 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card); 1332 if (ret < 0) { 1333 printk(KERN_ERR "asoc: can't create sound card for codec %s\n", 1334 codec->name); 1335 mutex_unlock(&codec->mutex); 1336 return ret; 1337 } 1338 1339 codec->socdev = socdev; 1340 codec->card->dev = socdev->dev; 1341 codec->card->private_data = codec; 1342 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver)); 1343 1344 /* create the pcms */ 1345 for (i = 0; i < card->num_links; i++) { 1346 ret = soc_new_pcm(socdev, &card->dai_link[i], i); 1347 if (ret < 0) { 1348 printk(KERN_ERR "asoc: can't create pcm %s\n", 1349 card->dai_link[i].stream_name); 1350 mutex_unlock(&codec->mutex); 1351 return ret; 1352 } 1353 } 1354 1355 mutex_unlock(&codec->mutex); 1356 return ret; 1357 } 1358 EXPORT_SYMBOL_GPL(snd_soc_new_pcms); 1359 1360 /** 1361 * snd_soc_init_card - register sound card 1362 * @socdev: the SoC audio device 1363 * 1364 * Register a SoC sound card. Also registers an AC97 device if the 1365 * codec is AC97 for ad hoc devices. 1366 * 1367 * Returns 0 for success, else error. 1368 */ 1369 int snd_soc_init_card(struct snd_soc_device *socdev) 1370 { 1371 struct snd_soc_card *card = socdev->card; 1372 struct snd_soc_codec *codec = card->codec; 1373 int ret = 0, i, ac97 = 0, err = 0; 1374 1375 for (i = 0; i < card->num_links; i++) { 1376 if (card->dai_link[i].init) { 1377 err = card->dai_link[i].init(codec); 1378 if (err < 0) { 1379 printk(KERN_ERR "asoc: failed to init %s\n", 1380 card->dai_link[i].stream_name); 1381 continue; 1382 } 1383 } 1384 if (card->dai_link[i].codec_dai->ac97_control) 1385 ac97 = 1; 1386 } 1387 snprintf(codec->card->shortname, sizeof(codec->card->shortname), 1388 "%s", card->name); 1389 snprintf(codec->card->longname, sizeof(codec->card->longname), 1390 "%s (%s)", card->name, codec->name); 1391 1392 /* Make sure all DAPM widgets are instantiated */ 1393 snd_soc_dapm_new_widgets(codec); 1394 1395 ret = snd_card_register(codec->card); 1396 if (ret < 0) { 1397 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", 1398 codec->name); 1399 goto out; 1400 } 1401 1402 mutex_lock(&codec->mutex); 1403 #ifdef CONFIG_SND_SOC_AC97_BUS 1404 /* Only instantiate AC97 if not already done by the adaptor 1405 * for the generic AC97 subsystem. 1406 */ 1407 if (ac97 && strcmp(codec->name, "AC97") != 0) { 1408 ret = soc_ac97_dev_register(codec); 1409 if (ret < 0) { 1410 printk(KERN_ERR "asoc: AC97 device register failed\n"); 1411 snd_card_free(codec->card); 1412 mutex_unlock(&codec->mutex); 1413 goto out; 1414 } 1415 } 1416 #endif 1417 1418 err = snd_soc_dapm_sys_add(socdev->dev); 1419 if (err < 0) 1420 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n"); 1421 1422 err = device_create_file(socdev->dev, &dev_attr_codec_reg); 1423 if (err < 0) 1424 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n"); 1425 1426 soc_init_codec_debugfs(codec); 1427 mutex_unlock(&codec->mutex); 1428 1429 out: 1430 return ret; 1431 } 1432 EXPORT_SYMBOL_GPL(snd_soc_init_card); 1433 1434 /** 1435 * snd_soc_free_pcms - free sound card and pcms 1436 * @socdev: the SoC audio device 1437 * 1438 * Frees sound card and pcms associated with the socdev. 1439 * Also unregister the codec if it is an AC97 device. 1440 */ 1441 void snd_soc_free_pcms(struct snd_soc_device *socdev) 1442 { 1443 struct snd_soc_codec *codec = socdev->card->codec; 1444 #ifdef CONFIG_SND_SOC_AC97_BUS 1445 struct snd_soc_dai *codec_dai; 1446 int i; 1447 #endif 1448 1449 mutex_lock(&codec->mutex); 1450 soc_cleanup_codec_debugfs(codec); 1451 #ifdef CONFIG_SND_SOC_AC97_BUS 1452 for (i = 0; i < codec->num_dai; i++) { 1453 codec_dai = &codec->dai[i]; 1454 if (codec_dai->ac97_control && codec->ac97 && 1455 strcmp(codec->name, "AC97") != 0) { 1456 soc_ac97_dev_unregister(codec); 1457 goto free_card; 1458 } 1459 } 1460 free_card: 1461 #endif 1462 1463 if (codec->card) 1464 snd_card_free(codec->card); 1465 device_remove_file(socdev->dev, &dev_attr_codec_reg); 1466 mutex_unlock(&codec->mutex); 1467 } 1468 EXPORT_SYMBOL_GPL(snd_soc_free_pcms); 1469 1470 /** 1471 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters 1472 * @substream: the pcm substream 1473 * @hw: the hardware parameters 1474 * 1475 * Sets the substream runtime hardware parameters. 1476 */ 1477 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 1478 const struct snd_pcm_hardware *hw) 1479 { 1480 struct snd_pcm_runtime *runtime = substream->runtime; 1481 runtime->hw.info = hw->info; 1482 runtime->hw.formats = hw->formats; 1483 runtime->hw.period_bytes_min = hw->period_bytes_min; 1484 runtime->hw.period_bytes_max = hw->period_bytes_max; 1485 runtime->hw.periods_min = hw->periods_min; 1486 runtime->hw.periods_max = hw->periods_max; 1487 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max; 1488 runtime->hw.fifo_size = hw->fifo_size; 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams); 1492 1493 /** 1494 * snd_soc_cnew - create new control 1495 * @_template: control template 1496 * @data: control private data 1497 * @long_name: control long name 1498 * 1499 * Create a new mixer control from a template control. 1500 * 1501 * Returns 0 for success, else error. 1502 */ 1503 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 1504 void *data, char *long_name) 1505 { 1506 struct snd_kcontrol_new template; 1507 1508 memcpy(&template, _template, sizeof(template)); 1509 if (long_name) 1510 template.name = long_name; 1511 template.index = 0; 1512 1513 return snd_ctl_new1(&template, data); 1514 } 1515 EXPORT_SYMBOL_GPL(snd_soc_cnew); 1516 1517 /** 1518 * snd_soc_add_controls - add an array of controls to a codec. 1519 * Convienience function to add a list of controls. Many codecs were 1520 * duplicating this code. 1521 * 1522 * @codec: codec to add controls to 1523 * @controls: array of controls to add 1524 * @num_controls: number of elements in the array 1525 * 1526 * Return 0 for success, else error. 1527 */ 1528 int snd_soc_add_controls(struct snd_soc_codec *codec, 1529 const struct snd_kcontrol_new *controls, int num_controls) 1530 { 1531 struct snd_card *card = codec->card; 1532 int err, i; 1533 1534 for (i = 0; i < num_controls; i++) { 1535 const struct snd_kcontrol_new *control = &controls[i]; 1536 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL)); 1537 if (err < 0) { 1538 dev_err(codec->dev, "%s: Failed to add %s\n", 1539 codec->name, control->name); 1540 return err; 1541 } 1542 } 1543 1544 return 0; 1545 } 1546 EXPORT_SYMBOL_GPL(snd_soc_add_controls); 1547 1548 /** 1549 * snd_soc_info_enum_double - enumerated double mixer info callback 1550 * @kcontrol: mixer control 1551 * @uinfo: control element information 1552 * 1553 * Callback to provide information about a double enumerated 1554 * mixer control. 1555 * 1556 * Returns 0 for success. 1557 */ 1558 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 1559 struct snd_ctl_elem_info *uinfo) 1560 { 1561 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1562 1563 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1564 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 1565 uinfo->value.enumerated.items = e->max; 1566 1567 if (uinfo->value.enumerated.item > e->max - 1) 1568 uinfo->value.enumerated.item = e->max - 1; 1569 strcpy(uinfo->value.enumerated.name, 1570 e->texts[uinfo->value.enumerated.item]); 1571 return 0; 1572 } 1573 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 1574 1575 /** 1576 * snd_soc_get_enum_double - enumerated double mixer get callback 1577 * @kcontrol: mixer control 1578 * @ucontrol: control element information 1579 * 1580 * Callback to get the value of a double enumerated mixer. 1581 * 1582 * Returns 0 for success. 1583 */ 1584 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 1585 struct snd_ctl_elem_value *ucontrol) 1586 { 1587 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1588 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1589 unsigned short val, bitmask; 1590 1591 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 1592 ; 1593 val = snd_soc_read(codec, e->reg); 1594 ucontrol->value.enumerated.item[0] 1595 = (val >> e->shift_l) & (bitmask - 1); 1596 if (e->shift_l != e->shift_r) 1597 ucontrol->value.enumerated.item[1] = 1598 (val >> e->shift_r) & (bitmask - 1); 1599 1600 return 0; 1601 } 1602 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 1603 1604 /** 1605 * snd_soc_put_enum_double - enumerated double mixer put callback 1606 * @kcontrol: mixer control 1607 * @ucontrol: control element information 1608 * 1609 * Callback to set the value of a double enumerated mixer. 1610 * 1611 * Returns 0 for success. 1612 */ 1613 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 1614 struct snd_ctl_elem_value *ucontrol) 1615 { 1616 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1617 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1618 unsigned short val; 1619 unsigned short mask, bitmask; 1620 1621 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 1622 ; 1623 if (ucontrol->value.enumerated.item[0] > e->max - 1) 1624 return -EINVAL; 1625 val = ucontrol->value.enumerated.item[0] << e->shift_l; 1626 mask = (bitmask - 1) << e->shift_l; 1627 if (e->shift_l != e->shift_r) { 1628 if (ucontrol->value.enumerated.item[1] > e->max - 1) 1629 return -EINVAL; 1630 val |= ucontrol->value.enumerated.item[1] << e->shift_r; 1631 mask |= (bitmask - 1) << e->shift_r; 1632 } 1633 1634 return snd_soc_update_bits(codec, e->reg, mask, val); 1635 } 1636 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 1637 1638 /** 1639 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback 1640 * @kcontrol: mixer control 1641 * @ucontrol: control element information 1642 * 1643 * Callback to get the value of a double semi enumerated mixer. 1644 * 1645 * Semi enumerated mixer: the enumerated items are referred as values. Can be 1646 * used for handling bitfield coded enumeration for example. 1647 * 1648 * Returns 0 for success. 1649 */ 1650 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 1651 struct snd_ctl_elem_value *ucontrol) 1652 { 1653 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1654 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1655 unsigned short reg_val, val, mux; 1656 1657 reg_val = snd_soc_read(codec, e->reg); 1658 val = (reg_val >> e->shift_l) & e->mask; 1659 for (mux = 0; mux < e->max; mux++) { 1660 if (val == e->values[mux]) 1661 break; 1662 } 1663 ucontrol->value.enumerated.item[0] = mux; 1664 if (e->shift_l != e->shift_r) { 1665 val = (reg_val >> e->shift_r) & e->mask; 1666 for (mux = 0; mux < e->max; mux++) { 1667 if (val == e->values[mux]) 1668 break; 1669 } 1670 ucontrol->value.enumerated.item[1] = mux; 1671 } 1672 1673 return 0; 1674 } 1675 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double); 1676 1677 /** 1678 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback 1679 * @kcontrol: mixer control 1680 * @ucontrol: control element information 1681 * 1682 * Callback to set the value of a double semi enumerated mixer. 1683 * 1684 * Semi enumerated mixer: the enumerated items are referred as values. Can be 1685 * used for handling bitfield coded enumeration for example. 1686 * 1687 * Returns 0 for success. 1688 */ 1689 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 1690 struct snd_ctl_elem_value *ucontrol) 1691 { 1692 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1693 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1694 unsigned short val; 1695 unsigned short mask; 1696 1697 if (ucontrol->value.enumerated.item[0] > e->max - 1) 1698 return -EINVAL; 1699 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l; 1700 mask = e->mask << e->shift_l; 1701 if (e->shift_l != e->shift_r) { 1702 if (ucontrol->value.enumerated.item[1] > e->max - 1) 1703 return -EINVAL; 1704 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r; 1705 mask |= e->mask << e->shift_r; 1706 } 1707 1708 return snd_soc_update_bits(codec, e->reg, mask, val); 1709 } 1710 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double); 1711 1712 /** 1713 * snd_soc_info_enum_ext - external enumerated single mixer info callback 1714 * @kcontrol: mixer control 1715 * @uinfo: control element information 1716 * 1717 * Callback to provide information about an external enumerated 1718 * single mixer. 1719 * 1720 * Returns 0 for success. 1721 */ 1722 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 1723 struct snd_ctl_elem_info *uinfo) 1724 { 1725 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 1726 1727 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1728 uinfo->count = 1; 1729 uinfo->value.enumerated.items = e->max; 1730 1731 if (uinfo->value.enumerated.item > e->max - 1) 1732 uinfo->value.enumerated.item = e->max - 1; 1733 strcpy(uinfo->value.enumerated.name, 1734 e->texts[uinfo->value.enumerated.item]); 1735 return 0; 1736 } 1737 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext); 1738 1739 /** 1740 * snd_soc_info_volsw_ext - external single mixer info callback 1741 * @kcontrol: mixer control 1742 * @uinfo: control element information 1743 * 1744 * Callback to provide information about a single external mixer control. 1745 * 1746 * Returns 0 for success. 1747 */ 1748 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 1749 struct snd_ctl_elem_info *uinfo) 1750 { 1751 int max = kcontrol->private_value; 1752 1753 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1754 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1755 else 1756 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1757 1758 uinfo->count = 1; 1759 uinfo->value.integer.min = 0; 1760 uinfo->value.integer.max = max; 1761 return 0; 1762 } 1763 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext); 1764 1765 /** 1766 * snd_soc_info_volsw - single mixer info callback 1767 * @kcontrol: mixer control 1768 * @uinfo: control element information 1769 * 1770 * Callback to provide information about a single mixer control. 1771 * 1772 * Returns 0 for success. 1773 */ 1774 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 1775 struct snd_ctl_elem_info *uinfo) 1776 { 1777 struct soc_mixer_control *mc = 1778 (struct soc_mixer_control *)kcontrol->private_value; 1779 int max = mc->max; 1780 unsigned int shift = mc->shift; 1781 unsigned int rshift = mc->rshift; 1782 1783 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1784 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1785 else 1786 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1787 1788 uinfo->count = shift == rshift ? 1 : 2; 1789 uinfo->value.integer.min = 0; 1790 uinfo->value.integer.max = max; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 1794 1795 /** 1796 * snd_soc_get_volsw - single mixer get callback 1797 * @kcontrol: mixer control 1798 * @ucontrol: control element information 1799 * 1800 * Callback to get the value of a single mixer control. 1801 * 1802 * Returns 0 for success. 1803 */ 1804 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 1805 struct snd_ctl_elem_value *ucontrol) 1806 { 1807 struct soc_mixer_control *mc = 1808 (struct soc_mixer_control *)kcontrol->private_value; 1809 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1810 unsigned int reg = mc->reg; 1811 unsigned int shift = mc->shift; 1812 unsigned int rshift = mc->rshift; 1813 int max = mc->max; 1814 unsigned int mask = (1 << fls(max)) - 1; 1815 unsigned int invert = mc->invert; 1816 1817 ucontrol->value.integer.value[0] = 1818 (snd_soc_read(codec, reg) >> shift) & mask; 1819 if (shift != rshift) 1820 ucontrol->value.integer.value[1] = 1821 (snd_soc_read(codec, reg) >> rshift) & mask; 1822 if (invert) { 1823 ucontrol->value.integer.value[0] = 1824 max - ucontrol->value.integer.value[0]; 1825 if (shift != rshift) 1826 ucontrol->value.integer.value[1] = 1827 max - ucontrol->value.integer.value[1]; 1828 } 1829 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 1833 1834 /** 1835 * snd_soc_put_volsw - single mixer put callback 1836 * @kcontrol: mixer control 1837 * @ucontrol: control element information 1838 * 1839 * Callback to set the value of a single mixer control. 1840 * 1841 * Returns 0 for success. 1842 */ 1843 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 1844 struct snd_ctl_elem_value *ucontrol) 1845 { 1846 struct soc_mixer_control *mc = 1847 (struct soc_mixer_control *)kcontrol->private_value; 1848 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1849 unsigned int reg = mc->reg; 1850 unsigned int shift = mc->shift; 1851 unsigned int rshift = mc->rshift; 1852 int max = mc->max; 1853 unsigned int mask = (1 << fls(max)) - 1; 1854 unsigned int invert = mc->invert; 1855 unsigned short val, val2, val_mask; 1856 1857 val = (ucontrol->value.integer.value[0] & mask); 1858 if (invert) 1859 val = max - val; 1860 val_mask = mask << shift; 1861 val = val << shift; 1862 if (shift != rshift) { 1863 val2 = (ucontrol->value.integer.value[1] & mask); 1864 if (invert) 1865 val2 = max - val2; 1866 val_mask |= mask << rshift; 1867 val |= val2 << rshift; 1868 } 1869 return snd_soc_update_bits(codec, reg, val_mask, val); 1870 } 1871 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 1872 1873 /** 1874 * snd_soc_info_volsw_2r - double mixer info callback 1875 * @kcontrol: mixer control 1876 * @uinfo: control element information 1877 * 1878 * Callback to provide information about a double mixer control that 1879 * spans 2 codec registers. 1880 * 1881 * Returns 0 for success. 1882 */ 1883 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 1884 struct snd_ctl_elem_info *uinfo) 1885 { 1886 struct soc_mixer_control *mc = 1887 (struct soc_mixer_control *)kcontrol->private_value; 1888 int max = mc->max; 1889 1890 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 1891 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1892 else 1893 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1894 1895 uinfo->count = 2; 1896 uinfo->value.integer.min = 0; 1897 uinfo->value.integer.max = max; 1898 return 0; 1899 } 1900 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r); 1901 1902 /** 1903 * snd_soc_get_volsw_2r - double mixer get callback 1904 * @kcontrol: mixer control 1905 * @ucontrol: control element information 1906 * 1907 * Callback to get the value of a double mixer control that spans 2 registers. 1908 * 1909 * Returns 0 for success. 1910 */ 1911 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 1912 struct snd_ctl_elem_value *ucontrol) 1913 { 1914 struct soc_mixer_control *mc = 1915 (struct soc_mixer_control *)kcontrol->private_value; 1916 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1917 unsigned int reg = mc->reg; 1918 unsigned int reg2 = mc->rreg; 1919 unsigned int shift = mc->shift; 1920 int max = mc->max; 1921 unsigned int mask = (1<<fls(max))-1; 1922 unsigned int invert = mc->invert; 1923 1924 ucontrol->value.integer.value[0] = 1925 (snd_soc_read(codec, reg) >> shift) & mask; 1926 ucontrol->value.integer.value[1] = 1927 (snd_soc_read(codec, reg2) >> shift) & mask; 1928 if (invert) { 1929 ucontrol->value.integer.value[0] = 1930 max - ucontrol->value.integer.value[0]; 1931 ucontrol->value.integer.value[1] = 1932 max - ucontrol->value.integer.value[1]; 1933 } 1934 1935 return 0; 1936 } 1937 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r); 1938 1939 /** 1940 * snd_soc_put_volsw_2r - double mixer set callback 1941 * @kcontrol: mixer control 1942 * @ucontrol: control element information 1943 * 1944 * Callback to set the value of a double mixer control that spans 2 registers. 1945 * 1946 * Returns 0 for success. 1947 */ 1948 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 1949 struct snd_ctl_elem_value *ucontrol) 1950 { 1951 struct soc_mixer_control *mc = 1952 (struct soc_mixer_control *)kcontrol->private_value; 1953 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 1954 unsigned int reg = mc->reg; 1955 unsigned int reg2 = mc->rreg; 1956 unsigned int shift = mc->shift; 1957 int max = mc->max; 1958 unsigned int mask = (1 << fls(max)) - 1; 1959 unsigned int invert = mc->invert; 1960 int err; 1961 unsigned short val, val2, val_mask; 1962 1963 val_mask = mask << shift; 1964 val = (ucontrol->value.integer.value[0] & mask); 1965 val2 = (ucontrol->value.integer.value[1] & mask); 1966 1967 if (invert) { 1968 val = max - val; 1969 val2 = max - val2; 1970 } 1971 1972 val = val << shift; 1973 val2 = val2 << shift; 1974 1975 err = snd_soc_update_bits(codec, reg, val_mask, val); 1976 if (err < 0) 1977 return err; 1978 1979 err = snd_soc_update_bits(codec, reg2, val_mask, val2); 1980 return err; 1981 } 1982 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r); 1983 1984 /** 1985 * snd_soc_info_volsw_s8 - signed mixer info callback 1986 * @kcontrol: mixer control 1987 * @uinfo: control element information 1988 * 1989 * Callback to provide information about a signed mixer control. 1990 * 1991 * Returns 0 for success. 1992 */ 1993 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 1994 struct snd_ctl_elem_info *uinfo) 1995 { 1996 struct soc_mixer_control *mc = 1997 (struct soc_mixer_control *)kcontrol->private_value; 1998 int max = mc->max; 1999 int min = mc->min; 2000 2001 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2002 uinfo->count = 2; 2003 uinfo->value.integer.min = 0; 2004 uinfo->value.integer.max = max-min; 2005 return 0; 2006 } 2007 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2008 2009 /** 2010 * snd_soc_get_volsw_s8 - signed mixer get callback 2011 * @kcontrol: mixer control 2012 * @ucontrol: control element information 2013 * 2014 * Callback to get the value of a signed mixer control. 2015 * 2016 * Returns 0 for success. 2017 */ 2018 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2019 struct snd_ctl_elem_value *ucontrol) 2020 { 2021 struct soc_mixer_control *mc = 2022 (struct soc_mixer_control *)kcontrol->private_value; 2023 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2024 unsigned int reg = mc->reg; 2025 int min = mc->min; 2026 int val = snd_soc_read(codec, reg); 2027 2028 ucontrol->value.integer.value[0] = 2029 ((signed char)(val & 0xff))-min; 2030 ucontrol->value.integer.value[1] = 2031 ((signed char)((val >> 8) & 0xff))-min; 2032 return 0; 2033 } 2034 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2035 2036 /** 2037 * snd_soc_put_volsw_sgn - signed mixer put callback 2038 * @kcontrol: mixer control 2039 * @ucontrol: control element information 2040 * 2041 * Callback to set the value of a signed mixer control. 2042 * 2043 * Returns 0 for success. 2044 */ 2045 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2046 struct snd_ctl_elem_value *ucontrol) 2047 { 2048 struct soc_mixer_control *mc = 2049 (struct soc_mixer_control *)kcontrol->private_value; 2050 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2051 unsigned int reg = mc->reg; 2052 int min = mc->min; 2053 unsigned short val; 2054 2055 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2056 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2057 2058 return snd_soc_update_bits(codec, reg, 0xffff, val); 2059 } 2060 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 2061 2062 /** 2063 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2064 * @dai: DAI 2065 * @clk_id: DAI specific clock ID 2066 * @freq: new clock frequency in Hz 2067 * @dir: new clock direction - input/output. 2068 * 2069 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 2070 */ 2071 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 2072 unsigned int freq, int dir) 2073 { 2074 if (dai->ops && dai->ops->set_sysclk) 2075 return dai->ops->set_sysclk(dai, clk_id, freq, dir); 2076 else 2077 return -EINVAL; 2078 } 2079 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 2080 2081 /** 2082 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 2083 * @dai: DAI 2084 * @div_id: DAI specific clock divider ID 2085 * @div: new clock divisor. 2086 * 2087 * Configures the clock dividers. This is used to derive the best DAI bit and 2088 * frame clocks from the system or master clock. It's best to set the DAI bit 2089 * and frame clocks as low as possible to save system power. 2090 */ 2091 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 2092 int div_id, int div) 2093 { 2094 if (dai->ops && dai->ops->set_clkdiv) 2095 return dai->ops->set_clkdiv(dai, div_id, div); 2096 else 2097 return -EINVAL; 2098 } 2099 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 2100 2101 /** 2102 * snd_soc_dai_set_pll - configure DAI PLL. 2103 * @dai: DAI 2104 * @pll_id: DAI specific PLL ID 2105 * @freq_in: PLL input clock frequency in Hz 2106 * @freq_out: requested PLL output clock frequency in Hz 2107 * 2108 * Configures and enables PLL to generate output clock based on input clock. 2109 */ 2110 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, 2111 int pll_id, unsigned int freq_in, unsigned int freq_out) 2112 { 2113 if (dai->ops && dai->ops->set_pll) 2114 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out); 2115 else 2116 return -EINVAL; 2117 } 2118 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 2119 2120 /** 2121 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 2122 * @dai: DAI 2123 * @fmt: SND_SOC_DAIFMT_ format value. 2124 * 2125 * Configures the DAI hardware format and clocking. 2126 */ 2127 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 2128 { 2129 if (dai->ops && dai->ops->set_fmt) 2130 return dai->ops->set_fmt(dai, fmt); 2131 else 2132 return -EINVAL; 2133 } 2134 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 2135 2136 /** 2137 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 2138 * @dai: DAI 2139 * @mask: DAI specific mask representing used slots. 2140 * @slots: Number of slots in use. 2141 * 2142 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 2143 * specific. 2144 */ 2145 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 2146 unsigned int mask, int slots) 2147 { 2148 if (dai->ops && dai->ops->set_tdm_slot) 2149 return dai->ops->set_tdm_slot(dai, mask, slots); 2150 else 2151 return -EINVAL; 2152 } 2153 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 2154 2155 /** 2156 * snd_soc_dai_set_tristate - configure DAI system or master clock. 2157 * @dai: DAI 2158 * @tristate: tristate enable 2159 * 2160 * Tristates the DAI so that others can use it. 2161 */ 2162 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 2163 { 2164 if (dai->ops && dai->ops->set_tristate) 2165 return dai->ops->set_tristate(dai, tristate); 2166 else 2167 return -EINVAL; 2168 } 2169 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 2170 2171 /** 2172 * snd_soc_dai_digital_mute - configure DAI system or master clock. 2173 * @dai: DAI 2174 * @mute: mute enable 2175 * 2176 * Mutes the DAI DAC. 2177 */ 2178 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute) 2179 { 2180 if (dai->ops && dai->ops->digital_mute) 2181 return dai->ops->digital_mute(dai, mute); 2182 else 2183 return -EINVAL; 2184 } 2185 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 2186 2187 /** 2188 * snd_soc_register_card - Register a card with the ASoC core 2189 * 2190 * @card: Card to register 2191 * 2192 * Note that currently this is an internal only function: it will be 2193 * exposed to machine drivers after further backporting of ASoC v2 2194 * registration APIs. 2195 */ 2196 static int snd_soc_register_card(struct snd_soc_card *card) 2197 { 2198 if (!card->name || !card->dev) 2199 return -EINVAL; 2200 2201 INIT_LIST_HEAD(&card->list); 2202 card->instantiated = 0; 2203 2204 mutex_lock(&client_mutex); 2205 list_add(&card->list, &card_list); 2206 snd_soc_instantiate_cards(); 2207 mutex_unlock(&client_mutex); 2208 2209 dev_dbg(card->dev, "Registered card '%s'\n", card->name); 2210 2211 return 0; 2212 } 2213 2214 /** 2215 * snd_soc_unregister_card - Unregister a card with the ASoC core 2216 * 2217 * @card: Card to unregister 2218 * 2219 * Note that currently this is an internal only function: it will be 2220 * exposed to machine drivers after further backporting of ASoC v2 2221 * registration APIs. 2222 */ 2223 static int snd_soc_unregister_card(struct snd_soc_card *card) 2224 { 2225 mutex_lock(&client_mutex); 2226 list_del(&card->list); 2227 mutex_unlock(&client_mutex); 2228 2229 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name); 2230 2231 return 0; 2232 } 2233 2234 static struct snd_soc_dai_ops null_dai_ops = { 2235 }; 2236 2237 /** 2238 * snd_soc_register_dai - Register a DAI with the ASoC core 2239 * 2240 * @dai: DAI to register 2241 */ 2242 int snd_soc_register_dai(struct snd_soc_dai *dai) 2243 { 2244 if (!dai->name) 2245 return -EINVAL; 2246 2247 /* The device should become mandatory over time */ 2248 if (!dai->dev) 2249 printk(KERN_WARNING "No device for DAI %s\n", dai->name); 2250 2251 if (!dai->ops) 2252 dai->ops = &null_dai_ops; 2253 2254 INIT_LIST_HEAD(&dai->list); 2255 2256 mutex_lock(&client_mutex); 2257 list_add(&dai->list, &dai_list); 2258 snd_soc_instantiate_cards(); 2259 mutex_unlock(&client_mutex); 2260 2261 pr_debug("Registered DAI '%s'\n", dai->name); 2262 2263 return 0; 2264 } 2265 EXPORT_SYMBOL_GPL(snd_soc_register_dai); 2266 2267 /** 2268 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core 2269 * 2270 * @dai: DAI to unregister 2271 */ 2272 void snd_soc_unregister_dai(struct snd_soc_dai *dai) 2273 { 2274 mutex_lock(&client_mutex); 2275 list_del(&dai->list); 2276 mutex_unlock(&client_mutex); 2277 2278 pr_debug("Unregistered DAI '%s'\n", dai->name); 2279 } 2280 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai); 2281 2282 /** 2283 * snd_soc_register_dais - Register multiple DAIs with the ASoC core 2284 * 2285 * @dai: Array of DAIs to register 2286 * @count: Number of DAIs 2287 */ 2288 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count) 2289 { 2290 int i, ret; 2291 2292 for (i = 0; i < count; i++) { 2293 ret = snd_soc_register_dai(&dai[i]); 2294 if (ret != 0) 2295 goto err; 2296 } 2297 2298 return 0; 2299 2300 err: 2301 for (i--; i >= 0; i--) 2302 snd_soc_unregister_dai(&dai[i]); 2303 2304 return ret; 2305 } 2306 EXPORT_SYMBOL_GPL(snd_soc_register_dais); 2307 2308 /** 2309 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core 2310 * 2311 * @dai: Array of DAIs to unregister 2312 * @count: Number of DAIs 2313 */ 2314 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count) 2315 { 2316 int i; 2317 2318 for (i = 0; i < count; i++) 2319 snd_soc_unregister_dai(&dai[i]); 2320 } 2321 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais); 2322 2323 /** 2324 * snd_soc_register_platform - Register a platform with the ASoC core 2325 * 2326 * @platform: platform to register 2327 */ 2328 int snd_soc_register_platform(struct snd_soc_platform *platform) 2329 { 2330 if (!platform->name) 2331 return -EINVAL; 2332 2333 INIT_LIST_HEAD(&platform->list); 2334 2335 mutex_lock(&client_mutex); 2336 list_add(&platform->list, &platform_list); 2337 snd_soc_instantiate_cards(); 2338 mutex_unlock(&client_mutex); 2339 2340 pr_debug("Registered platform '%s'\n", platform->name); 2341 2342 return 0; 2343 } 2344 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 2345 2346 /** 2347 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 2348 * 2349 * @platform: platform to unregister 2350 */ 2351 void snd_soc_unregister_platform(struct snd_soc_platform *platform) 2352 { 2353 mutex_lock(&client_mutex); 2354 list_del(&platform->list); 2355 mutex_unlock(&client_mutex); 2356 2357 pr_debug("Unregistered platform '%s'\n", platform->name); 2358 } 2359 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 2360 2361 static u64 codec_format_map[] = { 2362 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 2363 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 2364 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 2365 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 2366 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 2367 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 2368 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 2369 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 2370 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 2371 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 2372 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 2373 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 2374 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 2375 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 2376 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 2377 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 2378 }; 2379 2380 /* Fix up the DAI formats for endianness: codecs don't actually see 2381 * the endianness of the data but we're using the CPU format 2382 * definitions which do need to include endianness so we ensure that 2383 * codec DAIs always have both big and little endian variants set. 2384 */ 2385 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 2386 { 2387 int i; 2388 2389 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 2390 if (stream->formats & codec_format_map[i]) 2391 stream->formats |= codec_format_map[i]; 2392 } 2393 2394 /** 2395 * snd_soc_register_codec - Register a codec with the ASoC core 2396 * 2397 * @codec: codec to register 2398 */ 2399 int snd_soc_register_codec(struct snd_soc_codec *codec) 2400 { 2401 int i; 2402 2403 if (!codec->name) 2404 return -EINVAL; 2405 2406 /* The device should become mandatory over time */ 2407 if (!codec->dev) 2408 printk(KERN_WARNING "No device for codec %s\n", codec->name); 2409 2410 INIT_LIST_HEAD(&codec->list); 2411 2412 for (i = 0; i < codec->num_dai; i++) { 2413 fixup_codec_formats(&codec->dai[i].playback); 2414 fixup_codec_formats(&codec->dai[i].capture); 2415 } 2416 2417 mutex_lock(&client_mutex); 2418 list_add(&codec->list, &codec_list); 2419 snd_soc_instantiate_cards(); 2420 mutex_unlock(&client_mutex); 2421 2422 pr_debug("Registered codec '%s'\n", codec->name); 2423 2424 return 0; 2425 } 2426 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 2427 2428 /** 2429 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 2430 * 2431 * @codec: codec to unregister 2432 */ 2433 void snd_soc_unregister_codec(struct snd_soc_codec *codec) 2434 { 2435 mutex_lock(&client_mutex); 2436 list_del(&codec->list); 2437 mutex_unlock(&client_mutex); 2438 2439 pr_debug("Unregistered codec '%s'\n", codec->name); 2440 } 2441 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 2442 2443 static int __init snd_soc_init(void) 2444 { 2445 #ifdef CONFIG_DEBUG_FS 2446 debugfs_root = debugfs_create_dir("asoc", NULL); 2447 if (IS_ERR(debugfs_root) || !debugfs_root) { 2448 printk(KERN_WARNING 2449 "ASoC: Failed to create debugfs directory\n"); 2450 debugfs_root = NULL; 2451 } 2452 #endif 2453 2454 return platform_driver_register(&soc_driver); 2455 } 2456 2457 static void __exit snd_soc_exit(void) 2458 { 2459 #ifdef CONFIG_DEBUG_FS 2460 debugfs_remove_recursive(debugfs_root); 2461 #endif 2462 platform_driver_unregister(&soc_driver); 2463 } 2464 2465 module_init(snd_soc_init); 2466 module_exit(snd_soc_exit); 2467 2468 /* Module information */ 2469 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 2470 MODULE_DESCRIPTION("ALSA SoC Core"); 2471 MODULE_LICENSE("GPL"); 2472 MODULE_ALIAS("platform:soc-audio"); 2473